The present invention relates in general to fluid-control valves. More specifically, but without restriction to the particular use which is shown and described, this invention relates to an equalizing device contained within a gate valve.
A gate valve is a type of fluid-control valve that opens by lifting a round or rectangular gate or wedge out of the path of the fluid. A feature common to all types of gate valves is that the sealing surfaces between the gate and seats are planar. The gate faces can form a wedge shape or they can be parallel. Gate valves are sometimes used for regulating flow, but many are not suited for that purpose, having been designed to be fully opened or closed. When fully open, the typical gate valve has no obstruction in the flow path, resulting in very low friction loss.
Gate valves are characterized as having either a rising or a nonrising stem. Rising stems provide a visual indication of valve position. Nonrising stems are used where vertical space is limited or underground.
The bonnet provides leak-proof closure for the valve body. A bolted bonnet is used for larger valves and higher pressure applications.
Gate valves normally have flanged ends which are drilled according to pipeline compatible flange dimensional standards. Cast iron, cast carbon steel, gun metal, stainless steel, alloy steels, and forged steels are different materials from which gate valves are constructed.
A well-known draw back to gate valves is that in large-size, high pressure applications (defined herein as applications where the valve is greater than four inches in size and differential pressure on opposite sides of the gate is in excess of 5,000 psi), there is so much force on the gate that it is hard or impossible to open due to friction between the gate and its seal. Even where the gate is openable under such pressure, the friction between the gate and its seal, the force required on the actuator, and the blasting action of the initial equalization flow across the cracked gate, singly or combined may be highly destructive to the valve.
The conventional solution to the problem is an external equalizing conduit between the two sides of the valve, with a small needle valve or the like manually-openable to equalize the pressures on the gate prior to it being opened. This solution, however, is highly dangerous to the operator due to a tendency of the needle valves to violently fail when operated under pressure. Thus there exists a need for a safe and effective means to equalize the pressures on opposite sides of a gate valve in high pressure applications.
The gate valve of the present invention has a gate with an internal equalizing port.
A more complete understanding of the invention and its advantages will be apparent from the Detailed Description taken in conjunction with the accompanying Drawings, in which:
Referring initially to
The gate 12 is formed of two outer layers 40,42 and a middle layer 44, with the outer and middle layers joined by fastener pins 46. The external sealing faces 22,24 of the gate 12 are on the outer layers, and the main gate passageway 14 internal walls are aligned within the outer and middle layers 40,42,44.
Each outer layer 40,42 has an internal face 48,50 opposing the internal face of the other outer layer. The middle layer 44 has opposing internal side faces 52,54 joined to opposing internal end faces 56,58, the internal faces 52,54,56,58 of the outer and middle layers 40,42,44 together forming a cavity 60 within the gate 12 opposite the external sealing faces 22,24 of the gate 12.
A carrier 70 within the cavity 60 is movable between opening and closing positions and is connected for linear actuation by way of female threads 72 within the carrier 70 to a threaded rod 74 extending to a handle 76 outside the valve 10. The carrier 70 is formed of a central section 78 and two flank sections 80, 82 joined to opposite sides of the central section 78. The female threads 72 are formed in the central section 78, and with the central section 78 extends through a gap 84 in one of the middle layer internal end faces 58.
The flank sections 80,82 each has a side surface 86, with the side surfaces 86 spaced to closely interfit with adjacent internal side faces 52,54 of the middle layer 44 for sliding linear relative movement within the cavity 60. In addition, the flank sections 80,82 each has two opposite end surfaces 88,90. The end surfaces 88,90 on each flank section 80,82 have a linear distance between them less than a linear distance between the internal end faces 56,58 of the middle layer 44, such that the carrier 70 has a range of linear travel within the cavity 60 during linear actuation between the opening and closing positions. One end surface 88 contacts one middle layer internal end face 58 in the opening position, and the other end surface 90 contacts the other middle layer internal end face 56 in the closing position. In this manner, the flank sections end surfaces 88,90 in contact with the respective middle layer internal end faces 56,58 are operative to move the gate 12 between the opened and closed positions.
The flank sections 80,82 each have internal walls forming equalizer cavities 100 open in the directions of the internal faces 48,50 of the gate outer layers 40,42. Carrier 70 abuts without being affixed to equalizer gate 102. Equalizer gates 102 within the equalizer cavities 100 are dimensioned for closely-interfitting, floating engagement with the equalizer cavities 100. Each equalizer gate 102 has two opposite sealing surfaces 104 facing the directions of the internal faces 48,50 of the gate outer layers 40,42.
Two seal plates 106 are located between each sealing surface 104 of each equalizer gate 102 and its respective internal face 48,50 of the gate outer layers 40,42. Seal plates 106 are formed of a sealing material, such as TeflonĀ®.
Walls in the outer layers 40,42 of the gate 12 define two spaced gate equalizer ports 110,112 between the opposite external sealing faces 22,24 of the gate 12. The gate equalizer ports 110,112 extend from the external sealing face 22,24 of each outer layer 40,42 to the cavity 60 between the outer layers 40,42. Walls in the seal plates 106 define seal equalizer ports 114 in the seal plates 106 aligned with the gate equalizer ports 110,112. Walls in the equalizer gates 102 define a shiftable internal equalizer port 116 in each equalizer gate 102. Equalizer gate 102 is movable linearly between a closed and open position while remaining closely interfitting with the opposing internal side faces of the interior cavity without the interior cavity changing dimensions. The internal equalizer ports 116 are dimensioned and arranged to be opened by being aligned with the gate equalizer ports 110,112 and seal equalizer ports 114 when the carrier 70 is in the opening position and to be closed by being shifted out of alignment with the gate equalizer ports 110,112 and seal equalizer ports 114 when the carrier 70 is in the closing position.
In operation, as shown in
In
In
It will be understood that each of the elements described above, or two or more together, may also find a useful application in other types of constructions differing from the type described above
While the invention has been illustrated and described as embodied in particular gate valves, it is not intended to be limited to the details shown, since it will be understood that various omissions, modifications, substitutions and changes in the forms and details of the devices illustrated and in their operation can be made by those skilled in the art without departing in any way from the spirit of the present invention.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention.
Number | Name | Date | Kind |
---|---|---|---|
588430 | Hirt | Aug 1897 | A |
723803 | Abeling | Mar 1903 | A |
745649 | McWane | Dec 1903 | A |
745774 | Brady | Dec 1903 | A |
854523 | Noel | May 1907 | A |
994587 | Hartzell | Jun 1911 | A |
1020159 | Price | Mar 1912 | A |
1549609 | Redding | Aug 1925 | A |
1932471 | McKellar | Oct 1933 | A |
3463193 | Yost | Aug 1969 | A |
3621878 | Smith | Nov 1971 | A |
3658087 | Nelson | Apr 1972 | A |
4150684 | Kervin | Apr 1979 | A |
4177833 | Morrison | Dec 1979 | A |
4480659 | Peacock | Nov 1984 | A |
4678008 | Gyongyossy | Jul 1987 | A |
4779649 | Balter | Oct 1988 | A |
5101861 | Deville et al. | Apr 1992 | A |
5370155 | Gyongyossy | Dec 1994 | A |
Number | Date | Country |
---|---|---|
2546024 | Apr 1977 | DE |
47026011 | Nov 1972 | JP |
H0468262 | Jun 1992 | JP |
H0729366 | Jun 1995 | JP |
200132951 | Feb 2001 | JP |
33410 | Feb 1955 | LU |
Number | Date | Country | |
---|---|---|---|
20090256099 A1 | Oct 2009 | US |