Gel-type thermal interface material

Information

  • Patent Grant
  • 11072706
  • Patent Number
    11,072,706
  • Date Filed
    Monday, February 4, 2019
    5 years ago
  • Date Issued
    Tuesday, July 27, 2021
    2 years ago
Abstract
A thermal interface material that is useful in transferring heat from heat generating electronic devices, such as computer chips, to heat dissipating structures, such as heat spreaders and heat sinks. The thermal interface material comprises at least one silicone oil, at least one catalyst, at least one thermally conductive filler having a larger surface area, a solvent, at least one inhibitor, and at least one crosslinker. The at least one thermally conductive filler reduces the oil leakage of the TIM, and the solvent increases the flow rate of the TIM without negating the reduction of oil leakage realized by the thermally conductive fillers.
Description
FIELD OF THE INVENTION

The present disclosure relates generally to thermal interface materials, and more particularly to gel-type thermal interface materials.


DESCRIPTION OF THE RELATED ART

Thermal interface materials (TIMs) are widely used to dissipate heat from electronic components, such as central processing units, video graphics arrays, servers, game consoles, smart phones, LED boards, and the like. Thermal interface materials are typically used to transfer excess heat from the electronic component to a heat spreader, such as a heat sink.


A typical electronics package structure 10 including thermal interface materials is illustrated in FIG. 1. The electronics package structure 10 illustratively includes a heat generating component, such as an electronic chip 12, and one or more heat dissipating components, such as a heat spreader 14, and a heat sink 16. Illustrative heat spreaders 14 and heat sinks comprise a metal, metal alloy, or metal-plated substrate, such as copper, copper alloy, aluminum, aluminum alloy, or nickel-plated copper. TIM materials, such as TIM 18 and TIM 20, provide a thermal connection between the heat generating component and the one or more heat dissipating components. Electronics package structure 10 includes a first TIM 18 connecting the electronic chip 12 and heat spreader 14. TIM 18 is typically referred to as a “TIM 1”. Electronics package structure 10 includes a second TIM 20 connecting the heat spreader 14 and heat sink 16. TIM 20 is typically referred to as a “TIM 2”. In another embodiment, electronics package structure 10 does not include a heat spreader 14, and a TIM (not shown) connects the electronic chip 12 directly to the heat sink 16. Such a TIM connecting the electronic chip 12 directly to the heat sink 16 is typically referred to as a TIM 1.5.


Traditional thermal interface materials include components such as gap pads. However, gap pads have certain disadvantages, such as inability to meet very small thickness requirements and being difficult to use in automated production.


Other thermal interface materials include gel products. Gel products may be automatically dispensed for large scale production, and can be formed to desired shapes and thicknesses. However, typical gel products with good flow properties may potentially experience oil leaking (also known as “bleeding”). Improvements in the foregoing are desired.


SUMMARY OF THE INVENTION

The present disclosure provides thermal interface materials that are useful in transferring heat from heat generating electronic devices, such as computer chips, to heat dissipating structures, such as heat spreaders and heat sinks. The thermal interface material includes at least one silicone oil, at least one catalyst, at least one thermally conductive filler having a relatively large surface area, a solvent, at least one inhibitor, and at least one crosslinker. The at least one thermally conductive filler reduces the oil leakage of the TIM, and the solvent increases the flow rate of the TIM without negating the reduction of oil leakage realized by the thermally conductive fillers.


In one exemplary embodiment, a thermal interface material is provided. The thermal interface material includes a low molecular weight silicone oil having a weight (Mw) average molecular weight less than 50,000 Daltons; at least one thermally conductive filler having a surface area greater than 1.0 m2/g; and a high molecular weight silicone oil, wherein the high molecular weight silicone oil comprises a vinyl functional silicone oil having a weight (Mw) average molecular weight of at least 60,000 Daltons.


In one more particular embodiment, the thermal interface material has a viscosity greater than 1500 Pa.s. In one more particular embodiment, the thermal interface material further includes a solvent having a boiling point between 60° C. and 220° C. and a viscosity between 0.2 cSt and 50 cSt. In one more particular embodiment, the thermal interface material has a viscosity between 150 Pa.s and 650 Pa.s. In one more particular embodiment, the at least one thermally conductive filler includes a first thermally conductive filler, a second thermally conductive filler, and a third thermally conductive filler, wherein the first thermally conductive filer is a metal oxide having a surface area between 0.1 m2/g to 1.0 m2/g, the second thermally conductive filler is a metal oxide having a surface area between 0.5 m2/g and 2.0 m2/g, and the third thermally conductive filler is a metal oxide having a surface area between 5.0 m2/g and 10.0 m2/g. In one more particular embodiment, the first thermally conductive filler has an average particle size of at least 10 microns, the second thermally conductive filler has an average particle size between 1 micron and 10 microns, and the third thermally conductive filler has an average particle size less than 1 micron.


In one more particular embodiment, the thermal interface material comprises: from 2 wt. % to 10 wt. % of the low molecular weight silicone oil; from 50 wt. % to 95 wt. % of the at least one thermally conductive filler; and from 0.1 wt. % to 5 wt. % of the high molecular weight silicone oil; from 0.1 wt. % to 5 wt. % of a solvent; from 0.1 wt. % to 5 wt. % of a coupling agent; from 0.1 wt. % to 1 wt. % of a crosslinker; from 0.1 wt. % to 5 wt. % of an inhibitor; and from 0.1 wt. % to 5 wt. % of a catalyst. In one more particular embodiment, the at least one thermally conductive filler includes: from 25 wt. % to 50 wt. % of a first thermally conductive filler having a surface area between 0.1 m2/g to 1.0 m2/g; from 25 wt. % to 50 wt. % of a second thermally conductive filler having a surface area between 0.5 m2/g and 2.0 m2/g; and from 25 wt. % to 50 wt. % of a third thermally conductive filler having a surface area between 5.0 m2/g and 10.0 m2/g. In one more particular embodiment, the thermal interface material has a viscosity between 150 Pa.s and 650 Pa.s.


In one embodiment, a thermal interface material is provided. The thermal interface material includes: a low molecular weight silicone oil having a weight (Mw) average molecular weight less than 50,000 Daltons; a first thermally conductive filler, a second thermally conductive filler, and a third thermally conductive filler, wherein the first thermally conductive filer is a metal oxide having a surface area between 0.1 m2/g to 1.0 m2/g, the second thermally conductive filler is a metal oxide having a surface area between 0.5 m2/g and 2.0 m2/g, and the third thermally conductive filler is a metal oxide having a surface area between 5.0 m2/g and 10.0 m2/g; and a high molecular weight silicone oil, wherein the high molecular weight silicone oil comprises a vinyl functional silicone oil having a weight (Mw) average molecular weight of at least 60,000 Daltons; and a solvent having a boiling point between 60° C. and 220° C. and a viscosity between 0.2 cSt and 50 cSt.


In one more particular embodiment, the thermal interface material comprises: from 2 wt. % to 10 wt. % of the low molecular weight silicone oil; from 25 wt. % to 50 wt. % of a first thermally conductive filler having a surface area between 0.1 m2/g to 1.0 m2/g; from 25 wt. % to 50 wt. % of a second thermally conductive filler having a surface area between 0.5 m2/g and 2.0 m2/g; and from 25 wt. % to 50 wt. % of a third thermally conductive filler having a surface area between 5.0 m2/g and 10.0 m2/g; from 0.1 wt. % to 5 wt. % of the high molecular weight silicone oil; from 0.1 wt. % to 5 wt. % of a solvent; from 0.1 wt. % to 5 wt. % of a coupling agent; from 0.1 wt. % to 1 wt. % of a crosslinker; from 0.1 wt. % to 5 wt. % of an inhibitor; and from 0.1 wt. % to 5 wt. % of a catalyst. In one more particular embodiment, the low molecular weight silicone oil comprises a vinyl functional silicone oil and the high molecular weight silicone oil is a vinyl silicone oil having a kinematic viscosity of 2,000,000 cSt. In one more particular embodiment, the first thermally conductive filler has an average particle size of at least 10 microns, the second thermally conductive filler has an average particle size between 1 micron and 10 microns, and the third thermally conductive filler has an average particle size less than 1 micron. In one more particular embodiment, the thermal interface material has a bleeding trace value of between 1 mm and 5 mm and a flowrate between 20 g/min and 50 g/min. In one more particular embodiment, the thermal interface material has a viscosity between 150 Pa.s and 650 Pa.s.


In one embodiment, an electronic component is provided. The electronic component includes: a heat sink; an electronic chip; a thermal interface material positioned between the heat sink and electronic chip, the thermal interface material including: a low molecular weight silicone oil having a weight (Mw) average molecular weight less than 50,000 Daltons; at least one thermally conductive filler having a surface area greater than 1.0 m2/g; and a high molecular weight silicone oil, wherein the high molecular weight silicone oil comprises a vinyl functional silicone oil having a weight (Mw) average molecular weight of at least 60,000 Daltons.


In one more particular embodiment, the thermal interface material has a viscosity greater than 1500 Pa.s. In one more particular embodiment, the electronic component further includes: a solvent having a boiling point between 60° C. and 220° C. and a viscosity between 0.2 cSt and 50 cSt. In one more particular embodiment, the thermal interface material has a viscosity between 150 Pa·s and 650 Pa·s. In one more particular embodiment, the at least one thermally conductive filler includes a first thermally conductive filler, a second thermally conductive filler, and a third thermally conductive filler, wherein the first thermally conductive filer is a metal oxide having a surface area between 0.1 m2/g to 1.0 m2/g, the second thermally conductive filler is a metal oxide having a surface area between 0.5 m2/g and 2.0 m2/g, and the third thermally conductive filler is a metal oxide having a surface area between 5.0 m2/g and 10.0 m2/g.


In one more particular embodiment, the electronic component further comprises a heat spreader positioned between the heat sink and the electronic chip, wherein the first surface layer is in contact with a surface of the electronic chip and the second surface layer is in contact with the heat spreader. In one more particular embodiment, the electronic component further comprises a heat spreader positioned between the heat sink and the electronic chip, wherein the first surface layer is in contact with a surface of the heat spreader and the second surface layer is in contact with the heat sink.





BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned and other features and advantages of this disclosure, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:



FIG. 1 schematically illustrates a typical electronics package structure;



FIG. 2 is related to Comparative Example 1 in relation to an oil bleeding test and shows the sample formed from Comparative Example 1 after the oil bleeding test;



FIG. 3A is related to Example 1 and shows the sample formed from Example 1 after the oil bleeding test;



FIG. 3B is related to Example 1 and shows the back of the sample formed from Example 1 after the oil bleeding test;



FIG. 4 is a flowchart illustrating a method of preparing a thermal interface material in accordance with the present disclosure; and



FIG. 5 shows a dispenser apparatus according to an embodiment of the present disclosure.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate exemplary embodiments of the invention and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION
A. Thermal Interface Material

The present invention relates to thermal interface materials (TIMs) useful in transferring heat away from electronic components. In one exemplary embodiment, the TIM comprises at least one silicone oil, at least one catalyst, at least one thermally conductive filler having a relatively larger surface area, a solvent, at least one inhibitor, and at least one crosslinker. The at least one thermally conductive filler reduces the oil leakage of the TIM, and the solvent increases the flow rate of the TIM without negating the reduction of oil leakage realized by the thermally conductive fillers.


1. Silicone Oil
a. General Description

The present disclosure provides a matrix for a TIM material that includes at least one low molecular weight silicone oil and at least one high molecular weight silicone oil. The silicone oil includes one or more crosslinkable groups, such as vinyl, hydride, hydroxyl and acrylate functional groups, that are crosslinked by a catalyst. In one embodiment, one or more silicone oils include a first silicone oil and a second silicone oil, where the first silicone oil is a vinyl functional silicone oil and the second silicone oil is a hydride functional silicone oil. The silicone oil wets the thermally conductive filler and forms a dispensable fluid for the TIM.


In one exemplary embodiment, the silicone oil includes a silicone rubber such as the KE series products available from Shin-Etsu, such as SILBIONE® available from Bluestar, such as ELASTOSIL®, SilGel®, SILPURAN®, and SEMICOSIL® available from Wacker, such as Silopren® available from Momentive, such as Dow Corning®, Silastic®, XIAMETER®, Syl-off® and SYLGARD® available from Dow Corning, such as SQUARE® available from Square Silicone, such as Andril® available from AB specialty Silicones. Other polysiloxanes are available from Wacker, Shin-etsu, Dowcoring, Momentive, Bluestar, RUNHE, AB Specialty Silicones, Gelest, and United Chemical Technologies.


b. Low Molecular Weight Silicone Oil
1. Vinyl Functional Silicone Oil

The TIM includes a low weight average molecular weight silicone oil as measured by gel permeation chromatography (GPC). The low molecular weight silicone oil wets the thermally conductive filler to form a dispensable fluid for the TIM. Exemplary low molecular weight silicone oils may include a vinyl silicone oil having a general formula as shown below:




embedded image


An exemplary low molecular weight vinyl silicone oil may also include a small amount of platinum catalyst.


Vinyl functional silicone oils include an organo-silicone component with Si—CH═CH2 groups. Exemplary vinyl functional silicone oils include vinyl-terminated silicone oils and vinyl-grafted silicone oils in which the Si—CH=CH2 group is grafted onto the polymer chain, and combinations thereof.


Exemplary vinyl-terminated silicone oils include vinyl terminated polydimethylsiloxane, such as DMS-V00 (having a weight average molecular weight (Mw) of 186 Daltons), DMS-V03 (having a Mw of about 500 Daltons), DMS-V05 (having a Mw of about 800 Daltons), DMS-V21 (having a Mw of about 6,000 Daltons), DMS-V22 (having a Mw of about 9400 Daltons), DMS-V25 (having a Mw of about 17,200 Daltons), DMS-V25R (having a Mw of about 17,200 Daltons), DMS-V35 (having a Mw of about 49,500 Daltons), DMS-V35R (having a Mw of about 49,500 Daltons), each available from Gelest, Inc. Exemplary vinyl-terminated silicone oils include vinyl terminated diphenylsiloxane-dimethylsiloxane copolymer, such as PDV-0325 (having a Mw of about 15,500 Daltons), PDV-0331 (having a Mw of about 27,000 Daltons), PDV-0525 (having a Mw of about 14,000 Daltons), PDV-1625 (having a Mw of about 9,500 Daltons), PDV-1631 (having a Mw of about 19,000 Daltons), PDV-2331 (having a Mw of about 12,500 Daltons), each available from Gelest, Inc. Exemplary vinyl-terminated silicone oils include vinyl terminated polyphenylmethylsiloxane, such as PMV-9925 (having a Mw of about 2000-3000 Daltons) available from Gelest, Inc. Exemplary vinyl-terminated silicone oils include vinyl terminated diethylsiloxane-dimethylsiloxane copolymer, such as EDV-2025(having a Mw of about 16,500-19,000 Daltons) available from Gelest, Inc.


Exemplary vinyl-grafted silicone oils include vinylmethylsiloxane homopolymers, such as VMS-005 (having a Mw of about 258-431 Daltons), VMS-T11 (having a Mw of about 1000-1500 Daltons), both available from Gelest, Inc. Exemplary vinyl-grafted silicone oils include vinylmethylsiloxane-dimethylsiloxane copolymers, such as trimethylsiloxyl terminated silicone oils, silanol terminated silicone oils, and vinyl terminated silicone oils.


In one exemplary embodiment, the vinyl-grafted silicone oil is a vinylmethylsiloxane terpolymers, including a vinylmethylsiloxane-octylmethylsiloxane-dimethylsiloxane terpolymer, such as VAT-4326(having a Mw of about 10,000-12,000 Daltons), or a vinylmethylsiloxane-methoxypolyethylenoxypropylmethylsiloxane-dimethylsiloxan e terpolymer, such as VBT-1323(having a Mw of about 8,000-12,000 Daltons), or a vinylmethylsiloxane-phenylmethylsiloxane-dimethylsiloxane(having a Mw of about 2,500-3,000 Daltons); each available from Gelest, Inc.


In one exemplary embodiment, the vinyl-functional silicone oil comprises a vinyl T resin or a vinyl Q resin.


In one exemplary embodiment, the silicone oil is a vinyl functional oil, such as RH-Vi303, RH-Vi301 from RUNHE, such as Andril® VS 200, Andril® VS 1000 from AB Specialty Silicones.


Exemplary low molecular weight silicone oils may have a weight (Mw) average molecular weight as little as 50 Daltons, 500 Daltons, 1000 Daltons, as great as 5000 Daltons, 10,000 Daltons, 50,000 Daltons, or within any range defined between any two of the foregoing values such as between 50 Daltons to 50,000 Daltons, 500 Daltons to 50,000 Daltons, or 1,000 Daltons to 50,000 Daltons, for example.


Exemplary low molecular weight silicone oils may have a kinematic viscosity as little as 0.5 cSt, 5 cSt, 100 cSt, as great as 5,000 cSt, 10,000 cSt, 50,000 cSt, or within any range defined between any two of the foregoing values, such as 0.5 cSt to 50,000 cSt, 5 cSt to 10,000 cSt, or 100 cSt to 5,000 cSt, for example, as measured according to ASTM D445. In one exemplary embodiment, an exemplary low molecular weight silicone oil is a low molecular weight vinyl silicone oil having a kinematic viscosity of 1,000 cSt. In another exemplary embodiment, an exemplary low molecular weight silicone oil is a low molecular weight vinyl silicone oil having a kinematic viscosity above 1,500 cSt.


The TIM comprises one or more low molecular weight silicone oils in an amount as little as 0.1 wt. %, 0.5 wt. %, 0.67 wt. %, 1 wt. %, as great as 3 wt. %, 5 wt. %, 10 wt. %, 20 wt. %, or within any range defined between any two of the foregoing values, based on the total weight of the TIM, such as 0.1 wt. % to 15 wt. %, 0.1 wt. % to 10 wt. %, or 0.67 wt. % to 10 wt. %.


c. High Molecular Weight Silicone Oil

The TIM includes a high molecular weight silicone oil as measured by gel permeation chromatography (GPC). The high molecular weight silicone oil functions to prevent cracking of the TIM during thermal cycling. Exemplary high molecular weight silicone oils may include a vinyl silicone oil having a general formula as shown below, similar to the low molecular weight silicone oils described above:




embedded image


Vinyl functional silicone oils include an organo-silicone component with Si—CH═CH2 groups. Exemplary vinyl functional silicone oils include vinyl-terminated silicone oils and vinyl-grafted silicone oils in which the Si—CH=CH2 group is grafted onto the polymer chain, and combinations thereof.


Exemplary vinyl-terminated silicone oils include vinyl terminated polydimethylsiloxane, such as DMS-V41 (having a Mw of about 62,700 Daltons), DMS-V42 (having a Mw of about 72,000 Daltons), DMS-V46 (having a Mw of about 117,000 Daltons), DMS-V51 (having a Mw of about 140,000 Daltons), and DMS-V52 (having a Mw of about 155,000 Daltons), each available from Gelest, Inc.


Exemplary vinyl-grafted silicone oils include vinylmethylsiloxane-dimethylsiloxane copolymers, such as trimethylsiloxyl terminated silicone oils, silanol terminated silicone oils, and vinyl terminated silicone oils.


In one exemplary embodiment, the vinyl-grafted silicone oil is a vinylmethylsiloxane terpolymers. In one exemplary embodiment, the vinyl-functional silicone oil comprises a vinyl T resin or a vinyl Q resin.


Another exemplary high molecular weight silicone oil may include a hydride functional silicone oil having an organo-silicone component and Si—H groups. Exemplary hydride functional silicone oils include hydride-terminated silicone oils, hydride-grafted silicone oils in which the Si—H group is grafted onto the polymer chain, and combinations thereof.


In one exemplary embodiment, the hydride-terminated silicone oil is a hydride terminated polydimethylsiloxane such as DMS-H41(having a Mw of about 62,700 Daltons), available from Gelest, Inc. In one exemplary embodiment, the hydride-terminated silicone oil is a methylhydrosiloxane-dimethylsiloxane copolymer, such as a trimethylsiloxyl terminated or hydride terminated. Exemplary trimethylsiloxyl terminated copolymers include HMS-064 (having a Mw of about 60,000-65,000 Daltons), available from Gelest, Inc.


Exemplary low molecular weight silicone oils may have a weight (Mw) average molecular weight as little as 100,000 Daltons, 300,000 Daltons, 500,000 Daltons, as great as 1,000,000 Daltons, 10,000,000 Daltons, 100,000,000 Daltons, or within any range defined between any two of the foregoing values, such as 100,000 Daltons to 100,000,000 Daltons, 300,000 Daltons to 10,000,000 Daltons, or 500,000 Daltons to 1,000,000 Daltons, for example.


Exemplary high molecular weight silicone oils may have a kinematic viscosity as little as 10,000 cSt, 20,000 cSt, 100,000 cSt, as great as 1,000,000 cSt, 10,000,000 cSt, 100,000,000 cSt, or within any range defined between any two of the foregoing values, such as 10,000 cSt to 100,000,000 cSt, 20,000 cSt to 10,000,000 cSt, or 100,000 cSt to 1,000,000 cSt, for example, as measured according to ASTM D445. In one exemplary embodiment, an exemplary high molecular weight silicone oil is a high molecular weight vinyl silicone oil having a kinematic viscosity of 2,000,000 cSt.


The TIM may comprise one or more high molecular weight silicone oils in an amount as little as 0.01 wt %, 0.1 wt. %, 0.25 wt. %, 0.5 wt. %, 0.67 wt. %, 0.75 wt. %, as great as 1 wt. %, 1.5 wt. %, 2 wt. %, 5 wt. %, or within any range defined between any two of the foregoing values, based on the total weight of the TIM, such as 0.1 wt. % to 5 wt. %, 0.1 wt. % to 1 wt. %, or 0.25 wt. % to 0.67 wt. %. In one exemplary embodiment, the TIM includes a high molecular weight silicone oil in the amount of about 1.5 wt. %.


2. Catalyst

The TIM further includes one or more catalyst for catalyzing the addition reaction. Exemplary catalysts comprise platinum containing materials and rhodium containing materials. Exemplary platinum containing catalysts may have the general formula shown below:




embedded image


Exemplary platinum contain catalysts include: Platinum cyclovinylmethylsiloxane complex(Ashby Karstedt Catalyst), Platinum carbonyl cyclovinylmethylsiloxane complex(Ossko catalyst), Platinum divinyltetramethyldisiloxane dimethyl fumarate complex, Platinum divinyltetramethyldisiloxane dimethyl maleate complex and the like. Exemplary of Platinum carbonyl cyclovinylmethylsiloxane complexes include SIP6829.2, exemplary of Platinum divinyltetramethyldisiloxane complex include SIP6830.3 and SIP6831.2, exemplary of platinum cyclovinylmethylsiloxane complex include SIP6833.2, all available from Gelest, Inc. Further exemplary platinum containing material catalysts include Catalyst OL available from Wacker Chemie AG, and PC065, PC072, PC073, PC074, PC075, PC076, PC085, PC086, PC087, PC088 available from United Chemical Technologies Inc.


Exemplary rhodium containing materials include Tris(dibutylsulfide)Rhodium trichloride with product code INRH078, available from Gelest, Inc.


Without wishing to be held to any particular theory it is believed that the platinum catalyst reacts with a vinyl silicone oil and a hydrosilicone oil as shown below.




embedded image


The TIM may comprise the one or more catalyst in an amount as little as 5 ppm, 10 ppm, 15 ppm, 20 ppm, as great as 25 ppm, 30 ppm, 40 ppm, 50 ppm, 100 ppm, 200 ppm, 500 ppm, 1000 ppm, or within any range defined between any two of the foregoing values, based on the total weight of the silicone oil, such as 10 ppm to 30 ppm, 20 ppm to 100 ppm, or 5 ppm to 500 ppm, for example.


In one exemplary embodiment, the catalyst is provided as a mixture with one or more of the silicone oils. In one exemplary embodiment, the platinum containing material catalyst is combined to a functional silicone oil, such as KE-1012-A, KE-1031-A, KE-109E-A, KE-1051J-A, KE-1800T-A, KE1204A, KE1218A available from Shin-Etsu, such as SILBIONE® RT Gel 4725 SLD A available from Bluestar, such as SilGel® 612 A, ELASTOSIL® LR 3153A, ELASTOSIL® LR 3003A, ELASTOSIL® LR 3005A, SEMICOSIL® 961A, SEMICOSIL® 927A, SEMICOSIL® 205A, SILPURAN® 2440 available from Wacker, such as Silopren® LSR 2010A available from Momentive, such as XIAMETER® RBL-9200 A, XIAMETER® RBL-2004 A, XIAMETER® RBL-9050 A, XIAMETER® RBL-1552 A, Silastic® FL 30-9201 A, Silastic® 9202 A, Silastic® 9204 A, Silastic® 9206 A, SYLGARD® 184A, Dow Corning® QP-1 A, Dow corning® C6 A, Dow Corning® CV9204 A available from Dow Corning.


The TIM may comprise a catalyst in an amount as little as 0.01 wt %, 0.1 wt. %, 0.2 wt. %, as great as 0.3 wt. %, 0.4 wt. %, 0.5 wt. %, or within any range defined between any two of the foregoing values, based on the total weight of the TIM, such as 0.01 wt. % to 0.5 wt. %, 0.01 wt. % to 0.4 wt. %, or 0.01 wt. % to 0.3 wt. %, for example. In one exemplary embodiment, the TIM includes a catalyst in the amount of about 0.01 wt. %. In another exemplary embodiment, the TIM includes a catalyst in the amount of about 0.3 wt. %.


In another embodiment, the platinum containing material catalyst is combined to a high molecular weight vinyl functional silicone oil.


3. Thermally Conductive Filler

The TIM includes one or more thermally conductive fillers. The thermally conductive filler provides a thermally conductive material to conduct heat through the thermal interface material. Exemplary thermally conductive fillers include metals, alloys, nonmetals, metal oxides and ceramics, and combinations thereof. The metals include, but are not limited to, aluminum, copper, silver, zinc, nickel, tin, indium, and lead. The nonmetal include, but are not limited to, carbon, graphite, carbon nanotubes, carbon fibers, graphenes, boron nitride and silicon nitride. The metal oxide or ceramics include but not limited to alumina (aluminum oxide), aluminum nitride, boron nitride, zinc oxide, and tin oxide.


The TIM may comprise the one or more thermally conductive fillers in an amount as little as 10 wt. %, 20 wt. %, 25 wt. %, 50 wt. %, as great as 75 wt. %, 80 wt. %, 85 wt. %, 90 wt. %, 95 wt. %, 97 wt. %, or within any range defined between any two of the foregoing values, based on the total weight of the TIM, such as 10 wt. % to 95 wt. %, 20 wt. % to 95 wt. %, or 25 wt. % to 90 wt. %, for example.


Exemplary thermally conductive fillers may have an average particle size of as little as 0.1 microns, 1 micron, 10 microns, as great as 50 microns, 75 microns, 100 microns or within any range defined between any two of the foregoing values, such as 0.1 microns to 100 microns, 0.1 microns to 75 microns, or 0.1 microns to 50 microns, for example.


Exemplary thermally conductive fillers may have a surface area as little as 0.10 m2/g, 0.50 m2/g, 1.0 m2/g, as great as 5.0 m2/g, 7.0 m2/g, 8.5 m2/g, 10.0 m2/g, or within any range defined between any two of the foregoing values, such as 0.1 m2/g to 0.5 m2/g, 0.10 m2/g to 10.0 m2/g, or 0.10 m2/g to 8.5 m2/g as measured by Brunauer-Emmett-Teller (BET) Procedure, ASTM C1274-2012, or ASTM B922-2010. In one exemplary embodiment, an exemplary thermally conductive filler has a surface area of 0.15 m2/g. In another embodiment, an exemplary thermally conductive filler has a surface area of 1.1 m2/g. In yet another exemplary embodiment, an exemplary thermally conductive filler has a surface area of 7.6 m2/g.


Without wishing to be held to a particular theory, it is believed that the higher surface area thermally conductive fillers used in the TIM controls the oil bleeding of the TIM because such high surface area filler(s) reduce the flow rate of the thermal gel (i.e., more viscous). Moreover, a larger surface area filler can absorb oil molecules and because of the intermolecular forces involved with absorption, oil is unable to freely flow from the TIM, thereby reducing oil bleeding. Furthermore, the use of smaller fillers results in short distances between the fillers and forms a capillary network within the TIM. The capillary network absorbs the oil and therefore, reduces the oil bleeding.


In one exemplary embodiment, the TIM may include a first thermally conductive filler, a second thermally conductive filler, and a third thermally conductive filler, wherein the first thermally conductive filer has a surface area as little as 0.1 m2/g, 0.2 m2/g, 0.5 m2/g, as great as 0.6 m2/g, 0.8 m2/g, 1.0 m2/g, or within any range defined therebetween, the second thermally conductive filler has a surface area as little as 0.5 m2/g, 0.7 m2/g, 0.9 m2/g as great as 1.5 m2/g, 1.7 m2/g, 2.0 m2/g, or within any range defined therebetween, and the third thermally conductive filler has a surface area as little as 5.0 m2/g, 6.0 m2/g, 7.0 m2/g, as great as 8.0 m2/g, 9.0 m2/g, 10.0 m2/g or within any range therebetween.


In one exemplary embodiment, the TIM includes a first thermally conductive filler in the amount of as little as 20 wt. %, 25 wt. %, 30 wt. %, as great as 45 wt. %, 50 wt. %, 60 wt % or within any range defined between any two of the foregoing values with respect to the total TIM composition, such as 20 wt. % to 60 wt. %, 25 wt. % to 50 wt. %, or 30 wt. % to 45 wt. %, for example. The first thermally conductive filler has an average particle size of as little as 10 microns. 35 microns, 40 microns, as great as 45 microns, 50 microns, 60 microns, or within any range defined between any two of the foregoing values, such as 10 microns to 60 microns, 10 microns to 50 microns, or 10 microns to 45 microns, for example. The first thermally conductive filler has a surface area as little as 0.1 m2/g, 0.2 m2/g, 0.5 m2/g, as great as 0.6 m2/g, 0.8 m2/g, 1.0 m2/g, or within any range defined therebetween, such as 0.1 m2/g to 1.0 m2/g, 0.1 m2/g to 0.8 m2/g, or 0.1 m2/g to 0.6 m2/g for example.


The exemplary TIM can further include a second thermally conductive filler in the amount of as little as 20 wt. %, 25 wt. %, 30 wt. %, as great as 45 wt. %, 50 wt. %, 60 wt % or within any range defined between any two of the foregoing values with respect to the total TIM composition, such as 20 wt. % to 60 wt. %, 25 wt. % to 50 wt. %, or 25 wt. % to 45 wt. %, for example. The second thermally conductive filler has an average particle size of as little as 1 micron, 3, microns. 5 microns, as great as 10 microns, 15 microns, 20 microns, or within any range defined between any two of the foregoing values, such as 1 micron to 20 microns, 3 microns to 15 microns, or 5 microns to 15 microns, for example. The second thermally conductive filler has a surface area as little as 0.5 m2/g, 0.7 m2/g, 0.9 m2/g as great as 1.5 m2/g, 1.7 m2/g, 2.0 m2/g, or within any range defined therebetween, such as 0.5 m2/g to 2.0 m2/g, 0.7 m2/g to 1.7 m2/g, or 0.9 m2/g to 1.5 m2/g, for example.


The exemplary TIM further includes a third thermally conductive filler in the amount of as little as 20 wt. %, 25 wt. %, 30 wt. %, as great as 45 wt. %, 50 wt. %, 60 wt % or within any range defined between any two of the foregoing values with respect to the total TIM composition, such as 20 wt. % to 60 wt. %, 25 wt. % to 50 wt. %, or 30 wt. % to 45 wt. %, for example. The third thermally conductive filler has an average particle size of as little as 0.1 microns, 0.3, microns. 0.5 microns, as great as 1 micron, 1.5 microns, 2 microns, or within any range defined between any two of the foregoing values, such as 0.1 microns to 2 microns, 0.3 microns to 1.5 microns, or 0.5 microns to 1 micron, for example. The third thermally conductive filler has a surface area as little as 5.0 m2/g, 6.0 m2/g, 7.0 m2/g, as great as 8.0 m2/g, 9.0 m2/g, 10.0 m2/g or within any range therebetween, such as 5.0 m2/g to 10 m2/g, 6.0 m2/g to 9.0 m2/g, or 7.0 m2/g to 8.0 m2/g, for example.


Exemplary TIMs may include a single thermally conductive filler wherein the single thermally conductive filler is one of the first, second, or third thermally conductive fillers as described herein. In another exemplary TIM, the TIM includes a first and a second thermally conductive filler wherein the first thermally conductive filler and the second thermally conductive filler are the first thermally conduct filler and the second thermally conduct filler, the first thermally conduct filler and the third thermally conduct filler, or the second thermally conduct filler and the third thermally conduct filler as described herein. In a further exemplary TIM, the TIM includes the first thermally conduct filler, the second thermally conduct filler, and the third thermally conduct filler as described herein.


Exemplary thermal conductive fillers include alumina oxide.


4. Addition Inhibitor

The TIM comprises one or more addition inhibitors for inhibiting or limiting crosslinking of the silicone oils. The addition inhibitor forms a complex with the catalyst to stop the reaction of the silicone oils. The addition inhibitors includes at least one alkynyl compound, and optionally, the addition inhibitor further includes a multi-vinyl functional polysiloxane.


Exemplary addition inhibitors include acetylenic alcohols such as 1-ethynyl-1-cyclohexanol, 2-methyl-3-butyn-2-ol, 2-phenyl-3-butyn-2-ol, 2-ethynyl-isopropanol, 2-ethynyl-butane-2-ol, and 3,5-dimethyl-1-hexyn-3-ol; silylated acetylenic alcohols such as trimethyl (3,5-dimethyl-1-hexyn-3-oxy)silane, dimethyl-bis-(3-methyl-1-butyn-oxy)silane, methylvinylbis(3-methyl-1-butyn-3-oxy)silane, and ((1,1-dimethyl-2-propynyl)oxy)trimethylsilane; unsaturated carboxylic esters such as diallyl maleate, dimethyl maleate, diethyl fumarate, diallyl fumarate, and bis-2-methoxy-1-methylethylmaleate, mono-octylmaleate, mono-isooctylmaleate, mono-allyl maleate, mono-methyl maleate, mono-ethyl fumarate, mono-allyl fumarate, 2-methoxy-1-methylethylmaleate; fumarate/alcohol mixtures, such as mixtures where the alcohol is selected from benzyl alcohol or 1-octanol and ethenyl cyclohexyl-1-ol; conjugated ene-ynes such as 2-isobutyl-1-butene-3-yne, 3,5-dimethyl-3-hexene-1-yne, 3-methyl-3-pentene-1-yne, 3-methyl-3-hexene-1-yne, 1-ethynylcyclohexene, 3-ethyl-3-butene-1-yne, and 3-phenyl-3-butene-1-yne; vinylcyclosiloxanes such as 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, and mixtures of conjugated ene-yne and vinylcyclosiloxane. In one exemplary embodiment, the addition inhibitor is selected from 2-methyl-3-butyn-2-ol or 3-methyl-1-pentyn-3-ol.


In some exemplary embodiments, the addition inhibitor further includes a multi-vinyl functional polysiloxane. An exemplary multi-vinyl functional polysiloxane is a vinyl terminated polydimethylsiloxane in ethynyl cyclohexanol, such as Pt Inhibitor 88 available from Wacker Chemie AG. Without wishing to be held to any particular theory it is believed that the platinum catalyst forms a complex with ethynyl cyclohexanol and vinyl terminated polydimethylsiloxane as shown below.




embedded image


The formation of the complex is believed to decrease the catalyst activity in room temperature, and thus maintaining the dispensability and wettability of the TIM. At the higher temperatures of the curing step, the Pt is released from the complex and help the hydrosilylation of vinyl functional silicone oil and hydride functional silicone oil, provides greater control over the “crosslinking”.


In some exemplary embodiments, the TIM may comprise the one or more addition inhibitors in an amount as little as 0.01 wt. %, 0.02 wt. %, 0.05 wt. %, 0.1 wt. %, 0.15 wt. %, as great as 0.2 wt. %, 0.25 wt. %, 0.3 wt. %, 0.5 wt. %, 1 wt. %, 3 wt. %, 5 wt. %, or within any range defined between any two of the foregoing values, based on the total weight of the TIM, such as 0.01 wt. % to 1 wt. %, 0.01 wt. % to 0.5 wt. %, or 0.01 wt. % to 3 wt. %, for example. In one exemplary embodiment, the TIM includes an addition inhibitor in the amount of 0.1 wt. %. In another exemplary embodiment, the TIM includes an addition inhibitor in the amount of 0.01 wt. %.


Without wishing to be held to any particular theory, it is believed that, in the absence of an addition inhibitor, the vinyl functional silicone oil reacts with the hydride functional silicone oil very quickly based on the addition hydrosilylation mechanism to form a solid phase that cannot be automatically dispensed by typical methods.


In one exemplary embodiment, the addition inhibitor is combined to functional silicone oils, such as KE-1056, KE-1151, KE-1820, KE-1825, KE-1830, KE-1831, KE-1833, KE-1842, KE-1884, KE-1885, KE-1886, FE-57, FE-61 available from Shin-Etsu, such as Syl-off® 7395, Syl-off® 7610, Syl-off® 7817, Syl-off® 7612, Syl-off® 7780 available from Dow Corning.


5. Coupling Agent

In an exemplary embodiment, the thermal gel includes one or more coupling agents that function to interact with both the filler and the polymer matrix of the silicone oils to promote a strong bond at the interface of the two materials. This helps to separate filler particle aggregates and disperse the filler particles into the polymer matrix. create better adhesion of thermally conductive filler(s) to the polyol polymer matrix. Exemplary coupling agents include silane coupling agents and organometallic compounds, such as include titanate coupling agents and zirconate coupling agents. Exemplary silane coupling agents include silane coupling agents with an aliphatic group. Exemplary coupling agents include titanium IV 2,2 (bis 2-propenolatomethyl)butanolato, tris(dioctyl)pyrophosphato-O; titanium IV 2-propanolato, tris(dioctyl)-pyrophosphato-O) adduct with 1 mole of diisooctyl phosphite; titanium IV bis(dioctyl)pyrophosphato-O, oxoethylenediolato, (Adduct), bis(dioctyl) (hydrogen)phosphite-O; titanium IV bis(dioctyl)pyrophosphato-O, ethylenediolato (adduct), bis(dioctyl)hydrogen phosphite; zirconium IV 2,2 (bis 2-propenolatomethyl)butanolato, tris(diisooctyl)pyrophosphato-O; zirconium IV 2,2-bis(2-propenolatomethyl) butanolato, cyclo di[2,2-(bis 2-propenolatomethyl) butanolato], pyrophosphato-O,O, and hexadecyltrimethoxysilane. In another exemplary embodiment, the coupling agent is KR-TTS available from Kenrich Chemical Company.


In some exemplary embodiments, the thermal gel comprises the one or more coupling agents in an amount as little as 0.1 wt. %, 0.2 wt. %, 0.3 wt. %, as great as 0.5 wt. %, 1.0 wt. %, 1.5 wt. %, 2.0 wt. %, or within any range defined between any two of the foregoing values, such as 0.1 wt. % to 2.0 wt. %, 0.2 wt. % to 1.5 wt. %, or 0.3 wt. % to 0.5 wt. %, for example, based on the total weight of the thermal interface material.


6. Crosslinker

In exemplary embodiments, the TIM includes a crosslinker to enable crosslinking between silicone oils. An exemplary crosslinker includes a hydrosilicone oil Exemplary crosslinkers include. Andisil XL-1B, Andisil XL-10, Andisil XL-11, Andisil XL 12, Andisil XL-13, and Andisil XL-17.


In some exemplary embodiments, the TIM comprises the one or more crosslinker in an amount as little as 0.10%, 0.20 wt. %, 0.30 wt. %, as great as 0.4 wt. %, 0.60 wt. %, 0.70 wt. %, 1.0 wt. %, or within any range defined between any two of the foregoing values, such as 0.10 wt. % to 1.0 wt. %, 0.20 wt. % to 0.70 wt. %, or 0.30 wt. % to 0.60 wt. %, for example, based on the total weight of the thermal gel.


7. Solvent

In exemplary embodiments, the TIM includes a solvent to increase the flowrate of the TIM. An exemplary solvent includes hydrocarbon solvents such as toluene, xylene, p-xylene, m-xylene, mesitylene, solvent naphtha H, solvent naphtha A, Isopar H and other paraffin oils and isoparaffinic fluids, alkanes, such as pentane, hexane, isohexane, heptane, nonane, octane, dodecane, 2-methylbutane, hexadecane, tridecane, pentadecane, cyclopentane, 2,2,4-trimethylpentane, petroleum ethers, halogenated hydrocarbons, such as chlorinated hydrocarbons, nitrated hydrocarbons, benzene, 1,2-dimethylbenzene, 1,2,4-trimethylbenzene, mineral spirits, kerosene, isobutylbenzene, methylnaphthalene, ethyltoluene, ligroin.


Exemplary solvents have a boiling point temperature as little as 60° C., 90° C., 110° C., as great as 130° C., 180° C., 220° C. or within any range defined between any two of the foregoing values, such as 60° C. to 220° C., 90° C. to 180° C., or 110° C. to 130° C., for example.


Exemplary solvents have a viscosity as little as 0.2 cSt, 1 cSt, 2 cSt, as great as 5 cSt, 10 cSt, 50 cSt or within any range defined between any two of the foregoing values, such as 0.2 cSt to 50 cSt, 1 cSt to 10 cSt, or 2 cSt to 5 cSt, for example.


In some exemplary embodiments, the thermal interface material may comprise the one or more solvents in an amount as little as 0.1 wt. %, 0.2 wt. %, 0.3 wt. % as great as 5 wt. %, 10 wt. %, 20 wt. %, or within any range defined between any two of the foregoing values, such as 0.1 wt. % to 20 wt. %, 0.1 wt. % to 10 wt. %, or 0.1 wt. % to 5 wt. %, for example, based on the total weight of the formulation.


6. Exemplary formulations of the Thermal Interface Material

In a first non-limiting illustrative embodiment, the TIM includes a first low molecular silicone oil of as little as 2 wt. %, 3 wt. %, 4 wt. %, as great as 8 wt. %, 9 wt. %, 10 wt. % or within any range defined between any two of the foregoing values, such as about 2 wt. % to about 10 wt. %, for example, a high molecular weight silicone oil of as little as 0.1 wt. %, 1 wt. %, 2 wt. %, as great as 3 wt. %, 4 wt. %, 5 wt. % or within any range defined between any two of the foregoing values, such as about 0.1 wt. % to about 5 wt. %, for example, a coupling agent of as little as 0.1 wt. %, 1 wt. %, 2 wt. %, as great as 3 wt. %, 4 wt. %, 5 wt. % or within any range defined between any two of the foregoing values, such as about 0.1 wt. % to about 5 wt. %, for example, a crosslinker of as little as 0.1 wt. %, 0.2 wt. %, 0.3 wt. %, as great as 0.8 wt. %, 0.9 wt. %, 1.0 wt. % or within any range defined between any two of the foregoing values, such as about 0.1 wt. % to about 1 wt. %, for example, a catalyst of as little as 0.1 wt. %, 1 wt. %, 2 wt. %, as great as 3 wt. %, 4 wt. %, 5 wt. % or within any range defined between any two of the foregoing values, such as about 0.1 wt. % to about 5 wt. %, for example, an inhibitor of as little as 0.1 wt. %, 1 wt. %, 2 wt. %, as great as 3 wt. %, 4 wt. %, 5 wt. % or within any range defined between any two of the foregoing values, such as about 0.1 wt. % to about 5 wt. %, for example, a first thermally conductive filler of as little as 25 wt. %, 30 wt. %, 35 wt. %, as great as 40 wt. %, 45 wt. %, 50 wt. % or within any range defined between any two of the foregoing values, such as about 25 wt. % to about 50 wt. %, for example, a second thermally conductive filler of as little as 25 wt. %, 30 wt. %, 35 wt. %, as great as 40 wt. %, 45 wt. %, 50 wt. % or within any range defined between any two of the foregoing values, such as about 25 wt. % to about 50 wt. %, for example, a third thermally conductive filler of as little as 25 wt. %, 30 wt. %, 35 wt. %, as great as 40 wt. %, 45 wt. %, 50 wt. % or within any range defined between any two of the foregoing values, such as about 25 wt. % to about 50 wt. %, for example, and of a solvent of as little as 0.1 wt. %, 1 wt. %, 2 wt. %, as great as 3 wt. %, 4 wt. %, 5 wt. % or within any range defined between any two of the foregoing values, such as about 0.1 wt. % to about 5 wt. %, for example.


In a second non-limiting illustrative embodiment, the TIM includes a first low molecular silicone oil of as little as 0.1 wt. %, 1 wt. %, 2 wt. %, as great as 13 wt. %, 14 wt. %, 15 wt. % or within any range defined between any two of the foregoing values, such as about 0.1 wt. % to about 15 wt. %, for example, a high molecular weight silicone oil of as little as 0.1 wt. %, 1 wt. %, 2 wt. %, as great as 3 wt. %, 4 wt. %, 5 wt. % or within any range defined between any two of the foregoing values, such as about 0.1 wt. % to about 5 wt. %, for example, a first thermally conductive filler of as little as 25 wt. %, 30 wt. %, 35 wt. %, as great as 40 wt. %, 45 wt. %, 50 wt. % or within any range defined between any two of the foregoing values, such as about 25 wt. % to about 50 wt. %, for example, a second thermally conductive filler of as little as 25 wt. %, 30 wt. %, 35 wt. %, as great as 40 wt. %, 45 wt. %, 50 wt. % or within any range defined between any two of the foregoing values, such as about 25 wt. % to about 50 wt. %, for example, a third thermally conductive filler of as little as 25 wt. %, 30 wt. %, 35 wt. %, as great as 40 wt. %, 45 wt. %, 50 wt. % or within any range defined between any two of the foregoing values, such as about 25 wt. % to about 50 wt. %, for example, an addition inhibitor of as little as 0.1 wt. %, 1 wt. %, 2 wt. %, as great as 3 wt. %, 4 wt. %, 5 wt. % or within any range defined between any two of the foregoing values, such as about 0.1 wt. % to about 5 wt. %, for example, an addition catalyst of as little as 0.1 wt. %, 1 wt. %, 2 wt. %, as great as 3 wt. %, 4 wt. %, 5 wt. % or within any range defined between any two of the foregoing values, such as about 0.1 wt. % to about 5 wt. %, for example, and a crosslinker or within any range defined between any two of the foregoing values, such as about 0.1 wt. % to about 1 wt. %, for example.


7. Exemplary Properties of the Thermal Interface Material

In some exemplary embodiments, a thermal interface material as described above has excellent resistance to oil bleeding while increasing the flow rate of the TIM. Oil bleeding is the distance of oil leakage from the TIM and is typically understood to be inversely related to the viscosity of the thermal interface material. That is, greater the viscosity of the TIM generally relates to a lower oil bleeding of the TIM.


Exemplary thermal interface materials are curable to form a solid pad for use with electronic components. Exemplary thermal interface materials have a cure time at room temperature of as little as 1 hour, 5 hours, 24 hours, as great as 2 days, 3 days, 5 days, or within any range defined between any two of the foregoing values such as between 1 hour and 5 days, between 5 hours and 3 days, or between 24 hours and 1 days, for example. A higher temperature will accelerate the curing time of the exemplary thermal interface materials. For example, when the ambient temperature is 100° C., the curing time for the exemplary thermal interface material is between 1 minute and 30 minutes.


Exemplary thermal interface materials have a thickness of as little as 0.03 mm, 0.05 mm, 0.07 mm, as great as 0.1 mm, 0.5 mm. 1 mm, or within any range defined between any two of the foregoing values, such as 0.03 mm to 1 mm, 0.05 mm to 0.5 mm, or 0.07 mm to 0.1 mm, for example


Exemplary thermal interface materials without the added solvent as described above have a viscosity of as little as 1000 Pa.s, 1500 Pa.s, 2000 Pa.s, as great as 2500 Pa.s, 3000 Pa.s, 3500 Pa.s, or within any range defined between any two of the foregoing values such as between 1000 Pa.s and 3500 Pa.s, between 1500 Pa.s and 3000 Pa.s, or between 2000 Pa.s and 2500 Pa.s at 23° C. and a shear rate of 10 s−1, for example.


Exemplary thermal interface materials with the added solvent as described above have a viscosity of as little as 150 Pa.s, 200 Pa.s, 250 Pa.s, 300 Pa.s, as great as 500 Pa.s, 550 Pa.s, 600 Pa.s, 650 Pa.s or within any range defined between any two of the foregoing values such as between 150 Pa.s and 650 Pa.s or between 200 Pa.s and 600 Pa.s at 25° C. and a shear rate of 10 s−1.


Exemplary TIMs have a bleeding value of as little as 0.25 mm, 0.50 mm, 1.0 mm, as great as 1.25 mm, 1.40 mm. 1.50 mm, or within any range defined between any two of the foregoing values, such as 0.25 mm to 1.50 mm, 0.50 mm to 1.40 mm, or 1.0 mm to 1.25 mm, for example.


Exemplary TIMs have a flowrate of as little as 20 g/min, 25 g/min, 30 g/min, as great as 35 g/min, 40 g/min. 50 g/min, or within any range defined between any two of the foregoing values, such as 20 g/min to 50 g/min, 25 g/min to 40 g/min, or 30 g/min to 35 g/min, for example.


B. Methods of forming a Thermal Interface Material

In some exemplary embodiments, the TIM is prepared by combining the individual components with the exception of the solvent in a speed mixer and blending the composition together. The blended composition may then be applied directly to the substrate without baking.


More specifically, referring to FIG. 4, an exemplary method of forming a TIM 100 is shown. At step 102, a water cooling system/reaction vessel is opened and a high molecular weight silicone oil, low molecular silicone oil, inhibitor, catalyst and cross linker are added with mixing. In an exemplary embodiment, the mixture is mixed at 30 revolutions per minute (rpm) for 10 minutes. Then, at step 104, a first thermally conductive filler is added with mixing. In an exemplary embodiment, the mixture is mixed at 10 revolutions per minute (rpm) for 5 minutes. At step 106, a second thermally conductive filler is added with mixing. In an exemplary embodiment, the mixture is mixed at 10 revolutions per minute (rpm) for 10 minutes. At step 108, a portion of a third thermally conductive filler is added with mixing. In an exemplary embodiment, half of the third thermally conductive filler is added, and the mixture is mixed at 10 revolutions per minute (rpm) for 10 minutes. At step 110, a remaining portion of the third thermally conductive filler is added with mixing. In an exemplary embodiment, the second half of the third thermally conductive filler is added, and the mixture is mixed at 10 revolutions per minute (rpm) for 10 minutes and 54 rpm for 1 hour.


At step 112, solvent is added to the reaction vessel and mixing is continued. In an exemplary embodiment, half of the third thermally conductive filler is added, and the mixture is mixed at 10 revolutions per minute (rpm) for 30 minutes. At step 114, a vacuum of the reaction vessel is started and mixing is continued. In an exemplary embodiment, the mixture is mixed at 54 revolutions per minute (rpm) for 30 minutes. At step 116, the vacuum is stopped and the mixture is transferred to a discharger. Finally, at step 118, the vacuum is started to remove air in the TIM, and then the vacuum is stopped, and the resulting material is compressed into a syringe 50 (FIG. 5).


C. Applications Utilizing the Thermal Interface Material

Referring again to FIG. 1, in some exemplary embodiments, the thermal interface material is positioned as a TIM 18 between an electronic component 12 and a heat spreader 14, as indicated by TIM 18. In some exemplary embodiments, the thermal interface material is positioned as a TIM 2 between a heat spreader 14 and a heat sink 16, as indicated by TIM 20. In some exemplary embodiments, the thermal interface material is positioned as a TIM 1.5 (not shown) between an electronic component 12 and a heat sink 16.


EXAMPLES
Example 1

A thermal interface material (Example 1) was prepared according to the formulation provided in Table 1. The properties of Example 1 were then compared with those of a Comparative Example 1 (Comp. Ex. 1). Comp. Ex. 1 is also a silicone based TIM with Al2O3 filler and without complete cure.









TABLE 1







Formulations (wt. %) for Example 1










Component
Wt %














Low MW silicone oil
5.9



High MW silicone oil
1.5



Silane coupling agent
0.3



Hydrosilicone oil
0.6



Addition Platinum catalyst
0.3



Addition inhibitor
0.1



Thermal conductive filler A
30



Thermal conductive filler B
27



Thermal conductive filler C
34



Volatile solvent
0.3










In Example 1, the low molecular weight(MW) silicone oil was a low molecular weight liquid silicone oil with vinyl functional group. The molecular weight of the low MW silicone oil was below 50,000 Daltons. The high MW silicone oil had a molecular weight greater than 100,000 Daltons. The silane coupling agent used was hexadecyltrimethoxysilane.


Furthermore, the hydrosilicone oil was used as a cross linker, and the cross linker was Andisil XL 12 available from AB Specialty silicones Nantong Co., Ltd. The catalyst was an addition platinum catalyst was available from Wacker Chemie AG, and the addition inhibitor was a Pt Inhibitor 88 available from Wacker Chemie AG. The thermally conductive filler A comprised aluminum oxide particles having a particle diameter of about 10 microns. The thermally conductive filler B comprised aluminum oxide particles having a particle diameter of about 5 microns, and the thermally conductive filler C included aluminum oxide particles having a particle diameter of about 0.6 microns. The surface area of all particles in the thermally conductive fillers A-C was about 1.25 m2/g. Finally, the solvent used was Isopar H available from Multisol limited.


To prepare the formulation of Example 1, the organic components with the exception of the volatile solvent were combined and blended with a speed mixer. The thermally conductive fillers were then added, and the mixture was subsequently blended. Finally, the volatile solvent was added and blended once more resulting in the formulation of Example 1.


The formulation was then filled into a 10 cubic centimeter syringe 50 (FIG. 5) that is connected to an automatic dispenser tool 52. The mixtures can be purged out of syringe 50 by air pressure generated by dispenser tool 52. Dispenser tool 52 also controls the orifice diameter. In effect, dispenser tool 52 controls the dispense rate of the mixtures from syringe 50 by varying the two parameters—orifice diameter and air pressure. The formulation dispensed under 0.6 Mpa pressure to test the flow rate.


To measure the flow rate of a TIM sample, a 30 cubic centimeter (cc) syringe 50 without a nozzle is used, and the TIM sample is dispensed via dispenser tool 52 for 1 minute under a pressure of 0.6 MPa. After 1 minute, the dispensed TIM sample is weighed. The measured flow rate of the Example 1 formulation was 31 g/min.


The formulation was then printed as a gel onto a piece of A4 paper. The formulation's dimensions were 25.4 mm×25.4 mm×1.5 mm. The Ex. 1 formulation was then placed under room temperature until the oil bleeding from the formulation no longer expanded away from the formulation. Then, the distance from the formulation was measured to determine the distance of oil bleeding trace. As shown in FIGS. 3A and 3B, the oil bleeding trace of Ex. 1 is about 1.2 mm. By contrast, as shown in FIG. 2, the formulation of Comp. Ex. 1 had a bleeding trace greater than 3.5 mm.


Without wishing to be held to a particular theory, it is believed that the addition of higher surface area fillers reduce the bleeding of the TIM. These fillers also reduce the flowrate (i.e., increase the viscosity) of the TIM. However, the addition of the solvent serves to increase the flowrate of the TIM to increase the applicability of the TIM. In addition, the amount of solvent added is minimal (e.g., less than 0.5 wt. %) which prevents the solvent from impacting the advantageous benefit of reduced bleeding realized with the addition of high surface area fillers to the TIM.


Furthermore, oil bleeding is a slow process—it can be observed after at least 6 hours. By contrast, the volatility of the solvent used is high (i.e., the solvent evaporates quickly) such that the solvent completely evaporates during oil bleeding (e.g., in about 1 or 2 hours). Therefore, addition of the solvent increases the flow rate of the TIM when the TIM is dispensed, but once dispensed and after a period of time (e.g., about 2 hours), the solvent will completely evaporate from the TIM and will be unable to impact the oil bleeding properties of the TIM.


As used herein, the phrase “within any range defined between any two of the foregoing values” literally means that any range may be selected from any two of the values listed prior to such phrase regardless of whether the values are in the lower part of the listing or in the higher part of the listing. For example, a pair of values may be selected from two lower values, two higher values, or a lower value and a higher value.


While this invention has been described as having exemplary designs, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.

Claims
  • 1. A thermal interface material comprising: a low molecular weight silicone oil having a weight (Mw) average molecular weight less than 50,000 Daltons;at least one thermally conductive filler having a surface area greater than 1.0 m2/g, and a high molecular weight silicone oil present in an amount from 0.1 wt. % to 5 wt. %, based on a total weight of the thermal interface material, wherein the high molecular weight silicone oil comprises a vinyl functional silicone oil having a weight (Mw) average molecular weight of at least 60,000 Daltons, wherein the thermal interface material has a viscosity greater than 1500 Pa.s at 23° C.
  • 2. The thermal interface material of claim 1, further including a solvent having a boiling point between 60° C. and 220° C.
  • 3. The thermal interface material of claim 1, wherein the at least one thermally conductive filler includes a first thermally conductive filler, a second thermally conductive filler, and a third thermally conductive filler, wherein the first thermally conductive filer is a metal oxide having a surface area between 0.1 m2/g to 1.0 m2/g, the second thermally conductive filler is a metal oxide having a surface area between 0.5 m2/g and 2.0 m2/g, and the third thermally conductive filler is a metal oxide having a surface area between 5.0 m2/g and 10.0 m2/g.
  • 4. The thermal interface material of claim 3, wherein the first thermally conductive filler has an average particle size of at least 10 microns, the second thermally conductive filler has an average particle size between 1 micron and 10 microns, and the third thermally conductive filler has an average particle size less than 1 micron.
  • 5. The thermal interface material of claim 1, wherein the thermal interface material comprises: from 2 wt. % to 10 wt. % of the low molecular weight silicone oil;from 50 wt. % to 95 wt. % of the at least one thermally conductive filler;from 0.1 wt. % to 5 wt. % of a solvent;from 0.1 wt. % to 5 wt. % of a coupling agent;from 0.1 wt. % to 1 wt. % of a crosslinker;from 0.1 wt. % to 5 wt. % of an inhibitor; andfrom 0.1 wt. % to 5 wt. % of a catalyst.
  • 6. The thermal interface material of claim 5, wherein the at least one thermally conductive filler includes: from 25 wt. % to 50 wt. % of a first thermally conductive filler having a surface area between 0.1 m2/g to 1.0 m2/g;from 25 wt. % to 50 wt. % of a second thermally conductive filler having a surface area between 0.5 m2/g and 2.0 m2/g; andfrom 25 wt. % to 50 wt. % of a third thermally conductive filler having a surface area between 5.0 m2/g and 10.0 m2/g.
  • 7. The thermal interface material of claim 4, further comprising a solvent having a boiling point between 60° C. and 220° C.
  • 8. A thermal interface material comprising: a low molecular weight silicone oil having a weight (Mw) average molecular weight less than 50,000 Daltons;a first thermally conductive filler, a second thermally conductive filler, and a third thermally conductive filler,wherein the first thermally conductive filer is a metal oxide having a surface area between 0.1 m2/g to 1.0 m2/g, the second thermally conductive filler is a metal oxide having a surface area between 0.5 m2/g and 2.0 m2/g, and the third thermally conductive filler is a metal oxide having a surface area between 5.0 m2/g and 10.0 m2/g; anda high molecular weight silicone oil, wherein the high molecular weight silicone oil comprises a vinyl functional silicone oil having a weight (Mw) average molecular weight of at least 60,000 Daltons; anda solvent having a boiling point between 60° C. and 220° C.
  • 9. The thermal interface material of claim 8, wherein the thermal interface material comprises: from 2 wt. % to 10 wt. % of the low molecular weight silicone oil;from 25 wt. % to 50 wt. % of a first thermally conductive filler having a surface area between 0.1 m2/g to 1.0 m2/g;from 25 wt. % to 50 wt. % of a second thermally conductive filler having a surface area between 0.5 m2/g and 2.0 m2/g; andfrom 25 wt. % to 50 wt. % of a third thermally conductive filler having a surface area between 5.0 m2/g and 10.0 m2/g;from 0.1 wt. % to 5 wt. % of the high molecular weight silicone oil;from 0.1 wt. % to 5 wt. % of a solvent;from 0.1 wt. % to 5 wt. % of a coupling agent;from 0.1 wt. % to 1 wt. % of a crosslinker;from 0.1 wt. % to 5 wt. % of an inhibitor; andfrom 0.1 wt. % to 5 wt. % of a catalyst.
  • 10. The thermal interface material of claim 8, wherein the low molecular weight silicone oil comprises a vinyl functional silicone oil and the high molecular weight silicone oil is a vinyl silicone oil having a kinematic viscosity from 100,000 cSt to 10,000,00 cSt as measured in accordance with ASTM D445.
  • 11. The thermal interface material of claim 8, wherein the first thermally conductive filler has an average particle size of at least 10 microns, the second thermally conductive filler has an average particle size between 1 micron and 10 microns, and the third thermally conductive filler has an average particle size less than 1 micron.
  • 12. The thermal interface material of claim 8, wherein the thermal interface material has a bleeding trace value of between 1 mm and 5 mm and a flowrate between 20 g/min and 50 g/min.
  • 13. The thermal interface material of claim 8, wherein the thermal interface material has a viscosity between 150 Pa.s and 650 Pa.s at 25° C.
  • 14. An electronic component comprising: a heat sink;an electronic chip;a thermal interface material positioned between the heat sink and electronic chip, the thermal interface material including: a low molecular weight silicone oil having a weight (Mw) average molecular weight less than 50,000 Daltons;at least one thermally conductive filler having a surface area greater than 1.0 m2/g; anda high molecular weight silicone oil present in an amount from 0.1 wt. % to 5 wt. %, based on a total weight of the thermal interface material, wherein the high molecular weight silicone oil comprises a vinyl functional silicone oil having a weight (Mw) average molecular weight of at least 60,000 Daltons, wherein the thermal interface material has a viscosity greater than 1500 Pa.s at 23° C.
  • 15. The electronic component of claim 14, further including a solvent having a boiling point between 60° C. and 220° C.
  • 16. The electronic component of claim 15, wherein the at least one thermally conductive filler includes a first thermally conductive filler, a second thermally conductive filler, and a third thermally conductive filler, wherein the first thermally conductive filer is a metal oxide having a surface area between 0.1 m2/g to 1.0 m2/g, the second thermally conductive filler is a metal oxide having a surface area between 0.5 m2/g and 2.0 m2/g, and the third thermally conductive filler is a metal oxide having a surface area between 5.0 m2/g and 10.0 m2/g.
  • 17. The electronic component of claim 14, wherein the electronic component further comprises a heat spreader positioned between the heat sink and the electronic chip, wherein the first surface layer is in contact with a surface of the electronic chip and the second surface layer is in contact with the heat spreader.
  • 18. The electronic component of claim 14, the electronic component further comprises a heat spreader positioned between the heat sink and the electronic chip, wherein the first surface layer is in contact with a surface of the heat spreader and the second surface layer is in contact with the heat sink.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. Provisional Patent Application Ser. No. 62/630,928 filed Feb. 15, 2018, which is herein incorporated by reference in its entirety.

US Referenced Citations (337)
Number Name Date Kind
1655133 Clase Jan 1928 A
2451600 Woodcock Oct 1948 A
2810203 Bachofer Oct 1957 A
3262997 Cameron et al. Jul 1966 A
4006530 Nicolas Feb 1977 A
4087918 Schmid et al. May 1978 A
4180498 Spivack Dec 1979 A
4265026 Meyer May 1981 A
4446266 von Gentzkow et al. May 1984 A
4459185 Obata et al. Jul 1984 A
4559709 Beseme et al. Dec 1985 A
4565610 Nobel et al. Jan 1986 A
4604424 Cole et al. Aug 1986 A
4787149 Possati et al. Nov 1988 A
4816086 Oleske Mar 1989 A
4832781 Mears May 1989 A
4839955 Vannier Jun 1989 A
4910050 Oldham et al. Mar 1990 A
5162555 Remmers et al. Nov 1992 A
5167851 Jamison et al. Dec 1992 A
5294923 Juergens et al. Mar 1994 A
5391924 Uchida et al. Feb 1995 A
5403580 Bujanowski et al. Apr 1995 A
5562814 Kirby Oct 1996 A
5660917 Fujimori et al. Aug 1997 A
5816699 Keith et al. Oct 1998 A
5930115 Tracy et al. Jul 1999 A
5950066 Hanson et al. Sep 1999 A
6040362 Mine et al. Mar 2000 A
6054198 Bunyan et al. Apr 2000 A
6090484 Bergerson Jul 2000 A
6096414 Young Aug 2000 A
6165612 Misra Dec 2000 A
6197859 Hanson et al. Mar 2001 B1
6238596 Nguyen et al. May 2001 B1
6339120 Misra et al. Jan 2002 B1
6372337 Takahashi et al. Apr 2002 B2
6372997 Hill et al. Apr 2002 B1
6391442 Duvall et al. May 2002 B1
6400565 Shabbir et al. Jun 2002 B1
6432320 Bonsignore et al. Aug 2002 B1
6432497 Bunyan Aug 2002 B2
6451422 Nguyen Sep 2002 B1
6475962 Khatri Nov 2002 B1
6496373 Chung Dec 2002 B1
6500891 Kropp et al. Dec 2002 B1
6506332 Pedigo Jan 2003 B2
6562180 Bohin et al. May 2003 B1
6597575 Matayabas et al. Jul 2003 B1
6605238 Nguyen et al. Aug 2003 B2
6610635 Khatri Aug 2003 B2
6616999 Freuler et al. Sep 2003 B1
6617517 Hill et al. Sep 2003 B2
6620515 Feng et al. Sep 2003 B2
6624224 Misra Sep 2003 B1
6645643 Zafarana et al. Nov 2003 B2
6649325 Gundale et al. Nov 2003 B1
6657297 Jewram et al. Dec 2003 B1
6673434 Nguyen Jan 2004 B2
6706219 Nguyen Mar 2004 B2
6761928 Hill et al. Jul 2004 B2
6764759 Duvall et al. Jul 2004 B2
6783692 Bhagwagar Aug 2004 B2
6791839 Bhagwagar Sep 2004 B2
6797382 Nguyen et al. Sep 2004 B2
6797758 Misra et al. Sep 2004 B2
6811725 Nguyen et al. Nov 2004 B2
6815486 Bhagwagar et al. Nov 2004 B2
6835453 Greenwood et al. Dec 2004 B2
6838182 Kropp et al. Jan 2005 B2
6841757 Marega et al. Jan 2005 B2
6874573 Collins et al. Apr 2005 B2
6900163 Khatri May 2005 B2
6901675 Edwards et al. Jun 2005 B2
6908669 Nguyen Jun 2005 B2
6908682 Mistele Jun 2005 B2
6913686 Hilgarth Jul 2005 B2
6921780 Ducros et al. Jul 2005 B2
6924027 Matayabas et al. Aug 2005 B2
6926955 Jayaraman et al. Aug 2005 B2
6940721 Hill Sep 2005 B2
6946190 Bunyan Sep 2005 B2
6956739 Bunyan Oct 2005 B2
6975944 Zenhausern Dec 2005 B1
6984685 Misra et al. Jan 2006 B2
7013965 Zhong et al. Mar 2006 B2
7038009 Sagal et al. May 2006 B2
7056566 Freuler et al. Jun 2006 B2
7074490 Feng et al. Jul 2006 B2
7078109 Hill et al. Jul 2006 B2
7119143 Jarnjevic et al. Oct 2006 B2
7135232 Yamada et al. Nov 2006 B2
7147367 Balian et al. Dec 2006 B2
7172711 Nguyen Feb 2007 B2
7208191 Freedman Apr 2007 B2
7241707 Meagley et al. Jul 2007 B2
7244491 Nguyen Jul 2007 B2
7253523 Dani et al. Aug 2007 B2
7262369 English Aug 2007 B1
7291396 Huang et al. Nov 2007 B2
7294394 Jayaraman et al. Nov 2007 B2
RE39992 Misra et al. Jan 2008 E
7326042 Alper et al. Feb 2008 B2
7328547 Mehta et al. Feb 2008 B2
7369411 Hill et al. May 2008 B2
7440281 Bailey et al. Oct 2008 B2
7446158 Okamoto et al. Nov 2008 B2
7462294 Kumar et al. Dec 2008 B2
7463496 Robinson et al. Dec 2008 B2
7465605 Raravikar et al. Dec 2008 B2
7538075 Yamada et al. May 2009 B2
7550097 Tonapi et al. Jun 2009 B2
7572494 Mehta et al. Aug 2009 B2
7608324 Nguyen et al. Oct 2009 B2
7641811 Kumar et al. Jan 2010 B2
7646778 Sajassi Jan 2010 B2
7682690 Bunyan et al. Mar 2010 B2
7695817 Lin et al. Apr 2010 B2
7700943 Raravikar et al. Apr 2010 B2
7732829 Murphy Jun 2010 B2
7744991 Fischer et al. Jun 2010 B2
7763673 Okamoto et al. Jul 2010 B2
RE41576 Bunyan et al. Aug 2010 E
7765811 Hershberger et al. Aug 2010 B2
7807756 Wakabayashi et al. Oct 2010 B2
7816785 Iruvanti et al. Oct 2010 B2
7842381 Johnson Nov 2010 B2
7846778 Rumer et al. Dec 2010 B2
7850870 Ahn et al. Dec 2010 B2
7867609 Nguyen Jan 2011 B2
7893170 Wakioka et al. Feb 2011 B2
7955900 Jadhav et al. Jun 2011 B2
7960019 Jayaraman et al. Jun 2011 B2
7973108 Okamoto et al. Jul 2011 B2
8009429 Sundstrom et al. Aug 2011 B1
8039961 Suhir et al. Oct 2011 B2
8076773 Jewram et al. Dec 2011 B2
8081468 Hill et al. Dec 2011 B2
8093331 Fukui Jan 2012 B2
8102058 Hsieh et al. Jan 2012 B2
8105504 Gerster et al. Jan 2012 B2
8110919 Jewram et al. Feb 2012 B2
8112884 Tullidge et al. Feb 2012 B2
8115303 Bezama et al. Feb 2012 B2
8138239 Prack et al. Mar 2012 B2
8167463 Loh May 2012 B2
8223498 Lima Jul 2012 B2
8308861 Rolland et al. Nov 2012 B2
8324313 Funahashi Dec 2012 B2
8362607 Scheid et al. Jan 2013 B2
8373283 Masuko et al. Feb 2013 B2
8431647 Dumont et al. Apr 2013 B2
8431655 Dershem Apr 2013 B2
8445102 Strader et al. May 2013 B2
8518302 Gerster et al. Aug 2013 B2
8535478 Pouchelon et al. Sep 2013 B2
8535787 Lima Sep 2013 B1
8557896 Jeong et al. Oct 2013 B2
8586650 Zhang et al. Nov 2013 B2
8587945 Hartmann et al. Nov 2013 B1
8618211 Bhagwagar et al. Dec 2013 B2
8632879 Weisenberger Jan 2014 B2
8633478 Cummings et al. Jan 2014 B2
8638001 Kimura et al. Jan 2014 B2
8647752 Strader et al. Feb 2014 B2
8758892 Bergin et al. Jun 2014 B2
8796068 Stender et al. Aug 2014 B2
8837151 Hill et al. Sep 2014 B2
8865800 Stammer et al. Oct 2014 B2
8917510 Boday et al. Dec 2014 B2
8937384 Bao et al. Jan 2015 B2
9055694 Lima Jun 2015 B2
9070660 Lowe et al. Jun 2015 B2
9080000 Ahn et al. Jul 2015 B2
9222735 Hill et al. Dec 2015 B2
9260645 Bruzda Feb 2016 B2
9353304 Merrill et al. May 2016 B2
9392730 Hartmann et al. Jul 2016 B2
9481851 Matsumoto et al. Nov 2016 B2
9527988 Habimana et al. Dec 2016 B2
9537095 Stender et al. Jan 2017 B2
9593209 Dent et al. Mar 2017 B2
9593275 Tang et al. Mar 2017 B2
9598575 Bhagwagar et al. Mar 2017 B2
10155894 Liu et al. Dec 2018 B2
10287471 Zhang et al. May 2019 B2
10312177 Zhang et al. Jun 2019 B2
10501671 Zhang et al. Dec 2019 B2
10781349 Zhang et al. Sep 2020 B2
20020018885 Takahashi et al. Feb 2002 A1
20020132896 Nguyen Sep 2002 A1
20020140082 Matayabas Oct 2002 A1
20020143092 Matayabas Oct 2002 A1
20030031876 Obeng et al. Feb 2003 A1
20030068487 Nguyen et al. Apr 2003 A1
20030112603 Roesner et al. Jun 2003 A1
20030128521 Matayabas et al. Jul 2003 A1
20030151030 Gurin Aug 2003 A1
20030159938 Hradil Aug 2003 A1
20030171487 Ellsworth et al. Sep 2003 A1
20030178139 Clouser et al. Sep 2003 A1
20030203181 Ellsworth et al. Oct 2003 A1
20030207064 Bunyan et al. Nov 2003 A1
20030207128 Uchiya et al. Nov 2003 A1
20030230403 Webb Dec 2003 A1
20040037965 Salter Feb 2004 A1
20040053059 Mistele Mar 2004 A1
20040069454 Bonsignore et al. Apr 2004 A1
20040097635 Fan et al. May 2004 A1
20040149587 Hradil Aug 2004 A1
20040161571 Duvall et al. Aug 2004 A1
20040206941 Gurin Oct 2004 A1
20050020738 Jackson et al. Jan 2005 A1
20050025984 Odell et al. Feb 2005 A1
20050045855 Tonapi et al. Mar 2005 A1
20050072334 Czubarow et al. Apr 2005 A1
20050110133 Yamada et al. May 2005 A1
20050148721 Tonapi et al. Jul 2005 A1
20050228097 Zhong Oct 2005 A1
20050256291 Okamoto et al. Nov 2005 A1
20050287362 Garcia-Ramirez et al. Dec 2005 A1
20060040112 Dean et al. Feb 2006 A1
20060057364 Nguyen Mar 2006 A1
20060094809 Simone et al. May 2006 A1
20060122304 Matayabas Jun 2006 A1
20060155029 Zucker Jul 2006 A1
20060208354 Liu et al. Sep 2006 A1
20060228542 Czubarow Oct 2006 A1
20060260948 Zschintzsch et al. Nov 2006 A2
20060264566 Cassar et al. Nov 2006 A1
20070013054 Ruchert et al. Jan 2007 A1
20070051773 Ruchert et al. Mar 2007 A1
20070097651 Canale et al. May 2007 A1
20070116626 Pan et al. May 2007 A1
20070131913 Cheng et al. Jun 2007 A1
20070161521 Sachdev et al. Jul 2007 A1
20070164424 Dean et al. Jul 2007 A1
20070166554 Ruchert et al. Jul 2007 A1
20070179232 Collins et al. Aug 2007 A1
20070219312 David Sep 2007 A1
20070241303 Zhong et al. Oct 2007 A1
20070241307 Nguyen Oct 2007 A1
20070249753 Lin et al. Oct 2007 A1
20070293604 Frenkel et al. Dec 2007 A1
20080021146 Komatsu et al. Jan 2008 A1
20080023665 Weiser et al. Jan 2008 A1
20080044670 Nguyen Feb 2008 A1
20080110609 Fann et al. May 2008 A1
20080116416 Chacko May 2008 A1
20080141629 Alper et al. Jun 2008 A1
20080149176 Sager et al. Jun 2008 A1
20080269405 Okamoto et al. Oct 2008 A1
20080291634 Weiser et al. Nov 2008 A1
20080302064 Rauch Dec 2008 A1
20090053515 Luo et al. Feb 2009 A1
20090072408 Kabir et al. Mar 2009 A1
20090111925 Burnham et al. Apr 2009 A1
20090184283 Chung et al. Jul 2009 A1
20100040768 Dhindsa Feb 2010 A1
20100048435 Yamagata et al. Feb 2010 A1
20100048438 Carey et al. Feb 2010 A1
20100075135 Kendall et al. Mar 2010 A1
20100129648 Xu et al. May 2010 A1
20100197533 Kendall et al. Aug 2010 A1
20100256280 Bruzda Oct 2010 A1
20100304152 Clarke Dec 2010 A1
20110000516 Hershberger et al. Jan 2011 A1
20110038124 Burnham et al. Feb 2011 A1
20110121435 Mitsukura et al. May 2011 A1
20110141698 Chiou et al. Jun 2011 A1
20110187009 Masuko et al. Aug 2011 A1
20110192564 Mommer et al. Aug 2011 A1
20110204280 Bruzda Aug 2011 A1
20110205708 Andry et al. Aug 2011 A1
20110265979 Chen et al. Nov 2011 A1
20110294958 Ahn et al. Dec 2011 A1
20110308782 Merrill et al. Dec 2011 A1
20120048528 Bergin et al. Mar 2012 A1
20120060826 Weisenberger Mar 2012 A1
20120087094 Hill et al. Apr 2012 A1
20120142832 Varma et al. Jun 2012 A1
20120174956 Smythe et al. Jul 2012 A1
20120182693 Boday et al. Jul 2012 A1
20120195822 Werner et al. Aug 2012 A1
20120253033 Boucher et al. Oct 2012 A1
20120280382 Im et al. Nov 2012 A1
20120285673 Cola et al. Nov 2012 A1
20120288725 Tanaka et al. Nov 2012 A1
20120292005 Bruzda et al. Nov 2012 A1
20130127069 Boday et al. May 2013 A1
20130199724 Dershem Aug 2013 A1
20130248163 Bhagwagar et al. Sep 2013 A1
20130265721 Strader et al. Oct 2013 A1
20130285233 Bao et al. Oct 2013 A1
20130288462 Stender et al. Oct 2013 A1
20130299140 Ling et al. Nov 2013 A1
20140043754 Hartmann et al. Feb 2014 A1
20140150844 Azechi Jun 2014 A1
20140190672 Swaroop et al. Jul 2014 A1
20140264818 Lowe, Jr. et al. Sep 2014 A1
20150000151 Roth et al. Jan 2015 A1
20150008361 Hattori Jan 2015 A1
20150125646 Tournilhac et al. May 2015 A1
20150138739 Hishiki May 2015 A1
20150158982 Saito et al. Jun 2015 A1
20150183951 Bhagwagar et al. Jul 2015 A1
20150275060 Kuroda et al. Oct 2015 A1
20150279762 Lowe et al. Oct 2015 A1
20150307743 Ireland et al. Oct 2015 A1
20160009865 Jiang et al. Jan 2016 A1
20160096984 Matsumoto Apr 2016 A1
20160160102 Minegishi et al. Jun 2016 A1
20160160104 Bruzda et al. Jun 2016 A1
20160226114 Hartmann et al. Aug 2016 A1
20160272839 Yamamoto et al. Sep 2016 A1
20170009362 Werner et al. Jan 2017 A1
20170018481 Zeng et al. Jan 2017 A1
20170107415 Shiono Apr 2017 A1
20170137685 Liu et al. May 2017 A1
20170167716 Ezaki et al. Jun 2017 A1
20170226396 Yang et al. Aug 2017 A1
20170243849 Sasaki et al. Aug 2017 A1
20170317257 Ezaki et al. Nov 2017 A1
20170321100 Zhang et al. Nov 2017 A1
20180030327 Zhang et al. Feb 2018 A1
20180030328 Zhang et al. Feb 2018 A1
20180085977 Ezaki Mar 2018 A1
20180194982 Ezaki et al. Jul 2018 A1
20180267315 Yonemura Sep 2018 A1
20180358283 Zhang et al. Dec 2018 A1
20180370189 Tang et al. Dec 2018 A1
20190048245 Liu et al. Feb 2019 A1
20190078007 Zhang et al. Mar 2019 A1
20190085225 Zhang et al. Mar 2019 A1
20190092993 Naik et al. Mar 2019 A1
20190119544 Shen et al. Apr 2019 A1
20190122954 Bruzda et al. Apr 2019 A1
Foreign Referenced Citations (176)
Number Date Country
2311067 Jan 2001 CA
2433637 Dec 2002 CA
1407141 Apr 2003 CN
1456710 Nov 2003 CN
1549875 Nov 2004 CN
1580116 Feb 2005 CN
1638952 Jul 2005 CN
1940007 Apr 2007 CN
1970666 May 2007 CN
1972988 May 2007 CN
100351075 Nov 2007 CN
101067030 Nov 2007 CN
101090922 Dec 2007 CN
101113241 Jan 2008 CN
101126016 Feb 2008 CN
100394566 Jun 2008 CN
101288353 Oct 2008 CN
101445627 Jun 2009 CN
101525489 Sep 2009 CN
101735619 Jun 2010 CN
101835830 Sep 2010 CN
101942197 Jan 2011 CN
102134474 Jul 2011 CN
102341474 Feb 2012 CN
102348763 Feb 2012 CN
102627943 Aug 2012 CN
102634212 Aug 2012 CN
103087389 May 2013 CN
103102552 May 2013 CN
103102689 May 2013 CN
103131138 Jun 2013 CN
103214848 Jul 2013 CN
103254647 Aug 2013 CN
103333447 Oct 2013 CN
103409116 Nov 2013 CN
103436027 Dec 2013 CN
103709757 Apr 2014 CN
103756631 Apr 2014 CN
103773322 May 2014 CN
103849356 Jun 2014 CN
103865271 Jun 2014 CN
103923463 Jul 2014 CN
104098914 Oct 2014 CN
104136569 Nov 2014 CN
104140678 Nov 2014 CN
104152103 Nov 2014 CN
104194733 Dec 2014 CN
104449550 Mar 2015 CN
104471012 Mar 2015 CN
104497574 Apr 2015 CN
104513487 Apr 2015 CN
104804705 Jul 2015 CN
104861661 Aug 2015 CN
105111750 Dec 2015 CN
105349113 Feb 2016 CN
105419339 Mar 2016 CN
104479623 May 2016 CN
105566920 May 2016 CN
105670555 Jun 2016 CN
105838322 Aug 2016 CN
105925243 Sep 2016 CN
105980512 Sep 2016 CN
106221236 Dec 2016 CN
106243720 Dec 2016 CN
107057370 Aug 2017 CN
102007037435 Feb 2009 DE
102009001722 Sep 2010 DE
0466188 Jan 1992 EP
0519138 Dec 1992 EP
0816423 Jan 1998 EP
1099734 May 2001 EP
1149519 Oct 2001 EP
1224669 Jul 2002 EP
1291913 Mar 2003 EP
1414063 Apr 2004 EP
1514956 Mar 2005 EP
1629059 Mar 2006 EP
2194165 Jun 2010 EP
2848215 Jun 2004 FR
2508320 Apr 2014 GB
57027188 Jun 1982 JP
0543116 May 1986 JP
06-209057 Jul 1994 JP
02611364 May 1997 JP
3662715 Jan 1999 JP
2000143808 May 2000 JP
2001139818 May 2001 JP
2002003830 Jan 2002 JP
2003-218296 Jul 2003 JP
4016326 Mar 2004 JP
4288469 Oct 2004 JP
2005-032468 Feb 2005 JP
2006-502248 Jan 2006 JP
2007002002 Jan 2007 JP
2007-106809 Apr 2007 JP
2007-131798 May 2007 JP
2008063412 Mar 2008 JP
5269366 Mar 2009 JP
2009102577 May 2009 JP
5137538 Jun 2009 JP
2009138036 Jun 2009 JP
2009-209230 Sep 2009 JP
5607298 Mar 2010 JP
2010-120979 Jun 2010 JP
4480457 Jun 2010 JP
5390202 Aug 2010 JP
2010-248349 Nov 2010 JP
2010248277 Nov 2010 JP
2010278115 Dec 2010 JP
5463116 Apr 2011 JP
5318733 Jun 2011 JP
2011-144234 Jul 2011 JP
2011165792 Aug 2011 JP
2012-119725 Jun 2012 JP
2012-201106 Oct 2012 JP
5687167 Apr 2013 JP
2014105283 Jun 2014 JP
5944306 Jul 2014 JP
5372270 Sep 2014 JP
2014194006 Oct 2014 JP
2015-212318 Nov 2015 JP
2016-506992 Mar 2016 JP
2016-216523 Dec 2016 JP
2019-522711 Aug 2019 JP
100479857 Jul 2003 KR
10-2007-0089169 Aug 2007 KR
20070116654 Dec 2007 KR
10-0820902 Apr 2008 KR
0953679 Apr 2010 KR
1175948 Aug 2012 KR
10-2015-0049376 May 2015 KR
10-2016-0130273 Nov 2016 KR
569348 Jan 2004 TW
200907040 Feb 2009 TW
201033268 Sep 2010 TW
201527309 Jul 2015 TW
201546257 Dec 2015 TW
8706492 Nov 1987 WO
1997026297 Jul 1997 WO
0120618 Mar 2001 WO
0193648 Dec 2001 WO
03052818 Jun 2003 WO
2003064148 Aug 2003 WO
2004001844 Dec 2003 WO
2004008497 Jan 2004 WO
2004022330 Mar 2004 WO
2005011146 Feb 2005 WO
2005021257 Mar 2005 WO
2005111146 Nov 2005 WO
2005119771 Dec 2005 WO
2006014171 Feb 2006 WO
2006023860 Mar 2006 WO
2007027670 Mar 2007 WO
2008014171 Jan 2008 WO
2008103219 Aug 2008 WO
2008121491 Oct 2008 WO
2008121970 Oct 2008 WO
2009032212 Mar 2009 WO
2010104534 Sep 2010 WO
2010104542 Sep 2010 WO
2013074920 May 2013 WO
2013129600 Sep 2013 WO
2013168291 Nov 2013 WO
2013191116 Dec 2013 WO
2014007119 Jan 2014 WO
2014021980 Feb 2014 WO
2014160067 Oct 2014 WO
2015120773 Aug 2015 WO
2015131370 Sep 2015 WO
2015179056 Nov 2015 WO
2016004565 Jan 2016 WO
2016103424 Jun 2016 WO
2016111139 Jul 2016 WO
2018022288 Feb 2018 WO
2018022293 Feb 2018 WO
2018068222 Apr 2018 WO
Non-Patent Literature Citations (43)
Entry
Silicone Fluid KF-96 data sheet, 2021.
English language translation JP 2009-209230, Sep. 2009.
Phase Change Material: DAPCM80-1′\MH&W International Corp., May 2012, http://mhw-thermal.com, 1 pages.
Extended European Search Report issued in EP Application 15749120.0, dated Aug. 11, 2017, 6 pages.
International Search Report and Written Opinion issued in PCT/CN2015/072202, dated Apr. 29, 2015, 14 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US17/41447, dated Feb. 7, 2019, 8 pages.
International Search Report and Written Opinion issued in PCT/US2009/069090, dated Aug. 17, 2010, 6 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US17/41447, dated Oct. 19, 2017, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2019/017743, dated May 28, 2019, 10 pages.
Search Report issued in Chinese patent application 201410411725X (with English Translation), report dated Jul. 6, 2016, 4 pages.
Singaporean Written Opinion issued in SG Application No. 11201704238Y, completed Apr. 11, 2019, 5 pages.
“Dynasylan 1146: Oligomeric Diamino-Silane-System” Evonik Industries, pp. 1-3, 2008.
“Hi-Flow 225F-AC Reinforced, Phase Change Thermal Interface Material,” The Bergquist Company, 1 page, available at least as early as Aug. 31, 2017.
“Semicosil 9212A.” Wacker Silicones Material Safety Data Sheet, pp. 1-8, printed Dec. 11, 2009.
“Semicosil 9212B.” Wacker Silicones Material Safety Data Sheet, pp. 1-8, printed Dec. 11, 2009.
“THERM-A-GAP HCS10,569,570,579 and 580 Thermally Conductive Gap Filler Pads,” Parker Chomerics, Engineering Your Success, pp. 11-12, available at least as early as the filing date of the present application.
Aranzabe, Estibaliz, et al. “More than Color: Pigments with Thermal Storage Capacity; Processing and Degradation Behavior.” Advances in Materials Physics and Chemistry, 5:171-184, 2015.
Dow Corning® Two-Part RTV Silicone Sealant: Total Assembly Solutions for Home Appliance Production; www.dowcorning.com; Form No. 80-3375-01; 6 pages.
Evonik, Silanes for Adhesives and Sealants, 2013, p. 1-24.
Extended European Search Report issued in EP Application 14867847.7, dated Jun. 26, 2017, 7 pages.
Extended European Search Report issued in EP Application No. 14897036.1, dated Jul. 2, 2018, 7 pages.
Extended Search Report issued in EP Application 14907530.1, dated Jun. 27, 2018, 9 pages.
Fink, Johannes Karl. “Chapter 18: Metal Deactivators.” in: A Concise Introduction to Additives for Thermoplastic Polymers, Wiley-Scrivener, pp. 165-171, Jan. 1, 2010.
Gowda, Arun, et al. “Choosing the Right Thermal Interface Material.” Solid State Technology, Insights for Electronics Manufacturing, Online Blog, 9 pages, 2005. Retrieved May 25, 2017 from the Internet <http://electroiq.com/blog/2005/03/choosing-the-right-thermal-interface-material/.
International Preliminary Report on Patentability issued in PCT/CN2016/075827, dated Sep. 20, 2018, 5 pages.
International Search Report and Written Opinion issued in PCT/CN2014/081724. dated Apr. 1, 2015, 12 pages.
International Search Report and Written Opinion issued in PCT/CN2014/093138, dated Sep. 6, 2015, 8 pages.
International Search Report and Written Opinion issued in PCT/CN2016/075827, dated Dec. 1, 2016, 7 pages.
International Search Report and Written Opinion issued in PCT/CN2016/101874, dated Apr. 28, 2017, 12 pages.
International Search Report and Written Opinion issued in PCT/US2014/068033, dated Mar. 26, 2015, 12 pages.
International Search Report and Written Opinion issued in PCT/US2017/041498, dated Oct. 20, 2017, 10 pages.
International Search Report and Written Opinion issued in PCT/US2018/049218, dated Dec. 28, 2018, 13 pages.
International Search Report and Written Opinion issued in PCT/US2018/056870, dated Feb. 8, 2019, 9 pages.
Martyak et al., On the oxidation of tin(II) in methanesulfonate solutions and the role of sulfate, Galvanotechnik (2005), 96(3), 594-601 (Abstract).
Ping, Ding, et al. “Preparation and Application Research of Novel Silicone Gel for High-Power IGBT.” Insulating Materials, 47(2):52-55, Chinese text with English translation of Abstract, 2014.
Ramaswamy, C., et al. “Phase Change Materials as a Viable Thermal Interface Material for High-Power Electronic Applications.” The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, IEEE, 2:687-691, 2004.
Search Report issued in CN application 201480066502.2, dated May 18, 2017, 2 pages.
Singaporean Search Report and Written Opinion issued in SG Application No. 11201704238Y, completed May 18, 2018, 9 pages.
Singaporean Written Opinion issued in SG Application No. 11201704238Y, completed Feb. 7, 2019, 7 pages.
Wacker Silicones, Catalyst EP/Inhibitor PT 88 product data sheet, p. 1-3, Oct. 6, 2008.
Yasuhiro Aoyagi et al., “Effects of antioxidants and the solild component on the thermal stability of polyol-ester-based thermal pastes”, J Mater Sci (2007) 42:2358-2375; Mar. 12, 2007.
Yasuhiro Aoyagi et al., “Polyol-Based Phase-Change Thermal Interface Materials”, Journal of Electronic Materials, vol. 35, No. 3, (2006); pp: 416-424.
Yunsheng Xu et al., “Lithium Doped Polyethylene-Glycol-Based Thermal Interface Pastes for High Thermal Contact Conductance”, Transactions of the ASME; Journal of Electronic Packagiing, vol. 124, Sep. 2002; pp: 188-191.
Related Publications (1)
Number Date Country
20190249007 A1 Aug 2019 US
Provisional Applications (1)
Number Date Country
62630928 Feb 2018 US