Genetically Modified Cell Lines Including a TP53 Modification and Methods of Use

Abstract
The present disclosure is directed to genetically engineered cell lines which include a modification to knockout a portion of the TP53 gene. Embodiments disclosed herein provide aspects of the knockout cell lines, methods for producing the knockout cell lines, in vitro assays using the knockout cell lines, and kits including the knockout cell lines. In certain implementations, the embodiments can provide doctors and patients improved tools for determining a treatment or for comparing treatments for patients having tumors that include a TP53 mutation.
Description
BACKGROUND

Breast cancer is the most common cancer diagnosed among women and the second leading cause of cancer death for women in the United States. Due to genetic variation in cancer cells, about 36.1% of breast cancers acquire a loss of function mutation to the tumor suppressor gene, TP53, yet few therapies have been developed for targeting the absence of TP53.


Assaying new therapies commonly uses a cell line, such as the MCF7 breast cancer cell line, to determine drug efficacy in vitro before moving to animal or human studies. Though advancements in genetic editing such as CRISPR-Cas9 can allow for accurate and precise engineering of genomic DNA, no known studies have focused on genetically modifying a cancer cell line to modify the TP53 gene for use in assaying new therapies.


SUMMARY

The present disclosure is directed to genetically engineered cell lines which include a modification to knockout a portion of the TP53 gene. Embodiments disclosed herein provide aspects of the knockout cell line, methods for producing the knockout cell line, in vitro assays using the knockout cell line, and kits including the knockout cell line. In certain implementations, the embodiments can provide doctors and patients improved tools for determining a treatment or for comparing treatments for patients having tumors that include a TP53 mutation.


An example embodiment of the disclosure includes a knockout cell line composed of MCF7 breast cancer cells having decreased endogenous expression of at least one coding region in the tumor protein 53 (TP53) gene having a nucleotide sequence corresponding to Seq. ID No. 1. Generally, the cells of the knockout cell line include a genetic modification to remove or delete a portion of the TP53 gene which results in decreased endogenous expression of the at least one coding region.


In certain embodiments, the portion of the TP53 gene can includes one or more exons that encode a portion of the messenger RNA (mRNA) for producing the TP53 protein. Each of these exons includes a nucleotide sequence corresponding to continuous sequence of base pairs from Seq. ID No. 1 as shown in Table 2. Thus, the coding regions can include one or more of exons 1-11.


In some embodiments, the coding region of the TP53 gene can include part of one exon. For example, an embodiment of the disclosure can include a knockout cell line where each cell includes a modification to delete part of one exon from Seq. ID No. 1. As an example implementation, a knockout cell line of the disclosure can include removing at least part of exon 4 including the sequence: GGACGATATT GAACAATGGT TCACTGAAGA CCCAGGTCCA GATGAAGCTC CCAGAATGCC AGAGGCTGCT CCCCCCGTGG CCCCTGCACC AGCAGCTCCT ACACCGGCGG CCCCTGCACC AGCCCCCTCC TGGCCCCTGT CATCTTCTGT CCCTTCCCAG AAAACCTACC AGGGCAGCTA CGGTTTCC.


As used herein, each of exons on 1-11 include a nucleotide sequence from Seq. ID No. 1 that corresponds to a range of base numbers for each exon. For example, the nucleotide sequence for exon 1 comprises base numbers 1-162; the nucleotide sequence for exon 2 comprises base numbers 10917-11018; the nucleotide sequence for exon 3 comprises base numbers 11136-11157; the nucleotide sequence for exon 4 comprises base numbers 11267-11545; the nucleotide sequence for exon 5 comprises base numbers 12303-12486; the nucleotide sequence for exon 6 comprises base numbers 12568-12680; the nucleotide sequence for exon 7 comprises base numbers 13249-13358; the nucleotide sequence for exon 8 comprises base numbers 13702-13838; the nucleotide sequence for exon 9 comprises base numbers 13931-14004; the nucleotide sequence for exon 10 comprises base numbers 16824-16930; and the nucleotide sequence for exon 11 comprises base numbers 17849-19137.


An example embodiment of the disclosure can include a knockout cell line of MCF7 breast cancer cells that include a deletion of the nucleotide sequence for exon 4 from Seq. ID No. 1, the nucleotide sequence for exon 4 including: TCCC CCTTGCCGTC CCAAGCAATG GATGATTTGA TGCTGTCCCC GGACGATATT GAACAATGGT TCACTGAAGA CCCAGGTCCA GATGAAGCTC CCAGAATGCC AGAGGCTGCT CCCCCCGTGG CCCCTGCACC AGCAGCTCCT ACACCGGCGG CCCCTGCACC AGCCCCCTCC TGGCCCCTGT CATCTTCTGT CCCTTCCCAG AAAACCTACC AGGGCAGCTA CGGTTTCCGT CTGGGCTTCT TGCATTCTGG GACAGCCAAG TCTGTGACTT GCACG.


Another example embodiment of the disclosure includes a knockout cell line of MCF7 breast cancer cells that include a deletion of the nucleotide sequence for exon 10, the nucleotide sequence for exon 10 including: ATCCGTG GGCGTGAGCG CTTCGAGATG TTCCGAGAGC TGAATGAGGC CTTGGAACTC AAGGATGCCC AGGCTGGGAA GGAGCCAGGG GGGAGCAGGG CTCACTCCAG.


An embodiment of the disclosure can also include an in vitro assay for determining the efficacy of a treatment in breast cancer cells that include a TP53 gene mutation. In an example implementation, the method can include: providing the treatment to a group of cells derived from a knockout cell as exemplified in certain embodiments of the disclosure and measuring a result. In certain implementations of the invitro assay, measuring the result can include determining a quantitative measure of cell death. Alternatively or additionally, in some implementations providing the treatment can include administering a drug to the plurality of cells derived from the knockout cell line. Non-limiting examples of the drug can include one or more of the compounds listed in Table 2. Further, in certain implementations administering the drug can include administering: Nutlin3, Fluorouracil, Palbociclib, or combinations thereof.


In an example embodiment of the in vitro assay, determining the efficacy of the treatment can also include providing the treatment to a group of wild type MCF7 breast cancer cells and comparing the treatment between the wild type MCF7 breast cancer cells and the cells derived from the knock-out cell line. As an example implementation, comparing the treatment between the wild type MCF7 breast cancer cells and the cells derived from the knock-out cell line can include: determining a first quantitative measurement describing the number of live wild type MCF7 breast cancer cells included in the group of wild type MCF7 breast cancer cells to which the treatment was provided; determining a second quantitative measurement describing the number of live cells included in the plurality of cells derived from the knockout cell line to which the treatment was provided.


Another embodiment of the disclosure includes a method for producing a knockout cell line from a wild type cell line. In an example embodiment, the method can include deleting a portion of the TP53 gene in a cell derived from the wild type cell line by delivering a guide RNA to the cell. Generally, the portion of the TP53 gene may include the nucleotide sequence of one or more of exons 1-11, as shown in Table 2. As an example implementation, the wild type cell line can include human MCF7 breast cancer cells and the portion of the TP53 gene can include the nucleotide sequence for exon 4.


In certain embodiments, delivering the guide RNA to the cell can include delivering an expression cassette to the cell, wherein the expression cassette includes a DNA sequence for expressing the guide RNA. In some embodiments, delivering the guide RNA to the cell further includes delivering a second expression cassette to the cell, the second expression cassette includes a DNA sequence for expressing Cas9. Without being limited to delivering the guide RNA using an expression cassette, a method for producing a knockout cell line from a wild type cell line can include providing one or more guide RNAs to the wild type cell line, the guide RNAs having the nucleotide sequences: CCATTGTTCAATATCGTCCG, GACGGAAACCGTAGCTGCCC, and TGGTTATAGGATTCAACCGG.





BRIEF DESCRIPTION OF THE FIGURES

A full and enabling disclosure of the present invention, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, which includes reference to the accompanying figures, in which:



FIGS. 1A and 1B illustrate example genetic modifications to the TP43 gene included in certain embodiments of the disclosure.



FIG. 2 illustrates a gel in accordance with embodiments of the disclosure.



FIG. 3 illustrates a sequence comparison in accordance with embodiments of the disclosure.



FIG. 4 illustrates a gel in accordance with an embodiment of the disclosure.



FIG. 5 illustrates a sequence comparison in accordance with an embodiment of the disclosure.



FIG. 6 illustrates a sequence comparison in accordance with an embodiment of the disclosure.



FIG. 7 illustrates a gel in accordance with an embodiment of the disclosure.



FIG. 8 illustrates a graph displaying relative cell number vs. log[conc] for example knockout cell lines in accordance with an embodiment of the disclosure.



FIG. 9 illustrates a graph displaying area under the curve (AUC) for TP53 knockout (KO) pools vs. AUS TP53 for wild type (WT.)



FIGS. 10A-10D illustrate graphs displaying relative cell number vs. log[conc] for example knockout cell lines in accordance with an embodiment of the disclosure.



FIGS. 11A-11C illustrate graphs displaying a drug resistance vs. nutlin resistance. The drugs are respectively: oxaliplatin, SFU, and Palb.





Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present invention.


DETAILED DESCRIPTION

Reference now will be made to embodiments of the invention, one or more examples of which are set forth below. Each example is provided by way of an explanation of the invention, not as a limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as one embodiment can be used on another embodiment to yield still a further embodiment. Thus, it is intended that the present invention cover such modifications and variations as come within the scope of the appended claims and their equivalents. It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied exemplary constructions.


The present disclosure is directed to genetically engineered cell lines which include a modification to knockout a portion of the TP53 gene. Embodiments disclosed herein provide aspects of the knockout cell line, methods for producing the knockout cell line, in vitro assays using the knockout cell line, and kits including the knockout cell line. In certain implementations, the embodiments can provide doctors and patients improved tools for determining a treatment or for comparing treatments for patients having tumors that include a TP53 mutation.


An example embodiment of the disclosure can include a knockout cell line composed of MCF7 breast cancer cells having decreased endogenous expression of at least one coding region in the TP53 gene. Generally, the cells of the knockout cell line include a genetic modification to remove or delete a portion of the TP53 gene which results in decreased endogenous expression.


In embodiments of the disclosure, the at least one coding region can include one or more of exons 4-10 in the TP53 gene. In some embodiments, the at least one coding region can include exon 4. In certain embodiments, the at least one coding region can include exon 4 and exon 5. In some embodiments, the at least one coding region can include all of exons 4-10.


For embodiments of the disclosure, the genetic modification can be applied to a native cell line (i.e., wild type). In an example implementation, the native cell line can include human MCF7 breast cancer cells, and an example embodiment can include a genetically modified MCF7 cell line having a genetic modification to remove or delete a portion of the TP53 gene. In another example implementation, the native cell line can include 600MPE, AU565, and/or BT-483. Generally, any cell line including a native TP53 gene can be genetically modified to produce a knockout cell line.


Several non-limiting examples of knockout cell lines disclosed herein include: an MCF7 cell line that includes a deletion of one or more of exons 4-10 of the TP53 gene; an AU565 cell line that includes a deletion of one or more of exons 4-5 of the TP53 gene; and a BT-483 cell line that includes a deletion of one or more exons 6-10 of the TP53 gene. These examples are provided for illustrative purposes to demonstrate how combinations of cell lines and genetic modifications may be produced using this disclosure.


Another example embodiment of the disclosure can include an in vitro assay for determining the efficacy of a treatment in cancer cells that include a TP53 gene mutation. In an example embodiment, the assay can include providing the treatment to a group of cells from a knockout cell line containing a TP53 gene mutation. In an implementation, the group of cells can be derived from any of the knockout cell lines disclosed herein (e.g., a MCF7 breast cancer cell having decreased endogenous expression of at least one coding region in the TP53 gene). During and/or after providing the treatment, the in vitro assay can further include measuring a result. In certain embodiments, measuring the result can include determining a quantitative measure of cell death (e.g., H&E staining). In some embodiments, the in vitro assay can also include providing the treatment to a group of cells from the native cell line (e.g., the MCF7 cell line). In these embodiments, the in vitro assay can also include comparing the treatment to the group of cells from the native cell line. As an example implementation, comparing the treatment to the cells from the native cell line can include determining a first quantitative measurement describing or approximating the number of live cells from the native cell line to which the treatment was provided, and determining a second quantitative measurement describing or approximating the number of live cells from the knockout cell line to which the treatment was provided. In some implementations, the first quantitative measurement and the second quantitative measurement can include a statistic, the statistic indicating if the first quantitative measurement is significantly different (e.g., higher or lower) compared to the second quantitative measurement.


For embodiments of the disclosure that include an in vitro assay, providing the treatment can include administering a drug to a group of cells from the knockout cell line. Generally, any drug can be used. Table 2 includes a list of example drugs; however, it should be understood that the list in Table 2 is not intended to be limiting and other drugs, both known and undiscovered, may be used in embodiments of the disclosure. Additionally, administering the drug can include administering one or more drugs, for example administering one or more of the drugs: Nutlin3, Fluorouracil, and Palbociclib.


A further embodiment can include a kit for assessing a treatment for a patient diagnosed with breast cancer. In an implementation, the kit can include an assay including a well-plate containing cells from a native cell line and knockout cells from a knockout cell line (the knockout cell line formed by deleting or inactivating a portion of the TP53 gene in the native cell line). In an example implementation, the cells from a native cell line can include MCF7 breast cancer cells and knockout cells can include cells derived from a knockout MCF7 cell line (including a genetic modification to one or more of exons 4-10 of the TP53 gene.) The kit can further include an indicator for measuring cell viability. In an example embodiment, the indicator can display a change in appearance (e.g., producing a color) when in contact with dead cells. Additionally, the change in appearance may be quantitative such that the intensity of the change in appearance can be related to the number of dead cells. The kit can also include the treatment (e.g., one or more drugs). In an implementation, the treatment can include Nutlin3, Fluorouracil, and Palbociclib


An additional embodiment of the disclosure includes a method for producing a knockout cell line from a native cell line, the method including deleting a portion of the TP53 gene in the native cell line. Generally, deleting a portion of the TP53 gene includes delivering a guide RNA to the native cell line and selecting for cells including the genetic modification. Example native cell lines may include: MCF7, 600MPE, AU565, and/or BT-483. Additionally, the portion of the TP53 gene can include at least one of exons 4-10.


In some implementations, delivering the guide RNA to the cell can include delivering an expression cassette to the cell, the expression cassette including a DNA sequence for expressing the guide RNA. In certain implementations, delivering the guide RNA to the cell can also include delivering a second expression cassette, including a DNA sequence expression Cas9. Several example guide RNAs for targeting the TP53 gene can include the sequences: CATTGTTCAATATCGTCCG, GACGGAAACCGTAGCTGCCC, and TGGTTATAGGATTCAACCGG.


To determine cells that have incorporated the genetic modification, a selection can be performed in some embodiments. In an example implementation, selecting for the genetically modified cell can include culturing the cells to which the guide RNA has been delivered in the presence of an agent. Exemplary agents can include any drugs to which cells derived from the native cell line are more sensitive compared to knockout cells, including a genetic modification to the TP53 gene. For example, a method for producing a TP53 knockout from the MCF7 cell line can include delivering a guide RNA to a group of cells derived from the native cell line and selecting for genetically modified cells by culturing the group of cells in the presence of Nutlin3.


Embodiments of the disclosure and examples described herein may be better understood with reference to the Sequence Listing filed with this disclosure. The Sequence Listing includes Seq ID No. 1, providing a nucleotide sequence for the TP53 gene for a Homo sapiens. Information regarding the sequence may be found from the NCBI database using the gene ID: ENSG00000141510 and transcript ID: ENST00000269305. The sequence listing also includes Seq ID No. 2 which provides an example knockout genetic sequence as observed in KO 5.6 examples. The sequence listing also includes Seq. ID No. 3 which provides an example knockout genetic sequence as observed in KO 3.4 examples.


Example 1

Example 1 discusses various methods and provides exemplary embodiments that may be understood in conjunction with the Drawings and Description provided herein. The materials and conditions described in the example are demonstrative and are not meant to constrain the scope of the disclosure only to the materials and conditions used.


Materials and Methods
Cell Lines Culture

Human MCF7 breast adenocarcinoma cells (ATCC HTB-22) and their derivatives were maintained at 37° C., 5% CO2 in DMEM (Gibco, Cat. No. 11995-065) with 100 ug/mL penicillin & 100 ug/mL streptomycin (Sigma, Cat. No. P4333), 10% FBS, 50 mM Sodium pyruvate (Sigma, Cat. No. S8636), 1% GlutaMAX (ThermoFisher, Cat. No. 35050061), and 10 ug/mL insulin. MCF7 cells were passaged every 4 to 7 days to maintain sub-confluence. All cell lines were maintained in culture for a maximum of 30 passages.


Genetic Sequence TP53


The genetic sequence used for the TP53 gene is provided below using 1 letter base convention to represent the individual nucleotides (i.e., adenosine, A; guanosine, G; Cytidine, C; and thymidine, T.) The first nucleotide, base number 1, is G and the subsequent nucleotides increment by 1 base number thereon. The number appearing on the left margin represents the base number of the first nucleotide on the line. Additionally, the sequence is from a Homo sapiens (human.)










Seq. ID No. 1:










1
GTTTTCCCCT CCCATGTGCT CAAGACTGGC GCTAAAAGTT TTGAGCTTCT CAAAAGTCTA






61
GAGCCACCGT CCAGGGAGCA GGTAGCTGCT GGGCTCCGGG GACACTTTGC GTTCGGGCTG





121
GGAGCGTGCT TTCCACGACG GTGACACGCT TCCCTGGATT GGGTAAGCTC CTGACTGAAC





181
TTGATGAGTC CTCTCTGAGT CACGGGCTCT CGGCTCCGTG TATTTTCAGC TCGGGAAAAT





241
CGCTGGGGCT GGGGGTGGGG CAGTGGGGAC TTAGCGAGTT TGGGGGTGAG TGGGATGGAA





301
GCTTGGCTAG AGGGATCATC ATAGGAGTTG CATTGTTGGG AGACCTGGGT GTAGATGATG





361
GGGATGTTAG GACCATCCGA ACTCAAAGTT GAACGCCTAG GCAGAGGAGT GGAGCTTTGG





421
GGAACCTTGA GCCGGCCTAA AGCGTACTTC TTTGCACATC CACCCGGTGC TGGGCGTAGG





481
GAATCCCTGA AATAAAAGAT GCACAAAGCA TTGAGGTCTG AGACTTTTGG ATCTCGAAAC





541
ATTGAGAACT CATAGCTGTA TATTTTAGAG CCCATGGCAT CCTAGTGAAA ACTGGGGCTC





601
CATTCCGAAA TGATCATTTG GGGGTGATCC GGGGAGCCCA AGCTGCTAAG GTCCCACAAC





661
TTCCGGACCT TTGTCCTTCC TGGAGCGATC TTTCCAGGCA GCCCCCGGCT CCGCTAGATG





721
GAGAAAATCC AATTGAAGGC TGTCAGTCGT GGAAGTGAGA AGTGCTAAAC CAGGGGTTTG





781
CCCGCCAGGC CGAGGAGGAC CGTCGCAATC TGAGAGGCCC GGCAGCCCTG TTATTGTTTG





841
GCTCCACATT TACATTTCTG CCTCTTGCAG CAGCATTTCC GGTTTCTTTT TGCCGGAGCA





901
GCTCACTATT CACCCGATGA GAGGGGAGGA GAGAGAGAGA AAATGTCCTT TAGGCCGGTT





961
CCTCTTACTT GGCAGAGGGA GGCTGCTATT CTCCGCCTGC ATTTCTTTTT CTGGATTACT





1021
TAGTTATGGC CTTTGCAAAG GCAGGGGTAT TTGTTTTGAT GCAAACCTCA ATCCCTCCCC





1081
TTCTTTGAAT GGTGTGCCCC ACCCCGCGGG TCGCCTGCAA CCTAGGCGGA CGCTACCATG





1141
GCGTGAGACA GGGAGGGAAA GAAGTGTGCA GAAGGCAAGC CCGGAGGTAT TTTCAAGAAT





1201
GAGTATATCT CATCTTCCCG GAGGAAAAAA AAAAAGAATG GGTACGTCTG AGAATCAAAT





1261
TTTGAAAGAG TGCAATGATG GGTCGTTTGA TAATTTGTCG GAAAAACAAT CTACCTGTTA





1321
TCTAGCTTTG GGCTAGGCCA TTCCAGTTCC AGACGCAGGC TGAACGTCGT GAAGCGGAAG





1381
GGGCGGGCCC GCAGGCGTCC GTGTGGTCCT CCGTGCAGCC CTCCGGCCCG AGCCGGTTCT





1441
TCCTGGTAGG AGGCGGAACT CGAATTCATT TCTCCCGCTG CCCCATCTCT TAGCTCGCGG





1501
TTGTTTCATT CCGCAGTTTC TTCCCATGCA CCTGCCGCGT ACCGGCCACT TTGTGCCGTA





1561
CTTACGTCAT CTTTTTCCTA AATCGAGGTG GCATTTACAC ACAGCGCCAG TGCACACAGC





1621
AAGTGCACAG GAAGATGAGT TTTGGCCCCT AACCGCTCCG TGATGCCTAC CAAGTCACAG





1681
ACCCTTTTCA TCGTCCCAGA AACGTTTCAT CACGTCTCTT CCCAGTCGAT TCCCGACCCC





1741
ACCTTTATTT TGATCTCCAT AACCATTTTG CCTGTTGGAG AACTTCATAT AGAATGGAAT





1801
CAGGCTGGGC GCTGTGGCTC ACGCCTGCAC TTTGGGAGGC CGAGGCGGGC GGATTACTTG





1861
AGGATAGGAG TTCCAGACCA GCGTGGCCAA CGTGGTGAAT CCCCGTCTCT ACTAAAAAAT





1921
ACAAAAATTA GCTGGGCGTG GTGGGTGCCT GTAATCCCAG CTATTCGGGA GGGTGAGGCA





1981
GGAGAATCGC TTGAACCCGG GAGGCAGAGG TTGCAGTGAG CCAAGATCGT GCCACTACAC





2041
TCCAGCCTGG GCGACAAGAA CGAAACTCCG TCTCAAAAAA AAGGGGGGAA TCATACATTA





2101
TGTGCTCATT TTTGTCGGGC TTCTGTCCTT CAATGTACTG TCTGACATTC GTTCATGTTG





2161
TATATATCAG TATTTTGCTC CTTTTCATTT AGTATAGTCC ATCGATTGTA TATCCGTCCT





2221
TTTGATGGCC TTTTGAGTTG TTTCCCATTT GCGGTTATGA AATAAAGCTG CTATAAACAT





2281
TCTTGTACAA TTCTTTTTGT GATCATATGT TTTCGTGTTT CTTGGAGAAA TACTTAGGAG





2341
GGGAATTGCG AGTTTGGAAG TAAAAAGTAG CTGTATTTTG AACTTTTTCA GAAGCTCTGA





2401
GTTTTCCAGA GCGGTTGTAC CATTTTACAC TCCAACTAGC AAGGTATGGG AGTTATTATG





2461
GTTGTGCCAC AGCCTTCCGG ACATTAGGTA TTGTCAGTCT TTCTAATGTG GTATATCCTT





2521
GTGGTTGTAA TTTACAGTTC TCTATTGACT AAGGATGTTC AGCATTTTTT CATGTGCCTA





2581
TTGGCCATTC GTATTTTGTT TGTAAAGTAG CTCTTCGAGT CTTTTACCTG TTATTTTGGT





2641
TTTTTGTTTG TTTTTATTGT TCAGTTGTGG GACTGCTTTA TACATTCTGG ATACAAGTCC





2701
TTTATCAGAT CCATGTGTCG TGAATGTTTT CTTCTGATCT GTTGCTTGCC TATTTGTTTG





2761
CTTTACAGAG TTTACAGTAT CTTAAGAGGA GTGGATTTAT CTTTTTTATG TTCAGTATTT





2821
GCCTTGTCCT GTTTAGGACA TCTTTTTTTT TTTTTTTAAC CCCAGGGTCA TGAAGATATT





2881
ATCTTACATT TTCTTTTAGG ACCTTTATGG TTGTAAGTTT TACAGTAAGG TCCTTGAGCC





2941
ATTAATTAAT TCTTAAAATT AATTGTTTAT GGTGTGAGGT GTAGGAGTCA GTCTCTGGTA





3001
TCTTTCCTGT ATGGAAATCC AGTTATTCTG TCTCCACTTG TTGAAATAGG CTTCCTTTCT





3061
CTACTGAATG CTTTTAATTT TAATTATTTT ACAGTTGGAG TATAGGGCTA CCATTTTAGT





3121
GCTATTTTCT TTTTTTCTTT GTTAATTTTT GAGACAGGGA CTCACACTGT TGCCCAGGCT





3181
AGAGTACAAT GGCACAATCA AGGCTTACTG CAGCCTCGAA CCCCTGGGCT CAAGCAGTCC





3241
TCTAGCAGCC TCACGAGTAG CTGGGATTAC TCCACCACAC CCAGCTAACT ATTTTATTTT





3301
TTTGTATTGA CAGGATCTCA CTATGTTGCC CAGGCTGGTC TCAAACTGCT GGCCTCAAGC





3361
TTTCATCCCA TCTCGGCCTC CCAAAGTGCT GGGATTACAG GTGTGAGCCA CCATGCCTGA





3421
CCTCTTAGTG CTATTTTCTA TTTATCTCCT CTGTTCTCTG CTCTCTTTAA ACGTTGGAGG





3481
AAGAAACAGT ACCCATCTTA CACAAACTCT TCAGAAAACA GAGGAACAGA CTGGGCGCGG





3541
TGGCTCATAC CTGTAATCTC AGCACTTTGG TACGCTGAGG CAGGGGATCA TTTGAGGTCG





3601
GGAGTTCGAG ACCAGCCTGG CCAACACGGC GAAACCCCAT CTCTACTAAA AATACAAAAA





3661
GTAGCTAGGC GTGGTGACAC ATACCTGTAA TGCCAGTTAC TCAGGAGGCT GAGGCACAAG





3721
AATCCCTTGA ACCTGGGAAG CGGAGGTTGC AGTGAGCCGA GATTGCGCCA CTGCACTCCA





3781
GCCTGGGCAA CAGAGTGAGA CCCTGTCTCA GAAAAAAAAA GAAAGAAAGA AAAAATAGAG





3841
GAATATTTCC CAACTTGTTT TCGAAGCCAG CATAATCCTG GTACCAAAAC CAAACAAGGA





3901
CATTATAAGA AAAGAAAATA TAGACCAATA TTCCTGTTAG CATAGACATG CAACAGCTAA





3961
CCAATTTTAG CAAACCAAAC CTGGTAATAT AGAAAAAAGG ATAAATAGGC CAGTCGCGGT





4021
GGCTCACGCC TGTAATCCCA GCACTTTGGG AGGCTGAGGC AGGCAGATCA CTTGAGGTCA





4081
GGAGTTTGAG ACCAGCCTGA CCAACATGGT GAAACCCCGT TTCTAATAAA AATACAAAAA





4141
TCAGGCTGGG CACGGTGGCT CACGCCTGTA ATCCCAGCAC TTTGGGAGGC CGAGGTGGGC





4201
AGATCACGAG GTCAGGAGTT CAAGACCAGC CTGACCAATG TGGTGAAACG CCATCTCTAC





4261
TAAAAATACA AAAATCAGCC GGTGTGGTGG CACCTGCCTG TAATCCCAGC TACTCAGGAG





4321
GCTGAGGCAG AATTGCTTGA ACCCGGGAGG CAGAGGTTGC AGTGAGCCAA GATCGTGCCA





4381
CTGCACTCCA GCCTGGGCGA CAGAGCAAGA CTTCATCTCA AAAAAAAAAA AAAATTAGCT





4441
GGGCATGGTG GTGGGCACCT GAAATCCCAG CTACTCGGGA GTCTGAGGCA GGAGAATCGC





4501
TTGAACCCAG GAGGCAGAAG TTGCACTGAG CTGGGATCAC ACCATTGCAC TCCAGCCTGG





4561
GCAACAGAGT GAGACTCCAT CTCAAAAAAA GAAAAAGAAA AAGGATAAAT ACATTCTAAC





4621
CAAATAATGT TTATCTCATG ATTGTAGCTG ATTCAACATT CAAAAATTGG CCTGGTGCAG





4681
TAGCTCAGGC CTGTAATCCC AACATTTTAG GAGGCTGAGG CAGGAAGATC TCTTGAGCCC





4741
AGGATTTCAA GACCAGCCTG GGCAACATAG TCAGACTGGT CTTTACTGGG GGGAAAAAAA





4801
TCAGTCTGTG TAATTCACCA CATTAACAAA GGGAAACATA AAAACCCTAT GATCATTTCA





4861
ACAGATGTAG CAAAAGCAGT TAATGATATT CAACACATAT GCATGATTAC AAACCAACCA





4921
ACCTCCTAGC AAACTAGGGA AAGGAAACTT AACCTAGTTT GATAACAGGG CGTCCACAGT





4981
CGGAGTTCCA CTAGCAGCAT ACATAATGGT AGAAAACTCA GTGCTGCCGG GCGCGGTGGC





5041
TCACGCCTGT AATGCCAGCA CTTTGGGAGG CCTAGGCGGG CGGATCACGA GGTCAGGAGA





5101
TCGAGACTGT CCTGACTAGC ATGCTGAAAC CCCGTCTCTA CTAAAAATAC AAAAACAAAA





5161
AATTAGCCGG GCATGGTGGC GGGCGCCTAT AGTCCCAGCT ACTCGGGAGG CTGAGGCGAG





5221
AGAATGGCGT GAACCCGGGA GGCGGAGCTT GCAGAGCCTA GATCGTGCCA CTGCACTCCA





5281
GCCTGGGTGA CAGAGTGAGA CTTCGTCTCA AAAAAAAAAA AGAAAAGAAA





5341
ACTCAACGCT TTTTCCTCTA AGATCAGGAA CTAGAAAAGG ATTTGACTCT CACAACGTTG





5401
ATACCATACT GGAGGTTTTA ACCAGGCAAG AAAAAGAAAT AATGAGGGCC GGGTGCGGTG





5461
GCTCAGGCCT GTAATCCCAG CACTTTGGGA AGCCGAGACG GGTGGATCAC GAGGTCAGGA





5521
GATCGAGACC ATCCTGGCTA ACACGGTGAA ACCCTGTCTC TACTAAATAT ACAAAAAATT





5581
AGCCGGGCGT AGTGGCGGGC GCCTGTAGTC CCAGCTACTC GGGAGGCTGA GGCAGGAGAA





5641
TGGCGTGAAC TCAGGGGGCG GAGCTTGCAG TGAGCTGAGA TCGAGCCACT GCACTCCAGC





5701
CTGGGCGACA GAGCAAGACT GTGTCTCAAA AAAAAAAAAA GAAAAAGAAA TAATGATTAG





5761
TGGCCCGATG TCTCACGCCT ATAATCCCAG CACTTTGGGA GGCCGAGGTG GGCAGATCAC





5821
CTGAGGTCTG GAGTTGGAGA CCAGCCTGAC AAAGATGGTG AAACCTCGTC TCTATTAAAA





5881
TATTAAAAAA ATAGCCAGGC GTTGGCCGGG TACAGTGGCT CATGCCTGTA ATCCCAGCAC





5941
TTTGGGAGGC CGAGGTGGGT GGATCACCTG AGGTCAGGAG TTCAACACCA GCCTGGCCAA





6001
CATGGTGAAA CCCCATCTCT ACTAAAAATA CAAAAATTAG CCGGGCGTAG TGGCGGGCGC





6061
CTGTAATCCC AGCTACTTGG GAGGCTTAGG CAGGAGAATC GCTTGAACCT GGGAGGCGGA





6121
GGTTGTAGTG AGCCGAGATT GCACCATTGC ACTCCAGCCT GGGTGACAAA AGCAAAAACT





6181
CCGTCTCAAA AAAAAAAGAA TTAGCCAGGG GTAGTGGTGA ACGCCTGTAG TCCCAGCTAC





6241
TCAGGAGGCA GAGGCAGGAG AATCACTTGA ACCCAGGAGG CAGAGGTTGC AGTGAGCCGA





6301
GATTGTCCCA TTGCACTCCA GCCTAGGCGA CAAGAGCAAA ATTCCATGTC AAAAAAAAAA





6361
AAAAAAAAGG AAAGAAAAAA AATAACGATT AGAAAGGAAG AAATAAAACA CATTCACAGC





6421
CAGTATGATT CTATACATAC ATGTCCTAAT GGGGCCAGGC GTGGTGGCTC ATGCCTGTAA





6481
TCCTAGCACT TTTAGGAGGC TGAGGCAGGT GGCTTCCCTG GGACCAGCCT GGCCAACATG





6541
GTGAAACCCC AACTCTAATA AAAATACAAA AAATCAGCCA GGCGTGGTGA CGGGCACCTC





6601
TAATCCCAGC TACTCAGGAG GCTGAGGCAG GAGAATTGCT TGGACCTGGG AGGCAGAGGT





6661
TGCAGTGAGC CGAGATCGCG CTATTGCACT CCAGCCTGGG CAACAAGAGT GAAACTCCGG





6721
CAGGGTGTGG TGGCTTACGC CTGTAATCCC AGCACTTCGG GAGGCTGAGG CAGGCCGATC





6781
ACCTGAGGTC AGGAGTTTGA GACCAACCTA ACATGGTGAA ACCCCGTCTC TACTAAAAAT





6841
ACAAGAATTA GCTGGGTGTA GTGGTGGGCG CCTGTAATCC CAGCTACTTG GGAGGCTGAG





6901
ACAGAAGAAT TGCTTGAACC CAGGAGGTGG AGGTTGCAGT GAGCTGAGAT CATGCCATTG





6961
CACACCACGC CGGGCAACAG AGCGAGATTC CGTCTCAAAA AAAAAAAAAA AGAGTGAAAC





7021
TCTATCTCAA AAAAAAAAAA AAGTCCTAAT GGAAAATCCA TAAAAAGCTA CCAAAACTAA





7081
TAAATAAATA TAGCAGGGTT GCAGGTTACA GGGCAATATA GTTATCCCTC TATCTGTAGG





7141
GGCTTGGTTC TGGGACTCCT CACACACCAA ACCCACAGAT GTCTAAGTCC CATATATAAG





7201
ACGGTATAGT ATTTGGATTT AACCTACACA TATCCTCCCA TATAGTTTAA ATTATCTCTA





7261
GATTACTTAC ATTACCCCCA TACAATGAAA ATGCTAATGT ACATGCAAGT ATGTATGTAA





7321
GTACTTGTAC TATATTGTTT AGGGAATCAC TGGACATATA GGCCTTCAAG ACTGATACCA





7381
GCAGCCACTG TTAAGATTCT GGTCAGGCCT GCCCCTGTTT GGGGTCTCAG TTGATCTCAT





7441
TGCCTTCCCA CCCAGCCAAG GGCACCTGCA TTTCTCTTGG CTCCCTGGCC ATTTGGAAGG





7501
CCTAGTTCAG CCTGGCACAT TTGTATCCTG GCCCACTGAT GCTGGTACCC CTGGGAAGGT





7561
CCTGCTCTGA AAAACACGGA GATTTTAGTT GCTACTGAAG ATTTGAGAGA TAAAGACAGG





7621
GAGACCTGTC TGTAGACCTG TGTCCCTCCA AGTGGGATTG AGACTTTGGG CCCCCCATTT





7681
CAGGACAGCA CCTCCTGGCC TGTTGACTGA ATAGATCCCT GAAGGAGGTG TACTTGCATT





7741
AATGGAGTGG GGGTGGGAGC AGTACCACAG ATCCGCACTA ACAATCACAC AGTTCTCTCT





7801
AGAATAATAA TATAGAACAA GTGAAATAGA ACAATTGCAG AAAGAGCTAA CCTTTGTTGA





7861
GCTCTTACTG TGTGCCCAGC ACTTTCCTCA ACTCTACATT TCCCATAATA CACAGAGTAC





7921
TAGGTAGGCC AGGCTTGGTG GCTCACGCCT GTAATCCCAG CACTTTAGGA GGCCAAGGGG





7981
GGTGGATCAC CTGAGGTCGG GAGTTCAAGA CCAGCCTGAC CAACATGGTG AAACCCCGTC





8041
TCTACTAGAA GTACAAAATT AGCCAGGTGT GGTGGCACAT GCTTGTAGTC CTAGCTACTC





8101
AGCAGGCTGA GGCAGGAGAA TCATTTGAAT CCGGGAGGAG GTTGCAGTAA GCGGAGATAG





8161
TGCCACTGTA CTCCAGCCTG GGCAATAAGA GCTGAGACTC CGTCTCAAAA TAAAATAAAA





8221
TAAAATAAAA AAAGAAAAGA GCCTGCCATT AAAGGAGCTG





8281
TTTGGTAGGG GATGTTTTGT CAGTGCAAAC AACAGAAAAG TGGGCTGGGC ACAGTGGTTC





8341
ATGCCTGTAA TCCCAGCACT TTGGGAGGCC AAGGCGGGCG GATCACCTGA AGTTGGGAGT





8401
TCAAGACCAG CCTGACCAAT ATGGAGAAAC CCCGTCTCTA CTAAAAATAC AAAATTAGCC





8461
GGGCGCAGTG GCGCATGCCT GTAATCCCAG CTACTCGGGA GGCTGAGGCA GGAGAATCGC





8521
TTGAACCTGG GAGGCAGAGG TTGCGGTGAG CCGAGATCGC ACCATTGCAC TCCAGCCTGG





8581
ACGAGAGCAA AACTCTGTCT CAAAAAAAAA AAAAAACAGA AAAGTGTAAC AAACACTTAC





8641
AGTAGGCATG TTTCTTAGCA AATCTGATGA CAAATTTGGC ATAAAGAAAG AGAGCATCCC





8701
TGAAAAAAAA AAAAAGAAAA AGAAAGAGAG CATCCTGCCT GGGCAACATA GTGAAACCCT





8761
GCCTCTACAA AAAAACTCAA AAATTGGCCG GGTGCAGTGG CTCACACCTG TAATCCCAGC





8821
ACTTTGGGAG TCGGAGGCGG GAGGATCACC TGAGGTCAGG AGTTCGAAAC CAGCCTGGCC





8881
AACATGGCAA AACCCCATCT CTACTAAAAA TACAAAAAAT TAATCAGGCG CATTGGTGGG





8941
CGCCTGTAAT CCCAGCTACT CAGGAAGTTG AGGCAAGAGG ATCGCTTGAA TCTGGGAGGT





9001
GGAGGTTACA GTGAGTCGAG ATCACACCAC TGCACTCTAG CCTGGGTGAC AGGGCGAGAC





9061
TCCGTCTCCA AAAAAAAAAA GAAAAAGAAA AAGACTAAAA AATTAGCCAG GCAGGCCTCT





9121
GTGGTCCCAG CTACTTGGGA GGCTGAGGCA GGAGAATCAC TGAGCCCAGG AGTCCGAGGC





9181
TGTAGTGAGC CATGATTGCA CCACTGTACC CTAGCTTGGG CAACAAAGCA AGACCCTGCC





9241
TCAAAAGAAA AAAGAAAGAA AGAAAGAACA TGGCGGGCCA GGCACAGTGG CTCACACCTG





9301
TAATCCCAGC GCTTTGAGAG GCCGAGGCAG GTGGATCACA AGGTCAGGAG TTCCACACCA





9361
GCCTGGCCAA CATGGTGAAA CCCTGTCTCT ACTAAAAATA CAAAAAATCA GCCAGGCATG





9421
GTGGCAGGGG CCTGTAATCC CAGCTACTCG GGAGGCTGAG GCAGGAGAAT TGCTTGAAAC





9481
CAGAAGGCAG AGGTTGCAGT GAGCCTAGAC TGCACCACTG CACTCCAGCC TGGGCGAAAA





9541
GAGCCAAACT CCATCTCAAA AAACAAACAA AAAAACAAAA CAAAAGAAAA CATGGCAAAG





9601
CCTTTGAAAG CTTGTCTGGG AGAAGGTGCG ATGATAGTTG CATAACTTCG TGCAAGATGC





9661
TGGTCCACAC AGGGGCTGCC CCTTGCTCTT TCTCGCTCTC TTAACCTCTC ATATAACAGG





9721
CTTGTGTGTT ATTCACATTT ATTGAGCCCA AGCAGGTGCA AGGCATTGTG ATCTAATACT





9781
TTGGTCAGCA AGACAACAAG ATAGATCACT GCCCTGCCCT TAGGAAGTGT ATATGCTATT





9841
AGAGGAAACA GATAAAATAA ACAAGGAAAA GTATCAGACA ATGTAAGTGC TATGAGAATG





9901
CAAATGAGGT GATGTGAATT AAAATAGGAT GACTTAAAGT CTGCACGGGA AGGAGCCTAC





9961
CCCCATGTTC CTGGCTAGCC AAGGAACCAC CAGTTGATTA GCAGAGAAGG GCAGCCAGTC





10021
TAGCTAGAGC TTTTGGGGAA GAGGGAGTGG TTGTTAAGAG ATGAGATTAA AGAAGCCGAG





10081
ACGGGCCATT CGTGAGGGGT TTGTAATGCA GGGCTGAGGA GTGTCCGAAG AGAATGGGCA





10141
GGTGAGCGGT GAGACAGTTG TTCTTCCAGA AGCTTTGCAG TGAAAGGAAT CAAAGAAATG





10201
GAGCCGTGTA TCAGGTGGGG AAGGGTGGGG GCCAAGGGGG TGTCCTTCCC CATACAGAGA





10261
TTGCAGGCTG AGAATGACTA TATCCTTGTT AACAGGAGGT GGGAGCAGGG CACGGTAGCT





10321
CACACCTGTA ATCTTGGCAC TTTAGGAGGC TGAGGCGGGC CGATCACCTG AAGTAAGGAG





10381
TTCGAGACCA GCCTGGCCAA CATGCAAAGC CCTGTCTCTA CTAAAAATAC AAAAATTAGC





10441
TGGGTGTGGT GGTACTCGCC TGTAATCCCA GCTACTCGGG AGACTGAGGC AGGAGAATGG





10501
CTTGAACCCG GAAGGTAGAG GTTGCAGTGA GCTGAGATCA TGCCACTGTG CTCCAGCCTA





10561
GGTGACAGAG AGAGACTCCA TCTCAAAAAA AAAAAAAAAA TACAGGAAGG GAGTTGGGAA





10621
TAGGGTGCAC ATTTAGGAAG TCTTGGGGAT TTAGTGGTGG GAAGGTTGGA AGTCCCTCTC





10681
TGATTGTCTT TTCCTCAAAG AAGTGCATGG CTGGTGAGGG GTGGGGCAGG AGTGCTTGGG





10741
TTGTGGTGAA ACATTGGAAG AGAGAATGTG AAGCAGCCAT TCTTTTCCTG CTCCACAGGA





10801
AGCCGAGCTG TCTCAGACAC TGGCATGGTG TTGGGGGAGG GGGTTCCTTC TCTGCAGGCC





10861
CAGGTGACCC AGGGTTGGAA GTGTCTCATG CTGGATCCCC ACTTTTCCTC TTGCAGCAGC





10921
CAGACTGCCT TCCGGGTCAC TGCCATGGAG GAGCCGCAGT CAGATCCTAG CGTCGAGCCC





10981
CCTCTGAGTC AGGAAACATT TTCAGACCTA TGGAAACTGT GAGTGGATCC ATTGGAAGGG





11041
CAGGCCCACC ACCCCCACCC CAACCCCAGC CCCCTAGCAG AGACCTGTGG GAAGCGAAAA





11101
TTCCATGGGA CTGACTTTCT GCTCTTGTCT TTCAGACTTC CTGAAAACAA CGTTCTGGTA





11161
AGGACAAGGG TTGGGCTGGG GACCTGGAGG GCTGGGGACC TGGAGGGCTG GGGGGCTGGG





11221
GGGCTGAGGA CCTGGTCCTC TGACTGCTCT TTTCACCCAT CTACAGTCCC CCTTGCCGTC





11281
CCAAGCAATG GATGATTTGA TGCTGTCCCC GGACGATATT GAACAATGGT TCACTGAAGA





11341
CCCAGGTCCA GATGAAGCTC CCAGAATGCC AGAGGCTGCT CCCCCCGTGG CCCCTGCACC





11401
AGCAGCTCCT ACACCGGCGG CCCCTGCACC AGCCCCCTCC TGGCCCCTGT CATCTTCTGT





11461
CCCTTCCCAG AAAACCTACC AGGGCAGCTA CGGTTTCCGT CTGGGCTTCT TGCATTCTGG





11521
GACAGCCAAG TCTGTGACTT GCACGGTCAG TTGCCCTGAG GGGCTGGCTT CCATGAGACT





11581
TCAATGCCTG GCCGTATCCC CCTGCATTTC TTTTGTTTGG AACTTTGGGA TTCCTCTTCA





11641
CCCTTTGGCT TCCTGTCAGT GTTTTTTTAT AGTTTACCCA CTTAATGTGT GATCTCTGAC





11701
TCCTGTCCCA AAGTTGAATA TTCCCCCCTT GAATTTGGGC TTTTATCCAT CCCATCACAC





11761
CCTCAGCATC TCTCCTGGGG ATGCAGAACT TTTCTTTTTC TTCATCCACG TGTATTCCTT





11821
GGCTTTTGAA AATAAGCTCC TGACCAGGCT TGGTGGCTCA CACCTGCAAT CCCAGCACTC





11881
TCAAAGAGGC CAAGGCAGGC AGATCACCTG AGCCCAGGAG TTCAAGACCA GCCTGGGTAA





11941
CATGATGAAA CCTCGTCTCT ACAAAAAAAT ACAAAAAATT AGCCAGGCAT GGTGGTGCAC





12001
ACCTATAGTC CCAGCCACTT AGGAGGCTGA GGTGGGAAGA TCACTTGAGG CCAGGAGATG





12061
GAGGCTGCAG TGAGCTGTGA TCACACCACT GTGCTCCAGC CTGAGTGACA GAGCAAGACC





12121
CTATCTCAAA AAAAAAAAAA AAAAAGAAAA GCTCCTGAGG TGTAGACGCC AACTCTCTCT





12181
AGCTCGCTAG TGGGTTGCAG GAGGTGCTTA CGCATGTTTG TTTCTTTGCT GCCGTCTTCC





12241
AGTTGCTTTA TCTGTTCACT TGTGCCCTGA CTTTCAACTC TGTCTCCTTC CTCTTCCTAC





12301
AGTACTCCCC TGCCCTCAAC AAGATGTTTT GCCAACTGGC CAAGACCTGC CCTGTGCAGC





12361
TGTGGGTTGA TTCCACACCC CCGCCCGGCA CCCGCGTCCG CGCCATGGCC ATCTACAAGC





12421
AGTCACAGCA CATGACGGAG GTTGTGAGGC GCTGCCCCCA CCATGAGCGC TGCTCAGATA





12481
GCGATGGTGA GCAGCTGGGG CTGGAGAGAC GACAGGGCTG GTTGCCCAGG GTCCCCAGGC





12541
CTCTGATTCC TCACTGATTG CTCTTAGGTC TGGCCCCTCC TCAGCATCTT ATCCGAGTGG





12601
AAGGAAATTT GCGTGTGGAG TATTTGGATG ACAGAAACAC TTTTCGACAT AGTGTGGTGG





12661
TGCCCTATGA GCCGCCTGAG GTCTGGTTTG CAACTGGGGT CTCTGGGAGG AGGGGTTAAG





12721
GGTGGTTGTC AGTGGCCCTC CAGGTGAGCA GTAGGGGGGC TTTCTCCTGC TGCTTATTTG





12781
ACCTCCCTAT AACCCCATGA GATGTGCAAA GTAAATGGGT TTAACTATTG CACAGTTGAA





12841
AAAACTGAAG CTTACAGAGG CTAAGGGCCT CCCCTGCTTG GCTGGGCGCA GTGGCTCATG





12901
CCTGTAATCC CAGCACTTTG GGAGGCCAAG GCAGGCGGAT CACGAGGTTG GGAGATCGAG





12961
ACCATCCTGG CTAACGGTGA AACCCCGTCT CTACTGAAAA ATACAAAAAA AAATTAGCCG





13021
GGCGTGGTGC TGGGCACCTG TAGTCCCAGC TACTCGGGAG GCTGAGGAAG GAGAATGGCG





13081
TGAACCTGGG CGGTGGAGCT TGCAGTGAGC TGAGATCACG CCACTGCACT CCAGCCTGGG





13141
CGACAGAGCG AGATTCCATC TCAAAAAAAA AAAAAAAAGG CCTCCCCTGC TTGCCACAGG





13201
TCTCCCCAAG GCGCACTGGC CTCATCTTGG GCCTGTGTTA TCTCCTAGGT TGGCTCTGAC





13261
TGTACCACCA TCCACTACAA CTACATGTGT AACAGTTCCT GCATGGGCGG CATGAACCGG





13321
AGGCCCATCC TCACCATCAT CACACTGGAA GACTCCAGGT CAGGAGCCAC TTGCCACCCT





13381
GCACACTGGC CTGCTGTGCC CCAGCCTCTG CTTGCCTCTG ACCCCTGGGC CCACCTCTTA





13441
CCGATTTCTT CCATACTACT ACCCATCCAC CTCTCATCAC ATCCCCGGCG GGGAATCTCC





13501
TTACTGCTCC CACTCAGTTT TCTTTTCTCT GGCTTTGGGA CCTCTTAACC TGTGGCTTCT





13561
CCTCCACCTA CCTGGAGCTG GAGCTTAGGC TCCAGAAAGG ACAAGGGTGG TTGGGAGTAG





13621
ATGGAGCCTG GTTTTTTAAA TGGGACAGGT AGGACCTGAT TTCCTTACTG CCTCTTGCTT





13681
CTCTTTTCCT ATCCTGAGTA GTGGTAATCT ACTGGGACGG AACAGCTTTG AGGTGCGTGT





13741
TTGTGCCTGT CCTGGGAGAG ACCGGCGCAC AGAGGAAGAG AATCTCCGCA AGAAAGGGGA





13801
GCCTCACCAC GAGCTGCCCC CAGGGAGCAC TAAGCGAGGT AAGCAAGCAG GACAAGAAGC





13861
GGTGGAGGAG ACCAAGGGTG CAGTTATGCC TCAGATTCAC TTTTATCACC TTTCCTTGCC





13921
TCTTTCCTAG CACTGCCCAA CAACACCAGC TCCTCTCCCC AGCCAAAGAA GAAACCACTG





13981
GATGGAGAAT ATTTCACCCT TCAGGTACTA AGTCTTGGGA CCTCTTATCA AGTGGAAAGT





14041
TTCCAGTCTA ACACTCAAAA TGCCGTTTTC TTCTTGACTG TTTTACCTGC AATTGGGGCA





14101
TTTGCCATCA GGGGGCAGTG ATGCCTCAAA GACAATGGCT CCTGGTTGTA GCTAACTAAC





14161
TTCAGAACAC CAACTTATAC CATAATATAT ATTTTAAAGG ACCAGACCAG CTTTCAAAAA





14221
GAAAATTGTT AAAGAGAGCA TGAAAATGGT TCTATGACTT TGCCTGATAC AGATGCTACT





14281
TGACTTACGA TGGTGTTACT TCCTGATAAA CTCGTCGTAA GTTGAAAATA TTGTAAGTTG





14341
AAAATGGATT TAATACACCT AATCTAAGGA ACATCATAGC TTAGCCTAGC CTGCTTTTTT





14401
TTTTTTTTTT TTTGGAGACA GAGTCTCACT CTGTCACCCA GGCTGGAGTG CAGTGGCGGG





14461
ATCTCGGCTC ACTGCAACCT CCGCCTTCTG GGTTCAAGCG ATTCTCCTGC CTCAGCCCAC





14521
TGAGTAGCTG GGATTACAGG CACCTGCCCC GACGCCCAGC TAATTTTTTG TTATTTATTT





14581
ATTTTTTTTT TTAGTAGAGA TGAGGTTTCA CCATGTTGGC CAGGCTAGTC TCGAACTCCT





14641
GACCTTGTGA TCTGCCTGCC TTGGCCTCCC AAAGTGCTGG GATTACAGGC GTGAGCCACC





14701
GCACCCGGCC TGCCTAGCCT ACTTTTATTT TATTTTTAAT GGAGACAGCA TCTTGCTCTG





14761
TTGCCCAGGC TGGATTACAG TGATGTGATC ATAGCTCATT ATACCCTCCT GGGCTCAAGC





14821
AATCCCCCTA ACTCTGCCTC CCCAGTAGCT AGGACCACAG GCATACACCA CCATACCCAG





14881
CTAATTTTTA AAATTTTTTG TAGATAGATA GAGTCTCACT ATGTTGCCCA GGCTGGTCTC





14941
TAGCCTACTT TTTTGAGACA AGGTCTTGCT CTGTCACCCA GGCTGGATAG AGTGCAGTAG





15001
TGCAGTCACA GCTCACTGCA GCCTCCACCT CCCAGGCTCC ATCCATCCTC CCAGCTCAGC





15061
CTCCCAAGTT GCTTCAACTA CAGGCCTGCA CCACCATGCC TGGCTAATTT TTATTTATTT





15121
ATTTTTATTT TATTTTATTT TATTTTTTTG AGACTCAGTC TCACTCTGTC GCCCAGGCTG





15181
GAGTGCAGTG GCATGATCTC GGCTCACTGC AACCTCTGCC TCCTGGGTTC AAGTGATTCT





15241
CCTGCCTCAG CCTCCCGAAT AGCTAGGACT ACAAGCGCCT GCTACCACGC CCAGCTAATT





15301
TTTGTATTTT TAGTAGAGAC AGGGTTTCAC CATGTTGGCC AGGCTGGTCT CGAACTTCTG





15361
ACCATGTGAT CCGCCCGCCT CGGCCTCCCA AAGTGCTGGG ATTACAGGTG TGAGCCACCA





15421
CGCCCGGCTA ATTTTTATTT ATTTATTTAA AGACAGAGTC TCACTCTGTC ACTCAGGCTA





15481
GAGTGCAGTG GCACCATCTC AGCTCACTGC AGCCTTGACC TCCCTGGGCT CCGGTGATTT





15541
CACCCTCCCA AGTAGCTAGG ACTACAGGCA CATGCCACGA CACCCAGCTA ATTTTTTATT





15601
TTCTGTGAAG TCAAGGTCTT GCTACGTTGC CCATGCTGGT ATCAAACCCC TGGGCTCAAT





15661
CAATCCTTCC ACCTCAGCCT CCCCAAGTAT TGGGGTTACA GGCATGAGCT ACCACACTCA





15721
GCCCTAGCCT ACTTGAAACG TGTTCAGAGC ATTTAAGTTA CCCTACAGTT GGGCAAAGTC





15781
ATCTAACACA AAGCCCTTTT TATAGTAATA AAATGTTGTA TATCTCATGT GATTTATTGA





15841
ATATTGTTAC TGAAAGTGAG AAACAGCATG GTTGCATGAA AGGAGGCACA GTCGAGCCAG





15901
GCACAGCCTG GGCGCAGAGC GAGACTCAAA AAAAGAAAAG GCCAGGCGCA CTGGCTCACG





15961
CCTGTAATCC CAGCATTTCG GGAGGCTGAG GCGGGTGGAT CACCTGAGGT CAGGAGTTCA





16021
AGACCAGCCT AGCCAACATG GTGAAACCCC GTCTCTACTA AAATACAAAA ATTAACCGGG





16081
CGTGATGGCA GGTGCCTGTA ATCCCAGCTA CTTGGGAGGC TGAGGCAGGA GAATCGCTTG





16141
AACCAGGAGG CGGAGGTTGC AGGGAGCCAA GATGGCGCCA CTGCACTCCA GCCTGGGCGA





16201
TAGAGTGAGA CTCCGTCTCA GAAAAAAAAG AAAAGAAACG AGGCACAGTC GCATGCACAT





16261
GTAGTCCCAG TTACTTGAGA GGCTAAGGCA GGAGGATCTC TTGAGCCCAA GAGTTTGAGT





16321
CCAGCCTGAA CAACATAGCA AGACATCATC TCTAAAATTT AAAAAAGGGC CGGGCACAGT





16381
GGCTCACACC TGTAATCCCA GCACTTTGGG AGGTGGAGGT GGGTAGATCA CCTGACGTCA





16441
GGAGTTGGAA ACCAGCCTGG CTAACATGGT GAAGCCCCAT CTCTACTAAA AACACAAAAA





16501
TTAGCCAGGT GTGGTAGCAC ACGCCTGTAG TCCCAGCTAC TCGGGAGGCT GAGGCACAAG





16561
AATCACTTGA ACCCCAGAGG CGGAGATTGC AATCAGCCAA GATTGCACCA TTGCACTCCC





16621
GCCTGGGCAA CAGAGTGAGA CCCCATCTCA AAATAAATAA ATAAATATTT TTAAAAGTCA





16681
GCTGTATAGG TACTTGAAGT GCAGTTTCTA CTAAATGCAT GTTGCTTTTG TACCGTCATA





16741
AAGTCAAACA ATTGTAACTT GAACCATCTT TTAACTCAGG TACTGTGTAT ATACTTACTT





16801
CTCCCCCTCC TCTGTTGCTG CAGATCCGTG GGCGTGAGCG CTTCGAGATG TTCCGAGAGC





16861
TGAATGAGGC CTTGGAACTC AAGGATGCCC AGGCTGGGAA GGAGCCAGGG GGGAGCAGGG





16921
CTCACTCCAG GTGAGTGACC TCAGCCCCTT CCTGGCCCTA CTCCCCTGCC TTCCTAGGTT





16981
GGAAAGCCAT AGGATTCCAT TCTCATCCTG CCTTCATGGT CAAAGGCAGC TGACCCCATC





17041
TCATTGGGTC CCAGCCCTGC ACAGACATTT TTTTAGTCTT CCTCCGGTTG AATCCTATAA





17101
CCACATTCTT GCCTCAGTGT ATCCACAGAA CATCCAAACC CAGGGACGAG TGTGGATACT





17161
TCTTTGCCAT TCTCCGCAAC TCCCAGCCCA GAGCTGGAGG GTCTCAAGGA GGGGCCTAAT





17221
AATTGTGTAA TACTGAATAC AGCCAGAGTT TCAGGTCATA TACTCAGCCC TGCCATGCAC





17281
CGGCAGGTCC TAGGTGACCC CCGTCAAACT CAGTTTCCTT ATATATAAAA TGGGGTAAGG





17341
GGGCCGGGCG CAGTGGCTCA CGAATCCCAC ACTCTGGGAG GCCAAGGCGA GTGGATCACC





17401
TGAGGTCGGG AGTTTGAGCC CAGCCTGACC AACATGGAGA AACCCCATCT CTACTAAAAA





17461
TACAAAAGTA GCCGGGCGTG GTGATGCATG CCTGTAATCC CAGCTACCTA CTCGGGAGGC





17521
TGAGGCAGGA GAATCGCTTG AACCCGGGAG GCAGAGGTTG CGGTGAGCTG AGATCTCACC





17581
ATTACACTCC AGCCTGGGCA ACAAGAGTGA AACTCCGTCT CAAAAAAGAT AAATAAAGTA





17641
AAATGGGGTA AGGGAAGATT ACGAGACTAA TACACACTAA TACTCTGAGG TGCTCAGTAA





17701
ACATATTTGC ATGGGGTGTG GCCACCATCT TGATTTGAAT TCCCGTTGTC CCAGCCTTAG





17761
GCCCTTCAAA GCATTGGTCA GGGAAAAGGG GCACAGACCC TCTCACTCAT GTGATGTCAT





17821
CTCTCCTCCC TGCTTCTGTC TCCTACAGCC ACCTGAAGTC CAAAAAGGGT CAGTCTACCT





17881
CCCGCCATAA AAAACTCATG TTCAAGACAG AAGGGCCTGA CTCAGACTGA CATTCTCCAC





17941
TTCTTGTTCC CCACTGACAG CCTCCCACCC CCATCTCTCC CTCCCCTGCC ATTTTGGGTT





18001
TTGGGTCTTT GAACCCTTGC TTGCAATAGG TGTGCGTCAG AAGCACCCAG GACTTCCATT





18061
TGCTTTGTCC CGGGGCTCCA CTGAACAAGT TGGCCTGCAC TGGTGTTTTG TTGTGGGGAG





18121
GAGGATGGGG AGTAGGACAT ACCAGCTTAG ATTTTAAGGT TTTTACTGTG AGGGATGTTT





18181
GGGAGATGTA AGAAATGTTC TTGCAGTTAA GGGTTAGTTT ACAATCAGCC ACATTCTAGG





18241
TAGGGGCCCA CTTCACCGTA CTAACCAGGG AAGCTGTCCC TCACTGTTGA ATTTTCTCTA





18301
ACTTCAAGGC CCATATCTGT GAAATGCTGG CATTTGCACC TACCTCACAG AGTGCATTGT





18361
GAGGGTTAAT GAAATAATGT ACATCTGGCC TTGAAACCAC CTTTTATTAC ATGGGGTCTA





18421
GAACTTGACC CCCTTGAGGG TGCTTGTTCC CTCTCCCTGT TGGTCGGTGG GTTGGTAGTT





18481
TCTACAGTTG GGCAGCTGGT TAGGTAGAGG GAGTTGTCAA GTCTCTGCTG GCCCAGCCAA





18541
ACCCTGTCTG ACAACCTCTT GGTGAACCTT AGTACCTAAA AGGAAATCTC ACCCCATCCC





18601
ACACCCTGGA GGATTTCATC TCTTGTATAT GATGATCTGG ATCCACCAAG ACTTGTTTTA





18661
TGCTCAGGGT CAATTTCTTT TTTCTTTTTT TTTTTTTTTT TTCTTTTTCT TTGAGACTGG





18721
GTCTCGCTTT GTTGCCCAGG CTGGAGTGGA GTGGCGTGAT CTTGGCTTAC TGCAGCCTTT





18781
GCCTCCCCGG CTCGAGCAGT CCTGCCTCAG CCTCCGGAGT AGCTGGGACC ACAGGTTCAT





18841
GCCACCATGG CCAGCCAACT TTTGCATGTT TTGTAGAGAT GGGGTCTCAC AGTGTTGCCC





18901
AGGCTGGTCT CAAACTCCTG GGCTCAGGCG ATCCACCTGT CTCAGCCTCC CAGAGTGCTG





18961
GGATTACAAT TGTGAGCCAC CACGTCCAGC TGGAAGGGTC AACATCTTTT ACATTCTGCA





19021
AGCACATCTG CATTTTCACC CCACCCTTCC CCTCCTTCTC CCTTTTTATA TCCCATTTTT





19081
ATATCGATCT CTTATTTTAC AATAAAACTT TGCTGCCACC TGTGTGTCTG AGGGGTGAAC





19141
GCCAGTGCAG GCTACTGGGG TCAGCAGGTG CAGGGGTGAG TGAGGAGGTG CTGGGAAGCA





19201
GCCACCTGAG TCTGCAATGA GTGTGGGCTG GGGGGCCCAG TGCCCGGGTT CCGGGAGGGG





19261
AACAAAGGCT GGAGACTGGG TCAGTCTGCG GGCTGCATGA CAACAAGGGA GGGGGTGGCT





19321
CCATTCATAA CTCAGGAACC AACCGTCCCT CCTCCCCTCC GGCCACGGCT GGCACAAGGT





19381
TCTCTCCCTC CCCTGCTTCT AGGACTGGGC TGCTTCCCCC TCGGCAGCCT CTCACCAAGG





19441
ATTACGGGAT TTAAATGTCT GATTTAGCAA GGCTGAGCCT CCAGGGTGGC CATCTGCTCC





19501
ATCAGAAAGT GGCAGGATAC CTGGGTTCCC AAGGGGAACA GGGGTGGGTG CTACTGGATG





19561
GAGAGAGGCC AGTGGGAGGC CTGCTAGCCA GGGTCCCAGG AAAGTGGGGG CAGCTAAGGT





19621
AAGAGTAGGG GTGTGGGGCT AGGTCCTTCC CAGCATCCCC TCATCCTGGG CCTCATGCCA





19681
GGTAGCTGAA TGAATTGAAG CTTTAAACTC TGCCAGGAAA ACCTTTCAAA GGGCTTCTTG





19741
GGATAGGGAG GAGAGTCGGG TTGAGGAGCT CAGTACTGCC TGCCCATGCT CCTCAGGGCT





19801
GCTGGCTCCC AGGGAGGGGG GCTGGGAGCA GGCAGGCTCT TCCCCATCAC CCACTGCTCT





19861
CTTGGAGCCA GTGCTTGAAG GGGCAGTCAG ACATGGCTTG CCCTTCCTCC TCCCTGGTGG





19921
TGGAGATGGG TGTTAGGGTC CAGTGGGTGC TACTGTCCAG GGGGGCTTCT GGGGCCACCA





19981
GCCTGTCAGC TCATCAACCA GGCTGAAGGT GCAAGCAGGA GCCCCTTGCC TTGCCCCAAG





20041
GATCCCAGAC AGCTATGAAG CCACCAGCCT TCCTGACCTC AAGACCACCT TTTTTTTTTC





20101
TCTTTCTTAC TAGGGAATGC CAAACACTCT CCCCAGGAGA TCCAGACCCG CCTCTTTCAG





20161
AGACTTTTAA CTTAAACATC TGTCCCTACC CAGCAGGCAA ACTAGAGCTC CTGAAGCTCA





20221
GTCCCTGTCC TTGCCTCTGT AGACAGGTCA CCTTGATGAG CTTCCTTTTT TTTTTTTTAA





20281
TTTTTTTTTA TTTTAGGCTT TATTGGGGCA TAATTGATCC CCCAAAATTG CATACATTCA





20341
AGGTATGCAG TGTGATGATT TGATATGGGG GTATATTGTG AAACCATTAC CACAATCAAA





20401
TTAATCAGCA CGTCCATCAT CACACACAGT TACCATTTGT GTGTGTGCAC GTGTGTTCAC





20461
CTACGACGAG GACACTTGGA CCTACTCTGC AGATCTCAAG TAAACAGAAA ATCTCCCTTT





20521
TTGACAACCA TCCTCCACCC TTTCAATCCC AACCTTTTCC TAGATTATGT CCCTAGCTCT





20581
GTTTTTATTT CTGCTGTGCT GCTTCAGATC CATTCTGACT CTGCCAAACC CTTCTTTGTG





20641
AGCTGATAGA TTGCTGGATT GAGAATTACA GCTGGGCGCG GTGGCTCACG CCTGTAATCC





20701
CAACACTGTG GGAGGCCAAG GCCGGCGGAT CACTTGAGGT CAGGAGTTGG AGACCAGCCT





20761
GACCAACAAG ATGAAACCCC ATCTCTACTA AAAATACAAA ATTAGCTGGG CATGGTGGTG





20821
CACGCCTGTA ATCTCATCTT CTTGGGAGGC TGAGGCAGGA GAATTGCTTG AACCCGGGAG





20881
GTGGAGGTTG CAGTGAGCCA AGATCCTGCC ATTGCACTCC AGCCTGGGCA ACAACAGTGA





20941
AGCTCCATCT CAAAACACAC AAAAAAAAGA AGTACAAAGT CTGAGACTTC AGGCCAGCTC





21001
TGCTACACTA TATACTCTAA CCTCTCTGGT CCTACTTGGT GACTTCTTTC CCTCTGGTCG





21061
TGTTCAAGTT CCCGTCCCAT CCAGTCAAGC AGGTACTCAT TGGTACCTTA CCCTGTGCCA





21121
GGAGCTGTTC TAGGCCCTGG AAACCTATGG CAGACATGTT CCCTACCCTC CCACTCAAAG





21181
AGCCCAGGCC TTATCCTAAT GAGATCTGAA ATCAAATCTC CCAATTTCCT CATGGCTTCA





21241
GTCTAAACTT GTAATTCACA ACCTTAAATC AATATGTTCT ATTTTTTTAT TTAGAAAACA





21301
TTTCCGGCCA GGCACGGTGG ATCACACCTG TAATCCCAGC TACTCGGGAG GCTGAGGCAG





21361
GAGAATCGCT TGAACCCAGG AGGCAGAGGG TTGCAGTGAG CCGAGATTGC GCCATTGCAC





21421
TCTAGCCTGG GCAACAGAGC AAGACTCCAT CTCAAAAAAG AAAAAAAAAT GGAAGAAAAA





21481
AAAATTTCCC CCTCATTTTA GGAACACGAG GTCTCCAAAT CTAAAATTCG TACTCTGAGG





21541
AGATTGAATA GCCTTAAATG CTTTCATCAT TAAAAAGAAA AGAAAGGAAC CTGGTATGCA





21601
TCCTAAAAAT GAAAAATATA CCTACCTGTA ATCCCAGCAC ACAGCACATT GGGAGGCTAA





21661
AGCAGGAGGA TAACTTGAGG CCAGGAGTTT CAGATCAGCC TGGGCAACAT AGCAACACCC





21721
CATTTCTTTT TCTTTTCTTT TTTTTTTGGA GACACAGTCT CGCTCTGTTA CTCAGGCTGG





21781
AGTGCAGTGG CTCAATCTCA GCTCACTGCA AGCTCTGCCT CCCAGGTTCA TGCCATTCTC





21841
CTGCCTCAGC CTCCCGAGTA GCTGGGACTA CAGGCGCCCG CCACCACGCC TGGCTAATTT





21901
TTTGTATTTT TAGTAGAGAC AGGGTTTCAC CGTGTTAGCC AGGATGGTCT CGATCTCCTG





21961
ACCTCGTGAT CCGCCAGCCT TGGCCTCCTA AAGTACTGGG ATTACAGGCG TGAGCCACTG





22021
CGCCTGGCCA CAACACCCCA TTTCTATTTT AATAAAATAA AATACTGTGA AAAACATTTA





22081
CAATTTTTAA ATTTTAATTT TAAAATTAAA CTTATATTTA TTCATTTGTG TGTGTGGGTT





22141
TTTTTTTTTT TTTTTTTTTG CTTTTTTTTT GAGATGGAGT GTCACTCTGT CACCCAGGCT





22201
GGAGTGCAGT GGCGTGATCT CTGCCTCCCG GTTCAAGTGA TTCTCCTGCC ATAGCCTCCC





22261
AAGTAGCTGG GACTACAGGT ACACGCCACC ACGCCGGGTT AATTTTTGTA TTTTTAGTAG





22321
AGACAGGATT TCACTGTGTC GCCAGGCTAG CCTCGAACTC CTGACCTCAG GTGATTCGCC





22381
CACCTTGGCC TCCCAAAGTG CTGTGATTAC AAGCGTGAGC CACCGTGCCC AGCCCAAAGT





22441
TGGTTTTAAT AGCAGAAAAT CTATCAACAT AATTCAATAT ATTAAATTTA GAAAGAAAAA





22501
TTATCTATCA TATCAACAGA TACTGAAAGG AATTTGATTA AATTTCAGTA GCCATTTCCT





22561
TAAAAAAGAA AACACTTTAA CACAGTAATA GACTGATAAT GGAATACCAA TTTTCCTAAT





22621
AAGTTAAACA TTAAGATAAT TTCAATTAAG GTCAAGAGCT GGGCCAGGTG CAGTGGCTCA





22681
CACCTGTAAT CCCAACACTT TGGAGGCCAA GGTGGGTGGA TCACCTGAGG TCAGGAGTGG





22741
AGACCAGCCT GGCTGACAAT AGTGAAATCC TGCCTCTACT AAAAACACAA AAAATTAGCT





22801
GGGCATGGTG GTGGGCACCT ATAATCCCAG CTACTGGGAA GGCTGAGACA GGAGAATTGC





22861
TTGAACCTGG GAGGCGGAGG TTGCAGTGAG CAAAGATCAC ACCATTGCAC TCCAGCCTGG





22921
GCGACAGAGC CAGAGTCAGT CTCAAAAAAA AAAAGAGGTG GCCACACCTA TAATCCAAAC





22981
ATTTTGTGAG GCCAAGGCAG GAGAATTGCT TCAGGCCAAG AGTTGAACAC CTCGTCAACA





23041
TAGCCAGACC TCTCTCTAGA TAGATAGATA GATGATAGAT AGAGAGATAG ATAGATGATA





23101
GATAGAGAGA TAGATAGATG ATAGATAGAT AGATAGATAG ATAGATAGAT AGATAGATAG





23161
ATAGATAGAT AGATAGATAA TCTGGCCGGG TGTGGAGGCT CACGCCTGTA ATCCCAGCAC





23221
TTTGGGAGGC TGAGGCGGGC AGATCACGAG GACAAGAGAT TGAAACCATC CTGGCTAACA





23281
AGGTGAAACC CCGTCTCTAC TAAAAATACA AAAAATTAGG CGGGTGTGGT GGCACGCGCC





23341
TGTAGTCCTA GCTATTCAGG AGGCTGAGAC AGGAGAATTG CTTGAATCCG AAAGGCGGAG





23401
GTTGCAGCGA GCCGAGATCG TGCCACTGCA CTCCAGCCTG GGTGACAGAG CAAGACTCCA





23461
TCTCAAAATA AATAAATAAA TAATCAAGAA CAGTATAAGG GGCTGTATGG TGGCTCATGC





23521
CTGTGATCCC AGCACTTTGG GAGGCCAAGG TGGGAGGATC CCTTGAGACC AGCCCAGGCA





23581
ACAGAGAAAG ACCCTGTCTC TATTTAAAAA AATTAAAAAC TGGCCGGGCA CGGTGGCTCA





23641
CGCCTGTAAT TCCAGCGCTT GGGAGGCCAA GGCAGGCACA TCAGGAGGTC AGGAGTTCGA





23701
GACCAGCCTG GCCAACGTGG TGAAACCCCG TCTCTACTAA AAATACAAAA AGTAGCTAGG





23761
CGTGGTGGCA GGCACCTGTA ATCCCAGCTA CTTGGGAGGC TGAGGCAGGA GAATCGCTTG





23821
AACCCAGGAG GCGGAGGTTG CAGTGGGCAA AGATCGTGCC ATTGCACTCA GCCTGGGTGA





23881
CAGGGCAAGA CTCCATCTCA AAATAAATAA ACAAAGTAAT TAATTAATTA AATTAAAAAC





23941
TGTGGGGATA TAGACTTACT CTGGTTTTAT TTTTTCTTTT CTTTTCTTTT CTTTTTTCTG





24001
AGACGGAGTC TCGCTCTGTT GCCCAGGCTG GAGTACAGTG GCGTGGTTTC TGTTCTCTGC





24061
AACCTCCACC TCCCGGATTC AAGCGATTCT CTTGCCTCAG CCTCTTGAAT ACCTGGAATT





24121
ACAGGTGCCT GCCACCACCC CCGGCTAATT TTTTGTATTT TTAGTAGAGA CAGGGTTTCA





24181
CCATGTTGGC CAAGCTGGTC TCGAACTCCT GACCTCATGA TCCACCCGCC TCTGCCTCCC





24241
AAAGCACTGA GACTACAGGA GTGAGCCACT GTGCCCAGCC TACTCTGGTT TTAGTGCATT





24301
CAAGAGGAAC AAAAAAGGAA GAAAATCACT AGTAAATATA CCTCTTTCTG GTTAGAGTGG





24361
ATGTTTGGAA ATTATATATA TATTATATTA TATTATATAT ATTATATATA TACACAAACA





24421
CGTACATACA TGCACACACA TATATGCCTT TTTGATTATA GGATAGTATA CCAAAACTCA





24481
GAAATATTAT GGAATTAACA GAATTTAGTA AGGCAGATAA GTAGTAGGTA GAAAAATATT





24541
AATTTTATCT TCCAGCAGAA GCACTGTGAA AAATTAGACA ACAAGAAAAC ATTCCATTCA





24601
AAATAATGAC AATAAGGCCG GGCATGGTGG CTCACACCTG TAATCCCAGC ACTTTGGGAG





24661
GCTGAGGCAG GAGGATCATC TGAGGTCAAG TTTGAGATCA GCCTGGCCAA CATGGTGACA





24721
CCCTGTCTCT ACTGAAAATA CAAAAATCAG CCAGCTATGG TAGTGTAAGC CTGTAATTCC





24781
AGCTACTCGG GAGGTCGAAG CAGAAGAATC ACTTGAACCC AGGAGGCAGA GATTGCAGTG





24841
AGCCAAGATC CTGCCAGTGC TTTCCAGCCT GGGCAACAGT GTGAGGCTCC ATCTCAAAAA





24901
AAAAAAAAAA AAAAAGACAA TAGCAATAAA CATTAAGAAA TGTGTAATAG GAATGGCACA





24961
CACAAAGAAG GAATGGCACA GAGCCTGTAT GCAGAAGACC ACAAACCCTT ATTTAACGAC





25021
GTAAGCCAAG ATCCAAAGAA AATGATAGAT TCTCAGATGG GAAAACTAAA AAAATAAGAA





25081
AAATCAATTA TCTCGAGATA AATATAATAT AATGCAATTT CAATTAGAAT CCCAAATTTT





25141
CATTGTGTGT GTGTGTGAGT TGGGTAAATT TATCATAAAT GTATAGGAAC GAGTAAGTGT





25201
CACTAGTTGT TTAAATAAAT ACTGGATTTG GGCCAGGCAT GGTGGCTCAC GCCTCTAATC





25261
CCAGCACTTT GGGAGACCGA GGCGGGCAGA TCATGAGGTC AGGAGATCGA GACCATCTGG





25321
CCAACATAGT GAAAACTCGT CTCTACTAAA GATACAAAAA ATTAGCTGGG CATGGTGGCA





25381
CGTGCCTGTA GTTCCAGCTA CTCTGGAGGC TGAGGCAGGA GAGTTGCTTG AACCCGGGAG





25441
GTGGAGGTTG CAATGAGCCG AGATCCTGTC ACTGCACTCC ACCCTGGCGA CAAAGTGAGA





25501
CTCCGTCTCT CTCTCTCTCT TTAGGCCAAG GCAGGTGGAT CACCTGAGGT CAGGAGTTCA





25561
AGACAGCCTG GCCAACATAG CGAAATCCCA TCTCTACTAA AAATACAAAA ATTAGCCTGG





25621
CAGTGGTGGC CCACGCCTGT AATCCCAGCT ACTAAGGGGG CTGAGGCAGG AGGATCTCTT





25681
AACCAGGGAG GAGGAGGTTG CAGTGAGCAG AGATTGTGCC ACTGCACTCC AGCCTGTGCA





25741
ACAGAGTGAG ACTCTGTCTC






Coding Regions

Exon 1 includes Seq. ID No. 1 base numbers: 1-162.


Exon 2 includes Seq. ID No. 1, base numbers: 10917-11018.


Exon 3 includes Seq. ID No. 1, base numbers: 11136-11157.


Exon 4 includes Seq. ID No. 1, base numbers: 11267-11545.


Exon 5 includes Seq. ID No. 1, base numbers: 12303-12486.


Exon 6 includes Seq. ID No. 1, base numbers: 12568-12680.


Exon 7 includes Seq. ID No. 1, base numbers: 13249-13358.


Exon 8 includes Seq. ID No. 1, base numbers: 13702-13838.


Exon 9 includes Seq. ID No. 1, base numbers: 13931-14004.


Exon 10 includes Seq. ID No. 1, base numbers: 16824-16930.


Exon 11 includes Seq. ID No. 1, base numbers: 17849-19137.


Table 1 includes the nucleotide sequences for Exons 1-11, which uses the base numbers with reference to Seq. ID No. 1 to determine the individual sequences.









TABLE 1







Exon nucleotide sequences.








Exon



ID No.
Sequence





 1
GTTTTCCCCT CCCATGTGCT CAAGACTGGC GCTAAAAGTT TTGAGCTTCT CAAAAGTCTA



GAGCCACCGT CCAGGGAGCA GGTAGCTGCT GGGCTCCGGG GACACTTTGC



GTTCGGGCTG GGAGCGTGCT TTCCACGACG GTGACACGCT TCCCTGGATT GG





 2
CAGC CAGACTGCCT TCCGGGTCAC TGCCATGGAG GAGCCGCAGT CAGATCCTAG



CGTCGAGCCC CCTCTGAGTC AGGAAACATT TTCAGACCTA TGGAAACT





 3
ACTTC CTGAAAACAA CGTTCTG





 4
TCCC CCTTGCCGTC CCAAGCAATG GATGATTTGA TGCTGTCCCC GGACGATATT



GAACAATGGT TCACTGAAGA CCCAGGTCCA GATGAAGCTC CCAGAATGCC



AGAGGCTGCT CCCCCCGTGG CCCCTGCACC AGCAGCTCCT ACACCGGCGG



CCCCTGCACC AGCCCCCTCC TGGCCCCTGT CATCTTCTGT CCCTTCCCAG AAAACCTACC



AGGGCAGCTA CGGTTTCCGT CTGGGCTTCT TGCATTCTGG GACAGCCAAG



TCTGTGACTT GCACG





 5
TACTCCCC TGCCCTCAAC AAGATGTTTT GCCAACTGGC CAAGACCTGC CCTGTGCAGC



TGTGGGTTGA TTCCACACCC CCGCCCGGCA CCCGCGTCCG CGCCATGGCC



ATCTACAAGC AGTCACAGCA CATGACGGAG GTTGTGAGGC GCTGCCCCCA



CCATGAGCGC TGCTCAGATA GCGATG





 6
GTC TGGCCCCTCC TCAGCATCTT ATCCGAGTGG AAGGAAATTT GCGTGTGGAG



TATTTGGATG ACAGAAACAC TTTTCGACAT AGTGTGGTGG TGCCCTATGA



GCCGCCTGAG





 7
GT TGGCTCTGAC TGTACCACCA TCCACTACAA CTACATGTGT AACAGTTCCT



GCATGGGCGG CATGAACCGG AGGCCCATCC TCACCATCAT CACACTGGAA GACTCCAG





 8
TGGTAATCT ACTGGGACGG AACAGCTTTG AGGTGCGTGT TTGTGCCTGT CCTGGGAGAG



ACCGGCGCAC AGAGGAAGAG AATCTCCGCA AGAAAGGGGA GCCTCACCAC



GAGCTGCCCC CAGGGAGCAC TAAGCGAG





 9
CACTGCCCAA CAACACCAGC TCCTCTCCCC AGCCAAAGAA GAAACCACTG



GATGGAGAAT ATTTCACCCT TCAG





10
ATCCGTG GGCGTGAGCG CTTCGAGATG TTCCGAGAGC TGAATGAGGC CTTGGAACTC



AAGGATGCCC AGGCTGGGAA GGAGCCAGGG GGGAGCAGGG CTCACTCCAG





11
CC ACCTGAAGTC CAAAAAGGGT CAGTCTACCT CCCGCCATAA AAAACTCATG



TTCAAGACAG AAGGGCCTGA CTCAGACTGA CATTCTCCAC TTCTTGTTCC



CCACTGACAG CCTCCCACCC CCATCTCTCC CTCCCCTGCC ATTTTGGGTT TTGGGTCTTT



GAACCCTTGC TTGCAATAGG TGTGCGTCAG AAGCACCCAG GACTTCCATT



TGCTTTGTCC CGGGGCTCCA CTGAACAAGT TGGCCTGCAC TGGTGTTTTG



TTGTGGGGAG GAGGATGGGG AGTAGGACAT ACCAGCTTAG ATTTTAAGGT



TTTTACTGTG AGGGATGTTT GGGAGATGTA AGAAATGTTC TTGCAGTTAA



GGGTTAGTTT ACAATCAGCC ACATTCTAGG TAGGGGCCCA CTTCACCGTA



CTAACCAGGG AAGCTGTCCC TCACTGTTGA ATTTTCTCTA ACTTCAAGGC CCATATCTGT



GAAATGCTGG CATTTGCACC TACCTCACAG AGTGCATTGT GAGGGTTAAT



GAAATAATGT ACATCTGGCC TTGAAACCAC CTTTTATTAC ATGGGGTCTA



GAACTTGACC CCCTTGAGGG TGCTTGTTCC CTCTCCCTGT TGGTCGGTGG GTTGGTAGTT



TCTACAGTTG GGCAGCTGGT TAGGTAGAGG GAGTTGTCAA GTCTCTGCTG



GCCCAGCCAA ACCCTGTCTG ACAACCTCTT GGTGAACCTT AGTACCTAAA



AGGAAATCTC ACCCCATCCC ACACCCTGGA GGATTTCATC TCTTGTATAT



GATGATCTGG ATCCACCAAG ACTTGTTTTA TGCTCAGGGT CAATTTCTTT TTTCTTTTTT



TTTTTTTTTT TTCTTTTTCT TTGAGACTGG GTCTCGCTTT GTTGCCCAGG CTGGAGTGGA



GTGGCGTGAT CTTGGCTTAC TGCAGCCTTT GCCTCCCCGG CTCGAGCAGT CCTGCCTCAG



CCTCCGGAGT AGCTGGGACC ACAGGTTCAT GCCACCATGG CCAGCCAACT



TTTGCATGTT TTGTAGAGAT GGGGTCTCAC AGTGTTGCCC AGGCTGGTCT CAAACTCCTG



GGCTCAGGCG ATCCACCTGT CTCAGCCTCC CAGAGTGCTG GGATTACAAT



TGTGAGCCAC CACGTCCAGC TGGAAGGGTC AACATCTTTT ACATTCTGCA



AGCACATCTG CATTTTCACC CCACCCTTCC CCTCCTTCTC CCTTTTTATA TCCCATTTTT



ATATCGATCT CTTATTTTAC AATAAAACTT TGCTGCCACC TGTGTGTCTG AGGGGTG










TP53 Knock Out in MCF7 Cells with CRISPR Cas9


TP53 knockout MCF7 cells were generated as previously published [1]. Human codon-optimized Streptococcus pyogenes wild type Cas9 (Cas9-2A-GFP) was obtained by Addgene (Cat. No. 44719). Chimeric guide RNA expression cassettes with different sgRNAs (sgRNA1: CCATTGTTCAATATCGTCCG; sgRNA2: GACGGAAACCGTAGCTGCCC; sgRNA3: TGGTTATAGGATTCAACCGG) were ordered as gBlocks. These gBlocks were amplified by PCR using primers: gBlock_Amplifying_F: 5′-GTACAAAAAAGCAGGCTTTAAAGG-3′ and gBlock_Amplifying R: 5′-TAATGCCAACTTTGTACAAGAAAGC-3′. The PCR product was purified by Agencourt Ampure XP PCR Purification beads per the manufacturer's protocol (Beckman Coulter). One microgram of Cas9 plasmid and 0.3 μg of each gRNA gBlock (pair 1: sgRNA1 & sgRNA2; pair 2: sgRNA1 & sgRNA3) were cotransfected into MCF7 cells via Lipofectamine 3000 in a 6-well plate. Knockout cells created using the pair sgRNA1 & sgRNA2 were named KO5.6, and knockout cells created using the pair sgRNA1 & sgnRNA3 were named KO3.4. Knockout pools were cultured in 10 μM Nutlin-3a (SelleckChem) for 2 months, changing nutlin-3a treated media every 3 days and passaging cells every 6 to 8 days. Isogenic clones were isolated from the knockout and wild type pools via limiting dilution in a 96-well plate and incubated at 37° C. in a CO2 incubator for 15 days. Wild type clones were named Parental (PR).


Sanger Sequencing

DNA was isolated from each MCF7 wild type pool, knockout pool, and single cell clone following the Agencourt DNAdvance genomic DNA isolation kit. MCF7 wild type and KO5.6 cells were PCR amplified using primers: TP53_exon_4_F: 5′-CTGGTAAGGACAAGGGTTGG-3′ and TP53_exon_4_R: 5′-GCCAAAGGGTGAAGAGGAAT-3′. MCF7 KO3.4 cells were PCR amplified using primers: TP53_exon_4_F and TP53_Woke_R: 5′-ATTAGGCCCCTCCTTGAGAC-3′. Products were sent to Eton Bioscience Inc. who purified the PCR products and performed Sanger Sequencing.


Western Blotting

Protein was extracted from cells using 2-Mercaptoethanol and Laemmli sample buffer (Bio Rad, Cat. No. 1610737). MCF7 wild type and knockout derivative proteins (10 μg) were separated on 4-12% gradient polyacrylamide gels via SDS-PAGE and transferred to PVDF membranes (Millipore). Primary antibody dilutions were 1:300 for TP53 and 1:500 for β-actin. Drug Screening


MCF7 wild type and knockout derivative pools were plated at a density of 5000 cells/well in polystyrene, flat-bottom 96-well plates. All 133 compounds from the NCI Approved oncology drugs set IV (Table 2, AOD-IV Drug) were dissolved in DMF or DMSO at 10 mM stocks. Cells were treated at concentrations from 156.25 nM to 10 μM for 10 days. DMSO or DMF vehicle was used as a negative control. After 10 days, resazurin (Sigma, Cat. No. R7017) was added to each well and incubated at 37° C. in a dark CO2 incubator for 4 to 6 hours. A microplate reader took optical measurements (ex: 535 nm/em: 585 nm). Drugs showing larger Area under the curve (AUC) differences based on fluorescence values between MCF7 TP53 wild type and knockout cell lines were selected and further characterized, notably: oxaliplatin, 5-fluorouracil, and palbociclib.


Results


FIG. 1A illustrates an example knockout strategy/design and predicted deletion. FIG. 1B shows example targets of sgRNA1, 2, and 3 within TP53 of KO3.4 and KO5.6. sgRNA1 targets within exon 4, sgRNA2 targets downstream of sgRNA1 within exon 4, and sgNRA3 targets the intron after exon 10.



FIG. 2 illustrates an example gel shown using primers TP53_exon_4_F and TP53_Woke_R, only KO3.4 single cell clones with the predicted deletion should make a product. Single cell clones KO3.4 B5 and E1 made a product and wild type or KO5.6 cells did not, as expected.



FIG. 3 illustrates an example Sanger sequencing of PCR product shows KO3.4 pool, KO3.4 B5, and KO3.4 E1 have the same sequence at the Cas9 cut site.



FIG. 4 illustrates an example gel shown using primers TP53_exon_4_F and TP53_exon_4_R, wild type exons should make a 496 bp product and TP53 KO5.6 knockouts should make a 344 bp product. KO3.4 B5 and E1 also display a wild type-sized product, indicating these knockouts have a large deletion on one allele and a wild type sized allele.



FIG. 5 illustrates an example Sanger sequencing of PCR product shows KO5.6 A4, A5, A6, A7, A8, and E3 at the Cas9 cut site. The KO5.6 sequence matches to the predicted deletion, but the sequence becomes rougher after the Cas9 cut site when reading from F or R. This can indicate that the two alleles were cut/repaired differently but the knockout was successful.



FIG. 6 illustrates an example knockout, KO3.4 E1, which shows an insertion of an “A” at the Cas9 cut site. The sequence is identical to wild type sequence otherwise. This frameshift causes the resulting protein to be non-functional and not p53.



FIG. 7 illustrates an example western blot displaying protein in wild type cells, lesser or no protein in KO3.4 B5 and E1, KO5.6 A4, A5, A6, A7, A8, E1, and E3, and lesser or a truncated protein in KO3.4D4.



FIG. 8 illustrates an example plot displaying relative cell count versus concentration of Nutlin-3a. All knockout clones shown display some resistance to MDM2-inhibitor, Nutlin-3a. All wild type clones shown display some sensitivity. MDM2 binds to and degrades p53. Nutlin-3a competitively inhibits MDM2 and when functional p53 present, the cells undergo cell cycle arrest. Certain knockouts are resistant to nutlin up to 10 uM and wild types are more sensitive. Knockouts do not have a functional p53 protein.



FIG. 9 illustrates an example plot displaying AUC of TP53 KO pools vs AUC of TP53 wild type pools following 10 day drug treatment. See Table 2 for data points.









TABLE 2







Approved oncology drug set IV Drugs and their respective


areas under the curve (AUC) upon ten-day drug treatment.











MCF7 WT
TP53 KO
TP53 KO



Parental pool
3.4 pool
5.6 pool


AOD-IV Drug
(AUC)
(AUC)
(AUC)













Abiraterone
8.378
8.785
9.254


Afatanib
2.734
2.48
2.139


Alectinib
5.763
4.51
2.7


Allopurinol
8.893
9.837
8.784


Altretamine
8.059
8.874
8.473


Amifostine
8.456
9.108
9.73


Aminolevulinic Acid
8.749
9.101
8.787


Anastrozole
8.01
8.067
8.828


Arsenic Trioxide
5.018
5.242
5.373


Axitinib
2.581
3.743
3.786


Azactidine
8.861
9.05
6.373


Belinostat
1.423
1.525
1.322


Bendamustine Hydrochloride
9.021
9.503
10.23


Bleomycin Sulfate
3.922
4.694
3.421


Bortezomib
0.6974
0.673
0.7486


Bosutinib
8.686
9.254
9.588


Busulfan
9.118
9.336
8.834


Cabazitaxel
1.406
1.658
1.713


Cabozantinib
4.126
4.376
4.52


Capecitabine
9.004
9.208
9.284


Carboplatin
8.83
9.302
8.343


Carfilzomib
0.6359
0.6462
0.6678


Carmustine
9.622
9.826
9.965


Celecoxib
8.779
9.053
9.654


Ceritinib
1.637
1.482
1.421


Chlorambucil
16.08
16.5
17.6


Cisplatin
7.335
6.27
7.44


Cladribine
5.569
3.767
3.956


Clofarabine
5.232
3.085
3.74


Clyclopamine
9.488
9.033
9.093


Cobimetinib
7.621
4.851
8.041


Crizotinib
2.549
2.325
2.941


Cyclophosphamide
16.16
15.2
16.92


Cytarabine Hydrochloride
4.771
2.567
3.381


Dabrafenib Mesylate
14.9
14.73
16.12


Dacarbazine
17.63
16.09
17.2


Dactinomycin
2.01
1.588
1.65


Dasatinib
4.282
4.014
4.43


Daunorubicin Hydrochloride
0.7798
0.8286
0.8964


Decitabine
4.065
4.095
5.295


Dexrazoxane
8.317
8.753
8.868


DMSO
9.021
9.503
10.23


Docetaxel
1.432
1.639
1.663


Doxorubicin Hydrochloride
0.9435
0.9013
1.009


Enzalutamide
8.931
8.864
8.634


Epirubicin Hydrochloride
0.8944
0.9399
1.019


Erismodgib
7.435
6.922
7.491


Erlotinib Hydrochloride
7.115
7.091
7.232


Estramustine Phosphate Sodium
9.864
9.491
9.348


Etoposide
2.93
2.818
3.06


Everolimus
4.699
2.251
3.834


Exemestane
8.564
8.275
8.69


Floxuridine
2.391
1.85
1.997


FludarabinePhosphate
8.551
8.135
7.936


Fluorouracil
6.548
3.782
4.286


Fulvestrant
4.6
3.797
4.145


Gefintinib
8.974
7.676
8.242


Gemcitabine Hydrochloride
2.888
1.464
1.827


Hydroxyurea
9.246
8.069
8.455


Ibrutinib
6.35
5.166
5.711


Idarubicin Hydrochloride
0.958
0.7035
0.8152


Idelalisib
7.566
7.039
7.03


Ifosfamide
9.772
10.26
9.935


Imatinib
8.269
9.674
9.312


Imiquimod
9.496
9.359
9.449


Irinotecan Hydrochloride
3.291
4.015
3.214


Ixabepilone
1.397
1.543
1.473


Ixazomib
0.719
0.7086
0.8766


Laptinib
5.364
5.619
5.857


Lenalidomide
8.724
8.782
8.801


Letrozole
9.288
9.219
9.099


Lomustine
9.62
9.629
9.491


Mechlorethamine Hydrochloride
6.077
6.543
6.171


Megestrol Acetate
9.824
9.221
9.555


Melphalan Hydrochloride
5.766
6.158
5.95


Mercaptopurine
6.103
5.941
5.636


Methotrexate
3.301
4.08
3.1


Methoxsalen
8.476
10.56
10.48


Mitomycin
1.122
1.003
0.912


Mitotane
5.932
11.01
10.17


Mitoxantrone
2.338
0.7284
0.6783


Nelarabine
8.659
11.04
10.08


Nilotinib
5.834
6.967
4.891


Nutlin3
3.686
9.455
8.605


Olaparib
5.48
8.58
7.433


Omacetaxine Mepesuccinate
0.7749
0.7692
0.7717


Osimertinib
4.149
4.056
4.044


Oxaliplatin
2.372
5.272
5.118


Paclitaxel
1.453
1.453
1.432


Palbociclib
3.461
2.923
3.234


Panobinostat
0.6418
0.5862
0.5971


Pazopanib Hydrochloride
6.767
6.259
6.349


Pemetrexed Disodium Salt
2.501
2.438
2.852


Heptahydrate


Pentostatin
10.31
9.855
9.32


Pipobroman
8.767
8.997
7.66


Plerixafor
9
8.893
8.524


Plicamycin
0.7344
0.767
0.6852


Pomalidomide
10.08
9.902
10.13


Ponatinib
3.312
2.944
3.632


Pralatrexate
2.822
2.774
2.86


Procarbazine Hydrochloride
8.119
10.04
10.7


Raloxifene
5.361
6.017
6.562


Regorafenib
3.995
5.541
5.25


Romidepsin
0.5862
0.6551
0.5264


SenexinB
5.203
6.869
6.954


Sirolimus
2.534
2.623
3.106


Sorafenib
3.981
5.27
4.98


Streptozocin
9.145
10.58
9.912


Sunitinib
3.556
3.076
3.758


TamoxifenCitrate
7.863
5.949
7.798


Temozolomide
9.187
9.565
10.06


Temsirolimus
2.486
1.939
2.767


Teniposide
1.342
0.9417
1.041


Thalidomide
7.13
9.18
10.21


Thioguanine
4.122
4.936
4.789


Thiotepa
3.965
5.443
5.535


Topotecan Hydrochloride
0.7919
0.7814
0.8044


Trametinib
7.726
6.641
8.533


Tretinoin
7.394
7.809
7.997


Triethyleneme1amine
2.223
2.224
2.319


Trifluridine
2.698
2.372
2.626


UracilMustard
9.331
9.337
9.516


Valrubicin
1.194
1.25
1.05


Vandetanib
2.871
2.831
3.022


Vemurafenib
8.722
7.987
8.365


Vinblastine Sulfate
1.393
1.54
1.382


Vincristine Sulfate
1.668
1.776
1.54


Vinorelbine Tartrate
1.616
1.797
1.629


Vismodegib
8.801
8.017
8.363


Vorinostat
2.073
2.202
2.114


Zoledronic Acid
9.222
9.268
9.417










FIGS. 10A-10D illustrate sensitivities of MCF7 wild type and Knockout cell lines to Nutlin-3a, Fluorouracil, Oxaliplatin, and Palbociclib.



FIGS. 11A-11C illustrate that Nutlin resistance can be predictive of drug responses in oxaliplatin, fluorouracil (5FU), and palbociclib (Palb). Adjusted R-square values are shown. Values plotted are the areas under the curve for each treatment. See FIG. 8 and Table 3.









TABLE 3







Select anticancer drugs from the AOD-IV and their


respective areas under the curve (AUC) upon ten


day drug treatment on single cell clones.











Cell line
5-Fluorouracil
Nutlin-3a
Oxaliplatin
Palbociclib














PR WT Pool
2.156
1.16
0.9557
2.446


PR WT A8
2.126
0.9589
0.7779
2.127


PR WT B8
1.886
0.8828
0.7911
1.917


PR WT C7
2.105
1.042
0.8311
2.543


PR WT G2
2.265
1.011
0.8186
2.542


KO 34 Pool
1.721
1.452
1.25
1.88


KO 34 B5
1.618
1.234
0.973
1.522


KO 34 D4
1.812
1.354
1.392
1.826


KO 34 E1
1.945
1.538
1.46
2.274


KO 56 Pool
1.745
1.374
1.164
1.457


KO 56 A4
1.716
1.568
1.29
1.846


KO 56 A5
1.46
1.595
1.197
1.647


KO 56 A6
1.811
1.512
1.243
1.681


KO 56 A7
1.81
1.761
1.23
1.753


KO 56 A8
2.02
1.656
1.229
2.031


KO 56 C5
1.826
1.569
1.239
1.632


KO 56 E1
1.697
1.492
1.208
1.497


KO 56 E3
1.645
1.564
0.9635
1.469









While certain embodiments of the disclosed subject matter have been described using specific terms, such description is for illustrative purposes only, and it is to be understood that changes and variations may be made without departing from the spirit or scope of the subject matter.


These and other modifications and variations to the present invention may be practiced by those of ordinary skill in the art, without departing from the spirit and scope of the present invention, which is more particularly set forth in the appended claims. In addition, it should be understood the aspects of the various embodiments may be interchanged both in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only and is not intended to limit the invention further described in the appended claims.

Claims
  • 1. A knockout cell line, wherein each cell of the knockout cell line comprises a MCF7 breast cancer cell having a deletion of at least one coding region in a gene, and wherein the gene includes a TP53 gene having a nucleotide sequence corresponding to Seq. ID No. 1.
  • 2. The knockout cell line of claim 1, wherein the coding region comprises a part of an exon.
  • 3. The knockout cell line of claim 1, wherein the coding region comprises one or more of exons 1-11.
  • 4. The knockout cell line of claim 3, wherein each of exons on 1-11 include an nucleotide sequence from seq. ID No. 1, and wherein the nucleotide sequence corresponds to a range of base numbers for each exon selected from the group: the nucleotide sequence for exon 1 comprises base numbers 1-162, the nucleotide sequence for exon 2 comprises base numbers 10917-11018, the nucleotide sequence for exon 3 comprises base numbers 11136-11157, the nucleotide sequence for exon 4 comprises base numbers 11267-11545, the nucleotide sequence for exon 5 comprises base numbers 12303-12486, the nucleotide sequence for exon 6 comprises base numbers 12568-12680, the nucleotide sequence for exon 7 comprises base numbers 13249-13358, the nucleotide sequence for exon 8 comprises base numbers 13702-13838. the nucleotide sequence for exon 9 comprises base numbers 13931-14004, the nucleotide sequence for exon 10 comprises base numbers 16824-16930, the nucleotide sequence for exon 11 comprises base numbers 17849-19137.
  • 5. The knockout cell line of claim 4, wherein the MCF7 breast cancer cell includes a deletion of the nucleotide sequence for exon 4, and wherein the nucleotide sequence for exon 4 comprises:
  • 6. The knockout cell line of claim 4, wherein the MCF7 breast cancer cell includes a deletion of the nucleotide sequence for exon 10, and wherein the nucleotide sequence for exon 10 comprises:
  • 7. An in vitro assay for determining efficacy of a treatment in breast cancer cells that include a TP53 gene mutation, comprising: providing the treatment to a plurality of cells having a deletion of at least one coding region in the TP53 gene, andmeasuring a result.
  • 8. The in vitro assay of claim 7, further comprising: providing the treatment to a plurality of wild type MCF7 breast cancer cells;measuring a wild type result; andcomparing the wild type result to the result.
  • 9. The in vitro assay of claim 8, wherein comparing the wild type result to the result comprises: determining a first quantitative measurement describing the number of live wild type MCF7 breast cancer cells included in the plurality of wild type MCF7 breast cancer cells to which the treatment was provided;determining a second quantitative measurement describing the number of live cells included in the plurality of cells having a deletion of at least one coding region in the TP53 gene to which the treatment was provided, and wherein the treatment provided to the wild type MCF7 breast cancer cells and the treatment provided to the plurality of cells having the deletion of at least one coding region in the TP53 gene are the same.
  • 10. The in vitro assay of claim 7, wherein measuring the result comprises determining a quantitative measure of cell death.
  • 11. The in vitro assay of claim 7, wherein providing the treatment comprises administering a drug to the plurality of cells derived from the knockout cell line.
  • 12. The in vitro assay of claim 11, wherein the drug comprises one or more of the drugs from the group consisting of: Abiraterone, Afatanib, Alectinib, Allopurinol, Altretamine, Amifostine, Aminolevulinic Acid, Anastrozole, Arsenic Trioxide, Axitinib, Azactidine, Belinostat, Bendamustine Hydrochloride, Bleomycin Sulfate, Bortezomib, Bosutinib, Busulfan, Cabazitaxel, Cabozantinib, Capecitabine, Carboplatin, Carfilzomib, Carmustine, Celecoxib, Ceritinib, Chlorambucil, Cisplatin, Cladribine, Clofarabine, Clyclopamine, Cobimetinib, Crizotinib, Cyclophosphamide, Cytarabine Hydrochloride, Dabrafenib Mesylate, Dacarbazine, Dactinomycin, Dasatinib, Daunorubicin Hydrochloride, Decitabine, Dexrazoxane, DMSO, Docetaxel, Doxorubicin Hydrochloride, Enzalutamide, Epirubicin Hydrochloride, Erismodgib, Erlotinib Hydrochloride, Estramustine Phosphate Sodium, Etoposide, Everolimus, Exemestane, Floxuridine, Fludarabine Phosphate, Fluorouracil, Fulvestrant, Gefintinib, Gemcitabine Hydrochloride, Hydroxyurea, Ibrutinib, Idarubicin Hydrochloride, Idelalisib, Ifosfamide, Imatinib, Imiquimod, Irinotecan Hydrochloride, Ixabepilone, Ixazomib, Laptinib, Lenalidomide, Letrozole, Lomustine, Mechlorethamine Hydrochloride, Megestrol Acetate, Melphalan Hydrochloride, Mercaptopurine, Methotrexate, Methoxsalen, Mitomycin, Mitotane, Mitoxantrone, Nelarabine, Nilotinib, Nutlin3, Olaparib, Omacetaxine Mepesuccinate, Osimertinib, Oxaliplatin, Paclitaxel, Palbociclib, Panobinostat, Pazopanib Hydrochloride, Pemetrexed Disodium Salt Heptahydrate, Pentostatin, Pipobroman, Plerixafor, Plicamycin, Pomalidomide, Ponatinib, Pralatrexate, Procarbazine Hydrochloride, Raloxifene, Regorafenib, Rom idepsin, SenexinB, Sirolimus, Sorafenib, Streptozocin, Sunitinib, Tamoxifen Citrate, Temozolomide, Temsirolimus, Teniposide, Thalidomide, Thioguanine, Thiotepa, Topotecan Hydrochloride, Trametinib, Tretinoin, Triethylenemelamine, Trifluridine, Uracil Mustard, Valrubicin, Vandetanib, Vemurafenib, Vinblastine Sulfate, Vincristine Sulfate, Vinorelbine Tartrate, Vismodegib, Vorinostat, Zoledronic Acid 2.
  • 13. A method for producing a knockout cell line from a wild type cell line, the method comprising deleting a portion of the TP53 gene in a cell derived from the wild type cell line, wherein deleting the portion of the TP53 gene comprises delivering a guide RNA to the cell.
  • 14. The method of claim 13, wherein the wild type cell line comprises human MCF7 breast cancer cells.
  • 15. The method of claim 13, wherein the portion of the TP53 gene comprises at least one coding region included in exons 4-10.
  • 16. The method of claim 13, wherein delivering the guide RNA to the cell includes delivering an expression cassette to the cell, wherein the expression cassette includes a DNA sequence for expressing the guide RNA.
  • 17. The method of claim 16, wherein delivering the guide RNA to the cell further includes delivering a second expression cassette to the cell, wherein the second expression cassette includes a DNA sequence for expressing Cas9.
  • 18. The method of claim 13, further comprising selecting for a genetically modified cell, wherein selecting for the genetically modified cell comprises culturing the cell in the presence of an agent.
  • 19. The method of claim 18, wherein the agent comprises Nutlin3.
  • 20. The method of claim 13, wherein the guide RNA comprises one or more of the sequences:
CROSS REFERENCE TO RELATED APPLICATION

This application claims filing benefit of U.S. Provisional Application Ser. No. 62/654,799, having a filing date of Apr. 9, 2018, which is incorporated herein by reference in its entirety.

STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH

This invention was made with Government support under Contract No. U01 CA158428, awarded by the National Institutes of Health (NIH). The Government has certain rights in the invention.

Provisional Applications (1)
Number Date Country
62654799 Apr 2018 US