The present invention relates to a grinding apparatus that includes a holding table for holding a workpiece thereon and grinding means having a grinding wheel for grinding the workpiece which is held on the holding table.
Plate-shaped workpieces such as semiconductor wafers and so on are thinned to a predetermined thickness by being ground by a grinding apparatus (see, for example, Japanese Patent Laid-Open No. 2001-284303), and then divided by a cutting apparatus or the like into individual device chips, which will be used in various electronic appliances.
If a wafer to be ground by the grinding stones of a grinding wheel is made of a hard-to-grind material such as gallium nitride (GaN), silicon carbide (SiC), gallium arsenide (GaAs), or the like, then the wafer tends to wear the grinding stones rather intensively in a short period of time, resulting in an increase in the cost expended to produce device chips from the wafer. When a grinding wheel is to grind a wafer made of metal or a wafer having metal electrodes exposed on a surface thereof to be ground, the ductility of the metal is liable to make it difficult for the grinding wheel to grind the wafer.
It is therefore an object of the present invention to provide a grinding apparatus which is capable of preventing grinding stones thereof from being worn excessively by a workpiece that is being ground by the grinding apparatus and which is capable of grinding a workpiece smoothly when the workpiece is made of a hard-to-grind material or when the workpiece contains metal.
In accordance with an aspect of the present invention, there is provided a grinding apparatus including: a holding table for holding a workpiece thereon; a grinding unit including a grinding wheel for grinding the workpiece held on the holding table, the grinding wheel including a grinding stone made of abrasive grains and grains of photocatalyst bonded by a vitrified bonding material; a grinding water supply unit configured to supply grinding water to the grinding stone when the workpiece held on the holding table is ground by the grinding unit; and a light applying unit disposed adjacent to the holding table and configured to apply light to a grinding surface of the grinding stone while the workpiece held on the holding table being ground.
The light applying unit should preferably be positioned immediately before a point where the grinding wheel starts to go onto the workpiece held on the holding table on a path along which the grinding wheel rotates about its own axis.
The light applying unit should preferably include a light emitter for emitting the light and a cleaning water supply for supplying cleaning water to the light emitter.
In the grinding apparatus, the grinding wheel includes the grinding stone made of abrasive grains and grains of photocatalyst bonded by a vitrified bonding material. The grinding apparatus includes the grinding water supply unit configured to supply grinding water to the grinding stone when the workpiece held on the holding table is ground by the grinding unit, and the light applying unit disposed adjacent to the holding table and configured to apply light to the grinding surface of the grinding stone while the workpiece held on the holding table being ground. Therefore, during a grinding process, the grinding stone that goes onto the workpiece is efficiently made hydrophilic, so that the cooling effect of grinding water is increased to prevent the grinding stone from being excessively worn, and the ability to discharge ground-off debris is increased. Furthermore, since the grinding stone that has been made hydrophilic supplies grinding water effectively to the processing region where the grinding stone grinds the workpiece, the processed quality of the workpiece is prevented from being lowered due to processing heat. Even if the workpiece includes a wafer made of a hard-to-grind material, the grinding apparatus is capable of smoothly grinding the workpiece.
When grinding water supplied to the grinding stone and the grains of photocatalyst in the grinding stone to which light is applied are brought into contact with each other, the grinding water that is supplied develops an oxidizing power due to hydroxy radicals. Even if the workpiece is a wafer made of a hard-to-grind material, the surface of the workpiece to be ground is oxidized and embrittled by the strong oxidizing power of the hydroxy radicals, and hence the workpiece can smoothly be ground by the grinding wheel. Similarly, even if the workpiece is a wafer made of metal or a wafer having metal electrodes partly exposed on a reverse side thereof, since the metal is oxidized and embrittled by the strong oxidizing power of the hydroxy radicals, the workpiece can smoothly be ground by the grinding wheel.
In case the light applying unit is positioned immediately before the point where the grinding wheel starts to go onto the workpiece held on the holding table on the path along which the grinding wheel rotates about its own axis, the grinding stone of the grinding wheel is made highly hydrophilic immediately before the grinding stone starts to go onto the workpiece, with the results that the cooling effect of the grinding water is further increased to further prevent the grinding stones from being worn, and the ability to discharge ground-off debris is further increased.
In case the light applying unit includes the light emitter for emitting the light and the cleaning water supply for supplying cleaning water to the light emitter, the light is prevented from failing to be applied to the grinding stone owing to contamination of the light emitter by ground-off debris.
The above and other objects, features and advantages of the present invention and the manner of realizing them will become more apparent, and the invention itself will best be understood from a study of the following description and appended claims with reference to the attached drawings showing preferred embodiment of the invention.
The holding table 30 has a circular contour, for example, and includes an attracting unit 300 for attracting the workpiece W under suction and a frame 301 that supports the attracting unit 300. The attracting unit 300 is held in fluid communication with a suction source, not depicted, and has an upwardly exposed porous surface serving as a holding surface 300a for holding the workpiece W under a suction force that is applied from the suction source to the holding surface 300a. The holding surface 300a includes a conical surface which is extremely gradually slanted around a central apex thereof that is held in alignment with the center of rotation of the holding table 30. The holding table 30, which is horizontally surrounded by a cover 31, is rotatable about a vertical axis extending in Z-axis directions by rotating means, not depicted, and reciprocally movable in the Y-axis directions between the loading/unloading area A and the grinding area B by Y-axis delivery means, not depicted, disposed below the cover 31 and a bellows cover 31a that is coupled to the cover 31.
An upstanding column 11 that extends upwardly from the base 10 is disposed in a rear end portion of the grinding area B. Grinding-feed means 5 for grinding-feeding the grinding means 7 downwardly in a −Z-axis direction is mounted on a front side surface of the column 11. The grinding-feed means 5 includes a ball screw 50 having a central axis extending in the Z-axis directions, a pair of guide rails 51 each disposed on each side of the ball screw 50 and extending parallel thereto, an electric motor 52 coupled to the upper end of the ball screw 50 for rotating the ball screw 50 about its own central axis, a vertically movable plate 53 having an internal nut threaded over the ball screw 50 and a pair of side feet held in slidable contact with the respective guide rails 51, and a holder 54 coupled to the vertically movable plate 53 and holding the grinding means 7. When the electric motor 52 is energized to rotate the ball screw 50 in one direction about its central axis, the vertically movable plate 53 is moved downwardly in the −Z-axis direction along the guide rails 51 by the ball screw 50, thereby grinding-feeding the grinding means 7 held by the holder 54 downwardly in the −Z-axis direction. When the electric motor 52 is reversed, the ball screw 50 is rotated in the opposite direction, moving the vertically movable plate 53 upwardly in the +Z-axis direction along the guide rails 51.
The grinding means 7 includes a rotational shaft 70 having a central axis extending in the Z-axis directions, a housing 71 by which the rotational shaft 70 is rotatably supported, an electric motor 72 for rotating the rotational shaft 70 about its central axis, a mount 73 coupled to the lower distal end of the rotational shaft 70, and the grinding wheel 74 that is detachably mounted on the lower surface of the mount 73.
As depicted in
The grinding wheel 74 is manufactured as follows: First, a vitrified bonding material B1 is mixed with abrasive grains P1 of diamond having a grain size #1000 and grains P2 of photocatalyst, after which they are stirred into a mixture. The vitrified bonding material B1 may be, for example, silicon dioxide (SiO2) as a chief component with a trace amount of additive added thereto for controlling the melting point thereof. Then, the mixture is heated at a predetermined temperature and pressed essentially into a rectangular parallelepiped. Thereafter, the pressed mixture is sintered at a high temperature, thereby fabricating a grinding stone 74a. The content of the grains P2 of photocatalyst in the grinding stone 74a is 15% by weight, for example. A plurality of grinding stones 74a thus fabricated are arrayed in an annular pattern on and secured to the bottom surface of a wheel base 74b, so that a grinding wheel 74 is manufactured. The grain size of the abrasive grains P1 of diamond is not limited to the example in the present embodiment, but may be varied depending on the kind and content, etc. of the grains P2 of photocatalyst.
The rotational shaft 70 depicted in
As depicted in
As depicted in
The light emitters 91, which are embedded in respective cavities defined in the upper surface of the base 90, include light emitting diodes (LEDs) that are capable of emitting light having a predetermined wavelength, and are selectively turned on and off by a power supply, not depicted. If the grains P2 of photocatalyst that are contained in the grinding stones 74a are grains of titanium oxide as described above, then the wavelength of the light (ultraviolet light) emitted by the light emitters 91 should preferably be in the range of 201 to 400 nm, and more preferably be in the range of 201 to 365 nm. The light emitters 91 are not limited to LEDs for emitting ultraviolet light depending on the kind of the grains P2 of photocatalyst. For example, if the grains P2 of photocatalyst include grains of nitrogen-doped titanium oxide, i.e., titanium oxide doped with nitrogen that is rendered photocatalytically active when irradiated with visible light rays, then the light emitters 91 may include a xenon lamp, a fluorescent lamp, or the like that emits visible light rays having a wavelength in the range of 400 to 740 nm.
The plate-shaped cover 93 is made of a transparent material such as glass or the like that transmits therethrough light emitted by the light emitters 91, for example. The plate-shaped cover 93 is fixed to the upper surface of the base 90 in covering relation to the light emitters 91. For example, the base 90 is vertically movable by Z-axis moving means, not depicted, so as to be able to set the vertical position of the upper surface of the cover 93 to a desired vertical position in view of the grinding-feed position of the grinding stones 74 in a grinding process.
The cleaning water supply 92 includes a cleaning water source, not depicted, storing water, e.g., pure water, therein, and a cleaning water nozzle 920 held in fluid communication with the cleaning water source. The cleaning water nozzle 920 is fixed to a side surface of the base 90 and extends along the base 90. The cleaning water nozzle 920 has a plurality of ejection ports 920a arrayed in longitudinal directions thereof for ejecting cleaning water toward the light emitters 91. The shape and size of the ejection ports 920a, and the angle of the ejection ports 920a with respect to the light emitter 91 are established such that they can streamline ejected cleaning water on the upper surface of the cover 93. As depicted in
Operation of the grinding apparatus 1 depicted in
The workpiece W, which is of a circular contour as depicted in
In the loading/unloading area A, the workpiece W is placed on the holding surface 300a of the holding table 30 with the reverse side Wb facing upwardly. The suction force generated by the suction source, not depicted, is transmitted to the holding surface 300a, causing the holding table 30 to hold the workpiece W under suction on the holding surface 300a. The workpiece W is thus held under suction on the holding surface 300a along the gradually conical surface thereof.
The holding table 30 is moved in the +Y-axis direction to a position below the grinding means 7 by the Y-axis delivery means, not depicted, and the grinding wheel 74 and the workpiece W held on the holding table 30 are positioned with respect to each other. Specifically, the grinding wheel 74 and the workpiece W held on the holding table 30 are positioned such that the center of rotation of the grinding wheel 74 is offset from the center of rotation of the workpiece W by a predetermined distance in the +Y-axis direction, so that the grinding stones 74a will rotate along a path that passes through the center of rotation of the workpiece W. The holding table 30 is adjusted to tilt such that the holding surface 300a as the gradual conical surface lies parallel to the lower grinding surfaces of the grinding stones 74a, thereby making the reverse side Wb of the workpiece W parallel to the lower grinding surfaces of the grinding stones 74a.
After the grinding wheel 74 and the workpiece W have been positioned with respect to each other, the electric motor 72 is energized to rotate the rotational shaft 70, rotating the grinding wheel 74 about its own axis counterclockwise as viewed in the +Z-axis direction, as depicted in
During the grinding process, the grinding water supply means 8 supplies grinding water to the flow channel 70a in the rotational shaft 70. As depicted in
Conditions in the above grinding process are set as follows, for example:
Rotational speed of the grinding wheel 74: 3000 rpm
Grinding-feed speed: 1.5 μm/s
Rotational speed of the holding table 30: 40 rpm
Flow rate of grinding water: 3.0 L/min
Inasmuch as the workpiece W is held under suction on the holding surface 300a along the gradually conical surface thereof of the holding table 30, the grinding stones 74a abut against and grind the workpiece W in a region E (hereinafter referred to as “processing region E”) in the path along which the grinding wheel 74 rotates, as indicated by the two-dot-and-dash lines in
The light applying means 9 that is disposed adjacent to the holding table 30 is positioned immediately before a point where the grinding wheel 74 starts to go onto the workpiece W on the path along which the grinding wheel 74 rotates over the holding table 30, as depicted in
As depicted in
The holes produced in the grains P2 of photocatalyst existing in the grinding stones 74a oxidize the grinding water that has been held in contact with the surfaces of the grains P2 of photocatalyst, generating hydroxy radicals that have a high oxidizing power. Therefore, the grinding water that has come into contact with the grinding surfaces of the grinding stones 74a is given the oxidizing power from the hydroxy radicals on at least the reverse side Wb of the workpiece W. Since the workpiece W of SiC is oxidized and embrittled by the hydroxy radicals, the workpiece W can easily be ground by the grinding wheel 74. Moreover, as the produced hydroxy radicals exist for a very short period of time, the grinding water does not oxide other parts of the workpiece W than the reverse side Wb thereof. The ejected grinding water also serves to cool the region where the grinding stones 74a and the reverse side Wb of the workpiece W are held in contact with each other and remove ground-off debris from the reverse side Wb of the workpiece W.
Even if the workpiece W is a wafer made of metal or a wafer having metal electrodes partly exposed on a reverse side thereof, since the metal is oxidized and embrittled by the strong oxidizing power of the hydroxy radicals, the workpiece W can smoothly be ground by the grinding wheel 74.
The applied light forms highly polar hydrophilic groups on the grinding surfaces of the grinding stones 74a, making the grinding surfaces of the grinding stones 74a hydrophilic. As a consequence, the grinding water is less likely to turn into water drops on the grinding surfaces of the grinding stones 74a, but tends to spread as a water film over the entire grinding surfaces of the grinding stones 74a. Therefore, the grinding stones 74a that have thus been made hydrophilic enter with a lot of grinding water into the processing region E where they grind the reverse side Wb of the workpiece W. Since a lot of grinding water is introduced into the region where the reverse side Wb of the workpiece W and the processing surfaces, i.e., the grinding surfaces, of the grinding stones 74a are held in contact with each other, the generation of frictional heat in that region is restrained. Consequently, the grinding stones 74a are prevented from being excessively worn, and the ability to discharge ground-off debris is increased. Furthermore, since the grinding stones 74a that have been made hydrophilic supply grinding water effectively to the processing region E where the grinding stones 74a grind the workpiece W, the processed quality of the workpiece W is prevented from being lowered due to processing heat.
As the light applying means 9 is positioned immediately before the point where the grinding wheel 74 starts to go onto the workpiece W on the path along which the grinding wheel 74 rotates on the holding table 30, the grinding stones 74a are made highly hydrophilic immediately before the grinding stones 74a start to go onto the workpiece W, with the results that the cooling effect of the grinding water is further increased to further prevent the grinding stones 74a from being worn, and the ability to discharge ground-off debris is further increased.
During the grinding process, as depicted in
An experiment was conducted on workpieces W of SiC. According the results of the experiment, a conventional grinding apparatus took 110 seconds, but the grinding apparatus 1 according to the present invention took 90 seconds to grind a workpiece W of SiC by a thickness of 50 μm. Therefore, the grinding apparatus 1 according to the present invention was effective to reduce the grinding time. Furthermore, in grinding a Si surface of a workpiece W of SiC by 100, 83% of the entire grinding stones of the conventional grinding apparatus were worn, but only 57% of the entire grinding stones 74a of the grinding apparatus 1 according to the present invention were worn. In grinding a C surface of a workpiece W of SiC by 100, 60% of the entire grinding stones of the conventional grinding apparatus were worn, but 39% of the entire grinding stones 74a of the grinding apparatus 1 according to the present invention were worn.
The present invention is not limited to the details of the above described preferred embodiment. The scope of the invention is defined by the appended claims and all changes and modifications as fall within the equivalence of the scope of the claims are therefore to be embraced by the invention.
Number | Date | Country | Kind |
---|---|---|---|
2017-123036 | Jun 2017 | JP | national |