The present disclosure is generally directed to controlling a surgical instrument end effector. More particularly, aspects of the present disclosure relate to controlling the gripping force of an end effector for a robotically-controlled surgical instrument.
Minimally invasive surgical techniques generally attempt to perform surgical procedures while minimizing damage to healthy tissue. Robotically-controlled surgical instruments can be used to perform various minimally invasive surgical procedures remotely. In such systems, surgeons manipulate various input devices at a surgeon console (sometimes referred to herein as master inputs). The input at the surgeon console is communicated to a patient side cart that interfaces with one or more robotically-controlled surgical instruments, where teleoperated/telerobotic manipulation of the surgical instrument occurs to perform a surgical and/or other procedure on the patient.
Minimally invasive, robotically-controlled surgical instruments may be used in a variety of operations and have various configurations. Many such instruments include a surgical end effector mounted at a distal end of a long shaft that is configured to be inserted (e.g., laporoscopically or thoracoscopically) through an opening (e.g., body wall incision, natural orifice) to reach a remote surgical site within a patient. In some instruments, an articulating wrist mechanism is mounted to the distal end of the instrument's shaft to support the end effector and alter an orientation (e.g., pitch and/or yaw) of the end effector with reference to the shaft's longitudinal axis.
Telerobotically controlled end effectors may be configured to perform various functions, including any of a variety of surgical procedures that are conventionally performed in either open or manual minimally invasive surgical procedures. Examples include, but are not limited to, sealing, cutting, cauterizing, ablating, suturing, stapling, etc. The end effectors may include a gripping device, such as jaws or blades, in cases in which tissue may need to be grasped and held as a procedure is performed, for example, during sealing (e.g., via cauterizing) or cutting of the tissue. In some instances, the control of the gripping device of a surgical instrument end effector occurs through master grip input from a surgeon at the surgeon console. To control motion of an end effector, servo-actuators (e.g., servo motors), can be used to transmit force or torque to various components that ultimately transmit from a transmission mechanism that interfaces with the patient side manipulator down the shaft and to the end effector.
In some cases, when using a surgical instrument that includes an end effector having a gripping device, it may be desirable to use the gripping device to move tissue and/or other material at the surgical site by gripping the same with the gripping device. When using a gripping device in such a manner, it may be desirable to use less gripping force in comparison to a gripping force that may be desired to achieve another surgical procedure, such as, for example, sealing and/or cutting. For example, lower gripping forces may be desirable when using the gripping device to move tissue and/or other body parts/materials around so as to minimize the risk of damaging the same. On the other hand, higher gripping forces may be desirable when using the gripping device for other procedures. For example, if the gripping force is not high enough during a procedure such as cutting, a translating blade used to cut transversely through the tissue could push the tissue distally instead of cutting all the way through the tissue. Likewise, if the gripping force is not high enough during a procedure such as sealing (e.g., cauterizing), for example, effective contact for sealing of tissue surfaces (e.g., opposing wall portions of a vessel) may not be achieved.
The user may indicate that a higher gripping force is to be used by, for example, squeezing a gripping input mechanism that controls the gripping force at the end effector. The user may inadvertently squeeze the gripping input mechanism too hard, resulting in a higher gripping force at the end effector during operations of the end effector in which a higher gripping force is not desired. For example, prior to or after performing a procedure that requires a higher gripping force, such as sealing or cutting, the user may squeeze the gripping input mechanism hard enough to result in higher gripping forces at the end effector. Using higher gripping forces during operations that do not require higher gripping forces, such as while the user is manipulating tissue prior to or after performing a sealing or cutting procedure, can lead to undesirable and/or unintentional movements. For example, undesired pitch or yaw motions may occur as the end effector rolls. In addition, unintentional and/or unsteady movement of the end effector may occur during the high grip force action due to movement in one of pitch/yaw by a wrist, roll of the shaft, and/or translation along the shaft. Such movement instability of the end effector can negatively impact the desired surgical procedure.
There exists a need, therefore, to provide gripping force control of a surgical instrument end effector gripping device in order to address the various issues faced when performing robotically-controlled surgical procedures that rely on relatively high gripping forces by such an end effector.
The present disclosure solves one or more of the above-mentioned problems and/or demonstrates one or more of the above-mentioned desirable features. Other features and/or advantages may become apparent from the description that follows.
In accordance with at least one exemplary embodiment, the present teachings contemplate a method of controlling a gripping force of an end effector of a robotically-controlled surgical instrument. The method includes receiving a first input signal indicative of a high grip level input at a master gripping mechanism that controls a slave gripping force of the end effector; receiving a second input signal indicative of a user's readiness to operate the surgical instrument to perform a surgical procedure; and outputting an actuation signal in response to receiving the first input signal and the second input signal together to increase the slave gripping force from a first level to a second level higher than the first level during the surgical procedure.
Additional objects and advantages will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the present disclosure and/or claims. At least some of these objects and advantages may be realized and attained by the elements and combinations particularly pointed out in the appended claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as disclosed or claimed. The claims should be entitled to their full breadth of scope, including equivalents.
The present disclosure can be understood from the following detailed description either alone or together with the accompanying drawings. The drawings are included to provide a further understanding of the present disclosure, and are incorporated in and constitute a part of this specification. The drawings, which are incorporated in and constitute a part of this specification, illustrate one or more embodiments of the present disclosure and, together with the description, serve to explain certain principles and operation. In the drawings,
This description and the accompanying drawings illustrate exemplary embodiments and should not be taken as limiting, with the claims defining the scope of the present disclosure, including equivalents. Various mechanical, compositional, structural, electrical, and operational changes may be made without departing from the scope of this description and the invention as claimed, including equivalents. In some instances, well-known structures, and techniques have not been shown or described in detail so as not to obscure the disclosure. Like numbers in two or more figures represent the same or similar elements. Furthermore, elements and their associated aspects that are described in detail with reference to one embodiment may, whenever practical, be included in other embodiments in which they are not specifically shown or described. For example, if an element is described in detail with reference to one embodiment and is not described with reference to a second embodiment, the element may nevertheless be claimed as included in the second embodiment. Moreover, the depictions herein are for illustrative purposes only and do not necessarily reflect the actual shape, size, or dimensions of the system or the electrosurgical instrument.
It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the,” and any singular use of any word, include plural referents unless expressly and unequivocally limited to one referent. As used herein, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.
In accordance with various exemplary embodiments, the present disclosure contemplates controlling a robotically-controlled surgical instrument end effector gripping device such that a relatively lower or higher gripping force may be exerted by the gripping device, depending upon the application involved as indicated by input received at a surgeon console. For example, for procedures such as grasping and moving tissue and/or other material (e.g., body structures) at a surgical site, the end effector gripping device may be controlled to exert a relatively lower gripping force to allow the tissue to be grasped and moved without unnecessarily damaging the tissue. On the other hand, for procedures such as, for example, sealing or cutting, the end effector gripping device may be controlled to exert a higher gripping force sufficient to hold the tissue relatively firmly to effectively perform the desired surgical procedure that is implemented with a relatively high gripping force. Various exemplary embodiments, therefore, provide an automatic control technique of an end effector gripping device to elevate and hold the gripping force at relatively higher levels during the appropriate procedures and lower levels during other procedures in which the high gripping force is not necessary and may not be desirable.
In addition, in order to avoid instability of the surgical instrument end effector due to the higher gripping force that occur when the user grips a master gripping input mechanism beyond a gripping force threshold, various exemplary embodiments limit the higher gripping force from occurring when the operation that necessitates the higher gripping force is not being performed. In particular, in accordance with various exemplary embodiments, in order to constrain the higher gripping force only to the procedure that requires the higher gripping force, a method of controlling a gripping force of an end effector provides a higher gripping force based on two inputs from a surgeon—the first input being indicative of a higher gripping level input by the user at a surgeon master gripping input and the second input being indicative of the user's readiness to operate the surgical instrument to perform a surgical procedure that utilizes the relatively higher gripping force of the end effector. In accordance with various exemplary embodiments, the gripping force of the end effector (slave grip force) is controlled by altering or limiting a torque of an electric motor (e.g., servo motor) at the patient side cart that interfaces with a drive input of a transmission mechanism associated with the surgical instrument.
In addition, various exemplary embodiments provide a method of locking (i.e., preventing actuation) one or more degrees of freedom of the end effector during certain surgical procedures to provide a higher level of stability while the procedure is being performed.
Although the exemplary embodiments and description below focus mainly on controlling gripping force of a surgical instrument during sealing and cutting procedures, the principles of the exemplary embodiments could be applied to other surgical procedures, including but not limited to, for example, clamping of a vessel or other hollow body structure, cutting tissue using pivoting blades of an end effector, surgically stapling tissue, and/or other procedures where a relatively high gripping force may be desirable. For some of these instruments and associated procedures, the relatively high end effector gripping force is generated by a servo motor torque that is higher than the highest motor torque normally used to operate other jawed instruments, such as surgical shears, tissue graspers, needle drivers, and the like.
With reference to
In an exemplary embodiment, the instrument 600 is configured to be mounted on and used with a minimally invasive robotic surgical system, which in an exemplary embodiment includes a patient side cart 800, a surgeon console 802, and an electronics/control console 804, as illustrated in a diagrammatic view of
The robotic surgical system is used to perform minimally invasive robotic surgery by interfacing with and controlling a variety of surgical instruments, as those of ordinary skill in the art are generally familiar. The patient side cart 800 includes various arms 810 for holding, positioning, and manipulating various tools. As shown in
In various exemplary embodiments, inputs from the surgeon console 802 or from input units otherwise accessible to a surgeon can be provided to the controller(s) via various master input devices, such as, for example, one or more pedals 808, and one or more hand-held grip input levers 900a, 900b. In various exemplary embodiments described herein, the pedals 808 may be used to send signals to perform a sealing and/or cutting operation of the robotically controlled surgical instrument 600 and the hand-held grip input levers 900a, 900b may be used to send signals to control movement of the wrist 608 (e.g., pitch/yaw movement), the instrument shaft 604 (e.g., roll and/or translation), and/or opening and closing (gripping) movement of an end effector gripping device (e.g., jaws or blades). Those having ordinary skill in the art are familiar with the general use of such teleoperated robotic surgical systems to provide input from a surgeon at a surgeon console to ultimately effect operation of a surgical instrument interfacing with a patient side cart.
Based on the master inputs at the surgeon console 802, the patient side cart 800 can interface with the transmission mechanism 602 of the surgical instrument 600 to position and actuate the instrument 600 to perform a desired medical procedure. For example, based on the master inputs from the surgeon console 802, the transmission mechanism 602, which includes various torque/drive input mechanisms (e.g., in the form of drive disks) configured to be driven via teleoperated servo actuators (e.g., motors) associated with the patient side cart 800, can transmit the inputs into various forces and/or torques to ultimately actuate (drive) the overall instrument 600 to perform a surgical procedure. For example, master inputs from the surgeon console 802 can be converted at the patient side cart 800 through the transmission mechanism 602 to roll shaft 604, articulate the wrist 608 relative to the shaft (e.g., in pitch and/or yaw), and/or to open and close the gripping device 700 (see
The electronics/control console 804, which may include, for example, an electrosurgical processing unit, receives and transmits various control signals to and from the patient side cart 800 and the surgeon console 802, and can transmit light and process images (e.g., from an endoscope at the patient side cart 800) for display, such as, for example, display 812 at the surgeon console 802 and/or on a display 814 associated with the electronics/control console 804. Those having ordinary skill in the art are generally familiar with such electronics/control consoles of robotically controlled surgical systems.
The patient side cart 800 is positioned proximate to a patient and the surgical instrument 600 is used to perform various surgical procedures at a work site in the patient's body through the use of the remotely actuated end effector 606. Exemplary surgical procedures that the end effector 606 can perform include, but are not limited to, for example, clamping of a vessel or other hollow body structure, cutting tissue using pivoting blades of an end effector, and/or other procedures where a relatively high gripping force may be desirable.
With reference now to
With reference now to
When the user at the surgeon console 802 is ready to perform a procedure using the gripping device 700, e.g., jaws 701a, 701b, at S1 the user manipulates a master grip input mechanism 806 at the surgeon console 802. For example, the surgeon may squeeze grip levers 900a, 900b together. However, the master grip input is not limited thereto and may be an input other than squeezing the gripping levers 900a, 900b together that provides an indication from a user, e.g., a surgeon, that the user desires a high slave gripping force at the end effector. In an exemplary embodiment, for example, the master grip input may be a user pressing one or more of the pedals 808.
In various exemplary embodiments, as depicted in the diagrammatic view of
The biasing transition mechanism can provide the user with feedback that the gripping device of the end effector is transitioning from a relatively lower gripping force to a relatively higher gripping force. When the master grip input 100 is initiated at S1, and a master grip input signal is generated, the torque of the motor that ultimately controls the gripping force (slave grip 102) of the corresponding gripping device 700, such as jaws 701a, 701b, begins to increase to provide a gripping force to the gripping device 700. In another embodiment, the motor may actuate a clutch mechanism, which actuates the gripping of the end effector. As the master grip input signal 100 increases between S1 to S2, the corresponding force of the slave grip 102 increases from zero gripping force at S1 to a low gripping force at S2.
At S2, the master grip input signal 100 reaches a squeezing force threshold that corresponds to a predetermined, high grip level at the master grip input mechanism 806. In various exemplary embodiments, the squeezing force threshold may correspond to any input at the master grip, such as, for example, actuating the grip levers 900a, 900b of the master grip input mechanism 806 beyond some threshold level of actuation, e.g., beyond a threshold range of motion of the grip levers 900a, 900b toward one another, that may indicate that a higher slave gripping force is desired at the end effector 606. In another exemplary embodiment, when a mechanism is used to provide haptic feedback to the user, such as in
One of ordinary skill in the art would recognize that the present disclosure is not limited to the biasing mechanisms described and any of a variety of biasing devices or gripping level indicators may be used. Regardless of the configuration of the biasing mechanism, when the master grip input mechanism 806 includes biasing mechanisms, the master grip input mechanism 806, such as gripping levers 900a, 900b, provides feedback to the user to indicate a lower gripping input level and a higher gripping input level. In addition, as above, the system recognizes that a higher gripping input level is achieved when the squeezing force threshold at the master grip input mechanism 806 is reached, and at this point, the master grip input signal 100 is at a relatively high gripping input level.
Setting the squeezing force threshold to correspond to a relatively high amount of the compression of the second biasing mechanism can help to ensure that the user is intending to provide a higher level of grip of the master grip input mechanism 806, e.g., by providing feedback to the user. This can provide an additional safety feature to assist in preventing the user from increasing the master gripping force, and consequently the slave gripping force, to too high a level when the user is not intending for that level to be used.
As shown in
From S0 through S2, the procedure input 104, e.g., a sealing, cutting or stapling procedure, is not received and the procedure input is in an off state. At S3, an input indicative of a user's desire for the end effector 606 to perform a surgical procedure that relies on a relatively high gripping force is received, indicated in the state diagram as procedure input 104 transitioning from an off state to an on state. The surgical procedure to be performed may be one or more of, for example, a sealing procedure, a cutting procedure, etc. However, it is to be understood that these procedures are merely meant to be exemplary and any other type of procedure that would be implemented using a high gripping force by an end effector gripping device may be indicated by actuation of the input devices, such as pedals 808.
At S3, when both the master grip input signal 100 has reached the squeezing force threshold level and an additional input has been received at a procedure input device, such as one or more pedals 808, at the surgeon console 802, indicating that the high gripping force procedure is to be performed, i.e., the procedure input 104 is in an on state, then the motor torque and corresponding slave gripping force 102 is increased from the relatively low levels shown between S2 and S3, to the relatively higher levels depicted at S3. In various exemplary embodiments, the high torque level of the servomotor that ultimately causes actuation of end effector grip, which results in the relatively higher gripping force, may be about 1.5 Nm. The relatively high torque level of the motor and the relatively high gripping force of the end effector gripping device 700 are maintained at least through to the completion of the procedure, such as, e.g., a sealing procedure, a cutting procedure, etc. It is noted that the 0.3 Nm lower gripping force at the end effector and the 1.5 Nm higher gripping force at the end effector may be altered, depending on a desired slave gripping force. In another embodiment, the servomotor may actuate a clutch mechanism provided at the force/torque drive transmission mechanism 602, which actuates the end effector, increasing the gripping force at the end effector to the higher gripping force.
In some exemplary embodiments, a grip force torque control mechanism may be interfaced with the servomotor to ultimately control the delivery of the torque forces to actuate the end effector.
Reference is made to U.S. Provisional Application No. 61/491,804 (filed May 31, 2011; entitled “GRIP FORCE CONTROL IN A ROBOTIC SURGICAL INSTRUMENT”), the entire contents of which are incorporated herein by reference, for an exemplary embodiment of a vessel sealing and cutting instrument that utilizes a spring assembly in the transmission backend to transmit and control the torque from the servomotor that is delivered to the end effector. Those having ordinary skill in the art would appreciate that the control techniques described herein could be used in combination with such a transmission system.
The surgical procedure, such as sealing or cutting, may occur while both the additional input, such as the depression of one or more pedals 808, is actuated and the squeezing force at the master grip input levers 900a, 900b is maintained at or above the squeezing force threshold. At S4, the system senses the completion of the desired procedure and signals such to the user at the surgeon console 802, or at any location that would provide such an indication to a user, after which the user may be prompted to stop the master grip input by, for example, releasing the grip levers 900a, 900b. The surgical procedure, such as sealing, cutting or stapling, therefore ends at S4, indicated by the off state in the state diagram. The surgical procedure may be indicated by ending actuation of the seal, cut or staple input device (e.g., releasing one of the pedals 808), by recognizing, for example, that the tissue has been cut or by recognizing that the tissue has been sealed (e.g., by analyzing the conductance of the tissue), etc.
The surgical procedure may end when the user, e.g., the surgeon, releases the additional input device, such as, for example, one or more pedals 808. In another embodiment, the surgical procedure is performed until a processing device, such as an electrosurgical processing unit at, for example, the electronics/control console 804, senses that the procedure has been completed based on detecting information from the tissue. For example, the procedure may be sensed to have been completed when the tissue is determined to be less conductive after, for example, a sealing procedure. In another example, a cutting element position may be used to indicate that the procedure, such as a cutting procedure, is complete. One of ordinary skill in the art would recognize that the procedure may be performed only while the input device is actuated or may be performed upon actuation of the input device and ended after a processing device determines that the procedure may end, such as, for example, when the gripped tissue has been fully cut, after a designated amount of time has elapsed from the initiation of the surgical procedure, etc.
In the exemplary embodiment shown in
In an alternative embodiment, as shown in
Although
In order to provide an additional safety feature to prevent a surgeon from unintentionally performing a cutting procedure until the surgeon intends for the procedure to occur, at S5, the user provides a second additional input 202, for example through actuation of an input device, such as one or more of pedals 808 (which may be a different pedal, for example, than the pedal used for the additional seal input 200), to indicate a readiness to actuate the surgical instrument 600 to perform the cutting procedure, i.e., the surgical instrument is “armed”. The “arming” state is indicated in the state diagram as the arm/cut input 202 transitioning from an off state at S4 to an on state at S5 in anticipation of a cutting procedure. When the arming input 202 has been received at S5, if the motor torque and slave gripping force 102 are at relatively low levels, as shown in
In the alternative, if the motor torque and slave gripping force 102 were not decreased between the sealing and arming stages at S3 and S5, respectively, then the relatively high levels can be maintained. The high motor torque and corresponding slave gripping force 102 can be maintained after the arming of the end effector 606 occurs at S5. The arm/cut input 202 transitioning from an on state at S5 to an off state at S6 in the state diagram indicates that the input to “arm” the surgical instrument 600 has ended.
After “arming” the surgical instrument 600, a user at the second additional input device, e.g., one or more of the pedals 808 at the surgeon console 802, provides another input to begin the cutting procedure at S7, which is indicated in the state diagram as the arm/cut input 206 transitioning from the off state at S6 to the on state at S7. After the cutting procedure ends, indicated by the arm/cut input 202 returning to an off state at S8, the motor torque may either be maintained at the relatively high torque level until the releasing threshold has been reached at S9, as shown in
For additional details regarding arming the surgical instrument prior to performing the cutting operation, reference is made to U.S. Provisional Patent Application No. 61/491,647 (filed on May 31, 2011; entitled “POSITIVE CONTROL OF ROBOTIC SURGICAL INSTRUMENT END EFFECTOR”), the entire contents of which are incorporated herein by reference.
It may be understood that while the exemplary embodiment of
In addition, as shown in
As shown in
As mentioned above, in various exemplary embodiments, it may be desirable to control DOF movement of the surgical instrument, e.g., of the wrist and/or shaft, when performing various surgical procedures. Such control may be desirable, for example, to provide stability and/or other control over the surgical instrument during procedures that require high gripping force. Accordingly, various exemplary embodiments, contemplate locking and unlocking (i.e., allowing or preventing) one or more DOF movement of the surgical instrument depending on the state of the surgical instrument and the particular procedure being performed by the surgical instrument.
Turning now to
At S3, when the sealing input is received and the master grip input is above the gripping force threshold, the DOFs 500 are locked, indicated by the transition from the off state at S2 to the on state at S3. When the sealing procedure ends at S4, the DOFs 500 may be unlocked to permit, for example, the surgeon to be able to manipulate the surgical instrument to move tissue or the like. In an alternative embodiment, the DOFs 500 may be maintained in a locked state following the sealing procedure at S4. Turning back to
In an alternative embodiment, the DOFs 500 may be unlocked from after the sealing procedure at S4 through the initiation of the cutting procedure at S7, whereupon the DOFs 500 are locked, i.e., the DOFs 500 are unlocked during the arming procedure. In another alternative embodiment, the DOFs 500 may be unlocked between each of the procedures, e.g., between S4 and S5, and between S6 and S7. Further, the DOFs 500 may be unlocked immediately following the cutting procedure at S8. Additionally, one or more DOFs 500 may be selectively locked or unlocked between procedures, e.g., the sealing or cutting procedures, and/or operations, e.g., the arming operation, or during the procedures or operations.
While the unlocking and locking of the DOFs 500 occurs independently of the higher and lower slave gripping forces at the end effector, the DOFs 500 are typically locked while the higher gripping force occurs at the end effector and the DOFs 500 are typically unlocked while the lower gripping force or the zero gripping force occurs at the end effector.
While procedures such as sealing and cutting have been disclosed, one of ordinary skill in the art would recognize that the present disclosure is not limited to the sealing and cutting procedures described and any of a variety of procedures that utilize a surgical instrument, e.g., stapling, etc. may be used.
Therefore, various exemplary embodiments in accordance with the present disclosure can provide a gripping force control scheme that increases a gripping force of an end effector gripping device to a higher level when two inputs indicative of an increased grip level and an initiation of a surgical procedure are both received. Further, various exemplary embodiments of the present disclosure also can enhance stability and control of a surgical instrument during a surgical procedure, even when relatively high gripping forces are used, by locking and unlocking various instrument DOF motions depending on the operational state of the surgical instrument.
The embodiments can be implemented in computing hardware (computing apparatus) and/or software, such as (in a non-limiting example) any computer that can store, retrieve, process and/or output data and/or communicate with other computers. The results produced can be displayed on a display of the computing hardware. One or more programs/software comprising algorithms to effect the various responses and signal processing in accordance with various exemplary embodiments of the present disclosure can be implemented by a processor of or in conjunction with the electronics/control console 804, such as an electrosurgical processing unit discussed above, and may be recorded on computer-readable media including computer-readable recording and/or storage media. Examples of the computer-readable recording media include a magnetic recording apparatus, an optical disk, a magneto-optical disk, and/or a semiconductor memory (for example, RAM, ROM, etc.). Examples of the magnetic recording apparatus include a hard disk device (HDD), a flexible disk (FD), and a magnetic tape (MT). Examples of the optical disk include a DVD (Digital Versatile Disc), a DVD-RAM, a CD-ROM (Compact Disc-Read Only Memory), and a CD-R (Recordable)/RW.
As described above, the methods and systems in accordance with various exemplary embodiments can be used in conjunction with a surgical instrument having an end effector configured to perform multiple surgical procedures via components that are actuated via a transmission mechanism at the proximal end of the instrument. Further, according to an aspect of the embodiments, any combinations of the described features, functions and/or operations can be provided.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the present disclosure and claims herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This application is a continuation of U.S. patent application Ser. No. 16/685,251, filed Nov. 15, 2019, which is a continuation of U.S. patent application Ser. No. 16/015,380, filed Jun. 22, 2018 (now U.S. Pat. No. 10,500,007), which is a divisional of U.S. patent application Ser. No. 15/805,371, filed on Nov. 7, 2017 (now U.S. Pat. No. 10,034,719), which is a continuation of U.S. patent application Ser. No. 15/090,059, filed on Apr. 4, 2016 (now U.S. Pat. No. 9,820,823), which is a divisional of U.S. patent application Ser. No. 13/655,999, filed on Oct. 19, 2012, (now U.S. Pat. No. 9,314,307), which claims the benefit of priority of U.S. Provisional Application No. 61/550,356, filed Oct. 21, 2011, the entire contents of each of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5343385 | Joskowicz et al. | Aug 1994 | A |
5575789 | Bell et al. | Nov 1996 | A |
5720742 | Zacharias | Feb 1998 | A |
5876325 | Mizuno | Mar 1999 | A |
6132368 | Cooper | Oct 2000 | A |
6256556 | Zenke | Jul 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6348911 | Rosenberg et al. | Feb 2002 | B1 |
6424885 | Niemeyer et al. | Jul 2002 | B1 |
6459926 | Nowlin et al. | Oct 2002 | B1 |
6522906 | Salisbury, Jr. et al. | Feb 2003 | B1 |
6592315 | Osborne, Jr. | Jul 2003 | B2 |
6594552 | Nowlin et al. | Jul 2003 | B1 |
6659939 | Moll et al. | Dec 2003 | B2 |
6697664 | Kienzle, III et al. | Feb 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
7125403 | Julian et al. | Oct 2006 | B2 |
7166114 | Moctezuma et al. | Jan 2007 | B2 |
7209803 | Okamoto et al. | Apr 2007 | B2 |
7386365 | Nixon | Jun 2008 | B2 |
8184880 | Zhao et al. | May 2012 | B2 |
8226575 | Levy | Jul 2012 | B2 |
8375808 | Blumenkranz | Feb 2013 | B2 |
8527094 | Kumar et al. | Sep 2013 | B2 |
8830224 | Zhao et al. | Sep 2014 | B2 |
8852174 | Burbank | Oct 2014 | B2 |
8935003 | Itkowitz et al. | Jan 2015 | B2 |
8945095 | Blumenkranz et al. | Feb 2015 | B2 |
9043027 | Durant et al. | May 2015 | B2 |
9314307 | Richmond et al. | Apr 2016 | B2 |
9820823 | Richmond et al. | Nov 2017 | B2 |
10034719 | Richmond et al. | Jul 2018 | B2 |
10500007 | Richmond et al. | Dec 2019 | B2 |
10952802 | Richmond et al. | Mar 2021 | B2 |
20010034530 | Malackowski et al. | Oct 2001 | A1 |
20020042620 | Julian | Apr 2002 | A1 |
20020045905 | Gerbi et al. | Apr 2002 | A1 |
20030109857 | Sanchez et al. | Jun 2003 | A1 |
20060030840 | Nowlin | Feb 2006 | A1 |
20060095143 | Sunaoshi | May 2006 | A1 |
20060142657 | Quaid et al. | Jun 2006 | A1 |
20060184279 | Okamoto et al. | Aug 2006 | A1 |
20070032906 | Sutherland et al. | Feb 2007 | A1 |
20080114494 | Nixon | May 2008 | A1 |
20080154246 | Nowlin et al. | Jun 2008 | A1 |
20080188749 | Rasche | Aug 2008 | A1 |
20090012532 | Quaid et al. | Jan 2009 | A1 |
20090036902 | DiMaio | Feb 2009 | A1 |
20090088774 | Swarup et al. | Apr 2009 | A1 |
20090088775 | Swarup et al. | Apr 2009 | A1 |
20090131941 | Park | May 2009 | A1 |
20100010505 | Herlihy | Jan 2010 | A1 |
20100153317 | Lee | Jun 2010 | A1 |
20100228264 | Robinson et al. | Sep 2010 | A1 |
20100234857 | Itkowitz | Sep 2010 | A1 |
20100256558 | Olson et al. | Oct 2010 | A1 |
20110087238 | Wang et al. | Apr 2011 | A1 |
20110106141 | Nakamura | May 2011 | A1 |
20110108569 | Jones et al. | May 2011 | A1 |
20110118748 | Itkowitz | May 2011 | A1 |
20110130761 | Plaskos | Jun 2011 | A1 |
20110144806 | Sandhu et al. | Jun 2011 | A1 |
20110306986 | Lee et al. | Dec 2011 | A1 |
20120083801 | Nixon | Apr 2012 | A1 |
20120109150 | Quaid et al. | May 2012 | A1 |
20120150154 | Brisson et al. | Jun 2012 | A1 |
20120185090 | Sanchez et al. | Jul 2012 | A1 |
20120215220 | Manzo et al. | Aug 2012 | A1 |
20120255986 | Petty | Oct 2012 | A1 |
20120283745 | Goldberg et al. | Nov 2012 | A1 |
20120310221 | Durant et al. | Dec 2012 | A1 |
20120310254 | Manzo et al. | Dec 2012 | A1 |
20120310255 | Brisson et al. | Dec 2012 | A1 |
20120310256 | Brisson | Dec 2012 | A1 |
20120316573 | Durant | Dec 2012 | A1 |
20130035790 | Olivier, III et al. | Feb 2013 | A1 |
20200078121 | Richmond et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
102123670 | Jul 2011 | CN |
2332478 | Jun 2011 | EP |
H08323664 | Dec 1996 | JP |
2009107074 | May 2009 | JP |
2010182235 | Aug 2010 | JP |
2011183460 | Sep 2011 | JP |
WO-2006087689 | Aug 2006 | WO |
WO-2006124390 | Nov 2006 | WO |
WO-2007034161 | Mar 2007 | WO |
WO-2010006057 | Jan 2010 | WO |
WO-2010025338 | Mar 2010 | WO |
WO-2010109932 | Sep 2010 | WO |
WO-2011060311 | May 2011 | WO |
WO-2011125007 | Oct 2011 | WO |
WO-2013059643 | Apr 2013 | WO |
Entry |
---|
Extended European Search Report for Application No. 20168090.7, mailed on Jun. 25, 2020, 9 pages. |
Extended European Search Report for Application No. 12841954.6, mailed on Oct. 19, 2015, 7 pages. |
International Search Report and Written Opinion for Application No. PCT/IS2012/040034, mailed on Nov. 27, 2012, 15 pages. |
International Search Report and Written Opinion for Application No. PCT/US2012/061093, mailed Feb. 25, 2013, 10 pages. |
U.S. Appl. No. 61/491,698, filed May 31, 2011. |
U.S. Appl. No. 61/491,647, filed May 31, 2011. |
U.S. Appl. No. 61/491,804, filed May 31, 2011. |
Vertut, Jean and Phillipe Coiffet, Robot Technology: Teleoperation and Robotics Evolution and Development, English translation, Prentice-Hall, Inc., Inglewood Cliffs, NJ, USA 1986, vol. 3A, 332 pages. |
Number | Date | Country | |
---|---|---|---|
20210259793 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
61550356 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15805371 | Nov 2017 | US |
Child | 16015380 | US | |
Parent | 13655999 | Oct 2012 | US |
Child | 15090059 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16685251 | Nov 2019 | US |
Child | 17193016 | US | |
Parent | 16015380 | Jun 2018 | US |
Child | 16685251 | US | |
Parent | 15090059 | Apr 2016 | US |
Child | 15805371 | US |