GROWTH HORMONE POLYPEPTIDES AND METHODS OF MAKING AND USING SAME

Abstract
The present invention relates to compositions comprising growth hormone linked to extended recombinant polypeptide (XTEN), isolated nucleic acids encoding the compositions and vectors and host cells containing the same, and methods of making and using such compositions in treatment of growth hormone-related diseases, disorders, and conditions.
Description
BACKGROUND OF THE INVENTION

Human growth hormone (hGH) is a hormone that participates in the regulation of human growth and development. Growth Hormone (herein after “GH”), also known as somatotrophin, represents a class of proteinaceous hormones produced and secreted by the somatotropic cells of the anterior pituitary. Secretion of GH is stimulated by the growth hormone releasing hormone (GHRH) from the hypothalamus and suppressed by somatostatin. This pituitary hormone exhibits a number of biological effects including somatogenesis, lactation, activation of macrophages, insulin-like and diabetogenic effects among others (Chawla, R. K. (1983) Ann. Rev. Med. 34, 519; Edwards, C. K. et al. (1988) Science 239, 769; Thorner, M. O., et al. (1988) J. Clin. Invest. 81, 745). Human growth hormone is a member of a family of homologous hormones that include placental lactogens, prolactins, and other genetic and species variants of GH. GH regulates the secretion of Insulin-like growth factor (IGF-1, formerly known as somatomedin C), among other peptide hormones known collectively as somatomedins, which accounts for most of its biological activity.


A number of diseases and disorders are associated with the deficiency of GH. A deficiency can be congenital, acquired in childhood or in adult life, and can be partial or complete. In some cases, the deficiency is transient, but more commonly is permanent, and may occur in association with deficiencies of other pituitary hormones. Growth hormone deficiency in children leads to dwarfism, growth failure or short stature. Deficiency in adults is rare, but symptoms can include diminished body mass and poor bone density, and a number of psychological symptoms. Other hormonal or glandular disorders frequently coincide with deficiency of growth hormone.


Stimulating the increase in height in childhood is the most widely known effect of GH, and appears to function by at least two mechanisms: GH directly stimulates division and multiplication of chondrocytes of cartilage, and GH also stimulates production of IGF-1. IGF-1 has growth-stimulating effects on a wide variety of tissues. Additional IGF-1 is generated within target tissues, making it apparently both an endocrine and an autocrine/paracrine hormone. IGF-1 also has stimulatory effects on osteoblast and chondrocyte activity to promote bone growth.


Human growth hormone (hGH) plays a key role in somatic growth through its effects on the metabolism of proteins, carbohydrates and lipids. In addition to its effects on somatic growth, hGH has been shown to stimulate blood cells in vitro (Derfalvi et al., 1998; Merchav et al; 1988), to increase erythrocytes and hemoglobin counts (Valerio et al., 1997; Vihervuori et al., 1996), to enhance both proliferation and Ig production in plasma cell lines (Kimata and Yoshida, 1994) and to stimulate CD8+ cell counts and, to a lesser extent CD4+ cell counts (Geffner, 1997).


Injectable forms of GH have been marketed for GH deficiency in children and adults, Turner Syndrome, Prader-Willi Syndrome, and children small for gestational age. In addition, it has seen use in the battle against aging and for weight management, as well as the mobilization of cells capable of regenerating hematopoiesis in the peripheral blood.


The 22 kDA molecular weight of hGH is well below the threshold value for kidney filtration of about 70 kDa (Caliceti (2003) Adv Drug Deliv Rev 55:1261-1277), which contributes to the serum half-life of native hGH being less than 20 minutes in humans. Thus, commercial preparations of hGH must be dosed daily to achieve clinical benefit. A sustained-release form of GH, Nutropin Depot (Genentech and Alkermes) was approved by the FDA in 1999, allowing for fewer injections (every 2 or 4 weeks instead of daily); however, the product was discontinued in 2004.


Chemical modifications to a therapeutic protein can modify its in vivo clearance rate and subsequent serum half-life. One example of a common modification is the addition of a polyethylene glycol (PEG) moiety, typically coupled to the protein via an aldehyde or N-hydroxysuccinimide (NHS) group on the PEG reacting with an amine group (e.g. lysine side chain or the N-terminus). However, the conjugation step can result in the formation of heterogeneous product mixtures that need to be separated, leading to significant product loss and complexity of manufacturing and does not result in a completely chemically-uniform product. Also, the pharmacologic function of GH may be hampered if amino acid side chains in the vicinity of its binding site become modified by the PEGylation process. Other approaches include the genetic fusion of an Fc domain to the therapeutic GH protein. Conjugation of the Fc domain increases the size of the therapeutic protein, hence reducing the rate of clearance through the kidney. Additionally, the Fc domain confers the ability to bind to, and be recycled from lysosomes by, the FcRn receptor, which results in increased pharmacokinetic half-life. Unfortunately, the Fc domain does not fold efficiently during recombinant expression, and tends to form insoluble precipitates known as inclusion bodies. These inclusion bodies must be solubilized and functional protein must be renatured from the misfolded aggregate, a time-consuming, inefficient, and expensive process. Accordingly, there remains a need for growth hormone compositions that can increase the half-life and can be administered less frequently, but are safer and less complicated and costly to produce.


SUMMARY OF THE INVENTION

The present disclosure is directed to compositions and methods that can be useful for or the treatment of any disease, disorder or condition that is improved, ameliorated, or inhibited by the administration of growth hormone. In particular, the present invention provides compositions of fusion proteins comprising one or more extended recombinant polypeptides with a non-repetitive sequence and/or unstructured conformation (XTEN) linked to growth hormone (GH). In part, the present disclosure is directed to pharmaceutical compositions comprising the fusion proteins and the uses thereof for treating growth hormone-related diseases, disorders or conditions.


In one embodiment, the invention provides an isolated fusion protein, comprising a growth hormone that is at least about 90%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% identical to an amino acid sequence selected from Table 1, wherein said growth hormone is linked to an extended recombinant polypeptide (XTEN) of at least about 100, or at least about 200, or at least about 400, or at least about 800, or at least about 900, or at least about 1000, or at least about 2000, up to about 3000 amino acids residues, wherein the XTEN is characterized in that (a) the XTEN comprises at least about 200 contiguous amino acids that exhibits at least about 90%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% identical to a comparable length of an amino acid sequence selected from a sequence shown in Table 3; (b) the XTEN sequence lacks a predicted T-cell epitope when analyzed by TEPITOPE algorithm, wherein the TEPITOPE algorithm prediction for epitopes within the XTEN sequence is based on a score of −5, or −6, or −7, or −8, or −9 or greater; (c) the XTEN has a subsequence score of less than 10, or less than 9, or less than 8, or less than 7, or less than 6, or less than 5, or even less; and (d) the sum of glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) residues constitutes more than about 90%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% of the total amino acid residues of the XTEN. In one embodiment, the growth hormone of the isolated fusion protein is human growth hormone. In another embodiment, the isolated fusion protein comprises at least a second XTEN, wherein the fusion protein adopts a multiple-XTEN configuration shown in Table 5, or a variant thereof.


In another embodiment, the XTEN sequence of the GHXTEN fusion proteins is characterized in that is has greater than 90% random coil formation, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% random coil formation as determined by GOR algorithm; and the XTEN sequence has less than 2% alpha helices and 2% beta-sheets as determined by the Chou-Fasman algorithm.


In another embodiment, the invention provides GHXTEN fusion proteins, wherein the XTEN is characterized in that the sum of asparagine and glutamine residues is less than 10% of the total amino acid sequence of the XTEN, the sum of methionine and tryptophan residues is less than 2% of the total amino acid sequence of the XTEN, the XTEN sequence has less than 5% amino acid residues with a positive charge, the XTEN sequence has greater than 90% random coil formation, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% random coil formation as determined by GOR algorithm; and the XTEN sequence has less than 2% alpha helices and 2% beta-sheets as determined by the Chou-Fasman algorithm.


In another embodiment, the invention provides GHXTEN fusion proteins, wherein the XTEN is characterized in that at least about 80%, or at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least about 99% of the XTEN sequence consists of non-overlapping sequence motifs wherein each of the sequence motifs has about 9 to about 14 amino acid residues and wherein the sequence of any two contiguous amino acid residues does not occur more than twice in each of the sequence motifs the sequence motifs consist of four to six types of amino acids selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P).


In some embodiments, no one type of amino acid constitutes more than 30% of the XTEN sequence of the GHXTEN. In other embodiments, the XTEN has a sequence in which no three contiguous amino acids are identical unless the amino acid is serine, in which case no more than three contiguous amino acids are serine residues. In still other embodiments, at least about 80%, or about 90%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%, or 100% of the XTEN sequence consists of non-overlapping sequence motifs, wherein each of the sequence motifs has 12 amino acid residues. In one embodiment, the XTEN sequence consists of non-overlapping sequence motifs, wherein the sequence motifs are from one or more sequences of Table 2.


In some embodiments, GHXTEN fusion proteins exhibits enhanced pharmacokinetic properties compared to GH not linked to XTEN, wherein the enhanced properties include but are not limited to longer terminal half-life, larger area under the curve, increased time in which the blood concentration remains within the therapeutic window, increased time between consecutive doses, and decreased dose in moles over time. In some embodiments, the terminal half-life of the GHXTEN fusion protein administered to a subject is increased at least about two fold, or at least about three-fold, or at least about four-fold, or at least about five-fold, or at least about six-fold, or at least about eight-fold, or at least about ten-fold, or at least about 20-fold, or at least about 40-fold, or at least about 60-fold, or at least about 100-fold, or even higher as compared to GH not linked to XTEN and administered to a subject at a comparable dose. In other embodiments, the enhanced pharmacokinetic property is reflected by the fact that the blood concentrations that remain within the therapeutic window for the GHXTEN fusion protein for a given period are at least about two fold, or at least about three-fold, or at least about four-fold, or at least about five-fold, or at least about six-fold, or at least about eight-fold, or at least about ten-fold longer, or at least about 20-fold, or at least about 40-fold, or at least about 60-fold, or at least about 100-fold compared to GH not linked to XTEN and administered to a subject at a comparable dose. The increase in half-life and time spent within the therapeutic window permits less frequent dosing and decreased amounts of the fusion protein (in moles equivalent) that are administered to a subject, compared to the corresponding GH not linked to XTEN. In one embodiment, the therapeutically effective dose regimen results in a gain in time of at least two-fold, or at least three-fold, or at least four-fold, or at least five-fold, or at least six-fold, or at least eight-fold, or at least 10-fold, or at least about 20-fold, or at least about 40-fold, or at least about 60-fold, or at least about 100-fold between at least two consecutive Cmax peaks and/or Cmin troughs for blood levels of the fusion protein compared to the corresponding GH not linked to the fusion protein and administered using a comparable dose regimen to a subject.


In some embodiments, the XTEN enhances thermostability of a biologically active protein when linked to the biologically active protein wherein the thermostability is ascertained by measuring the retention of biological activity after exposure to a temperature of about 37° C. for at least about 7 days of the biologically active protein in comparison to the XTEN linked to the biologically active protein. In one embodiment of the foregoing, the retention of biological activity in increased by at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, or about 150%, at least about 200%, at least about 300%, or about 500% longer compared to the GH not linked to the XTEN comprises of the XTEN.


In some embodiments, the isolated fusion protein with at least a first XTEN comprises a GH wherein the GH is human growth hormone. In some embodiments, the isolated fusion protein further comprises a second XTEN, which can be identical or can be different from the first XTEN, and wherein the fusion protein adopts a multiple-XTEN configuration shown in Table 5. In one embodiment of the foregoing, the first and the second XTEN can each be a sequence selected from Table 3, or can exhibit at least at least about 80%, or at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least about 99% or 100% sequence identity to a sequence selected from Table 3. In another embodiment, the isolated fusion protein compring a second XTEN sequence adopts a multiple-XTEN configuration shown in Table 5.


In one embodiment, the isolated fusion protein is less immunogenic compared to the GH not linked to the XTEN, wherein immunogenicity is ascertained by, e.g., measuring production of IgG antibodies selectively binding to the biologically active protein after administration of comparable doses to a subject.


In some embodiments, the growth hormone peptide and the XTEN of the fusion protein is linked via a spacer, wherein the spacer sequence comprises between about 1 to about 50 amino acid residues that optionally comprises a cleavage sequence. In one embodiment, the cleavage sequence is susceptible to cleavage by a protease. Non-limiting examples of such protease include FXIa, FXIIa, kallikrein, FVIIa, FIXa, FXa, thrombin, elastase-2, granzyme B, MMP-12, MMP-13, MMP-17 or MMP-20, TEV, enterokinase, rhinovirus 3C protease, and sortase A.


In some embodiments, the isolated fusion protein is configured to have reduced binding affinity for a target receptor of the corresponding GH, as compared to the corresponding GH not linked to the fusion protein. In one embodiment, the GHXTEN fusion protein exhibits binding affinity for a target receptor of the GH in the range of about 0.01%-30%, or about 0.1% to about 20%, or about 1% to about 15%, or about 2% to about 10% of the binding affinity of the corresponding GH that lacks the XTEN. In another embodiment, the GHXTEN fusion protein exhibits binding affinity for a target receptor of the GH that is reduced at least about 3-fold, or at least about 5-fold, or at least about 6-fold, or at least about 7-fold, or at least about 8-fold,or at least about 9-fold, or at least about 10-fold, or at least about 12-fold, or at least about 15-fold, or at least about 17-fold, or at least about 20-fold, or at least about 30-fold, or at least about 50-fold, or at least about 100-fold less binding affinity compared to GH not linked to XTEN. In a related embodiment, a fusion protein with reduced affinity can have reduced receptor-mediated clearance and a corresponding increase in half-life of at least about 3-fold, or at least about 5-fold, or at least about 6-fold, or at least about 7-fold, or at least about 8-fold,or at least about 9-fold, or at least about 10-fold, or at least about 12-fold, or at least about 15-fold, or at least about 17-fold, or at least about 20-fold, or at least about 30-fold, or at least about 50-fold, or at least about 100-fold longer compared to the corresponding GH that is not linked to the fusion protein.


In one embodiment, the invention provides an isolated GHXTEN fusion protein comprising an amino acids sequence that has at least about 80%, or at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least about 99%, or 100% sequence identity to a sequence selected from Table 35, Table 36, and Table 37.


In some embodiments, the invention provides GHXTEN fusion proteins wherein the GHXTEN exhibits increased solubility of at least three-fold, or at least about four-fold, or at least about five-fold, or at least about six-fold, or at least about seven-fold, or at least about eight-fold, or at least about nine-fold, or at least about ten-fold, or at least about 15-fold, or at least a 20-fold, or at least 40-fold, or at least 60-fold at physiologic conditions compared to the GH not linked to the fusion protein.


In some embodiments, GHXTEN fusion proteins exhibit an increased apparent molecular weight as determined by size exclusion chromatography, compared to the actual molecular weight, wherein the apparent molecular weight is at least about 100 kD, or at least about 150 kD, or at least about 200 kD, or at least about 300 kD, or at least about 400 kD, or at least about 500 kD, or at least about 600kD, or at least about 700 kD, while the actual molecular weight of each GH component of the fusion protein is less than about 25 kD. Accordingly, the GHXTEN fusion proteins can have an Apparent Molecular Weight that is about 4-fold greater, or about 5-fold greater, or about 6-fold greater, or about 7-fold greater, or about 8-fold greater than the actual molecular weight of the fusion protein. In some cases, the isolated GHXTEN fusion protein of the foregoing embodiments exhibits an apparent molecular weight factor under physiologic conditions that is greater than about 4, or about 5, or about 6, or about 7, or about 8.


The invention contemplates GHXTEN fusion proteins compositions comprising, but not limited to GH selected from Table 1 (or fragments or sequence variants thereof), XTEN selected from Table 3 (or sequence variants thereof) that are in a configuration selected from Table 5. Generally, the resulting GHXTEN will retain at least a portion of the biological activity of the corresponding GH not linked to the XTEN. In other cases, the GH component either becomes biologically active or has an increase in activity upon its release from the XTEN by cleavage of an optional cleavage sequence incorporated within spacer sequences into the GHXTEN.


In one embodiment of the GHXTEN composition, the invention provides a fusion protein of formula I:





(XTEN)x-GH-(XTEN)y   I


wherein independently for each occurrence, GH is a is a growth hormone; x is either 0 or 1 and y is either 0 or 1 wherein x+y≥1; and XTEN is an extended recombinant polypeptide.


In some embodiments, the XTEN is fused to the growth hormone on an N- or C-terminus of the growth hormone. In some embodiments, the isolated fusion protein comprises a human growth hormone and a first and a second XTEN selected from AE912, AM923, AE144, and AE288.


In another embodiment of the GHXTEN composition, the invention provides a fusion protein of formula II:





(XTEN)x-(GH)-(S)y-(XTEN)y   II


wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1 and y is either 0 or 1 wherein x+y≥1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula III:





(GH)-(S)x-(XTEN)-(S)y-(GH)-(S)z-(XTEN)z   III


wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; z is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula IV:





(XTEN)x-(S)y-(GH)-(S)z-(XTEN)-(GH)   IV


wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; z is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion growth hormone, wherein the fusion protein is of formula V:





(GH)x-(S)x-(GH)-(S)y-(XTEN)   V


wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula VI:





(XTEN)-(S)x-(GH)-(S)y-(GH)   VI


wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula VII:





(XTEN)-(S)x-(GH)-(S)y-(GH)-(XTEN)   VII


wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula VIII:





((S)m-(GH)x-(S)n-(XTEN)y-(S)o)t   VIII


wherein t is an integer that is greater than 0 (1, 2, 3, etc.); independently each of m, n, o, x, and y is an integer (0, 1, 2, 3, etc.), GH is a is a growth hormone; S is an spacer, optionally comprises a cleavage site; and XTEN is an extended recombinant polypeptide, with the proviso that: (1) x+y>1, (2) when t=1, x>0 and y>0, (3) when there is more than one GH, S, or XTEN, each GH, XTEN, or S are the same or are independently different; and (4) when t>1, each m, n, o, x, or y within each subunit are the same or are independently different.


In some embodiments, administration of a therapeutically effective dose of a fusion protein of an embodiment of formulas I-VIII to a subject in need thereof can result in a gain in time of at least two-fold, or at least three-fold, or at least four-fold, or at least five-fold or more spent within a therapeutic window for the fusion protein compared to the corresponding GH not linked to the XTEN of and administered at a comparable dose to a subject. In other cases, administration of a therapeutically effective dose of a fusion protein of an embodiment of formulas I-VIII to a subject in need thereof can result in a gain in time between consecutive doses necessary to maintain a therapeutically effective dose regimen of at least 48 h, or at least 72 h, or at least about 96 h, or at least about 120 h, or at least about 7 days, or at least about 14 days, or at least about 21 days between consecutive doses compared to a GH not linked to XTEN and administered at a comparable dose.


The fusion proteins can be designed to have different configurations, N- to C-terminus, of a GH, XTEN, and optional spacer sequences, including but not limited to XTEN-GH, GH-XTEN, XTEN-S-GH, GH-S-XTEN, XTEN-GH-XTEN, GH-GH-XTEN, XTEN-GH-GH, GH-S-GH-XTEN, XTEN-GH-S-GH, and multimers thereof. The choice of configuration can, as disclosed herein, confer particular pharmacokinetic, physico/chemical, or pharmacologic properties.


In some embodiments, the isolated fusion protein is characterized in that: (i) it has a longer half-life compared to the corresponding growth hormone that lacks the XTEN; (ii) when a smaller molar amount of the fusion protein is administered to a subject in comparison to the corresponding growth hormone that lacks the XTEN administered to a subject under an otherwise equivalent dose regimen, the fusion protein achieves a comparable area under the curve (AUC) as the corresponding growth hormone that lacks the XTEN; (iii) when a smaller molar amount of the fusion protein is administered to a subject in comparison to the corresponding growth hormone that lacks the XTEN administered to a subject under an otherwise equivalent dose regimen, the fusion protein achieves a comparable therapeutic effect as the corresponding growth hormone that lacks the XTEN; (iv) when the fusion protein is administered to a subject less frequently in comparison to the corresponding growth hormone that lacks the XTEN administered to a subject using an otherwise equivalent molar amount, the fusion protein achieves a comparable area under the curve (AUC) as the corresponding growth hormone that lacks the XTEN; (v) when the fusion protein is administered to a subject less frequently in comparison to the corresponding growth hormone that lacks the XTEN administered to a subject using an otherwise equivalent molar amount, the fusion protein achieves a comparable therapeutic effect as the corresponding growth hormone that lacks the XTEN; (vi) when an accumulatively smaller molar amount of the fusion protein is administered to a subject in comparison to the corresponding growth hormone that lacks the XTEN administered to a subject under an otherwise equivalent dose period, the fusion protein achieves comparable area under the curve (AUC) as the corresponding growth hormone that lacks the XTEN; or (vii) when an accumulatively smaller molar amount of the fusion protein is administered to a subject in comparison to the corresponding growth hormone that lacks the XTEN administered to a subject under an otherwise equivalent dose period, the fusion protein achieves comparable therapeutic effect as the corresponding growth hormone that lacks the XTEN.


In one embodiment, the GHXTEN fusion proteins of formulas I-VIII described above exhibit a biological activity of at least about 0.1%, or at least about 0.1%, or at least about 1%, or at least about 2%, or at least about 3%, or at least about 4%, or at least about 5%, or at least about 10%, or at least about 20%, or at least about 30%, or at least 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90%, or at least about 95% of the biological activity compared to the GH not linked to the fusion protein. In another embodiment, the GHXTEN fusion proteins of formulas I-VIII bind the same receptors or ligands as the corresponding parental biologically active protein that is not covalently linked to the fusion protein.


The invention provides a method of producing a fusion protein comprising a growth hormone fused to one or more extended recombinant polypeptides (XTEN), comprising: (a) providing host cell comprising a recombinant polynucleotide molecule encoding the fusion protein (b) culturing the host cell under conditions permitting the expression of the fusion protein; and (c) recovering the fusion protein. In one embodiment of the method, the growth hormone of the fusion protein has at least 90% sequence identity to human growth hormone or a sequence selected from Table 1. In another embodiment of the method, the one or more XTEN of the expressed fusion protein has at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% to about 100% sequence identity to a sequence selected from Table 3. In another embodiment of the method, the polynucleotide encoding the XTEN is codon optimized for enhanced expression of said fusion protein in the host cell. In another embodiment of the method, the host cell is a prokaryotic cell. In another embodiment of the method, the host cell is E. coli. In another embodiment of the method the isolated fusion protein is recovered from the host cell cytoplasm in substantially soluble form.


The invention provides isolated nucleic acids comprising a polynucleotide sequence selected from (a) a polynucleotide encoding the fusion protein of any of the foregoing embodiments, or (b) the complement of the polynucleotide of (a). In one embodiment, the invention provides an isolated nucleic acid comprising a polynucleotide sequence that has at least 80% sequence identity, or about 85%, or at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% to about 100% sequence identity to (a) a polynucleotide sequence of comparable length selected from Table 35, Table 36, and Table 37; or (b) the complement of the polynucleotide of (a). The invention provides expression vectors comprising the nucleic acid of any of the embodiments hereinabove described in this paragraph. In one embodiment, the expression vector of the foregoing further comprises a recombinant regulatory sequence operably linked to the polynucleotide sequence. In another embodiment, the polynucleotide sequence of the expression vectors of the foregoing is fused in frame to a polynucleotide encoding a secretion signal sequence, which can be a prokaryotic signal sequence. In one embodiment, the secretion signal sequence is selected from OmpA, DsbA, and PhoA signal sequences.


The invention provides a host cell, which can comprise an expression vector disclosed in the foregoing paragraph. In one embodiment, the host cell is a prokaryotic cell. In another embodiment, the host cell is E. coli. In another embodiment, the host cell is a eukaryotic cell.


In one embodiment, the invention provides pharmaceutical compositions comprising the fusion protein of any of the foregoing embodiments and a pharmaceutically acceptable carrier. In another embodiment, the invention provides kits, comprising packaging material and at least a first container comprising the pharmaceutical composition of the foregoing embodiment and a label identifying the pharmaceutical composition and storage and handling conditions, and a sheet of instructions for the reconstitution and/or administration of the pharmaceutical compositions to a subject.


The invention provides a method of treating a growth-hormone related condition in a subject, comprising administering to the subject a therapeutically effective amount of the fusion protein of any of the foregoing embodiments. In one embodiment of the method, the growth-hormone related condition is selected from growth-hormone deficiency, Turner's Syndrome, Prader-Willi Syndrome, idiopathic short stature, AIDS wasting, multiple sclerosis, Crohn's disease, ulcerative colitis, and muscular dystrophy.


In some embodiments, the composition can be administered subcutaneously, intramuscularly, or intravenously. In one embodiment, the composition is administered at a therapeutically effective amount. In one embodiment, the therapeutically effective amount results in a gain in time spent within a therapeutic window for the fusion protein compared to the corresponding GH of the fusion protein not linked to the fusion protein and administered at a comparable dose to a subject. The gain in time spent within the therapeutic window can at least three-fold longer than the corresponding GH not linked to the fusion protein, or alternatively, at least four-fold, or five-fold, or six-fold, or seven-fold, or eight-fold, or nine-fold, or at least 10-fold, or at least 20-fold, or at least about 30-fold, or at least about 50-fold, or at least about 100-fold longer than the corresponding GH not linked to the fusion protein. In some embodiments of the method of treatment, (i) a smaller molar amount of (e.g. of about two-fold less, or about three-fold less, or about four-fold less, or about five-fold less, or about six-fold less, or about eight-fold less, or about 100 fold-less or greater) the fusion protein is administered in comparison to the corresponding growth hormone that lacks the XTEN under an otherwise same dose regimen, and the fusion protein achieves a comparable area under the curve and/or a comparable therapeutic effect as the corresponding growth hormone that lacks the XTEN; (ii) the fusion protein is administered less frequently (e.g., every two days, about every seven days, about every 14 days, about every 21 days, or about, monthly) in comparison to the corresponding growth hormone that lacks the XTEN under an otherwise same dose amount, and the fusion protein achieves a comparable area under the curve and/or a comparable therapeutic effect as the corresponding growth hormone that lacks the XTEN; or (iii) an accumulative smaller molar amount (e.g. about 5%, or about 10%, or about 20%, or about 40%, or about 50%, or about 60%, or about 70%, or about 80%, or about 90% less) of the fusion protein is administered in comparison to the corresponding growth hormone that lacks the XTEN under the otherwise same dose regimen the fusion protein achieves a comparable area under the curve and/or a comparable therapeutic effect as the corresponding growth hormone that lacks the XTEN. The accumulative smaller molar amount is measure for a period of at least about one week, or about 14 days, or about 21 days, or about one month. In some embodiments of the method, the therapeutic effect is a measured parameter selected from IGF-1 concentrations, IGFBP3 concentration, height velocity, lean body mass, total body fat, trunk fat, response to insulin challenge, rate of division of chondrocytes, chondrocyte numbers, bone density, bone growth, and increase in epiphyseal plate width.


In another embodiment, invention provides a method of treating a disease, disorder or condition, comprising administering the pharmaceutical composition described above to a subject using multiple consecutive doses of the pharmaceutical composition administered using a therapeutically effective dose regimen. In one embodiment of the foregoing, the therapeutically effective dose regimen can result in a gain in time of at least three-fold, or alternatively, at least four-fold, or five-fold, or six-fold, or seven-fold, or eight-fold, or nine-fold, or at least 10-fold, or at least 20-fold, or at least about 30-fold, or at least about 50-fold, or at least about 100-fold longer time between at least two consecutive Cmax peaks and/or Cmin troughs for blood levels of the fusion protein compared to the corresponding GH of the fusion protein not linked to the fusion protein and administered at a comparable dose regimen to a subject. In another embodiment of the foregoing, the administration of the fusion protein results in improvement in at least one measured parameter of a growth hormone-related disease using less frequent dosing or a lower total dosage in moles of the fusion protein of the pharmaceutical composition compared to the corresponding biologically active protein component(s) not linked to the fusion protein and administered to a subject d using a therapeutically effective regimen to a subject.


The invention further provides use of the compositions comprising the fusion protein of any of the foregoing embodiments in the preparation of a medicament for treating a disease, disorder or condition in a subject in need thereof. In one embodiment of the foregoing, the disease, disorder or condition is selected from group consisting of Turner's Syndrome, Prader-Willi Syndrome, idiopathic short stature, AIDS wasting, multiple sclerosis, Crohn's disease, ulcerative colitis, and muscular dystrophy. Any of the disclosed embodiments can be practiced alone or in combination depending on the interested application.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the invention may be further explained by reference to the following detailed description and accompanying drawings that sets forth illustrative embodiments.



FIG. 1 shows schematic representations of exemplary GHXTEN fusion proteins (FIGS. 1A-H), all depicted in an N- to C-terminus orientation. FIG. 1A shows two different configurations of GHXTEN fusion proteins (100), each comprising a single growth hormone (GH) and an XTEN, the first of which has an XTEN molecule (102) attached to the C-terminus of a GH (103), and the second of which has an XTEN molecule attached to the N-terminus of a GH (103). FIG. 1B shows two different configurations of GHXTEN fusion proteins (100), each comprising a single GH, a spacer sequence and an XTEN, the first of which has an XTEN molecule (102) attached to the C-terminus of a spacer sequence (104) and the spacer sequence attached to the C-terminus of a GH (103) and the second of which has an XTEN molecule attached to the N-terminus of a spacer sequence (104) and the spacer sequence attached to the N-terminus of a GH (103). FIG. 1C shows two different configurations of GHXTEN fusion proteins (101), each comprising two molecules of a single GH and one molecule of an XTEN, the first of which has an XTEN linked to the C-terminus of a first GH and that GH is linked to the C-terminus of a second GH, and the second of which is in the opposite orientation in which the XTEN is linked to the N-terminus of a first GH and that GH is linked to the N-terminus of a second GH. FIG. 1D shows two different configurations of GHXTEN fusion proteins (101), each comprising two molecules of a single GH, a spacer sequence and one molecule of an XTEN, the first of which has an XTEN linked to the C-terminus of a spacer sequence and the spacer sequence linked to the C-terminus of a first GH which is linked to the C-terminus of a second GH, and the second of which is in the opposite orientation in which the XTEN is linked to the N-terminus of a spacer sequence and the spacer sequence is linked to the N-terminus of a first GH that that GH is linked to the N-terminus of a second GH. FIG. 1E shows two different configurations of GHXTEN fusion proteins (101), each comprising two molecules of a single GH, a spacer sequence and one molecule of an XTEN, the first of which has an XTEN linked to the C-terminus of a first GH and the first GH linked to the C-terminus of a spacer sequence which is linked to the C-terminus of a second GH molecule, and the second of which is in the opposite configuration of XTEN linked to the N-terminus of a first GH which is linked to the N-terminus of a spacer sequence which in turn is linked to the N-terminus of a second molecule of GH. FIG. 1F shows a configuration of GHXTEN fusion protein (105), each comprising one molecule of GH and two molecules of an XTEN linked to the N-terminus and the C-terminus of the GH. FIG. 1G shows a configuration (106) of a single GH linked to two XTEN, with the second XTEN separated from the GH by a spacer sequence. FIG. 1H s a configuration (106) of a two GH linked to two XTEN, with the second XTEN linked to the C-terminus of the first GH nad the N-terminus of the second GH, which is at the C-terminus of the GHXTEN.



FIG. 2 is a schematic illustration of exemplary polynucleotide constructs (FIGS. 2A-H) of GHXTEN genes that encode the corresponding GHXTEN polypeptides of FIG. 1; all depicted in a 5′ to 3′ orientation. In these illustrative examples the genes encode GHXTEN fusion proteins with one GH and XTEN (200); or one GH, one spacer sequence and one XTEN (200); two GH and one XTEN (201); or two GH, a spacer sequence and one XTEN (201); one GH and two XTEN (205); or two GH and two XTEN (206). In these depictions, the polynucleotides encode the following components: XTEN (202), GH (203), and spacer amino acids that can include a cleavage sequence (204), with all sequences linked in frame.



FIG. 3 is a schematic illustration of two exemplary monomeric GHXTEN and the ability of the monomeric fusion proteins to bind to a target receptor on a cell surface, with subsequent cell signaling. FIG. 3A shows a GHXTEN fusion protein (100) consisting of a GH (103) and an XTEN (102) and a second GHXTEN fusion protein (105) consisting of a GH linked to two XTEN (105). FIG. 3B shows the interaction of the GHXTEN with the GH on the C-terminus (100) and the GHXTEN with an XTEN on the C-terminus (105) with target receptors (108) to GH on a cell surface (107). In this case, binding to the receptor with high affinity is exhibited when GH has a free C-terminus, while the GHXTEN with a C-terminal XTEN does not bind tightly to the receptor, and disassociates, as seen in FIG. 3C. FIG. 3D shows that the bound GHXTEN (100) with high binding affinity remains bound to the receptor (106) and has been internalized into an endosome (110) within the cell, illustrating receptor-mediated clearance of the bound GH and triggering cell signaling (109), portrayed as stippled cytoplasm.



FIG. 4 is a schematic flowchart of representative steps in the assembly, production and the evaluation of a XTEN.



FIG. 5 is a schematic flowchart of representative steps in the assembly of a GHXTEN polynucleotide construct encoding a fusion protein. Individual oligonucleotides 501 are annealed into sequence motifs 502 such as a 12 amino acid motif (“12-mer”), which is subsequently ligated with an oligo containing BbsI, and KpnI restriction sites 503. Additional sequence motifs from a library are annealed to the 12-mer until the desired length of the XTEN gene 504 is achieved. The XTEN gene is cloned into a stuffer vector. The vector encodes a Flag sequence 506 followed by a stopper sequence that is flanked by BsaI, BbsI, and KpnI sites 507 and an exendin-4 gene 508, resulting in the gene 500 encoding an XTEN-GH fusion protein.



FIG. 6 is a schematic flowchart of representative steps in the assembly of a gene encoding fusion protein comprising a growth homroe (GH) and XTEN, its expression and recovery as a fusion protein, and its evaluation as a candidate GHXTEN product.



FIG. 7 is a schematic representation of the design of GHXTEN expression vectors with different processing strategies. FIG. 7A shows an exemplary expression vector encoding XTEN fused to the 3′ end of the sequence encoding GH. Note that no additional leader sequences are required in this vector. FIG. 7B depicts an expression vector encoding XTEN fused to the 5′ end of the sequence encoding GH with a CBD leader sequence and a TEV protease site. FIG. 7C depicts an expression vector as in FIG. 7B where the CBD and TEV processing site have been replaced with an optimized N-terminal leader sequence (NTS). FIG. 7D depicts an expression vector encoding an NTS sequence, an XTEN, a sequence encoding GH, and than a second sequence encoding an XTEN.



FIG. 8 is a schematic representation of the step-wise construction of GHXTEN genes that contain N-terminal XTEN encoding sequences linked to hGH and the subsequent linkage of sequences encoding either 144 or 288 XTEN linked to the C-terminus of XTEN, as described in Example 22.



FIG. 9 shows results of expression assays for the indicated constructs comprising GFP and XTEN sequences. The expression cultures were assayed using a fluorescence plate reader (excitation 395 nm, emission 510 nm) to determine the amount of GFP reporter present. The results, graphed as box and whisker plots, indicate that while median expression levels were approximately half of the expression levels compared to the “benchmark” CBD N-terminal helper domain, the best clones from the libraries were much closer to the benchmarks, indicating that further optimization around those sequences was warranted. The results also show that the libraries starting with amino acids MA had better expression levels than those beginning with ME (see Example 14).



FIG. 10 shows three randomized libraries used for the third and fourth codons in the N-terminal sequences of clones from LCW546, LCW547 and LCW552. The libraries were designed with the third and fourth residues modified such that all combinations of allowable XTEN codons were present at these positions, as shown. In order to include all the allowable XTEN codons for each library, nine pairs of oligonucleotides encoding 12 amino acids with codon diversities of third and fourth residues were designed, annealed and ligated into the NdeI/BsaI restriction enzyme digested stuffer vector pCW0551 (Stuffer-XTEN_AM875-GFP), and transformed into E. coli BL21Gold(DE3) competent cells to obtain colonies of the three libraries LCW0569 (SEQ ID NOS 845-846, respectively, in order of appearance), LCW0570 (SEQ ID NOS 847-848, respectively, in order of appearance), and LCW0571 (SEQ ID NOS 849-850, respectively, in order of appearance).



FIG. 11 shows a histogram of a retest of the top 75 clones after the optimization step, as described in Example 15, for GFP fluorescence signal, relative to the benchmark CBD_AM875 construct. The results indicated that several clones were now superior to the benchmark clones.



FIG. 12 is a schematic of a combinatorial approach undertaken for the union of codon optimization preferences for two regions of the N-terminus 48 amino acids. The approach created novel 48mers at the N-terminus of the XTEN protein for evaluation of the optimization of expression that resulted in leader sequences that may be a solution for expression of XTEN proteins where the XTEN is N-terminal to the GH.



FIG. 13 shows an SDS-PAGE gel confirming expression of preferred clones obtained from the XTEN N-terminal codon optimization experiments, in comparison to benchmark XTEN clones comprising CBD leader sequences at the N-terminus of the construct sequences, as described in Example 17.



FIG. 14 shows an SDS-PAGE gel of samples from a stability study of the fusion protein of XTEN_AE864 fused to the N-terminus of GFP (see Example 39). The GFP-XTEN was incubated in cynomolgus plasma and rat kidney lysate for up to 7 days at 37° C. In addition, GFP-XTEN administered to cynomolgus monkeys was also assessed. Samples were withdrawn at 0, 1 and 7 days and analyzed by SDS PAGE followed by detection using Western analysis and detection with antibodies against GFP.



FIG. 15 shows the results of a receptor binding assay for hGH in which the binding activity of hGH fused to K288 polypeptide is compared to free hGH, as described in Example 25.



FIG. 16 shows the results of in vitro binding affinity assay of hGH-AM864 (circles) and AM864-hGH (inverted triangles) to hGHR-Fc, as described in Example 25. Unmodified recombinant hGH (squares) is shown for comparison.



FIG. 17 shows the effects of heat treatment on stability of hGH and AM864-hGH, as described in Example 26. FIG. 17A is an SDS-PAGE gel of the two preparations treated at 25° C. and 80° C. for 15 minutes, while FIG. 17B shows the corresponding percentage of receptor binding activity of the 80° C. sample relative to the 25° C. treatment, indicating that the XTEN conferred heat stability and retention of activity to the hGH and the GHXTEN fusion protein.



FIG. 18 shows results of an ELISA-based assay to determine the ability of addition of a C-terminus XTEN to reduce binding affinity of GHXTEN to bind to GH receptor, as described in Example 25.



FIG. 19 shows SDS-PAGE analysis of hGH fused to K288, with samples from throughout the purification process, as described in Example 19.



FIG. 20 shows SDS-PAGE analysis of 5 μg of final purified protein of hGH fused to Y576 in the configurations of hGH-Y576 and Y576-hGH subjected to both non-reducing and reducing SDS-PAGE, as described in Example 24, using NuPAGE 4-12% Bis-Tris gel from Invitrogen according to manufacturer's specifications.



FIG. 21 shows size exclusion chromatography profiles of two GHXTEN constructs Y576-GH and hGH-Y576 (N- to C-terminus), shown as an overlay, as described in Example 24.



FIG. 22 shows the pharmacokinetic profile of two GHXTEN constructs Y576-GH and hGH-Y576 (N- to C-terminus) following intravenous administration to cynomolgus monkeys, as described in Example 30. The results show that the orientation (N- versus C-terminal) of hGH relative to the XTEN did not affect the clearance of the fusion proteins.



FIG. 23 shows the pharmacokinetic profile after a single dose of 5 mg/kg AM864-hGH administered subcutaneously to cynomolgus monkeys, with the derived equivalent hGH concentration shown (dashed line), as described in Example 30. Terminal half-life was calculated as 33 hours by WinNonLin using a single compartment fit.



FIG. 24 shows the results of IGF-1 secretion in cynomolgus monkeys in response to administration of hGH or the GHXTEN AM864-hGH at the doses indicated, as described in Example 27.



FIG. 25 shows the effects of administration of hGH or AM864-hGH at the indicated doses on body weight in a hypox rat model, as described in Example 28. The results show retention of biologic activity by the GHXTEN constructs that is equivalent in potency to hGH, yet with less frequent dosing.



FIG. 26 shows the comparative effects of administration of placebo, hGH, and AM864-hGH on growth of cartilage in the tibial epiphyseal plate in hypox rats, shown in histologic cross-sections of the tibia after 9 days of treatment, as described in Example 29.



FIG. 27 shows the pharmacokinetic results of four hGH GHTXEN fusion proteins administered to rats by the subcutaneous route, compared to unmodified recombinant hGH, as described in Example 31.



FIG. 28 shows the concentration profiles of three hGH XTEN constructs after subcutaneous administration to cynomolgus monkeys, as described in Example 32.



FIG. 29 shows the results of a pharmacokinetic study of three doses levels of the GHXTEN AE912-hGH-AE144 administered to male and female cynos SC at 0.3 (open circles), 1.5 (squares), and 7.5 mg/kg (triangles), as described in Example 33.



FIG. 30. Shows the results of IGF-1 levels in cynos in response to the administration of AE912-hGH-AE144, as described in Example 33 (same groups as per FIG. 29).



FIG. 31 shows the results of an experiment to compare bioavailability of the GHXTEN AE912-hGH-AE144 administered by three different routes, as described in Example 34. AE912-hGH-AE144 was administered to male and female cynos SC at 1.5 mg/kg via intravenous (trangle), subcutaneous (open circles), and intramuscular (squares) routes, with plasma concentrations of the GHXTEN shown in the figure.



FIG. 32 shows the effects of administration of vehicle (open circles), recombinant hGH dosed at 5 nmol/kg/day (closed circles), the GHXTEN AE912-hGH-AE144 at varying doses and dose frequency (closed triangles=0.5 nmol/kg/day; open triangles=1.5 nmol/day; squares=3 nmol/kg/Q2D) on body weight in hypox rats, as described in Example 35.



FIG. 33 shows results of a modeled projection of the ability of hGH or the GHXTEN to maintain blood levels within a therapeutic window in the hypox rat model, based on results derived from the data portrayed in FIG. 32, using the same dosing groups.



FIG. 34 shows results of a of a size exclusion chromatography analysis of glucagon-XTEN construct samples measured against protein standards of known molecular weight, with the graph output as absorbance versus retention volume, as described in Example 37. The glucagon-XTEN constructs are 1) glucagon-Y288; 2) glucagonY-144; 3) glucagon-Y72; and 4) glucagon-Y36. The results indicate an increase in apparent molecular weight with increasing length of XTEN moiety.



FIG. 35 shows the pharmacokinetic profile (plasma concentrations) in cynomolgus monkeys after single doses of different compositions of GFP linked to unstructured polypeptides of varying length, administered either subcutaneously or intravenously, as described in Example 38. The compositions were GFP-L288, GFP-L576, GFP-XTEN_AF576, GFP-Y576 and XTEN_AD836-GFP. Blood samples were analyzed at various times after injection and the concentration of GFP in plasma was measured by ELISA using a polyclonal antibody against GFP for capture and a biotinylated preparation of the same polyclonal antibody for detection. Results are presented as the plasma concentration versus time (h) after dosing and show, in particular, a considerable increase in half-life for the XTEN_AD836-GFP, the composition with the longest sequence length of XTEN. The construct with the shortest sequence length, the GFP-L288 had the shortest half-life.



FIG. 36 illustrates allometric scaling results for predicted human response to Ex4-XTEN_AE864 based on measured results from four animal species; i.e., mice, rats, cynomolgus monkeys and dogs. FIG. 36A shows measured terminal half-life versus body mass, with a predicted T½ in humans of 139 h. FIG. 36B shows measured drug clearance versus body mass, with a predicted clearance rate value of 30 ml/h in humans. FIG. 36C shows measured volume of distribution versus body mass, with a predicted value of 5970 ml in humans.



FIG. 37 shows the near UV circular dichroism spectrum of Ex4-XTEN_AE864, performed as described in Example 42.





DETAILED DESCRIPTION OF THE INVENTION

Before the embodiments of the invention are described, it is to be understood that such embodiments are provided by way of example only, and that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention.


Definitions

As used herein, the following terms have the meanings ascribed to them unless specified otherwise.


As used in the specification and claims, the singular forms “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a cell” includes a plurality of cells, including mixtures thereof.


The terms “polypeptide”, “peptide”, and “protein” are used interchangeably herein to refer to polymers of amino acids of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids. The terms also encompass an amino acid polymer that has been modified, for example, by disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component.


As used herein the term “amino acid” refers to either natural and/or unnatural or synthetic amino acids, including but not limited to glycine and both the D or L optical isomers, and amino acid analogs and peptidomimetics. Standard single or three letter codes are used to designate amino acids.


The term “natural L-amino acid” means the L optical isomer forms of glycine (G), proline (P), alanine (A), valine (V), leucine (L), isoleucine (I), methionine (M), cysteine (C), phenylalanine (F), tyrosine (Y), tryptophan (W), histidine (H), lysine (K), arginine (R), glutamine (Q), asparagine (N), glutamic acid (E), aspartic acid (D), serine (S), and threonine (T).


The term “non-naturally occurring,” as applied to sequences and as used herein, means polypeptide or polynucleotide sequences that do not have a counterpart to, are not complementary to, or do not have a high degree of homology with a wild-type or naturally-occurring sequence found in a mammal. For example, a non-naturally occurring polypeptide or fragment may share no more than 99%, 98%, 95%, 90%, 80%, 70%, 60%, 50% or even less amino acid sequence identity as compared to a natural sequence when suitably aligned.


The terms “hydrophilic” and “hydrophobic” refer to the degree of affinity that a substance has with water. A hydrophilic substance has a strong affinity for water, tending to dissolve in, mix with, or be wetted by water, while a hydrophobic substance substantially lacks affinity for water, tending to repel and not absorb water and tending not to dissolve in or mix with or be wetted by water Amino acids can be characterized based on their hydrophobicity. A number of scales have been developed. An example is a scale developed by Levitt, M, et al., J Mol Biol (1976) 104:59, which is listed in Hopp, T P, et al., Proc Natl Acad Sci USA (1981) 78:3824. Examples of “hydrophilic amino acids” are arginine, lysine, threonine, alanine, asparagine, and glutamine. Of particular interest are the hydrophilic amino acids aspartate, glutamate, and serine, and glycine. Examples of “hydrophobic amino acids” are tryptophan, tyrosine, phenylalanine, methionine, leucine, isoleucine, and valine.


A “fragment” is a truncated form of a native biologically active protein that retains at least a portion of the therapeutic and/or biological activity. A “variant” is a protein with sequence homology to the native biologically active protein that retains at least a portion of the therapeutic and/or biological activity of the biologically active protein. For example, a variant protein may share at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% amino acid sequence identity with the reference biologically active protein. As used herein, the term “biologically active protein moiety” includes proteins modified deliberately, as for example, by site directed mutagenesis, insertions, or accidentally through mutations.


A “host cell” includes an individual cell or cell culture which can be or has been a recipient for the subject vectors. Host cells include progeny of a single host cell. The progeny may not necessarily be completely identical (in morphology or in genomic of total DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation. A host cell includes cells transfected in vivo with a vector of this invention.


“Isolated,” when used to describe the various polypeptides disclosed herein, means polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. As is apparent to those of skill in the art, a non-naturally occurring polynucleotide, peptide, polypeptide, protein, antibody, or fragments thereof, does not require “isolation” to distinguish it from its naturally occurring counterpart. In addition, a “concentrated”, “separated” or “diluted” polynucleotide, peptide, polypeptide, protein, antibody, or fragments thereof, is distinguishable from its naturally occurring counterpart in that the concentration or number of molecules per volume is generally greater than that of its naturally occurring counterpart. In general, a polypeptide made by recombinant means and expressed in a host cell is considered to be “isolated.”


An “isolated” polynucleotide or polypeptide-encoding nucleic acid or other polypeptide-encoding nucleic acid is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the polypeptide-encoding nucleic acid. An isolated polypeptide-encoding nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated polypeptide-encoding nucleic acid molecules therefore are distinguished from the specific polypeptide-encoding nucleic acid molecule as it exists in natural cells. However, an isolated polypeptide-encoding nucleic acid molecule includes polypeptide-encoding nucleic acid molecules contained in cells that ordinarily express the polypeptide where, for example, the nucleic acid molecule is in a chromosomal or extra-chromosomal location different from that of natural cells.


A “chimeric” protein contains at least one fusion polypeptide comprising regions in a different position in the sequence than that which occurs in nature. The regions may normally exist in separate proteins and are brought together in the fusion polypeptide; or they may normally exist in the same protein but are placed in a new arrangement in the fusion polypeptide. A chimeric protein may be created, for example, by chemical synthesis, or by creating and translating a polynucleotide in which the peptide regions are encoded in the desired relationship.


“Conjugated”, “linked,” “fused,” and “fusion” are used interchangeably herein. These terms refer to the joining together of two or more chemical elements or components, by whatever means including chemical conjugation or recombinant means. For example, a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and in reading phase or in-frame. An “in-frame fusion” refers to the joining of two or more open reading frames (ORFs) to form a continuous longer ORF, in a manner that maintains the correct reading frame of the original ORFs. Thus, the resulting recombinant fusion protein is a single protein containing two or more segments that correspond to polypeptides encoded by the original ORFs (which segments are not normally so joined in nature).


In the context of polypeptides, a “linear sequence” or a “sequence” is an order of amino acids in a polypeptide in an amino to carboxyl terminus direction in which residues that neighbor each other in the sequence are contiguous in the primary structure of the polypeptide. A “partial sequence” is a linear sequence of part of a polypeptide that is known to comprise additional residues in one or both directions.


“Heterologous” means derived from a genotypically distinct entity from the rest of the entity to which it is being compared. For example, a glycine rich sequence removed from its native coding sequence and operatively linked to a coding sequence other than the native sequence is a heterologous glycine rich sequence. The term “heterologous” as applied to a polynucleotide, a polypeptide, means that the polynucleotide or polypeptide is derived from a genotypically distinct entity from that of the rest of the entity to which it is being compared.


The terms “polynucleotides”, “nucleic acids”, “nucleotides” and “oligonucleotides” are used interchangeably. They refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof. Polynucleotides may have any three-dimensional structure, and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component.


The term “complement of a polynucleotide” denotes a polynucleotide molecule having a complementary base sequence and reverse orientation as compared to a reference sequence, such that it could hybridize with a reference sequence with complete fidelity.


“Recombinant” as applied to a polynucleotide means that the polynucleotide is the product of various combinations of in vitro cloning, restriction and/or ligation steps, and other procedures that result in a construct that can potentially be expressed in a host cell.


The terms “gene” or “gene fragment” are used interchangeably herein. They refer to a polynucleotide containing at least one open reading frame that is capable of encoding a particular protein after being transcribed and translated. A gene or gene fragment may be genomic or cDNA, as long as the polynucleotide contains at least one open reading frame, which may cover the entire coding region or a segment thereof. A “fusion gene” is a gene composed of at least two heterologous polynucleotides that are linked together.


“Homology” or “homologous” refers to sequence similarity or interchangeability between two or more polynucleotide sequences or two or more polypeptide sequences. When using a program such as BestFit to determine sequence identity, similarity or homology between two different amino acid sequences, the default settings may be used, or an appropriate scoring matrix, such as blosum45 or blosum80, may be selected to optimize identity, similarity or homology scores. Preferably, polynucleotides that are homologous are those which hybridize under stringent conditions as defined herein and have at least 70%, preferably at least 80%, more preferably at least 90%, more preferably 95%, more preferably 97%, more preferably 98%, and even more preferably 99% sequence identity to those sequences.


“Ligation” refers to the process of forming phosphodiester bonds between two nucleic acid fragments or genes, linking them together. To ligate the DNA fragments or genes together, the ends of the DNA must be compatible with each other. In some cases, the ends will be directly compatible after endonuclease digestion. However, it may be necessary to first convert the staggered ends commonly produced after endonuclease digestion to blunt ends to make them compatible for ligation.


The terms “stringent conditions” or “stringent hybridization conditions” includes reference to conditions under which a polynucleotide will hybridize to its target sequence, to a detectably greater degree than other sequences (e.g., at least 2-fold over background). Generally, stringency of hybridization is expressed, in part, with reference to the temperature and salt concentration under which the wash step is carried out. Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short polynucleotides (e.g., 10 to 50 nucleotides) and at least about 60° C. for long polynucleotides (e.g., greater than 50 nucleotides)—for example, “stringent conditions” can include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37° C., and three washes for 15 min each in 0.1×SSC/1% SDS at 60° C. to 65° C. Alternatively, temperatures of about 65° C., 60° C., 55° C., or 42° C. may be used. SSC concentration may be varied from about 0.1 to 2×SSC, with SDS being present at about 0.1%. Such wash temperatures are typically selected to be about 5° C. to 20° C. lower than the thermal melting point for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating Tm and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview N.Y.; specifically see volume 2 and chapter 9. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 μg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art.


The terms “percent identity” and “% identity,” as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences. Percent identity may be measured over the length of an entire defined polynucleotide sequence, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polynucleotide sequence, for instance, a fragment of at least 45, at least 60, at least 90, at least 120, at least 150, at least 210 or at least 450 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.


“Percent (%) amino acid sequence identity,” with respect to the polypeptide sequences identified herein, is defined as the percentage of amino acid residues in a query sequence that are identical with the amino acid residues of a second, reference polypeptide sequence or a portion thereof, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. Percent identity may be measured over the length of an entire defined polypeptide sequence, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.


The term “non-repetitiveness” as used herein in the context of a polypeptide refers to a lack or limited degree of internal homology in a peptide or polypeptide sequence. The term “substantially non-repetitive” can mean, for example, that there are few or no instances of four contiguous amino acids in the sequence that are identical amino acid types or that the polypeptide has a subsequence score (defined infra) of 10 or less or that there isn't a pattern in the order, from N- to C-terminus, of the sequence motifs that constitute the polypeptide sequence. The term “repetitiveness” as used herein in the context of a polypeptide refers to the degree of internal homology in a peptide or polypeptide sequence. In contrast, a “repetitive” sequence may contain multiple identical copies of short amino acid sequences. For instance, a polypeptide sequence of interest may be divided into n-mer sequences and the number of identical sequences can be counted. Highly repetitive sequences contain a large fraction of identical sequences while non-repetitive sequences contain few identical sequences. In the context of a polypeptide, a sequence can contain multiple copies of shorter sequences of defined or variable length, or motifs, in which the motifs themselves have non-repetitive sequences, rendering the full-length polypeptide substantially non-repetitive. The length of polypeptide within which the non-repetitiveness is measured can vary from 3 amino acids to about 200 amino acids, about from 6 to about 50 amino acids, or from about 9 to about 14 amino acids. “Repetitiveness” used in the context of polynucleotide sequences refers to the degree of internal homology in the sequence such as, for example, the frequency of identical nucleotide sequences of a given length. Repetitiveness can, for example, be measured by analyzing the frequency of identical sequences.


A “vector” is a nucleic acid molecule, preferably self-replicating in an appropriate host, which transfers an inserted nucleic acid molecule into and/or between host cells. The term includes vectors that function primarily for insertion of DNA or RNA into a cell, replication of vectors that function primarily for the replication of DNA or RNA, and expression vectors that function for transcription and/or translation of the DNA or RNA. Also included are vectors that provide more than one of the above functions. An “expression vector” is a polynucleotide which, when introduced into an appropriate host cell, can be transcribed and translated into a polypeptide(s). An “expression system” usually connotes a suitable host cell comprised of an expression vector that can function to yield a desired expression product.


“Serum degradation resistance,” as applied to a polypeptide, refers to the ability of the polypeptides to withstand degradation in blood or components thereof, which typically involves proteases in the serum or plasma. The serum degradation resistance can be measured by combining the protein with human (or mouse, rat, monkey, as appropriate) serum or plasma, typically for a range of days (e.g. 0.25, 0.5, 1, 2, 4, 8, 16 days), typically at about 37° C. The samples for these time points can be run on a Western blot assay and the protein is detected with an antibody. The antibody can be to a tag in the protein. If the protein shows a single band on the western, where the protein's size is identical to that of the injected protein, then no degradation has occurred. In this exemplary method, the time point where 50% of the protein is degraded, as judged by Western blots or equivalent techniques, is the serum degradation half-life or “serum half-life” of the protein.


The term “t1/2” as used herein means the terminal half-life calculated as ln(2)/Kel. Kel is the terminal elimination rate constant calculated by linear regression of the terminal linear portion of the log concentration vs. time curve. Half-life typically refers to the time required for half the quantity of an administered substance deposited in a living organism to be metabolized or eliminated by normal biological processes. The terms “t1/2”, “terminal half-life”, “elimination half-life” and “circulating half-life” are used interchangeably herein.


“Apparent Molecular Weight Factor” or “Apparent Molecular Weight” are related terms referring to a measure of the relative increase or decrease in apparent molecular weight exhibited by a particular amino acid sequence. The Apparent Molecular Weight is determined using size exclusion chromatography (SEC) and similar methods compared to globular protein standards and is measured in “apparent kD” units. The Apparent Molecular Weight Factor is the ratio between the Apparent Molecular Weight and the actual molecular weight; the latter predicted by adding, based on amino acid composition, the calculated molecular weight of each type of amino acid in the composition.


The “hydrodynamic radius” or “Stokes radius” is the effective radius (Rh in nm) of a molecule in a solution measured by assuming that it is a body moving through the solution and resisted by the solution's viscosity. In the embodiments of the invention, the hydrodynamic radius measurements of the XTEN fusion proteins correlate with the ‘Apparent Molecular Weight Factor’, which is a more intuitive measure. The “hydrodynamic radius” of a protein affects its rate of diffusion in aqueous solution as well as its ability to migrate in gels of macromolecules. The hydrodynamic radius of a protein is determined by its molecular weight as well as by its structure, including shape and compactness. Methods for determining the hydrodynamic radius are well known in the art, such as by the use of size exclusion chromatography (SEC), as described in U.S. Pat. Nos. 6,406,632 and 7,294,513. Most proteins have globular structure, which is the most compact three-dimensional structure a protein can have with the smallest hydrodynamic radius. Some proteins adopt a random and open, unstructured, or ‘linear’ conformation and as a result have a much larger hydrodynamic radius compared to typical globular proteins of similar molecular weight.


“Physiological conditions” refer to a set of conditions in a living host as well as in vitro conditions, including temperature, salt concentration, pH, that mimic those conditions of a living subject. A host of physiologically relevant conditions for use in in vitro assays have been established. Generally, a physiological buffer contains a physiological concentration of salt and is adjusted to a neutral pH ranging from about 6.5 to about 7.8, and preferably from about 7.0 to about 7.5. A variety of physiological buffers is listed in Sambrook et al. (1989). Physiologically relevant temperature ranges from about 25° C. to about 38° C., and preferably from about 35° C. to about 37° C.


A “reactive group” is a chemical structure that can be coupled to a second reactive group. Examples for reactive groups are amino groups, carboxyl groups, sulfhydryl groups, hydroxyl groups, aldehyde groups, azide groups. Some reactive groups can be activated to facilitate coupling with a second reactive group. Non-limiting examples for activation are the reaction of a carboxyl group with carbodiimide, the conversion of a carboxyl group into an activated ester, or the conversion of a carboxyl group into an azide function.


“Controlled release agent”, “slow release agent”, “depot formulation” or “sustained release agent” are used interchangeably to refer to an agent capable of extending the duration of release of a polypeptide of the invention relative to the duration of release when the polypeptide is administered in the absence of agent. Different embodiments of the present invention may have different release rates, resulting in different therapeutic amounts.


The terms “antigen”, “target antigen” or “immunogen” are used interchangeably herein to refer to the structure or binding determinant that an antibody fragment or an antibody fragment-based therapeutic binds to or has specificity against.


The term “payload” as used herein refers to a protein or peptide sequence that has biological or therapeutic activity; the counterpart to the pharmacophore of small molecules. Examples of payloads include, but are not limited to, cytokines, enzymes, hormones and blood and growth factors. Payloads can further comprise genetically fused or chemically conjugated moieties such as chemotherapeutic agents, antiviral compounds, toxins, or contrast agents. These conjugated moieties can be joined to the rest of the polypeptide via a linker that may be cleavable or non-cleavable.


The term “antagonist”, as used herein, includes any molecule that partially or fully blocks, inhibits, or neutralizes a biological activity of a native polypeptide disclosed herein. Methods for identifying antagonists of a polypeptide may comprise contacting a native polypeptide with a candidate antagonist molecule and measuring a detectable change in one or more biological activities normally associated with the native polypeptide. In the context of the present invention, antagonists may include proteins, nucleic acids, carbohydrates, antibodies or any other molecules that decrease the effect of a biologically active protein.


The term “agonist” is used in the broadest sense and includes any molecule that mimics a biological activity of a native polypeptide disclosed herein. Suitable agonist molecules specifically include agonist antibodies or antibody fragments, fragments or amino acid sequence variants of native polypeptides, peptides, small organic molecules, etc. Methods for identifying agonists of a native polypeptide may comprise contacting a native polypeptide with a candidate agonist molecule and measuring a detectable change in one or more biological activities normally associated with the native polypeptide.


“Activity” for the purposes herein refers to an action or effect of a component of a fusion protein consistent with that of the corresponding native biologically active protein, wherein “biological activity” refers to an in vitro or in vivo biological function or effect, including but not limited to receptor binding, antagonist activity, agonist activity, or a cellular or physiologic response.


As used herein, “treatment” or “treating,” or “palliating” or “ameliorating” is used interchangeably herein. These terms refer to an approach for obtaining beneficial or desired results including but not limited to a therapeutic benefit and/or a prophylactic benefit. By therapeutic benefit is meant eradication or amelioration of the underlying disorder being treated. Also, a therapeutic benefit is achieved with the eradication or amelioration of one or more of the physiological symptoms associated with the underlying disorder such that an improvement is observed in the subject, notwithstanding that the subject may still be afflicted with the underlying disorder. For prophylactic benefit, the compositions may be administered to a subject at risk of developing a particular disease, or to a subject reporting one or more of the physiological symptoms of a disease, even though a diagnosis of this disease may not have been made.


A “therapeutic effect”, as used herein, refers to a physiologic effect, including but not limited to the cure, mitigation, amelioration, or prevention of disease in humans or other animals, or to otherwise enhance physical or mental wellbeing of humans or animals, caused by a fusion polypeptide of the invention other than the ability to induce the production of an antibody against an antigenic epitope possessed by the biologically active protein. Determination of a therapeutically effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.


The terms “therapeutically effective amount” and “therapeutically effective dose”, as used herein, refers to an amount of a biologically active protein, either alone or as a part of a fusion protein composition, that is capable of having any detectable, beneficial effect on any symptom, aspect, measured parameter or characteristics of a disease state or condition when administered in one or repeated doses to a subject. Such effect need not be absolute to be beneficial.


The term “therapeutically effective dose regimen”, as used herein, refers to a schedule for consecutively administered doses of a biologically active protein, either alone or as a part of a fusion protein composition, wherein the doses are given in therapeutically effective amounts to result in sustained beneficial effect on any symptom, aspect, measured parameter or characteristics of a disease state or condition.


I). General Techniques

The practice of the present invention employs, unless otherwise indicated, conventional techniques of immunology, biochemistry, chemistry, molecular biology, microbiology, cell biology, genomics and recombinant DNA, which are within the skill of the art. See Sambrook, J. et al., “Molecular Cloning: A Laboratory Manual,” 3rd edition, Cold Spring Harbor Laboratory Press, 2001; “Current protocols in molecular biology”, F. M. Ausubel, et al. eds.,1987; the series “Methods in Enzymology,” Academic Press, San Diego, Calif.; “PCR 2: a practical approach”, M. J. MacPherson, B. D. Hames and G. R. Taylor eds., Oxford University Press, 1995; “Antibodies, a laboratory manual” Harlow, E. and Lane, D. eds., Cold Spring Harbor Laboratory,1988; “Goodman & Gilman's The Pharmacological Basis of Therapeutics,” 11th Edition, McGraw-Hill, 2005; and Freshney, R. I., “Culture of Animal Cells: A Manual of Basic Technique,” 4th edition, John Wiley & Sons, Somerset, N.J., 2000, the contents of which are incorporated in their entirety herein by reference.


II). Growth Hormone

The present invention relates in part to fusion protein compositions of growth hormone (GH), including human growth hormone (hGH).


(1) Growth Hormone Proteins


“Growth Hormone” or “GH” means a growth hormone protein and species and sequence variants thereof, and includes, but is not limited to, the 191 single-chain amino acid sequence of human GH. The GH can be the native, full-length protein or can be a truncated fragment or a sequence variant that retains at least a portion of the biological activity of the native protein. There are two known types of human GH (hereinafter “hGH”) derived from the pituitary gland: one having a molecular weight of about 22,000 daltons (22 kD hGH) and the other having a molecular weight of about 20,000 daltons (20 kD hGH). The 20 kD HGH has an amino acid sequence that corresponds to that of 22 kD hGH consisting of 191 amino acids except that 15 amino acid residues from the 32nd to the 46th of 22 kD hGH are missing. Some reports have shown that the 20 kD hGH has been found to exhibit lower risks and higher activity than 22 kD hGH. The invention contemplates use of the 22 kD, the 20 kD hGH, as well as species and sequence variants and truncated fragments thereof as being appropriate for use as a fusion partner with XTEN disclosed herein for GHXTEN compositions. The cloned gene for hGH has been expressed in a secreted form in Eschericha coli (U.S. Pat. No. 4,898,830; Chang, C. N., et al., Gene 55:189 [1987]) and its DNA and amino acid sequence has been reported (Goeddel, et al. Nature, 281:544 [1979); Gray, et al., Gene 39: 247[1985]).


The invention contemplates inclusion in the GHXTEN compositions sequences with homology to GH sequences, sequence fragments that are natural, such as from humans, non-human primates, mammals (including domestic animals), and non-natural sequence variants which retain at least a portion of the biologic activity or biological function of GH and/or that are useful for preventing, treating, mediating, or ameliorating a GH-related disease, deficiency, disorder or condition. Non-mammalian GH sequences are well-described in the literature. For example, a sequence alignment of fish GHs can be found in Genetics and Molecular Biology 2003 26 p. 295-300. An analysis of the evolution of avian GH sequences is presented in Journal of Evolutionary Biology 2006 19 p. 844-854. In addition, native sequences homologous to human GH may be found by standard homology searching techniques, such as NCBI BLAST.


Effects of GH on the tissues of the body can generally be described as anabolic. Like most other protein hormones, native GH acts by interacting with a specific plasma membrane receptor, referred to as growth hormone receptor. GH acts on the liver and other tissues to stimulate production of IGF-1, which is responsible for the growth promoting effects of GH and also reflects the amount produced. IGF-1, in turn, has stimulatory effects on osteoblast and chondrocyte activity to promote bone growth. In one embodiment, the invention provides a GHXTEN that exhibits at least one of the properties of native GH hereinabove described herein.


In one embodiment, the GH incorporated into the subject compositions is a recombinant polypeptide with a sequence corresponding to a protein found in nature. In another embodiment, the GH is a sequence variant, fragment, homolog, or a mimetics of a natural sequence that retains at least a portion of the biological activity of the corresponding native GH. Table 1 provides a non-limiting list of sequences of GHs from a wide variety of mammalian species that are encompassed by the GHXTEN fusion proteins of the invention. Any of these GH sequences or homologous derivatives constructed by shuffling individual mutations between species or families that retain at least a portion of the biological activity of the native GH may be useful for the fusion proteins of this invention. GH that can be incorporated into a GHXTEN fusion protein can include a protein that exhibits at least about 80% sequence identity, or alternatively 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to a sequence selected from Table 1.









TABLE 1







Growth hormone amino acid sequences from animal species










SEQ ID



Species GH
NO:
Amino Acid Sequence












Human
1
FPTIPLSRLFDNAMLRAHRLHQLAFDTYQEFEEAYIPKEQKYSFLQNPQTSLCF




SESIPTPSNREETQQKSNLELLRISLLLIQSWLEPVQFLRSVFANSLVYGASDSN




VYDLLKDLEEGIQTLMGRLEDGSPRTGQIFKQTYSKFDTNSHNDDALLKNYGL




LYCFRKDMDKVETFLRIVQCRSVEGSCGF





Pig
2
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERAYIPEGQRYSIQNAQAAFCF




SETIPAPTGKDEAQQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNSLVFGTSDR




VYEKLKDLEEGIQALMRELEDGSPRAGQILKQTYDKFDTNLRSDDALLKNYG




LLSCFKKDLHKAETYLRV MKCRRFVESSCAF





Alpaca
3
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERTYIPEGQRYSIQNAQAAFCF




SETIPAPTGKDEAQQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNSLVFGTSDR




VYEKLKDLEEGIQALMRELEDGSPRAGQILRQTYDKFDTNLRSDDALLKNYG




LLSCFKKDLHKAETYLRV MKCRRFVESSCAF





Camel
4
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERTYIPEGQRYSIQNAQAAFCF




SETIPAPTGKDEAQQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNSLVFGTSDR




VYEKLKDLEEGIQALMRELEDGSPRAGQILRQTYDKFDTNLRSDDALLKNYG




LLSCFKKDLHKAETYLRV MKCRRFVESSCAF





Horse
5
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERAYIPEGQRYSIQNAQAAFCF




SETIPAPTGKDEAQQRSDMELLRFSLLLIQSWLGPVQLLSRVFTNSLVFGTSDR




VYEKLRDLEEGIQALMRELEDGSPRAGQILKQTYDKFDTNLRSDDALLKNYG




LLSCFKKDLHKAETYLRV MKCRRFVESSCAF





Elephant
6
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERAYIPEGQRYSIQNAQAAFCF




SETIPAPTGKDEAQQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNSLVFGTSDR




VYEKLKDLEEGIQALMRELEDGSPRPGQVLKQTYDKFDTNMRSDDALLKNY




GLLSCFKKDLHKAETYLRV MKCRRFVESSCAF





Red fox
7
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERAYIPEGQRYSIQNAQAAFCF




SETIPAPTGKDEAQQRSDVELLRFSLVLIQSWLGPLQFLSRVFTNSLVFGTSDR




VYEKLKDLEEGIQALMRELEDGSPRAGQILKQTYDKFDTNLRSDDALLKNYG




LLSCFKKDLHKAETYLRV MKCRRFVESSCAF





Dog
8
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERAYIPEGQRYSIQNAQAAFCF




SETIPAPTGKDEAQQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNSLVFGTSDR




VYEKLKDLEEGIQALMRELEDGSPRAGQILKQTYDKFDTNLRSDDALLKNYG




LLSCFKKDLHKAETYLRV MKCRRFVESSCAF





Cat
9
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERAYIPEGQRYSIQNAQAAFCF




SETIPAPTGKDEAQQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNSLVFGTSDR




VYEKLKDLEEGIQALMRELEDGSPRGGQILKQTYDKFDTNLRSDDALLKNYG




LLSCFKKDLHKAETYLRV MKCRRFVESSCAF





American
10
FPAMPLSSLFANAVLRAQHLHQLAADTYKDFERAYIPEGQRYSIQNAQAAFCF


mink

SETIPAPTGKDEAQQRSDMELLRFSLLLIQSWLGPVQFLSRVFTNSLVFGTSDR




VYEKLKDLEEGIQALMRELEDGSPRAGPILKQTYDKFDTNLRSDDALLKNYGL




LSCFKKDLHKAETYLRV MKCRRFVESSCAF





Finback
11
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERAYIPEGQRYSIQNAQAAFCF


whale

SETIPAPTGKDEAQQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNSLVFGTSDR




VYEKLKDLEEGIQALMRELEDGSPRAGQILKQTYDKFDTNMRSDDALLKNYG




LLSCFKKDLHKAETYLRV MKCRRFVESSCAF





Dolphin
12
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERAYIPEGQRYSIQNTQAAFCF




SETIPAPTGKDEAQQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNSLVFGTSDR




VYEKLKDLEEGIQALMRELEDGSPRAGQILKQTYDKFDTNMRSDDALLKNYG




LLSCFKKDLHKAETYLRV MKCRRFVESSCAF





Hippo
13
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERAYIPEGQRYSIQNTQAAFCF




SETIPAPTGKDEAQQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNSLVFGTSDR




VYEKLKDLEEGIQALMRELEDGSPRAGQILKQTYDKFDTNMRSDDALLKNYG




LLSCFKKDLHKAETYLRV MKCRRFVESSCAF





Rabbit
14
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERAYIPEGQRYSIQNAQAAFCF




SETIPAPTGKDEAQQRSDMELLRFSLLLIQSWLGPVQFLSRAFTNTLVFGTSDR




VYEKLKDLEEGIQALMRELEDGSPRVGQLLKQTYDKFDTNLRGDDALLKNYG




LLSCFKKDLHKAETYLRV MKCRRFVESSCVF





Rat
15
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERAYIPEGQRYSIQNAQAAFCF




SETIPAPTGKEEAQQRTDMELLRFSLLLIQSWLGPVQFLSRIFTNSLMFGTSDRV




YEKLKDLEEGIQALMQELEDGSPRIGQILKQTYDKFDANMRSDDALLKNYGL




LSCFKKDLHKAETYLRV MKCRRFAESSCAF





Mouse
16
FPAMPLSSLFSNAVLRAQHLHQLAADTYKEFERAYIPEGQRYSIQNAQAAFCF




SETIPAPTGKEEAQQRTDMELLRFSLLLIQSWLGPVQFLSRIFTNSLMFGTSDRV




YEKLKDLEEGIQALMQELEDGSPRVGQILKQTYDKFDANMRSDDALLKNYGL




LSCFKKDLHKAETYLRV MKCRRFVESSCAF





Hamster
17
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERAYIPEGQRYSIQNAQTAFCF




SETIPAPTGKEEAQQRSDMELLRFSLLLIQSWLGPVQFLSRIFTNSLMFGTSDRV




YEKLKDLEEGIQALMQELEDGSPRVGQILKQTYDKFDTNMRSDDALLKNYGL




LSCFKKDLHKAETYLRV MKCRRFVESSCAF





Mole rat
18
FPAMPLSNLFANAVLRAQHLHQLAADTYKEFERAYIPEGQRYSIQNAQAAFCF




SETIPAPTGKEEAQQRSDMELLRFSLLLIQSWLGPVQFLSRVFTNSLVFGTSDR




VFEKLKDLEEGIQALMRELEDGSLRAGQLLKQTYDKFDTNMRSDDALLKNYG




LLSCFKKDLHKAETYLRV MKCRRFVESSCAF





Guinea pig
19
FPAMPLSSLFGNAVLRAQHLHQLAADTYKEFERTYIPEGQRYSIHNTQTAFCFS




ETIPAPTDKEEAQQRSDVELLHFSLLLIQSWLGPVQFLSRVFTNSLVFGTSDRV




YEKLKDLEEGIQALMRELEDGTPRAGQILKQTYDKFDTNLRSNDALLKNYGL




LSCFRKDLHRTETYLRV MKCRRFVESSCAF





Ox
20
AFPAMSLSGLFANAVLRAQHLHQLAADTFKEFERTYIPEGQRYSIQNTQVAFC




FSETIPAPTGKNEAQQKSDLELLRISLLLIQSWLGPLQFLSRVFTNSLVFGTSDR




VYEKLKDLEEGILALMRELEDGTPRAGQILKQTYDKFDTNMRSDDALLKNYG




LLSCFRKDLHKTETYLRV MKCRRFGEASCAF





Sheep/Goat
21
AFPAMSLSGLFANAVLRAQHLHQLAADTFKEFERTYIPEGQRYSIQNTQVAFC




FSETIPAPTGKNEAQQKSDLELLRISLLLIQSWLGPLQFLSRVFTNSLVFGTSDR




VYEKLKDLEEGILALMRELEDVTPRAGQILKQTYDKFDTNMRSDDALLKNYG




LLSCFRKDLHKTETYLRV MKCRRFGEASCAF





Red deer
22
FPAMSLSGLFANAVLRAQHLHQLAADTFKEFERTYIPEGQRYSIQNTQVAFCF




SETIPAPTGKNEAQQKSDLELLRISLLLIQSWLGPLQFLSRVFTNSLVFGTSDRV




YEKLKDLEEGILALMRELEDGTPRAGQILKQTYDKFDTNMRSDDALLKNYGL




LSCFRKDLHKTETYLRV MKCRRFGEASCAF





Giraffe
23
AFPAMSLSGLFANAVLRAQHLHQLAADTFKEFERTYIPEGQRYSIQNTQVAFC




FSETIPAPTGKNEAQQKSDLELLRISLLLIQSWLGPLQFLSRVFSNSLVFGTSDR




VYEKLKDLEEGILALMRELEDGTPRAGQILKQTYDKFDTNMRSDDALLKNYG




LLSCFRKDLHKTETYLRV MKCRRFGEASCAF





Chevrotain-1
24
FPAMSLSGLFANAVLRVQHLHQLAADTFKEFERTYIPEGQRYSIQNTQVAFCF




SETIPAPTGKNEAQQKSDLELLRISLLLIQSWLGPLQFLSRVFTNSLVFGTSDRV




YEKLKDLEEGILALMRELEDGPPRAGQILKQTYDKFDTNMRSDDALLKNYGL




LSCFRKDLHKTETYLRV MKCRRFGEASCAF





Slow loris
25
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERAYIPEGQRYSIQNAQAAFCF




SETIPAPTGKDEAQQRSDMELLRFSLLLIQSWLGPVQLLSRVFTNSLVLGTSDR




VYEKLKDLEEGIQALMRELEDGSPRVGQILKQTYDKFDTNLRSDDALLKNYG




LLSCFKKDLHKAETYLRV MKCRRFVESSCAF





Marmoset
26
FPTIPLSRLLDNAMLRAHRLHQLAFDTYQEFEEAYIPKEQKYSFLQNPQTSLCF




SESIPTPASKKETQQKSNLELLRMSLLLIQSWFEPVQFLRSVFANSLLYGVSDSD




VYEYLKDLEEGIQTLMGRLEDGSPRTGEIFMQTYRKFDVNSQNNDALLKNYG




LLYCFRKDMDKVETFLRI VQCR-SVEGSCGF





BrTailed
27
FPAMPLSSLFANAVLRAQHLHQLVADTYKEFERTYIPEAQRHSIQSTQTAFCFS


Possum

ETIPAPTGKDEAQQRSDVELLRFSLLLIQSWLSPVQFLSRVFTNSLVFGTSDRV




YEKLRDLEEGIQALMQELEDGSSRGGLVLKTTYDKFDTNLRSDEALLKNYGL




LSCFKKDLHKAETYLRV MKCRRFVESSCAF





Monkey
28
FPTIPLSRLFDNAMLRAHRLHQLAFDTYQEFEEAYIPKEQKYSFLQNPQTSLCF


(rhesus)

SESIPTPSNREETQQKSNLELLRISLLLIQSWLEPVQFLRSVFANSLVYGTSYSD




VYDLLKDLEEGIQTLMGRLEDGSSRTGQIFKQTYSKFDTNSHNNDALLKNYGL




LYCFRKDMDKIETFLRI VQCR-SVEGSCGF









III). Growth Hormone Fusion Protein Compositions

The present invention relates in part to fusion protein compositions of growth hormone (GH). In one aspect, the invention provides isolated monomeric fusion proteins of GH comprising the full-length sequence or sequence variants of GH covalently linked to extended recombinant recombinant polypeptides (“XTEN” or “XTENs”). As described more fully below, the fusion proteins optionally include spacer sequences that further comprise cleavage sequences to release the GH from the fusion protein when acted on by a protease, releasing GH from the XTEN sequence(s).


In one aspect, the invention provides an isolated fusion protein comprising at least a first biologically active growth hormone protein covalently linked to one or more extended recombinant polypeptides (“XTEN”), resulting in a growth hormone-XTEN fusion protein composition (hereinafter “GHXTEN”). In one embodiment, the growth hormone is human growth hormone or a sequence variant of hGH. As described more fully below, the fusion proteins optionally include spacer sequences that further comprise cleavage sequences to release the GH from the fusion protein when acted on by a protease.


The term “GHXTEN”, as used herein, is meant to encompass fusion polypeptides that comprise one or more payload regions each comprising a biologically active GH that mediates one or more biological or therapeutic activities associated with growth hormone and at least one other region comprising at least a first XTEN polypeptide that serves as a carrier.


The GH of the subject compositions, particularly those disclosed in Table 1, together with their corresponding nucleic acid and amino acid sequences, are well known in the art and descriptions and sequences are available in public databases such as Chemical Abstracts Services Databases (e.g., the CAS Registry), GenBank, The Universal Protein Resource (UniProt) and subscription provided databases such as GenSeq (e.g., Derwent). Polynucleotide sequences may be a wild type polynucleotide sequence encoding a given GH (e.g., either full length or mature), or in some instances the sequence may be a variant of the wild type polynucleotide sequence (e.g., a polynucleotide which encodes the wild type biologically active protein, wherein the DNA sequence of the polynucleotide has been optimized, for example, for expression in a particular species; or a polynucleotide encoding a variant of the wild type protein, such as a site directed mutant or an allelic variant. It is well within the ability of the skilled artisan to use a wild-type or consensus cDNA sequence or a codon-optimized variant of a GH to create GHXTEN constructs contemplated by the invention using methods known in the art and/or in conjunction with the guidance and methods provided herein, and described more fully in the Examples.


The GH for inclusion in the GHXTEN of the invention include any growth hormone or sequence variant of biologic, therapeutic, prophylactic, or diagnostic interest or function, or that is useful for mediating or preventing or ameliorating a disease, disorder or condition associated with growth, growth hormone deficiency or defect when administered to a subject. Of particular interest are GHXTEN fusion protein compositions for which an increase in a pharmacokinetic parameter, increased solubility, increased stability, or some other enhanced pharmaceutical property compared to native GH is sought, or for which increasing the terminal half-life would improve efficacy, safety, or result in reduce dosing frequency and/or improve patient compliance. Thus, the GHXTEN fusion protein compositions are prepared with various objectives in mind, including improving the therapeutic efficacy of the bioactive GH by, for example, increasing the in vivo exposure or the length that the GHXTEN remains within the therapeutic window when administered to a subject, compared to a GH not linked to XTEN.


In one embodiment, the GH incorporated into the subject compositions can be a recombinant polypeptide with a sequence corresponding to a protein found in nature. In another embodiment, the GH is a sequence variant, fragment, homolog, or mimetic of a natural sequence that retain at least a portion of the biological activity of the native GH. In non-limiting examples, a GH is a sequence that exhibits at least about 80% sequence identity, or alternatively 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least about 99%, or 100% sequence identity to a protein sequence selected from Table 1. In one embodiment, a GHXTEN fusion protein comprises a single GH molecule linked to an XTEN (as described more fully below). In another embodiment, the GHXTEN comprises a first GH and a second molecule of the same GH, resulting in a fusion protein comprising the two GH linked to one or more XTEN (for example, or two molecules of hGH). In some cases of the foregoing embodiments, the GH and XTEN components are of an N- to C-terminus configuration selected from Table 5. In another embodiment, the GHXTEN fusion protein comprises a single GH molecule linked to a first and a second XTEN, with an N- to C-terminus configuration of XTEN-GH-XTEN, in which the GH is a sequence that exhibits at least about 80% sequence identity, or alternatively 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least about 99%, or 100% sequence identity to a protein sequence selected from Table 1, and the first and/or the second XTEN are sequences that exhibits at least about 80% sequence identity, or alternatively 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least about 99%, or 100% sequence identity to a sequence selected from Table 3.


In general, the GH fusion partner component of the GHXTEN exhibits a binding specificity to a given target or another desired biological characteristic when used in vivo or when utilized in an in vitro assay. For example, the GHXTEN is an agonist, having the ability to bind to a transmembrane receptor for growth hormone. In one embodiment, the binding of GHXTEN to growth receptor leads to receptor dimerization and lead to at least a portion of the activation of intercellular signal transduction pathway compared to native growth hormone. In one embodiment, the GHXTEN bound to a transmembrane receptor for growth hormone would exhibit at least about 1%, or about 5%, or about 10%, or about 15%, or about 20%, or about 25%, or about 30%, or about 40%, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or at least about 95% of the activation of intercellular signal transduction pathway compared to native growth hormone not linked to XTEN.


The subject GHXTEN of the present invention exhibits an enhancement of one or more pharmacokinetic parameters, which optionally is enhanced by release of GH from the fusion protein by cleavage of a spacer sequence. The GHXTEN with enhanced pharmacokinetic paramters permits less frequent dosing or an enhanced pharmacologic effect, such as but not limited to maintaining the biologically active GHXTEN wthin the therapeutic window between the minimum effective dose or blood concentration (Cmin) and the maximum tolerated dose or blood concentration (Cmax). In such cases, the linking of the GH to a fusion protein comprising a select XTEN sequence(s) can result in an improvement in these properties, making them more useful as therapeutic or preventive agents compared to GH not linked to XTEN.


IV). Xtended Recombinant Polypeptides

In one aspect, the invention provides XTEN polypeptide compositions that are useful as a fusion protein partner to which GH is linked, resulting in a GHXTEN fusion protein. XTEN are generally extended length polypeptides with non-naturally occurring, substantially non-repetitive sequences that are composed mainly of small hydrophilic amino acids, with the sequence having a low degree or no secondary or tertiary structure under physiologic conditions.


XTENs have utility as a fusion protein partners partner in that they serve as a “carrier”, conferring certain desirable pharmacokinetic, physicochemical and pharmaceutical properties when linked to a GH protein to a create a fusion protein. Such desirable properties include but are not limited to enhanced pharmacokinetic parameters and solubility characteristicsthe compositions, amongst other properties described herein. Such fusion protein compositions have utility to treat certain growth hormone-related diseases, disorders or conditions, as described herein. As used herein, “XTEN” specifically excludes antibodies or antibody fragments such as single-chain antibodies or Fc fragments of a light chain or a heavy chain.


In some embodiments, XTEN are long polypeptides having greater than about 100 to about 3000 amino acid residues, preferably greater than 400 to about 3000 residues when used as a carrier or cumulatively when more than one XTEN unit is used in a single fusion protein. In other embodiments, when used as a linker between fusion protein components or where an increase in half-life of the fusion protein is not needed but where an increase in solubility or other physico/chemical property for the GH fusion partner component is desired, an XTEN sequence shorter than 100 amino acid residues, such as about 96, or about 84, or about 72, or about 60, or about 48, or about 36 amino acid residues are incorporated into a fusion protein composition with the GH to effect the property.


The selection criteria for the XTEN to be linked to the biologically active proteins used to create the inventive fusion proteins compositions generally relate to attributes of physical/chemical properties and conformational structure of the XTEN that is, in turn, used to confer enhanced pharmaceutical and pharmacokinetic properties to the fusion proteins.compositions. The XTEN of the present invention exhibit one or more of the following advantageous properties: conformational flexibility, enhanced aqueous solubility, high degree of protease resistance, low immunogenicity, low binding to mammalian receptors, and increased hydrodynamic (or Stokes) radii; properties that make them particularly useful as fusion protein partners. Non-limiting examples of the properties of the fusion proteins comprising GH that is enhanced by XTEN include increases in the overall solubility and/or metabolic stability, reduced susceptibility to proteolysis, reduced immunogenicity, reduced rate of absorption when administered subcutaneously or intramuscularly, and enhanced pharmacokinetic properties such as longer terminal half-life and increased area under the curve (AUC), slower absorption after subcutaneous or intramuscular injection (compared to GH not linked to XTEN and administered by a similar route) such that the Cmax is lower, which, in turn, results in reductions in adverse effects of the GH that, collectively, results in an increased period of time that a fusion protein of a GHXTEN composition administered to a subject retains therapeutic activity.


A variety of methods and assays are known in the art for determining the physical/chemical properties of proteins such as the compositions comprising the inventive XTEN; properties such as secondary or tertiary structure, solubility, protein aggregation, melting properties, contamination and water content. Such methods include analytical centrifugation, EPR, HPLC-ion exchange, HPLC-size exclusion, HPLC-reverse phase, light scattering, capillary electrophoresis, circular dichroism, differential scanning calorimetry, fluorescence, HPLC-ion exchange, HPLC-size exclusion, IR, NMR, Raman spectroscopy, refractometry, and UV/Visible spectroscopy. Additional methods are disclosed in Arnau et al, Prot Expr and Purif (2006) 48, 1-13. Application of these methods to the invention would be within the grasp of a person skilled in the art.


Typically, XTEN are designed to behave like denatured peptide sequences under physiological conditions, despite the extended length of the polymer. Denatured describes the state of a peptide in solution that is characterized by a large conformational freedom of the peptide backbone. Most peptides and proteins adopt a denatured conformation in the presence of high concentrations of denaturants or at elevated temperature. Peptides in denatured conformation have, for example, characteristic circular dichroism (CD) spectra and are characterized by a lack of long-range interactions as determined by NMR. “Denatured conformation” and “unstructured conformation” are used synonymously herein. In some embodiments, the invention provides XTEN sequences that, under physiologic conditions, resemble denatured sequences largely devoid in secondary structure. In other cases, the XTEN sequences are substantially devoid of secondary structure under physiologic conditions. “Largely devoid,” as used in this context, means that less than 50% of the XTEN amino acid residues of the XTEN sequence contribute to secondary structure as measured or determined by the means described herein. “Substantially devoid,” as used in this context, means that at least about 60%, or about 70%, or about 80%, or about 90%, or about 95%, or at least about 99% of the XTEN amino acid residues of the XTEN sequence do not contribute to secondary structure, as measured or determined by the methods described herein.


A variety of methods have been established in the art to discern the presence or absence of secondary and tertiary structures in a given polypeptide. In particular, secondary structure can be measured spectrophotometrically, e.g., by circular dichroism spectroscopy in the “far-UV” spectral region (190-250 nm). Secondary structure elements, such as alpha-helix and beta-sheet, each give rise to a characteristic shape and magnitude of CD spectra. Secondary structure can also be predicted for a polypeptide sequence via certain computer programs or algorithms, such as the well-known Chou-Fasman algorithm (Chou, P. Y., et al. (1974) Biochemistry, 13: 222-45) and the Garnier-Osguthorpe-Robson (“GOR”) algorithm (Garnier J, Gibrat J F, Robson B. (1996), GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266:540-553), as described in US Patent Application Publication No. 20030228309A1. For a given sequence, the algorithms can predict whether there exists some or no secondary structure at all, expressed as the total and/or percentage of residues of the sequence that form, for example, alpha-helices or beta-sheets or the percentage of residues of the sequence predicted to result in random coil formation (which lacks secondary structure).


In some embodiments, the XTEN sequences used in the inventive fusion protein compositions can have an alpha-helix percentage ranging from 0% to less than about 5% as determined by the Chou-Fasman algorithm. In other cases, the XTEN sequences of the fusion protein compositions have a beta-sheet percentage ranging from 0% to less than about 5% as determined by the Chou-Fasman algorithm. In some embodiments, the XTEN sequences of the fusion protein compositions have an alpha-helix percentage ranging from 0% to less than about 5% and a beta-sheet percentage ranging from 0% to less than about 5% as determined by the Chou-Fasman algorithm. In some embodiments, the XTEN sequences of the fusion protein compositions have an alpha-helix percentage less than about 2% and a beta-sheet percentage less than about 2%. In other cases, the XTEN sequences of the fusion protein compositions have a high degree of random coil percentage, as determined by the GOR algorithm. In some embodiments, an XTEN sequence have at least about 80%, more preferably at least about 90%, more preferably at least about 91%, more preferably at least about 92%, more preferably at least about 93%, more preferably at least about 94%, more preferably at least about 95%, more preferably at least about 96%, more preferably at least about 97%, more preferably at least about 98%, and most preferably at least about 99% random coil, as determined by the GOR algorithm.


1. Non-Repetitive Sequences


In some embodiments, XTEN sequences of the compositions are substantially non-repetitive. In general, repetitive amino acid sequences have a tendency to aggregate or form higher order structures, as exemplified by natural repetitive sequences such as collagens and leucine zippers, or form contacts resulting in crystalline or pseudocrystaline structures. In contrast, the low tendency of non-repetitive sequences to aggregate enables the design of long-sequence XTENs with a relatively low frequency of charged amino acids that would be likely to aggregate if the sequences were otherwise repetitive. Typically, the GHXTEN fusion proteins comprise XTEN sequences of greater than about 100 to about 3000 amino acid residues, preferably greater than 400 to about 3000 cumuclative residues, wherein the sequences are substantially non-repetitive. In one embodiment, the XTEN sequences have greater than about 100 to about 3000 amino acid residues, preferably greater than 400 to about 3000 amino acid residues, in which no three contiguous amino acids in the sequence are identical amino acid types unless the amino acid is serine, in which case no more than three contiguous amino acids are serine residues. In the foregoing embodiment, the XTEN sequence would be substantially non-repetitive.


The degree of repetitiveness of a polypeptide or a gene are measured by computer programs or algorithms or by other means known in the art. Repetitiveness in a polypeptide sequence can, for example, be assessed by determining the number of times shorter sequences of a given length occur within the polypeptide. For example, a polypeptide of 200 amino acid residues has 192 overlapping 9-amino acid sequences (or 9-mer “frames”) and 198 3-mer frames, but the number of unique 9-mer or 3-mer sequences will depend on the amount of repetitiveness within the sequence. A score is generated (hereinafter “subsequence score”) that is reflective of the degree of repetitiveness of the subsequences in the overall polypeptide sequence. In the context of the present invention, “subsequence score” means the sum of occurrences of each unique 3-mer frame across a 200 consecutive amino acid sequence of the polypeptide divided by the absolute number of unique 3-mer subsequences within the 200 amino acid sequence. Examples of such subsequence scores derived from the first 200 amino acids of repetitive and non-repetitive polypeptides are presented in Example 44. In some embodiments, the present invention provides GHXTEN each comprising one or more XTEN in which the XTEN have a subsequence score less than 12, more preferably less than 10, more preferably less than 9, more preferably less than 8, more preferably less than 7, more preferably less than 6, and most preferably less than 5. In the embodiments hereinabove described in this paragraph, an XTEN with a subsequence score less than about 10 (i.e., 9, 8, 7, etc.) is “substantially non-repetitive.”


The non-repetitive characteristic of XTEN impart to fusion proteins with GH a greater degree of solubility and less tendency to aggregate compared to polypeptides having repetitive sequences. These properties facilitate the formulation of XTEN-comprising pharmaceutical preparations containing extremely high drug concentrations, in some cases exceeding 100 mg/ml.


Furthermore, the XTEN polypeptide sequences of the embodiments are designed to have a low degree of internal repetitiveness in order to reduce or substantially eliminate immunogenicity when administered to a mammal Polypeptide sequences composed of short, repeated motifs largely limited to three amino acids, such as glycine, serine and glutamate, may result in relatively high antibody titers when administered to a mammal despite the absence of predicted T-cell epitopes in these sequences. This may be caused by the repetitive nature of polypeptides, as it has been shown that immunogens with repeated epitopes, including protein aggregates, cross-linked immunogens, and repetitive carbohydrates are highly immunogenic and can, for example, result in the cross-linking of B-cell receptors causing B-cell activation. (Johansson, J., et al. (2007) Vaccine, 25 :1676-82; Yankai, Z., et al. (2006) Biochem Biophys Res Commun, 345 :1365-71; Hsu, C. T., et al. (2000) Cancer Res, 60:3701-5); Bachmann M F, et al. Eur J Immunol. (1995) 25(12):3445-3451).


2. Exemplary Sequence Motifs


The present invention encompasses XTEN that comprise multiple units of shorter sequences, or motifs, in which the amino acid sequences of the motifs are non-repetitive. In designing XTEN sequences, it was discovered that the non-repetitive criterion may be met despite the use of a “building block” approach using a library of sequence motifs that are multimerized to create the XTEN sequences. Thus, while an XTEN sequence may consist of multiple units of as few as four different types of sequence motifs, because the motifs themselves generally consist of non-repetitive amino acid sequences, the overall XTEN sequence is rendered substantially non-repetitive.


In one embodiment, XTEN have a non-repetitive sequence of greater than about 100 to about 3000 amino acid residues, preferably greater than 400 to about 3000 residues, wherein at least about 80%, or at least about 85%, or at least about 90%, or at least about 95%, or at least about 97%, or about 100% of the XTEN sequence consists of non-overlapping sequence motifs, wherein each of the motifs has about 9 to 36 amino acid residues. In other embodiments, at least about 80%, or at least about 85%, or at least about 90%, or at least about 95%, or at least about 97%, or about 100% of the XTEN sequence consists of non-overlapping sequence motifs wherein each of the motifs has 9 to 14 amino acid residues. In still other embodiments, at least about 80%, or at least about 85%, or at least about 90%, or at least about 95%, or at least about 97%, or about 100% of the XTEN sequence component consists of non-overlapping sequence motifs wherein each of the motifs has 12 amino acid residues. In these embodiments, it is preferred that the sequence motifs be composed mainly of small hydrophilic amino acids, such that the overall sequence has an unstructured, flexible characteristic. Examples of amino acids that are included in XTEN, are, e.g., arginine, lysine, threonine, alanine, asparagine, glutamine, aspartate, glutamate, serine, and glycine. As a result of testing variables such as codon optimization, assembly polynucleotides encoding sequence motifs, expression of protein, charge distribution and solubility of expressed protein, and secondary and tertiary structure, it was discovered that XTEN compositions with enhanced characteristics mainly include glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) residues wherein the sequences are designed to be substantially non-repetitive. In one embodiment, XTEN sequences have predominately four to six types of amino acids selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) or proline (P) that are arranged in a substantially non-repetitive sequence that is greater than about 100 to about 3000 amino acid residues, preferably greater than 400 to about 3000 residues in length. In some embodiments, XTEN have sequences of greater than about 100 to about 3000 amino acid residues, preferably greater than 400 to about 3000 residues, wherein at least about 80% of the sequence consists of non-overlapping sequence motifs wherein each of the motifs has 9 to 36 amino acid residues wherein each of the motifs consists of 4 to 6 types of amino acids selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), and wherein the content of any one amino acid type in the full-length XTEN does not exceed 30%. In other embodiments, at least about 90% of the XTEN sequence consists of non-overlapping sequence motifs wherein each of the motifs has 9 to 36 amino acid residues wherein the motifs consist of 4 to 6 types of amino acids selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), and wherein the content of any one amino acid type in the full-length XTEN does not exceed 30%. In other embodiments, at least about 90% of the XTEN sequence consists of non-overlapping sequence motifs wherein each of the motifs has 12 amino acid residues consisting of 4 to 6 types of amino acids selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), and wherein the content of any one amino acid type in the full-length XTEN does not exceed 30%. In yet other embodiments, at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%, to about 100% of the XTEN sequence consists of non-overlapping sequence motifs wherein each of the motifs has 12 amino acid residues consisting of glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), and wherein the content of any one amino acid type in the full-length XTEN does not exceed 30%.


In still other embodiments, XTENs comprise non-repetitive sequences of greater than about 100 to about 3000 amino acid residues, preferably greater than 400 to about 3000 amino acid residues wherein at least about 80%, or at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% of the sequence consists of non-overlapping sequence motifs of 9 to 14 amino acid residues wherein the motifs consist of 4 to 6 types of amino acids selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), and wherein the sequence of any two contiguous amino acid residues in any one motif is not repeated more than twice in the sequence motif In other embodiments, at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% of an XTEN sequence consists of non-overlapping sequence motifs of 12 amino acid residues wherein the motifs consist of 4 to 6 types of amino acids selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), and wherein the sequence of any two contiguous amino acid residues in any one sequence motif is not repeated more than twice in the sequence motif. In other embodiments, at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% of an XTEN sequence consists of non-overlapping sequence motifs of 12 amino acid residues wherein the motifs consist of glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), and wherein the sequence of any two contiguous amino acid residues in any one sequence motif is not repeated more than twice in the sequence motif. In yet other embodiments, XTENs consist of 12 amino acid sequence motifs wherein the amino acids are selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), and wherein the sequence of any two contiguous amino acid residues in any one sequence motif is not repeated more than twice in the sequence motif, and wherein the content of any one amino acid type in the full-length XTEN does not exceed 30%. In the foregoing embodiments hereinabove described in this paragraph, the XTEN sequences would be substantially non-repetitive.


In some embodiments, the invention provides compositions comprising non-repetitive XTEN sequence(s) of greater than about 100 to about 3000 amino acid residues, of cumulatively greater than 400 to about 3000 residues, wherein at least about 80%, or at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% to about 100% of the sequence consists of multiple units of two or more non-overlapping sequence motifs selected from the amino acid sequences of Table 2. In some embodiments, the XTEN comprises non-overlapping sequence motifs in which about 80%, or at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% to about 100% of the sequence consists of two or more non-overlapping sequences selected from a single motif family of Table 2, resulting in a “family” sequence in which the overall sequence remains substantially non-repetitive. Accordingly, in these embodiments, an XTEN sequence comprises multiple units of non-overlapping sequence motifs of the AD motif family, or the AE motif family, or the AF motif family, or the AG motif family, or the AM motif family, or the AQ motif family, or the BC family, or the BD family of sequences of Table 2. In other embodiments, the XTEN comprises motif sequences from two or more of the motif families of Table 2.









TABLE 2







XTEN Sequence Motifs of 12


Amino Acids and Motif Families











Motif Family*
SEQ ID NO:
MOTIF SEQUENCE















AD
29
GESPGGSSGSES







AD
30
GSEGSSGPGESS







AD
31
GSSESGSSEGGP







AD
32
GSGGEPSESGSS







AE, AM
33
GSPAGSPTSTEE







AE, AM, AQ
34
GSEPATSGSETP







AE, AM, AQ
35
GTSESATPESGP







AE, AM, AQ
36
GTSTEPSEGSAP







AF, AM
37
GSTSESPSGTAP







AF, AM
38
GTSTPESGSASP







AF, AM
39
GTSPSGESSTAP







AF, AM
40
GSTSSTAESPGP







AG, AM
41
GTPGSGTASSSP







AG, AM
42
GSSTPSGATGSP







AG, AM
43
GSSPSASTGTGP







AG, AM
44
GASPGTSSTGSP







AQ
45
GEPAGSPTSTSE







AQ
46
GTGEPSSTPASE







AQ
47
GSGPSTESAPTE







AQ
48
GSETPSGPSETA







AQ
49
GPSETSTSEPGA







AQ
50
GSPSEPTEGTSA







BC
51
GSGASEPTSTEP







BC
52
GSEPATSGTEPS







BC
53
GTSEPSTSEPGA







BC
54
GTSTEPSEPGSA







BD
55
GSTAGSETSTEA







BD
56
GSETATSGSETA







BD
57
GTSESATSESGA







BD
58
GTSTEASEGSAS







*Denotes individual motif sequences that, when used together in various permutations, results in a “family sequence”






In other embodiments, the GHXTEN composition comprises a non-repetitive XTEN sequence of greater than about 100 to about 3000 amino acid residues, preferably greater than 400 to about 3000 residues, wherein at least about 80%, or at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% to about 100% of the sequence consists of non-overlapping 36 amino acid sequence motifs selected from one or more of the polypeptide sequences of Tables 8-11.


In those embodiments wherein the XTEN component of the GHXTEN fusion protein has less than 100% of its amino acids consisting of four to six amino acid selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), or less than 100% of the sequence consisting of the sequence motifs of Table 2, or less than 100% sequence identity with an XTEN from Table 3, the other amino acid residues are selected from any other of the 14 natural L-amino acids, but are preferentially selected from hydrophilic amino acids such that the XTEN sequence contains at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least about 99% hydrophilic amino acids. The XTEN amino acids that are not glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) are interspersed throughout the XTEN sequence, are located within or between the sequence motifs, or are concentrated in one or more short stretches of the XTEN sequence. In such cases where the XTEN component of the GHXTEN comprises amino acids other than glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), it is preferred that the amino acids not be hydrophobic residues and should not substantially confer secondary structure of the XTEN component. Hydrophobic residues that are less favored in construction of XTEN include tryptophan, phenylalanine, tyrosine, leucine, isoleucine, valine, and methionine. Additionally, one can design the XTEN sequences to contain few (e.g. less than 5%) or none of the following amino acids: cysteine (to avoid disulfide formation and oxidation), methionine (to avoid oxidation), asparagine and glutamine (to avoid desamidation). Thus, in some embodiments, the XTEN component of the GHXTEN fusion protein comprising other amino acids in addition to glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) would have a sequence with less than 5% of the residues contributing to alpha-helices and beta-sheets as measured by the Chou-Fasman algorithm and have at least 90%, or at least about 95% or more random coil formation as measured by the GOR algorithm.


3. Length of Sequence


In another aspect of the present invention, the invention encompasses GHXTEN compositions comprising carriers of XTEN polypeptides with extended length sequences. The present invention makes use of the discovery that increasing the length of non-repetitive, unstructured polypeptides enhances the unstructured nature of the XTENs and correspoindingly enhances the biological and pharmacokinetic properties of fusion proteins comprising the XTEN carrier. As described more fully in the Examples, proportional increases in the length of the XTEN, even if created by a fixed repeat order of single family sequence motifs (e.g., the four AE motifs of Table 2), result in a sequence with a higher percentage of random coil formation, as determined by GOR algorithm, compared to shorter XTEN lengths. In general, increasing the length of the unstructured polypeptide fusion partner, as described in the Examples, results in a fusion protein with a disproportional increase in terminal half-life compared to fusion proteins with unstructured polypeptide partners with shorter sequence lengths.


Non-limiting examples of XTEN contemplated for inclusion in the GHXTEN of the invention are presented in Table 3. In one embodiment, the invention provides GHXTEN compositions wherein the XTEN sequence length of the fusion protein(s) is greater than about 100 to about 3000 amino acid residues, and in some cases is greater than 400 to about 3000 amino acid residues, wherein the XTEN confers enhanced pharmacokinetic properties on the GHXTEN in comparison to GH not linked to XTEN. In some embodiments, the XTEN sequences of the GHXTEN compositions of the present invention can be about 100, or about 144, or about 288, or about 401, or about 500, or about 600, or about 700, or about 800, or about 900, or about 1000, or about 1500, or about 2000, or about 2500 or up to about 3000 amino acid residues in length. In other cases, the XTEN sequences can be about 100 to 150, about 150 to 250, about 250 to 400, 401 to about 500, about 500 to 900, about 900 to 1500, about 1500 to 2000, or about 2000 to about 3000 amino acid residues in length. In one embodiment, the GHXTEN can comprise an XTEN sequence wherein the sequence exhibits at least about 80% sequence identity, or alternatively 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to a XTEN selected from Table 3. In some embodiments, the XTEN sequence is designed for optimized expression as the N-terminal component of the GHXTEN by inclusion of encoding nucleotides for an optimized N-terminal leader sequence (NTS) in the XTEN portion of the gene encoding the fusion protein. In one embodiment, the N-terminal XTEN sequence of the expressed GHXTEN has at least 90% sequence identity to the sequence of AE48 or AM48, AE624, or AE912 or AM923. In another embodiment, the XTEN has the N-terminal residues described in Examples 14-17.


In other embodiments, the GHXTEN fusion protein comprises a first and a second XTEN sequence, wherein the cumulative total of the residues in the XTEN sequences is greater than about 400 to about 3000 amino acid residues. In embodiments of the foregoing, the GHXTEN fusion protein comprises a first and a second XTEN sequence wherein the sequences each exhibit at least about 80% sequence identity, or alternatively 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to at least a first or additionally a second XTEN selected from Table 3. Examples where more than one XTEN is used in a GHXTEN composition include, but are not limited to constructs with an XTEN linked to both the N- and C-termini of at least one GH.


As described more fully below, the invention provides methods in which the GHXTEN is designed by selecting the length of the XTEN to confer a target half-life on a fusion protein administered to a subject. In general, XTEN lengths longer that about cumulative 400 residues incorporated into the GHXTEN compositions result in longer half-life compared to shorter cumulative lengths; e.g., shorter than about 280 residues. However, in another embodiment, GHXTEN fusion proteins are designed to comprise XTEN with a longer sequence length that is selected to additionally confer slower rates of systemic absorption after subcutaneous or intramuscular administration to a subject. In such embodiments, the Cmax is reduced in comparison to a comparable dose of a GH not linked to XTEN, thereby contributing to the ability to keep the GHXTEN within the therapeutic window for the composition. Thus, the XTEN confers the property of a depot to the administered GHXTEN, in addition to the other physical/chemical properties described herein.









TABLE 3







XTEN Polypeptides









XTEN
SEQ ID



Name
NO:
Amino Acid Sequence












AE48
59
MAEPAGSPTSTEEGTPGSGTASSSPGSSTPSGATGSPGASPGTSSTGS





AM48
60
MAEPAGSPTSTEEGASPGTSSTGSPGSSTPSGATGSPGSSTPSGATGS





AE144
61
GSEPATSGSETPGTSESATPESGPGSEPATSGSETPGSPAGSPTSTEEGTSTE




PSEGSAPGSEPATSGSETPGSEPATSGSETPGSEPATSGSETPGTSTEPSEGS




APGTSESATPESGPGSEPATSGSETPGTSTEPSEGSAP





AF144
62
GTSTPESGSASPGTSPSGESSTAPGTSPSGESSTAPGSTSSTAESPGPGSTSES




PSGTAPGSTSSTAESPGPGTSPSGESSTAPGTSTPESGSASPGSTSSTAESPG




PGTSPSGESSTAPGTSPSGESSTAPGTSPSGESSTAP





AE288
63
GTSESATPESGPGSEPATSGSETPGTSESATPESGPGSEPATSGSETPGTSES




ATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSESATPESGPGSEPATSGSE




TPGTSESATPESGPGSPAGSPTSTEEGSPAGSPTSTEEGTSTEPSEGSAPGTS




ESATPESGPGTSESATPESGPGTSESATPESGPGSEPATSGSETPGSEPATSG




SETPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAPGSEPATSGSETPG




TSESATPESGPGTSTEPSEGSAP





AF504
64
GASPGTSSTGSPGSSPSASTGTGPGSSPSASTGTGPGTPGSGTASSSPGSSTP




SGATGSPGSXPSASTGTGPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGAT




GSPGTPGSGTASSSPGASPGTSSTGSPGASPGTSSTGSPGTPGSGTASSSPGS




STPSGATGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGSXPSAS




TGTGPGSSPSASTGTGPGSSTPSGATGSPGSSTPSGATGSPGASPGTSSTGSP




GASPGTSSTGSPGASPGTSSTGSPGTPGSGTASSSPGASPGTSSTGSPGASP




GTSSTGSPGASPGTSSTGSPGSSPSASTGTGPGTPGSGTASSSPGASPGTSST




GSPGASPGTSSTGSPGASPGTSSTGSPGSSTPSGATGSPGSSTPSGATGSPG




ASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGSSTPSGATGSPGSSTPS




GATGSPGSSPSASTGTGPGASPGTSSTGSP





AF540
65
GSTSSTAESPGPGSTSSTAESPGPGSTSESPSGTAPGSTSSTAESPGPGSTSST




AESPGPGTSTPESGSASPGSTSESPSGTAPGTSPSGESSTAPGSTSESPSGTA




PGSTSESPSGTAPGTSPSGESSTAPGSTSESPSGTAPGSTSESPSGTAPGTSPS




GESSTAPGSTSESPSGTAPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSA




SPGSTSESPSGTAPGTSTPESGSASPGSTSSTAESPGPGSTSSTAESPGPGTST




PESGSASPGTSTPESGSASPGSTSESPSGTAPGTSTPESGSASPGTSTPESGS




ASPGSTSESPSGTAPGSTSESPSGTAPGSTSESPSGTAPGSTSSTAESPGPGT




STPESGSASPGTSTPESGSASPGSTSESPSGTAPGSTSESPSGTAPGTSTPESG




SASPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSASPGTSPSGESSTAPGS




TSSTAESPGPGTSPSGESSTAPGSTSSTAESPGPGTSTPESGSASPGSTSESPS




GTAP





AD576
66
GSSESGSSEGGPGSGGEPSESGSSGSSESGSSEGGPGSSESGSSEGGPGSSES




GSSEGGPGSSESGSSEGGPGSSESGSSEGGPGESPGGSSGSESGSEGSSGPG




ESSGSSESGSSEGGPGSSESGSSEGGPGSSESGSSEGGPGSGGEPSESGSSGE




SPGGSSGSESGESPGGSSGSESGSGGEPSESGSSGSSESGSSEGGPGSGGEPS




ESGSSGSGGEPSESGSSGSEGSSGPGESSGESPGGSSGSESGSGGEPSESGSS




GSGGEPSESGSSGSGGEPSESGSSGSSESGSSEGGPGESPGGSSGSESGESPG




GSSGSESGESPGGSSGSESGESPGGSSGSESGESPGGSSGSESGSSESGSSEG




GPGSGGEPSESGSSGSEGSSGPGESSGSSESGSSEGGPGSGGEPSESGSSGSS




ESGSSEGGPGSGGEPSESGSSGESPGGSSGSESGESPGGSSGSESGSSESGSS




EGGPGSGGEPSESGSSGSSESGSSEGGPGSGGEPSESGSSGSGGEPSESGSS




GESPGGSSGSESGSEGSSGPGESSGSSESGSSEGGPGSEGSSGPGESS





AE576
67
GSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTE




PSEGSAPGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGSEPATSGSE




TPGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGSP




AGSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSTEPSE




GSAPGTSESATPESGPGSEPATSGSETPGTSTEPSEGSAPGTSTEPSEGSAPG




TSESATPESGPGTSESATPESGPGSPAGSPTSTEEGTSESATPESGPGSEPAT




SGSETPGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSA




PGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTST




EPSEGSAPGTSESATPESGPGSEPATSGSETPGTSESATPESGPGSEPATSGS




ETPGTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSPAGSPTSTEEGS




PAGSPTSTEEGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAP





AF576
68
GSTSSTAESPGPGSTSSTAESPGPGSTSESPSGTAPGSTSSTAESPGPGSTSST




AESPGPGTSTPESGSASPGSTSESPSGTAPGTSPSGESSTAPGSTSESPSGTA




PGSTSESPSGTAPGTSPSGESSTAPGSTSESPSGTAPGSTSESPSGTAPGTSPS




GESSTAPGSTSESPSGTAPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSA




SPGSTSESPSGTAPGTSTPESGSASPGSTSSTAESPGPGSTSSTAESPGPGTST




PESGSASPGTSTPESGSASPGSTSESPSGTAPGTSTPESGSASPGTSTPESGS




ASPGSTSESPSGTAPGSTSESPSGTAPGSTSESPSGTAPGSTSSTAESPGPGT




STPESGSASPGTSTPESGSASPGSTSESPSGTAPGSTSESPSGTAPGTSTPESG




SASPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSASPGTSPSGESSTAPGS




TSSTAESPGPGTSPSGESSTAPGSTSSTAESPGPGTSTPESGSASPGSTSESPS




GTAPGSTSSTAESPGPGTSTPESGSASPGTSTPESGSASP





AE624
69
MAEPAGSPTSTEEGTPGSGTASSSPGSSTPSGATGSPGASPGTSSTGSPGSP




AGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSE




GSAPGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGSEPATSGSETPG




SPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGS




PTSTEEGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSTEPSEGSA




PGTSESATPESGPGSEPATSGSETPGTSTEPSEGSAPGTSTEPSEGSAPGTSE




SATPESGPGTSESATPESGPGSPAGSPTSTEEGTSESATPESGPGSEPATSGS




ETPGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGT




STEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPS




EGSAPGTSESATPESGPGSEPATSGSETPGTSESATPESGPGSEPATSGSETP




GTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSPAGSPTSTEEGSPAG




SPTSTEEGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAP





AD836
70
GSSESGSSEGGPGSSESGSSEGGPGESPGGSSGSESGSGGEPSESGSSGESPG




GSSGSESGESPGGSSGSESGSSESGSSEGGPGSSESGSSEGGPGSSESGSSEG




GPGESPGGSSGSESGESPGGSSGSESGESPGGSSGSESGSSESGSSEGGPGSS




ESGSSEGGPGSSESGSSEGGPGSSESGSSEGGPGSSESGSSEGGPGSSESGSS




EGGPGSGGEPSESGSSGESPGGSSGSESGESPGGSSGSESGSGGEPSESGSS




GSEGSSGPGESSGSSESGSSEGGPGSGGEPSESGSSGSEGSSGPGESSGSSES




GSSEGGPGSGGEPSESGSSGESPGGSSGSESGSGGEPSESGSSGSGGEPSES




GSSGSSESGSSEGGPGSGGEPSESGSSGSGGEPSESGSSGSEGSSGPGESSGE




SPGGSSGSESGSEGSSGPGESSGSEGSSGPGESSGSGGEPSESGSSGSSESGS




SEGGPGSSESGSSEGGPGESPGGSSGSESGSGGEPSESGSSGSEGSSGPGESS




GESPGGSSGSESGSEGSSGPGSSESGSSEGGPGSGGEPSESGSSGSEGSSGP




GESSGSEGSSGPGESSGSEGSSGPGESSGSGGEPSESGSSGSGGEPSESGSSG




ESPGGSSGSESGESPGGSSGSESGSGGEPSESGSSGSEGSSGPGESSGESPGG




SSGSESGSSESGSSEGGPGSSESGSSEGGPGSSESGSSEGGPGSGGEPSESGS




SGSSESGSSEGGPGESPGGSSGSESGSGGEPSESGSSGSSESGSSEGGPGESP




GGSSGSESGSGGEPSESGSSGESPGGSSGSESGSGGEPSESGSS





AE864
71
GSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTE




PSEGSAPGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGSEPATSGSE




TPGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGSP




AGSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSTEPSE




GSAPGTSESATPESGPGSEPATSGSETPGTSTEPSEGSAPGTSTEPSEGSAPG




TSESATPESGPGTSESATPESGPGSPAGSPTSTEEGTSESATPESGPGSEPAT




SGSETPGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSA




PGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTST




EPSEGSAPGTSESATPESGPGSEPATSGSETPGTSESATPESGPGSEPATSGS




ETPGTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSPAGSPTSTEEGS




PAGSPTSTEEGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGTSESAT




PESGPGSEPATSGSETPGTSESATPESGPGSEPATSGSETPGTSESATPESGP




GTSTEPSEGSAPGSPAGSPTSTEEGTSESATPESGPGSEPATSGSETPGTSES




ATPESGPGSPAGSPTSTEEGSPAGSPTSTEEGTSTEPSEGSAPGTSESATPES




GPGTSESATPESGPGTSESATPESGPGSEPATSGSETPGSEPATSGSETPGSP




AGSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAPGSEPATSGSETPGTSESATP




ESGPGTSTEPSEGSAP





AF864
72
GSTSESPSGTAPGTSPSGESSTAPGSTSESPSGTAPGSTSESPSGTAPGTSTPE




SGSASPGTSTPESGSASPGSTSESPSGTAPGSTSESPSGTAPGTSPSGESSTAP




GSTSESPSGTAPGTSPSGESSTAPGTSPSGESSTAPGSTSSTAESPGPGTSPS




GESSTAPGTSPSGESSTAPGSTSSTAESPGPGTSTPESGSASPGTSTPESGSA




SPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSASPGSTSSTAESPGPGTST




PESGSASPGSTSESPSGTAPGTSPSGESSTAPGSTSSTAESPGPGTSPSGESST




APGTSTPESGSASPGSTSSTAESPGPGSTSSTAESPGPGSTSSTAESPGPGST




SSTAESPGPGTSPSGESSTAPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGP




XXXGASASGAPSTXXXXSESPSGTAPGSTSESPSGTAPGSTSESPSGTAPGS




TSESPSGTAPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSASPGTSPSGES




STAPGTSPSGESSTAPGSTSSTAESPGPGTSPSGESSTAPGTSTPESGSASPG




STSESPSGTAPGSTSESPSGTAPGTSPSGESSTAPGSTSESPSGTAPGTSTPES




GSASPGTSTPESGSASPGSTSESPSGTAPGTSTPESGSASPGSTSSTAESPGP




GSTSESPSGTAPGSTSESPSGTAPGTSPSGESSTAPGSTSSTAESPGPGTSPS




GESSTAPGTSTPESGSASPGTSPSGESSTAPGTSPSGESSTAPGTSPSGESST




APGSTSSTAESPGPGSTSSTAESPGPGTSPSGESSTAPGSSPSASTGTGPGSS




TPSGATGSPGSSTPSGATGSP





AG864
73
GASPGTSSTGSPGSSPSASTGTGPGSSPSASTGTGPGTPGSGTASSSPGSSTP




SGATGSPGSSPSASTGTGPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGAT




GSPGTPGSGTASSSPGASPGTSSTGSPGASPGTSSTGSPGTPGSGTASSSPGS




STPSGATGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGSSPSAS




TGTGPGSSPSASTGTGPGSSTPSGATGSPGSSTPSGATGSPGASPGTSSTGSP




GASPGTSSTGSPGASPGTSSTGSPGTPGSGTASSSPGASPGTSSTGSPGASP




GTSSTGSPGASPGTSSTGSPGSSPSASTGTGPGTPGSGTASSSPGASPGTSST




GSPGASPGTSSTGSPGASPGTSSTGSPGSSTPSGATGSPGSSTPSGATGSPG




ASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGSSTPSGATGSPGSSTPS




GATGSPGSSPSASTGTGPGASPGTSSTGSPGASPGTSSTGSPGTPGSGTASS




SPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGTP




GSGTASSSPGSSTPSGATGSPGTPGSGTASSSPGSSTPSGATGSPGTPGSGT




ASSSPGSSTPSGATGSPGSSTPSGATGSPGSSPSASTGTGPGSSPSASTGTGP




GASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGSSPSASTGTGPGSSPS




ASTGTGPGASPGTSSTGSPGASPGTSSTGSPGSSTPSGATGSPGSSPSASTGT




GPGASPGTSSTGSPGSSPSASTGTGPGTPGSGTASSSPGSSTPSGATGSPGSS




TPSGATGSPGASPGTSSTGSP





AM875
74
GTSTEPSEGSAPGSEPATSGSETPGSPAGSPTSTEEGSTSSTAESPGPGTSTP




ESGSASPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSASPGTSTPESGSA




SPGSEPATSGSETPGTSESATPESGPGSPAGSPTSTEEGTSTEPSEGSAPGTS




ESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSE




GSAPGTSTEPSEGSAPGTSESATPESGPGTSESATPESGPGTSTEPSEGSAPG




TSTEPSEGSAPGTSESATPESGPGTSTEPSEGSAPGSEPATSGSETPGSPAGS




PTSTEEGSSTPSGATGSPGTPGSGTASSSPGSSTPSGATGSPGTSTEPSEGSA




PGTSTEPSEGSAPGSEPATSGSETPGSPAGSPTSTEEGSPAGSPTSTEEGTST




EPSEGSAPGASASGAPSTGGTSESATPESGPGSPAGSPTSTEEGSPAGSPTST




EEGSTSSTAESPGPGSTSESPSGTAPGTSPSGESSTAPGTPGSGTASSSPGSS




TPSGATGSPGSSPSASTGTGPGSEPATSGSETPGTSESATPESGPGSEPATSG




SETPGSTSSTAESPGPGSTSSTAESPGPGTSPSGESSTAPGSEPATSGSETPGS




EPATSGSETPGTSTEPSEGSAPGSTSSTAESPGPGTSTPESGSASPGSTSESPS




GTAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGSSTPSGATGSPG




SSPSASTGTGPGASPGTSSTGSPGSEPATSGSETPGTSESATPESGPGSPAGS




PTSTEEGSSTPSGATGSPGSSPSASTGTGPGASPGTSSTGSPGTSESATPESG




PGTSTEPSEGSAPGTSTEPSEGSAP





AE912
75
MAEPAGSPTSTEEGTPGSGTASSSPGSSTPSGATGSPGASPGTSSTGSPGSP




AGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSE




GSAPGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGSEPATSGSETPG




SPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGS




PTSTEEGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSTEPSEGSA




PGTSESATPESGPGSEPATSGSETPGTSTEPSEGSAPGTSTEPSEGSAPGTSE




SATPESGPGTSESATPESGPGSPAGSPTSTEEGTSESATPESGPGSEPATSGS




ETPGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGT




STEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPS




EGSAPGTSESATPESGPGSEPATSGSETPGTSESATPESGPGSEPATSGSETP




GTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSPAGSPTSTEEGSPAG




SPTSTEEGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGTSESATPES




GPGSEPATSGSETPGTSESATPESGPGSEPATSGSETPGTSESATPESGPGTS




TEPSEGSAPGSPAGSPTSTEEGTSESATPESGPGSEPATSGSETPGTSESATP




ESGPGSPAGSPTSTEEGSPAGSPTSTEEGTSTEPSEGSAPGTSESATPESGPG




TSESATPESGPGTSESATPESGPGSEPATSGSETPGSEPATSGSETPGSPAGS




PTSTEEGTSTEPSEGSAPGTSTEPSEGSAPGSEPATSGSETPGTSESATPESG




PGTSTEPSEGSAP





AM923
76
MAEPAGSPTSTEEGASPGTSSTGSPGSSTPSGATGSPGSSTPSGATGSPGTS




TEPSEGSAPGSEPATSGSETPGSPAGSPTSTEEGSTSSTAESPGPGTSTPESG




SASPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSASPGTSTPESGSASPGS




EPATSGSETPGTSESATPESGPGSPAGSPTSTEEGTSTEPSEGSAPGTSESAT




PESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAP




GTSTEPSEGSAPGTSESATPESGPGTSESATPESGPGTSTEPSEGSAPGTSTE




PSEGSAPGTSESATPESGPGTSTEPSEGSAPGSEPATSGSETPGSPAGSPTST




EEGSSTPSGATGSPGTPGSGTASSSPGSSTPSGATGSPGTSTEPSEGSAPGTS




TEPSEGSAPGSEPATSGSETPGSPAGSPTSTEEGSPAGSPTSTEEGTSTEPSE




GSAPGASASGAPSTGGTSESATPESGPGSPAGSPTSTEEGSPAGSPTSTEEG




STSSTAESPGPGSTSESPSGTAPGTSPSGESSTAPGTPGSGTASSSPGSSTPSG




ATGSPGSSPSASTGTGPGSEPATSGSETPGTSESATPESGPGSEPATSGSETP




GSTSSTAESPGPGSTSSTAESPGPGTSPSGESSTAPGSEPATSGSETPGSEPA




TSGSETPGTSTEPSEGSAPGSTSSTAESPGPGTSTPESGSASPGSTSESPSGT




APGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGSSTPSGATGSPGSS




PSASTGTGPGASPGTSSTGSPGSEPATSGSETPGTSESATPESGPGSPAGSPT




STEEGSSTPSGATGSPGSSPSASTGTGPGASPGTSSTGSPGTSESATPESGPG




TSTEPSEGSAPGTSTEPSEGSAP





AM1318
77
GTSTEPSEGSAPGSEPATSGSETPGSPAGSPTSTEEGSTSSTAESPGPGTSTP




ESGSASPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSASPGTSTPESGSA




SPGSEPATSGSETPGTSESATPESGPGSPAGSPTSTEEGTSTEPSEGSAPGTS




ESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSE




GSAPGTSTEPSEGSAPGTSESATPESGPGTSESATPESGPGTSTEPSEGSAPG




TSTEPSEGSAPGTSESATPESGPGTSTEPSEGSAPGSEPATSGSETPGSPAGS




PTSTEEGSSTPSGATGSPGTPGSGTASSSPGSSTPSGATGSPGTSTEPSEGSA




PGTSTEPSEGSAPGSEPATSGSETPGSPAGSPTSTEEGSPAGSPTSTEEGTST




EPSEGSAPGPEPTGPAPSGGSEPATSGSETPGTSESATPESGPGSPAGSPTST




EEGTSESATPESGPGSPAGSPTSTEEGSPAGSPTSTEEGTSESATPESGPGSP




AGSPTSTEEGSPAGSPTSTEEGSTSSTAESPGPGSTSESPSGTAPGTSPSGES




STAPGSTSESPSGTAPGSTSESPSGTAPGTSPSGESSTAPGTSTEPSEGSAPG




TSESATPESGPGTSESATPESGPGSEPATSGSETPGTSESATPESGPGTSESA




TPESGPGTSTEPSEGSAPGTSESATPESGPGTSTEPSEGSAPGTSPSGESSTA




PGTSPSGESSTAPGTSPSGESSTAPGTSTEPSEGSAPGSPAGSPTSTEEGTST




EPSEGSAPGSSPSASTGTGPGSSTPSGATGSPGSSTPSGATGSPGSSTPSGAT




GSPGSSTPSGATGSPGASPGTSSTGSPGASASGAPSTGGTSPSGESSTAPGS




TSSTAESPGPGTSPSGESSTAPGTSESATPESGPGTSTEPSEGSAPGTSTEPSE




GSAPGSSPSASTGTGPGSSTPSGATGSPGASPGTSSTGSPGTSTPESGSASPG




TSPSGESSTAPGTSPSGESSTAPGTSESATPESGPGSEPATSGSETPGTSTEPS




EGSAPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSASPGSPAGSPTSTEE




GTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSESATPESGPGSEPA




TSGSETPGSSTPSGATGSPGASPGTSSTGSPGSSTPSGATGSPGSTSESPSGT




APGTSPSGESSTAPGSTSSTAESPGPGSSTPSGATGSPGASPGTSSTGSPGTP




GSGTASSSPGSPAGSPTSTEEGSPAGSPTSTEEGTSTEPSEGSAP





BC 864
78
GTSTEPSEPGSAGTSTEPSEPGSAGSEPATSGTEPSGSGASEPTSTEPGSEPA




TSGTEPSGSEPATSGTEPSGSEPATSGTEPSGSGASEPTSTEPGTSTEPSEPG




SAGSEPATSGTEPSGTSTEPSEPGSAGSEPATSGTEPSGSEPATSGTEPSGTS




TEPSEPGSAGTSTEPSEPGSAGSEPATSGTEPSGSEPATSGTEPSGTSEPSTS




EPGAGSGASEPTSTEPGTSEPSTSEPGAGSEPATSGTEPSGSEPATSGTEPSG




TSTEPSEPGSAGTSTEPSEPGSAGSGASEPTSTEPGSEPATSGTEPSGSEPAT




SGTEPSGSEPATSGTEPSGSEPATSGTEPSGTSTEPSEPGSAGSEPATSGTEP




SGSGASEPTSTEPGTSTEPSEPGSAGSEPATSGTEPSGSGASEPTSTEPGTST




EPSEPGSAGSGASEPTSTEPGSEPATSGTEPSGSGASEPTSTEPGSEPATSGT




EPSGSGASEPTSTEPGTSTEPSEPGSAGSEPATSGTEPSGSGASEPTSTEPGT




STEPSEPGSAGSEPATSGTEPSGTSTEPSEPGSAGSEPATSGTEPSGTSTEPS




EPGSAGTSTEPSEPGSAGTSTEPSEPGSAGTSTEPSEPGSAGTSTEPSEPGSA




GTSTEPSEPGSAGTSEPSTSEPGAGSGASEPTSTEPGTSTEPSEPGSAGTSTE




PSEPGSAGTSTEPSEPGSAGSEPATSGTEPSGSGASEPTSTEPGSEPATSGTE




PSGSEPATSGTEPSGSEPATSGTEPSGSEPATSGTEPSGTSEPSTSEPGAGSE




PATSGTEPSGSGASEPTSTEPGTSTEPSEPGSAGSEPATSGTEPSGSGASEPT




STEPGTSTEPSEPGSA





BD864
79
GSETATSGSETAGTSESATSESGAGSTAGSETSTEAGTSESATSESGAGSET




ATSGSETAGSETATSGSETAGTSTEASEGSASGTSTEASEGSASGTSESATS




ESGAGSETATSGSETAGTSTEASEGSASGSTAGSETSTEAGTSESATSESGA




GTSESATSESGAGSETATSGSETAGTSESATSESGAGTSTEASEGSASGSET




ATSGSETAGSETATSGSETAGTSTEASEGSASGSTAGSETSTEAGTSESATS




ESGAGTSTEASEGSASGSETATSGSETAGSTAGSETSTEAGSTAGSETSTEA




GSETATSGSETAGTSESATSESGAGTSESATSESGAGSETATSGSETAGTSE




SATSESGAGTSESATSESGAGSETATSGSETAGSETATSGSETAGTSTEASE




GSASGSTAGSETSTEAGSETATSGSETAGTSESATSESGAGSTAGSETSTEA




GSTAGSETSTEAGSTAGSETSTEAGTSTEASEGSASGSTAGSETSTEAGSTA




GSETSTEAGTSTEASEGSASGSTAGSETSTEAGSETATSGSETAGTSTEASE




GSASGTSESATSESGAGSETATSGSETAGTSESATSESGAGTSESATSESGA




GSETATSGSETAGTSESATSESGAGSETATSGSETAGTSTEASEGSASGTST




EASEGSASGSTAGSETSTEAGSTAGSETSTEAGSETATSGSETAGTSESATS




ESGAGTSESATSESGAGSETATSGSETAGSETATSGSETAGSETATSGSETA




GTSTEASEGSASGTSESATSESGAGSETATSGSETAGSETATSGSETAGTSE




SATSESGAGTSESATSESGAGSETATSGSETA









4. XTEN Segments


In one embodiment, the invention provides an isolated GHXTEN fusion protein wherein the cumulative length of the XTEN component is greater than about 100 to about 3000 amino acid residues containing at least one polypeptide sequence segment selected from Tables 3, 8, 9, 10, 11, and 12 and wherein at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98% or more of the remainder of the XTEN sequence by and large contains hydrophilic amino acids and less than about 2% of the remainder of the XTEN consists of hydrophobic or aromatic amino acids, or cysteine. In some embodiments, the XTEN contains multiple segments wherein the segments are identical or different. In another embodiment, the invention provides an isolated GHXTEN fusion protein wherein the cumulative length of the XTEN component is greater than about 100 to about 3000 amino acid residues and comprises at least one sequence segment of at least about 100 to about 923, or at least about 100 to about 875, or at least about 100 to about 576, or at least about 100 to about 288, or at least about 100 to about 144 amino acid residues wherein the sequence segment(s) consists of at least three different types of amino acids and the sum of glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) residues in the sequence segment(s) constitutes at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least about 99% of the total amino acid sequence of the sequence segment and at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98% of the remainder of the XTEN sequence(s) consist of hydrophilic amino acids and less than about 2% of the remainder of the XTEN sequence(s) consists of hydrophobic oraromatic amino acids, or cysteine. In another embodiment, the invention provides an isolated GHXTEN fusion protein wherein the cumulative length of the XTEN component is greater than about 100 to about 3000 amino acid residues and comprises at least one sequence segment of at least about 200 to about 923, or at least about 200 to about 875, or at least about 200 to about 576, or at least about 200 to about 288 amino acid residues wherein the sequence segment(s) the sum of glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) residues in the sequence segment(s) constitutes at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least about 99% of the total amino acid sequence of the sequence segment and wherein the subsequence score of the segment is less than 12, more preferably less than 10, more preferably less than 9, more preferably less than 8, more preferably less than 7, more preferably less than 6, and most preferably less than 5, and at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98% of the remainder of the XTEN sequence(s) consist of hydrophilic amino acids and less than about 2% of the remainder of the XTEN sequence(s) consists of hydrophobic, aromatic or cysteine amino acids.


5. N-Terminal XTEN Expression-Enhancing Sequences


In some embodiments, the invention provides a short-length XTEN sequence incorporated as the N-terminal portion of the GHXTEN fusion protein. The expression of the fusion protein is enhanced in a host cell transformed with a suitable expression vector comprising an optimized N-terminal leader polynucleotide sequence (that encodes the N-terminal XTEN) incorporated into the polynucleotide encoding the binding fusion protein. It has been discovered, as described in Examples 14-17, that a host cell transformed with such an expression vector comprising an optimized N-terminal leader sequence (NTS) in the binding fusion protein gene results in greatly-enhanced expression of the fusion protein compared to the expression of a corresponding fusion protein from a polynucleotide not comprising the NTS, and obviates the need for incorporation of a non-XTEN leader sequence used to enhance expression. In one embodiment, the invention provides GHXTEN fusion proteins comprising an NTS wherein the expression of the binding fusion protein from the encoding gene in a host cell is enhanced about 50%, or about 75%, or about 100%, or about 150%, or about 200%, or about 400% compared to expression of a GHXTEN fusion protein not comprising the N-terminal XTEN sequence (where the encoding gene lacks the NTS).


In one embodiment, the N-terminal XTEN polypeptide of the GHXTEN comprises a sequence that exhibits at least about 80%, more preferably at least about 90%, more preferably at least about 91%, more preferably at least about 92%, more preferably at least about 93%, more preferably at least about 94%, more preferably at least about 95%, more preferably at least about 96%, more preferably at least about 97%, more preferably at least about 98%, more preferably at least 99%, or exhibits 100% sequence identity to the amino acid sequence of AE48 or AM48, the respective amino acid sequences of which are as follows:









AE48:







(SEQ ID NO: 80)







MAEPAGSPTSTEEGTPGSGTASSSPGSSTPSGATGSPGASPGTSSTGS





AM48:







(SEQ ID NO: 81)







MAEPAGSPTSTEEGASPGTSSTGSPGSSTPSGATGSPGSSTPSGATGS






In another embodiment, the short-length N-terminal XTEN is linked to an XTEN of longer length to form the N-terminal region of the GHXTEN fusion protein, wherein the polynucleotide sequence encoding the short-length N-terminal XTEN confers the property of enhanced expression in the host cell, and wherein the long length of the expressed XTEN contributes to the enhanced properties of the XTEN carrier in the fusion protein, as described above. In the foregoing, the short-length XTEN is linked to any of the XTEN disclosed herein (e.g., an XTEN of Table 3) and the resulting XTEN, in turn, is linked to the N-terminal of any of the GH disclosed herein (e.g., a GH of Table 1) as a component of the fusion protein. Alternatively, polynucleotides encoding the short-length XTEN (or its complement) is linked to polynucleotides encoding any of the XTEN (or its complement) disclosed herein and the resulting gene encoding the N-terminal XTEN, in turn, is linked to the 5′ end of polynucleotides encoding any of the GH (or to the 3′ end of its complement) disclosed herein. In some embodiments, the N-terminal XTEN polypeptide with long length exhibits at least about 80%, or at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least 99%, or exhibits 100% sequence identity to an amino acid sequence selected from the group consisting of the sequences AE624, AE912, and AM923.


In any of the foregoing N-terminal XTEN embodiments described above, the N-terminal XTEN can have from about one to about six additional amino acid residues, preferably selected from GESTPA, to accommodate the restriction endonuclease restriction sites that would be employed to join the nucleotides encoding the N-terminal XTEN to the gene encoding the targeting moiety of the fusion protein. The methods for the generation of the N-terminal sequences and incorporation into the fusion proteins of the invention are described more fully in the Examples.


6. Net Charge


In other embodiments, the XTEN polypeptides have an unstructured characteristic imparted by incorporation of amino acid residues with a net charge and/or reducing the proportion of hydrophobic amino acids in the XTEN sequence. The overall net charge and net charge density is controlled by modifying the content of charged amino acids in the XTEN sequences. In some embodiments, the net charge density of the XTEN of the compositions may be above +0.1 or below −0.1 charges/residue. In other embodiments, the net charge of a XTEN can be about 0%, about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10% about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, or about 20% or more.


Since most tissues and surfaces in a human or animal have a net negative charge, in some embodiments, the XTEN sequences are designed to have a net negative charge to minimize non-specific interactions between the XTEN containing compositions and various surfaces such as blood vessels, healthy tissues, or various receptors. Not to be bound by a particular theory, the XTEN can adopt open conformations due to electrostatic repulsion between individual amino acids of the XTEN polypeptide that individually carry a net negative charge and that are distributed across the sequence of the XTEN polypeptide. Such a distribution of net negative charge in the extended sequence lengths of XTEN can lead to an unstructured conformation that, in turn, can result in an effective increase in hydrodynamic radius. In preferred embodiments, the negative charge is conferred by incorporation of glutamic acid residues. Accordingly, in one embodiment the invention provides XTEN in which the XTEN sequences contain about 8, 10, 15, 20, 25, or even about 30% glutamic acid. Generally, the glutamic residues would be spaced uniformly across the XTEN sequence. In some cases, the XTEN can contain about 10-80, or about 15-60, or about 20-50 glutamic residues residues per 20 kD of XTEN that can result in an XTEN with charged residues that would have very similar pKa, which can increase the charge homogeneity of the product and sharpen its isoelectric point, enhancing the physicochemical properties of the resulting GHXTEN fusion protein for, example, simplifying purification procedures.


The XTEN of the compositions of the present invention generally have no or a low content of positively charged amino acids. In some embodimentsthe XTEN may have less than about 10% amino acid residues with a positive charge, or less than about 7%, or less than about 5%, or less than about 2%, or less than about 1% amino acid residues with a positive charge. However, the invention contemplates constructs where a limited number of amino acids with a positive charge, such as lysine, are incorporated into XTEN to permit conjugation between the epsilon amine of the lysine and a reactive group on a peptide, a linker bridge, or a reactive group on a drug or small molecule to be conjugated to the XTEN backbone. In one embodiment of the foregoing, the XTEN has between about 1 to about 100 lysine residues, or about 1 to about 70 lysine residues, or about 1 to about 50 lysine residues, or about 1 to about 30 lysine residues, or about 1 to about 20 lysine residues, or about 1 to about 10 lysine residues, or about 1 to about 5 lysine residues, or alternatively only a single lysine residue. Using the foregoing lysine-containing XTEN, fusion proteins are constructed that comprises XTEN, a growth hormone, plus a chemotherapeutic agent useful in the treatment of growth-related diseases or disorders, wherein the maximum number of molecules of the agent incorporated into the XTEN component is determined by the numbers of lysines or other amino acids with reactive side chains (e.g., cysteine) incorporated into the XTEN.


In some embodiments, the XTEN sequence comprises charged residues separated by other residues such as serine or glycine, which leads to better expression or purification behavior. Based on the net charge, some XTENs have an isoelectric point (pI) of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, or even 6.5. In preferred embodiments, the XTEN will have an isoelectric point between 1.5 and 4.5. In these embodiments, the XTEN incorporated into the GHXTEN fusion protein compositions of the present invention carry a net negative charge under physiologic conditions that contribute to the unstructured conformation and reduced binding of the XTEN component to mammalian proteins and tissues.


As hydrophobic amino acids impart structure to a polypeptide, the invention provides that the content of hydrophobic amino acids in the XTEN will typically be less than 5%, or less than 2%, or less than 1% hydrophobic amino acid content. In one embodiment, the amino acid content of methionine and tryptophan in the XTEN component of a GHXTEN fusion protein is typically less than 5%, or less than 2%, and most preferably less than 1%. In another embodiment, the XTEN will have a sequence that has less than 10% amino acid residues with a positive charge, or less than about 7%, or less that about 5%, or less than about 2% amino acid residues with a positive charge, the sum of methionine and tryptophan residues will be less than 2%, and the sum of asparagine and glutamine residues will be less than 10% of the total XTEN sequence.


7. Low Immunogenicity


In another aspect, the invention provides compositions in which the XTEN sequences have a low degree of immunogenicity or are substantially non-immunogenic. Several factors can contribute to the low immunogenicity of XTEN, e.g., the non-repetitive sequence, the unstructured conformation, the high degree of solubility, the low degree or lack of self-aggregation, the low degree or lack of proteolytic sites within the sequence, and the low degree or lack of epitopes in the XTEN sequence.


Conformational epitopes are formed by regions of the protein surface that are composed of multiple discontinuous amino acid sequences of the protein antigen. The precise folding of the protein brings these sequences into a well-defined, stable spatial configurations, or epitopes, that can be recognized as “foreign” by the host humoral immune system, resulting in the production of antibodies to the protein or the activation of a cell-mediated immune response. In the latter case, the immune response to a protein in an individual is heavily influenced by T-cell epitope recognition that is a function of the peptide binding specificity of that individual's HLA-DR allotype. Engagement of a MHC Class II peptide complex by a cognate T-cell receptor on the surface of the T-cell, together with the cross-binding of certain other co-receptors such as the CD4 molecule, can induce an activated state within the T-cell. Activation leads to the release of cytokines further activating other lymphocytes such as B cells to produce antibodies or activating T killer cells as a full cellular immune response.


The ability of a peptide to bind a given MHC Class II molecule for presentation on the surface of an APC (antigen presenting cell) is dependent on a number of factors; most notably its primary sequence. In one embodiment, a lower degree of immunogenicity is achieved by designing XTEN sequences that resist antigen processing in antigen presenting cells, and/or choosing sequences that do not bind MHC receptors well. The invention provides GHXTEN fusion proteins with substantially non-repetitive XTEN polypeptides designed to reduce binding with MHC II receptors, as well as avoiding formation of epitopes for T-cell receptor or antibody binding, resulting in a low degree of immunogenicity. Avoidance of immunogenicity is, in part, a direct result of the conformational flexibility of XTEN sequences; i.e., the lack of secondary structure due to the selection and order of amino acid residues. For example, of particular interest are sequences having a low tendency to adapt compactly folded conformations in aqueous solution or under physiologic conditions that could result in conformational epitopes. The administration of fusion proteins comprising XTEN, using conventional therapeutic practices and dosing, would generally not result in the formation of neutralizing antibodies to the XTEN sequence, and also reduce the immunogenicity of the GH fusion partner in the GHXTEN compositions.


In one embodiment, the XTEN sequences utilized in the subject fusion proteins can be substantially free of epitopes recognized by human T cells. The elimination of such epitopes for the purpose of generating less immunogenic proteins has been disclosed previously; see for example WO 98/52976, WO 02/079232, and WO 00/3317 which are incorporated by reference herein. Assays for human T cell epitopes have been described (Stickler, M., et al. (2003) J Immunol Methods, 281: 95-108). Of particular interest are peptide sequences that can be oligomerized without generating T cell epitopes or non-human sequences. This is achieved by testing direct repeats of these sequences for the presence of T-cell epitopes and for the occurrence of 6 to 15-mer and, in particular, 9-mer sequences that are not human, and then altering the design of the XTEN sequence to eliminate or disrupt the epitope sequence. In some embodiments, the XTEN sequences are substantially non-immunogenic by the restriction of the numbers of epitopes of the XTEN predicted to bind MHC receptors. With a reduction in the numbers of epitopes capable of binding to MHC receptors, there is a concomitant reduction in the potential for T cell activation as well as T cell helper function, reduced B cell activation or upregulation and reduced antibody production. The low degree of predicted T-cell epitopes can be determined by epitope prediction algorithms such as, e.g., TEPITOPE (Sturniolo, T., et al. (1999) Nat Biotechnol, 17: 555-61), as shown in Example 45. The TEPITOPE score of a given peptide frame within a protein is the log of the Kd (dissociation constant, affinity, off-rate) of the binding of that peptide frame to multiple of the most common human MHC alleles, as disclosed in Sturniolo, T. et al. (1999) Nature Biotechnology 17:555). The score ranges over at least 20 logs, from about 10 to about -10 (corresponding to binding constraints of 10e10Kd to 10e−10 Kd), and can be reduced by avoiding hydrophobic amino acids that serve as anchor residues during peptide display on MHC, such as M, I, L, V, F. In some embodiments, an XTEN component incorporated into a GHXTEN does not have a predicted T-cell epitope at a TEPITOPE score of about −5 or greater, or −6 or greater, or −7 or greater, or −8 or greater, or at a TEPITOPE score of −9 or greater. As used herein, a score of “−9 or greater” would encompass TEPITOPE scores of 10 to −9, inclusive, but would not encompass a score of −10, as −10 is less than −9.


In another embodiment, the inventive XTEN sequences, including those incorporated into the subject GHXTEN fusion proteins, are rendered substantially non-immunogenic by the restriction of known proteolytic sites from the sequence of the XTEN, reducing the processing of XTEN into small peptides that can bind to MHC II receptors. In another embodiment, the XTEN sequence is rendered substantially non-immunogenic by the use a sequence that is substantially devoid of secondary structure, conferring resistance to many proteases due to the high entropy of the structure. Accordingly, the reduced TEPITOPE score and elimination of known proteolytic sites from the XTEN render the XTEN compositions, including the XTEN of the GHXTEN fusion protein compositions, substantially unable to be bound by mammalian receptors, including those of the immune system. In one embodiment, an XTEN of a GHXTEN fusion protein can have >100 nM Kd binding to a mammalian receptor, or greater than 500 nM Kd, or greater than 1 μM Kd towards a mammalian cell surface or circulating polypeptide receptor.


Additionally, the non-repetitive sequence and corresponding lack of epitopes of XTEN limit the ability of B cells to bind to or be activated by XTEN. A repetitive sequence is recognized and can form multivalent contacts with even a few B cells and, as a consequence of the cross-linking of multiple T-cell independent receptors, can stimulate B cell proliferation and antibody production. In contrast, while a XTEN can make contacts with many different B cells over its extended sequence, each individual B cell may only make one or a small number of contacts with an individual XTEN due to the lack of repetitiveness of the sequence. Not being to be bound by any theory, XTENs typically have a much lower tendency to stimulate proliferation of B cells and thus an immune response. In one embodiment, the GHXTEN have reduced immunogenicity as compared to the corresponding GH that is not fused. In one embodiment, the administration of up to three parenteral doses of a GHXTEN to a mammal result in detectable anti-GHXTEN IgG at a serum dilution of 1:100 but not at a dilution of 1:1000. In another embodiment, the administration of up to three parenteral doses of a GHXTEN to a mammal result in detectable anti-GH IgG at a serum dilution of 1:100 but not at a dilution of 1:1000. In another embodiment, the administration of up to three parenteral doses of a GHXTEN to a mammal result in detectable anti-XTEN IgG at a serum dilution of 1:100 but not at a dilution of 1:1000. In the foregoing embodiments, the mammal can be a mouse, a rat, a rabbit, or a cynomolgus monkey.


An additional feature of XTENs with non-repetitive sequences relative to sequences with a high degree of repetitiveness is non-repetitive XTENs form weaker contacts with antibodies. Antibodies are multivalent molecules. For instance, IgGs have two identical binding sites and IgMs contain 10 identical binding sites. Thus antibodies against repetitive sequences can form multivalent contacts with such repetitive sequences with high avidity, which can affect the potency and/or elimination of such repetitive sequences. In contrast, antibodies against non-repetitive XTENs may yield monovalent interactions, resulting in less likelihood of immune clearance such that the GHXTEN compositions can remain in circulation for an increased period of time.


8. Increased Hydrodynamic Radius


In another aspect, the present invention provides XTEN in which the XTEN polypeptides have a high hydrodynamic radius that confers a corresponding increased Apparent Molecular Weight to the GHXTEN fusion protein incorporating the XTEN. As detailed in Example 37, the linking of XTEN to GH sequences results in GHXTEN compositions that can have increased hydrodynamic radii, increased Apparent Molecular Weight, and increased Apparent Molecular Weight Factor compared to a GH not linked to an XTEN. For example, in therapeutic applications in which prolonged half-life is desired, compositions in which a XTEN with a high hydrodynamic radius is incorporated into a fusion protein comprising one or more GH can effectively enlarge the hydrodynamic radius of the composition beyond the glomerular pore size of approximately 3-5 nm (corresponding to an apparent molecular weight of about 70 kDA) (Caliceti. 2003. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 55:1261-1277), resulting in reduced renal clearance of circulating proteins. The hydrodynamic radius of a protein is determined by its molecular weight as well as by its structure, including shape or compactness. Not to be bound by a particular theory, the XTEN can adopt open conformations due to electrostatic repulsion between individual charges of the peptide or the inherent flexibility imparted by the particular amino acids in the sequence that lack potential to confer secondary structure. The open, extended and unstructured conformation of the XTEN polypeptide can have a greater proportional hydrodynamic radius compared to polypeptides of a comparable sequence length and/or molecular weight that have secondary and/or tertiary structure, such as typical globular proteins. Methods for determining the hydrodynamic radius are well known in the art, such as by the use of size exclusion chromatography (SEC), as described in U.S. Pat. Nos. 6,406,632 and 7,294,513. As the results of Example 37 demonstrate, the addition of increasing lengths of XTEN results in proportional increases in the parameters of hydrodynamic radius, Apparent Molecular Weight, and Apparent Molecular Weight Factor, permitting the tailoring of GHXTEN to desired characteristic cut-off Apparent Molecular Weights or hydrodynamic radii. Accordingly, in certain embodiments, the GHXTEN fusion protein can be configured with an XTEN such that the fusion protein can have a hydrodynamic radius of at least about 5 nm, or at least about 8 nm, or at least about 10 nm, or 12 nm, or at least about 15 nm. In the foregoing embodiments, the large hydrodynamic radius conferred by the XTEN in an GHXTEN fusion protein can lead to reduced renal clearance of the resulting fusion protein, leading to a corresponding increase in terminal half-life, an increase in mean residence time, and/or a decrease in renal clearance rate.


In another embodiment, an XTEN of a chosen length and sequence can be selectively incorporated into a GHXTEN to create a fusion protein that have, under physiologic conditions, an Apparent Molecular Weight of at least about 150 kDa, or at least about 300 kDa, or at least about 400 kDa, or at least about 500 kDA, or at least about 600 kDa, or at least about 700 kDA, or at least about 800 kDa, or at least about 900 kDa, or at least about 1000 kDa, or at least about 1200 kDa, or at least about 1500 kDa, or at least about 1800 kDa, or at least about 2000 kDa, or at least about 2300 kDa or more. In another embodiment, an XTEN of a chosen length and sequence can be selectively linked to a GH to result in a GHXTEN fusion protein that has, under physiologic conditions, an Apparent Molecular Weight Factor of at least three, alternatively of at least four, alternatively of at least five, alternatively of at least six, alternatively of at least eight, alternatively of at least 10, alternatively of at least 15, or an Apparent Molecular Weight Factor of at least 20 or greater. In another embodiment, the GHXTEN fusion protein has, under physiologic conditions, an Apparent Molecular Weight Factor that is about 4 to about 20, or is about 6 to about 15, or is about 8 to about 12, or is about 9 to about 10 relative to the actual molecular weight of the fusion protein.


V). GHXTEN Structural Configurations and Properties

The GH of the subject compositions are not limited to native, full-length polypeptides, but also include recombinant versions as well as biologically and/or pharmacologically active variants or fragments thereof. For example, it will be appreciated that various amino acid deletions, insertions and substitutions can be made in the GH to create variants without departing from the spirit of the invention with respect to the biological activity or pharmacologic properties of the GH. Examples of conservative substitutions for amino acids in polypeptide sequences are shown in Table 4. However, in embodiments of the GHXTEN in which the sequence identity of the GH is less than 100% compared to a specific sequence disclosed herein, the invention contemplates substitution of any of the other 19 natural L-amino acids for a given amino acid residue of the given GH, which may be at any position within the sequence of the GH, including adjacent amino acid residues. If any one substitution results in an undesirable change in biological activity, then one of the alternative amino acids can be employed and the construct evaluated by the methods described herein, or using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Pat. No. 5,364,934, the contents of which is incorporated by reference in its entirety, or using methods generally known in the art. In addition, variants can include, for instance, polypeptides wherein one or more amino acid residues are added or deleted at the N- or C-terminus of the full-length native amino acid sequence of a GH that retains some if not all of the biological activity of the native peptide.









TABLE 4







Exemplary conservative amino acid substitutions










Original Residue
Exemplary Substitutions






Ala (A)
val; leu; ile



Arg (R)
lys; gin; asn



Asn (N)
gin; his; Iys; arg



Asp (D)
glu



Cys (C)
ser



Gln (Q)
asn



Glu (E)
asp



Gly (G)
pro



His (H)
asn: gin: Iys: arg



xIle (I)
leu; val; met; ala; phe: norleucine



Leu (L)
norleucine: ile: val; met; ala: phe



Lys (K)
arg: gin: asn



Met (M)
leu; phe; ile



Phe (F)
leu: val: ile; ala



Pro (P)
gly



Ser (S)
thr



Thr (T)
ser



Trp (W)
tyr



Tyr (Y)
trp: phe: thr: ser



Val (V)
ile; leu; met; phe; ala; norleucine









(2) GHXTEN Fusion Protein Configurations


The invention provides GHXTEN fusion protein compositions with the GH and XTEN components linked in specific N- to C-terminus configurations. In some embodiments, one or more GHs are linked to one or more XTENs, either at the N-terminus or at the C-terminus, with or without a spacer, to form a block copolymer, and the sequential arrangement of the GHs and the XTENs in the GHXTEN fusion protein are the same as the configuration known in the block copolymer chemistry. When there is more than one GH, XTEN, or spacer, each of the GH, the XTEN, or the spacer have the same or different sequences, and the GHs and/or XTENs are linked either continously or alternately (regular or irregular). Thus, in all of the fomulae provided herein, when there is more than one GH, XTEN, or spacer, each of the GH, XTEN, and spacer are the same or different. In some embodiments, the GHXTEN is a monomeric fusion protein with a GH linked to one XTEN polypeptide. In other embodiments, the GHXTEN is a monomeric fusion protein with a GH linked to two or more XTEN polypeptides. In still other embodiments, the GHXTEN is a monomeric fusion protein with two or more GH linked to one XTEN polypeptide. In still other embodiments, the GHXTEN is a monomeric fusion protein with two or more GH linked to two or more XTEN polypeptide. Table 5 provides non-limiting examples of configurations that are encompassed by the GHXTEN fusion proteins of the invention; numerous other variations will be apparent to the ordinarily skilled artisan, including the incorporation the spacer and cleavage sequences disclosed herein or known in the art.









TABLE 5







GHXTEN configurations








Components*
Configuration**





Single GH; Single XTEN
GH-XTEN



XTEN-GH


Single GH; Multiple XTEN
XTEN-GH-XTEN



GH-XTEN-XTEN



XTEN-XTEN-GH



XTEN-GH-XTEN-XTEN



XTEN-XTEN-GH-XTEN



XTEN-XTEN-GH-XTEN


Multiple GH, Single XTEN
GH-XTEN-GH



XTEN-GH-GH



GH-GH-XTEN



GH-XTEN-GH-GH


Multiple GH; Multiple XTEN
GH-XTEN-GH-XTEN



XTEN-GH-XTEN-GH



XTEN-XTEN-GH-XTEN-GH



XTEN-XTEN-GH-GH



GH-XTEN-XTEN-GH



GH-GH-XTEN-XTEN



GH-GH-XTEN-XTEN-GH



GH-XTEN-GH-XTEN-GH





*Characterized as single for 1 component or multiple for 2 or more of that component


**Reflects N- to C-terminus configuration of the growth factor and XTEN components






The invention contemplates GHXTEN fusion proteins compositions comprising, but not limited to single or multiple GH selected from Table 1 (or fragments or sequence variants thereof), single or multiple XTEN selected from Table 3 (or sequence variants thereof) that are in a configuration shown in Table 5. Generally, the resulting GHXTEN retains at least a portion of the biological activity of the corresponding GH not linked to the XTEN. In other embodiments, the GH component either becomes biologically active or has an increase in activity upon its release from the XTEN by cleavage of an optional cleavage sequence incorporated within spacer sequences into the GHXTEN, described more fully below.


In one embodiment of the GHXTEN composition, the invention provides a fusion protein of formula I:





(XTEN)x-GH-(XTEN)y   I


wherein independently for each occurrence, GH is a is a growth hormone; x is either 0 or 1 and y is either 0 or 1 wherein x+y≥1; and XTEN is an extended recombinant polypeptide.


In another embodiment of the GHXTEN composition, the invention provides a fusion protein of formula II:





(XTEN)x(GH)-(S)y-(XTEN)y   II


wherein independently for each occurrence, GH is a is a growth hormone a; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1 and y is either 0 or 1 wherein x+y≥1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula III:





(GH)-(S)x-(XTEN)-(S)y-(GH)-(S)z-(XTEN)z   III


wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; z is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula IV:





(XTEN)x-(S)y-(GH)-(S)z-(XTEN)-(GH)   IV


wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; z is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion growth hormone, wherein the fusion protein is of formula V:





(GH)x-(S)x-(GH)-(S)y-(XTEN)   V


wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula VI:





(XTEN)-(S)x-(GH)-(S)y-(GH)   VI


wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula VII:





(XTEN)-(S)x-(GH)-(S)y-(GH)-(XTEN)   VII


wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula VIII:





((S)m-(GH)x-(S)n-(XTEN)y-(S)o)t   VIII


wherein t is an integer that is greater than 0 (1, 2, 3, etc.); independently each of m, n, o, x, and y is an integer (0, 1, 2, 3, etc.), GH is a is a growth hormone; S is an spacer, optionally comprising a cleavage site; and XTEN is an extended recombinant polypeptide, with the proviso that: (1) x+y>1, (2) when t=1, x>0 and y>0, (3) when there is more than one GH, S, or XTEN, each GH, XTEN, or S are the same or are independently different; and (4) when t>1, each m, n, o, x, or y within each subunit are the same or are independently different.


In some embodiments, administration of a therapeutically effective amount of a fusion protein of an embodiment of formulas I-VIII to a subject in need thereof results in a gain in time of at least two-fold, or at least three-fold, or at least four-fold, or at least five-fold, or at least 10-fold, or at least 20-fold, or at least 40-fold, or at least 100-fold or more spent within a therapeutic window for the fusion protein compared to the corresponding GH not linked to the XTEN of and administered at a comparable amount administered to a subject. In other embodiments, administration of a therapeutically effective dose of a fusion protein of an embodiment of formulas I-VIII to a subject in need thereof can result in a gain in time between consecutive doses necessary to maintain a therapeutically effective dose regimen of at least 48 h, or at least 72 h, or at least about 96 h, or at least about 120 h, or at least about 7 days, or at least about 14 days, or at least about 21 days between consecutive doses compared to a GH not linked to XTEN and administered at a comparable dose.


Any spacer sequence group is optional in the fusion proteins encompassed by the invention. The spacer is provided to enhance expression of the fusion protein from a host cell or to decrease steric hindrance such that the GH component may assume its desired tertiary structure and/or interact appropriately with its target receptor. For spacers and methods of identifying desirable spacers, see, for example, George, et al. (2003) Protein Engineering 15:871-879, specifically incorporated by reference herein. In one embodiment, the spacer comprises one or more peptide sequences that are between 1-50 amino acid residues in length, or about 1-25 residues, or about 1-10 residues in length. Spacer sequences, exclusive of cleavage sites, can comprise any of the 20 natural L amino acids, and will preferably comprise hydrophilic amino acids that are sterically unhindered that can include, but not be limited to, glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P). In some cases, the spacer can be polyglycines or polyalanines, or is predominately a mixture of combinations of glycine and alanine residues. The spacer polypeptide exclusive of a cleavage sequence is largely to substantially devoid of secondary structure; e.g., less than about 10%, or less than about 5% as determined by the Chou-Fasman and/or GOR algorithms. In one embodiment, one or both spacer sequences in a GHXTEN fusion protein composition each further contains a cleavage sequence, which are identical or different, wherein the cleavage sequence may be acted on by a protease to release the GH from the fusion protein.


In some embodiments, the incorporation of the cleavage sequence into the GHXTEN is designed to permit release of a GH that becomes active or more active upon its release from the XTEN. The cleavage sequences are located sufficiently close to the GH sequences, generally within 18, or within 12, or within 6, or within 2 amino acids of the GH sequence terminus, such that any remaining residues attached to the GH after cleavage do not appreciably interfere with the activity (e.g., such as binding to a receptor) of the GH, yet provide sufficient access to the protease to be able to effect cleavage of the cleavage sequence. In some embodiments, the cleavage site is a sequence that can be cleaved by a protease endogenous to the mammalian subject such that the GHXTEN can be cleaved after administration to a subject. In such cases, the GHXTEN can serve as a prodrug or a circulating depot for the GH. Examples of cleavage sites contemplated by the invention include, but are not limited to, a polypeptide sequence cleavable by a mammalian endogenous protease selected from FXIa, FXIIa, kallikrein, FVIIa, FIXa, FXa, FIIa (thrombin), Elastase-2, granzyme B, MMP-12, MMP-13, MMP-17 or MMP-20, or by non-mammalian proteases such as TEV, enterokinase, PreScission™ protease (rhinovirus 3C protease), and sortase A. Sequences known to be cleaved by the foregoing proteases and others are known in the art. Exemplary cleavage sequences and cut sites within the sequences are presented in Table 6, as well as sequence variants thereof. For example, thrombin (activated clotting factor II) acts on the sequence LTPRSLLV (SEQ ID NO: 82) [Rawlings N. D., et al. (2008) Nucleic Acids Res., 36: D320], which would be cut after the arginine at position 4 in the sequence. Active FIIa is produced by cleavage of FIT by FXa in the presence of phospholipids and calcium and is down stream from factor IX in the coagulation pathway. Once activated its natural role in coagulation is to cleave fibrinogen, which then in turn, begins clot formation. FIIa activity is tightly controlled and only occurs when coagulation is necessary for proper hemostasis. However, as coagulation is an on-going process in mammals, by incorporation of the LTPRSLLV sequence (SEQ ID NO: 83) into the GHXTEN between the GH and the XTEN, the XTEN domain would be removed from the adjoining GH concurrent with activation of either the extrinsic or intrinsic coagulation pathways when coagulation is required physiologically, thereby releasing GH over time. Similarly, incorporation of other sequences into GHXTEN that are acted upon by endogenous proteases would provide for sustained release of GH that, in certain embodiments, provide a higher degree of activity for the GH from the “prodrug” form of the GHXTEN.


In some embodiments, only the two or three amino acids flanking both sides of the cut site (four to six amino acids total) are incorporated into the cleavage sequence. In other embodiments, the known cleavage sequence have one or more deletions or insertions or one or two or three amino acid substitutions for any one or two or three amino acids in the known sequence, wherein the deletions, insertions or substitutions result in reduced or enhanced susceptibility but not an absence of susceptibility to the protease, resulting in an ability to tailor the rate of release of the GH from the XTEN. Exemplary substitutions are shown in Table 6.









TABLE 6







Protease Cleavage Sequences












Exemplary
SEQ

SEQ


Protease Acting
Cleavage
ID

ID


Upon Sequence
Sequence
NO:
Minimal Cut Site*
NO:














FXIa
KLTR↓VVGG
84
KD/FL/T/R↓VA/VE/GT/GV



FXIIa
TMTR↓IVGG
85
NA



Kallikrein
SPFR↓STGG
86
-/-/FL/RY↓SR/RT/-/-



FVIIa
LQVR↓IVGG
87
NA



FIXa
PLGR,↓IVGG
88
-/-/G/R↓-/-/-/-



FXa
IEGR↓TVGG
89
IA/E/GFP/R↓STI/VFS/-/G



FIIa (thrombin)
LTPR↓SLLV
90
-/-/PLA/R↓SAG/-/-/-



Elastase-2
LGPV↓SGVP
91
-/-/-/VIAT↓-/-/-/-



Granzyme-B
VAGD↓SLEE
92
V/-/-/D↓-/-/-/-



MMP-12
GPAG↓LGGA
93
G/PA/-/G↓L/-/G/-
94


MMP-13
GPAG↓LRGA
95
G/P/-/G↓L/-/GA/-
96


MMP-17
APLG↓LRLR
97
-/PS/-/-↓LQ/-/LT/-



MMP-20
PALP↓LVAQ
98
NA



TEV
ENLYFQ↓G
99
ENLYFQ↓G/S
100


Enterokinase
DDDK↓IVGG
101
DDDK↓IVGG
102


Protease 3C
LEVLFQ↓GP
103
LEVLFQ↓GP
104


(PreScission ™)






Sortase A
LPKT↓GSES
105
L/P/KEAD/T↓G/-/EKS/S
106





↓indicates cleavage site


NA: not applicable


*the listing of multiple amino acids before, between, or after a slash indicate alternative amino acids that can be substituted at the position; “-” indicates that any amino acid may be substituted for the corresponding amino acid indicated in the middle column






In one embodiment, a GH incorporated into a GHXTEN fusion protein have a sequence that exhibits at least about 80% sequence identity to a sequence from Table 1, alternatively at least about 81%, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%, or about 100% sequence identity as compared with a sequence from Table 1. The GH of the foregoing embodiment can be evaluated for activity using assays or measured or determined parameters as described herein, and those sequences that retain at least about 40%, or about 50%, or about 55%, or about 60%, or about 70%, or about 80%, or about 90%, or about 95% or more activity compared to the corresponding native GH sequence would be considered suitable for inclusion in the subject GHXTEN. The GH found to retain a suitable level of activity can be linked to one or more XTEN polypeptides described hereinabove. In one embodiment, a GH found to retain a suitable level of activity can be linked to one or more XTEN polypeptides having at least about 80% sequence identity to a sequence from Table 3, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or about 100% sequence identity as compared with a sequence of Table 3, resulting in a chimeric fusion protein.


Non-limiting examples of sequences of fusion proteins containing a single GH linked to a single XTEN are presented in Table 35. In one embodiment, a GHXTEN composition would comprise a fusion protein having at least about 80% sequence identity to a GHXTEN from Table 35, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or about 100% sequence identity as compared with a GHXTEN from Table 35. Non-limiting examples of sequences of fusion proteins containing two molecules of XTEN linked to one or more GH are presented in Table 36, but the invention also contemplates substitution of other GH with sequences exhibiting at least about 90% sequence identity to a sequence selected from Table 1 linked to one or two XTEN, which may be the same or different, exhibiting at least about 90% sequence identity selected from Table 3. In the foregoing fusion proteins hereinabove described in this paragraph, the GHXTEN fusion protein can further comprise a cleavage sequence from Table 6; the cleavage sequence being located between the GH and the XTEN or between adjacent GH (if more than one GH is included in the GHXTEN). In some cases, the GHXTEN comprising the cleavage sequences will also have one or more spacer sequence amino acids between the GH and the cleavage sequence or the XTEN and the cleavage sequence to facilitate access of the protease; the spacer amino acids comprising any natural amino acid, including glycine and alanine as preferred amino acids. Non-limiting examples of GHXTEN comprising GH, XTEN, cleavage sequence(s) and spacer amino acids are presented in Table 37. However, the invention also contemplates substitution of any of the GH sequences of Table 1 for a GH sequence of Table 37, substitution of any XTEN sequence of Table 3 for an XTEN sequence of Table 37, and substitution of any cleavage sequence of Table 6 for a cleavage sequence of Table 37.


(3) Pharmacokinetic Properties of GHXTEN


The invention provides GHXTEN fusion proteins with enhanced pharmacokinetics compared to the GH not linked to XTEN that, when used at the dose determined for the composition by the methods described herein, can achieve a circulating concentration resulting in a pharmacologic effect, yet stay within the safety range for biologically active component of the composition for an extended period of time compared to a comparable dose of the GH not linked to XTEN. In such cases, the GHXTEN remains within the therapeutic window for the fusion protein composition for the extended period of time. As used herein, a “comparable dose” means a dose with an equivalent moles/kg for the active GH pharmacophore that is administered to a subject in a comparable fashion. It will be understood in the art that a “comparable dosage” of GHXTEN fusion protein would represent a greater weight of agent but would have essentially the same mole-equivalents of GH in the dose of the fusion protein and/or would have the same approximate molar concentration relative to the GH.


The pharmacokinetic properties of a GH that can be enhanced by linking a given XTEN to the GH include terminal half-life, area under the curve (AUC), Cmax volume of distribution, and bioavailability providing enhanced utility in the treatment of growth hormone-related disorders, diseases and related conditions. The GH of the GHXTEN compositions can be a sequence that exhibits at least about 80% sequence identity, or alternatively 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to a protein sequence selected from Table 1, linked to one or more XTEN that exhibit at least about 80% sequence identity, or alternatively 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to a protein sequence selected from Table 3.


As described more fully in the Examples pertaining to pharmacokinetic characteristics of fusion proteins comprising XTEN, it was surprisingly discovered that increasing the length of the XTEN sequence confers a disproportionate increase in the terminal half-life of a fusion protein comprising the XTEN. Accordingly, the invention provides GHXTEN fusion proteins comprising XTEN wherein the XTEN is selected to provide a targeted half-life for the GHXTEN composition administered to a subject. In some embodiments, the invention provides monomeric fusion proteins comprising XTEN wherein the XTEN is selected to confer an increase in the terminal half-life for the GHXTEN administered to a subject, compared to the corresponding GH not linked to the fusion protein and administered at a comparable dose, of at least about two-fold longer, or at least about three-fold, or at least about four-fold, or at least about five-fold, or at least about six-fold, or at least about seven-fold, or at least about eight-fold, or at least about nine-fold, or at least about ten-fold, or at least about 15-fold, or at least a 20-fold, or at least a 40-fold, or at least a 80-fold, or at least a 100-fold or greater an increase in terminal half-life compared to the GH not linked to the fusion protein. Exogenously administered human growth hormone has been reported to have a terminal half-life in humans of less than 15 minutes (Hindmarch, P.C., et al., Clinical Endocrinology (2008) 30(4): 443-450), whereas various GHXTEN compositions disclosed herein that have been experimentally administered to various animals species, as described in the Examples, have resulted in terminal half-life values of several hours. Similarly, the GHXTEN fusion proteins can have an increase in AUC of at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90%, or at least about a 100%, or at least about 150%, or at least about 200%, or at least about 300%, or at least about 500%, or at least about 1000%, or at least about a 2000% increase in AUC compared to the corresponding GH not linked to the fusion protein and administered to a subject at a comparable dose. The pharmacokinetic parameters of a GHXTEN can be determined by standard methods involving dosing, the taking of blood samples at times intervals, and the assaying of the protein using ELISA, HPLC, radioassay, or other methods known in the art or as described herein, followed by standard calculations of the data to derive the half-life and other PK parameters.


The invention further provides GHXTEN comprising a first and a second GH molecule, optionally separated by a spacer sequence that may further comprise a cleavage sequence, or separated by a second XTEN sequence. In one embodiment, the GH has less activity when linked to the fusion protein compared to a corresponding GH not linked to the fusion protein. In such case, as illustrated in FIG. 38, the GHXTEN is designed such that upon administration to a subject, the GH component is gradually released by cleavage of the cleavage sequence(s), whereupon it regains activity or the ability to bind to its target receptor or ligand. Accordingly, the GHXTEN of the foregoing serves as a prodrug or a circulating depot, resulting in a longer terminal half-life compared to GH not linked to the fusion protein.


(4) Pharmacology and Pharmaceutical Properties of GHXTEN


The present invention provides GHXTEN compositions comprising GH covalently linked to XTEN that can have enhanced properties compared to GH not linked to XTEN, as well as methods to enhance the therapeutic and/or biologic activity or effect of the respective two GH components of the compositions. In addition, the invention provides GHXTEN compositions with enhanced properties compared to those art-known fusion proteins containing immunoglobulin polypeptide partners, polypeptides of shorter length and/or polypeptide partners with repetitive sequences. In addition, GHXTEN fusion proteins provide significant advantages over chemical conjugates, such as pegylated constructs, notably the fact that recombinant GHXTEN fusion proteins can be made in bacterial cell expression systems, which can reduce time and cost at both the research and development and manufacturing stages of a product, as well as result in a more homogeneous, defined product with less toxicity for both the product and metabolites of the GHXTEN compared to pegylated conjugates.


As therapeutic agents, the GHXTEN possesses a number of advantages over therapeutics not comprising XTEN including one or more of the following non-limiting exemplary enhance properties; increased solubility, increased thermal stability, reduced immunogenicity, increased apparent molecular weight, reduced renal clearance, reduced proteolysis, reduced metabolism, enhanced therapeutic efficiency, a lower effective therapeutic dose, increased bioavailability, increased time between dosages capable of maintain blood levels within the therapeutic window for the GH, a “tailored” rate of absorption, enhanced lyophilization stability, enhanced serum/plasma stability, increased terminal half-life, increased solubility in blood stream, decreased binding by neutralizing antibodies, decreased receptor-mediated clearance, reduced side effects, retention of receptor/ligand binding affinity or receptor/ligand activation, stability to degradation, stability to freeze-thaw, stability to proteases, stability to ubiquitination, ease of administration, compatibility with other pharmaceutical excipients or carriers, persistence in the subject, increased stability in storage (e.g., increased shelf-life), reduced toxicity in an organism or environment and the like. The net effect of the enhanced properties is that the GHXTEN results in enhanced therapeutic and/or biologic effect or improved patient compliance when administered to a subject with a growth hormone-related disease or disorder.


Specific assays and methods for measuring the physical and structural properties of expressed proteins are known in the art, including methods for determining properties such as protein aggregation, solubility, secondary and tertiary structure, melting properties, contamination and water content, etc. Such methods include analytical centrifugation, EPR, HPLC-ion exchange, HPLC-size exclusion, HPLC-reverse phase, light scattering, capillary electrophoresis, circular dichroism, differential scanning calorimetry, fluorescence, HPLC-ion exchange, HPLC-size exclusion, IR, NMR, Raman spectroscopy, refractometry, and UV/Visible spectroscopy. Additional methods are disclosed in Arnau et al, Prot Expr and Purif (2006) 48, 1-13. Application of these methods to the invention would be within the grasp of a person skilled in the art.


In a particular feature of the invention, XTEN as a fusion partner increases the solubility of the GH payload, particularly in the expression of GH, which is typically expressed as insoluble inclusion bodies in transformed host cells, such as E. coli (see, e.g., Singh, S. M., et al. (2005) J Biosci Bioeng, 99: 303; Patra, A. K., et al. (2000) Protein Expr Purif, 18: 182). Accordingly, where enhancement of the pharmaceutical or physicochemical properties of the GH is desirable, such as the degree of aqueous solubility or stability, the length and/or the motif family composition of the first and the second XTEN sequences of the first and the second fusion protein may each be selected to confer a different degree of solubility and/or stability on the respective fusion proteins such that the overall pharmaceutical properties of the GHXTEN composition are enhanced. The GHXTEN fusion proteins can be constructed and assayed, using methods described herein, to confirm the physicochemical properties and the XTEN adjusted, as needed, to result in the desired properties. In one embodiment, the XTEN sequence of the GHXTEN is selected such that the fusion protein has an aqueous solubility that is within at least about 25% greater compared to a GH not linked to the fusion protein, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 75%, or at least about 100%, or at least about 200%, or at least about 300%, or at least about 400%, or at least about 500%, or at least about 1000% greater than the corresponding GH not linked to the fusion protein.


The invention provides methods to produce and recover expressed GHXTEN from a host cell with enhanced solubility and ease of recovery compared to GH not linked to XTEN. In some embodiments, the method includes the steps of transforming a prokaryotic host cell (e. g, E. coli) with a polynucleotide encoding a GHXTEN with one or more XTEN components of cumulative sequence length greater than about 800, or greater than about 900, or greater than about 1000, or greater than about 1100 amino acid residues, expressing the GHXTEN fusion protein in the host cell, lysing the host cell to recover cytoplasmic contents, and acidifying the host cell cytoplasmic contents wherein the GH can remain in soluble form while the majority of host cell proteins are precipitated to insoluble form. In one embodiment of the foregoing, the post-expression crude host cell lysates can be acidified to a pH of less than about 5.0, or to a pH of less than about 4.7, or to a pH of less than about 4.5, or to a pH of less than about 4.2 and greater than about 50%, or about 60%, or about 70%, or about 80% or more of the expressed GH can be recovered in soluble form. In a feature of the foregoing embodiment, enriched GHXTEN can be separated from precipitated from host cell protein contaminants by centrifugation of the acidified lysate, a reflection of the increased solubility imparted to the GH by fusion to the XTEN carrier. In the embodiments hereinabove described in this paragraph, the XTEN of the GHXTEN fusion proteins can have at least about 80% sequence identity, or about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%, to about 100% sequence identity to one or more XTEN selected from Table 3 and the GH can have at least about 80% sequence identity, or about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%, or 100% sequence identity to a GH selected from Table 1 and the GHXTEN components can be in an N- to C-teriminus configuration selected from Table 5.


In one embodiment, the invention provides GHXTEN compositions and methods to produce the compositions that can maintain the GH component within a therapeutic window for a greater period of time compared to comparable dosages of the corresponding GH not linked to XTEN. It will be understood in the art that a “comparable dosage” of GHXTEN fusion protein would represent a greater weight of agent but would have the same approximate mole-equivalents of GH in the dose of the fusion protein and/or would have the same approximate molar concentration relative to the GH. The method to produce the compositions that can maintain the GH component within a therapeutic window includes the steps of selecting the XTEN appropriate for conjugation to a GH to provide the desired pharmacokinetic properties in view of a given dose and dose regiment, followed by assays to verify the pharmacokinetic properties, the activity of the GHXTEN fusion protein, and the safey of the administered composition. By the methods, GHXTEN can be produced that enables increased efficacy of the administered composition by maintaining the circulating concentrations of the GH within the therapeutic window for an enhanced period of time. As used herein, “therapeutic window” means that the amount of drug or biologic as a blood or plasma concentration range, which provides efficacy or a desired pharmacologic effect over time for the disease or condition without unacceptable toxicity, i.e. the range of the circulating blood concentrations between the minimal amount to achieve any positive therapeutic effect and the maximum amount which results in a response that is the response immediately before toxicity to the subject (at a higher dose or concentration). Additionally, therapeutic window generally encompasses an aspect of time; the maximum and minimum concentration that results in a desired pharmacologic effect over time that does not result in unacceptable toxicity or adverse events. A dosed composition that stays within the therapeutic window for the subject could also be said to be within the “safety range.”


The characteristics of GHXTEN compositions of the invention, including functional characteristics or biologic and pharmacologic activity and parameters that result, are determined by any suitable screening assay known in the art for measuring the desired characteristic. The invention provides methods to assay the GHXTEN fusion proteins of differing composition or configuration in order to provide GHXTEN with the desired degree of biologic and/or therapeutic activity, as well as safety profile. Specific in vivo and ex vivo biological assays are used to assess the activity of each configured GHXTEN and/or GH component to be incorporated into GHXTEN, including but not limited to the assays of the Examples, those assays of Table 34, as well as the following assays or other such assays known in the art for assaying the properties and effects of GH. Assays can be conducted that allow determination of binding characteristics of the GHXTEN for GH receptors or a ligand, including binding constant (Kd), EC50 values, as well as their half-life of dissociation of the ligand-receptor complex (T1/2). Binding affinity can be measured, for example, by a competition-type binding assay that detects changes in the ability to specifically bind to a receptor or ligand (see, e.g., Examples). Additionally, techniques such as flow cytometry or surface plasmon resonance can be used to detect binding events. The assays may comprise soluble receptor molecules, or may determine the binding to cell-expressed receptors. Such assays may include cell-based assays, including assays for proliferation, cell death, apoptosis and cell migration. Other possible assays may determine receptor binding of expressed polypeptides, wherein the assay may comprise soluble receptor molecules, or may determine the binding to cell-expressed receptors. The binding affinity of a GHXTEN for the target receptors or ligands of the corresponding GH can be assayed using binding or competitive binding assays, such as Biacore assays with chip-bound receptors or binding proteins or ELISA assays, as described in U.S. Pat. No. 5,534,617, assays described in the Examples herein, radio-receptor assays, or other assays known in the art. In addition, GH sequence variants (assayed as single components or as GHXTEN fusion proteins) can be compared to the native GH using a competitive ELISA binding assay to determine whether they have the same binding specificity and affinity as the native GH, or some fraction thereof such that they are suitable for inclusion in GHXTEN. Functional assays can include the increase of IGF-1 secretion and/or generation within target cells as a result of exposure to GHXTEN, and/or the resulting stimulatory effects of IGF-1 on osteoblast and chondrocyte activity to promote bone growth; all are suitable paramaters to assess the activity of GH for inclusion in the GHXTEN fusion protein or the resulting GHXTEN. In addition, human growth hormone (hGH) is known to play a role in somatic growth through its effects on the metabolism of proteins, carbohydrates and lipids, as well as the the stimulation of the production of blood cells in vitro (Derfalvi et al., 1998; Merchav et al; 1988), to increase numbers of erythrocytes and hemoglobin content in blood (Valerio et al., 1997; Vihervuori et al., 1996), as wells as the enhancement of proliferation of and Ig production in plasma cell lines (Kimata and Yoshida, 1994), the stimulation of CD8+ cell counts and, to a lesser extent CD4+ cell counts (Geffner, 1997). Parameters that can be measured chronically include velocity of growth, physical maturation, and comparative bone rate of growth. All of the foregoing can be used to assess the activity of GH components to be incorporated into GHXTEN and the resulting GHXTEN.


Dose optimization is important for all drugs, especially for those with a narrow therapeutic window. For example, a standardized single dose of GH for all patients presenting with a diverse symptoms or anbnormal clinical parameters may not always be effective. A consideration of these factors is well within the purview of the ordinarily skilled clinician for the purpose of determining the therapeutically or pharmacologically effective amount of the GHXTEN, versus that amount that would result in unacceptable toxicity and place it outside of the safety range, or insufficient potency such that clinical improvement is not achieved.


In many cases, the therapeutic window for GH in subjects of different ages or degree of disease have been established and are available in published literature or are stated on the drug label for approved products containing the GH. In other cases, the therapeutic window can be established for new compositions, including those GHXTEN of the disclosure. The methods for establishing the therapeutic window for a given composition are known to those of skill in the art (see, e.g., Goodman & Gilman's The Pharmacological Basis of Therapeutics, 11th Edition, McGraw-Hill (2005)). For example, by using dose-escalation studies in subjects with the target disease or disorder to determine efficacy or a desirable pharmacologic effect, appearance of adverse events, and determination of circulating blood levels, the therapeutic window for a given subject or population of subjects can be determined for a given drug or biologic, or combinations of biologics or drugs. The dose escalation studies can evaluate the activity of a GHXTEN through metabolic studies in a subject or group of subjects that monitor physiological or biochemical parameters, as known in the art or as described herein for one or more parameters associated with the metabolic disease or disorder, or clinical parameters associated with a beneficial outcome for the particular indication, together with observations and/or measured parameters to determine the no effect dose, adverse events, maximum tolerated dose and the like, together with measurement of pharmacokinetic parameters that establish the determined or derived circulating blood levels. The results can then be correlated with the dose administered and the blood concentrations of the therapeutic that are coincident with the foregoing determined parameters or effect levels. By these methods, a range of doses and blood concentrations can be correlated to the minimum effective dose as well as the maximum dose and blood concentration at which a desired effect occurs and above which toxicity occurs, thereby establishing the therapeutic window for the dosed therapeutic. Blood concentrations of the fusion protein (or as measured by the GH component) above the maximum would be considered outside the therapeutic window or safety range. Thus, by the foregoing methods, a Cmin blood level would be established, below which the GHXTEN fusion protein would not have the desired pharmacologic effect, and a Cmax blood level would be established that would represent the highest circulating concentration before reaching a concentration that would elicit unacceptable side effects, toxicity or adverse events, placing it outside the safety range for the GHXTEN. With such concentrations established, the frequency of dosing and the dosage can be further refined by measurement of the Cmax and Cmin to provide the appropriate dose and dose frequency to keep the fusion protein(s) within the therapeutic window. One of skill in the art can, by the means disclosed herein or by other methods known in the art, confirm that the administered GHXTEN remains in the therapeutic window for the desired interval or requires adjustment in dose or length or sequence of XTEN. Further, the determination of the appropriate dose and dose frequency to keep the GHXTEN within the therapeutic window establishes the therapeutically effective dose regimen; the schedule for administration of multiple consecutive doses using a therapeutically effective dose of the fusion protein to a subject in need thereof resulting in consecutive Cmax peaks and/or Cmin troughs that remain within the therapeutic window and results in an improvement in at least one measured parameter relevant for the target disease, disorder or condition. In some cases, the GHXTEN administered at an appropriate dose to a subject results in blood concentrations of the GHXTEN fusion protein that remains within the therapeutic window for a period at least about two-fold longer compared to the corresponding GH not linked to XTEN and administered at a comparable dose; alternatively at least about three-fold longer; alternatively at least about four-fold longer; alternatively at least about five-fold longer; alternatively at least about six-fold longer; alternatively at least about seven-fold longer; alternatively at least about eight-fold longer; alternatively at least about nine-fold longer or at least about ten-fold longer or greater compared to the corresponding GH not linked to XTEN and administered at a comparable dose. As used herein, an “appropriate dose” means a dose of a drug or biologic that, when administered to a subject, would result in a desirable therapeutic or pharmacologic effect and a blood concentration within the therapeutic window.


In one embodiment, the GHXTEN administered at a therapeutically effective dose regimen results in a gain in time of at least about three-fold longer; alternatively at least about four-fold longer; alternatively at least about five-fold longer; alternatively at least about six-fold longer; alternatively at least about seven-fold longer; alternatively at least about eight-fold longer; alternatively at least about nine-fold longer or at least about ten-fold longer between at least two consecutive Cmax peaks and/or Cmin troughs for blood levels of the fusion protein compared to the corresponding biologically active protein of the fusion protein not linked to the fusion protein and administered at a comparable dose regimen to a subject. In another embodiment, the GHXTEN administered at a therapeutically effective dose regimen results in a comparable improvement in one, or two, or three or more measured parameter using less frequent dosing or a lower total dosage in moles of the fusion protein of the pharmaceutical composition compared to the corresponding biologically active protein component(s) not linked to the fusion protein and administered to a subject using a therapeutically effective dose regimen for the GH. The measured parameters include any of the clinical, biochemical, or physiological parameters disclosed herein, or others known in the art for assessing subjects with growth hormone-related disorders.


The invention provides isolated GHXTEN in which the binding affinity for GH target receptors or ligands by the GHXTEN can be at least about 10%, or at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90%, or at least about 95%, or at least about 99%, or at least about 100% or more of the affinity of a native GH not bound to XTEN for the target receptor or ligand. In some cases, the binding affinity Kd between the subject GHXTEN and a native receptor or ligand of the GHXTEN is at least about 10−4M, alternatively at least about 10−5M, alternatively at least about 10−6M, or at least about 10−7M, or at least about 10−8M, or at least about 10−9M of the affinity between the GHXTEN and a native receptor or ligand.


In other embodiments, the invention provides isolated GHXTEN fusion proteins specifically designed to have reduced binding affinity to the GH receptor. In one embodiments, such as fusion proteins comprising an XTEN fused to the C-terimnus of the GH 1 about 97% sequence identity, or at least about 99% sequence identity to GH fusion proteins selected from AE912-hGH-AE144, AE912-hGH-AF144, AE912-hGH-AE288, AM923-hGH-AE144, AM923-hGH-AF144, AM923-hGH-AE288, and the sequences of Tables 36-37.


In some embodiments, the GHXTEN fusion proteins of the invention retain at least about 0.05%, or about 0.1%, or about 1%, or about 10%, or about 20%, or about 30%, or about 40%, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or about 95%, or about 98%, or or about 99% percent of the biological activity of the corresponding GH not linked to the fusion protein with regard to an in vitro biologic activity or pharmacologic effect known or associated with the use of the native GH in the treatment and prevention of growth hormone-related diseases, disortder and conditions. Non-limiting examples of activities or pharmacologic effects that can be assayed to assess the retained activity of the GHXTEN fusion proteins include signal transduction markers in cells with GH receptors, elicited IGF-1 concentrations, elicited IGFBP3 concentrations, changes in height velocity, lean body mass, total body fat, trunk fat, parameters associated with insulin resistance syndrome, measurement of division and multiplication rates of chondrocytes, changes in bone density, and bone growth (e.g. increase in epiphyseal plate width). In some embodiments, the activity of the GH component is manifest by the intact GHXTEN fusion protein, while in other cases the activity of the GH component would be primarily manifested upon cleavage and release of the GH from the fusion protein by action of a protease that acts on a cleavage sequence incorporated into the GHXTEN fusion protein. In the foregoing, the GHXTEN is designed to reduce the binding affinity of the GH component for the receptor or ligand when linked to the XTEN but have restored or increased affinity when released from XTEN through the cleavage of cleavage sequence(s) incorporated into the GHXTEN sequence, as described more fully above.


In other cases, the GHXTEN can be designed to reduce the binding affinity of the GH component to the GH receptor to increase the terminal half-life of GHXTEN administered to a subject by reducing receptor-mediated clearance; e.g., by adding an XTEN to the C-terminus of the GH component of the fusion protein. In other cases, the GHXTEN are designed to reduce the binding affinity of the GH component to the GH receptor to reduce toxicity or side effects due to the administered composition.


Accordingly, the invention provides a method for increasing the terminal half-life of a GHXTEN by producing a single-chain fusion protein construct with a specific N- to C-terminus configuration of the components comprising at least a first GH and a first and a second XTEN, wherein the fusion protein in a first N- to C-terminus configuration of the GH and XTEN components has reduced receptor-mediated clearance (RMC) and a corresponding increase in terminal half-life compared to a GHXTEN in a second N- to C-terminus configuration. In one embodiment of the foregoing, the GHXTEN is configured, N- to C-terminus as XTEN-GH-XTEN, which has reduced receptor binding compared to a GHXTEN configures, N- to C-terminus XTEN-GH. In another embodiment of the foregoing, the GHXTEN is configured GH-XTEN. In the foregoing embodiments, the two XTEN molecules can be identical or they can be of a different sequence composition or length. Non-limiting examples of the foregoing embodiment with two XTEN linked to a single GH include the constructs AE912-hGH-AE144, AE912-hGH-AE288, AE864-hGH-AE144, AM923-hGH-AE144, and AM923-hGH-AE288. The invention contemplates other such constructs in which a GH from Table 1 and XTEN from Table 3 are substituted for the respective components of the foregoing examples, and are produced, for example, in a configuration from Table 5 such that the construct has reduced receptor mediated clearance compared to an alterntive configuration of the respective components. In some embodiments, the foregoing method for increasing the terminal half-life provides configured GHXTEN that can result in an increase in the terminal half-life of at least about 30%, or about 50%, or about 75%, or about 100%, or about 150%, or about 200%, or about 300%, or about 400% or more compared to the half-life of a GHXTEN in a second configuration where receptor binding is not reduced. The invention takes advantage of the fact that certain ligands wherein reduced binding affinity to a receptor, either as a result of a decreased on-rate or an increased off-rate, may be effected by the obstruction of either the N- or C-terminus (as shown in FIG. 3), and using that terminus as the linkage to another polypeptide of the composition, whether another molecule of a GH, an XTEN, or a spacer sequence results in the reduced binding affinity. The choice of the particular configuration of the GHXTEN fusion protein reduces the degree of binding affinity to the receptor such that a reduced rate of receptor-mediated clearance is achieved. Generally, activation of the receptor is coupled to RMC such that binding of a polypeptide to its receptor without activation does not lead to RMC, while activation of the receptor leads to RMC. However, in some cases, particularly where the ligand has an increased off rate, the ligand may nevertheless be able to bind sufficiently to initiate cell signaling without triggering receptor mediated clearance, with the net result that the GHXTEN remains bioavailable. In such cases, the configured GHXTEN has an increased half-life compared to those configurations that lead to a higher degree of RMC.


In cases where a reduction in binding affinity to the growth hormone receptor is desired in order to reduce receptor-mediated clearance but retention of at least a portion of the biological activity is also desired, sufficient binding affinity to obtain the desired receptor activation must nevertheless be maintained e.g., by initiation of signal transduction. Thus, in one embodiment, the invention provides a GHXTEN configured such that the binding affinity of the GHXTEN for a target receptor is in the range of about 0.01%-40%, or about 0.01%-30%, or about 0.01%-20% of the binding affinity compared to a corresponding GHXTEN in a configuration wherein the binding affinity is not reduced. The binding affinity of the configured BXTEN is thus preferably reduced by at least about 60%, or at least about 70%, or at least about 80%, or at least about 90%, or at least about 95%, or at least about 99%, or at least about 99.99% as compared to the binding affinity of a corresponding GHXTEN in a configuration wherein the binding affinity of the GH component to the target receptor is not reduced or compared to the GH not linked to the fusion protein, determined under comparable conditions. Expressed differently, the GH component of the configured GHXTEN has a binding affinity that is as small as about 0.01%, or at least about 0.1%, or at least about 1%, or at least about 2%, or at least about 3%, or at least about 4%, or at least about 5%, or at least about 10%, or at least about 20%, or at least about 30%, or at least 40% of that of the corresponding GH component of a GHXTEN in a configuration wherein the binding affinity of the GH component is not reduced. In the foregoing embodiments, the binding affinity of the configured GHXTEN for the target receptor are “substantially reduced” compared to a corresponding native GH or a GHXTEN with a configuration in which the binding affinity of the corresponding GH component is not reduced. Accordingly, the present invention provides compositions and methods to produce compositions with reduced RMC by configuring the GHXTEN, examples of which areprovided above, so as to be able to bind and activate a sufficient number of receptors to obtain a desired in vivo biological response yet avoid activation of more receptors than is required for obtaining such response. The increased half-life permits higher dosages and reduced frequency of dosing compared to GH not linked to XTEN or compared to GHXTEN configurations wherein the GH component retains sufficient biological or pharmacological activity to result in a composition with clinical efficacy maintained despite reduced dosing frequency.


VI). Uses of the Compositions of the Present Invention

In another aspect, the invention provides a method for achieving a beneficial effect in a disease, disorder or condition mediated by GH. The present invention addresses disadvantages and/or limitations of GH that have a relatively short terminal half-life and/or a narrow therapeutic window.


Most processes involved in growth of the body are regulated by multiple peptides and hormones, and such peptides and hormones, as well as analogues thereof, have found utility in the treatment of growth hormone-related diseases, disorders and conditions. However, the use of commercially-avaiable growth hormones, has met with less than optimal success in the management of subjects afflicted with such diseases, disorders and conditions. In particular, dose optimization and frequency of dosing is important for peptide and hormone biologics used in the treatment of growth hormone-related diseases and disorders. The fact that growth hormone has a short half-life, necessitates frequent dosing in order to achieve clinical benefit, which results in difficulties in the management of such patients.


In one embodiment, the invention provides a method for achieving a beneficial affect in a subject with a growth hormone-related disease, disorder or condition comprising the step of administering to the subject a therapeutically- or prophylactically-effective amount of a GHXTEN wherein said administration results in the improvement of one or more biochemical or physiological parameters or clinical endpoints associated with a growth hormone-related disease, disorder or condition. The effective amount produces a beneficial effect in helping to treat (e.g., cure or reduce the severity) or prevent (e.g., reduce the likelihood of onset or severity) a growth hormone-related disease, disorder or condition. In some cases, the method for achieving a beneficial effect includes administering a therapeutically effective amount of a GHXTEN fusion protein composition to treat a subject with a growth hormone-related disease, disorder, or condition, including, but not limited to, congenital or acquired GH deficiency in adults and children, Turner's Syndrome, Prader-Willi Syndrome, chronic renal failure, intrauterine growth retardation, idiopathic short stature, AIDS wasting, obesity, multiple sclerosis, aging, fibromyalgia, Crohn's disease, ulcerative colitis, muscular dystrophy, low muscle mass (e.g. bodybuilding), low bone density, or any other indication for which GH can be utilized (but for which endogenous growth hormone levels in a subject are not necessarily deficient).


In another embodiment, the invention provides a method of stimulating IGF-1 production in individuals with GH deficiency. The method comprises the step of administering therapeutically effective amount of GHXTEN to a subject that results in the increased blood levels and/or duration in increased blood levels of IGF-1 compared to a subject receiving a GH not linked to an XTEN and administered at a comparable dose. In some cases, the increase in IGF-1 is at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 75%, or at least about 100%, or at least about 200%, or at least about 300%. In another embodiment, the invention provides a method of stimulating the division and numbers of chrondrocytes. The method comprises the step of administering therapeutically effective amount of GHXTEN that results in the increased production of chrondrocytes by at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 75%, or at least about 100%, or at least about 200%, or at least about 300% compared to a subject receiving a GH not linked to an XTEN and administered at a comparable dose. In another embodiment, the invention provides a method comprising the step of administering therapeutically effective amount of GHXTEN that results in increased bone growth as measured by increase in epiphyseal plate width by at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 75%, or at least about 100%, or at least about 200%, or at least about 300% compared to a subject receiving a GH not linked to an XTEN and administered at a comparable dose.


As a result of the enhanced PK parameters of GHXTEN, as described herein, the GH is administered using longer intervals between doses compared to the corresponding GH not linked to XTEN to prevent, treat, alleviate, reverse or ameliorate symptoms or clinical abnormalities of the growth hormone-related disease, disorder or condition or prolong the survival of the subject being treated.


The methods of the invention includes administration of consecutive doses of a therapeutically effective amount of the GHXTEN for a period of time sufficient to achieve and/or maintain the desired parameter or clinical effect, and such consecutive doses of a therapeutically effective amount establishes the therapeutically effective dose regimen for the GHXTEN; i.e., the schedule for consecutively administered doses of the fusion protein composition, wherein the doses are given in therapeutically effective amounts to result in a sustained beneficial effect on any clinical sign or symptom, aspect, measured parameter or characteristic of a metabolic disease state or condition, including, but not limited to, those described herein. In one embodiment, the method comprises administering a therapeutically-effective amount of a pharmaceutical composition comprising a GHXTEN fusion protein composition comprising a GH linked to an XTEN sequence(s) and at least one pharmaceutically acceptable carrier to a subject in need thereof that results in greater improvement in at least one parameter, physiologic condition, or clinical outcome mediated by the GH component(s) (non-limiting examples of which are described above) compared to the effect mediated by administration of a pharmaceutical composition comprising a GH not linked to XTEN and administered at a comparable dose. In one embodiment, the pharmaceutical composition is administered at a therapeutically effective dose. In another embodiment, the pharmaceutical composition is administered using multiple consecutive doses using a therapeutically effective dose regimen (as defined herein) for the length of the dosing period.


A therapeutically effective amount of the GHXTEN varies according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the antibody or antibody portion to elicit a desired response in the individual. A therapeutically effective amount is also one in which any toxic or detrimental effects of the GHXTEN are outweighed by the therapeutically beneficial effects. A prophylactically effective amount refers to an amount of GHXTEN required for the period of time necessary to achieve the desired prophylactic result.


For the inventive methods, longer acting GHXTEN compositions are preferred, so as to improve patient convenience, to increase the interval between doses and to reduce the amount of drug required to achieve a sustained effect. In one embodiment, a method of treatment comprises administration of a therapeutically effective dose of a GHXTEN to a subject in need thereof that results in a gain in time spent within a therapeutic window established for the fusion protein of the composition compared to the corresponding GH component(s) not linked to the fusion protein and administered at a comparable dose to a subject. In some cases, the gain in time spent within the therapeutic window is at least about three-fold, or at least about four-fold, or at least about five-fold, or at least about six-fold, or at least about eight-fold, or at least about 10-fold, or at least about 20-fold, or at least about 40-fold, or at least about 80-fold, or at least about 100-fold longer, compared to the corresponding GH component not linked to the fusion protein and administered at a comparable dose to a subject. The methods further provide that administration of multiple consecutive doses of a GHXTEN administered using a therapeutically effective dose regimen to a subject in need thereof results in a gain in time between consecutive Cmax peaks and/or Cmin troughs for blood levels of the fusion protein compared to the corresponding GH not linked to the fusion protein and administered using a dose regimen established for that GH. In the foregoing embodiment, the gain in time spent between consecutive Cmax peaks and/or Cmin troughs is at least about three-fold, or at least about four-fold, or at least about five-fold, or at least about six-fold, or at least about eight-fold, or at least about 10-fold, or at least about 20-fold, or at least about 40-fold or at least about 80-fold, or at least about 100-fold longer, compared to the corresponding GH component not linked to the fusion protein and administered using a dose regimen established for that GH. In the embodiments hereinabove described in this paragraph the administration of the fusion protein results in an improvement in at least one of the parameters (disclosed herein as being useful for assessing the subject diseases, conditions or disorders) using a lower unit dose in moles of fusion protein compared to the corresponding GH component not linked to the fusion protein and administered at a comparable unit dose or dose regimen to a subject.


The method of treatment comprises administration of a GHXTEN using a therapeutically effective dose regimen to effect improvements in one or more parameters associated with growth hormone diseases, disorders or conditions. In some embodiments, administration of the GHXTEN to a subject results in an improvement in one or more of the biochemical, physiologic, or clinical parameters that is of greater magnitude than that of the corresponding GH component not linked to XTEN, determined using the same assay or based on a measured clinical parameter. In other embodiments, administration of the GHXTEN to a subject using a therapeutically effective dose regimen results in activity in one or more of the biochemical, physiologic, or clinical parameters that is of longer duration than the activity of one of the single GH components not linked to XTEN, determined using that same assay or based on a measured clinical parameter. In one embodiment of the foregoing, the administration of the GHXTEN to a subject using a therapeutically effective dose regimen results in an improvement in peak concentrations and area under the curve of blood IGF-1 levels of at least about 10%, or about 20%, or about 30%, or about 40%, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or about 100% or more in the subject compared to a comparable dose of GH not linked to XTEN administered to a subject. In another embodiment of the foregoing, the administration of the GHXTEN to a subject using a therapeutically effective dose regimen results in increased weight gain in the subject of at least about 10%, or about 20%, or about 30%, or about 40%, or about 50% or more compared to a comparable dose regimen of GH not linked to XTEN administered to a subject.


The invention further contemplates that GHXTEN used in accordance with the methods provided herein is administered in conjunction with other treatment methods and pharmaceutical compositions useful for treating growth hormone-related diseases, disorders, and conditions, or conditions for which growth hormone is adjunctive therapy; e.g., insulin resistance and poor glycemic control. Such compositions, include for example, DPP-IV inhibitors, insulin, insulin analogues, PPAR gamma agonists, dual-acting PPAR agonists, GLP-1 agonists or analogues, PTP1B inhibitors, SGLT inhibitors, insulin secretagogues, RXR agonists, glycogen synthase kinase-3 inhibitors, insulin sensitizers, immune modulators, beta-3 adrenergic receptor agonists, Pan-PPAR agonists, 11beta-HSD1 inhibitors, biguanides, alpha-glucosidase inhibitors, meglitinides, thiazolidinediones, sulfonylureas and other diabetes medicants known in the art, or anti-hypertensive drugs, calcium channel blockers, and related products. In some embodiments, the administration of a GHXTEN permits use of lower dosages of the co-administered pharmaceutical composition to achieve a comparable clinical effect or measured parameter for the disease, disorder or condition in the subject.


In another aspect, the invention provides a method of designing the GHXTEN compositions with desired pharmacologic or pharmaceutical properties. The GHXTEN fusion proteins are designed and prepared with various objectives in mind (compared to the GH components not linked to the fusion protein), including improving the therapeutic efficacy for the treatment of growth hormone-related diseases, disorders, and conditions, enhancing the pharmacokinetic characteristics of the fusion proteins compared to the GH, lowering the dose or frequency of dosing required to achieve a pharmacologic effect, enhancing the pharmaceutical properties, and to enhance the ability of the GH components to remain within the therapeutic window for an extended period of time.


In general, the steps in the design and production of the fusion proteins and the inventive compositions, as illustrated in FIGS. 4-6, include: (1) the selection of GHs (e.g., native proteins, analogs or derivatives with activity) to treat the particular disease, disorder or condition; (2) selecting the XTEN that will confer the desired PK and physicochemical characteristics on the resulting GHXTEN (e.g., the administration of the composition to a subject results in the fusion protein being maintained within the therapeutic window for a greater period compared to GH not linked to XTEN); (3) establishing a desired N- to C-terminus configuration of the GHXTEN to achieve the desired efficacy or PK parameters; (4) establishing the design of the expression vector encoding the configured GHXTEN; (5) transforming a suitable host with the expression vector; and (6) expression and recovery of the resultant fusion protein. For those GHXTEN for which an increase in half-life (greater than 24 h) or an increased period of time spent within a therapeutic window is desired, the XTEN chosen for incorporation generally has at least about 500, or about 576, or about 864, or about 875, or about 912, or about 923 amino acid residues where a single XTEN is to be incorporated into the GHXTEN. In another embodiment, the GHXTEN comprises a first XTEN of the foregoing lengths, and a second XTEN of about 144, or about 288, or about 576, or about 864, or about 875, or about 912, or about 923 amino acid residues.


In other embodiments, where an increase in half-life is not required, but an increase in a pharmaceutical property (e.g., solubility) is desired, a GHXTEN is designed to include XTEN of shorter lengths. In some embodiments of the foregoing, the GHXTEN comprises a GH linked to an XTEN having at least about 24, or about 36, or about 48, or about 60, or about 72, or about 84, or about 96 amino acid residues, in which the solubility of the fusion protein under physiologic conditions is at least three-fold greater than the corresponding GH not linked to XTEN, or alternatively, at least four-fold, or five-fold, or six-fold, or seven-fold, or eight-fold, or nine-fold, or at least 10-fold, or at least 20-fold, or at least 30-fold, or at least 50-fold, or at least 60-fold or greater than GH not linked to XTEN. In one embodiment of the foregoing, the GH is human growth hormone.


In another aspect, the invention provides methods of making GHXTEN compositions to improve ease of manufacture, result in increased stability, increased water solubility, and/or ease of formulation, as compared to the native GH. In one embodiment, the invention includes a method of increasing the water solubility of a GH comprising the step of linking the GH to one or more XTEN such that a higher concentration in soluble form of the resulting GHXTEN can be achieved, under physiologic conditions, compared to the GH in an un-fused state. Factors that contribute to the property of XTEN to confer increased water solubility of GHs when incorporated into a fusion protein include the high solubility of the XTEN fusion partner and the low degree of self-aggregation between molecules of XTEN in solution. In some embodiments, the method results in a GHXTEN fusion protein wherein the water solubility is at least about 20%, or at least about 30% greater, or at least about 50% greater, or at least about 75% greater, or at least about 90% greater, or at least about 100% greater, or at least about 150% greater, or at least about 200% greater, or at least about 400% greater, or at least about 600% greater, or at least about 800% greater, or at least about 1000% greater, or at least about 2000% greater, or at least about 4000% greater, or at least about 6000% greater under physiologic conditions, compared to the un-fused GH.


In another embodiment, the invention includes a method of increasing the shelf-life of a GH comprising the step of linking the GH with one or more XTEN selected such that the shelf-life of the resulting GHXTEN is extended compared to the GH in an un-fused state. As used herein, shelf-life refers to the period of time over which the functional activity of a GH or GHXTEN that is in solution or in some other storage formulation remains stable without undue loss of activity. As used herein, “functional activity” refers to a pharmacologic effect or biological activity, such as the ability to bind a receptor or ligand, or an enzymatic activity, or to display one or more known functional activities associated with a GH, as known in the art. A GH that degrades or aggregates generally has reduced functional activity or reduced bioavailability compared to one that remains in solution. Factors that contribute to the ability of the method to extend the shelf life of GHs when incorporated into a fusion protein include increased water solubility, reduced self-aggregation in solution, and increased heat stability of the XTEN fusion partner. In particular, the low tendency of XTEN to aggregate facilitates methods of formulating pharmaceutical preparations containing higher drug concentrations of GHs, and the heat-stability of XTEN contributes to the property of GHXTEN fusion proteins to remain soluble and functionally active for extended periods. In one embodiment, the method results in GHXTEN fusion proteins with “prolonged” or “extended” shelf-life that exhibit greater activity relative to a standard that has been subjected to the same storage and handling conditions. The standard may be the un-fused full-length GH. In one embodiment, the method includes the step of formulating the isolated GHXTEN with one or more pharmaceutically acceptable excipients that enhance the ability of the XTEN to retain its unstructured conformation and for the GHXTEN to remain soluble in the formulation for a time that is greater than that of the corresponding un-fused GH. In one embodiment, the method comprises linking a GH to one or more XTEN to create a GHXTEN fusion protein results in a solution that retains greater than about 100% of the functional activity, or greater than about 105%, 110%, 120%, 130%, 150% or 200% of the functional activity of a standard when compared at a given time point and when subjected to the same storage and handling conditions as the standard, thereby increasing its shelf-life.


Shelf-life may also be assessed in terms of functional activity remaining after storage, normalized to functional activity when storage began. GHXTEN fusion proteins of the invention with prolonged or extended shelf-life as exhibited by prolonged or extended functional activity retains about 50% more functional activity, or about 60%, 70%, 80%, or 90% more of the functional activity of the equivalent GH not linked to XTEN when subjected to the same conditions for the same period of time. For example, a GHXTEN fusion protein of the invention comprising human growth hormone fused to one or more XTEN sequences retains about 80% or more of its original activity in solution for periods of up to 2 weeks, or 4 weeks, or 6 weeks or longer under various temperature conditions. In some embodiments, the GHXTEN retains at least about 50%, or about 60%, or at least about 70%, or at least about 80%, and most preferably at least about 90% or more of its original activity in solution when heated at 80° C. for 10 min. In other embodiments, the GHXTEN retains at least about 50%, preferably at least about 60%, or at least about 70%, or at least about 80%, or alternatively at least about 90% or more of its original activity in solution when heated or maintained at 37° C. for about 7 days. In another embodiment, GHXTEN fusion protein retains at least about 80% or more of its functional activity after exposure to a temperature of about 30° C. to about 70° C. over a period of time of about one hour to about 18 hours. In the foregoing embodiments hereinabove described in this paragraph, the retained activity of the GHXTEN is at least about two-fold, or at least about three-fold, or at least about four-fold, or at least about five-fold, or at least about six-fold greater at a given time point than that of the corresponding GH not linked to the fusion protein.


VII). The Nucleic Acids Sequences of the Invention

The present invention provides isolated polynucleic acids encoding GHXTEN chimeric fusion proteins and sequences complementary to polynucleic acid molecules encoding GHXTEN chimeric fusion proteins, including homologous variants thereof. In another aspect, the invention encompasses methods to produce polynucleic acids encoding GHXTEN chimeric fusion proteins and sequences complementary to polynucleic acid molecules encoding GHXTEN chimeric fusion protein, including homologous variants thereof. In general, and as illustrated in FIGS. 4-6, the methods of producing a polynucleotide sequence coding for a GHXTEN fusion protein and expressing the resulting gene product include assembling nucleotides encoding GH and XTEN, ligating the components in frame, incorporating the encoding gene into an expression vector appropriate for a host cell, transforming the appropriate host cell with the expression vector, and culturing the host cell under conditions causing or permitting the fusion protein to be expressed in the transformed host cell, thereby producing the biologically-active GHXTEN polypeptide, which is recovered as an isolated fusion protein by standard protein purification methods known in the art. Standard recombinant techniques in molecular biology is used to make the polynucleotides and expression vectors of the present invention.


In accordance with the invention, nucleic acid sequences that encode GHXTEN (or its complement) is used to generate recombinant DNA molecules that direct the expression of GHXTEN fusion proteins in appropriate host cells. Several cloning strategies are suitable for performing the present invention, many of which is used to generate a construct that comprises a gene coding for a fusion protein of the GHXTEN composition of the present invention, or its complement. In some embodiments, the cloning strategy is used to create a gene that encodes a monomeric GHXTEN that comprises at least a first GH and at least a first XTEN polypeptide, or their complement. In one embodiment of the foregoing, the gene comprises a sequence encoding a hGH or sequence variant. In other embodiments, the cloning strategy is used to create a gene that encodes a monomeric GHXTEN that comprises nucleotides encoding at least a first molecule of GH or its complement and a first and at least a second XTEN or their complement that is used to transform a host cell for expression of the fusion protein of the GHXTEN composition. In the foregoing embodiments hereinabove described in this paragraph, the genes can further comprise nucleotides encoding spacer sequences that also encodes cleavage sequence(s).


In designing a desired XTEN sequences, it was discovered that the non-repetitive nature of the XTEN of the inventive compositions is achieved despite use of a “building block” molecular approach in the creation of the XTEN-encoding sequences. This was achieved by the use of a library of polynucleotides encoding peptide sequence motifs, described above, that are then ligated and/or multimerized to create the genes encoding the XTEN sequences (see FIGS. 4 and 5 and Examples). Thus, while the XTEN(s) of the expressed fusion protein may consist of multiple units of as few as four different sequence motifs, because the motifs themselves consist of non-repetitive amino acid sequences, the overall XTEN sequence is rendered non-repetitive. Accordingly, in one embodiment, the XTEN-encoding polynucleotides comprise multiple polynucleotides that encode non-repetitive sequences, or motifs, operably linked in frame and in which the resulting expressed XTEN amino acid sequences are non-repetitive.


In one approach, a construct is first prepared containing the DNA sequence corresponding to GHXTEN fusion protein. DNA encoding the GH of the compositions is obtained from a cDNA library prepared using standard methods from tissue or isolated cells believed to possess GH mRNA and to express it at a detectable level. Libraries is screened with probes containing, for example, about 20 to 100 bases designed to identify the GH gene of interest by hybridization using conventional molecular biology techniques. The best candidates for probes are those that represent sequences that are highly homologous for human growth hormone, and should be of sufficient length and sufficiently unambiguous that false positives are minimized, but may be degenerate at one or more positions. If necessary, the coding sequence can be obtained using conventional primer extension procedures as described in Sambrook, et al., supra, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA. One can then use polymerase chain reaction (PCR) methodology to amplify the target DNA or RNA coding sequence to obtain sufficient material for the preparatin of the GHXTEN constructs containing the GH gene(s). Assays can then be conducted to confirm that hybridizing full-length genes are the desired GH gene(s). By these conventional methods, DNA can be conveniently obtained from a cDNA library prepared from such sources. The GH encoding gene(s) is also be obtained from a genomic library or created by standard synthetic procedures known in the art (e.g., automated nucleic acid synthesis using, for example one of the methods described in Engels et al. (Agnew. Chem. Int. Ed. Engl., 28:716-734 1989)), using DNA sequences obtained from publicly available databases, patents, or literature references. Such procedures are well known in the art and well described in the scientific and patent literature. For example, sequences can be obtained from Chemical Abstracts Services (CAS) Registry Numbers (published by the American Chemical Society) and/or GenBank Accession Numbers (e.g., Locus ID, NP_XXXXX, and XP_XXXXX) Model Protein identifiers available through the National Center for Biotechnology Information (NCBI) webpage, available on the world wide web at ncbi.nlm.nih.gov that correspond to entries in the CAS Registry or GenBank database that contain an amino acid sequence of the protein of interest or of a fragment or variant of the protein. For such sequence identifiers provided herein, the summary pages associated with each of these CAS and GenBank and GenSeq Accession Numbers as well as the cited journal publications (e.g., PubMed ID number (PMID)) are each incorporated by reference in their entireties, particularly with respect to the amino acid sequences described therein. In one embodiment, the GH encoding gene encodes a protein from any one of Table 1, or a fragment or variant thereof.


A gene or polynucleotide encoding the GH portion of the subject GHXTEN protein, in the case of an expressed fusion protein that comprises a single GH is then be cloned into a construct, which is a plasmid or other vector under control of appropriate transcription and translation sequences for high level protein expression in a biological system. In a later step, a second gene or polynucleotide coding for the XTEN is genetically fused to the nucleotides encoding the N- and/or C-terminus of the GH gene by cloning it into the construct adjacent and in frame with the gene(s) coding for the GH. This second step occurs through a ligation or multimerization step. In the foregoing embodiments hereinabove described in this paragraph, it is to be understood that the gene constructs that are created can alternatively be the complement of the respective genes that encode the respective fusion proteins.


The gene encoding for the XTEN can be made in one or more steps, either fully synthetically or by synthesis combined with enzymatic processes, such as restriction enzyme-mediated cloning, PCR and overlap extension, including methods more fully described in the Examples. The methods disclosed herein can be used, for example, to ligate short sequences of polynucleotides encoding XTEN into longer XTEN genes of a desired length and sequence. In one embodiment, the method ligates two or more codon-optimized oligonucleotides encoding XTEN motif or segment sequences of about 9 to 14 amino acids, or about 12 to 20 amino acids, or about 18 to 36 amino acids, or about 48 to about 144 amino acids, or about 144 to about 288 or longer, or any combination of the foregoing ranges of motif or segment lengths.


Alternatively, the disclosed method is used to multimerize XTEN-encoding sequences into longer sequences of a desired length; e.g., a gene encoding 36 amino acids of XTEN can be dimerized into a gene encoding 72 amino acids, then 144, then 288, etc. Even with multimerization, XTEN polypeptides can be constructed such that the XTEN-encoding gene has low or vitually no repetitiveness through design of the codons selected for the motifs of the shortest unit used, which can reduce recombination and increase stability of the encoding gene in the transformed host. Genes encoding XTEN with non-repetitive sequences is assembled from oligonucleotides using standard techniques of gene synthesis. The gene design can be performed using algorithms that optimize codon usage and amino acid composition. In one method of the invention, a library of relatively short XTEN-encoding polynucleotide constructs is created and then assembled, as illustrated in FIGS. 4 and 5. This can be a pure codon library such that each library member has the same amino acid sequence but many different coding sequences are possible. Such libraries can be assembled from partially randomized oligonucleotides and used to generate large libraries of XTEN segments comprising the sequence motifs. The randomization scheme can be optimized to control amino acid choices for each position as well as codon usage. Exemplary methods to achieve the foregoing are disclosed in the Examples.


Polynucleotide Libraries


In another aspect, the invention provides libraries of polynucleotides that encode XTEN sequences that is used to assemble genes that encode XTEN of a desired length and sequence.


In certain embodiments, the XTEN-encoding library constructs comprise polynucleotides that encode polypeptide segments of a fixed length. As an initial step, a library of oligonucleotides that encode motifs of 9-14 amino acid residues can be assembled. In a preferred embodiment, libraries of oligonucleotides that encode motifs of 12 amino acids are assembled.


The XTEN-encoding sequence segments can be dimerized or multimerized into longer encoding sequences. Dimerization or multimerization can be performed by ligation, overlap extension, PCR assembly or similar cloning techniques known in the art. This process of can be repeated multiple times until the resulting XTEN-encoding sequences have reached the organization of sequence and desired length, providing the XTEN-encoding genes. As will be appreciated, a library of polynucleotides that encodes, e.g., 12 amino acid motifs can be dimerized and/or ligated into a library of polynucleotides that encode 36 amino acids. Libraries encoding motifs of different lengths; e.g., 9-14 amino acid motifs leading to libraries encoding 27 to 42 amino acids are contemplated by the invention. In turn, the library of polynucleotides that encode 27 to 42 amino acids, and preferably 36 amino acids (as described in the Examples) can be serially dimerized into a library containing successively longer lengths of polynucleotides that encode XTEN sequences of a desired length for incorporation into the gene encoding the GHXTEN fusionprotein, as disclosed herein. In some embodiments, libraries are assembled of polynucleotides that encode amino acids that are limited to specific sequence XTEN families; e.g., AD, AE, AF, AG, AM, or AQ sequences of Table 2. In other embodiments, libraries comprise sequences that encode two or more of the motif family sequences from Table 2. The names and sequences of representative, non-limiting polynucleotide sequences of libraries that encode 36mers are presented in Tables 8-11, and the methods used to create them are described more fully in the Examples. In other embodiments, libraries that encode XTEN are constructed from segments of polynucleotide codons linked in a randomized sequence that encode amino acids wherein at least about 80%, or at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 97%, or at least about 98%, or at least about 99% of the codons are selected from the group consisting of condons for glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) amino acids. The libraries can be used, in turn, for serial dimerization or ligation to achieve polynucleotide sequence libraries that encode XTEN sequences, for example, of 48, 72, 144, 288, 576, 864, 875, 912, 923, 1318 amino acids, or up to a total length of about 3000 amino acids, as well as intermediate lengths, in which the encoded XTEN can have one or more of the properties disclosed herein, when expressed as a component of a GHXTEN fusion protein. In some cases, the polynucleotide library sequences may also include additional bases used as “sequencing islands,” described more fully below.



FIG. 5 is a schematic flowchart of representative, non-limiting steps in the assembly of a XTEN polynucleotide construct and a GHXTEN polynucleotide construct in the embodiments of the invention. Individual oligonucleotides 501 are annealed into sequence motifs 502 such as a 12 amino acid motif (“12-mer”), which is subsequently ligated with an oligo containing BbsI, and KpnI restriction sites 503. Additional sequence motifs from a library are annealed to the 12-mer until the desired length of the XTEN gene 504 is achieved. The XTEN gene is cloned into a stuffer vector. The vector optionally encodes a Flag sequence 506 followed by a stuffer sequence that is flanked by BsaI, BbsI, and KpnI sites 507 and, in this case, a single GH gene (encoding hGH in this example) 508, resulting in the gene encoding a GHXTEN comprising a single GH 500. A non-exhaustive list of the XTEN names for polynucleotides encoding XTEN and precursor sequences is provided in Table 7.









TABLE 7







DNA sequences of XTEN and precursor sequences









XTEN
SEQ ID



Name
NO:
DNA Nucleotide Sequence












AE48
107
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAGGAAGGTACCCCGGGTAGC




GGTACTGCTTCTTCCTCTCCAGGTAGCTCTACCCCTTCTGGTGCAACCGGCTCTC




CAGGTGCTTCTCCGGGCACCAGCTCTACCGGTTCT





AM48
108
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAGGAAGGTGCATCCCCGGGC




ACCAGCTCTACCGGTTCTCCAGGTAGCTCTACCCCGTCTGGTGCTACCGGCTCTC




CAGGTAGCTCTACCCCGTCTGGTGCTACTGGCTCT





AE144
109
GGTAGCGAACCGGCAACTTCCGGCTCTGAAACCCCAGGTACTTCTGAAAGCGCT




ACTCCTGAGTCTGGCCCAGGTAGCGAACCTGCTACCTCTGGCTCTGAAACCCCA




GGTAGCCCGGCAGGCTCTCCGACTTCCACCGAGGAAGGTACCTCTACTGAACCT




TCTGAGGGTAGCGCTCCAGGTAGCGAACCGGCAACCTCTGGCTCTGAAACCCCA




GGTAGCGAACCTGCTACCTCCGGCTCTGAAACTCCAGGTAGCGAACCGGCTACT




TCCGGTTCTGAAACTCCAGGTACCTCTACCGAACCTTCCGAAGGCAGCGCACCA




GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCAGGTAGCGAACCGGCTACT




TCTGGCTCTGAGACTCCAGGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCA





AF144
110
GGTACTTCTACTCCGGAAAGCGGTTCCGCATCTCCAGGTACTTCTCCTAGCGGTG




AATCTTCTACTGCTCCAGGTACCTCTCCTAGCGGCGAATCTTCTACTGCTCCAGG




TTCTACCAGCTCTACCGCTGAATCTCCTGGCCCAGGTTCTACCAGCGAATCCCCG




TCTGGCACCGCACCAGGTTCTACTAGCTCTACCGCAGAATCTCCGGGTCCAGGT




ACTTCCCCTAGCGGTGAATCTTCTACTGCTCCAGGTACCTCTACTCCGGAAAGCG




GCTCCGCATCTCCAGGTTCTACTAGCTCTACTGCTGAATCTCCTGGTCCAGGTAC




CTCCCCTAGCGGCGAATCTTCTACTGCTCCAGGTACCTCTCCTAGCGGCGAATCT




TCTACCGCTCCAGGTACCTCCCCTAGCGGTGAATCTTCTACCGCACCA





AE288
111
GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCAGGTAGCGAACCTGCTACC




TCCGGCTCTGAGACTCCAGGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA




GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCAGGTACCTCTGAAAGCGCT




ACTCCTGAATCTGGCCCAGGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA




GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAAGGTACCTCTGAAAGCGCA




ACCCCTGAATCCGGCCCAGGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA




GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGGCTGGCTCT




CCGACTTCCACCGAGGAAGGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA




GGTACTTCTACCGAACCTTCCGAGGGCAGCGCACCAGGTACTTCTGAAAGCGCT




ACCCCTGAGTCCGGCCCAGGTACTTCTGAAAGCGCTACTCCTGAATCCGGTCCA




GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCAGGTAGCGAACCGGCTACT




TCTGGTTCTGAAACCCCAGGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA




GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAAGGTACTTCTACTGAACCT




TCCGAAGGCAGCGCACCAGGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCAGGTACCTCTGAAAGCGCT




ACTCCTGAATCTGGCCCAGGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA





AE576
112
GGTAGCCCGGCTGGCTCTCCTACCTCTACTGAGGAAGGTACTTCTGAAAGCGCT




ACTCCTGAGTCTGGTCCAGGTACCTCTACTGAACCGTCCGAAGGTAGCGCTCCA




GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAAGGTACTTCTACTGAACCT




TCCGAAGGCAGCGCACCAGGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCAGGTAGCGAACCGGCTACT




TCTGGTTCTGAAACCCCAGGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA




GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAAGGTACTTCTGAAAGCGCA




ACCCCGGAGTCCGGCCCAGGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA




GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCCCAGCAGGTTCT




CCTACCTCCACCGAGGAAGGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTTCTGAAAGCGCT




ACCCCGGAGTCCGGTCCAGGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA




GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCAGGTAGCGAACCGGCTACT




TCTGGCTCTGAGACTCCAGGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCA




GGTACTTCTACTGAACCGTCTGAAGGTAGCGCACCAGGTACTTCTGAAAGCGCA




ACCCCGGAATCCGGCCCAGGTACCTCTGAAAGCGCAACCCCGGAGTCCGGCCC




AGGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAAGGTACCTCTGAAAGCGC




AACCCCTGAATCCGGCCCAGGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCC




AGGTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCAGGTACCTCTACTGAACC




GTCTGAGGGTAGCGCTCCAGGTACTTCTACTGAACCGTCCGAAGGTAGCGCACC




AGGTACTTCTACCGAACCGTCCGAAGGCAGCGCTCCAGGTACCTCTACTGAACC




TTCCGAGGGCAGCGCTCCAGGTACCTCTACCGAACCTTCTGAAGGTAGCGCACC




AGGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCCCAGCAGGTTC




TCCTACCTCCACCGAGGAAGGTACTTCTACCGAACCGTCCGAGGGTAGCGCACC




AGGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCAGGTAGCGAACCTGCTAC




CTCCGGCTCTGAGACTCCAGGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCC




AGGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCAGGTACCTCTGAAAGCGC




TACTCCTGAATCTGGCCCAGGTACTTCTACTGAACCGTCCGAGGGCAGCGCACC




AGGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGGCTGGCTC




TCCGACTTCCACCGAGGAAGGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGA




AGGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAAGGTACTTCTGAAAGCGC




AACCCCGGAGTCCGGCCCAGGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA





AF576
113
GGTTCTACTAGCTCTACCGCTGAATCTCCTGGCCCAGGTTCCACTAGCTCTACCG




CAGAATCTCCGGGCCCAGGTTCTACTAGCGAATCCCCTTCTGGTACCGCTCCAG




GTTCTACTAGCTCTACCGCTGAATCTCCGGGTCCAGGTTCTACCAGCTCTACTGC




AGAATCTCCTGGCCCAGGTACTTCTACTCCGGAAAGCGGTTCCGCTTCTCCAGGT




TCTACCAGCGAATCTCCTTCTGGCACCGCTCCAGGTACCTCTCCTAGCGGCGAAT




CTTCTACCGCTCCAGGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCAGGTTC




TACCAGCGAATCTCCTTCTGGCACCGCTCCAGGTACCTCTCCTAGCGGCGAATCT




TCTACCGCTCCAGGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCAGGTTCTA




CCAGCGAATCTCCTTCTGGCACCGCTCCAGGTACCTCTCCTAGCGGCGAATCTTC




TACCGCTCCAGGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCAGGTTCTACT




AGCGAATCTCCTTCTGGCACTGCACCAGGTTCTACCAGCGAATCTCCGTCTGGC




ACTGCACCAGGTACCTCTACCCCTGAAAGCGGTTCCGCTTCTCCAGGTTCTACTA




GCGAATCTCCTTCTGGTACCGCTCCAGGTACTTCTACCCCTGAAAGCGGCTCCGC




TTCTCCAGGTTCCACTAGCTCTACCGCTGAATCTCCGGGTCCAGGTTCTACTAGC




TCTACTGCAGAATCTCCTGGCCCAGGTACCTCTACTCCGGAAAGCGGCTCTGCA




TCTCCAGGTACTTCTACCCCTGAAAGCGGTTCTGCATCTCCAGGTTCTACTAGCG




AATCCCCGTCTGGTACCGCACCAGGTACTTCTACCCCGGAAAGCGGCTCTGCTT




CTCCAGGTACTTCTACCCCGGAAAGCGGCTCCGCATCTCCAGGTTCTACTAGCG




AATCTCCTTCTGGTACCGCTCCAGGTTCTACCAGCGAATCCCCGTCTGGTACTGC




TCCAGGTTCTACCAGCGAATCTCCTTCTGGTACTGCACCAGGTTCTACTAGCTCT




ACTGCAGAATCTCCTGGCCCAGGTACCTCTACTCCGGAAAGCGGCTCTGCATCT




CCAGGTACTTCTACCCCTGAAAGCGGTTCTGCATCTCCAGGTTCTACTAGCGAAT




CTCCTTCTGGCACTGCACCAGGTTCTACCAGCGAATCTCCGTCTGGCACTGCACC




AGGTACCTCTACCCCTGAAAGCGGTTCCGCTTCTCCAGGTTCTACTAGCGAATCT




CCTTCTGGCACTGCACCAGGTTCTACCAGCGAATCTCCGTCTGGCACTGCACCA




GGTACCTCTACCCCTGAAAGCGGTTCCGCTTCTCCAGGTACTTCTCCGAGCGGTG




AATCTTCTACCGCACCAGGTTCTACTAGCTCTACCGCTGAATCTCCGGGCCCAGG




TACTTCTCCGAGCGGTGAATCTTCTACTGCTCCAGGTTCCACTAGCTCTACTGCT




GAATCTCCTGGCCCAGGTACTTCTACTCCGGAAAGCGGTTCCGCTTCTCCAGGTT




CTACTAGCGAATCTCCGTCTGGCACCGCACCAGGTTCTACTAGCTCTACTGCAG




AATCTCCTGGCCCAGGTACCTCTACTCCGGAAAGCGGCTCTGCATCTCCAGGTA




CTTCTACCCCTGAAAGCGGTTCTGCATCTCCA





AE624
114
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAGGAAGGTACCCCGGGTAGC




GGTACTGCTTCTTCCTCTCCAGGTAGCTCTACCCCTTCTGGTGCAACCGGCTCTC




CAGGTGCTTCTCCGGGCACCAGCTCTACCGGTTCTCCAGGTAGCCCGGCTGGCT




CTCCTACCTCTACTGAGGAAGGTACTTCTGAAAGCGCTACTCCTGAGTCTGGTCC




AGGTACCTCTACTGAACCGTCCGAAGGTAGCGCTCCAGGTAGCCCAGCAGGCTC




TCCGACTTCCACTGAGGAAGGTACTTCTACTGAACCTTCCGAAGGCAGCGCACC




AGGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTTCTGAAAGCGC




TACCCCGGAATCTGGCCCAGGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCC




AGGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCAGGTAGCCCGGCAGGCTC




TCCGACCTCTACTGAGGAAGGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCC




AGGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCAGGTACTTCTACCGAACC




GTCCGAGGGTAGCGCACCAGGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGA




AGGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTACCTCTACTGAACC




TTCTGAGGGCAGCGCTCCAGGTACTTCTGAAAGCGCTACCCCGGAGTCCGGTCC




AGGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCAGGTACTTCTGAAAGCGC




AACCCCTGAATCCGGTCCAGGTAGCGAACCGGCTACTTCTGGCTCTGAGACTCC




AGGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCAGGTACTTCTACTGAACC




GTCTGAAGGTAGCGCACCAGGTACTTCTGAAAGCGCAACCCCGGAATCCGGCCC




AGGTACCTCTGAAAGCGCAACCCCGGAGTCCGGCCCAGGTAGCCCTGCTGGCTC




TCCAACCTCCACCGAAGAAGGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCC




AGGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCAGGTACCTCTGAAAGCGC




TACTCCGGAGTCTGGCCCAGGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCC




AGGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCAGGTACTTCTACCGAACC




GTCCGAAGGCAGCGCTCCAGGTACCTCTACTGAACCTTCCGAGGGCAGCGCTCC




AGGTACCTCTACCGAACCTTCTGAAGGTAGCGCACCAGGTACTTCTACCGAACC




GTCCGAGGGTAGCGCACCAGGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGA




AGGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTACCTCTGAAAGCGC




AACTCCTGAGTCTGGCCCAGGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCC




AGGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCAGGTAGCGAACCTGCAAC




CTCTGGCTCTGAAACCCCAGGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCC




AGGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCAGGTACTTCTGAAAGCGC




TACTCCTGAGTCCGGCCCAGGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGA




AGGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAAGGTAGCCCGGCAGGCTC




TCCGACCTCTACTGAGGAAGGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCC




AGGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA





AM875
115
GGTACTTCTACTGAACCGTCTGAAGGCAGCGCACCAGGTAGCGAACCGGCTACT




TCCGGTTCTGAAACCCCAGGTAGCCCAGCAGGTTCTCCAACTTCTACTGAAGAA




GGTTCTACCAGCTCTACCGCAGAATCTCCTGGTCCAGGTACCTCTACTCCGGAA




AGCGGCTCTGCATCTCCAGGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCAG




GTTCTACTAGCGAATCCCCGTCTGGTACTGCTCCAGGTACTTCTACTCCTGAAAG




CGGTTCCGCTTCTCCAGGTACCTCTACTCCGGAAAGCGGTTCTGCATCTCCAGGT




AGCGAACCGGCAACCTCCGGCTCTGAAACCCCAGGTACCTCTGAAAGCGCTACT




CCTGAATCCGGCCCAGGTAGCCCGGCAGGTTCTCCGACTTCCACTGAGGAAGGT




ACCTCTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTTCTGAAAGCGCTACC




CCGGAGTCCGGTCCAGGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCAGGT




ACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCCCAGCAGGTTCTCCT




ACCTCCACCGAGGAAGGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGT




ACTTCTACCGAACCTTCCGAGGGCAGCGCACCAGGTACTTCTGAAAGCGCTACC




CCTGAGTCCGGCCCAGGTACTTCTGAAAGCGCTACTCCTGAATCCGGTCCAGGT




ACCTCTACTGAACCTTCCGAAGGCAGCGCTCCAGGTACCTCTACCGAACCGTCC




GAGGGCAGCGCACCAGGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCAGGT




ACTTCTACTGAACCTTCCGAAGGTAGCGCTCCAGGTAGCGAACCTGCTACTTCT




GGTTCTGAAACCCCAGGTAGCCCGGCTGGCTCTCCGACCTCCACCGAGGAAGGT




AGCTCTACCCCGTCTGGTGCTACTGGTTCTCCAGGTACTCCGGGCAGCGGTACTG




CTTCTTCCTCTCCAGGTAGCTCTACCCCTTCTGGTGCTACTGGCTCTCCAGGTAC




CTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTACCTCTACTGAACCGTCTGA




GGGTAGCGCTCCAGGTAGCGAACCGGCAACCTCCGGTTCTGAAACTCCAGGTAG




CCCTGCTGGCTCTCCGACTTCTACTGAGGAAGGTAGCCCGGCTGGTTCTCCGACT




TCTACTGAGGAAGGTACTTCTACCGAACCTTCCGAAGGTAGCGCTCCAGGTGCA




AGCGCAAGCGGCGCGCCAAGCACGGGAGGTACTTCTGAAAGCGCTACTCCTGA




GTCCGGCCCAGGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAAGGTAGCCC




GGCTGGCTCTCCAACTTCTACTGAAGAAGGTTCTACCAGCTCTACCGCTGAATCT




CCTGGCCCAGGTTCTACTAGCGAATCTCCGTCTGGCACCGCACCAGGTACTTCCC




CTAGCGGTGAATCTTCTACTGCACCAGGTACCCCTGGCAGCGGTACCGCTTCTTC




CTCTCCAGGTAGCTCTACCCCGTCTGGTGCTACTGGCTCTCCAGGTTCTAGCCCG




TCTGCATCTACCGGTACCGGCCCAGGTAGCGAACCGGCAACCTCCGGCTCTGAA




ACTCCAGGTACTTCTGAAAGCGCTACTCCGGAATCCGGCCCAGGTAGCGAACCG




GCTACTTCCGGCTCTGAAACCCCAGGTTCCACCAGCTCTACTGCAGAATCTCCG




GGCCCAGGTTCTACTAGCTCTACTGCAGAATCTCCGGGTCCAGGTACTTCTCCTA




GCGGCGAATCTTCTACCGCTCCAGGTAGCGAACCGGCAACCTCTGGCTCTGAAA




CTCCAGGTAGCGAACCTGCAACCTCCGGCTCTGAAACCCCAGGTACTTCTACTG




AACCTTCTGAGGGCAGCGCACCAGGTTCTACCAGCTCTACCGCAGAATCTCCTG




GTCCAGGTACCTCTACTCCGGAAAGCGGCTCTGCATCTCCAGGTTCTACTAGCG




AATCTCCTTCTGGCACTGCACCAGGTACTTCTACCGAACCGTCCGAAGGCAGCG




CTCCAGGTACCTCTACTGAACCTTCCGAGGGCAGCGCTCCAGGTACCTCTACCG




AACCTTCTGAAGGTAGCGCACCAGGTAGCTCTACTCCGTCTGGTGCAACCGGCT




CCCCAGGTTCTAGCCCGTCTGCTTCCACTGGTACTGGCCCAGGTGCTTCCCCGGG




CACCAGCTCTACTGGTTCTCCAGGTAGCGAACCTGCTACCTCCGGTTCTGAAACC




CCAGGTACCTCTGAAAGCGCAACTCCGGAGTCTGGTCCAGGTAGCCCTGCAGGT




TCTCCTACCTCCACTGAGGAAGGTAGCTCTACTCCGTCTGGTGCAACCGGCTCCC




CAGGTTCTAGCCCGTCTGCTTCCACTGGTACTGGCCCAGGTGCTTCCCCGGGCAC




CAGCTCTACTGGTTCTCCAGGTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCC




AGGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCAGGTACTTCTACTGAACC




GTCCGAAGGTAGCGCACCA





AE864
116
GGTAGCCCGGCTGGCTCTCCTACCTCTACTGAGGAAGGTACTTCTGAAAGCGCT




ACTCCTGAGTCTGGTCCAGGTACCTCTACTGAACCGTCCGAAGGTAGCGCTCCA




GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAAGGTACTTCTACTGAACCT




TCCGAAGGCAGCGCACCAGGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCAGGTAGCGAACCGGCTACT




TCTGGTTCTGAAACCCCAGGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA




GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAAGGTACTTCTGAAAGCGCA




ACCCCGGAGTCCGGCCCAGGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA




GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCCCAGCAGGTTCT




CCTACCTCCACCGAGGAAGGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTTCTGAAAGCGCT




ACCCCGGAGTCCGGTCCAGGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA




GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCAGGTAGCGAACCGGCTACT




TCTGGCTCTGAGACTCCAGGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCA




GGTACTTCTACTGAACCGTCTGAAGGTAGCGCACCAGGTACTTCTGAAAGCGCA




ACCCCGGAATCCGGCCCAGGTACCTCTGAAAGCGCAACCCCGGAGTCCGGCCC




AGGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAAGGTACCTCTGAAAGCGC




AACCCCTGAATCCGGCCCAGGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCC




AGGTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCAGGTACCTCTACTGAACC




GTCTGAGGGTAGCGCTCCAGGTACTTCTACTGAACCGTCCGAAGGTAGCGCACC




AGGTACTTCTACCGAACCGTCCGAAGGCAGCGCTCCAGGTACCTCTACTGAACC




TTCCGAGGGCAGCGCTCCAGGTACCTCTACCGAACCTTCTGAAGGTAGCGCACC




AGGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCCCAGCAGGTTC




TCCTACCTCCACCGAGGAAGGTACTTCTACCGAACCGTCCGAGGGTAGCGCACC




AGGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCAGGTAGCGAACCTGCTAC




CTCCGGCTCTGAGACTCCAGGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCC




AGGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCAGGTACCTCTGAAAGCGC




TACTCCTGAATCTGGCCCAGGTACTTCTACTGAACCGTCCGAGGGCAGCGCACC




AGGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGGCTGGCTC




TCCGACTTCCACCGAGGAAGGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGA




AGGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAAGGTACTTCTGAAAGCGC




AACCCCGGAGTCCGGCCCAGGTACCTCTACCGAACCGTCTGAGGGCAGCGCACC




AGGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCAGGTAGCGAACCTGCTAC




CTCCGGCTCTGAGACTCCAGGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCC




AGGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCAGGTACCTCTGAAAGCGC




TACTCCTGAATCTGGCCCAGGTACTTCTACTGAACCGTCCGAGGGCAGCGCACC




AGGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAAGGTACCTCTGAAAGCGC




AACCCCTGAATCCGGCCCAGGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCC




AGGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGGCTGGCTC




TCCGACTTCCACCGAGGAAGGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGA




AGGTACTTCTACCGAACCTTCCGAGGGCAGCGCACCAGGTACTTCTGAAAGCGC




TACCCCTGAGTCCGGCCCAGGTACTTCTGAAAGCGCTACTCCTGAATCCGGTCC




AGGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCAGGTAGCGAACCGGCTAC




TTCTGGTTCTGAAACCCCAGGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCC




AGGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAAGGTACTTCTACTGAACC




TTCCGAAGGCAGCGCACCAGGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCC




AGGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCAGGTACCTCTGAAAGCGC




TACTCCTGAATCTGGCCCAGGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA





AF864
117
GGTTCTACCAGCGAATCTCCTTCTGGCACCGCTCCAGGTACCTCTCCTAGCGGCG




AATCTTCTACCGCTCCAGGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCAGG




TTCTACTAGCGAATCCCCGTCTGGTACTGCTCCAGGTACTTCTACTCCTGAAAGC




GGTTCCGCTTCTCCAGGTACCTCTACTCCGGAAAGCGGTTCTGCATCTCCAGGTT




CTACCAGCGAATCTCCTTCTGGCACCGCTCCAGGTTCTACTAGCGAATCCCCGTC




TGGTACCGCACCAGGTACTTCTCCTAGCGGCGAATCTTCTACCGCACCAGGTTCT




ACTAGCGAATCTCCGTCTGGCACTGCTCCAGGTACTTCTCCTAGCGGTGAATCTT




CTACCGCTCCAGGTACTTCCCCTAGCGGCGAATCTTCTACCGCTCCAGGTTCTAC




TAGCTCTACTGCAGAATCTCCGGGCCCAGGTACCTCTCCTAGCGGTGAATCTTCT




ACCGCTCCAGGTACTTCTCCGAGCGGTGAATCTTCTACCGCTCCAGGTTCTACTA




GCTCTACTGCAGAATCTCCTGGCCCAGGTACCTCTACTCCGGAAAGCGGCTCTG




CATCTCCAGGTACTTCTACCCCTGAAAGCGGTTCTGCATCTCCAGGTTCTACTAG




CGAATCTCCTTCTGGCACTGCACCAGGTTCTACCAGCGAATCTCCGTCTGGCACT




GCACCAGGTACCTCTACCCCTGAAAGCGGTTCCGCTTCTCCAGGTTCTACCAGCT




CTACCGCAGAATCTCCTGGTCCAGGTACCTCTACTCCGGAAAGCGGCTCTGCAT




CTCCAGGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCAGGTACTTCTCCGAG




CGGTGAATCTTCTACCGCACCAGGTTCTACTAGCTCTACCGCTGAATCTCCGGGC




CCAGGTACTTCTCCGAGCGGTGAATCTTCTACTGCTCCAGGTACCTCTACTCCTG




AAAGCGGTTCTGCATCTCCAGGTTCCACTAGCTCTACCGCAGAATCTCCGGGCC




CAGGTTCTACTAGCTCTACTGCTGAATCTCCTGGCCCAGGTTCTACTAGCTCTAC




TGCTGAATCTCCGGGTCCAGGTTCTACCAGCTCTACTGCTGAATCTCCTGGTCCA




GGTACCTCCCCGAGCGGTGAATCTTCTACTGCACCAGGTTCTACTAGCGAATCTC




CTTCTGGCACTGCACCAGGTTCTACCAGCGAATCTCCGTCTGGCACTGCACCAG




GTACCTCTACCCCTGAAAGCGGTCCXXXXXXXXXXXXTGCAAGCGCAAGCGGC




GCGCCAAGCACGGGAXXXXXXXXTAGCGAATCTCCTTCTGGTACCGCTCCAGGT




TCTACCAGCGAATCCCCGTCTGGTACTGCTCCAGGTTCTACCAGCGAATCTCCTT




CTGGTACTGCACCAGGTTCTACTAGCGAATCTCCTTCTGGTACCGCTCCAGGTTC




TACCAGCGAATCCCCGTCTGGTACTGCTCCAGGTTCTACCAGCGAATCTCCTTCT




GGTACTGCACCAGGTACTTCTACTCCGGAAAGCGGTTCCGCATCTCCAGGTACT




TCTCCTAGCGGTGAATCTTCTACTGCTCCAGGTACCTCTCCTAGCGGCGAATCTT




CTACTGCTCCAGGTTCTACCAGCTCTACTGCTGAATCTCCGGGTCCAGGTACTTC




CCCGAGCGGTGAATCTTCTACTGCACCAGGTACTTCTACTCCGGAAAGCGGTTC




CGCTTCTCCAGGTTCTACCAGCGAATCTCCTTCTGGCACCGCTCCAGGTTCTACT




AGCGAATCCCCGTCTGGTACCGCACCAGGTACTTCTCCTAGCGGCGAATCTTCT




ACCGCACCAGGTTCTACTAGCGAATCCCCGTCTGGTACCGCACCAGGTACTTCT




ACCCCGGAAAGCGGCTCTGCTTCTCCAGGTACTTCTACCCCGGAAAGCGGCTCC




GCATCTCCAGGTTCTACTAGCGAATCTCCTTCTGGTACCGCTCCAGGTACTTCTA




CCCCTGAAAGCGGCTCCGCTTCTCCAGGTTCCACTAGCTCTACCGCTGAATCTCC




GGGTCCAGGTTCTACCAGCGAATCTCCTTCTGGCACCGCTCCAGGTTCTACTAGC




GAATCCCCGTCTGGTACCGCACCAGGTACTTCTCCTAGCGGCGAATCTTCTACCG




CACCAGGTTCTACCAGCTCTACTGCTGAATCTCCGGGTCCAGGTACTTCCCCGAG




CGGTGAATCTTCTACTGCACCAGGTACTTCTACTCCGGAAAGCGGTTCCGCTTCT




CCAGGTACCTCCCCTAGCGGCGAATCTTCTACTGCTCCAGGTACCTCTCCTAGCG




GCGAATCTTCTACCGCTCCAGGTACCTCCCCTAGCGGTGAATCTTCTACCGCACC




AGGTTCTACTAGCTCTACTGCTGAATCTCCGGGTCCAGGTTCTACCAGCTCTACT




GCTGAATCTCCTGGTCCAGGTACCTCCCCGAGCGGTGAATCTTCTACTGCACCA




GGTTCTAGCCCTTCTGCTTCCACCGGTACCGGCCCAGGTAGCTCTACTCCGTCTG




GTGCAACTGGCTCTCCAGGTAGCTCTACTCCGTCTGGTGCAACCGGCTCCCCA




XXXX was inserted in two areas where no sequence




information is available.





AG864
118
GGTGCTTCCCCGGGCACCAGCTCTACTGGTTCTCCAGGTTCTAGCCCGTCTGCTT




CTACTGGTACTGGTCCAGGTTCTAGCCCTTCTGCTTCCACTGGTACTGGTCCAGG




TACCCCGGGTAGCGGTACCGCTTCTTCTTCTCCAGGTAGCTCTACTCCGTCTGGT




GCTACCGGCTCTCCAGGTTCTAACCCTTCTGCATCCACCGGTACCGGCCCAGGTG




CTTCTCCGGGCACCAGCTCTACTGGTTCTCCAGGTACCCCGGGCAGCGGTACCG




CATCTTCTTCTCCAGGTAGCTCTACTCCTTCTGGTGCAACTGGTTCTCCAGGTAC




TCCTGGCAGCGGTACCGCTTCTTCTTCTCCAGGTGCTTCTCCTGGTACTAGCTCT




ACTGGTTCTCCAGGTGCTTCTCCGGGCACTAGCTCTACTGGTTCTCCAGGTACCC




CGGGTAGCGGTACTGCTTCTTCCTCTCCAGGTAGCTCTACCCCTTCTGGTGCAAC




CGGCTCTCCAGGTGCTTCTCCGGGCACCAGCTCTACCGGTTCTCCAGGTACCCCG




GGTAGCGGTACCGCTTCTTCTTCTCCAGGTAGCTCTACTCCGTCTGGTGCTACCG




GCTCTCCAGGTTCTAACCCTTCTGCATCCACCGGTACCGGCCCAGGTTCTAGCCC




TTCTGCTTCCACCGGTACTGGCCCAGGTAGCTCTACCCCTTCTGGTGCTACCGGC




TCCCCAGGTAGCTCTACTCCTTCTGGTGCAACTGGCTCTCCAGGTGCATCTCCGG




GCACTAGCTCTACTGGTTCTCCAGGTGCATCCCCTGGCACTAGCTCTACTGGTTC




TCCAGGTGCTTCTCCTGGTACCAGCTCTACTGGTTCTCCAGGTACTCCTGGCAGC




GGTACCGCTTCTTCTTCTCCAGGTGCTTCTCCTGGTACTAGCTCTACTGGTTCTCC




AGGTGCTTCTCCGGGCACTAGCTCTACTGGTTCTCCAGGTGCTTCCCCGGGCACT




AGCTCTACCGGTTCTCCAGGTTCTAGCCCTTCTGCATCTACTGGTACTGGCCCAG




GTACTCCGGGCAGCGGTACTGCTTCTTCCTCTCCAGGTGCATCTCCGGGCACTAG




CTCTACTGGTTCTCCAGGTGCATCCCCTGGCACTAGCTCTACTGGTTCTCCAGGT




GCTTCTCCTGGTACCAGCTCTACTGGTTCTCCAGGTAGCTCTACTCCGTCTGGTG




CAACCGGTTCCCCAGGTAGCTCTACTCCTTCTGGTGCTACTGGCTCCCCAGGTGC




ATCCCCTGGCACCAGCTCTACCGGTTCTCCAGGTACCCCGGGCAGCGGTACCGC




ATCTTCCTCTCCAGGTAGCTCTACCCCGTCTGGTGCTACCGGTTCCCCAGGTAGC




TCTACCCCGTCTGGTGCAACCGGCTCCCCAGGTAGCTCTACTCCGTCTGGTGCAA




CCGGCTCCCCAGGTTCTAGCCCGTCTGCTTCCACTGGTACTGGCCCAGGTGCTTC




CCCGGGCACCAGCTCTACTGGTTCTCCAGGTGCATCCCCGGGTACCAGCTCTAC




CGGTTCTCCAGGTACTCCTGGCAGCGGTACTGCATCTTCCTCTCCAGGTGCTTCT




CCGGGCACCAGCTCTACTGGTTCTCCAGGTGCATCTCCGGGCACTAGCTCTACTG




GTTCTCCAGGTGCATCCCCTGGCACTAGCTCTACTGGTTCTCCAGGTGCTTCTCC




TGGTACCAGCTCTACTGGTTCTCCAGGTACCCCTGGTAGCGGTACTGCTTCTTCC




TCTCCAGGTAGCTCTACTCCGTCTGGTGCTACCGGTTCTCCAGGTACCCCGGGTA




GCGGTACCGCATCTTCTTCTCCAGGTAGCTCTACCCCGTCTGGTGCTACTGGTTC




TCCAGGTACTCCGGGCAGCGGTACTGCTTCTTCCTCTCCAGGTAGCTCTACCCCT




TCTGGTGCTACTGGCTCTCCAGGTAGCTCTACCCCGTCTGGTGCTACTGGCTCCC




CAGGTTCTAGCCCTTCTGCATCCACCGGTACCGGTCCAGGTTCTAGCCCGTCTGC




ATCTACTGGTACTGGTCCAGGTGCATCCCCGGGCACTAGCTCTACCGGTTCTCCA




GGTACTCCTGGTAGCGGTACTGCTTCTTCTTCTCCAGGTAGCTCTACTCCTTCTG




GTGCTACTGGTTCTCCAGGTTCTAGCCCTTCTGCATCCACCGGTACCGGCCCAGG




TTCTAGCCCGTCTGCTTCTACCGGTACTGGTCCAGGTGCTTCTCCGGGTACTAGC




TCTACTGGTTCTCCAGGTGCATCTCCTGGTACTAGCTCTACTGGTTCTCCAGGTA




GCTCTACTCCGTCTGGTGCAACCGGCTCTCCAGGTTCTAGCCCTTCTGCATCTAC




CGGTACTGGTCCAGGTGCATCCCCTGGTACCAGCTCTACCGGTTCTCCAGGTTCT




AGCCCTTCTGCTTCTACCGGTACCGGTCCAGGTACCCCTGGCAGCGGTACCGCA




TCTTCCTCTCCAGGTAGCTCTACTCCGTCTGGTGCAACCGGTTCCCCAGGTAGCT




CTACTCCTTCTGGTGCTACTGGCTCCCCAGGTGCATCCCCTGGCACCAGCTCTAC




CGGTTCTCCA





AM923
119
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAGGAAGGTGCATCCCCGGGC




ACCAGCTCTACCGGTTCTCCAGGTAGCTCTACCCCGTCTGGTGCTACCGGCTCTC




CAGGTAGCTCTACCCCGTCTGGTGCTACTGGCTCTCCAGGTACTTCTACTGAACC




GTCTGAAGGCAGCGCACCAGGTAGCGAACCGGCTACTTCCGGTTCTGAAACCCC




AGGTAGCCCAGCAGGTTCTCCAACTTCTACTGAAGAAGGTTCTACCAGCTCTAC




CGCAGAATCTCCTGGTCCAGGTACCTCTACTCCGGAAAGCGGCTCTGCATCTCC




AGGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCAGGTTCTACTAGCGAATCC




CCGTCTGGTACTGCTCCAGGTACTTCTACTCCTGAAAGCGGTTCCGCTTCTCCAG




GTACCTCTACTCCGGAAAGCGGTTCTGCATCTCCAGGTAGCGAACCGGCAACCT




CCGGCTCTGAAACCCCAGGTACCTCTGAAAGCGCTACTCCTGAATCCGGCCCAG




GTAGCCCGGCAGGTTCTCCGACTTCCACTGAGGAAGGTACCTCTACTGAACCTT




CTGAGGGCAGCGCTCCAGGTACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCAG




GTACTTCTACTGAACCGTCCGAAGGTAGCGCACCAGGTACTTCTACCGAACCGT




CCGAGGGTAGCGCACCAGGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAAG




GTACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTACTTCTACCGAACCTT




CCGAGGGCAGCGCACCAGGTACTTCTGAAAGCGCTACCCCTGAGTCCGGCCCAG




GTACTTCTGAAAGCGCTACTCCTGAATCCGGTCCAGGTACCTCTACTGAACCTTC




CGAAGGCAGCGCTCCAGGTACCTCTACCGAACCGTCCGAGGGCAGCGCACCAG




GTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCAGGTACTTCTACTGAACCTTC




CGAAGGTAGCGCTCCAGGTAGCGAACCTGCTACTTCTGGTTCTGAAACCCCAGG




TAGCCCGGCTGGCTCTCCGACCTCCACCGAGGAAGGTAGCTCTACCCCGTCTGG




TGCTACTGGTTCTCCAGGTACTCCGGGCAGCGGTACTGCTTCTTCCTCTCCAGGT




AGCTCTACCCCTTCTGGTGCTACTGGCTCTCCAGGTACCTCTACCGAACCGTCCG




AGGGTAGCGCACCAGGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCAGGTA




GCGAACCGGCAACCTCCGGTTCTGAAACTCCAGGTAGCCCTGCTGGCTCTCCGA




CTTCTACTGAGGAAGGTAGCCCGGCTGGTTCTCCGACTTCTACTGAGGAAGGTA




CTTCTACCGAACCTTCCGAAGGTAGCGCTCCAGGTGCAAGCGCAAGCGGCGCGC




CAAGCACGGGAGGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCC




CGGCTGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGGCTGGCTCTCCAACTT




CTACTGAAGAAGGTTCTACCAGCTCTACCGCTGAATCTCCTGGCCCAGGTTCTAC




TAGCGAATCTCCGTCTGGCACCGCACCAGGTACTTCCCCTAGCGGTGAATCTTCT




ACTGCACCAGGTACCCCTGGCAGCGGTACCGCTTCTTCCTCTCCAGGTAGCTCTA




CCCCGTCTGGTGCTACTGGCTCTCCAGGTTCTAGCCCGTCTGCATCTACCGGTAC




CGGCCCAGGTAGCGAACCGGCAACCTCCGGCTCTGAAACTCCAGGTACTTCTGA




AAGCGCTACTCCGGAATCCGGCCCAGGTAGCGAACCGGCTACTTCCGGCTCTGA




AACCCCAGGTTCCACCAGCTCTACTGCAGAATCTCCGGGCCCAGGTTCTACTAG




CTCTACTGCAGAATCTCCGGGTCCAGGTACTTCTCCTAGCGGCGAATCTTCTACC




GCTCCAGGTAGCGAACCGGCAACCTCTGGCTCTGAAACTCCAGGTAGCGAACCT




GCAACCTCCGGCTCTGAAACCCCAGGTACTTCTACTGAACCTTCTGAGGGCAGC




GCACCAGGTTCTACCAGCTCTACCGCAGAATCTCCTGGTCCAGGTACCTCTACTC




CGGAAAGCGGCTCTGCATCTCCAGGTTCTACTAGCGAATCTCCTTCTGGCACTGC




ACCAGGTACTTCTACCGAACCGTCCGAAGGCAGCGCTCCAGGTACCTCTACTGA




ACCTTCCGAGGGCAGCGCTCCAGGTACCTCTACCGAACCTTCTGAAGGTAGCGC




ACCAGGTAGCTCTACTCCGTCTGGTGCAACCGGCTCCCCAGGTTCTAGCCCGTCT




GCTTCCACTGGTACTGGCCCAGGTGCTTCCCCGGGCACCAGCTCTACTGGTTCTC




CAGGTAGCGAACCTGCTACCTCCGGTTCTGAAACCCCAGGTACCTCTGAAAGCG




CAACTCCGGAGTCTGGTCCAGGTAGCCCTGCAGGTTCTCCTACCTCCACTGAGG




AAGGTAGCTCTACTCCGTCTGGTGCAACCGGCTCCCCAGGTTCTAGCCCGTCTGC




TTCCACTGGTACTGGCCCAGGTGCTTCCCCGGGCACCAGCTCTACTGGTTCTCCA




GGTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCAGGTACCTCTACTGAACCG




TCTGAGGGTAGCGCTCCAGGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA





AE912
120
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAGGAAGGTACCCCGGGTAGC




GGTACTGCTTCTTCCTCTCCAGGTAGCTCTACCCCTTCTGGTGCAACCGGCTCTC




CAGGTGCTTCTCCGGGCACCAGCTCTACCGGTTCTCCAGGTAGCCCGGCTGGCT




CTCCTACCTCTACTGAGGAAGGTACTTCTGAAAGCGCTACTCCTGAGTCTGGTCC




AGGTACCTCTACTGAACCGTCCGAAGGTAGCGCTCCAGGTAGCCCAGCAGGCTC




TCCGACTTCCACTGAGGAAGGTACTTCTACTGAACCTTCCGAAGGCAGCGCACC




AGGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTTCTGAAAGCGC




TACCCCGGAATCTGGCCCAGGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCC




AGGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCAGGTAGCCCGGCAGGCTC




TCCGACCTCTACTGAGGAAGGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCC




AGGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCAGGTACTTCTACCGAACC




GTCCGAGGGTAGCGCACCAGGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGA




AGGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTACCTCTACTGAACC




TTCTGAGGGCAGCGCTCCAGGTACTTCTGAAAGCGCTACCCCGGAGTCCGGTCC




AGGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCAGGTACTTCTGAAAGCGC




AACCCCTGAATCCGGTCCAGGTAGCGAACCGGCTACTTCTGGCTCTGAGACTCC




AGGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCAGGTACTTCTACTGAACC




GTCTGAAGGTAGCGCACCAGGTACTTCTGAAAGCGCAACCCCGGAATCCGGCCC




AGGTACCTCTGAAAGCGCAACCCCGGAGTCCGGCCCAGGTAGCCCTGCTGGCTC




TCCAACCTCCACCGAAGAAGGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCC




AGGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCAGGTACCTCTGAAAGCGC




TACTCCGGAGTCTGGCCCAGGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCC




AGGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCAGGTACTTCTACCGAACC




GTCCGAAGGCAGCGCTCCAGGTACCTCTACTGAACCTTCCGAGGGCAGCGCTCC




AGGTACCTCTACCGAACCTTCTGAAGGTAGCGCACCAGGTACTTCTACCGAACC




GTCCGAGGGTAGCGCACCAGGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGA




AGGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTACCTCTGAAAGCGC




AACTCCTGAGTCTGGCCCAGGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCC




AGGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCAGGTAGCGAACCTGCAAC




CTCTGGCTCTGAAACCCCAGGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCC




AGGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCAGGTACTTCTGAAAGCGC




TACTCCTGAGTCCGGCCCAGGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGA




AGGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAAGGTAGCCCGGCAGGCTC




TCCGACCTCTACTGAGGAAGGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCC




AGGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCAGGTACCTCTGAAAGCGC




AACTCCTGAGTCTGGCCCAGGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCC




AGGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCAGGTAGCGAACCTGCAAC




CTCTGGCTCTGAAACCCCAGGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCC




AGGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCAGGTAGCCCTGCTGGCTC




TCCAACCTCCACCGAAGAAGGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCC




AGGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCAGGTACTTCTGAAAGCGC




TACTCCTGAGTCCGGCCCAGGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGA




AGGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAAGGTACTTCTACCGAACC




TTCCGAGGGCAGCGCACCAGGTACTTCTGAAAGCGCTACCCCTGAGTCCGGCCC




AGGTACTTCTGAAAGCGCTACTCCTGAATCCGGTCCAGGTACTTCTGAAAGCGC




TACCCCGGAATCTGGCCCAGGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCC




AGGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCAGGTAGCCCAGCAGGCTC




TCCGACTTCCACTGAGGAAGGTACTTCTACTGAACCTTCCGAAGGCAGCGCACC




AGGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCAGGTAGCGAACCTGCAAC




CTCTGGCTCTGAAACCCCAGGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCC




AGGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA





AM1318
121
GGTACTTCTACTGAACCGTCTGAAGGCAGCGCACCAGGTAGCGAACCGGCTACT




TCCGGTTCTGAAACCCCAGGTAGCCCAGCAGGTTCTCCAACTTCTACTGAAGAA




GGTTCTACCAGCTCTACCGCAGAATCTCCTGGTCCAGGTACCTCTACTCCGGAA




AGCGGCTCTGCATCTCCAGGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCAG




GTTCTACTAGCGAATCCCCGTCTGGTACTGCTCCAGGTACTTCTACTCCTGAAAG




CGGTTCCGCTTCTCCAGGTACCTCTACTCCGGAAAGCGGTTCTGCATCTCCAGGT




AGCGAACCGGCAACCTCCGGCTCTGAAACCCCAGGTACCTCTGAAAGCGCTACT




CCTGAATCCGGCCCAGGTAGCCCGGCAGGTTCTCCGACTTCCACTGAGGAAGGT




ACCTCTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTTCTGAAAGCGCTACC




CCGGAGTCCGGTCCAGGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCAGGT




ACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCCCAGCAGGTTCTCCT




ACCTCCACCGAGGAAGGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGT




ACTTCTACCGAACCTTCCGAGGGCAGCGCACCAGGTACTTCTGAAAGCGCTACC




CCTGAGTCCGGCCCAGGTACTTCTGAAAGCGCTACTCCTGAATCCGGTCCAGGT




ACCTCTACTGAACCTTCCGAAGGCAGCGCTCCAGGTACCTCTACCGAACCGTCC




GAGGGCAGCGCACCAGGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCAGGT




ACTTCTACTGAACCTTCCGAAGGTAGCGCTCCAGGTAGCGAACCTGCTACTTCT




GGTTCTGAAACCCCAGGTAGCCCGGCTGGCTCTCCGACCTCCACCGAGGAAGGT




AGCTCTACCCCGTCTGGTGCTACTGGTTCTCCAGGTACTCCGGGCAGCGGTACTG




CTTCTTCCTCTCCAGGTAGCTCTACCCCTTCTGGTGCTACTGGCTCTCCAGGTAC




CTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTACCTCTACTGAACCGTCTGA




GGGTAGCGCTCCAGGTAGCGAACCGGCAACCTCCGGTTCTGAAACTCCAGGTAG




CCCTGCTGGCTCTCCGACTTCTACTGAGGAAGGTAGCCCGGCTGGTTCTCCGACT




TCTACTGAGGAAGGTACTTCTACCGAACCTTCCGAAGGTAGCGCTCCAGGTCCA




GAACCAACGGGGCCGGCCCCAAGCGGAGGTAGCGAACCGGCAACCTCCGGCTC




TGAAACCCCAGGTACCTCTGAAAGCGCTACTCCTGAATCCGGCCCAGGTAGCCC




GGCAGGTTCTCCGACTTCCACTGAGGAAGGTACTTCTGAAAGCGCTACTCCTGA




GTCCGGCCCAGGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAAGGTAGCCC




GGCTGGCTCTCCAACTTCTACTGAAGAAGGTACTTCTGAAAGCGCTACTCCTGA




GTCCGGCCCAGGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAAGGTAGCCC




GGCTGGCTCTCCAACTTCTACTGAAGAAGGTTCTACCAGCTCTACCGCTGAATCT




CCTGGCCCAGGTTCTACTAGCGAATCTCCGTCTGGCACCGCACCAGGTACTTCCC




CTAGCGGTGAATCTTCTACTGCACCAGGTTCTACCAGCGAATCTCCTTCTGGCAC




CGCTCCAGGTTCTACTAGCGAATCCCCGTCTGGTACCGCACCAGGTACTTCTCCT




AGCGGCGAATCTTCTACCGCACCAGGTACTTCTACCGAACCTTCCGAGGGCAGC




GCACCAGGTACTTCTGAAAGCGCTACCCCTGAGTCCGGCCCAGGTACTTCTGAA




AGCGCTACTCCTGAATCCGGTCCAGGTAGCGAACCGGCAACCTCTGGCTCTGAA




ACCCCAGGTACCTCTGAAAGCGCTACTCCGGAATCTGGTCCAGGTACTTCTGAA




AGCGCTACTCCGGAATCCGGTCCAGGTACCTCTACTGAACCTTCTGAGGGCAGC




GCTCCAGGTACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCAGGTACTTCTACT




GAACCGTCCGAAGGTAGCGCACCAGGTACCTCCCCTAGCGGCGAATCTTCTACT




GCTCCAGGTACCTCTCCTAGCGGCGAATCTTCTACCGCTCCAGGTACCTCCCCTA




GCGGTGAATCTTCTACCGCACCAGGTACTTCTACCGAACCGTCCGAGGGTAGCG




CACCAGGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAAGGTACTTCTACCG




AACCGTCCGAGGGTAGCGCACCAGGTTCTAGCCCTTCTGCTTCCACCGGTACCG




GCCCAGGTAGCTCTACTCCGTCTGGTGCAACTGGCTCTCCAGGTAGCTCTACTCC




GTCTGGTGCAACCGGCTCCCCAGGTAGCTCTACCCCGTCTGGTGCTACCGGCTCT




CCAGGTAGCTCTACCCCGTCTGGTGCAACCGGCTCCCCAGGTGCATCCCCGGGT




ACTAGCTCTACCGGTTCTCCAGGTGCAAGCGCAAGCGGCGCGCCAAGCACGGG




AGGTACTTCTCCGAGCGGTGAATCTTCTACCGCACCAGGTTCTACTAGCTCTACC




GCTGAATCTCCGGGCCCAGGTACTTCTCCGAGCGGTGAATCTTCTACTGCTCCAG




GTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCAGGTACCTCTACTGAACCGT




CTGAGGGTAGCGCTCCAGGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCAG




GTTCTAGCCCTTCTGCATCTACTGGTACTGGCCCAGGTAGCTCTACTCCTTCTGG




TGCTACCGGCTCTCCAGGTGCTTCTCCGGGTACTAGCTCTACCGGTTCTCCAGGT




ACTTCTACTCCGGAAAGCGGTTCCGCATCTCCAGGTACTTCTCCTAGCGGTGAAT




CTTCTACTGCTCCAGGTACCTCTCCTAGCGGCGAATCTTCTACTGCTCCAGGTAC




TTCTGAAAGCGCAACCCCTGAATCCGGTCCAGGTAGCGAACCGGCTACTTCTGG




CTCTGAGACTCCAGGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCAGGTTC




TACCAGCGAATCCCCTTCTGGTACTGCTCCAGGTTCTACCAGCGAATCCCCTTCT




GGCACCGCACCAGGTACTTCTACCCCTGAAAGCGGCTCCGCTTCTCCAGGTAGC




CCGGCAGGCTCTCCGACCTCTACTGAGGAAGGTACTTCTGAAAGCGCAACCCCG




GAGTCCGGCCCAGGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCAGGTAGC




CCTGCTGGCTCTCCAACCTCCACCGAAGAAGGTACCTCTGAAAGCGCAACCCCT




GAATCCGGCCCAGGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCAGGTAGC




TCTACCCCGTCTGGTGCTACCGGTTCCCCAGGTGCTTCTCCTGGTACTAGCTCTA




CCGGTTCTCCAGGTAGCTCTACCCCGTCTGGTGCTACTGGCTCTCCAGGTTCTAC




TAGCGAATCCCCGTCTGGTACTGCTCCAGGTACTTCCCCTAGCGGTGAATCTTCT




ACTGCTCCAGGTTCTACCAGCTCTACCGCAGAATCTCCGGGTCCAGGTAGCTCT




ACCCCTTCTGGTGCAACCGGCTCTCCAGGTGCATCCCCGGGTACCAGCTCTACC




GGTTCTCCAGGTACTCCGGGTAGCGGTACCGCTTCTTCCTCTCCAGGTAGCCCTG




CTGGCTCTCCGACTTCTACTGAGGAAGGTAGCCCGGCTGGTTCTCCGACTTCTAC




TGAGGAAGGTACTTCTACCGAACCTTCCGAAGGTAGCGCTCCA





BC864
122
GGTACTTCCACCGAACCATCCGAACCAGGTAGCGCAGGTACTTCCACCGAACCA




TCCGAACCTGGCAGCGCAGGTAGCGAACCGGCAACCTCTGGTACTGAACCATCA




GGTAGCGGCGCATCCGAGCCTACCTCTACTGAACCAGGTAGCGAACCGGCTACC




TCCGGTACTGAGCCATCAGGTAGCGAACCGGCAACTTCCGGTACTGAACCATCA




GGTAGCGAACCGGCAACTTCCGGCACTGAACCATCAGGTAGCGGTGCATCTGAG




CCGACCTCTACTGAACCAGGTACTTCTACTGAACCATCTGAGCCGGGCAGCGCA




GGTAGCGAACCAGCTACTTCTGGCACTGAACCATCAGGTACTTCTACTGAACCA




TCCGAACCAGGTAGCGCAGGTAGCGAACCTGCTACCTCTGGTACTGAGCCATCA




GGTAGCGAACCGGCTACCTCTGGTACTGAACCATCAGGTACTTCTACCGAACCA




TCCGAGCCTGGTAGCGCAGGTACTTCTACCGAACCATCCGAGCCAGGCAGCGCA




GGTAGCGAACCGGCAACCTCTGGCACTGAGCCATCAGGTAGCGAACCAGCAAC




TTCTGGTACTGAACCATCAGGTACTAGCGAGCCATCTACTTCCGAACCAGGTGC




AGGTAGCGGCGCATCCGAACCTACTTCCACTGAACCAGGTACTAGCGAGCCATC




CACCTCTGAACCAGGTGCAGGTAGCGAACCGGCAACTTCCGGCACTGAACCATC




AGGTAGCGAACCGGCTACCTCTGGTACTGAACCATCAGGTACTTCTACCGAACC




ATCCGAGCCTGGTAGCGCAGGTACTTCTACCGAACCATCCGAGCCAGGCAGCGC




AGGTAGCGGTGCATCCGAGCCGACCTCTACTGAACCAGGTAGCGAACCAGCAA




CTTCTGGCACTGAGCCATCAGGTAGCGAACCAGCTACCTCTGGTACTGAACCAT




CAGGTAGCGAACCGGCTACTTCCGGCACTGAACCATCAGGTAGCGAACCAGCA




ACCTCCGGTACTGAACCATCAGGTACTTCCACTGAACCATCCGAACCGGGTAGC




GCAGGTAGCGAACCGGCAACTTCCGGCACTGAACCATCAGGTAGCGGTGCATCT




GAGCCGACCTCTACTGAACCAGGTACTTCTACTGAACCATCTGAGCCGGGCAGC




GCAGGTAGCGAACCTGCAACCTCCGGCACTGAGCCATCAGGTAGCGGCGCATCT




GAACCAACCTCTACTGAACCAGGTACTTCCACCGAACCATCTGAGCCAGGCAGC




GCAGGTAGCGGCGCATCTGAACCAACCTCTACTGAACCAGGTAGCGAACCAGC




AACTTCTGGTACTGAACCATCAGGTAGCGGCGCATCTGAGCCTACTTCCACTGA




ACCAGGTAGCGAACCGGCAACTTCCGGCACTGAACCATCAGGTAGCGGTGCATC




TGAGCCGACCTCTACTGAACCAGGTACTTCTACTGAACCATCTGAGCCGGGCAG




CGCAGGTAGCGAACCGGCAACTTCCGGCACTGAACCATCAGGTAGCGGTGCATC




TGAGCCGACCTCTACTGAACCAGGTACTTCTACTGAACCATCTGAGCCGGGCAG




CGCAGGTAGCGAACCAGCTACTTCTGGCACTGAACCATCAGGTACTTCTACTGA




ACCATCCGAACCAGGTAGCGCAGGTAGCGAACCTGCTACCTCTGGTACTGAGCC




ATCAGGTACTTCTACTGAACCATCCGAGCCGGGTAGCGCAGGTACTTCCACTGA




ACCATCTGAACCTGGTAGCGCAGGTACTTCCACTGAACCATCCGAACCAGGTAG




CGCAGGTACTTCTACTGAACCATCCGAGCCGGGTAGCGCAGGTACTTCCACTGA




ACCATCTGAACCTGGTAGCGCAGGTACTTCCACTGAACCATCCGAACCAGGTAG




CGCAGGTACTAGCGAACCATCCACCTCCGAACCAGGCGCAGGTAGCGGTGCATC




TGAACCGACTTCTACTGAACCAGGTACTTCCACTGAACCATCTGAGCCAGGTAG




CGCAGGTACTTCCACCGAACCATCCGAACCAGGTAGCGCAGGTACTTCCACCGA




ACCATCCGAACCTGGCAGCGCAGGTAGCGAACCGGCAACCTCTGGTACTGAACC




ATCAGGTAGCGGTGCATCCGAGCCGACCTCTACTGAACCAGGTAGCGAACCAGC




AACTTCTGGCACTGAGCCATCAGGTAGCGAACCAGCTACCTCTGGTACTGAACC




ATCAGGTAGCGAACCGGCAACCTCTGGCACTGAGCCATCAGGTAGCGAACCAG




CAACTTCTGGTACTGAACCATCAGGTACTAGCGAGCCATCTACTTCCGAACCAG




GTGCAGGTAGCGAACCTGCAACCTCCGGCACTGAGCCATCAGGTAGCGGCGCAT




CTGAACCAACCTCTACTGAACCAGGTACTTCCACCGAACCATCTGAGCCAGGCA




GCGCAGGTAGCGAACCTGCAACCTCCGGCACTGAGCCATCAGGTAGCGGCGCA




TCTGAACCAACCTCTACTGAACCAGGTACTTCCACCGAACCATCTGAGCCAGGC




AGCGCA





BD864
123
GGTAGCGAAACTGCTACTTCCGGCTCTGAGACTGCAGGTACTAGTGAATCCGCA




ACTAGCGAATCTGGCGCAGGTAGCACTGCAGGCTCTGAGACTTCCACTGAAGCA




GGTACTAGCGAGTCCGCAACCAGCGAATCCGGCGCAGGTAGCGAAACTGCTAC




CTCTGGCTCCGAGACTGCAGGTAGCGAAACTGCAACCTCTGGCTCTGAAACTGC




AGGTACTTCCACTGAAGCAAGTGAAGGCTCCGCATCAGGTACTTCCACCGAAGC




AAGCGAAGGCTCCGCATCAGGTACTAGTGAGTCCGCAACTAGCGAATCCGGTGC




AGGTAGCGAAACCGCTACCTCTGGTTCCGAAACTGCAGGTACTTCTACCGAGGC




TAGCGAAGGTTCTGCATCAGGTAGCACTGCTGGTTCCGAGACTTCTACTGAAGC




AGGTACTAGCGAATCTGCTACTAGCGAATCCGGCGCAGGTACTAGCGAATCCGC




TACCAGCGAATCCGGCGCAGGTAGCGAAACTGCAACCTCTGGTTCCGAGACTGC




AGGTACTAGCGAGTCCGCTACTAGCGAATCTGGCGCAGGTACTTCCACTGAAGC




TAGTGAAGGTTCTGCATCAGGTAGCGAAACTGCTACTTCTGGTTCCGAAACTGC




AGGTAGCGAAACCGCTACCTCTGGTTCCGAAACTGCAGGTACTTCTACCGAGGC




TAGCGAAGGTTCTGCATCAGGTAGCACTGCTGGTTCCGAGACTTCTACTGAAGC




AGGTACTAGCGAGTCCGCTACTAGCGAATCTGGCGCAGGTACTTCCACTGAAGC




TAGTGAAGGTTCTGCATCAGGTAGCGAAACTGCTACTTCTGGTTCCGAAACTGC




AGGTAGCACTGCTGGCTCCGAGACTTCTACCGAAGCAGGTAGCACTGCAGGTTC




CGAAACTTCCACTGAAGCAGGTAGCGAAACTGCTACCTCTGGCTCTGAGACTGC




AGGTACTAGCGAATCTGCTACTAGCGAATCCGGCGCAGGTACTAGCGAATCCGC




TACCAGCGAATCCGGCGCAGGTAGCGAAACTGCAACCTCTGGTTCCGAGACTGC




AGGTACTAGCGAATCTGCTACTAGCGAATCCGGCGCAGGTACTAGCGAATCCGC




TACCAGCGAATCCGGCGCAGGTAGCGAAACTGCAACCTCTGGTTCCGAGACTGC




AGGTAGCGAAACCGCTACCTCTGGTTCCGAAACTGCAGGTACTTCTACCGAGGC




TAGCGAAGGTTCTGCATCAGGTAGCACTGCTGGTTCCGAGACTTCTACTGAAGC




AGGTAGCGAAACTGCTACTTCCGGCTCTGAGACTGCAGGTACTAGTGAATCCGC




AACTAGCGAATCTGGCGCAGGTAGCACTGCAGGCTCTGAGACTTCCACTGAAGC




AGGTAGCACTGCTGGTTCCGAAACCTCTACCGAAGCAGGTAGCACTGCAGGTTC




TGAAACCTCCACTGAAGCAGGTACTTCCACTGAGGCTAGTGAAGGCTCTGCATC




AGGTAGCACTGCTGGTTCCGAAACCTCTACCGAAGCAGGTAGCACTGCAGGTTC




TGAAACCTCCACTGAAGCAGGTACTTCCACTGAGGCTAGTGAAGGCTCTGCATC




AGGTAGCACTGCAGGTTCTGAGACTTCCACCGAAGCAGGTAGCGAAACTGCTAC




TTCTGGTTCCGAAACTGCAGGTACTTCCACTGAAGCTAGTGAAGGTTCCGCATC




AGGTACTAGTGAGTCCGCAACCAGCGAATCCGGCGCAGGTAGCGAAACCGCAA




CCTCCGGTTCTGAAACTGCAGGTACTAGCGAATCCGCAACCAGCGAATCTGGCG




CAGGTACTAGTGAGTCCGCAACCAGCGAATCCGGCGCAGGTAGCGAAACCGCA




ACCTCCGGTTCTGAAACTGCAGGTACTAGCGAATCCGCAACCAGCGAATCTGGC




GCAGGTAGCGAAACTGCTACTTCCGGCTCTGAGACTGCAGGTACTTCCACCGAA




GCAAGCGAAGGTTCCGCATCAGGTACTTCCACCGAGGCTAGTGAAGGCTCTGCA




TCAGGTAGCACTGCTGGCTCCGAGACTTCTACCGAAGCAGGTAGCACTGCAGGT




TCCGAAACTTCCACTGAAGCAGGTAGCGAAACTGCTACCTCTGGCTCTGAGACT




GCAGGTACTAGCGAATCTGCTACTAGCGAATCCGGCGCAGGTACTAGCGAATCC




GCTACCAGCGAATCCGGCGCAGGTAGCGAAACTGCAACCTCTGGTTCCGAGACT




GCAGGTAGCGAAACTGCTACTTCCGGCTCCGAGACTGCAGGTAGCGAAACTGCT




ACTTCTGGCTCCGAAACTGCAGGTACTTCTACTGAGGCTAGTGAAGGTTCCGCA




TCAGGTACTAGCGAGTCCGCAACCAGCGAATCCGGCGCAGGTAGCGAAACTGC




TACCTCTGGCTCCGAGACTGCAGGTAGCGAAACTGCAACCTCTGGCTCTGAAAC




TGCAGGTACTAGCGAATCTGCTACTAGCGAATCCGGCGCAGGTACTAGCGAATC




CGCTACCAGCGAATCCGGCGCAGGTAGCGAAACTGCAACCTCTGGTTCCGAGAC




TGCA









One may clone the library of XTEN-encoding genes into one or more expression vectors known in the art. To facilitate the identification of well-expressing library members, one can construct the library as fusion to a reporter protein. Non-limiting examples of suitable reporter genes are green fluorescent protein, luciferace, alkaline phosphatase, and beta-galactosidase. By screening, one can identify short XTEN sequences that can be expressed in high concentration in the host organism of choice. Subsequently, one can generate a library of random XTEN dimers and repeat the screen for high level of expression. Subsequently, one can screen the resulting constructs for a number of properties such as level of expression, protease stability, or binding to antiserum.


One aspect of the invention is to provide polynucleotide sequences encoding the components of the fusion protein wherein the creation of the sequence has undergone codon optimization. Of particular interest is codon optimization with the goal of improving expression of the polypeptide compositions and to improve the genetic stability of the encoding gene in the production hosts. For example, codon optimization is of particular importance for XTEN sequences that are rich in glycine or that have very repetitive amino acid sequences. Codon optimization is performed using computer programs (Gustafsson, C., et al. (2004) Trends Biotechnol, 22: 346-53), some of which minimize ribosomal pausing (Coda Genomics Inc.). In one embodiment, one can perform codon optimization by constructing codon libraries where all members of the library encode the same amino acid sequence but where codon usage is varied. Such libraries can be screened for highly expressing and genetically stable members that are particularly suitable for the large-scale production of XTEN-containing products. When designing XTEN sequences one can consider a number of properties. One can minimize the repetitiveness in the encoding DNA sequences. In addition, one can avoid or minimize the use of codons that are rarely used by the production host (e.g. the AGG and AGA arginine codons and one leucine codon in E. coli). In the case of E. coli, two glycine codons, GGA and GGG, are rarely used in highly expressed proteins. Thus codon optimization of the gene encoding XTEN sequences can be very desirable. DNA sequences that have a high level of glycine tend to have a high GC content that can lead to instability or low expression levels. Thus, when possible, it is preferred to choose codons such that the GC-content of XTEN-encoding sequence is suitable for the production organism that will be used to manufacture the XTEN.


Optionally, the full-length XTEN-encoding gene comprises one or more sequencing islands. In this context, sequencing islands are short-stretch sequences that are distinct from the XTEN library construct sequences and that include a restriction site not present or expected to be present in the full-length XTEN-encoding gene. In one embodiment, a sequencing island is the sequence









(SEQ ID NO: 124)









5′-AGGTGCAAGCGCAAGCGGCGCGCCAAGCACGGGAGGT-3′.






In another embodiment, a sequencing island is the sequence









(SEQ ID NO: 125)









5′-AGGTCCAGAACCAACGGGGCCGGCCCCAAGCGGAGGT-3′.






As an alternative, one can construct codon libraries where all members of the library encode the same amino acid sequence but where codon usage for the respective amino acids in the sequence is varied. Such libraries can be screened for highly expressing and genetically stable members that are particularly suitable for the large-scale production of XTEN-containing products.


Optionally, one can sequence clones in the library to eliminate isolates that contain undesirable sequences. The initial library of short XTEN sequences allows some variation in amino acid sequence. For instance one can randomize some codons such that a number of hydrophilic amino acids can occur in a particular position. During the process of iterative multimerization one can screen the resulting library members for other characteristics like solubility or protease resistance in addition to a screen for high-level expression.


Once the gene that encodes the XTEN of desired length and properties is selected, it is genetically fused to the nucleotides encoding the N- and/or the C-terminus of the GH gene(s) by cloning it into the construct adjacent and in frame with the gene coding for GH or, optionally, adjacent to a spacer sequence. The invention provides various permutations of the foregoing, depending on the GHXTEN to be encoded. For example, a gene encoding a GHXTEN fusion protein comprising a GH and two XTEN, such as embodied by formula VI, as depicted above, the gene would have polynucleotides encoding GH, encoding two XTEN, which can be identical or different in composition and sequence length. In one non-limiting embodiment of the foregoing, the GH polynucleotides would encode human growth hormone and the polynucleotides encoding the N-terminus XTEN would encode AE912 and the polynucleotides encoding the C-terminus XTEN would encode AE144. The step of cloning the GH genes into the XTEN construct can occur through a ligation or multimerization step. As shown in FIG. 2, the constructs encoding GHXTEN fusion proteins can be designed in different configurations of the components XTEN 202, GH 203, and spacer sequences 204. In one embodiment, as illustrated in FIG. 2A, the construct comprises polynucleotide sequences complementary to, or those that encode a monomeric polypeptide of components in the following order (5′ to 3′) GH 203 and XTEN 202, or the reverse order. In another embodiment, as illustrated in FIG. 2B, the construct comprises polynucleotide sequences complementary to, or those that encode a monomeric polypeptide of components in the following order (5′ to 3′) GH 203, spacer sequence 204, and XTEN 202, or the reverse order. In another embodiment, as illustrated in FIG. 2C, the construct 201 encodes a monomeric GHXTEN comprising polynucleotide sequences complementary to, or those that encode components in the following order (5′ to 3′): two molecules of GH 203 and XTEN 202, or the reverse order. In another embodiment, as illustrated in FIG. 2D, the construct comprises polynucleotide sequences complementary to, or those that encode a monomeric polypeptide of components in the following order (5′ to 3′): two molecules of GH 203, spacer sequence 204, and XTEN 202, or the reverse order. In another embodiment, as illustrated in FIG. 2E, the construct comprises polynucleotide sequences complementary to, or those that encode a monomeric polypeptide of components in the following order (5′ to 3′): GH 203, spacer sequence 204, a second molecule of GH 203, and XTEN 202, or the reverse order. In another embodiment, as illustrated in FIG. 2F, the construct comprises polynucleotide sequences complementary to, or those that encode a monomeric polypeptide of components in the following order (5′ to 3′): GH 203, XTEN 202, GH 203, and a second XTEN 202, or the reverse sequence. The spacer polynucleotides can optionally comprise sequences encoding cleavage sequences. As will be apparent to those of skill in the art, other permutations of the foregoing are possible.


The invention also encompasses polynucleotides comprising XTEN-encoding polynucleotide variants that have a high percentage of sequence identity to (a) a polynucleotide sequence from Table 7, or (b) sequences that are complementary to the polynucleotides of (a). A polynucleotide with a high percentage of sequence identity is one that has at least about an 80% nucleic acid sequence identity, alternatively at least about 81%, alternatively at least about 82%, alternatively at least about 83%, alternatively at least about 84%, alternatively at least about 85%, alternatively at least about 86%, alternatively at least about 87%, alternatively at least about 88%, alternatively at least about 89%, alternatively at least about 90%, alternatively at least about 91%, alternatively at least about 92%, alternatively at least about 93%, alternatively at least about 94%, alternatively at least about 95%, alternatively at least about 96%, alternatively at least about 97%, alternatively at least about 98%, and alternatively at least about 99% nucleic acid sequence identity to (a) or (b) of the foregoing, or that can hybridize with the target polynucleotide or its complement under stringent conditions.


Homology, sequence similarity or sequence identity of nucleotide or amino acid sequences may also be determined conventionally by using known software or computer programs such as the BestFit or Gap pairwise comparison programs (GCG Wisconsin Package, Genetics Computer Group, 575 Science Drive, Madison, Wis. 53711). BestFit uses the local homology algorithm of Smith and Waterman (Advances in Applied Mathematics. 1981. 2: 482-489), to find the best segment of identity or similarity between two sequences. Gap performs global alignments: all of one sequence with all of another similar sequence using the method of Needleman and Wunsch, (Journal of Molecular Biology. 1970. 48:443-453). When using a sequence alignment program such as BestFit, to determine the degree of sequence homology, similarity or identity, the default setting may be used, or an appropriate scoring matrix may be selected to optimize identity, similarity or homology scores.


Nucleic acid sequences that are “complementary” are those that are capable of base-pairing according to the standard Watson-Crick complementarity rules. As used herein, the term “complementary sequences” means nucleic acid sequences that are substantially complementary, as may be assessed by the same nucleotide comparison set forth above, or as defined as being capable of hybridizing to the polynucleotides that encode the GHXTEN sequences under stringent conditions, such as those described herein.


The resulting polynucleotides encoding the GHXTEN chimeric fusion proteins can then be individually cloned into an expression vector. The nucleic acid sequence is inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art. Vector components generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques which are known to the skilled artisan. Such techniques are well known in the art and well described in the scientific and patent literature.


Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. The invention provides for the use of plasmid vectors containing replication and control sequences that are compatible with and recognized by the host cell, and are operably linked to the GHXTEN gene for controlled expression of the GHXTEN fusion proteins. The vector ordinarily carries a replication site, as well as sequences that encode proteins that are capable of providing phenotypic selection in transformed cells. Such vector sequences are well known for a variety of bacteria, yeast, and viruses. Useful expression vectors that can be used include, for example, segments of chromosomal, non-chromosomal and synthetic DNA sequences. “Expression vector” refers to a DNA construct containing a DNA sequence that is operably linked to a suitable control sequence capable of effecting the expression of the DNA encoding the fusion protein in a suitable host. Such control sequences include a promoter to effect transcription, an optional operator sequence to control such transcription, a sequence encoding suitable mRNA ribosome binding sites, and sequences that control termination of transcription and translation. Other suitable vectors include, but are not limited to, derivatives of SV40 and pcDNA and known bacterial plasmids such as col EI, pCR1, pBR322, pMal-C2, pET, pGEX as described by Smith, et al., Gene 57:31-40 (1988), pMB9 and derivatives thereof, plasmids such as RP4, phage DNAs such as the numerous derivatives of phage I such as NM98 9, as well as other phage DNA such as M13 and filamentous single stranded phage DNA; yeast plasmids such as the 2 micron plasmid or derivatives of the 2m plasmid, as well as centomeric and integrative yeast shuttle vectors; vectors useful in eukaryotic cells such as vectors useful in insect or mammalian cells; vectors derived from combinations of plasmids and phage DNAs, such as plasmids that have been modified to employ phage DNA or the expression control sequences; and the like. The requirements are that the vectors are replicable and viable in the host cell of choice. Low- or high-copy number vectors may be used as desired.


Promoters suitable for use in expression vectors with prokaryotic hosts include the β-lactamase and lactose promoter systems [Chang et al., Nature, 275:615 (1978); Goeddel et al., Nature, 281:544 (1979)], alkaline phosphatase, a tryptophan (trp) promoter system [Goeddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., Proc. Natl. Acad. Sci. USA, 80:21-25 (1983)], all would be operably linked to the DNA encoding GHXTEN polypeptides. Promoters for use in bacterial systems can also contain a Shine-Dalgarno (S.D.) sequence, operably linked to the DNA encoding GHXTEN polypeptides.


The invention contemplates use of other expression systems including, for example, a baculovirus expression system with both non-fusion transfer vectors, such as, but not limited to pVL941 Summers, et al., Virology 84:390-402 (1978)), pVL1393 (Invitrogen), pVL1392 (Summers, et al., Virology 84:390-402 (1978) and Invitrogen) and pBlueBacIII (Invitrogen), and fusion transfer vectors such as, but not limited to, pAc7 00 (Summers, et al., Virology 84:390-402 (1978)), pAc701 and pAc70-2 (same as pAc700, with different reading frames), pAc360 Invitrogen) and pBlueBacHisA, B, C (; Invitrogen) can be used.


Mammalian expression vectors can comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5′ flanking nontranscribed sequences. DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Mammalian expression vectors contemplated for use in the invention include vectors with inducible promoters, such as the dihydrofolate reductase promoters, any expression vector with a DHFR expression cassette or a DHFR/methotrexate co-amplification vector such as pED (Randal J. Kaufman, 1991, Randal J. Kaufman, Current Protocols in Molecular Biology, 16,12 (1991)). Alternatively a glutamine synthetase/methionine sulfoximine co-amplification vector, such as pEE14 (Celltech). A vector that directs episomal expression under the control of the Epstein Barr Virus (EBV) or nuclear antigen (EBNA) can be used such as pREP4 (Invitrogen), pCEP4 (Invitrogen), pMEP4 (Invitrogen), pREP8 (Invitrogen), pREP9 (Invitrogen), and pEBVHis (Invitrogen).


Selectable mammalian expression vectors for use in the invention include, but are not limited to, pRc/CMV (Invitrogen), pRc/RSV (Invitrogen) and the like. Vaccinia virus mammalian expression vectors (see, for example, Randall J. Kaufman, Current Protocols in Molecular Biology 16.12 (Frederick M. Ausubel, et al., eds. Wiley 1991) that can be used in the present invention include, but are not limited to, pSC11, pMJ601 pTKgptFISand the like.


Yeast expression systems that can also be used in the present invention include, but are not limited to, the non-fusion pYES2 vector (Invitrogen), the fusion pYESHisA, B, C (Invitrogen), pRS vectors and the like.


In addition, the expression vector containing the chimeric GHXTEN fusion protein-encoding polynucleotide molecule may include drug selection markers. Such markers aid in cloning and in the selection or identification of vectors containing chimeric DNA molecules. For example, genes that confer resistance to neomycin, puromycin, hygromycin, dihydrofolate reductase (DHFR) inhibitor, guanine phosphoribosyl transferase (GPT), zeocin, and histidinol are useful selectable markers. Alternatively, enzymes such as herpes simplex virus thymidine kinase (tk) or chloramphenicol acetyltransferase (CAT) may be employed. Immunologic markers also can be employed. Any known selectable marker may be employed so long as it is capable of being expressed simultaneously with the nucleic acid encoding a gene product. Further examples of selectable markers are well known to one of skill in the art and include reporters such as enhanced green fluorescent protein (EGFP), beta-galactosidase (β-gal) or chloramphenicol acetyltransferase (CAT).


In one embodiment, the polynucleotide encoding a GHXTEN fusion protein composition is fused C-terminally to an N-terminal signal sequence appropriate for the expression host system. Signal sequences are typically proteolytically removed from the protein during the translocation and secretion process, generating a defined N-terminus. A wide variety of signal sequences have been described for most expression systems, including bacterial, yeast, insect, and mammalian systems. A non-limiting list of preferred examples for each expression system follows herein. Preferred signal sequences are OmpA, PhoA, and DsbA for E. coli expression. Signal peptides preferred for yeast expression are ppL-alpha, DEX4, invertase signal peptide, acid phosphatase signal peptide, CPY, or INU1. For insect cell expression the preferred signal sequences are sexta adipokinetic hormone precursor, CP1, CP2, CP3, CP4, TPA, PAP, or gp67. For mammalian expression the preferred signal sequences are IL2L, SV40, IgG kappa and IgG lambda.


In another embodiment, a leader sequence, potentially comprising a well-expressed, independent protein domain, can be fused to the N-terminus of the GHXTEN sequence, separated by a protease cleavage site. While any leader peptide sequence which does not inhibit cleavage at the designed proteolytic site can be used, sequences in preferred embodiments will comprise stable, well-expressed sequences such that expression and folding of the overall composition is not significantly adversely affected, and preferably expression, solubility, and/or folding efficiency are significantly improved. A wide variety of suitable leader sequences have been described in the literature. A non-limiting list of suitable sequences includes maltose binding protein, cellulose binding domain, glutathione S-transferase, 6×His tag (SEQ ID NO: 126), FLAG tag, hemaglutinin tag, and green fluorescent protein. The leader sequence can also be further improved by codon optimization, especially in the second codon position following the ATG start codon, by methods well described in the literature and hereinabove.


Various in vitro enzymatic methods for cleaving proteins at specific sites are known. Such methods include use of enterokinase (DDDK (SEQ ID NO: 127)), Factor Xa (IDGR (SEQ ID NO: 128)), thrombin (LVPRGS (SEQ ID NO: 129)), PreScission™ (LEVLFQGP (SEQ ID NO: 130)), TEV protease (EQLYFQG (SEQ ID NO: 131)), 3C protease (ETLFQGP (SEQ ID NO: 132)), Sortase A (LPETG (SEQ ID NO: 133)), Granzyme B (D/X, N/X, M/N or SA), inteins, SUMO, DAPase (TAGZyme™), Aeromonas aminopeptidase, Aminopeptidase M, and carboxypeptidases A and B. Additional methods are disclosed in Arnau, et al., Protein Expression and Purification 48: 1-13 (2006).


In other cases, the invention provides constructs and methods of making constructs comprising an polynucleotide sequence optimized for expression that encodes at least about 20 to about 60 amino acids with XTEN characteristics that can be included at the N-terminus of an XTEN carrier encoding sequence (in other words, the polynucleotides encoding the 20-60 encoded optimized amino acids are linked in frame to polynucleotides encoding an XTEN component that is N-terminal to GH) to promote the initiation of translation to allow for expression of XTEN fusions at the N-terminus of proteins without the presence of a helper domain. In an advantage of the foregoing, the sequence does not require subsequent cleavage, thereby reducing the number of steps to manufacture XTEN-containing compositions. As described in more detail in the Examples, the optimized N-terminal sequence has attributes of an unstructured protein, but may include nucleotide bases encoding amino acids selected for their ability to promote initiation of translation and enhanced expression. In one embodiment of the foregoing, the optimized polynucleotide encodes an XTEN sequence with at least about 90% sequence identity to AE912. In another embodiment of the foregoing, the optimized polynucleotide encodes an XTEN sequence with at least about 90% sequence identity to AM923. In another embodiment of the foregoing, the optimized polynucleotide encodes an XTEN sequence with at least about 90% sequence identity to AE48. In another embodiment of the foregoing, the optimized polynucleotide encodes an XTEN sequence with at least about 90% sequence identity to AM48. In one embodiment, the optimized polynucleotide NTS comprises a sequence that exhibits at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%, sequence identity to a sequence or its complement selected from









AE 48:







(SEQ ID NO: 134)







5′-





ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAGGAAGGTACCCCGGG





TAGCGGTACTGCTTCTTCCTCTCCAGGTAGCTCTACCCCTTCTGGTGCAA





CCGGCTCTCCAGGTGCTTCTCCGGGCACCAGCTCTACCGGTTCTCCA-3′


and





AM 48:







(SEQ ID NO: 135)







5′-





ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAGGAAGGTGCATCCCC





GGGCACCAGCTCTACCGGTTCTCCAGGTAGCTCTACCCCGTCTGGTGCTA





CCGGCTCTCCAGGTAGCTCTACCCCGTCTGGTGCTACTGGCTCTCCA-3′






In another embodiment, the protease site of the leader sequence construct is chosen such that it is recognized by an in vivo protease. In this embodiment, the protein is purified from the expression system while retaining the leader by avoiding contact with an appropriate protease. The full-length construct is then injected into a patient. Upon injection, the construct comes into contact with the protease specific for the cleavage site and is cleaved by the protease. In the case where the uncleaved protein is substantially less active than the cleaved form, this method has the beneficial effect of allowing higher initial doses while avoiding toxicity, as the active form is generated slowly in vivo. Some non-limiting examples of in vivo proteases which are useful for this application include tissue kallikrein, plasma kallikrein, trypsin, pepsin, chymotrypsin, thrombin, and matrix metalloproteinases, or the proteases of Table 6.


In this manner, a chimeric DNA molecule coding for a monomeric GHXTEN fusion protein is generated within the construct. Optionally, this chimeric DNA molecule may be transferred or cloned into another construct that is a more appropriate expression vector. At this point, a host cell capable of expressing the chimeric DNA molecule can be transformed with the chimeric DNA molecule. The vectors containing the DNA segments of interest can be transferred into the host cell by well-known methods, depending on the type of cellular host. For example, calcium chloride transfection is commonly utilized for prokaryotic cells, whereas calcium phosphate treatment, lipofection, or electroporation may be used for other cellular hosts. Other methods used to transform mammalian cells include the use of polybrene, protoplast fusion, liposomes, electroporation, and microinjection. See, generally, Sambrook, et al., supra.


The transformation may occur with or without the utilization of a carrier, such as an expression vector. Then, the transformed host cell is cultured under conditions suitable for expression of the chimeric DNA molecule encoding of GHXTEN.


The present invention also provides a host cell for expressing the monomeric fusion protein compositions disclosed herein. Examples of suitable eukaryotic host cells include, but are not limited to mammalian cells, such as VERO cells, HELA cells such as ATCC No. CCL2, CHO cell lines, COS cells, WI38 cells, BHK cells, HepG2 cells, 3T3 cells, A549 cells, PC12 cells, K562 cells, 293 cells, Sf9 cells and CvI cells. Examples of suitable non-mammalian eukaryotic cells include eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for encoding vectors. Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism. Others include Schizosaccharomyces pombe (Beach and Nurse, Nature, 290: 140 [1981]; EP 139,383 published 2 May 1985); Kluyveromyces hosts (U.S. Pat. No. 4,943,529; Fleer et al., Bio/Technology, 9:968-975 (1991)) such as, e.g., K. lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacteriol., 737 [1983]), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906; Van den Berg et al., Bio/Technology, 8:135 (1990)), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol., 28:265-278 [1988]); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76:5259-5263 [1979]); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published 31 Oct. 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 Jan. 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun., 112:284-289 [1983]; Tilburn et al., Gene, 26:205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci. USA, 81: 1470-1474 [1984]) and A. niger (Kelly and Hynes, EMBO J., 4:475-479 [1985]). Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis, and Rhodotorula. A list of specific species that are exemplary of this class of yeasts may be found in C. Anthony, The Biochemistry of Methylotrophs, 269 (1982).


Other suitable cells that can be used in the present invention include, but are not limited to, prokaryotic host cells strains such as Escherichia coli, (e.g., strain DH5-α), Bacillus subtilis, Salmonella typhimurium, or strains of the genera of Pseudomonas, Streptomyces and Staphylococcus. Non-limiting examples of suitable prokaryotes include those from the genera: Actinoplanes; Archaeoglobus; Bdellovibrio; Borrelia; Chloroflexus; Enterococcus; Escherichia; Lactobacillus; Listeria; Oceanobacillus; Paracoccus; Pseudomonas; Staphylococcus; Streptococcus; Streptomyces; Thermoplasma; and Vibrio. Non-limiting examples of specific strains include: Archaeoglobus fulgidus; Bdellovibrio bacteriovorus; Borrelia burgdorferi; Chloroflexus aurantiacus; Enterococcus faecalis; Enterococcus faecium; Lactobacillus johnsonii; Lactobacillus plantarum; Lactococcus lactis; Listeria innocua; Listeria monocytogenes; Oceanobacillus iheyensis; Paracoccus zeaxanthinifaciens; Pseudomonas mevalonii; Staphylococcus aureus; Staphylococcus epidermidis; Staphylococcus haemolyticus; Streptococcus agalactiae; Streptomyces griseolosporeus; Streptococcus mutans; Streptococcus pneumoniae; Streptococcus pyogenes; Thermoplasma acidophilum; Thermoplasma volcanium; Vibrio cholerae; Vibrio parahaemolyticus; and Vibrio vulnificus.


Host cells containing the polynucleotides of interest can be cultured in conventional nutrient media (e.g., Ham's nutrient mixture) modified as appropriate for activating promoters, selecting transformants or amplifying genes. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification. For compositions secreted by the host cells, supernatant from centrifugation is separated and retained for further purification. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, all of which are well known to those skilled in the art. Embodiments that involve cell lysis may entail use of a buffer that contains protease inhibitors that limit degradation after expression of the chimeric DNA molecule. Suitable protease inhibitors include, but are not limited to leupeptin, pepstatin or aprotinin. The supernatant then may be precipitated in successively increasing concentrations of saturated ammonium sulfate.


Gene expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas, Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.


Gene expression, alternatively, may be measured by immunological of fluorescent methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids or the detection of selectable markers, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal Conveniently, the antibodies may be prepared against a native sequence GH polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to GH and encoding a specific antibody epitope. Examples of selectable markers are well known to one of skill in the art and include reporters such as enhanced green fluorescent protein (EGFP), beta-galactosidase (β-gal) or chloramphenicol acetyltransferase (CAT).


Expressed GHXTEN polypeptide product(s) may be purified via methods known in the art or by methods disclosed herein. Procedures such as gel filtration, affinity purification, salt fractionation, ion exchange chromatography, size exclusion chromatography, hydroxyapatite adsorption chromatography, hydrophobic interaction chromatography and gel electrophoresis may be used; each tailored to recover and purify the fusion protein produced by the respective host cells. Some expressed GHXTEN may require refolding during isolation and purification. Methods of purification are described in Robert K. Scopes, Protein Purification: Principles and Practice, Charles R. Castor (ed.), Springer-Verlag 1994, and Sambrook, et al., supra. Multi-step purification separations are also described in Baron, et al., Crit. Rev. Biotechnol. 10:179-90 (1990) and Below, et al., J. Chromatogr. A. 679:67-83 (1994).


VIII). Pharmaceutical Compositions

The present invention provides pharmaceutical compositions comprising GHXTEN. In one embodiment, the pharmaceutical composition comprises the GHXTEN fusion protein and at least one pharmaceutically acceptable carrier. GHXTEN polypeptides of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby the polypeptide is combined in admixture with a pharmaceutically acceptable carrier vehicle, such as aqueous solutions or buffers, pharmaceutically acceptable suspensions and emulsions. Examples of non-aqueous solvents include propyl ethylene glycol, polyethylene glycol and vegetable oils. Therapeutic formulations are prepared for storage by mixing the active ingredient having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers, as described in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980), in the form of lyophilized formulations or aqueous solutions.


The pharmaceutical compositions can be administered orally, intranasally, parenterally or by inhalation therapy, and may take the form of tablets, lozenges, granules, capsules, pills, ampoules, suppositories or aerosol form. They may also take the form of suspensions, solutions and emulsions of the active ingredient in aqueous or nonaqueous diluents, syrups, granulates or powders. In addition, the pharmaceutical compositions can also contain other pharmaceutically active compounds or a plurality of compounds of the invention.


More particularly, the present pharmaceutical compositions may be administered for therapy by any suitable route including oral, rectal, nasal, topical (including transdermal, aerosol, buccal and sublingual), vaginal, parenteral (including subcutaneous, subcutaneous by infusion pump, intramuscular, intravenous and intradermal), intravitreal, and pulmonary. It will also be appreciated that the preferred route will vary with the condition and age of the recipient, and the disease being treated.


In one embodiment, the pharmaceutical composition is administered subcutaneously. In this embodiment, the composition may be supplied as a lyophilized powder to be reconstituted prior to administration. The composition may also be supplied in a liquid form, which can be administered directly to a patient. In one embodiment, the composition is supplied as a liquid in a pre-filled syringe such that a patient can easily self-administer the composition.


Extended release formulations useful in the present invention may be oral formulations comprising a matrix and a coating composition. Suitable matrix materials may include waxes (e.g., camauba, bees wax, paraffin wax, ceresine, shellac wax, fatty acids, and fatty alcohols), oils, hardened oils or fats (e.g., hardened rapeseed oil, castor oil, beef tallow, palm oil, and soya bean oil), and polymers (e.g., hydroxypropyl cellulose, polyvinylpyrrolidone, hydroxypropyl methyl cellulose, and polyethylene glycol). Other suitable matrix tabletting materials are microcrystalline cellulose, powdered cellulose, hydroxypropyl cellulose, ethyl cellulose, with other carriers, and fillers. Tablets may also contain granulates, coated powders, or pellets. Tablets may also be multi-layered. Multi-layered tablets are especially preferred when the active ingredients have markedly different pharmacokinetic profiles. Optionally, the finished tablet may be coated or uncoated.


The coating composition may comprise an insoluble matrix polymer and/or a water soluble material. Water soluble materials can be polymers such as polyethylene glycol, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol, or monomeric materials such as sugars (e.g., lactose, sucrose, fructose, mannitol and the like), salts (e.g., sodium chloride, potassium chloride and the like), organic acids (e.g., fumaric acid, succinic acid, lactic acid, and tartaric acid), and mixtures thereof. Optionally, an enteric polymer may be incorporated into the coating composition. Suitable enteric polymers include hydroxypropyl methyl cellulose, acetate succinate, hydroxypropyl methyl cellulose, phthalate, polyvinyl acetate phthalate, cellulose acetate phthalate, cellulose acetate trimellitate, shellac, zein, and polymethacrylates containing carboxyl groups. The coating composition may be plasticised by adding suitable plasticisers such as, for example, diethyl phthalate, citrate esters, polyethylene glycol, glycerol, acetylated glycerides, acetylated citrate esters, dibutylsebacate, and castor oil. The coating composition may also include a filler, which can be an insoluble material such as silicon dioxide, titanium dioxide, talc, kaolin, alumina, starch, powdered cellulose, MCC, or polacrilin potassium. The coating composition may be applied as a solution or latex in organic solvents or aqueous solvents or mixtures thereof. Solvents such as water, lower alcohol, lower chlorinated hydrocarbons, ketones, or mixtures thereof may be used.


The compositions of the invention may be formulated using a variety of excipients. Suitable excipients include microcrystalline cellulose (e.g. Avicel PH102, Avicel PH101), polymethacrylate, poly(ethyl acrylate, methyl methacrylate, trimethylammonioethyl methacrylate chloride) (such as Eudragit RS-30D), hydroxypropyl methylcellulose (Methocel K100M, Premium CR Methocel K100M, Methocel E5, Opadry®), magnesium stearate, talc, triethyl citrate, aqueous ethylcellulose dispersion (Surelease®), and protamine sulfate. The slow release agent may also comprise a carrier, which can comprise, for example, solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents. Pharmaceutically acceptable salts can also be used in these slow release agents, for example, mineral salts such as hydrochlorides, hydrobromides, phosphates, or sulfates, as well as the salts of organic acids such as acetates, proprionates, malonates, or benzoates. The composition may also contain liquids, such as water, saline, glycerol, and ethanol, as well as substances such as wetting agents, emulsifying agents, or pH buffering agents. Liposomes may also be used as a carrier.


In another embodiment, the compositions of the present invention are encapsulated in liposomes, which have demonstrated utility in delivering beneficial active agents in a controlled manner over prolonged periods of time. Liposomes are closed bilayer membranes containing an entrapped aqueous volume. Liposomes may also be unilamellar vesicles possessing a single membrane bilayer or multilamellar vesicles with multiple membrane bilayers, each separated from the next by an aqueous layer. The structure of the resulting membrane bilayer is such that the hydrophobic (non-polar) tails of the lipid are oriented toward the center of the bilayer while the hydrophilic (polar) heads orient towards the aqueous phase. In one embodiment, the liposome may be coated with a flexible water soluble polymer that avoids uptake by the organs of the mononuclear phagocyte system, primarily the liver and spleen. Suitable hydrophilic polymers for surrounding the liposomes include, without limitation, PEG, polyvinylpyrrolidone, polyvinylmethylether, polymethyloxazoline, polyethyloxazoline, polyhydroxypropyloxazoline, polyhydroxypropylmethacrylamide, polymethacrylamide, polydimethylacrylamide, polyhydroxypropylmethacrylate, polyhydroxethylacrylate, hydroxymethylcellulose hydroxyethylcellulose, polyethyleneglycol, polyaspartamide and hydrophilic peptide sequences as described in U.S. Pat. Nos. 6,316,024; 6,126,966; 6,056,973; 6,043,094, the contents of which are incorporated by reference in their entirety.


Liposomes may be comprised of any lipid or lipid combination known in the art. For example, the vesicle-forming lipids may be naturally-occurring or synthetic lipids, including phospholipids, such as phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid, phosphatidylserine, phasphatidylglycerol, phosphatidylinositol, and sphingomyelin as disclosed in U.S. Pat. Nos. 6,056,973 and 5,874,104. The vesicle-forming lipids may also be glycolipids, cerebrosides, or cationic lipids, such as 1,2-dioleyloxy-3-(trimethylamino) propane (DOTAP); N-[1-(2,3,-ditetradecyloxy)propyl-N,N-dimethyl-N-hydroxyethylammonium bromide (DMRIE); N-[1[(2,3,-dioleyloxy)propyl]-N,N-dimethyl-N-hydroxy ethylammonium bromide (DORIE); N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA); 3[N-(N′,N′-dimethylaminoethane) carbamoly] cholesterol (DC-Chol); or dimethyldioctadecylammonium (DDAB) also as disclosed in U.S. Pat. No. 6,056,973. Cholesterol may also be present in the proper range to impart stability to the vesicle as disclosed in U.S. Pat. Nos. 5,916,588 and 5,874,104.


Additional liposomal technologies are described in U.S. Pat. Nos. 6,759,057; 6,406,713; 6,352,716; 6,316,024; 6,294,191; 6,126,966; 6,056,973; 6,043,094; 5,965,156; 5,916,588; 5,874,104; 5,215,680; and 4,684,479, the contents of which are incorporated herein by reference. These describe liposomes and lipid-coated microbubbles, and methods for their manufacture. Thus, one skilled in the art, considering both the disclosure of this invention and the disclosures of these other patents could produce a liposome for the extended release of the polypeptides of the present invention.


For liquid formulations, a desired property is that the formulation be supplied in a form that can pass through a 25, 28, 30, 31, 32 gauge needle for intravenous, intramuscular, intraarticular, or subcutaneous administration.


Administration via transdermal formulations can be performed using methods also known in the art, including those described generally in, e.g., U.S. Pat. Nos. 5,186,938 and 6,183,770, 4,861,800, 6,743,211, 6,945,952, 4,284,444, and WO 89/09051, incorporated herein by reference in their entireties. A transdermal patch is a particularly useful embodiment with polypeptides having absorption problems. Patches can be made to control the release of skin-permeable active ingredients over a 12 hour, 24 hour, 3 day, and 7 day period. In one example, a 2-fold daily excess of a polypeptide of the present invention is placed in a non-volatile fluid. The compositions of the invention are provided in the form of a viscous, non-volatile liquid. The penetration through skin of specific formulations may be measures by standard methods in the art (for example, Franz et al., J. Invest. Derm. 64:194-195 (1975)). Examples of suitable patches are passive transfer skin patches, iontophoretic skin patches, or patches with microneedles such as Nicoderm.


In other embodiments, the composition may be delivered via intranasal, buccal, or sublingual routes to the brain to enable transfer of the active agents through the olfactory passages into the CNS and reducing the systemic administration. Devices commonly used for this route of administration are included in U.S. Pat. No. 6,715,485. Compositions delivered via this route may enable increased CNS dosing or reduced total body burden reducing systemic toxicity risks associated with certain drugs. Preparation of a pharmaceutical composition for delivery in a subdermally implantable device can be performed using methods known in the art, such as those described in, e.g., U.S. Pat. Nos. 3,992,518; 5,660,848; and 5,756,115.


Osmotic pumps may be used as slow release agents in the form of tablets, pills, capsules or implantable devices. Osmotic pumps are well known in the art and readily available to one of ordinary skill in the art from companies experienced in providing osmotic pumps for extended release drug delivery. Examples are ALZA's DUROS™; ALZA's OROS™; Osmotica Pharmaceutical's Osmodex™ system; Shire Laboratories' EnSoTrol™ system; and Alzet™. Patents that describe osmotic pump technology are U.S. Pat. Nos. 6,890,918; 6,838,093; 6,814,979; 6,713,086; 6,534,090; 6,514,532; 6,361,796; 6,352,721; 6,294,201; 6,284,276; 6,110,498; 5,573,776; 4,200,0984; and 4,088,864, the contents of which are incorporated herein by reference. One skilled in the art, considering both the disclosure of this invention and the disclosures of these other patents could produce an osmotic pump for the extended release of the polypeptides of the present invention.


Syringe pumps may also be used as slow release agents. Such devices are described in U.S. Pat. Nos. 4,976,696; 4,933,185; 5,017,378; 6,309,370; 6,254,573; 4,435,173; 4,398,908; 6,572,585; 5,298,022; 5,176,502; 5,492,534; 5,318,540; and 4,988,337, the contents of which are incorporated herein by reference. One skilled in the art, considering both the disclosure of this invention and the disclosures of these other patents could produce a syringe pump for the extended release of the compositions of the present invention. A.


IX). Pharmaceutical Kits

In another aspect, the invention provides a kit to facilitate the use of the GHXTEN polypeptides. The kit comprises the pharmaceutical composition provided herein, a label identifying the pharmaceutical composition, and an instruction for storage, reconstitution and/or administration of the pharmaceutical compositions to a subject In some embodiment, the kit comprises, preferablly: (a) an amount of a GHXTEN fusion protein composition sufficient to treat a disease, condition or disorder upon administration to a subject in need thereof; and (b) an amount of a pharmaceutically acceptable carrier; together in a formulation ready for injection or for reconstitution with sterile water, buffer, or dextrose; together with a label identifying the GHXTEN drug and storage and handling conditions, and a sheet of the approved indications for the drug, instructions for the reconstitution and/or administration of the GHXTEN drug for the use for the prevention and/or treatment of a approved indication, appropriate dosage and safety information, and information identifying the lot and expiration of the drug. In another embodiment of the foregoing, the kit can comprise a second container that can carry a suitable diluent for the GHXTEN composition, which will provide the user with the appropriate concentration of GHXTEN to be delivered to the subject.


EXAMPLES
Example 1
Construction of XTEN_AD36 Motif Segments

The following example describes the construction of a collection of codon-optimized genes encoding motif sequences of 36 amino acids. As a first step, a stuffer vector pCW0359 was constructed based on a pET vector and that includes a T7 promoter. pCW0359 encodes a cellulose binding domain (CBD) and a TEV protease recognition site followed by a stuffer sequence that is flanked by BsaI, BbsI, and KpnI sites. The BsaI and BbsI sites were inserted such that they generate compatible overhangs after digestion. The stuffer sequence is followed by a truncated version of the GFP gene and a His tag. The stuffer sequence contains stop codons and thus E. coli cells carrying the stuffer plasmid pCW0359 form non-fluorescent colonies. The stuffer vector pCW0359 was digested with BsaI and KpnI to remove the stuffer segment and the resulting vector fragment was isolated by agarose gel purification. The sequences were designated XTEN_AD36, reflecting the AD family of motifs. Its segments have the amino acid sequence [X]3 where X is a 12mer peptide with the sequences: GESPGGSSGSES (SEQ ID NO: 136), GSEGSSGPGESS (SEQ ID NO: 137), GSSESGSSEGGP (SEQ ID NO: 138), or GSGGEPSESGSS (SEQ ID NO: 139). The insert was obtained by annealing the following pairs of phosphorylated synthetic oligonucleotide pairs:











AD1for:







(SEQ ID NO: 140)









AGGTGAATCTCCDGGTGGYTCYAGCGGTTCYGARTC







AD1rev:







(SEQ ID NO: 141)









ACCTGAYTCRGAACCGCTRGARCCACCHGGAGATTC







AD2for:







(SEQ ID NO: 142)









AGGTAGCGAAGGTTCTTCYGGTCCDGGYGARTCYTC







AD2rev:







(SEQ ID NO: 143)









ACCTGARGAYTCRCCHGGACCRGAAGAACCTTCGCT







AD3for:







(SEQ ID NO: 144)









AGGTTCYTCYGAAAGCGGTTCTTCYGARGGYGGTCC







AD3rev:







(SEQ ID NO: 145)









ACCTGGACCRCCYTCRGAAGAACCGCTTTCRGARGA







AD4for:







(SEQ ID NO: 146)









AGGTTCYGGTGGYGAACCDTCYGARTCTGGTAGCTC






We also annealed the phosphorylated oligonucleotide 3KpnIstopperFor: AGGTTCGTCTTCACTCGAGGGTAC (SEQ ID NO: 147) and the non-phosphorylated oligonucleotide pr_3KpnIstopperRev: CCTCGAGTGAAGACGA (SEQ ID NO: 148). The annealed oligonucleotide pairs were ligated, which resulted in a mixture of products with varying length that represents the varying number of 12mer repeats ligated to one BbsI/KpnI segment. The products corresponding to the length of 36 amino acids were isolated from the mixture by preparative agarose gel electrophoresis and ligated into the BsaI/KpnI digested stuffer vector pCW0359. Most of the clones in the resulting library designated LCW0401 showed green fluorescence after induction, which shows that the sequence of XTEN_AD36 had been ligated in frame with the GFP gene and that most sequences of XTEN_AD36 had good expression levels.


We screened 96 isolates from library LCW0401 for high level of fluorescence by stamping them onto agar plate containing IPTG. The same isolates were evaluated by PCR and 48 isolates were identified that contained segments with 36 amino acids as well as strong fluorescence. These isolates were sequenced and 39 clones were identified that contained correct XTEN_AD36 segments. The file names of the nucleotide and amino acid constructs for these segments are listed in Table 8.









TABLE 8







DNA and Amino Acid Sequences for 36-mer motifs













SEQ ID

SEQ ID


File name
Amino acid sequence
NO:
Nucleotide sequence
NO:





LCW0401_001_GFP-
GSGGEPSESGSSGESPGG
149
GGTTCTGGTGGCGAACCGTCCGAG
150


N_A01.ab1
SSGSESGESPGGSSGSES

TCTGGTAGCTCAGGTGAATCTCCG





GGTGGCTCTAGCGGTTCCGAGTCA





GGTGAATCTCCTGGTGGTTCCAGC





GGTTCCGAGTCA





LCW0401_002_GFP-
GSEGSSGPGESSGESPGG
151
GGTAGCGAAGGTTCTTCTGGTCCTG
152


N_B01.ab1
SSGSESGSSESGSSEGGP

GCGAGTCTTCAGGTGAATCTCCTG





GTGGTTCCAGCGGTTCTGAATCAG





GTTCCTCCGAAAGCGGTTCTTCCGA





GGGCGGTCCA





LCW0401_003_GFP-
GSSESGSSEGGPGSSESG
153
GGTTCCTCTGAAAGCGGTTCTTCCG
154


N_C01.ab1
SSEGGPGESPGGSSGSES

AAGGTGGTCCAGGTTCCTCTGAAA





GCGGTTCTTCTGAGGGTGGTCCAG





GTGAATCTCCGGGTGGCTCCAGCG





GTTCCGAGTCA





LCW0401_004_GFP-
GSGGEPSESGSSGSSESG
155
GGTTCCGGTGGCGAACCGTCTGAA
156


N_D01.ab1
SSEGGPGSGGEPSESGSS

TCTGGTAGCTCAGGTTCTTCTGAAA





GCGGTTCTTCCGAGGGTGGTCCAG





GTTCTGGTGGTGAACCTTCCGAGTC





TGGTAGCTCA





LCW0401_007_GFP-
GSSESGSSEGGPGSEGSS
157
GGTTCTTCCGAAAGCGGTTCTTCTG
158


N_F01.ab1
GPGESSGSEGSSGPGESS

AGGGTGGTCCAGGTAGCGAAGGTT





CTTCCGGTCCAGGTGAGTCTTCAGG





TAGCGAAGGTTCTTCTGGTCCTGGT





GAATCTTCA





LCW0401_008_GFP-
GSSESGSSEGGPGESPGG
159
GGTTCCTCTGAAAGCGGTTCTTCCG
160


N_G01.ab1
SSGSESGSEGSSGPGESS

AGGGTGGTCCAGGTGAATCTCCAG





GTGGTTCCAGCGGTTCTGAGTCAG





GTAGCGAAGGTTCTTCTGGTCCAG





GTGAATCCTCA





LCW0401_012_GFP-
GSGGEPSESGSSGSGGEP
161
GGTTCTGGTGGTGAACCGTCTGAG
162


N_H01.ab1
SESGSSGSEGSSGPGESS

TCTGGTAGCTCAGGTTCCGGTGGC





GAACCATCCGAATCTGGTAGCTCA





GGTAGCGAAGGTTCTTCCGGTCCA





GGTGAGTCTTCA





LCW0401_015_GFP-
GSSESGSSEGGPGSEGSS
163
GGTTCTTCCGAAAGCGGTTCTTCCG
164


N_A02.ab1
GPGESSGESPGGSSGSES

AAGGCGGTCCAGGTAGCGAAGGTT





CTTCTGGTCCAGGCGAATCTTCAGG





TGAATCTCCTGGTGGCTCCAGCGGT





TCTGAGTCA





LCW0401_016_GFP-
GSSESGSSEGGPGSSESG
165
GGTTCCTCCGAAAGCGGTTCTTCTG
166


N_B02.ab1
SSEGGPGSSESGSSEGGP

AGGGCGGTCCAGGTTCCTCCGAAA





GCGGTTCTTCCGAGGGCGGTCCAG





GTTCTTCTGAAAGCGGTTCTTCCGA





GGGCGGTCCA





LCW0401_020_GFP-
GSGGEPSESGSSGSEGSS
167
GGTTCCGGTGGCGAACCGTCCGAA
168


N_E02.ab1
GPGESSGSSESGSSEGGP

TCTGGTAGCTCAGGTAGCGAAGGT





TCTTCTGGTCCAGGCGAATCTTCAG





GTTCCTCTGAAAGCGGTTCTTCTGA





GGGCGGTCCA





LCW0401_022_GFP-
GSGGEPSESGSSGSSESG
169
GGTTCTGGTGGTGAACCGTCCGAA
170


N_F02.ab1
SSEGGPGSGGEPSESGSS

TCTGGTAGCTCAGGTTCTTCCGAAA





GCGGTTCTTCTGAAGGTGGTCCAG





GTTCCGGTGGCGAACCTTCTGAATC





TGGTAGCTCA





LCW0401_024_GFP-
GSGGEPSESGSSGSSESG
171
GGTTCTGGTGGCGAACCGTCCGAA
172


N_G02.ab1
SSEGGPGESPGGSSGSES

TCTGGTAGCTCAGGTTCCTCCGAAA





GCGGTTCTTCTGAAGGTGGTCCAG





GTGAATCTCCAGGTGGTTCTAGCG





GTTCTGAATCA





LCW0401_026_GFP-
GSGGEPSESGSSGESPGG
173
GGTTCTGGTGGCGAACCGTCTGAG
174


N_H02.ab1
SSGSESGSEGSSGPGESS

TCTGGTAGCTCAGGTGAATCTCCTG





GTGGCTCCAGCGGTTCTGAATCAG





GTAGCGAAGGTTCTTCTGGTCCTGG





TGAATCTTCA





LCW0401_027_GFP-
GSGGEPSESGSSGESPGG
175
GGTTCCGGTGGCGAACCTTCCGAA
176


N_A03.ab1
SSGSESGSGGEPSESGSS

TCTGGTAGCTCAGGTGAATCTCCG





GGTGGTTCTAGCGGTTCTGAGTCA





GGTTCTGGTGGTGAACCTTCCGAGT





CTGGTAGCTCA





LCW0401_028_GFP-
GSSESGSSEGGPGSSESG
177
GGTTCCTCTGAAAGCGGTTCTTCTG
178


N_B03.ab1
SSEGGPGSSESGSSEGGP

AGGGCGGTCCAGGTTCTTCCGAAA





GCGGTTCTTCCGAGGGCGGTCCAG





GTTCTTCCGAAAGCGGTTCTTCTGA





AGGCGGTCCA





LCW0401_030_GFP-
GESPGGSSGSESGSEGSS
179
GGTGAATCTCCGGGTGGCTCCAGC
180


N_C03.ab1
GPGESSGSEGSSGPGESS

GGTTCTGAGTCAGGTAGCGAAGGT





TCTTCCGGTCCGGGTGAGTCCTCAG





GTAGCGAAGGTTCTTCCGGTCCTG





GTGAGTCTTCA





LCW0401_031_GFP-
GSGGEPSESGSSGSGGEP
181
GGTTCTGGTGGCGAACCTTCCGAA
182


N_D03.ab1
SESGSSGSSESGSSEGGP

TCTGGTAGCTCAGGTTCCGGTGGTG





AACCTTCTGAATCTGGTAGCTCAG





GTTCTTCTGAAAGCGGTTCTTCCGA





GGGCGGTCCA





LCW0401_033_GFP-
GSGGEPSESGSSGSGGEP
183
GGTTCCGGTGGTGAACCTTCTGAAT
184


N_E03.ab1
SESGSSGSGGEPSESGSS

CTGGTAGCTCAGGTTCCGGTGGCG





AACCATCCGAGTCTGGTAGCTCAG





GTTCCGGTGGTGAACCATCCGAGT





CTGGTAGCTCA





LCW0401_037_GFP-
GSGGEPSESGSSGSSESG
185
GGTTCCGGTGGCGAACCTTCTGAA
186


N_F03.ab1
SSEGGPGSEGSSGPGESS

TCTGGTAGCTCAGGTTCCTCCGAAA





GCGGTTCTTCTGAGGGCGGTCCAG





GTAGCGAAGGTTCTTCTGGTCCGG





GCGAGTCTTCA





LCW0401_038_GFP-
GSGGEPSESGSSGSEGSS
187
GGTTCCGGTGGTGAACCGTCCGAG
188


N_G03.ab1
GPGESSGSGGEPSESGSS

TCTGGTAGCTCAGGTAGCGAAGGT





TCTTCTGGTCCGGGTGAGTCTTCAG





GTTCTGGTGGCGAACCGTCCGAAT





CTGGTAGCTCA





LCW0401_039_GFP-
GSGGEPSESGSSGESPGG
189
GGTTCTGGTGGCGAACCGTCCGAA
190


N_H03.ab1
SSGSESGSGGEPSESGSS

TCTGGTAGCTCAGGTGAATCTCCTG





GTGGTTCCAGCGGTTCCGAGTCAG





GTTCTGGTGGCGAACCTTCCGAATC





TGGTAGCTCA





LCW0401_040_GFP-
GSSESGSSEGGPGSGGEP
191
GGTTCTTCCGAAAGCGGTTCTTCCG
192


N_A04.ab1
SESGSSGSSESGSSEGGP

AGGGCGGTCCAGGTTCCGGTGGTG





AACCATCTGAATCTGGTAGCTCAG





GTTCTTCTGAAAGCGGTTCTTCTGA





AGGTGGTCCA





LCW0401_042_GFP-
GSEGSSGPGESSGESPGG
193
GGTAGCGAAGGTTCTTCCGGTCCT
194


N_C04.ab1
SSGSESGSEGSSGPGESS

GGTGAGTCTTCAGGTGAATCTCCA





GGTGGCTCTAGCGGTTCCGAGTCA





GGTAGCGAAGGTTCTTCTGGTCCTG





GCGAGTCCTCA





LCW0401_046_GFP-
GSSESGSSEGGPGSSESG
195
GGTTCCTCTGAAAGCGGTTCTTCCG
196


N_D04.ab1
SSEGGPGSSESGSSEGGP

AAGGCGGTCCAGGTTCTTCCGAAA





GCGGTTCTTCTGAGGGCGGTCCAG





GTTCCTCCGAAAGCGGTTCTTCTGA





GGGTGGTCCA





LCW0401_047_GFP-
GSGGEPSESGSSGESPGG
197
GGTTCTGGTGGCGAACCTTCCGAG
198


N_E04.ab1
SSGSESGESPGGSSGSES

TCTGGTAGCTCAGGTGAATCTCCG





GGTGGTTCTAGCGGTTCCGAGTCA





GGTGAATCTCCGGGTGGTTCCAGC





GGTTCTGAGTCA





LCW0401_051_GFP-
GSGGEPSESGSSGSEGSS
199
GGTTCTGGTGGCGAACCATCTGAG
200


N_F04.ab1
GPGESSGESPGGSSGSES

TCTGGTAGCTCAGGTAGCGAAGGT





TCTTCCGGTCCAGGCGAGTCTTCAG





GTGAATCTCCTGGTGGCTCCAGCG





GTTCTGAGTCA





LCW0401_053_GFP-
GESPGGSSGSESGESPGG
201
GGTGAATCTCCTGGTGGTTCCAGC
202


N_H04.ab1
SSGSESGESPGGSSGSES

GGTTCCGAGTCAGGTGAATCTCCA





GGTGGCTCTAGCGGTTCCGAGTCA





GGTGAATCTCCTGGTGGTTCTAGCG





GTTCTGAATCA





LCW0401_054_GFP-
GSEGSSGPGESSGSEGSS
203
GGTAGCGAAGGTTCTTCCGGTCCA
204


N_A05.ab1
GPGESSGSGGEPSESGSS

GGTGAATCTTCAGGTAGCGAAGGT





TCTTCTGGTCCTGGTGAATCCTCAG





GTTCCGGTGGCGAACCATCTGAAT





CTGGTAGCTCA





LCW0401_059_GFP-
GSGGEPSESGSSGSEGSS
205
GGTTCTGGTGGCGAACCATCCGAA
206


N_D05.ab1
GPGESSGESPGGSSGSES

TCTGGTAGCTCAGGTAGCGAAGGT





TCTTCTGGTCCTGGCGAATCTTCAG





GTGAATCTCCAGGTGGCTCTAGCG





GTTCCGAATCA





LCW0401_060_GFP-
GSGGEPSESGSSGSSESG
207
GGTTCCGGTGGTGAACCGTCCGAA
208


N_E05.ab1
SSEGGPGSGGEPSESGSS

TCTGGTAGCTCAGGTTCCTCTGAAA





GCGGTTCTTCCGAGGGTGGTCCAG





GTTCCGGTGGTGAACCTTCTGAGTC





TGGTAGCTCA





LCW0401_061_GFP-
GSSESGSSEGGPGSGGEP
209
GGTTCCTCTGAAAGCGGTTCTTCTG
210


N_F05.ab1
SESGSSGSEGSSGPGESS

AGGGCGGTCCAGGTTCTGGTGGCG





AACCATCTGAATCTGGTAGCTCAG





GTAGCGAAGGTTCTTCCGGTCCGG





GTGAATCTTCA





LCW0401_063_GFP-
GSGGEPSESGSSGSEGSS
211
GGTTCTGGTGGTGAACCGTCCGAA
212


N_H05.ab1
GPGESSGSEGSSGPGESS

TCTGGTAGCTCAGGTAGCGAAGGT





TCTTCTGGTCCTGGCGAGTCTTCAG





GTAGCGAAGGTTCTTCTGGTCCTGG





TGAATCTTCA





LCW0401_066_GFP-
GSGGEPSESGSSGSSESG
213
GGTTCTGGTGGCGAACCATCCGAG
214


N_B06.ab1
SSEGGPGSGGEPSESGSS

TCTGGTAGCTCAGGTTCTTCCGAAA





GCGGTTCTTCCGAAGGCGGTCCAG





GTTCTGGTGGTGAACCGTCCGAAT





CTGGTAGCTCA





LCW0401_067_GFP-
GSGGEPSESGSSGESPGG
215
GGTTCCGGTGGCGAACCTTCCGAA
216


N_C06.ab1
SSGSESGESPGGSSGSES

TCTGGTAGCTCAGGTGAATCTCCG





GGTGGTTCTAGCGGTTCCGAATCA





GGTGAATCTCCAGGTGGTTCTAGC





GGTTCCGAATCA





LCW0401_069_GFP-
GSGGEPSESGSSGSGGEP
217
GGTTCCGGTGGTGAACCATCTGAG
218


N_D06.ab1
SESGSSGESPGGSSGSES

TCTGGTAGCTCAGGTTCCGGTGGC





GAACCGTCCGAGTCTGGTAGCTCA





GGTGAATCTCCGGGTGGTTCCAGC





GGTTCCGAATCA





LCW0401_070_GFP-
GSEGSSGPGESSGSSESG
219
GGTAGCGAAGGTTCTTCTGGTCCG
220


N_E06.ab1
SSEGGPGSEGSSGPGESS

GGCGAATCCTCAGGTTCCTCCGAA





AGCGGTTCTTCCGAAGGTGGTCCA





GGTAGCGAAGGTTCTTCCGGTCCT





GGTGAATCTTCA





LCW0401_078_GFP-
GSSESGSSEGGPGESPGG
221
GGTTCCTCTGAAAGCGGTTCTTCTG
222


N_F06.ab1
SSGSESGESPGGSSGSES

AAGGCGGTCCAGGTGAATCTCCGG





GTGGCTCCAGCGGTTCTGAATCAG





GTGAATCTCCTGGTGGCTCCAGCG





GTTCCGAGTCA





LCW0401_079_GFP-
GSEGSSGPGESSGSEGSS
223
GGTAGCGAAGGTTCTTCTGGTCCA
224


N_G06.ab1
GPGESSGSGGEPSESGSS

GGCGAGTCTTCAGGTAGCGAAGGT





TCTTCCGGTCCTGGCGAGTCTTCAG





GTTCCGGTGGCGAACCGTCCGAAT





CTGGTAGCTCA









Example 2
Construction of XTEN_AE36 Segments

A codon library encoding XTEN sequences of 36 amino acid length was constructed. The XTEN sequence was designated XTEN_AE36. Its segments have the amino acid sequence [X]3 where X is a 12mer peptide with the sequence: GSPAGSPTSTEE (SEQ ID NO: 225), GSEPATSGSE TP (SEQ ID NO: 226), GTSESA TPESGP (SEQ ID NO: 227), or GTSTEPSEGSAP (SEQ ID NO: 228). The insert was obtained by annealing the following pairs of phosphorylated synthetic oligonucleotide pairs:











AE1for:







(SEQ ID NO: 229)









AGGTAGCCCDGCWGGYTCTCCDACYTCYACYGARGA







AE1rev:







(SEQ ID NO: 230)









ACCTTCYTCRGTRGARGTHGGAGARCCWGCHGGGCT







AE2for:







(SEQ ID NO: 231)









AGGTAGCGAACCKGCWACYTCYGGYTCTGARACYCC







AE2rev:







(SEQ ID NO: 232)









ACCTGGRGTYTCAGARCCRGARGTWGCMGGTTCGCT







AE3for:







(SEQ ID NO: 233)









AGGTACYTCTGAAAGCGCWACYCCKGARTCYGGYCC







AE3rev:







(SEQ ID NO: 234)









ACCTGGRCCRGAYTCMGGRGTWGCGCTTTCAGARGT







AE4for:







(SEQ ID NO: 235)









AGGTACYTCTACYGAACCKTCYGARGGYAGCGCWCC







AE4rev:







(SEQ ID NO: 236)









ACCTGGWGCGCTRCCYTCRGAMGGTTCRGTAGARGT






We also annealed the phosphorylated oligonucleotide 3KpnIstopperFor: AGGTTCGTCTTCACTCGAGGGTAC (SEQ ID NO: 237) and the non-phosphorylated oligonucleotide pr_3KpnIstopperRev: CCTCGAGTGAAGACGA (SEQ ID NO: 238). The annealed oligonucleotide pairs were ligated, which resulted in a mixture of products with varying length that represents the varying number of 12mer repeats ligated to one BbsI/KpnI segment. The products corresponding to the length of 36 amino acids were isolated from the mixture by preparative agarose gel electrophoresis and ligated into the BsaI/KpnI digested stuffer vector pCW0359. Most of the clones in the resulting library designated LCW0402 showed green fluorescence after induction which shows that the sequence of XTEN_AE36 had been ligated in frame with the GFP gene and most sequences of XTEN_AE36 show good expression.


We screened 96 isolates from library LCW0402 for high level of fluorescence by stamping them onto agar plate containing IPTG. The same isolates were evaluated by PCR and 48 isolates were identified that contained segments with 36 amino acids as well as strong fluorescence. These isolates were sequenced and 37 clones were identified that contained correct XTEN_AE36 segments. The file names of the nucleotide and amino acid constructs for these segments are listed in Table 9.









TABLE 9







DNA and Amino Acid Sequences for 36-mer motifs













SEQ ID

SEQ ID


File name
Amino acid sequence
NO:
Nucleotide sequence
NO:





LCW0402_002_GFP-
GSPAGSPTSTEEGTSE
239
GGTAGCCCGGCAGGCTCTCCGACCT
240


N_A07.ab1
SATPESGPGTSTEPSE

CTACTGAGGAAGGTACTTCTGAAAG



GSAP

CGCAACCCCGGAGTCCGGCCCAGGT





ACCTCTACCGAACCGTCTGAGGGCA





GCGCACCA





LCW0402_003_GFP-
GTSTEPSEGSAPGTST
241
GGTACTTCTACCGAACCGTCCGAAG
242


N_B07.ab1
EPSEGSAPGTSTEPSE

GCAGCGCTCCAGGTACCTCTACTGA



GSAP

ACCTTCCGAGGGCAGCGCTCCAGGT





ACCTCTACCGAACCTTCTGAAGGTA





GCGCACCA





LCW0402_004_GFP-
GTSTEPSEGSAPGTSE
243
GGTACCTCTACCGAACCGTCTGAAG
244


N_C07.ab1
SATPESGPGTSESATP

GTAGCGCACCAGGTACCTCTGAAAG



ESGP

CGCAACTCCTGAGTCCGGTCCAGGT





ACTTCTGAAAGCGCAACCCCGGAGT





CTGGCCCA





LCW0402_005_GFP-
GTSTEPSEGSAPGTSE
245
GGTACTTCTACTGAACCGTCTGAAG
246


N_D07.ab1
SATPESGPGTSESATP

GTAGCGCACCAGGTACTTCTGAAAG



ESGP

CGCAACCCCGGAATCCGGCCCAGGT





ACCTCTGAAAGCGCAACCCCGGAGT





CCGGCCCA





LCW0402_006_GFP-
GSEPATSGSETPGTSE
247
GGTAGCGAACCGGCAACCTCCGGCT
248


N_E07.ab1
SATPESGPGSPAGSPT

CTGAAACCCCAGGTACCTCTGAAAG



STEE

CGCTACTCCTGAATCCGGCCCAGGT





AGCCCGGCAGGTTCTCCGACTTCCA





CTGAGGAA





LCW0402_008_GFP-
GTSESATPESGPGSEP
249
GGTACTTCTGAAAGCGCAACCCCTG
250


N_F07.ab1
ATSGSETPGTSTEPSE

AATCCGGTCCAGGTAGCGAACCGGC



GSAP

TACTTCTGGCTCTGAGACTCCAGGT





ACTTCTACCGAACCGTCCGAAGGTA





GCGCACCA





LCW0402_009_GFP-
GSPAGSPTSTEEGSPA
251
GGTAGCCCGGCTGGCTCTCCAACCT
252


N_G07.ab1
GSPTSTEEGSEPATSG

CCACTGAGGAAGGTAGCCCGGCTGG



SETP

CTCTCCAACCTCCACTGAAGAAGGT





AGCGAACCGGCTACCTCCGGCTCTG





AAACTCCA





LCW0402_011_GFP-
GSPAGSPTSTEEGTSE
253
GGTAGCCCGGCTGGCTCTCCTACCT
254


N_A08.ab1
SATPESGPGTSTEPSE

CTACTGAGGAAGGTACTTCTGAAAG



GSAP

CGCTACTCCTGAGTCTGGTCCAGGT





ACCTCTACTGAACCGTCCGAAGGTA





GCGCTCCA





LCW0402_012_GFP-
GSPAGSPTSTEEGSPA
255
GGTAGCCCTGCTGGCTCTCCGACTT
256


N_B08.ab1
GSPTSTEEGTSTEPSE

CTACTGAGGAAGGTAGCCCGGCTGG



GSAP

TTCTCCGACTTCTACTGAGGAAGGT





ACTTCTACCGAACCTTCCGAAGGTA





GCGCTCCA





LCW0402_013_GFP-
GTSESATPESGPGTST
257
GGTACTTCTGAAAGCGCTACTCCGG
258


N_C08.ab1
EPSEGSAPGTSTEPSE

AGTCCGGTCCAGGTACCTCTACCGA



GSAP

ACCGTCCGAAGGCAGCGCTCCAGGT





ACTTCTACTGAACCTTCTGAGGGTA





GCGCTCCA





LCW0402_014_GFP-
GTSTEPSEGSAPGSPA
259
GGTACCTCTACCGAACCTTCCGAAG
260


N_D08.ab1
GSPTSTEEGTSTEPSE

GTAGCGCTCCAGGTAGCCCGGCAGG



GSAP

TTCTCCTACTTCCACTGAGGAAGGT





ACTTCTACCGAACCTTCTGAGGGTA





GCGCACCA





LCW0402_015_GFP-
GSEPATSGSETPGSPA
261
GGTAGCGAACCGGCTACTTCCGGCT
262


N_E08.ab1
GSPTSTEEGTSESATP

CTGAGACTCCAGGTAGCCCTGCTGG



ESGP

CTCTCCGACCTCTACCGAAGAAGGT





ACCTCTGAAAGCGCTACCCCTGAGT





CTGGCCCA





LCW0402_016_GFP-
GTSTEPSEGSAPGTSE
263
GGTACTTCTACCGAACCTTCCGAGG
264


N_F08.ab1
SATPESGPGTSESATP

GCAGCGCACCAGGTACTTCTGAAAG



ESGP

CGCTACCCCTGAGTCCGGCCCAGGT





ACTTCTGAAAGCGCTACTCCTGAAT





CCGGTCCA





LCW0402_020_GFP-
GTSTEPSEGSAPGSEP
265
GGTACTTCTACTGAACCGTCTGAAG
266


N_G08.ab1
ATSGSETPGSPAGSPT

GCAGCGCACCAGGTAGCGAACCGG



STEE

CTACTTCCGGTTCTGAAACCCCAGG





TAGCCCAGCAGGTTCTCCAACTTCT





ACTGAAGAA





LCW0402_023_GFP-
GSPAGSPTSTEEGTSE
267
GGTAGCCCTGCTGGCTCTCCAACCT
268


N_A09.ab1
SATPESGPGSEPATSG

CCACCGAAGAAGGTACCTCTGAAAG



SETP

CGCAACCCCTGAATCCGGCCCAGGT





AGCGAACCGGCAACCTCCGGTTCTG





AAACCCCA





LCW0402_024_GFP-
GTSESATPESGPGSPA
269
GGTACTTCTGAAAGCGCTACTCCTG
270


N_B09.ab1
GSPTSTEEGSPAGSPT

AGTCCGGCCCAGGTAGCCCGGCTGG



STEE

CTCTCCGACTTCCACCGAGGAAGGT





AGCCCGGCTGGCTCTCCAACTTCTA





CTGAAGAA





LCW0402_025_GFP-
GTSTEPSEGSAPGTSE
271
GGTACCTCTACTGAACCTTCTGAGG
272


N_C09.ab1
SATPESGPGTSTEPSE

GCAGCGCTCCAGGTACTTCTGAAAG



GSAP

CGCTACCCCGGAGTCCGGTCCAGGT





ACTTCTACTGAACCGTCCGAAGGTA





GCGCACCA





LCW0402_026_GFP-
GSPAGSPTSTEEGTST
273
GGTAGCCCGGCAGGCTCTCCGACTT
274


N_D09.ab1
EPSEGSAPGSEPATSG

CCACCGAGGAAGGTACCTCTACTGA



SETP

ACCTTCTGAGGGTAGCGCTCCAGGT





AGCGAACCGGCAACCTCTGGCTCTG





AAACCCCA





LCW0402_027_GFP-
GSPAGSPTSTEEGTST
275
GGTAGCCCAGCAGGCTCTCCGACTT
276


N_E09.ab1
EPSEGSAPGTSTEPSE

CCACTGAGGAAGGTACTTCTACTGA



GSAP

ACCTTCCGAAGGCAGCGCACCAGGT





ACCTCTACTGAACCTTCTGAGGGCA





GCGCTCCA





LCW0402_032_GFP-
GSEPATSGSETPGTSE
277
GGTAGCGAACCTGCTACCTCCGGTT
278


N_H09.ab1
SATPESGPGSPAGSPT

CTGAAACCCCAGGTACCTCTGAAAG



STEE

CGCAACTCCGGAGTCTGGTCCAGGT





AGCCCTGCAGGTTCTCCTACCTCCA





CTGAGGAA





LCW0402_034_GFP-
GTSESATPESGPGTST
279
GGTACCTCTGAAAGCGCTACTCCGG
280


N_A10.ab1
EPSEGSAPGTSTEPSE

AGTCTGGCCCAGGTACCTCTACTGA



GSAP

ACCGTCTGAGGGTAGCGCTCCAGGT





ACTTCTACTGAACCGTCCGAAGGTA





GCGCACCA





LCW0402_036_GFP-
GSPAGSPTSTEEGTST
281
GGTAGCCCGGCTGGTTCTCCGACTT
282


N_C10.ab1
EPSEGSAPGTSTEPSE

CCACCGAGGAAGGTACCTCTACTGA



GSAP

ACCTTCTGAGGGTAGCGCTCCAGGT





ACCTCTACTGAACCTTCCGAAGGCA





GCGCTCCA





LCW0402_039_GFP-
GTSTEPSEGSAPGTST
283
GGTACTTCTACCGAACCGTCCGAGG
284


N_E10.ab1
EPSEGSAPGTSTEPSE

GCAGCGCTCCAGGTACTTCTACTGA



GSAP

ACCTTCTGAAGGCAGCGCTCCAGGT





ACTTCTACTGAACCTTCCGAAGGTA





GCGCACCA





LCW0402_040_GFP-
GSEPATSGSETPGTSE
285
GGTAGCGAACCTGCAACCTCTGGCT
286


N_F10.ab1
SATPESGPGTSTEPSE

CTGAAACCCCAGGTACCTCTGAAAG



GSAP

CGCTACTCCTGAATCTGGCCCAGGT





ACTTCTACTGAACCGTCCGAGGGCA





GCGCACCA





LCW0402_041_GFP-
GTSTEPSEGSAPGSPA
287
GGTACTTCTACCGAACCGTCCGAGG
288


N_G10.ab1
GSPTSTEEGTSTEPSE

GTAGCGCACCAGGTAGCCCAGCAG



GSAP

GTTCTCCTACCTCCACCGAGGAAGG





TACTTCTACCGAACCGTCCGAGGGT





AGCGCACCA





LCW0402_050_GFP-
GSEPATSGSETPGTSE
289
GGTAGCGAACCGGCAACCTCCGGCT
290


N_A11.ab1
SATPESGPGSEPATSG

CTGAAACTCCAGGTACTTCTGAAAG



SETP

CGCTACTCCGGAATCCGGCCCAGGT





AGCGAACCGGCTACTTCCGGCTCTG





AAACCCCA





LCW0402_051_GFP-
GSEPATSGSETPGTSE
291
GGTAGCGAACCGGCAACTTCCGGCT
292


N_B11.ab1
SATPESGPGSEPATSG

CTGAAACCCCAGGTACTTCTGAAAG



SETP

CGCTACTCCTGAGTCTGGCCCAGGT





AGCGAACCTGCTACCTCTGGCTCTG





AAACCCCA





LCW0402_059_GFP-
GSEPATSGSETPGSEP
293
GGTAGCGAACCGGCAACCTCTGGCT
294


N_E11.ab1
ATSGSETPGTSTEPSE

CTGAAACTCCAGGTAGCGAACCTGC



GSAP

AACCTCCGGCTCTGAAACCCCAGGT





ACTTCTACTGAACCTTCTGAGGGCA





GCGCACCA





LCW0402_060_GFP-
GTSESATPESGPGSEP
295
GGTACTTCTGAAAGCGCTACCCCGG
296


N_F11.ab1
ATSGSETPGSEPATSG

AATCTGGCCCAGGTAGCGAACCGGC



SETP

TACTTCTGGTTCTGAAACCCCAGGT





AGCGAACCGGCTACCTCCGGTTCTG





AAACTCCA





LCW0402_061_GFP-
GTSTEPSEGSAPGTST
297
GGTACCTCTACTGAACCTTCCGAAG
298


N_G11.ab1
EPSEGSAPGTSESATP

GCAGCGCTCCAGGTACCTCTACCGA



ESGP

ACCGTCCGAGGGCAGCGCACCAGGT





ACTTCTGAAAGCGCAACCCCTGAAT





CCGGTCCA





LCW0402_065_GFP-
GSEPATSGSETPGTSE
299
GGTAGCGAACCGGCAACCTCTGGCT
300


N_A12.ab1
SATPESGPGTSESATP

CTGAAACCCCAGGTACCTCTGAAAG



ESGP

CGCTACTCCGGAATCTGGTCCAGGT





ACTTCTGAAAGCGCTACTCCGGAAT





CCGGTCCA





LCW0402_066_GFP-
GSEPATSGSETPGSEP
301
GGTAGCGAACCTGCTACCTCCGGCT
302


N_B12.ab1
ATSGSETPGTSTEPSE

CTGAAACTCCAGGTAGCGAACCGGC



GSAP

TACTTCCGGTTCTGAAACTCCAGGT





ACCTCTACCGAACCTTCCGAAGGCA





GCGCACCA





LCW0402_067_GFP-
GSEPATSGSETPGTST
303
GGTAGCGAACCTGCTACTTCTGGTT
304


N_C12.ab1
EPSEGSAPGSEPATSG

CTGAAACTCCAGGTACTTCTACCGA



SETP

ACCGTCCGAGGGTAGCGCTCCAGGT





AGCGAACCTGCTACTTCTGGTTCTG





AAACTCCA





LCW0402_069_GFP-
GTSTEPSEGSAPGTST
305
GGTACCTCTACCGAACCGTCCGAGG
306


N_D12.ab1
EPSEGSAPGSEPATSG

GTAGCGCACCAGGTACCTCTACTGA



SETP

ACCGTCTGAGGGTAGCGCTCCAGGT





AGCGAACCGGCAACCTCCGGTTCTG





AAACTCCA





LCW0402_073_GFP-
GTSTEPSEGSAPGSEP
307
GGTACTTCTACTGAACCTTCCGAAG
308


N_F12.ab1
ATSGSETPGSPAGSPT

GTAGCGCTCCAGGTAGCGAACCTGC



STEE

TACTTCTGGTTCTGAAACCCCAGGT





AGCCCGGCTGGCTCTCCGACCTCCA





CCGAGGAA





LCW0402_074_GFP-
GSEPATSGSETPGSPA
309
GGTAGCGAACCGGCTACTTCCGGCT
310


N_G12.ab1
GSPTSTEEGTSESATP

CTGAGACTCCAGGTAGCCCAGCTGG



ESGP

TTCTCCAACCTCTACTGAGGAAGGT





ACTTCTGAAAGCGCTACCCCTGAAT





CTGGTCCA





LCW0402_075_GFP-
GTSESATPESGPGSEP
311
GGTACCTCTGAAAGCGCAACTCCTG
312


N_H12.ab1
ATSGSETPGTSESATP

AGTCTGGCCCAGGTAGCGAACCTGC



ESGP

TACCTCCGGCTCTGAGACTCCAGGT





ACCTCTGAAAGCGCAACCCCGGAAT





CTGGTCCA









Example 3
Construction of XTEN_AF36 Segments

A codon library encoding sequences of 36 amino acid length was constructed. The sequences were designated XTEN_AF36. Its segments have the amino acid sequence [X]3 where X is a 12mer peptide with the sequence: GSTSESPSGTAP (SEQ ID NO: 313), GTSTPESGSASP (SEQ ID NO: 314), GTSPSGESSTAP (SEQ ID NO: 315), or GSTSSTAESPGP (SEQ ID NO: 316). The insert was obtained by annealing the following pairs of phosphorylated synthetic oligonucleotide pairs:











AF1for:







(SEQ ID NO: 317)









AGGTTCTACYAGCGAATCYCCKTCTGGYACYGCWCC







AF1rev:







(SEQ ID NO: 318)









ACCTGGWGCRGTRCCAGAMGGRGATTCGCTRGTAGA







AF2for:







(SEQ ID NO: 319)









AGGTACYTCTACYCCKGAAAGCGGYTCYGCWTCTCC







AF2rev:







(SEQ ID NO: 320)









ACCTGGAGAWGCRGARCCGCTTTCMGGRGTAGARGT







AF3for:







(SEQ ID NO: 321)









AGGTACYTCYCCKAGCGGYGAATCTTCTACYGCWCC







AF3rev:







(SEQ ID NO: 322)









ACCTGGWGCRGTAGAAGATTCRCCGCTMGGRGARGT







AF4for:







(SEQ ID NO: 323)









AGGTTCYACYAGCTCTACYGCWGAATCTCCKGGYCC







AF4rev:







(SEQ ID NO: 324)









ACCTGGRCCMGGAGATTCWGCRGTAGAGCTRGTRGA






We also annealed the phosphorylated oligonucleotide 3KpnIstopperFor: AGGTTCGTCTTCACTCGAGGGTAC (SEQ ID NO: 325) and the non-phosphorylated oligonucleotide pr_3KpnIstopperRev: CCTCGAGTGAAGACGA (SEQ ID NO: 326). The annealed oligonucleotide pairs were ligated, which resulted in a mixture of products with varying length that represents the varying number of 12mer repeats ligated to one BbsI/KpnI segment The products corresponding to the length of 36 amino acids were isolated from the mixture by preparative agarose gel electrophoresis and ligated into the BsaI/KpnI digested stuffer vector pCW0359. Most of the clones in the resulting library designated LCW0403 showed green fluorescence after induction which shows that the sequence of XTEN_AF36 had been ligated in frame with the GFP gene and most sequences of XTEN_AF36 show good expression.


We screened 96 isolates from library LCW0403 for high level of fluorescence by stamping them onto agar plate containing IPTG. The same isolates were evaluated by PCR and 48 isolates were identified that contained segments with 36 amino acids as well as strong fluorescence. These isolates were sequenced and 44 clones were identified that contained correct XTEN_AF36 segments. The file names of the nucleotide and amino acid constructs for these segments are listed in Table 10.









TABLE 10







DNA and Amino Acid Sequences for 36-mer motifs













SEQ ID

SEQ ID


File name
Amino acid sequence
NO:
Nucleotide sequence
NO:





LCW0403_004_GFP-
GTSTPESGSASPGTSP
327
GGTACTTCTACTCCGGAAAGCGGTTC
328


N_A01.ab1
SGESSTAPGTSPSGES

CGCATCTCCAGGTACTTCTCCTAGCG



STAP

GTGAATCTTCTACTGCTCCAGGTACC





TCTCCTAGCGGCGAATCTTCTACTGC





TCCA





LCW0403_005_GFP-
GTSPSGESSTAPGSTS
329
GGTACTTCTCCGAGCGGTGAATCTTC
330


N_B01.ab1
STAESPGPGTSPSGES

TACCGCACCAGGTTCTACTAGCTCTA



STAP

CCGCTGAATCTCCGGGCCCAGGTACT





TCTCCGAGCGGTGAATCTTCTACTGC





TCCA





LCW0403_006_GFP-
GSTSSTAESPGPGTSP
331
GGTTCCACCAGCTCTACTGCTGAATC
332


N_C01.ab1
SGESSTAPGTSTPESG

TCCTGGTCCAGGTACCTCTCCTAGCG



SASP

GTGAATCTTCTACTGCTCCAGGTACT





TCTACTCCTGAAAGCGGCTCTGCTTC





TCCA





LCW0403_007_GFP-
GSTSSTAESPGPGSTS
333
GGTTCTACCAGCTCTACTGCAGAATC
334


N_D01.ab1
STAESPGPGTSPSGES

TCCTGGCCCAGGTTCCACCAGCTCTA



STAP

CCGCAGAATCTCCGGGTCCAGGTACT





TCCCCTAGCGGTGAATCTTCTACCGC





ACCA





LCW0403_008_GFP-
GSTSSTAESPGPGTSP
335
GGTTCTACTAGCTCTACTGCTGAATC
336


N_E01.ab1
SGESSTAPGTSTPESG

TCCTGGCCCAGGTACTTCTCCTAGCG



SASP

GTGAATCTTCTACCGCTCCAGGTACC





TCTACTCCGGAAAGCGGTTCTGCATC





TCCA





LCW0403_010_GFP-
GSTSSTAESPGPGTST
337
GGTTCTACCAGCTCTACCGCAGAATC
338


N_F01.ab1
PESGSASPGSTSESPS

TCCTGGTCCAGGTACCTCTACTCCGG



GTAP

AAAGCGGCTCTGCATCTCCAGGTTCT





ACTAGCGAATCTCCTTCTGGCACTGC





ACCA





LCW0403_011_GFP-
GSTSSTAESPGPGTST
339
GGTTCTACTAGCTCTACTGCAGAATC
340


N_G01.ab1
PESGSASPGTSTPESG

TCCTGGCCCAGGTACCTCTACTCCGG



SASP

AAAGCGGCTCTGCATCTCCAGGTACT





TCTACCCCTGAAAGCGGTTCTGCATC





TCCA





LCW0403_012_GFP-
GSTSESPSGTAPGTSP
341
GGTTCTACCAGCGAATCTCCTTCTGG
342


N_H01.ab1
SGESSTAPGSTSESPS

CACCGCTCCAGGTACCTCTCCTAGCG



GTAP

GCGAATCTTCTACCGCTCCAGGTTCT





ACTAGCGAATCTCCTTCTGGCACTGC





ACCA





LCW0403_013_GFP-
GSTSSTAESPGPGSTS
343
GGTTCCACCAGCTCTACTGCAGAATC
344


N_A02.ab1
STAESPGPGTSPSGES

TCCGGGCCCAGGTTCTACTAGCTCTA



STAP

CTGCAGAATCTCCGGGTCCAGGTACT





TCTCCTAGCGGCGAATCTTCTACCGC





TCCA





LCW0403_014_GFP-
GSTSSTAESPGPGTST
345
GGTTCCACTAGCTCTACTGCAGAATC
346


N_B02.ab1
PESGSASPGSTSESPS

TCCTGGCCCAGGTACCTCTACCCCTG



GTAP

AAAGCGGCTCTGCATCTCCAGGTTCT





ACCAGCGAATCCCCGTCTGGCACCGC





ACCA





LCW0403_015_GFP-
GSTSSTAESPGPGSTS
347
GGTTCTACTAGCTCTACTGCTGAATC
348


N_C02.ab1
STAESPGPGTSPSGES

TCCGGGTCCAGGTTCTACCAGCTCTA



STAP

CTGCTGAATCTCCTGGTCCAGGTACC





TCCCCGAGCGGTGAATCTTCTACTGC





ACCA





LCW0403_017_GFP-
GSTSSTAESPGPGSTS
349
GGTTCTACCAGCTCTACCGCTGAATC
350


N_D02.ab1
ESPSGTAPGSTSSTAE

TCCTGGCCCAGGTTCTACCAGCGAAT



SPGP

CCCCGTCTGGCACCGCACCAGGTTCT





ACTAGCTCTACCGCTGAATCTCCGGG





TCCA





LCW0403_018_GFP-
GSTSSTAESPGPGSTS
351
GGTTCTACCAGCTCTACCGCAGAATC
352


N_E02.ab1
STAESPGPGSTSSTAE

TCCTGGCCCAGGTTCCACTAGCTCTA



SPGP

CCGCTGAATCTCCTGGTCCAGGTTCT





ACTAGCTCTACCGCTGAATCTCCTGG





TCCA





LCW0403_019_GFP-
GSTSESPSGTAPGSTS
353
GGTTCTACTAGCGAATCCCCTTCTGG
354


N_F02.ab1
STAESPGPGSTSSTAE

TACTGCTCCAGGTTCCACTAGCTCTA



SPGP

CCGCTGAATCTCCTGGCCCAGGTTCC





ACTAGCTCTACTGCAGAATCTCCTGG





TCCA





LCW0403_023_GFP-
GSTSESPSGTAPGSTS
355
GGTTCTACTAGCGAATCTCCTTCTGG
356


N_H02.ab1
ESPSGTAPGSTSESPS

TACCGCTCCAGGTTCTACCAGCGAAT



GTAP

CCCCGTCTGGTACTGCTCCAGGTTCT





ACCAGCGAATCTCCTTCTGGTACTGC





ACCA





LCW0403_024_GFP-
GSTSSTAESPGPGSTS
357
GGTTCCACCAGCTCTACTGCTGAATC
358


N_A03.ab1
STAESPGPGSTSSTAE

TCCTGGCCCAGGTTCTACCAGCTCTA



SPGP

CTGCTGAATCTCCGGGCCCAGGTTCC





ACCAGCTCTACCGCTGAATCTCCGGG





TCCA





LCW0403_025_GFP-
GSTSSTAESPGPGSTS
359
GGTTCCACTAGCTCTACCGCAGAATC
360


N_B03.ab1
STAESPGPGTSPSGES

TCCTGGTCCAGGTTCTACTAGCTCTA



STAP

CTGCTGAATCTCCGGGTCCAGGTACC





TCCCCTAGCGGCGAATCTTCTACCGC





TCCA





LCW0403_028_GFP-
GSSPSASTGTGPGSST
361
GGTTCTAGCCCTTCTGCTTCCACCGG
362


N_D03.ab1
PSGATGSPGSSTPSGA

TACCGGCCCAGGTAGCTCTACTCCGT



TGSP

CTGGTGCAACTGGCTCTCCAGGTAGC





TCTACTCCGTCTGGTGCAACCGGCTC





CCCA





LCW0403_029_GFP-
GTSPSGESSTAPGTST
363
GGTACTTCCCCTAGCGGTGAATCTTC
364


N_E03.ab1
PESGSASPGSTSSTAE

TACTGCTCCAGGTACCTCTACTCCGG



SPGP

AAAGCGGCTCCGCATCTCCAGGTTCT





ACTAGCTCTACTGCTGAATCTCCTGG





TCCA





LCW0403_030_GFP-
GSTSSTAESPGPGSTS
365
GGTTCTACTAGCTCTACCGCTGAATC
366


N_F03.ab1
STAESPGPGTSTPESG

TCCGGGTCCAGGTTCTACCAGCTCTA



SASP

CTGCAGAATCTCCTGGCCCAGGTACT





TCTACTCCGGAAAGCGGTTCCGCTTC





TCCA





LCW0403_031_GFP-
GTSPSGESSTAPGSTS
367
GGTACTTCTCCTAGCGGTGAATCTTC
368


N_G03.ab1
STAESPGPGTSTPESG

TACCGCTCCAGGTTCTACCAGCTCTA



SASP

CTGCTGAATCTCCTGGCCCAGGTACT





TCTACCCCGGAAAGCGGCTCCGCTTC





TCCA





LCW0403_033_GFP-
GSTSESPSGTAPGSTS
369
GGTTCTACTAGCGAATCCCCTTCTGG
370


N_H03.ab1
STAESPGPGSTSSTAE

TACTGCACCAGGTTCTACCAGCTCTA



SPGP

CTGCTGAATCTCCGGGCCCAGGTTCC





ACCAGCTCTACCGCAGAATCTCCTGG





TCCA





LCW0403_035_GFP-
GSTSSTAESPGPGSTS
371
GGTTCCACCAGCTCTACCGCTGAATC
372


N_A04.ab1
ESPSGTAPGSTSSTAE

TCCGGGCCCAGGTTCTACCAGCGAAT



SPGP

CCCCTTCTGGCACTGCACCAGGTTCT





ACTAGCTCTACCGCAGAATCTCCGGG





CCCA





LCW0403_036_GFP-
GSTSSTAESPGPGTSP
373
GGTTCTACCAGCTCTACTGCTGAATC
374


N_B04.ab1
SGESSTAPGTSTPESG

TCCGGGTCCAGGTACTTCCCCGAGCG



SASP

GTGAATCTTCTACTGCACCAGGTACT





TCTACTCCGGAAAGCGGTTCCGCTTC





TCCA





LCW0403_039_GFP-
GSTSESPSGTAPGSTS
375
GGTTCTACCAGCGAATCTCCTTCTGG
376


N_C04.ab1
ESPSGTAPGTSPSGES

CACCGCTCCAGGTTCTACTAGCGAAT



STAP

CCCCGTCTGGTACCGCACCAGGTACT





TCTCCTAGCGGCGAATCTTCTACCGC





ACCA





LCW0403_041_GFP-
GSTSESPSGTAPGSTS
377
GGTTCTACCAGCGAATCCCCTTCTGG
378


N_D04.ab1
ESPSGTAPGTSTPESG

TACTGCTCCAGGTTCTACCAGCGAAT



SASP

CCCCTTCTGGCACCGCACCAGGTACT





TCTACCCCTGAAAGCGGCTCCGCTTC





TCCA





LCW0403_044_GFP-
GTSTPESGSASPGSTS
379
GGTACCTCTACTCCTGAAAGCGGTTC
380


N_E04.ab1
STAESPGPGSTSSTAE

TGCATCTCCAGGTTCCACTAGCTCTA



SPGP

CCGCAGAATCTCCGGGCCCAGGTTCT





ACTAGCTCTACTGCTGAATCTCCTGG





CCCA





LCW0403_046_GFP-
GSTSESPSGTAPGSTS
381
GGTTCTACCAGCGAATCCCCTTCTGG
382


N_F04.ab1
ESPSGTAPGTSPSGES

CACTGCACCAGGTTCTACTAGCGAAT



STAP

CCCCTTCTGGTACCGCACCAGGTACT





TCTCCGAGCGGCGAATCTTCTACTGC





TCCA





LCW0403_047_GFP-
GSTSSTAESPGPGSTS
383
GGTTCTACTAGCTCTACCGCTGAATC
384


N_G04.ab1
STAESPGPGSTSESPS

TCCTGGCCCAGGTTCCACTAGCTCTA



GTAP

CCGCAGAATCTCCGGGCCCAGGTTCT





ACTAGCGAATCCCCTTCTGGTACCGC





TCCA





LCW0403_049_GFP-
GSTSSTAESPGPGSTS
385
GGTTCCACCAGCTCTACTGCAGAATC
386


N_H04.ab1
STAESPGPGTSTPESG

TCCTGGCCCAGGTTCTACTAGCTCTA



SASP

CCGCAGAATCTCCTGGTCCAGGTACC





TCTACTCCTGAAAGCGGTTCCGCATC





TCCA





LCW0403_051_GFP-
GSTSSTAESPGPGSTS
387
GGTTCTACTAGCTCTACTGCTGAATC
388


N_A05.ab1
STAESPGPGSTSESPS

TCCGGGCCCAGGTTCTACTAGCTCTA



GTAP

CCGCTGAATCTCCGGGTCCAGGTTCT





ACTAGCGAATCTCCTTCTGGTACCGC





TCCA





LCW0403_053_GFP-
GTSPSGESSTAPGSTS
389
GGTACCTCCCCGAGCGGTGAATCTTC
390


N_B05.ab1
ESPSGTAPGSTSSTAE

TACTGCACCAGGTTCTACTAGCGAAT



SPGP

CCCCTTCTGGTACTGCTCCAGGTTCC





ACCAGCTCTACTGCAGAATCTCCGGG





TCCA





LCW0403_054_GFP-
GSTSESPSGTAPGTSP
391
GGTTCTACTAGCGAATCCCCGTCTGG
392


N_C05.ab1
SGESSTAPGSTSSTAE

TACTGCTCCAGGTACTTCCCCTAGCG



SPGP

GTGAATCTTCTACTGCTCCAGGTTCT





ACCAGCTCTACCGCAGAATCTCCGGG





TCCA





LCW0403_057_GFP-
GSTSSTAESPGPGSTS
393
GGTTCTACCAGCTCTACCGCTGAATC
394


N_D05.ab1
ESPSGTAPGTSPSGES

TCCTGGCCCAGGTTCTACTAGCGAAT



STAP

CTCCGTCTGGCACCGCACCAGGTACT





TCCCCTAGCGGTGAATCTTCTACTGC





ACCA





LCW0403_058_GFP-
GSTSESPSGTAPGSTS
395
GGTTCTACTAGCGAATCTCCTTCTGG
396


N_E05.ab1
ESPSGTAPGTSTPESG

CACTGCACCAGGTTCTACCAGCGAAT



SASP

CTCCGTCTGGCACTGCACCAGGTACC





TCTACCCCTGAAAGCGGTTCCGCTTC





TCCA





LCW0403_060_GFP-
GTSTPESGSASPGSTS
397
GGTACCTCTACTCCGGAAAGCGGTTC
398


N_F05.ab1
ESPSGTAPGSTSSTAE

CGCATCTCCAGGTTCTACCAGCGAAT



SPGP

CCCCGTCTGGCACCGCACCAGGTTCT





ACTAGCTCTACTGCTGAATCTCCGGG





CCCA





LCW0403_063_GFP-
GSTSSTAESPGPGTSP
399
GGTTCTACTAGCTCTACTGCAGAATC
400


N_G05.ab1
SGESSTAPGTSPSGES

TCCGGGCCCAGGTACCTCTCCTAGCG



STAP

GTGAATCTTCTACCGCTCCAGGTACT





TCTCCGAGCGGTGAATCTTCTACCGC





TCCA





LCW0403_064_GFP-
GTSPSGESSTAPGTSP
401
GGTACCTCCCCTAGCGGCGAATCTTC
402


N_H05.ab1
SGESSTAPGTSPSGES

TACTGCTCCAGGTACCTCTCCTAGCG



STAP

GCGAATCTTCTACCGCTCCAGGTACC





TCCCCTAGCGGTGAATCTTCTACCGC





ACCA





LCW0403_065_GFP-
GSTSSTAESPGPGTST
403
GGTTCCACTAGCTCTACTGCTGAATC
404


N_A06.ab1
PESGSASPGSTSESPS

TCCTGGCCCAGGTACTTCTACTCCGG



GTAP

AAAGCGGTTCCGCTTCTCCAGGTTCT





ACTAGCGAATCTCCGTCTGGCACCGC





ACCA





LCW0403_066_GFP-
GSTSESPSGTAPGTSP
405
GGTTCTACTAGCGAATCTCCGTCTGG
406


N_B06.ab1
SGESSTAPGTSPSGES

CACTGCTCCAGGTACTTCTCCTAGCG



STAP

GTGAATCTTCTACCGCTCCAGGTACT





TCCCCTAGCGGCGAATCTTCTACCGC





TCCA





LCW0403_067_GFP-
GSTSESPSGTAPGTST
407
GGTTCTACTAGCGAATCTCCTTCTGG
408


N_C06.ab1
PESGSASPGSTSSTAE

TACCGCTCCAGGTACTTCTACCCCTG



SPGP

AAAGCGGCTCCGCTTCTCCAGGTTCC





ACTAGCTCTACCGCTGAATCTCCGGG





TCCA





LCW0403_068_GFP-
GSTSSTAESPGPGSTS
409
GGTTCCACTAGCTCTACTGCTGAATC
410


N_D06.ab1
STAESPGPGSTSESPS

TCCTGGCCCAGGTTCTACCAGCTCTA



GTAP

CCGCTGAATCTCCTGGCCCAGGTTCT





ACCAGCGAATCTCCGTCTGGCACCGC





ACCA





LCW0403_069_GFP-
GSTSESPSGTAPGTST
411
GGTTCTACTAGCGAATCCCCGTCTGG
412


N_E06.ab1
PESGSASPGTSTPESG

TACCGCACCAGGTACTTCTACCCCGG



SASP

AAAGCGGCTCTGCTTCTCCAGGTACT





TCTACCCCGGAAAGCGGCTCCGCATC





TCCA





LCW0403_070_GFP-
GSTSESPSGTAPGTST
413
GGTTCTACTAGCGAATCCCCGTCTGG
414


N_F06.ab1
PESGSASPGTSTPESG

TACTGCTCCAGGTACTTCTACTCCTG



SASP

AAAGCGGTTCCGCTTCTCCAGGTACC





TCTACTCCGGAAAGCGGTTCTGCATC





TCCA









Example 4
Construction of XTEN_AG36 Segments

A codon library encoding sequences of 36 amino acid length was constructed. The sequences were designated XTEN_AG36. Its segments have the amino acid sequence [X]3 where X is a 12mer peptide with the sequence: GTPGSGTASSSP (SEQ ID NO: 415), GSSTPSGATGSP (SEQ ID NO: 416), GSSPSASTGTGP (SEQ ID NO: 417), or GASPGTSSTGSP (SEQ ID NO: 418). The insert was obtained by annealing the following pairs of phosphorylated synthetic oligonucleotide pairs:











AG1for:







(SEQ ID NO: 419)









AGGTACYCCKGGYAGCGGTACYGCWTCTTCYTCTCC







AG1rev:







(SEQ ID NO: 420)









ACCTGGAGARGAAGAWGCRGTACCGCTRCCMGGRGT







AG2for:







(SEQ ID NO: 421)









AGGTAGCTCTACYCCKTCTGGTGCWACYGGYTCYCC







AG2rev:







(SEQ ID NO: 422)









ACCTGGRGARCCRGTWGCACCAGAMGGRGTAGAGCT







AG3for:







(SEQ ID NO: 423)









AGGTTCTAGCCCKTCTGCWTCYACYGGTACYGGYCC







AG3rev:







(SEQ ID NO: 424)









ACCTGGRCCRGTACCRGTRGAWGCAGAMGGGCTAGA







AG4for:







(SEQ ID NO: 425)









AGGTGCWTCYCCKGGYACYAGCTCTACYGGTTCTCC







AG4rev:







(SEQ ID NO: 426)









ACCTGGAGAACCRGTAGAGCTRGTRCCMGGRGAWGC






We also annealed the phosphorylated oligonucleotide 3KpnIstopperFor: AGGTTCGTCTTCACTCGAGGGTAC (SEQ ID NO: 427) and the non-phosphorylated oligonucleotide pr_3KpnIstopperRev: CCTCGAGTGAAGACGA (SEQ ID NO: 428). The annealed oligonucleotide pairs were ligated, which resulted in a mixture of products with varying length that represents the varying number of 12mer repeats ligated to one BbsI/KpnI segment. The products corresponding to the length of 36 amino acids were isolated from the mixture by preparative agarose gel electrophoresis and ligated into the BsaI/KpnI digested stuffer vector pCW0359. Most of the clones in the resulting library designated LCW0404 showed green fluorescence after induction which shows that the sequence of XTEN_AG36 had been ligated in frame with the GFP gene and most sequences of XTEN_AG36 show good expression.


We screened 96 isolates from library LCW0404 for high level of fluorescence by stamping them onto agar plate containing IPTG. The same isolates were evaluated by PCR and 48 isolates were identified that contained segments with 36 amino acids as well as strong fluorescence. These isolates were sequenced and 44 clones were identified that contained correct XTEN_AG36 segments. The file names of the nucleotide and amino acid constructs for these segments are listed in Table 11.









TABLE 11







DNA and Amino Acid Sequences for 36-mer motifs













SEQ ID

SEQ ID


File name
Amino acid sequence
NO:
Nucleotide sequence
NO:





LCW0404_001_GFP-
GASPGTSSTGSPGTPG
429
GGTGCATCCCCGGGCACTAGCTCTAC
430


N_A07.ab1
SGTASSSPGSSTPSGA

CGGTTCTCCAGGTACTCCTGGTAGCG



TGSP

GTACTGCTTCTTCTTCTCCAGGTAGCT





CTACTCCTTCTGGTGCTACTGGTTCTC





CA





LCW0404_003_GFP-
GSSTPSGATGSPGSSP
431
GGTAGCTCTACCCCTTCTGGTGCTACC
432


N_B07.ab1
SASTGTGPGSSTPSGA

GGCTCTCCAGGTTCTAGCCCGTCTGCT



TGSP

TCTACCGGTACCGGTCCAGGTAGCTCT





ACCCCTTCTGGTGCTACTGGTTCTCCA





LCW0404_006_GFP-
GASPGTSSTGSPGSSP
433
GGTGCATCTCCGGGTACTAGCTCTACC
434


N_C07.ab1
SASTGTGPGSSTPSGA

GGTTCTCCAGGTTCTAGCCCTTCTGCT



TGSP

TCCACTGGTACCGGCCCAGGTAGCTC





TACCCCGTCTGGTGCTACTGGTTCCCCA





LCW0404_007_GFP-
GTPGSGTASSSPGSST
435
GGTACTCCGGGCAGCGGTACTGCTTC
436


N_D07.ab1
PSGATGSPGASPGTSS

TTCCTCTCCAGGTAGCTCTACCCCTTC



TGSP

TGGTGCAACTGGTTCCCCAGGTGCAT





CCCCTGGTACTAGCTCTACCGGTTCTC





CA





LCW0404_009_GFP-
GTPGSGTASSSPGASP
437
GGTACCCCTGGCAGCGGTACTGCTTCT
438


N_E07.ab1
GTSSTGSPGSRPSAST

TCTTCTCCAGGTGCTTCCCCTGGTACC



GTGP

AGCTCTACCGGTTCTCCAGGTTCTAGA





CCTTCTGCATCCACCGGTACTGGTCCA





LCW0404_011_GFP-
GASPGTSSTGSPGSST
439
GGTGCATCTCCTGGTACCAGCTCTACC
440


N_F07.ab1
PSGATGSPGASPGTSS

GGTTCTCCAGGTAGCTCTACTCCTTCT



TGSP

GGTGCTACTGGCTCTCCAGGTGCTTCC





CCGGGTACCAGCTCTACCGGTTCTCCA





LCW0404_012_GFP-
GTPGSGTASSSPGSST
441
GGTACCCCGGGCAGCGGTACCGCATC
442


N_G07.ab1
PSGATGSPGSSTPSGA

TTCCTCTCCAGGTAGCTCTACCCCGTC



TGSP

TGGTGCTACCGGTTCCCCAGGTAGCTC





TACCCCGTCTGGTGCAACCGGCTCCCCA





LCW0404_014_GFP-
GASPGTSSTGSPGASP
443
GGTGCATCTCCGGGCACTAGCTCTACT
444


N_H07.ab1
GTSSTGSPGASPGTSS

GGTTCTCCAGGTGCATCCCCTGGCACT



TGSP

AGCTCTACTGGTTCTCCAGGTGCTTCT





CCTGGTACCAGCTCTACTGGTTCTCCA





LCW0404_015_GFP-
GSSTPSGATGSPGSSP
445
GGTAGCTCTACTCCGTCTGGTGCAACC
446


N_A08.ab1
SASTGTGPGASPGTSS

GGCTCCCCAGGTTCTAGCCCGTCTGCT



TGSP

TCCACTGGTACTGGCCCAGGTGCTTCC





CCGGGCACCAGCTCTACTGGTTCTCCA





LCW0404_016_GFP-
GSSTPSGATGSPGSST
447
GGTAGCTCTACTCCTTCTGGTGCTACC
448


N_B08.ab1
PSGATGSPGTPGSGT

GGTTCCCCAGGTAGCTCTACTCCTTCT



ASSSP

GGTGCTACTGGTTCCCCAGGTACTCCG





GGCAGCGGTACTGCTTCTTCCTCTCCA





LCW0404_017_GFP-
GSSTPSGATGSPGSST
449
GGTAGCTCTACTCCGTCTGGTGCAACC
450


N_C08.ab1
PSGATGSPGASPGTSS

GGTTCCCCAGGTAGCTCTACTCCTTCT



TGSP

GGTGCTACTGGCTCCCCAGGTGCATC





CCCTGGCACCAGCTCTACCGGTTCTCCA





LCW0404_018_GFP-
GTPGSGTASSSPGSSP
451
GGTACTCCTGGTAGCGGTACCGCATC
452


N_D08.ab1
SASTGTGPGSSTPSGA

TTCCTCTCCAGGTTCTAGCCCTTCTGC



TGSP

ATCTACCGGTACCGGTCCAGGTAGCT





CTACTCCTTCTGGTGCTACTGGCTCTC





CA





LCW0404_023_GFP-
GASPGTSSTGSPGSSP
453
GGTGCTTCCCCGGGCACTAGCTCTACC
454


N_F08.ab1
SASTGTGPGTPGSGT

GGTTCTCCAGGTTCTAGCCCTTCTGCA



ASSSP

TCTACTGGTACTGGCCCAGGTACTCCG





GGCAGCGGTACTGCTTCTTCCTCTCCA





LCW0404_025_GFP-
GSSTPSGATGSPGSST
455
GGTAGCTCTACTCCGTCTGGTGCTACC
456


N_G08.ab1
PSGATGSPGASPGTSS

GGCTCTCCAGGTAGCTCTACCCCTTCT



TGSP

GGTGCAACCGGCTCCCCAGGTGCTTC





TCCGGGTACCAGCTCTACTGGTTCTCCA





LCW0404_029_GFP-
GTPGSGTASSSPGSST
457
GGTACCCCTGGCAGCGGTACCGCTTC
458


N_A09.ab1
PSGATGSPGSSPSAST

TTCCTCTCCAGGTAGCTCTACCCCGTC



GTGP

TGGTGCTACTGGCTCTCCAGGTTCTAG





CCCGTCTGCATCTACCGGTACCGGCCCA





LCW0404_030_GFP-
GSSTPSGATGSPGTPG
459
GGTAGCTCTACTCCTTCTGGTGCAACC
460


N_B09.ab1
SGTASSSPGTPGSGTA

GGCTCCCCAGGTACCCCGGGCAGCGG



SSSP

TACCGCATCTTCCTCTCCAGGTACTCC





GGGTAGCGGTACTGCTTCTTCTTCTCCA





LCW0404_031_GFP-
GTPGSGTASSSPGSST
461
GGTACCCCGGGTAGCGGTACTGCTTC
462


N_C09.ab1
PSGATGSPGASPGTSS

TTCCTCTCCAGGTAGCTCTACCCCTTC



TGSP

TGGTGCAACCGGCTCTCCAGGTGCTTC





TCCGGGCACCAGCTCTACCGGTTCTCCA





LCW0404_034_GFP-
GSSTPSGATGSPGSST
463
GGTAGCTCTACCCCGTCTGGTGCTACC
464


N_D09.ab1
PSGATGSPGASPGTSS

GGCTCTCCAGGTAGCTCTACCCCGTCT



TGSP

GGTGCAACCGGCTCCCCAGGTGCATC





CCCGGGTACTAGCTCTACCGGTTCTCCA





LCW0404_035_GFP-
GASPGTSSTGSPGTPG
465
GGTGCTTCTCCGGGCACCAGCTCTACT
466


N_E09.ab1
SGTASSSPGSSTPSGA

GGTTCTCCAGGTACCCCGGGCAGCGG



TGSP

TACCGCATCTTCTTCTCCAGGTAGCTC





TACTCCTTCTGGTGCAACTGGTTCTCCA





LCW0404_036_GFP-
GSSPSASTGTGPGSST
467
GGTTCTAGCCCGTCTGCTTCCACCGGT
468


N_F09.ab1
PSGATGSPGTPGSGT

ACTGGCCCAGGTAGCTCTACCCCGTCT



ASSSP

GGTGCAACTGGTTCCCCAGGTACCCC





TGGTAGCGGTACCGCTTCTTCTTCTCCA





LCW0404_037_GFP-
GASPGTSSTGSPGSSP
469
GGTGCTTCTCCGGGCACCAGCTCTACT
470


N_G09.ab1
SASTGTGPGSSTPSGA

GGTTCTCCAGGTTCTAGCCCTTCTGCA



TGSP

TCCACCGGTACCGGTCCAGGTAGCTC





TACCCCTTCTGGTGCAACCGGCTCTCCA





LCW0404_040_GFP-
GASPGTSSTGSPGSST
471
GGTGCATCCCCGGGCACCAGCTCTAC
472


N_H09.ab1
PSGATGSPGSSTPSGA

CGGTTCTCCAGGTAGCTCTACCCCGTC



TGSP

TGGTGCTACCGGCTCTCCAGGTAGCTC





TACCCCGTCTGGTGCTACTGGCTCTCCA





LCW0404_041_GFP-
GTPGSGTASSSPGSST
473
GGTACCCCTGGTAGCGGTACTGCTTCT
474


N_A10.ab1
PSGATGSPGTPGSGT

TCCTCTCCAGGTAGCTCTACTCCGTCT



ASSSP

GGTGCTACCGGTTCTCCAGGTACCCC





GGGTAGCGGTACCGCATCTTCTTCTCCA





LCW0404_043_GFP-
GSSPSASTGTGPGSST
475
GGTTCTAGCCCTTCTGCTTCCACCGGT
476


N_C10.ab1
PSGATGSPGSSTPSGA

ACTGGCCCAGGTAGCTCTACCCCTTCT



TGSP

GGTGCTACCGGCTCCCCAGGTAGCTC





TACTCCTTCTGGTGCAACTGGCTCTCCA





LCW0404_045_GFP-
GASPGTSSTGSPGSSP
477
GGTGCTTCTCCTGGCACCAGCTCTACT
478


N_D10.ab1
SASTGTGPGSSPSAST

GGTTCTCCAGGTTCTAGCCCTTCTGCT



GTGP

TCTACCGGTACTGGTCCAGGTTCTAGC





CCTTCTGCATCCACTGGTACTGGTCCA





LCW0404_047_GFP-
GTPGSGTASSSPGASP
479
GGTACTCCTGGCAGCGGTACCGCTTCT
480


N_F10.ab1
GTSSTGSPGASPGTSS

TCTTCTCCAGGTGCTTCTCCTGGTACT



TGSP

AGCTCTACTGGTTCTCCAGGTGCTTCT





CCGGGCACTAGCTCTACTGGTTCTCCA





LCW0404_048_GFP-
GSSTPSGATGSPGASP
481
GGTAGCTCTACCCCGTCTGGTGCTACC
482


N_G10.ab1
GTSSTGSPGSSTPSGA

GGTTCCCCAGGTGCTTCTCCTGGTACT



TGSP

AGCTCTACCGGTTCTCCAGGTAGCTCT





ACCCCGTCTGGTGCTACTGGCTCTCCA





LCW0404_049_GFP-
GSSTPSGATGSPGTPG
483
GGTAGCTCTACCCCGTCTGGTGCTACT
484


N_H10.ab1
SGTASSSPGSSTPSGA

GGTTCTCCAGGTACTCCGGGCAGCGG



TGSP

TACTGCTTCTTCCTCTCCAGGTAGCTC





TACCCCTTCTGGTGCTACTGGCTCTCCA





LCW0404_050_GFP-
GASPGTSSTGSPGSSP
485
GGTGCATCTCCTGGTACCAGCTCTACT
486


N_A11.ab1
SASTGTGPGSSTPSGA

GGTTCTCCAGGTTCTAGCCCTTCTGCT



TGSP

TCTACCGGTACCGGTCCAGGTAGCTCT





ACTCCTTCTGGTGCTACCGGTTCTCCA





LCW0404_051_GFP-
GSSTPSGATGSPGSST
487
GGTAGCTCTACCCCGTCTGGTGCTACT
488


N_B11.ab1
PSGATGSPGSSTPSGA

GGCTCTCCAGGTAGCTCTACTCCTTCT



TGSP

GGTGCTACTGGTTCCCCAGGTAGCTCT





ACCCCGTCTGGTGCAACTGGCTCTCCA





LCW0404_052_GFP-
GASPGTSSTGSPGTPG
489
GGTGCATCCCCGGGTACCAGCTCTAC
490


N_C11.ab1
SGTASSSPGASPGTSS

CGGTTCTCCAGGTACTCCTGGCAGCG



TGSP

GTACTGCATCTTCCTCTCCAGGTGCTT





CTCCGGGCACCAGCTCTACTGGTTCTC





CA





LCW0404_053_GFP-
GSSTPSGATGSPGSSP
491
GGTAGCTCTACTCCTTCTGGTGCAACT
492


N_D11.ab1
SASTGTGPGASPGTSS

GGTTCTCCAGGTTCTAGCCCGTCTGCA



TGSP

TCCACTGGTACCGGTCCAGGTGCTTCC





CCTGGCACCAGCTCTACCGGTTCTCCA





LCW0404_057_GFP-
GASPGTSSTGSPGSST
493
GGTGCATCTCCTGGTACTAGCTCTACT
494


N_E11.ab1
PSGATGSPGSSPSAST

GGTTCTCCAGGTAGCTCTACTCCGTCT



GTGP

GGTGCAACCGGCTCTCCAGGTTCTAG





CCCTTCTGCATCTACCGGTACTGGTCCA





LCW0404_060_GFP-
GTPGSGTASSSPGSST
495
GGTACTCCTGGCAGCGGTACCGCATC
496


N_F11.ab1
PSGATGSPGASPGTSS

TTCCTCTCCAGGTAGCTCTACTCCGTC



TGSP

TGGTGCAACTGGTTCCCCAGGTGCTTC





TCCGGGTACCAGCTCTACCGGTTCTCCA





LCW0404_062_GFP-
GSSTPSGATGSPGTPG
497
GGTAGCTCTACCCCGTCTGGTGCAAC
498


N_G11.ab1
SGTASSSPGSSTPSGA

CGGCTCCCCAGGTACTCCTGGTAGCG



TGSP

GTACCGCTTCTTCTTCTCCAGGTAGCT





CTACTCCGTCTGGTGCTACCGGCTCCC





CA





LCW0404_066_GFP-
GSSPSASTGTGPGSSP
499
GGTTCTAGCCCTTCTGCATCCACCGGT
500


N_H11.ab1
SASTGTGPGASPGTSS

ACCGGCCCAGGTTCTAGCCCGTCTGCT



TGSP

TCTACCGGTACTGGTCCAGGTGCTTCT





CCGGGTACTAGCTCTACTGGTTCTCCA





LCW0404_067_GFP-
GTPGSGTASSSPGSST
501
GGTACCCCGGGTAGCGGTACCGCTTC
502


N_A12.ab1
PSGATGSPGSNPSAST

TTCTTCTCCAGGTAGCTCTACTCCGTC



GTGP

TGGTGCTACCGGCTCTCCAGGTTCTAA





CCCTTCTGCATCCACCGGTACCGGCCCA





LCW0404_068_GFP-
GSSPSASTGTGPGSST
503
GGTTCTAGCCCTTCTGCATCTACTGGT
504


N_B12.ab1
PSGATGSPGASPGTSS

ACTGGCCCAGGTAGCTCTACTCCTTCT



TGSP

GGTGCTACCGGCTCTCCAGGTGCTTCT





CCGGGTACTAGCTCTACCGGTTCTCCA





LCW0404_069_GFP-
GSSTPSGATGSPGASP
505
GGTAGCTCTACCCCTTCTGGTGCAACC
506


N_C12.ab1
GTSSTGSPGTPGSGTA

GGCTCTCCAGGTGCATCCCCGGGTAC



SSSP

CAGCTCTACCGGTTCTCCAGGTACTCC





GGGTAGCGGTACCGCTTCTTCCTCTCCA





LCW0404_070_GFP-
GSSTPSGATGSPGSST
507
GGTAGCTCTACTCCGTCTGGTGCAACC
508


N_D12.ab1
PSGATGSPGSSTPSGA

GGTTCCCCAGGTAGCTCTACCCCTTCT



TGSP

GGTGCAACCGGCTCCCCAGGTAGCTC





TACCCCTTCTGGTGCAACTGGCTCTCCA





LCW0404_073_GFP-
GASPGTSSTGSPGTPG
509
GGTGCTTCTCCTGGCACTAGCTCTACC
510


N_E12.ab1
SGTASSSPGSSTPSGA

GGTTCTCCAGGTACCCCTGGTAGCGG



TGSP

TACCGCATCTTCCTCTCCAGGTAGCTC





TACTCCTTCTGGTGCTACTGGTTCCCCA





LCW0404_075_GFP-
GSSTPSGATGSPGSSP
511
GGTAGCTCTACCCCGTCTGGTGCTACT
512


N_F12.ab1
SASTGTGPGSSPSAST

GGCTCCCCAGGTTCTAGCCCTTCTGCA



GTGP

TCCACCGGTACCGGTCCAGGTTCTAG





CCCGTCTGCATCTACTGGTACTGGTCCA





LCW0404_080_GFP-
GASPGTSSTGSPGSSP
513
GGTGCTTCCCCGGGCACCAGCTCTACT
514


N_G12.ab1
SASTGTGPGSSPSAST

GGTTCTCCAGGTTCTAGCCCGTCTGCT



GTGP

TCTACTGGTACTGGTCCAGGTTCTAGC





CCTTCTGCTTCCACTGGTACTGGTCCA





LCW0404_081_GFP-
GASPGTSSTGSPGSSP
515
GGTGCTTCCCCGGGTACCAGCTCTACC
516


N_H12.ab1
SASTGTGPGTPGSGT

GGTTCTCCAGGTTCTAGCCCTTCTGCT



ASSSP

TCTACCGGTACCGGTCCAGGTACCCCT





GGCAGCGGTACCGCATCTTCCTCTCCA









Example 5
Construction of XTEN_AE864

XTEN_AE864 was constructed from serial dimerization of XTEN_AE36 to AE72, 144, 288, 576 and 864. A collection of XTEN_AE72 segments was constructed from 37 different segments of XTEN_AE36. Cultures of E. coli harboring all 37 different 36-amino acid segments were mixed and plasmid was isolated. This plasmid pool was digested with BsaI/NcoI to generate the small fragment as the insert. The same plasmid pool was digested with BbsI/NcoI to generate the large fragment as the vector. The insert and vector fragments were ligated resulting in a doubling of the length and the ligation mixture was transformed into BL21Gold(DE3) cells to obtain colonies of XTEN_AE72.


This library of XTEN_AE72 segments was designated LCW0406. All clones from LCW0406 were combined and dimerized again using the same process as described above yielding library LCW0410 of XTEN_AE144. All clones from LCW0410 were combined and dimerized again using the same process as described above yielding library LCW0414 of XTEN_AE288. Two isolates LCW0414.001 and LCW0414.002 were randomly picked from the library and sequenced to verify the identities. All clones from LCW0414 were combined and dimerized again using the same process as described above yielding library LCW0418 of XTEN_AE576. We screened 96 isolates from library LCW0418 for high level of GFP fluorescence. 8 isolates with right sizes of inserts by PCR and strong fluorescence were sequenced and 2 isolates (LCW0418.018 and LCW0418.052) were chosen for future use based on sequencing and expression data.


The specific clone pCW0432 of XTEN_AE864 was constructed by combining LCW0418.018 of XTEN_AE576 and LCW0414.002 of XTEN_AE288 using the same dimerization process as described above.


Example 6
Construction of XTEN_AM144

A collection of XTEN_AM144 segments was constructed starting from 37 different segments of XTEN_AE36, 44 segments of XTEN_AF36, and 44 segments of XTEN_AG36.


Cultures of E. coli harboring all 125 different 36-amino acid segments were mixed and plasmid was isolated. This plasmid pool was digested with BsaI/NcoI to generate the small fragment as the insert. The same plasmid pool was digested with BbsI/NcoI to generate the large fragment as the vector. The insert and vector fragments were ligated resulting in a doubling of the length and the ligation mixture was transformed into BL21Gold(DE3) cells to obtain colonies of XTEN_AM72.


This library of XTEN_AM72 segments was designated LCW0461. All clones from LCW0461 were combined and dimerized again using the same process as described above yielding library LCW0462. 1512 Isolates from library LCW0462 were screened for protein expression. Individual colonies were transferred into 96 well plates and cultured overnight as starter cultures. These starter cultures were diluted into fresh autoinduction medium and cultured for 20-30 h. Expression was measured using a fluorescence plate reader with excitation at 395 nm and emission at 510 nm. 192 isolates showed high level expression and were submitted to DNA sequencing. Most clones in library LCW0462 showed good expression and similar physicochemical properties suggesting that most combinations of XTEN_AM36 segments yield useful XTEN sequences. 30 isolates from LCW0462 were chosen as a preferred collection of XTEN_AM144 segments for the construction of multifunctional proteins that contain multiple XTEN segments. The file names of the nucleotide and amino acid constructs for these segments are listed in Table 12.









TABLE 12







DNA and amino acid sequences for AM144 segments













SEQ ID

SEQ ID


Clone
Sequence Trimmed
NO:
Protein Sequence
NO:





LCW462_r1
GGTACCCCGGGCAGCGGTACCGC
517
GTPGSGTASSSPGSSTPS
518



ATCTTCCTCTCCAGGTAGCTCTAC

GATGSPGSSTPSGATGS



CCCGTCTGGTGCTACCGGTTCCC

PGSPAGSPTSTEEGTSES



CAGGTAGCTCTACCCCGTCTGGT

ATPESGPGTSTEPSEGS



GCAACCGGCTCCCCAGGTAGCCC

APGSSPSASTGTGPGSS



GGCTGGCTCTCCTACCTCTACTG

PSASTGTGPGASPGTSS



AGGAAGGTACTTCTGAAAGCGCT

TGSPGTSTEPSEGSAPG



ACTCCTGAGTCTGGTCCAGGTAC

TSTEPSEGSAPGSEPATS



CTCTACTGAACCGTCCGAAGGTA

GSETP



GCGCTCCAGGTTCTAGCCCTTCT



GCATCCACCGGTACCGGCCCAGG



TTCTAGCCCGTCTGCTTCTACCGG



TACTGGTCCAGGTGCTTCTCCGG



GTACTAGCTCTACTGGTTCTCCA



GGTACCTCTACCGAACCGTCCGA



GGGTAGCGCACCAGGTACCTCTA



CTGAACCGTCTGAGGGTAGCGCT



CCAGGTAGCGAACCGGCAACCTC



CGGTTCTGAAACTCCA





LCW462_r5
GGTTCTACCAGCGAATCCCCTTC
519
GSTSESPSGTAPGSTSES
520



TGGCACTGCACCAGGTTCTACTA

PSGTAPGTSPSGESSTAP



GCGAATCCCCTTCTGGTACCGCA

GTSTEPSEGSAPGTSTEP



CCAGGTACTTCTCCGAGCGGCGA

SEGSAPGTSESATPESG



ATCTTCTACTGCTCCAGGTACCTC

PGASPGTSSTGSPGSSTP



TACTGAACCTTCCGAAGGCAGCG

SGATGSPGASPGTSSTG



CTCCAGGTACCTCTACCGAACCG

SPGSTSESPSGTAPGSTS



TCCGAGGGCAGCGCACCAGGTAC

ESPSGTAPGTSTPESGS



TTCTGAAAGCGCAACCCCTGAAT

ASP



CCGGTCCAGGTGCATCTCCTGGT



ACCAGCTCTACCGGTTCTCCAGG



TAGCTCTACTCCTTCTGGTGCTAC



TGGCTCTCCAGGTGCTTCCCCGG



GTACCAGCTCTACCGGTTCTCCA



GGTTCTACTAGCGAATCTCCTTCT



GGCACTGCACCAGGTTCTACCAG



CGAATCTCCGTCTGGCACTGCAC



CAGGTACCTCTACCCCTGAAAGC



GGTTCCGCTTCTCCA





LCW462_r9
GGTACTTCTACCGAACCTTCCGA
521
GTSTEPSEGSAPGTSES
522



GGGCAGCGCACCAGGTACTTCTG

ATPESGPGTSESATPES



AAAGCGCTACCCCTGAGTCCGGC

GPGTSTEPSEGSAPGTS



CCAGGTACTTCTGAAAGCGCTAC

ESATPESGPGTSTEPSEG



TCCTGAATCCGGTCCAGGTACCT

SAPGTSTEPSEGSAPGS



CTACTGAACCTTCTGAGGGCAGC

EPATSGSETPGSPAGSP



GCTCCAGGTACTTCTGAAAGCGC

TSTEEGASPGTSSTGSP



TACCCCGGAGTCCGGTCCAGGTA

GSSPSASTGTGPGSSPS



CTTCTACTGAACCGTCCGAAGGT

ASTGTGP



AGCGCACCAGGTACTTCTACTGA



ACCTTCCGAAGGTAGCGCTCCAG



GTAGCGAACCTGCTACTTCTGGT



TCTGAAACCCCAGGTAGCCCGGC



TGGCTCTCCGACCTCCACCGAGG



AAGGTGCTTCTCCTGGCACCAGC



TCTACTGGTTCTCCAGGTTCTAGC



CCTTCTGCTTCTACCGGTACTGGT



CCAGGTTCTAGCCCTTCTGCATCC



ACTGGTACTGGTCCA





LCW462_r10
GGTAGCGAACCGGCAACCTCTGG
523
GSEPATSGSETPGTSES
524



CTCTGAAACCCCAGGTACCTCTG

ATPESGPGTSESATPES



AAAGCGCTACTCCGGAATCTGGT

GPGSTSESPSGTAPGSTS



CCAGGTACTTCTGAAAGCGCTAC

ESPSGTAPGTSPSGESST



TCCGGAATCCGGTCCAGGTTCTA

APGASPGTSSTGSPGSS



CCAGCGAATCTCCTTCTGGCACC

PSASTGTGPGSSTPSGA



GCTCCAGGTTCTACTAGCGAATC

TGSPGSSTPSGATGSPG



CCCGTCTGGTACCGCACCAGGTA

SSTPSGATGSPGASPGT



CTTCTCCTAGCGGCGAATCTTCTA

SSTGSP



CCGCACCAGGTGCATCTCCGGGT



ACTAGCTCTACCGGTTCTCCAGG



TTCTAGCCCTTCTGCTTCCACTGG



TACCGGCCCAGGTAGCTCTACCC



CGTCTGGTGCTACTGGTTCCCCA



GGTAGCTCTACTCCGTCTGGTGC



AACCGGTTCCCCAGGTAGCTCTA



CTCCTTCTGGTGCTACTGGCTCCC



CAGGTGCATCCCCTGGCACCAGC



TCTACCGGTTCTCCA





LCW462_r15
GGTGCTTCTCCGGGCACCAGCTC
525
GASPGTSSTGSPGSSPS
526



TACTGGTTCTCCAGGTTCTAGCCC

ASTGTGPGSSTPSGATG



TTCTGCATCCACCGGTACCGGTC

SPGTSESATPESGPGSEP



CAGGTAGCTCTACCCCTTCTGGT

ATSGSETPGSEPATSGS



GCAACCGGCTCTCCAGGTACTTC

ETPGTSESATPESGPGTS



TGAAAGCGCTACCCCGGAATCTG

TEPSEGSAPGTSTEPSEG



GCCCAGGTAGCGAACCGGCTACT

SAPGTSTEPSEGSAPGT



TCTGGTTCTGAAACCCCAGGTAG

STEPSEGSAPGSEPATS



CGAACCGGCTACCTCCGGTTCTG

GSETP



AAACTCCAGGTACTTCTGAAAGC



GCTACTCCGGAGTCCGGTCCAGG



TACCTCTACCGAACCGTCCGAAG



GCAGCGCTCCAGGTACTTCTACT



GAACCTTCTGAGGGTAGCGCTCC



AGGTACCTCTACCGAACCGTCCG



AGGGTAGCGCACCAGGTACCTCT



ACTGAACCGTCTGAGGGTAGCGC



TCCAGGTAGCGAACCGGCAACCT



CCGGTTCTGAAACTCCA





LCW462_r16
GGTACCTCTACCGAACCTTCCGA
527
GTSTEPSEGSAPGSPAG
528



AGGTAGCGCTCCAGGTAGCCCGG

SPTSTEEGTSTEPSEGSA



CAGGTTCTCCTACTTCCACTGAG

PGTSESATPESGPGSEP



GAAGGTACTTCTACCGAACCTTC

ATSGSETPGTSESATPES



TGAGGGTAGCGCACCAGGTACCT

GPGSPAGSPTSTEEGTS



CTGAAAGCGCAACTCCTGAGTCT

ESATPESGPGTSTEPSEG



GGCCCAGGTAGCGAACCTGCTAC

SAPGSEPATSGSETPGT



CTCCGGCTCTGAGACTCCAGGTA

STEPSEGSAPGSEPATS



CCTCTGAAAGCGCAACCCCGGAA

GSETP



TCTGGTCCAGGTAGCCCGGCTGG



CTCTCCTACCTCTACTGAGGAAG



GTACTTCTGAAAGCGCTACTCCT



GAGTCTGGTCCAGGTACCTCTAC



TGAACCGTCCGAAGGTAGCGCTC



CAGGTAGCGAACCTGCTACTTCT



GGTTCTGAAACTCCAGGTACTTC



TACCGAACCGTCCGAGGGTAGCG



CTCCAGGTAGCGAACCTGCTACT



TCTGGTTCTGAAACTCCA





LCW462_r20
GGTACTTCTACCGAACCGTCCGA
529
GTSTEPSEGSAPGTSTEP
530



AGGCAGCGCTCCAGGTACCTCTA

SEGSAPGTSTEPSEGSA



CTGAACCTTCCGAGGGCAGCGCT

PGTSTEPSEGSAPGTSTE



CCAGGTACCTCTACCGAACCTTC

PSEGSAPGTSTEPSEGS



TGAAGGTAGCGCACCAGGTACTT

APGTSTEPSEGSAPGTS



CTACCGAACCGTCCGAAGGCAGC

ESATPESGPGTSESATPE



GCTCCAGGTACCTCTACTGAACC

SGPGTSTEPSEGSAPGS



TTCCGAGGGCAGCGCTCCAGGTA

EPATSGSETPGSPAGSP



CCTCTACCGAACCTTCTGAAGGT

TSTEE



AGCGCACCAGGTACTTCTACCGA



ACCTTCCGAGGGCAGCGCACCAG



GTACTTCTGAAAGCGCTACCCCT



GAGTCCGGCCCAGGTACTTCTGA



AAGCGCTACTCCTGAATCCGGTC



CAGGTACTTCTACTGAACCTTCC



GAAGGTAGCGCTCCAGGTAGCGA



ACCTGCTACTTCTGGTTCTGAAA



CCCCAGGTAGCCCGGCTGGCTCT



CCGACCTCCACCGAGGAA





LCW462_r23
GGTACTTCTACCGAACCGTCCGA
531
GTSTEPSEGSAPGTSTEP
532



GGGCAGCGCTCCAGGTACTTCTA

SEGSAPGTSTEPSEGSA



CTGAACCTTCTGAAGGCAGCGCT

PGSTSESPSGTAPGSTSE



CCAGGTACTTCTACTGAACCTTC

SPSGTAPGTSTPESGSAS



CGAAGGTAGCGCACCAGGTTCTA

PGSEPATSGSETPGTSES



CCAGCGAATCCCCTTCTGGTACT

ATPESGPGTSTEPSEGS



GCTCCAGGTTCTACCAGCGAATC

APGTSTEPSEGSAPGTS



CCCTTCTGGCACCGCACCAGGTA

ESATPESGPGTSESATPE



CTTCTACCCCTGAAAGCGGCTCC

SGP



GCTTCTCCAGGTAGCGAACCTGC



AACCTCTGGCTCTGAAACCCCAG



GTACCTCTGAAAGCGCTACTCCT



GAATCTGGCCCAGGTACTTCTAC



TGAACCGTCCGAGGGCAGCGCAC



CAGGTACTTCTACTGAACCGTCT



GAAGGTAGCGCACCAGGTACTTC



TGAAAGCGCAACCCCGGAATCCG



GCCCAGGTACCTCTGAAAGCGCA



ACCCCGGAGTCCGGCCCA





LCW462_r24
GGTAGCTCTACCCCTTCTGGTGCT
533
GSSTPSGATGSPGSSPS
534



ACCGGCTCTCCAGGTTCTAGCCC

ASTGTGPGSSTPSGATG



GTCTGCTTCTACCGGTACCGGTC

SPGSPAGSPTSTEEGSPA



CAGGTAGCTCTACCCCTTCTGGT

GSPTSTEEGTSTEPSEGS



GCTACTGGTTCTCCAGGTAGCCC

APGASPGTSSTGSPGSS



TGCTGGCTCTCCGACTTCTACTGA

PSASTGTGPGTPGSGTA



GGAAGGTAGCCCGGCTGGTTCTC

SSSPGSTSSTAESPGPGT



CGACTTCTACTGAGGAAGGTACT

SPSGESSTAPGTSTPESG



TCTACCGAACCTTCCGAAGGTAG

SASP



CGCTCCAGGTGCTTCCCCGGGCA



CTAGCTCTACCGGTTCTCCAGGTT



CTAGCCCTTCTGCATCTACTGGTA



CTGGCCCAGGTACTCCGGGCAGC



GGTACTGCTTCTTCCTCTCCAGGT



TCTACTAGCTCTACTGCTGAATCT



CCTGGCCCAGGTACTTCTCCTAG



CGGTGAATCTTCTACCGCTCCAG



GTACCTCTACTCCGGAAAGCGGT



TCTGCATCTCCA





LCW462_r27
GGTACCTCTACTGAACCTTCTGA
535
GTSTEPSEGSAPGTSES
536



GGGCAGCGCTCCAGGTACTTCTG

ATPESGPGTSTEPSEGS



AAAGCGCTACCCCGGAGTCCGGT

APGTSTEPSEGSAPGTS



CCAGGTACTTCTACTGAACCGTC

ESATPESGPGTSESATPE



CGAAGGTAGCGCACCAGGTACTT

SGPGTPGSGTASSSPGA



CTACTGAACCGTCTGAAGGTAGC

SPGTSSTGSPGASPGTSS



GCACCAGGTACTTCTGAAAGCGC

TGSPGSPAGSPTSTEEG



AACCCCGGAATCCGGCCCAGGTA

SPAGSPTSTEEGTSTEPS



CCTCTGAAAGCGCAACCCCGGAG

EGSAP



TCCGGCCCAGGTACTCCTGGCAG



CGGTACCGCTTCTTCTTCTCCAGG



TGCTTCTCCTGGTACTAGCTCTAC



TGGTTCTCCAGGTGCTTCTCCGG



GCACTAGCTCTACTGGTTCTCCA



GGTAGCCCTGCTGGCTCTCCGAC



TTCTACTGAGGAAGGTAGCCCGG



CTGGTTCTCCGACTTCTACTGAG



GAAGGTACTTCTACCGAACCTTC



CGAAGGTAGCGCTCCA





LCW462_r28
GGTAGCCCAGCAGGCTCTCCGAC
537
GSPAGSPTSTEEGTSTEP
538



TTCCACTGAGGAAGGTACTTCTA

SEGSAPGTSTEPSEGSA



CTGAACCTTCCGAAGGCAGCGCA

PGTSTEPSEGSAPGTSES



CCAGGTACCTCTACTGAACCTTC

ATPESGPGTSESATPES



TGAGGGCAGCGCTCCAGGTACCT

GPGTPGSGTASSSPGSS



CTACCGAACCGTCTGAAGGTAGC

TPSGATGSPGASPGTSS



GCACCAGGTACCTCTGAAAGCGC

TGSPGTSTEPSEGSAPG



AACTCCTGAGTCCGGTCCAGGTA

TSESATPESGPGTSTEPS



CTTCTGAAAGCGCAACCCCGGAG

EGSAP



TCTGGCCCAGGTACCCCGGGTAG



CGGTACTGCTTCTTCCTCTCCAGG



TAGCTCTACCCCTTCTGGTGCAA



CCGGCTCTCCAGGTGCTTCTCCG



GGCACCAGCTCTACCGGTTCTCC



AGGTACCTCTACTGAACCTTCTG



AGGGCAGCGCTCCAGGTACTTCT



GAAAGCGCTACCCCGGAGTCCGG



TCCAGGTACTTCTACTGAACCGT



CCGAAGGTAGCGCACCA





LCW462_r38
GGTAGCGAACCGGCAACCTCCGG
539
GSEPATSGSETPGTSES
540



CTCTGAAACTCCAGGTACTTCTG

ATPESGPGSEPATSGSE



AAAGCGCTACTCCGGAATCCGGC

TPGSSTPSGATGSPGTP



CCAGGTAGCGAACCGGCTACTTC

GSGTASSSPGSSTPSGA



CGGCTCTGAAACCCCAGGTAGCT

TGSPGASPGTSSTGSPG



CTACCCCGTCTGGTGCAACCGGC

SSTPSGATGSPGASPGT



TCCCCAGGTACTCCTGGTAGCGG

SSTGSPGSEPATSGSETP



TACCGCTTCTTCTTCTCCAGGTAG

GTSTEPSEGSAPGSEPA



CTCTACTCCGTCTGGTGCTACCG

TSGSETP



GCTCCCCAGGTGCATCTCCTGGT



ACCAGCTCTACCGGTTCTCCAGG



TAGCTCTACTCCTTCTGGTGCTAC



TGGCTCTCCAGGTGCTTCCCCGG



GTACCAGCTCTACCGGTTCTCCA



GGTAGCGAACCTGCTACTTCTGG



TTCTGAAACTCCAGGTACTTCTA



CCGAACCGTCCGAGGGTAGCGCT



CCAGGTAGCGAACCTGCTACTTC



TGGTTCTGAAACTCCA





LCW462_r39
GGTACCTCTACTGAACCTTCCGA
541
GTSTEPSEGSAPGTSTEP
542



AGGCAGCGCTCCAGGTACCTCTA

SEGSAPGTSESATPESG



CCGAACCGTCCGAGGGCAGCGCA

PGSPAGSPTSTEEGSPA



CCAGGTACTTCTGAAAGCGCAAC

GSPTSTEEGTSTEPSEGS



CCCTGAATCCGGTCCAGGTAGCC

APGSPAGSPTSTEEGTS



CTGCTGGCTCTCCGACTTCTACTG

TEPSEGSAPGTSTEPSEG



AGGAAGGTAGCCCGGCTGGTTCT

SAPGASPGTSSTGSPGS



CCGACTTCTACTGAGGAAGGTAC

SPSASTGTGPGSSPSAST



TTCTACCGAACCTTCCGAAGGTA

GTGP



GCGCTCCAGGTAGCCCGGCTGGT



TCTCCGACTTCCACCGAGGAAGG



TACCTCTACTGAACCTTCTGAGG



GTAGCGCTCCAGGTACCTCTACT



GAACCTTCCGAAGGCAGCGCTCC



AGGTGCTTCCCCGGGCACCAGCT



CTACTGGTTCTCCAGGTTCTAGCC



CGTCTGCTTCTACTGGTACTGGTC



CAGGTTCTAGCCCTTCTGCTTCCA



CTGGTACTGGTCCA





LCW462_r41
GGTAGCTCTACCCCGTCTGGTGC
543
GSSTPSGATGSPGASPG
544



TACCGGTTCCCCAGGTGCTTCTCC

TSSTGSPGSSTPSGATGS



TGGTACTAGCTCTACCGGTTCTCC

PGSPAGSPTSTEEGTSES



AGGTAGCTCTACCCCGTCTGGTG

ATPESGPGSEPATSGSE



CTACTGGCTCTCCAGGTAGCCCT

TPGASPGTSSTGSPGSST



GCTGGCTCTCCAACCTCCACCGA

PSGATGSPGSSPSASTG



AGAAGGTACCTCTGAAAGCGCAA

TGPGSTSESPSGTAPGS



CCCCTGAATCCGGCCCAGGTAGC

TSESPSGTAPGTSTPESG



GAACCGGCAACCTCCGGTTCTGA

SASP



AACCCCAGGTGCATCTCCTGGTA



CTAGCTCTACTGGTTCTCCAGGT



AGCTCTACTCCGTCTGGTGCAAC



CGGCTCTCCAGGTTCTAGCCCTTC



TGCATCTACCGGTACTGGTCCAG



GTTCTACCAGCGAATCCCCTTCT



GGTACTGCTCCAGGTTCTACCAG



CGAATCCCCTTCTGGCACCGCAC



CAGGTACTTCTACCCCTGAAAGC



GGCTCCGCTTCTCCA





LCW462_r42
GGTTCTACCAGCGAATCTCCTTCT
545
GSTSESPSGTAPGSTSES
546



GGCACCGCTCCAGGTTCTACTAG

PSGTAPGTSPSGESSTAP



CGAATCCCCGTCTGGTACCGCAC

GTSESATPESGPGTSTEP



CAGGTACTTCTCCTAGCGGCGAA

SEGSAPGTSTEPSEGSA



TCTTCTACCGCACCAGGTACCTCT

PGTSTEPSEGSAPGTSES



GAAAGCGCTACTCCGGAGTCTGG

ATPESGPGTSTEPSEGS



CCCAGGTACCTCTACTGAACCGT

APGSSTPSGATGSPGAS



CTGAGGGTAGCGCTCCAGGTACT

PGTSSTGSPGSSTPSGAT



TCTACTGAACCGTCCGAAGGTAG

GSP



CGCACCAGGTACCTCTACTGAAC



CTTCTGAGGGCAGCGCTCCAGGT



ACTTCTGAAAGCGCTACCCCGGA



GTCCGGTCCAGGTACTTCTACTG



AACCGTCCGAAGGTAGCGCACCA



GGTAGCTCTACCCCGTCTGGTGC



TACCGGTTCCCCAGGTGCTTCTCC



TGGTACTAGCTCTACCGGTTCTCC



AGGTAGCTCTACCCCGTCTGGTG



CTACTGGCTCTCCA





LCW462_r43
GGTTCTACTAGCTCTACTGCAGA
547
GSTSSTAESPGPGTSPSG
548



ATCTCCGGGCCCAGGTACCTCTC

ESSTAPGTSPSGESSTAP



CTAGCGGTGAATCTTCTACCGCT

GSTSSTAESPGPGSTSST



CCAGGTACTTCTCCGAGCGGTGA

AESPGPGTSTPESGSASP



ATCTTCTACCGCTCCAGGTTCTAC

GTSPSGESSTAPGSTSST



TAGCTCTACCGCTGAATCTCCGG

AESPGPGTSTPESGSASP



GTCCAGGTTCTACCAGCTCTACT

GSTSSTAESPGPGSTSES



GCAGAATCTCCTGGCCCAGGTAC

PSGTAPGTSPSGESSTAP



TTCTACTCCGGAAAGCGGTTCCG



CTTCTCCAGGTACTTCTCCTAGCG



GTGAATCTTCTACCGCTCCAGGT



TCTACCAGCTCTACTGCTGAATCT



CCTGGCCCAGGTACTTCTACCCC



GGAAAGCGGCTCCGCTTCTCCAG



GTTCTACCAGCTCTACCGCTGAA



TCTCCTGGCCCAGGTTCTACTAG



CGAATCTCCGTCTGGCACCGCAC



CAGGTACTTCCCCTAGCGGTGAA



TCTTCTACTGCACCA





LCW462_r45
GGTACCTCTACTCCGGAAAGCGG
549
GTSTPESGSASPGSTSES
550



TTCCGCATCTCCAGGTTCTACCA

PSGTAPGSTSSTAESPGP



GCGAATCCCCGTCTGGCACCGCA

GTSTEPSEGSAPGTSTEP



CCAGGTTCTACTAGCTCTACTGCT

SEGSAPGTSESATPESG



GAATCTCCGGGCCCAGGTACCTC

PGTSESATPESGPGTSTE



TACTGAACCTTCCGAAGGCAGCG

PSEGSAPGTSTEPSEGS



CTCCAGGTACCTCTACCGAACCG

APGTSESATPESGPGTS



TCCGAGGGCAGCGCACCAGGTAC

TEPSEGSAPGTSTEPSEG



TTCTGAAAGCGCAACCCCTGAAT

SAP



CCGGTCCAGGTACCTCTGAAAGC



GCTACTCCGGAGTCTGGCCCAGG



TACCTCTACTGAACCGTCTGAGG



GTAGCGCTCCAGGTACTTCTACT



GAACCGTCCGAAGGTAGCGCACC



AGGTACTTCTGAAAGCGCTACTC



CGGAGTCCGGTCCAGGTACCTCT



ACCGAACCGTCCGAAGGCAGCGC



TCCAGGTACTTCTACTGAACCTTC



TGAGGGTAGCGCTCCC





LCW462_r47
GGTACCTCTACCGAACCGTCCGA
551
GTSTEPSEGSAPGTSTEP
552



GGGTAGCGCACCAGGTACCTCTA

SEGSAPGSEPATSGSET



CTGAACCGTCTGAGGGTAGCGCT

PGTSTEPSEGSAPGTSES



CCAGGTAGCGAACCGGCAACCTC

ATPESGPGTSESATPES



CGGTTCTGAAACTCCAGGTACTT

GPGASPGTSSTGSPGSS



CTACTGAACCGTCTGAAGGTAGC

PSASTGTGPGSSTPSGA



GCACCAGGTACTTCTGAAAGCGC

TGSPGSSTPSGATGSPG



AACCCCGGAATCCGGCCCAGGTA

SSTPSGATGSPGASPGT



CCTCTGAAAGCGCAACCCCGGAG

SSTGSP



TCCGGCCCAGGTGCATCTCCGGG



TACTAGCTCTACCGGTTCTCCAG



GTTCTAGCCCTTCTGCTTCCACTG



GTACCGGCCCAGGTAGCTCTACC



CCGTCTGGTGCTACTGGTTCCCC



AGGTAGCTCTACTCCGTCTGGTG



CAACCGGTTCCCCAGGTAGCTCT



ACTCCTTCTGGTGCTACTGGCTCC



CCAGGTGCATCCCCTGGCACCAG



CTCTACCGGTTCTCCA





LCW462_r54
GGTAGCGAACCGGCAACCTCTGG
553
GSEPATSGSETPGSEPA
554



CTCTGAAACTCCAGGTAGCGAAC

TSGSETPGTSTEPSEGSA



CTGCAACCTCCGGCTCTGAAACC

PGSEPATSGSETPGTSES



CCAGGTACTTCTACTGAACCTTCT

ATPESGPGTSTEPSEGS



GAGGGCAGCGCACCAGGTAGCG

APGSSTPSGATGSPGSS



AACCTGCAACCTCTGGCTCTGAA

TPSGATGSPGASPGTSS



ACCCCAGGTACCTCTGAAAGCGC

TGSPGSSTPSGATGSPG



TACTCCTGAATCTGGCCCAGGTA

ASPGTSSTGSPGSSTPSG



CTTCTACTGAACCGTCCGAGGGC

ATGSP



AGCGCACCAGGTAGCTCTACTCC



GTCTGGTGCTACCGGCTCTCCAG



GTAGCTCTACCCCTTCTGGTGCA



ACCGGCTCCCCAGGTGCTTCTCC



GGGTACCAGCTCTACTGGTTCTC



CAGGTAGCTCTACCCCGTCTGGT



GCTACCGGTTCCCCAGGTGCTTC



TCCTGGTACTAGCTCTACCGGTTC



TCCAGGTAGCTCTACCCCGTCTG



GTGCTACTGGCTCTCCA





LCW462_r55
GGTACTTCTACCGAACCGTCCGA
555
GTSTEPSEGSAPGTSTEP
556



GGGCAGCGCTCCAGGTACTTCTA

SEGSAPGTSTEPSEGSA



CTGAACCTTCTGAAGGCAGCGCT

PGTSESATPESGPGTSTE



CCAGGTACTTCTACTGAACCTTC

PSEGSAPGTSTEPSEGS



CGAAGGTAGCGCACCAGGTACTT

APGSTSESPSGTAPGTSP



CTGAAAGCGCTACTCCGGAGTCC

SGESSTAPGTSPSGESST



GGTCCAGGTACCTCTACCGAACC

APGSPAGSPTSTEEGTS



GTCCGAAGGCAGCGCTCCAGGTA

ESATPESGPGTSTEPSEG



CTTCTACTGAACCTTCTGAGGGT

SAP



AGCGCTCCAGGTTCTACTAGCGA



ATCTCCGTCTGGCACTGCTCCAG



GTACTTCTCCTAGCGGTGAATCTT



CTACCGCTCCAGGTACTTCCCCT



AGCGGCGAATCTTCTACCGCTCC



AGGTAGCCCGGCTGGCTCTCCTA



CCTCTACTGAGGAAGGTACTTCT



GAAAGCGCTACTCCTGAGTCTGG



TCCAGGTACCTCTACTGAACCGT



CCGAAGGTAGCGCTCCA





LCW462_r57
GGTACTTCTACTGAACCTTCCGA
557
GTSTEPSEGSAPGSEPA
558



AGGTAGCGCTCCAGGTAGCGAAC

TSGSETPGSPAGSPTSTE



CTGCTACTTCTGGTTCTGAAACCC

EGSPAGSPTSTEEGTSES



CAGGTAGCCCGGCTGGCTCTCCG

ATPESGPGTSTEPSEGS



ACCTCCACCGAGGAAGGTAGCCC

APGTSTEPSEGSAPGTS



GGCAGGCTCTCCGACCTCTACTG

TEPSEGSAPGTSESATPE



AGGAAGGTACTTCTGAAAGCGCA

SGPGSSTPSGATGSPGS



ACCCCGGAGTCCGGCCCAGGTAC

SPSASTGTGPGASPGTS



CTCTACCGAACCGTCTGAGGGCA

STGSP



GCGCACCAGGTACCTCTACTGAA



CCTTCCGAAGGCAGCGCTCCAGG



TACCTCTACCGAACCGTCCGAGG



GCAGCGCACCAGGTACTTCTGAA



AGCGCAACCCCTGAATCCGGTCC



AGGTAGCTCTACTCCGTCTGGTG



CAACCGGCTCCCCAGGTTCTAGC



CCGTCTGCTTCCACTGGTACTGG



CCCAGGTGCTTCCCCGGGCACCA



GCTCTACTGGTTCTCCA





LCW462_r61
GGTAGCGAACCGGCTACTTCCGG
559
GSEPATSGSETPGSPAG
560



CTCTGAGACTCCAGGTAGCCCTG

SPTSTEEGTSESATPESG



CTGGCTCTCCGACCTCTACCGAA

PGTSTEPSEGSAPGTSTE



GAAGGTACCTCTGAAAGCGCTAC

PSEGSAPGTSESATPES



CCCTGAGTCTGGCCCAGGTACCT

GPGTSTPESGSASPGSTS



CTACTGAACCTTCCGAAGGCAGC

ESPSGTAPGSTSSTAESP



GCTCCAGGTACCTCTACCGAACC

GPGTSESATPESGPGTS



GTCCGAGGGCAGCGCACCAGGTA

TEPSEGSAPGTSTEPSEG



CTTCTGAAAGCGCAACCCCTGAA

SAP



TCCGGTCCAGGTACCTCTACTCC



GGAAAGCGGTTCCGCATCTCCAG



GTTCTACCAGCGAATCCCCGTCT



GGCACCGCACCAGGTTCTACTAG



CTCTACTGCTGAATCTCCGGGCC



CAGGTACTTCTGAAAGCGCTACT



CCGGAGTCCGGTCCAGGTACCTC



TACCGAACCGTCCGAAGGCAGCG



CTCCAGGTACTTCTACTGAACCTT



CTGAGGGTAGCGCTCCA





LCW462_r64
GGTACTTCTACCGAACCGTCCGA
561
GTSTEPSEGSAPGTSTEP
562



GGGCAGCGCTCCAGGTACTTCTA

SEGSAPGTSTEPSEGSA



CTGAACCTTCTGAAGGCAGCGCT

PGTSTEPSEGSAPGTSES



CCAGGTACTTCTACTGAACCTTC

ATPESGPGTSESATPES



CGAAGGTAGCGCACCAGGTACCT

GPGTPGSGTASSSPGSS



CTACCGAACCGTCTGAAGGTAGC

TPSGATGSPGASPGTSS



GCACCAGGTACCTCTGAAAGCGC

TGSPGSTSSTAESPGPG



AACTCCTGAGTCCGGTCCAGGTA

TSPSGESSTAPGTSTPES



CTTCTGAAAGCGCAACCCCGGAG

GSASP



TCTGGCCCAGGTACTCCTGGCAG



CGGTACCGCATCTTCCTCTCCAG



GTAGCTCTACTCCGTCTGGTGCA



ACTGGTTCCCCAGGTGCTTCTCC



GGGTACCAGCTCTACCGGTTCTC



CAGGTTCCACCAGCTCTACTGCT



GAATCTCCTGGTCCAGGTACCTC



TCCTAGCGGTGAATCTTCTACTG



CTCCAGGTACTTCTACTCCTGAA



AGCGGCTCTGCTTCTCCA





LCW462_r67
GGTAGCCCGGCAGGCTCTCCGAC
563
GSPAGSPTSTEEGTSES
564



CTCTACTGAGGAAGGTACTTCTG

ATPESGPGTSTEPSEGS



AAAGCGCAACCCCGGAGTCCGGC

APGTSESATPESGPGSE



CCAGGTACCTCTACCGAACCGTC

PATSGSETPGTSTEPSEG



TGAGGGCAGCGCACCAGGTACTT

SAPGSPAGSPTSTEEGT



CTGAAAGCGCAACCCCTGAATCC

STEPSEGSAPGTSTEPSE



GGTCCAGGTAGCGAACCGGCTAC

GSAPGTSTEPSEGSAPG



TTCTGGCTCTGAGACTCCAGGTA

TSTEPSEGSAPGTSTEPS



CTTCTACCGAACCGTCCGAAGGT

EGSAP



AGCGCACCAGGTAGCCCGGCTGG



TTCTCCGACTTCCACCGAGGAAG



GTACCTCTACTGAACCTTCTGAG



GGTAGCGCTCCAGGTACCTCTAC



TGAACCTTCCGAAGGCAGCGCTC



CAGGTACTTCTACCGAACCGTCC



GAGGGCAGCGCTCCAGGTACTTC



TACTGAACCTTCTGAAGGCAGCG



CTCCAGGTACTTCTACTGAACCTT



CCGAAGGTAGCGCACCA





LCW462_r69
GGTACTTCTCCGAGCGGTGAATC
565
GTSPSGESSTAPGSTSST
566



TTCTACCGCACCAGGTTCTACTA

AESPGPGTSPSGESSTAP



GCTCTACCGCTGAATCTCCGGGC

GTSESATPESGPGTSTEP



CCAGGTACTTCTCCGAGCGGTGA

SEGSAPGTSTEPSEGSA



ATCTTCTACTGCTCCAGGTACCTC

PGSSPSASTGTGPGSSTP



TGAAAGCGCTACTCCGGAGTCTG

SGATGSPGASPGTSSTG



GCCCAGGTACCTCTACTGAACCG

SPGTSTPESGSASPGTSP



TCTGAGGGTAGCGCTCCAGGTAC

SGESSTAPGTSPSGESST



TTCTACTGAACCGTCCGAAGGTA

AP



GCGCACCAGGTTCTAGCCCTTCT



GCATCTACTGGTACTGGCCCAGG



TAGCTCTACTCCTTCTGGTGCTAC



CGGCTCTCCAGGTGCTTCTCCGG



GTACTAGCTCTACCGGTTCTCCA



GGTACTTCTACTCCGGAAAGCGG



TTCCGCATCTCCAGGTACTTCTCC



TAGCGGTGAATCTTCTACTGCTC



CAGGTACCTCTCCTAGCGGCGAA



TCTTCTACTGCTCCA





LCW462_r70
GGTACCTCTGAAAGCGCTACTCC
567
GTSESATPESGPGTSTEP
568



GGAGTCTGGCCCAGGTACCTCTA

SEGSAPGTSTEPSEGSA



CTGAACCGTCTGAGGGTAGCGCT

PGSPAGSPTSTEEGSPA



CCAGGTACTTCTACTGAACCGTC

GSPTSTEEGTSTEPSEGS



CGAAGGTAGCGCACCAGGTAGCC

APGSSPSASTGTGPGSS



CTGCTGGCTCTCCGACTTCTACTG

TPSGATGSPGSSTPSGA



AGGAAGGTAGCCCGGCTGGTTCT

TGSPGSEPATSGSETPG



CCGACTTCTACTGAGGAAGGTAC

TSESATPESGPGSEPATS



TTCTACCGAACCTTCCGAAGGTA

GSETP



GCGCTCCAGGTTCTAGCCCTTCT



GCTTCCACCGGTACTGGCCCAGG



TAGCTCTACCCCTTCTGGTGCTAC



CGGCTCCCCAGGTAGCTCTACTC



CTTCTGGTGCAACTGGCTCTCCA



GGTAGCGAACCGGCAACTTCCGG



CTCTGAAACCCCAGGTACTTCTG



AAAGCGCTACTCCTGAGTCTGGC



CCAGGTAGCGAACCTGCTACCTC



TGGCTCTGAAACCCCA





LCW462_r72
GGTACTTCTACCGAACCGTCCGA
569
GTSTEPSEGSAPGTSTEP
570



AGGCAGCGCTCCAGGTACCTCTA

SEGSAPGTSTEPSEGSA



CTGAACCTTCCGAGGGCAGCGCT

PGSSTPSGATGSPGASP



CCAGGTACCTCTACCGAACCTTC

GTSSTGSPGSSTPSGAT



TGAAGGTAGCGCACCAGGTAGCT

GSPGTSESATPESGPGS



CTACCCCGTCTGGTGCTACCGGT

EPATSGSETPGTSTEPSE



TCCCCAGGTGCTTCTCCTGGTACT

GSAPGSTSESPSGTAPG



AGCTCTACCGGTTCTCCAGGTAG

STSESPSGTAPGTSTPES



CTCTACCCCGTCTGGTGCTACTG

GSASP



GCTCTCCAGGTACTTCTGAAAGC



GCAACCCCTGAATCCGGTCCAGG



TAGCGAACCGGCTACTTCTGGCT



CTGAGACTCCAGGTACTTCTACC



GAACCGTCCGAAGGTAGCGCACC



AGGTTCTACTAGCGAATCTCCTT



CTGGCACTGCACCAGGTTCTACC



AGCGAATCTCCGTCTGGCACTGC



ACCAGGTACCTCTACCCCTGAAA



GCGGTTCCGCTTCTCCA





LCW462_r73
GGTACCTCTACTCCTGAAAGCGG
571
GTSTPESGSASPGSTSST
572



TTCTGCATCTCCAGGTTCCACTAG

AESPGPGSTSSTAESPGP



CTCTACCGCAGAATCTCCGGGCC

GSSPSASTGTGPGSSTPS



CAGGTTCTACTAGCTCTACTGCT

GATGSPGASPGTSSTGS



GAATCTCCTGGCCCAGGTTCTAG

PGSEPATSGSETPGTSES



CCCTTCTGCATCTACTGGTACTGG

ATPESGPGSPAGSPTST



CCCAGGTAGCTCTACTCCTTCTG

EEGSTSESPSGTAPGSTS



GTGCTACCGGCTCTCCAGGTGCT

ESPSGTAPGTSTPESGS



TCTCCGGGTACTAGCTCTACCGG

ASP



TTCTCCAGGTAGCGAACCGGCAA



CCTCCGGCTCTGAAACCCCAGGT



ACCTCTGAAAGCGCTACTCCTGA



ATCCGGCCCAGGTAGCCCGGCAG



GTTCTCCGACTTCCACTGAGGAA



GGTTCTACTAGCGAATCTCCTTCT



GGCACTGCACCAGGTTCTACCAG



CGAATCTCCGTCTGGCACTGCAC



CAGGTACCTCTACCCCTGAAAGC



GGTTCCGCTTCTCCC





LCW462_r78
GGTAGCCCGGCTGGCTCTCCTAC
573
GSPAGSPTSTEEGTSES
574



CTCTACTGAGGAAGGTACTTCTG

ATPESGPGTSTEPSEGS



AAAGCGCTACTCCTGAGTCTGGT

APGSTSESPSGTAPGSTS



CCAGGTACCTCTACTGAACCGTC

ESPSGTAPGTSPSGESST



CGAAGGTAGCGCTCCAGGTTCTA

APGTSTEPSEGSAPGSP



CCAGCGAATCTCCTTCTGGCACC

AGSPTSTEEGTSTEPSE



GCTCCAGGTTCTACTAGCGAATC

GSAPGSEPATSGSETPG



CCCGTCTGGTACCGCACCAGGTA

TSESATPESGPGTSTEPS



CTTCTCCTAGCGGCGAATCTTCTA

EGSAP



CCGCACCAGGTACCTCTACCGAA



CCTTCCGAAGGTAGCGCTCCAGG



TAGCCCGGCAGGTTCTCCTACTT



CCACTGAGGAAGGTACTTCTACC



GAACCTTCTGAGGGTAGCGCACC



AGGTAGCGAACCTGCAACCTCTG



GCTCTGAAACCCCAGGTACCTCT



GAAAGCGCTACTCCTGAATCTGG



CCCAGGTACTTCTACTGAACCGT



CCGAGGGCAGCGCACCA





LCW462_r79
GGTACCTCTACCGAACCTTCCGA
575
GTSTEPSEGSAPGSPAG
576



AGGTAGCGCTCCAGGTAGCCCGG

SPTSTEEGTSTEPSEGSA



CAGGTTCTCCTACTTCCACTGAG

PGTSPSGESSTAPGTSPS



GAAGGTACTTCTACCGAACCTTC

GESSTAPGTSPSGESST



TGAGGGTAGCGCACCAGGTACCT

APGSTSESPSGTAPGSTS



CCCCTAGCGGCGAATCTTCTACT

ESPSGTAPGTSTPESGS



GCTCCAGGTACCTCTCCTAGCGG

ASPGSEPATSGSETPGT



CGAATCTTCTACCGCTCCAGGTA

SESATPESGPGTSTEPSE



CCTCCCCTAGCGGTGAATCTTCT

GSAP



ACCGCACCAGGTTCTACCAGCGA



ATCCCCTTCTGGTACTGCTCCAG



GTTCTACCAGCGAATCCCCTTCT



GGCACCGCACCAGGTACTTCTAC



CCCTGAAAGCGGCTCCGCTTCTC



CAGGTAGCGAACCTGCAACCTCT



GGCTCTGAAACCCCAGGTACCTC



TGAAAGCGCTACTCCTGAATCTG



GCCCAGGTACTTCTACTGAACCG



TCCGAGGGCAGCGCACCA





LCW462_r87
GGTAGCGAACCGGCAACCTCTGG
577
GSEPATSGSETPGTSES
578



CTCTGAAACCCCAGGTACCTCTG

ATPESGPGTSESATPES



AAAGCGCTACTCCGGAATCTGGT

GPGTSPSGESSTAPGSTS



CCAGGTACTTCTGAAAGCGCTAC

STAESPGPGTSPSGESST



TCCGGAATCCGGTCCAGGTACTT

APGSTSESPSGTAPGTSP



CTCCGAGCGGTGAATCTTCTACC

SGESSTAPGSTSSTAESP



GCACCAGGTTCTACTAGCTCTAC

GPGSSTPSGATGSPGSS



CGCTGAATCTCCGGGCCCAGGTA

TPSGATGSPGSSTPSGA



CTTCTCCGAGCGGTGAATCTTCT

NWLS



ACTGCTCCAGGTTCTACTAGCGA



ATCCCCGTCTGGTACTGCTCCAG



GTACTTCCCCTAGCGGTGAATCT



TCTACTGCTCCAGGTTCTACCAG



CTCTACCGCAGAATCTCCGGGTC



CAGGTAGCTCTACTCCGTCTGGT



GCAACCGGTTCCCCAGGTAGCTC



TACCCCTTCTGGTGCAACCGGCT



CCCCAGGTAGCTCTACCCCTTCT



GGTGCAAACTGGCTCTCC





LCW462_r88
GGTAGCCCTGCTGGCTCTCCGAC
579
GSPAGSPTSTEEGSPAG
580



TTCTACTGAGGAAGGTAGCCCGG

SPTSTEEGTSTEPSEGSA



CTGGTTCTCCGACTTCTACTGAG

PGTSTEPSEGSAPGTSTE



GAAGGTACTTCTACCGAACCTTC

PSEGSAPGTSESATPES



CGAAGGTAGCGCTCCAGGTACCT

GPGASPGTSSTGSPGSS



CTACTGAACCTTCCGAAGGCAGC

TPSGATGSPGASPGTSS



GCTCCAGGTACCTCTACCGAACC

TGSPGSSTPSGATGSPG



GTCCGAGGGCAGCGCACCAGGTA

TPGSGTASSSPGSSTPSG



CTTCTGAAAGCGCAACCCCTGAA

ATGSP



TCCGGTCCAGGTGCATCTCCTGG



TACCAGCTCTACCGGTTCTCCAG



GTAGCTCTACTCCTTCTGGTGCTA



CTGGCTCTCCAGGTGCTTCCCCG



GGTACCAGCTCTACCGGTTCTCC



AGGTAGCTCTACCCCGTCTGGTG



CTACTGGTTCTCCAGGTACTCCG



GGCAGCGGTACTGCTTCTTCCTCT



CCAGGTAGCTCTACCCCTTCTGG



TGCTACTGGCTCTCCA





LCW462_r89
GGTAGCTCTACCCCGTCTGGTGC
581
GSSTPSGATGSPGTPGS
582



TACTGGTTCTCCAGGTACTCCGG

GTASSSPGSSTPSGATG



GCAGCGGTACTGCTTCTTCCTCTC

SPGSPAGSPTSTEEGTSE



CAGGTAGCTCTACCCCTTCTGGT

SATPESGPGTSTEPSEGS



GCTACTGGCTCTCCAGGTAGCCC

APGTSESATPESGPGSE



GGCTGGCTCTCCTACCTCTACTG

PATSGSETPGTSESATPE



AGGAAGGTACTTCTGAAAGCGCT

SGPGTSTEPSEGSAPGT



ACTCCTGAGTCTGGTCCAGGTAC

SESATPESGPGTSESATP



CTCTACTGAACCGTCCGAAGGTA

ESGP



GCGCTCCAGGTACCTCTGAAAGC



GCAACTCCTGAGTCTGGCCCAGG



TAGCGAACCTGCTACCTCCGGCT



CTGAGACTCCAGGTACCTCTGAA



AGCGCAACCCCGGAATCTGGTCC



AGGTACTTCTACTGAACCGTCTG



AAGGTAGCGCACCAGGTACTTCT



GAAAGCGCAACCCCGGAATCCG



GCCCAGGTACCTCTGAAAGCGCA



ACCCCGGAGTCCGGCCCA









Example 7
Construction of XTEN_AM288

The entire library LCW0462 was dimerized as described in Example 6 resulting in a library of XTEN_AM288 clones designated LCW0463. 1512 isolates from library LCW0463 were screened using the protocol described in Example 6. 176 highly expressing clones were sequenced and 40 preferred XTEN_AM288 segments were chosen for the construction of multifunctional proteins that contain multiple XTEN segments with 288 amino acid residues.


Example 8
Construction of XTEN_AM432

We generated a library of XTEN_AM432 segments by recombining segments from library LCW0462 of XTEN_AM144 segments and segments from library LCW0463 of XTEN_AM288 segments. This new library of XTEN_AM432 segment was designated LCW0464. Plasmid was isolated from cultures of E. coli harboring LCW0462 and LCW0463, respectively. 1512 isolates from library LCW0464 were screened using the protocol described in Example 6. 176 highly expressing clones were sequenced and 39 preferred XTEN_AM432 segment were chosen for the construction of longer XTENs and for the construction of multifunctional proteins that contain multiple XTEN segments with 432 amino acid residues.


In parallel we constructed library LMS0100 of XTEN_AM432 segments using preferred segments of XTEN_AM144 and XTEN_AM288. Screening of this library yielded 4 isolates that were selected for further construction


Example 9
Construction of XTEN_AM875

The stuffer vector pCW0359 was digested with BsaI and KpnI to remove the stuffer segment and the resulting vector fragment was isolated by agarose gel purification.


We annealed the phosphorylated oligonucleotide BsaI-AscI-KpnIforP: AGGTGCAAGCGCAAGCGGCGCGCCAAGCACGGGAGGTTCGTCTTCACTCGAGGGTAC (SEQ ID NO: 583) and the non-phosphorylated oligonucleotide BsaI-AscI-KpnIrev: CCTCGAGTGAAGACGAACCTCCCGTGCTTGGCGCGCCGCTTGCGCTTGC (SEQ ID NO: 584) for introducing the sequencing island A (SI-A) which encodes amino acids GASASGAPSTG (SEQ ID NO: 585) and has the restriction enzyme AscI recognition nucleotide sequence GGCGCGCC inside. The annealed oligonucleotide pairs were ligated with BsaI and KpnI digested stuffer vector pCW0359 prepared above to yield pCW0466 containing SI-A. We then generated a library of XTEN_AM443 segments by recombining 43 preferred XTEN_AM432 segments from Example 8 and SI-A segments from pCW0466 at C-terminus using the same dimerization process described in Example 5. This new library of XTEN_AM443 segments was designated LCW0479.


We generated a library of XTEN_AM875 segments by recombining segments from library LCW0479 of XTEN_AM443 segments and 43 preferred XTEN_AM432 segments from Example 8 using the same dimerization process described in Example 5. This new library of XTEN_AM875 segment was designated LCW0481.


Example 10
Construction of XTEN_AM1318

We annealed the phosphorylated oligonucleotide BsaI-FseI-KpnIforP: AGGTCCAGAACCAACGGGGCCGGCCCCAAGCGGAGGTTCGTCTTCACTCGAGGGTAC (SEQ ID NO: 586) and the non-phosphorylated oligonucleotide BsaI-FseI-KpnIrev: CCTCGAGTGAAGACGAACCTCCGCTTGGGGCCGGCCCCGTTGGTTCTGG (SEQ ID NO: 587) for introducing the sequencing island B (SI-B) which encodes amino acids GPEPTGPAPSG (SEQ ID NO: 588) and has the restriction enzyme FseI recognition nucleotide sequence GGCCGGCC inside. The annealed oligonucleotide pairs were ligated with BsaI and KpnI digested stuffer vector pCW0359 as used in Example 9 to yield pCW0467 containing SI-B. We then generated a library of XTEN_AM443 segments by recombining 43 preferred XTEN_AM432 segments from Example 8 and SI-B segments from pCW0467 at C-terminus using the same dimerization process described in Example 5. This new library of XTEN_AM443 segments was designated LCW0480.


We generated a library of XTEN_AM1318 segments by recombining segments from library LCW0480 of XTEN_AM443 segments and segments from library LCW0481 of XTEN_AM875 segments using the same dimerization process as in Example 5. This new library of XTEN_AM1318 segment was designated LCW0487.


Example 11
Construction of XTEN_AD864

Using the several consecutive rounds of dimerization, we assembled a collection of XTEN_AD864 sequences starting from segments of XTEN_AD36 listed in Example 1. These sequences were assembled as described in Example 5. Several isolates from XTEN_AD864 were evaluated and found to show good expression and excellent solubility under physiological conditions. One intermediate construct of XTEN_AD576 was sequenced. This clone was evaluated in a PK experiment in cynomolgus monkeys and a half-life of about 20 h was measured.


Example 12
Construction of XTEN_AF864

Using the several consecutive rounds of dimerization, we assembled a collection of XTEN_AF864 sequences starting from segments of XTEN_AF36 listed in Example 3. These sequences were assembled as described in Example 5. Several isolates from XTEN_AF864 were evaluated and found to show good expression and excellent solubility under physiological conditions. One intermediate construct of XTEN_AF540 was sequenced. This clone was evaluated in a PK experiment in cynomolgus monkeys and a half-life of about 20 h was measured. A full length clone of XTEN_AF864 had excellent solubility and showed half-life exceeding 60 h in cynomolgus monkeys. A second set of XTEN_AF sequences was assembled including a sequencing island as described in Example 9.


Example 13
Construction of XTEN_AG864

Using the several consecutive rounds of dimerization, we assembled a collection of XTEN_AG864 sequences starting from segments of XTEN_AD36 listed in Example 1. These sequences were assembled as described in Example 5. Several isolates from XTEN_AG864 were evaluated and found to show good expression and excellent solubility under physiological conditions. A full-length clone of XTEN_AG864 had excellent solubility and showed half-life exceeding 60 h in cynomolgus monkeys.


Example 14
Construction of N-Terminal Extensions of XTEN—Construction and Screening of 12mer Addition Libraries

This example details a step in the optimization of the N-terminus of the XTEN protein to promote the initiation of translation to allow for expression of XTEN fusions at the N-terminus of fusion proteins without the presence of a helper domain. Historically expression of proteins with XTEN at the N-terminus was poor, yielding values that would essentially undetectable in the GFP fluorescence assay (<25% of the expression with the N-terminal CBD helper domain) To create diversity at the codon level, seven amino acid sequences were selected and prepared with a diversity of codons. Seven pairs of oligonucleotides encoding 12 amino acids with codon diversities were designed, annealed and ligated into the NdeI/BsaI restriction enzyme digested stuffer vector pCW0551 (Stuffer-XTEN_AM875-GFP), and transformed into E. coli BL21Gold(DE3) competent cells to obtain colonies of seven libraries. The resulting clones have N-terminal XTEN 12mers fused in-frame to XTEN_AM875-GFP to allow use of GFP fluorescence for screening the expression. Individual colonies from the seven created libraries were picked and grown overnight to saturation in 500 μl of super broth media in a 96 deep well plate. The number of colonies picked ranged from approximately half to a third of the theoretical diversity of the library (see Table 13).









TABLE 13







Theoretical Diversity and Sampling Numbers for 12mer Addition


Libraries. The amino acid residues with randomized codons


are underlined.














Amino Acid
SEQ ID
Theoretical
Number


Library
Motif Family
Sequence
NO:
Diversity
screened















LCW546
AE12
MASPAGSPTSTEE
589
572
2 plates (168)





LCW547
AE12
MATSESATPESGP
590
1536
5 plates (420)





LCW548
AF12
MATSPSGESSTAP
591
192
2 plates (168)





LCW549
AF12
MESTSSTAESPGP
592
384
2 plates (168)





LCW552
AG12
MASSTPSGATGSP
593
384
2 plates (168)





LCW553
AG12
MEASPGTSSTGSP
594
384
2 plates (168)





LCW554
(CBD-like)
MASTPESGSSG
595
32
1 plate (84)









The saturated overnight cultures were used to inoculate fresh 500 μl cultures in auto-induction media in which they were grown overnight at 26° C. These expression cultures were then assayed using a fluorescence plate reader (excitation 395 nm, emission 510 nm) to determine the amount of GFP reporter present (see FIG. 9 for results of expression assays). The results, graphed as box and whisker plots, indicate that while median expression levels were approximately half of the expression levels compared to the “benchmark” CBD N-terminal helper domain, the best clones from the libraries were much closer to the benchmarks, indicating that further optimization around those sequences was warranted. This is in contrast to previous XTEN versions that were <25% of the expression levels of the CBD N-terminal benchmark. The results also show that the libraries starting with amino acids MA had better expression levels than those beginning with ME. This was most apparent when looking at the best clones, which were closer to the benchmarks as they mostly start with MA. Of the 176 clones within 33% of the CBD-AM875 benchmark, 87% begin with MA, where as only 75% of the sequences in the libraries beginning with MA, a clear over representation of the clones beginning with MA at the highest level of expression. 96 of the best clones were sequenced to confirm identity and twelve sequences (see Table 14), 4 from LCW546, 4 from LCW547 and 4 from LCW552 were selected for further optimization.









TABLE 14







Advanced 12mer DNA Nucleotide Sequences











SEQ ID


Clone
DNA Nucleotide Sequence
NO:





LCW546_02
ATGGCTAGTCCGGCTGGCTCTCCGACCTCCACTGAGGAAGGTACTTCTACT
596





LCW546_06
ATGGCTAGTCCTGCTGGCTCTCCAACCTCCACTGAGGAAGGTACTTCTACT
597





LCW546_07
ATGGCTAGTCCAGCAGGCTCTCCTACCTCCACCGAGGAAGGTACTTCTACT
598





LCW546_09
ATGGCTAGTCCTGCTGGCTCTCCGACCTCTACTGAGGAAGGTACTTCTACT
599





LCW547_03
ATGGCTACATCCGAAAGCGCAACCCCTGAGTCCGGTCCAGGTACTTCTACT
600





LCW547_06
ATGGCTACATCCGAAAGCGCAACCCCTGAATCTGGTCCAGGTACTTCTACT
601





LCW547_10
ATGGCTACGTCTGAAAGCGCTACTCCGGAATCTGGTCCAGGTACTTCTACT
602





LCW547_17
ATGGCTACGTCCGAAAGCGCTACCCCTGAATCCGGTCCAGGTACTTCTACT
603





LCW552_03
ATGGCTAGTTCTACCCCGTCTGGTGCAACCGGTTCCCCAGGTACTTCTACT
604





LCW552_05
ATGGCTAGCTCCACTCCGTCTGGTGCTACCGGTTCCCCAGGTACTTCTACT
605





LCW552_10
ATGGCTAGCTCTACTCCGTCTGGTGCTACTGGTTCCCCAGGTACTTCTACT
606





LCW552_11
ATGGCTAGTTCTACCCCTTCTGGTGCTACTGGTTCTCCAGGTACTTCTACT
607









Example 15
Construction of N-Terminal Extensions of XTEN—Construction and Screening of Libraries Optimizing Codons 3 and 4

This example details a step in the optimization of the N-terminus of the XTEN protein to promote the initiation of translation to allow for expression of XTEN fusions at the N-terminus of proteins without the presence of a helper domain. With preferences for the first two codons established (see Example supra), the third and fourth codons were randomized to determine preferences. Three libraries, based upon best clones from LCW546, LCW547 and LCW552, were designed with the third and fourth residues modified such that all combinations of allowable XTEN codons were present at these positions (see FIG. 10). In order to include all the allowable XTEN codons for each library, nine pairs of oligonucleotides encoding 12 amino acids with codon diversities of third and fourth residues were designed, annealed and ligated into the NdeI/BsaI restriction enzyme digested stuffer vector pCW0551 (Stuffer-XTEN_AM875-GFP), and transformed into E. coli BL21Gold(DE3) competent cells to obtain colonies of three libraries LCW0569-571. With 24 XTEN codons the theoretical diversity of each library is 576 unique clones. A total of 504 individual colonies from the three created libraries were picked and grown overnight to saturation in 500 μl of super broth media in a 96 deep well plate. This provided sufficient coverage to understand relative library performance and sequence preferences. The saturated overnight cultures were used to inoculate new 500 μl cultures in auto-induction media in which were grown overnight at 26° C. These expression cultures were then assayed using a fluorescence plate reader (excitation 395 nm, emission 510 nm) to determine the amount of GFP reporter present. The top 75 clones from the screen were sequenced and retested for GFP reporter expression versus the benchmark samples (see FIG. 11). 52 clones yielded usable sequencing data and were used for subsequent analysis. The results were broken down by library and indicate that LCW546 was the superior library. The results are presented in Table 15. Surprisingly, it was discovered that base-lined fluorescence readings for the best clones were ˜900 AU, whereas the CBD N-terminal benchmark was only ˜600 AU. This indicates that this library had instituted an approximately 33% improvement over the best clones from the previous library which were approximately equal in expression to the CBD N-terminal benchmark (Example 14).









TABLE 15







Third and Fourth Codon Optimization Library Comparison











LCW569
LCW570
LCW571













N
21
15
16


Mean Fluorescence (AU)
628
491
537


SD
173
71
232


CV
28%
15%
43%









Further trends were seen in the data showing preferences for particular codons at the third and fourth position. Within the LCW569 library the glutamate codon GAA at the third position and the threonine codon ACT were associated with higher expression as seen in Table 16.









TABLE 16







Preferred Third and Fourth Codons in LCW569












3 = GAA
Rest
4 = ACT
Rest














N
8
13
4
17


Mean Fluorescence (AU)
749
554
744
601


SD
234
47
197
162


CV
31%
9%
26%
27%









Additionally, the retest of the top 75 clones indicated that several were now superior to the benchmark clones.


Example 16
Construction of N-Terminal Extensions of XTEN—Construction and Screening of Combinatorial 12mer and 36mer Libraries

This example details a step in the optimization of the N-terminus of the XTEN protein to promote the initiation of translation to allow for expression of XTEN fusions at the N-terminus of proteins without the presence of a helper domain. With preferences for the first two codons established (see Example supra), the N-terminus was examined in a broader context by combining the 12 selected 12mer sequences (see Example supra) at the very N-terminus followed by 125 previously constructed 36mer segments (see example supra) in a combinatorial manner. This created novel 48mers at the N-terminus of the XTEN protein and enabled the assessment of the impact of longer-range interactions at the N-terminus on expression of the longer sequences (FIG. 12). Similar to the dimerization procedures used to assemble 36mers (see Example infra), the plasmids containing the 125 selected 36mer segments were digested with restriction enzymes BbsI/NcoI and the appropriate fragment was gel-purified. The plasmid from clone AC94 (CBD-XTEN_AM875-GFP) was also digested with BsaI/NcoI and the appropriate fragments were gel-purified. These fragments were ligated together and transformed into E. coli BL21Gold(DE3) competent cells to obtain colonies of the library LCW0579, which also served as the vector for further cloning 12 selected 12mers at the very N-terminus. The plasmids of LCW0579 were digested with NdeI/EcoRI/BsaI and the appropriate fragments were gel-purified. 12 pairs of oligonucleotides encoding 12 selected 12mer sequences were designed, annealed and ligated with the NdeI/EcoRI/BsaI digested LCW0579 vector, and transformed into E. coli BL21Gold(DE3) competent cells to obtain colonies of the library LCW0580. With a theoretical diversity of 1500 unique clones, a total of 1512 individual colonies from the created library were picked and grown overnight to saturation in 500 μl of super broth media in a 96 deep well plate. This provided sufficient coverage to understand relative library performance and sequence preferences. The saturated overnight cultures were used to inoculate new 500 μl cultures in auto-induction media that were grown overnight at 26° C. These expression cultures were then assayed using a fluorescence plate reader (excitation 395 nm, emission 510 nm) to determine the amount of GFP reporter present. The top 90 clones were sequenced and retested for GFP reporter expression. 83 clones yielded usable sequencing data and were used for subsequent analysis. The sequencing data was used to determine the lead 12mer that was present in each clone and the impact of each 12mer on expression was assessed. Clones LCW546_06 and LCW546_09 stood out as being the superior N-terminus (see Table 17).









TABLE 17







Relative Performance of Clones Starting with


LCW546 06 and LCW459 09












LCW546_06
All Others
LCW546_09
All Others














N
11
72
9
74


Mean
1100
752
988
775


Fluorescence






(AU)






SD
275
154
179
202


CV
25%
20%
18%
26%









The sequencing and retest also revealed several instances of independent replicates of the same sequence in the data producing similar results, thus increasing confidence in the assay. Additionally, 10 clones with 6 unique sequences were superior to the benchmark clone. They are presented in Table 18. It was noted that these were the only occurrences of these sequences and in no case did one of these sequences occur and fail to beat the bench-mark clone. These six sequences were advanced for further optimization.









TABLE 18







Combinatorial 12mer and 36mer Clones Superior to Benchmark Clone











Clone Name
First 60 codons
SEQ ID NO:
12mer Name
36mer Name





LCW580_51
ATGGCTAGTCCTGCTGGCTCTCCAACCTCCACT
608
LCW546_06
LCW0404_040



GAGGAAGGTGCATCCCCGGGCACCAGCTCTACC



GGTTCTCCAGGTAGCTCTACCCCGTCTGGTGCT



ACCGGCTCTCCAGGTAGCTCTACCCCGTCTGGT



GCTACTGGCTCTCCAGGTACTTCTACTGAACCG



TCTGAAGGCAGCGCA





LCW580_81
ATGGCTAGTCCTGCTGGCTCTCCAACCTCCACT
609
LCW546_06
LCW0404_040



GAGGAAGGTGCATCCCCGGGCACCAGCTCTACC



GGTTCTCCAGGTAGCTCTACCCCGTCTGGTGCT



ACCGGCTCTCCAGGTAGCTCTACCCCGTCTGGT



GCTACTGGCTCTCCAGGTACTTCTACTGAACCG



TCTGAAGGCAGCGCA





LCW580_38
ATGGCTAGTCCTGCTGGCTCTCCAACCTCCACT
610
LCW546_06
LCW0402_041



GAGGAAGGTACTTCTACCGAACCGTCCGAGGGT



AGCGCACCAGGTAGCCCAGCAGGTTCTCCTACC



TCCACCGAGGAAGGTACTTCTACCGAACCGTCC



GAGGGTAGCGCACCAGGTACTTCTACTGAACCG



TCTGAAGGCAGCGCA





LCW580_63
ATGGCTAGTCCTGCTGGCTCTCCGACCTCTACT
611
LCW546_09
LCW0402_020



GAGGAAGGTACTTCTACTGAACCGTCTGAAGGC



AGCGCACCAGGTAGCGAACCGGCTACTTCCGGT



TCTGAAACCCCAGGTAGCCCAGCAGGTTCTCCA



ACTTCTACTGAAGAAGGTACTTCTACTGAACCG



TCTGAAGGCAGCGCA





LCW580_06
ATGGCTAGTCCTGCTGGCTCTCCAACCTCCACT
612
LCW546_06
LCW0404_031



GAGGAAGGTACCCCGGGTAGCGGTACTGCTTCT



TCCTCTCCAGGTAGCTCTACCCCTTCTGGTGCAA



CCGGCTCTCCAGGTGCTTCTCCGGGCACCAGCT



CTACCGGTTCTCCAGGTACTTCTACTGAACCGT



CTGAAGGCAGCGCA





LCW580_35
ATGGCTAGTCCTGCTGGCTCTCCGACCTCTACT
613
LCW546_09
LCW0402_020



GAGGAAGGTACTTCTACTGAACCGTCTGAAGGC



AGCGCACCAGGTAGCGAACCGGCTACTTCCGGT



TCTGAAACCCCAGGTAGCCCAGCAGGTTCTCCA



ACTTCTACTGAAGAAGGTACTTCTACTGAACCG



TCTGAAGGCAGCGCA





LCW580_67
ATGGCTAGTCCTGCTGGCTCTCCGACCTCTACT
614
LCW546_09
LCW0403_064



GAGGAAGGTACCTCCCCTAGCGGCGAATCTTCT



ACTGCTCCAGGTACCTCTCCTAGCGGCGAATCT



TCTACCGCTCCAGGTACCTCCCCTAGCGGTGAA



TCTTCTACCGCACCAGGTACTTCTACTGAACCG



TCTGAAGGCAGCGCA





LCW580_13
ATGGCTAGTCCTGCTGGCTCTCCGACCTCTACT
615
LCW546_09
LCW0403_060



GAGGAAGGTACCTCTACTCCGGAAAGCGGTTCC



GCATCTCCAGGTTCTACCAGCGAATCCCCGTCT



GGCACCGCACCAGGTTCTACTAGCTCTACTGCT



GAATCTCCGGGCCCAGGTACTTCTACTGAACCG



TCTGAAGGCAGCGCA





LCW580_88
ATGGCTAGTCCTGCTGGCTCTCCGACCTCTACT
616
LCW546_09
LCW0403_064



GAGGAAGGTACCTCCCCTAGCGGCGAATCTTCT



ACTGCTCCAGGTACCTCTCCTAGCGGCGAATCT



TCTACCGCTCCAGGTACCTCCCCTAGCGGTGAA



TCTTCTACCGCACCAGGTACTTCTACTGAACCG



TCTGAAGGCAGCGCA





LCW580_11
ATGGCTAGTCCTGCTGGCTCTCCGACCTCTACT
617
LCW546_09
LCW0403_060



GAGGAAGGTACCTCTACTCCGGAAAGCGGTTCC



GCATCTCCAGGTTCTACCAGCGAATCCCCGTCT



GGCACCGCACCAGGTTCTACTAGCTCTACTGCT



GAATCTCCGGGCCCAGGTACTTCTACTGAACCG



TCTGAAGGCAGCGCA









Example 17
Construction of N-Terminal Extensions of XTEN—Construction and Screening of Combinatorial 12mer and 36mer Libraries for XTEN-AM875 and XTEN-AE864

This example details a step in the optimization of the N-terminus of the XTEN protein to promote the initiation of translation to allow for expression of XTEN fusions at the N-terminus of proteins without the presence of a helper domain. With preferences for the first four codons (see Examples supra, and for the best pairing of N-terminal 12mers and 36mers (see Example supra) established, a combinatorial approach was undertaken to examine the union of these preferences. This created novel 48mers at the N-terminus of the XTEN protein and enabled the testing of the confluence of previous conclusions. Additionally, the ability of these leader sequences to be a universal solution for all XTEN proteins was assessed by placing the new 48mers in front of both XTEN-AE864 and XTEN-AM875. Instead of using all 125 clones of 36mer segment, the plasmids from 6 selected clones of 36mer segment with best GFP expression in the combinatorial library were digested with NdeI/EcoRI/BsaI and the appropriate fragments were gel-purified. The plasmids from clones AC94 (CBD-XTEN_AM875-GFP) and AC104 (CBD-XTEN_AE864-GFP) were digested with digested with NdeI/EcoRI/BsaI and the appropriate fragments were gel-purified. These fragments were ligated together and transformed into E. coli BL21Gold(DE3) competent cells to obtain colonies of the libraries LCW0585 (−XTEN_AM875-GFP) and LCW0586 (−XTEN_AE864-GFP), which could also serve as the vectors for further cloning 8 selected 12mers at the very N-terminus. The plasmids of LCW0585 and LCW0586 were digested with NdeI/EcoRI/BsaI and the appropriate fragments were gel-purified. 8 pairs of oligonucleotides encoding 8 selected 12mer sequences with best GFP expression in the previous (Generation 2) screening were designed, annealed and ligated with the NdeI/EcoRI/BsaI digested LCW0585 and LCW0586 vectors, and transformed into E. coli BL21Gold(DE3) competent cells to obtain colonies of the final libraries LCW0587 (XTEN_AM923-GFP) and LCW0588 (XTEN_AE912-GFP). With a theoretical diversity of 48 unique clones, a total of 252 individual colonies from the created libraries were picked and grown overnight to saturation in 500 μl of super broth media in a 96 deep well plate. This provided sufficient coverage to understand relative library performance and sequence preferences. The saturated overnight cultures were used to inoculate new 500 μl cultures in auto-induction media in which were grown overnight at 26° C. These expression cultures were then assayed using a fluorescence plate reader (excitation 395 nm, emission 510 nm) to determine the amount of GFP reporter present. The top 36 clones were sequenced and retested for GFP reporter expression. 36 clones yielded usable sequencing data and these 36 were used for the subsequent analysis. The sequencing data determined the 12mer, the third codon, the fourth codon and the 36mer present in the clone and revealed that many of the clones were independent replicates of the same sequence. Additionally, the retest results for these clones are close in value, indicating the screening process was robust. Preferences for certain combinations at the N-terminus were seen and were consistently yielding higher fluorescence values approximately 50% greater than the benchmark controls (see Tables 19 and 20). These date support the conclusion that the inclusion of the sequences encoding the optimized N-terminal XTEN into the fusion protein genes conferred a marked enhancement on the expression of the fusion proteins.









TABLE 19







Preferred N-terminal Combinations for XTEN-AM875














Number of







Clone Name
Replicates
12mer
36mer
Mean
SD
CV





CBD-AM875
NA
NA
NA
1715
418
16%


LCW587_08
7
LCW546_06_3 = GAA
LCW404_40
2333
572
18%


LCW587_17
5
LCW546_09_3 = GAA
LCW403_64
2172
293
10%
















TABLE 20







Preferred N-terminal Combinations for XTEN-AE864














Number of







Clone Name
Replicates
12mer
36mer
Mean
SD
CV





AC82
NA
NA
NA
1979
679
24%


LCW588_14
8
LCW546_06_opt3
LCW404_31
2801
240
 6%


LCW588_27
2
LCW546_06_opt34
LCW404_40
2839
556
15%









Notably, the preferred combination of the N-terminal for the XTEN-AM875 and the preferred combination for the XTEN-AE864 are not the same (Tables 19 and 20), indicating more complex interactions further than 150 bases from the initiation site influence expression levels. The sequences for the preferred nucleotide sequences are listed in Table 21 and the preferred clones were analyzed by SDS-PAGE to independently confirm expression (see FIG. 13). The complete sequences of XTEN_AM923 and XTEN_AE912 were selected for further analysis.









TABLE 21







Preferred DNA Nucleotide Sequences for first 48 Amino Acid Residues of


N-terminal XTEN-AM875 and XTEN-AE864











XTEN




Clone Name
Modified
DNA Nucleotide Sequence
SEQ ID NO:





LCW587_08
AM875
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAGGAAGGTGCATC
618




CCCGGGCACCAGCTCTACCGGTTCTCCAGGTAGCTCTACCCCGTCTG




GTGCTACCGGCTCTCCAGGTAGCTCTACCCCGTCTGGTGCTACTGGC




TCTCCAGGTACTTCTACTGAACCGTCTGAAGGCAGCGCA





LCW587_17
AM875
ATGGCTGAACCTGCTGGCTCTCCGACCTCTACTGAGGAAGGTACCTC
619




CCCTAGCGGCGAATCTTCTACTGCTCCAGGTACCTCTCCTAGCGGCG




AATCTTCTACCGCTCCAGGTACCTCCCCTAGCGGTGAATCTTCTACC




GCACCAGGTACTTCTACTGAACCGTCTGAAGGCAGCGCA





LCW588_14
AE864
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAGGAAGGTACCCC
620




GGGTAGCGGTACTGCTTCTTCCTCTCCAGGTAGCTCTACCCCTTCTGG




TGCAACCGGCTCTCCAGGTGCTTCTCCGGGCACCAGCTCTACCGGTT




CTCCAGGTAGCCCGGCTGGCTCTCCTACCTCTACTGAG





LCW588_27
AE864
ATGGCTGAAACTGCTGGCTCTCCAACCTCCACTGAGGAAGGTGCATC
621




CCCGGGCACCAGCTCTACCGGTTCTCCAGGTAGCTCTACCCCGTCTG




GTGCTACCGGCTCTCCAGGTAGCTCTACCCCGTCTGGTGCTACTGGC




TCTCCAGGTAGCCCGGCTGGCTCTCCTACCTCTACTGAG









Example 18
Methods of Producing and Evaluating GHXTEN; XTEN-hGH as Example

A general schema for producing and evaluating GHXTEN compositions is presented in FIG. 6, and forms the basis for the general description of this Example. Using the disclosed methods and those known to one of ordinary skill in the art, together with guidance provided in the illustrative examples, a skilled artesian can create and evaluate a range of GHXTEN fusion proteins comprising, XTENs, GH and variants of GH known in the art. The Example is, therefore, to be construed as merely illustrative, and not limitative of the methods in any way whatsoever; numerous variations will be apparent to the ordinarily skilled artisan. In this Example, a GHXTEN of human growth hormone linked to an XTEN of the AE family of motifs would be created.


The general scheme for producing polynucleotides encoding XTEN is presented in FIGS. 4 and 5. FIG. 5 is a schematic flowchart of representative steps in the assembly of a XTEN polynucleotide construct in one of the embodiments of the invention. Individual oligonucleotides 501 are annealed into sequence motifs 502 such as a 12 amino acid motif (“12-mer”), which is subsequently ligated with an oligo containing BbsI, and KpnI restriction sites 503. The motif libraries can be limited to specific sequence XTEN families; e.g., AD, AE, AF, AG, AM, or AQ sequences of Table 1. In this case, the motifs of the AE family would be used as the motif library, which are annealed to the 12-mer to create a “building block” length; e.g., a segment that encodes 36 amino acids. The gene encoding the XTEN sequence can be assembled by ligation and multimerization of the “building blocks” until the desired length of the XTEN gene 504 is achieved. As illustrated in FIG. 5, the XTEN length in this case is 48 amino acid residues, but longer lengths can be achieved by this process. For example, multimerization can be performed by ligation, overlap extension, PCR assembly or similar cloning techniques known in the art. The XTEN gene can be cloned into a stuffer vector. In the example illustrated in FIG. 5, the vector can encode a Flag sequence 506 followed by a stuffer sequence that is flanked by BsaI, BbsI, and KpnI sites 507 and a GH gene (e.g., hGH) 508, resulting in the gene encoding the GHXTEN 500, which, in this case encodes the fusion protein in the configuration, N- to C-terminus, XTEN-hGH.


DNA sequences encoding GH can be conveniently obtained by standard procedures known in the art from a cDNA library prepared from an appropriate cellular source, from a genomic library, or may be created synthetically (e.g., automated nucleic acid synthesis) using DNA sequences obtained from publicly available databases, patents, or literature references. A gene or polynucleotide encoding the GH portion of the protein can be then be cloned into a construct, such as those described herein, which can be a plasmid or other vector under control of appropriate transcription and translation sequences for high level protein expression in a biological system. A second gene or polynucleotide coding for the XTEN portion (in the case of FIG. 5 illustrated as an AE with 48 amino acid residues) can be genetically fused to the nucleotides encoding the N-terminus of the hGH gene by cloning it into the construct adjacent and in frame with the gene coding for the hGH, through a ligation or multimerization step. In this manner, a chimeric DNA molecule coding for (or complementary to) the XTEN-hGH GHXTEN fusion protein would be generated within the construct. Optionally, a gene encoding for a second XTEN could be inserted and ligated in-frame to the nucleotides encoding the C-terminus of the XTEN-hGH gene, resulting in a construct encoding an XTEN-hGH-XTEN fusion protein. The construct can be designed in different configurations to encode the various permutations of the fusion partners as a monomeric polypeptide. For example, the gene can be created to encode the fusion protein in the order (N- to C-terminus): hGH-XTEN; XTEN-hGH; hGH-XTEN-hGH; XTEN-hGH-XTEN; as well as multimers of the foregoing. Optionally, this chimeric DNA molecule may be transferred or cloned into another construct that is a more appropriate expression vector. At this point, a host cell capable of expressing the chimeric DNA molecule would be transformed with the chimeric DNA molecule. The vectors containing the DNA segments of interest can be transferred into an appropriate host cell by well-known methods, depending on the type of cellular host, as described supra.


Host cells containing the XTEN-GH expression vector would be cultured in conventional nutrient media modified as appropriate for activating the promoter. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan. After expression of the fusion protein, cells would be harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for purification of the fusion protein, as described below. For GHXTEN compositions secreted by the host cells, supernatant from centrifugation would be separated and retained for further purification.


Gene expression would be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas, Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, gene expression would be measured by immunological of fluorescent methods, such as immunohistochemical staining of cells to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal Conveniently, the antibodies may be prepared against the hGH sequence polypeptide using a synthetic peptide based on the sequences provided herein or against exogenous sequence fused to hGH and encoding a specific antibody epitope. Examples of selectable markers are well known to one of skill in the art and include reporters such as enhanced green fluorescent protein (EGFP), beta-galactosidase ((β-gal) or chloramphenicol acetyltransferase (CAT).


The XTEN-hGH polypeptide product would be purified via methods known in the art. Procedures such as gel filtration, affinity purification, salt fractionation, ion exchange chromatography, size exclusion chromatography, hydroxyapatite adsorption chromatography, hydrophobic interaction chromatography or gel electrophoresis are all techniques that may be used in the purification. Specific methods of purification are described in Robert K. Scopes, Protein Purification: Principles and Practice, Charles R. Castor, ed., Springer-Verlag 1994, and Sambrook, et al., supra. Multi-step purification separations are also described in Baron, et al., Crit. Rev. Biotechnol. 10:179-90 (1990) and Below, et al., J. Chromatogr. A. 679:67-83 (1994).


As illustrated in FIG. 6, the isolated XTEN-hGH fusion proteins would then be characterized for their chemical and activity properties. Isolated fusion protein would be characterized, e.g., for sequence, purity, apparent molecular weight, solubility and stability using standard methods known in the art. The fusion protein meeting expected standards would then be evaluated for activity, which can be measured in vitro or in vivo by measuring one of the growth hormone-associated parameters described herein, using one or more assays disclosed herein, or using the assays of the Examples or Table 34.


In addition, the XTEN-hGH fusion protein would be administered to one or more animal species to determine standard pharmacokinetic parameters, as described in Examples 30-32.


By the iterative process of producing, expressing, and recovering XTEN-hGH constructs, followed by their characterization using methods disclosed herein or others known in the art, the GHXTEN compositions comprising hGH and an XTEN can be produced and evaluated by one of ordinary skill in the art to confirm the expected properties such as enhanced solubility, enhanced stability, improved pharmacokinetics and reduced immunogenicity, leading to an overall enhanced therapeutic activity compared to the corresponding unfused hGH. For those fusion proteins not possessing the desired properties, a different sequence can be constructed, expressed, isolated and evaluated by these methods in order to obtain a composition with such properties.


Example 19
Construction of Genes and Vectors of hGH Linked to K and Y XTEN Sequences

K Series GHXTEN Constructs


A pET-series vector was constructed with T7 promoter, which expresses a protein containing cellulose binding domain (CBD) at the N-terminus, followed by a Tomato Etch Virus (TEV) protease cleavage site, followed by the hGH coding sequence, and by the K288 coding sequence: CBD-K288-hGH. The K288 has the repetitive sequence (GEGGGEGGE) 32 (SEQ ID NO: 622). The CBD sequence used is shown in Swissprot file Q06851 and the purification of CBD fusion proteins is described in Ofir, K. et al. (2005) Proteomics 5:1806. The sequence of the TEV cleavage site is ENLYFQ/X (SEQ ID NO: 623); G was used in the X position. This construct was transformed into BL21(DE3)-star E.coli strain and grown under conditions promoting expression. Cells were collected and disrupted. The cellular supernatant was applied on beaded cellulose resin (Perloza 100), washed with buffer A (25 mM Tris pH=8.0) and eluted from the column with 20 mM NaOH. pH was adjusted by titrating the sample with 1M Tris buffer pH=8.0. Protein purity was estimated to be above 90%. The eluted protein was digested with purified TEV protease overnight at 4° C., and the digested sample was applied to a beaded cellulose resin (Perloza 100). The CBD was retained on the column, and the K288-hGH was found in the column flow-through. The pooled flow-through was loaded on the anion-exchange (Q-sepharose, Pharmacia), washed with buffer A (25 mM Tris pH=8.0) and eluted from the column using a shallow linear gradient of same buffer with 1M NaCl. The eluted fusion protein was pooled, dialyzed against buffer A, concentrated, and purified by size-exclusion chromatography (SEC) as the final purification. Protein purity was estimated to be above 98%. The final protein is K288-hGH. SDS PAGE analyses of samples throughout the purification process are shown in FIG. 20.


Y Series GHXTEN Contructs


The gene encoding hGH was amplified by polymerase chain reaction (PCR), which introduced BbsI and HindIII restriction sites that are compatible with the BbsI and HindIII sites that flank the stuffer in the XTEN destination vector. The pCBD-XTEN plasmid is a pET30 derivative from Novagen in the format of Cellulose Binding Domain (CBD)-XTEN-Stuffer, where Stuffer is green fluorescent protein (GFP) and XTEN can be any length from 36 to 576 or greater. Constructs were generated by replacing a stuffer sequence in pCBD-XTEN with the hGH-encoding fragment (FIG. 7B). The pCBD-XTEN features a T7 promoter upstream of CBD followed by an XTEN sequence fused in-frame upstream of the stuffer sequence. The XTEN sequences employed belong to family XTEN_Y and encode lengths that include 36, 72, 144, 288, and 576 amino acids. The stuffer fragment was removed by restriction digest using BbsI and HindIII endonucleases. Restriction digested hGH DNA fragment was ligated into the cleaved pCBD-XTEN vector using T4 DNA ligase and electroporated into BL21(DE3) Gold (Stratagene). Transformants were screened by DNA miniprep and the desired construct was confirmed by DNA sequencing. The final vector yields the CBD_XTEN_hGH gene under the control of a T7 promoter. The resulting DNA sequences encoded for GH linked to XTEN of lengths of 36, 72, 144, and 288 amino acids, respectively.


Example 20
Construction of hGH-XTEN Genes and Vectors using AE and AM XTEN Sequences

The gene encoding hGH was amplified by polymerase chain reaction (PCR), which introduced NdeI and BbsI restriction sites that are compatible with the NdeI and BsaI sites that flank the stuffer in the XTEN destination vector. The pXTEN plasmid is a pET30 derivative from Novagen in the format of Stuffer-XTEN, where Stuffer can be either green fluorescent protein (GFP) or CBD and XTEN can be any length from 36 to 1318 amino acids or greater (FIG. 7). Constructs were generated by replacing a stuffer sequence in pXTEN with the hGH-encoding fragment. The pXTEN features a T7 promoter upstream of the stuffer sequence, and an XTEN sequence fused in-frame downstream of the stuffer sequence. The XTEN sequences employed belong to the AE or AM family of XTEN and encode lengths that include 36, 72, 144, 288, 576, 864, 875 and 1318 amino acids. The stuffer fragment was removed by restriction digest using NdeI and BsaI endonucleases. Restriction digested hGH DNA fragment was ligated into the cleaved pXTEN vector using T4 DNA ligase and electroporated into BL21(DE3) Gold (Stratagene). Transformants were screened by DNA miniprep and the desired constructs were confirmed by DNA sequencing. The final vector yields the hGH-XTEN gene under the control of a T7 promoter, and would be used to express a fusion protein with hGH at the N-terminus.


Example 21
Construction of XTEN-hGH and XTEN-hGH Genes and Vectors using AE and AM XTEN Sequences

The gene encoding hGH was amplified by polymerase chain reaction (PCR), which introduced BbsI and HindIII restriction sites that are compatible with the BbsI and HindIII sites that flank the stuffer in the XTEN destination vector. The pCBD-XTEN plasmid is a pET30 derivative from Novagen in the format of Cellulose Binding Domain (CBD)-XTEN-Stuffer, where Stuffer is green fluorescent protein (GFP) and XTEN can be any length from 36 to 1318 or greater (FIG. 7). Constructs were generated by replacing a stuffer sequence in pCBD-XTEN with the hGH-encoding fragment. The pCBD-XTEN features a T7 promoter upstream of CBD followed by an XTEN sequence fused in-frame upstream of the stuffer sequence. The XTEN sequences employed belong to family XTEN_AE and XTEN_AM and encode lengths that include 36, 72, 144, 288, 576, 864, 875 and 1318 amino acids. The stuffer fragment was removed by restriction digest using BbsI and HindIII endonucleases. Restriction digested hGH DNA fragment was ligated into the cleaved pCBD-XTEN vector using T4 DNA ligase and electroporated into BL21(DE3) Gold (Stratagene). Transformants were screened by DNA miniprep and the desired construct was confirmed by DNA sequencing. The final vector yields the CBD_XTEN_hGH gene under the control of a T7 promoter, and would be used to express a fusion protein with hGH at the C-terminus.


Example 22
Construction of XTEN-AE_hGH_XTEN-AE Genes and Vectors

The gene encoding hGH was amplified by polymerase chain reaction (PCR), which introduced BsaI and HindIII restriction sites that are compatible with the BbsI and HindIII sites that flank the stuffer in the pNTS-XTEN destination vector. The pNTS-XTEN_AE plasmid is a pET30 derivative from Novagen in the format of N-terminal XTEN expression sequence of 48 amino acids-XTEN-Stuffer, where Stuffer is green fluorescent protein (GFP) and XTEN can be any length from 36 to 576 or greater. Constructs were generated by replacing a stuffer sequence in pNTS-XTEN with the hGH-encoding fragment. The pNTS-XTEN features a T7 promoter upstream of NTS followed by an XTEN sequence fused in-frame upstream of the stuffer sequence. The XTEN sequences employed belong to family XTEN_AE and encode lengths that can include 36, 72, 144, 288, 576, 864, and 1296 amino acids. The stuffer fragment was removed by restriction digest using BbsI and HindIII endonucleases. Restriction digested hGH DNA fragment was ligated into the cleaved pNTS-XTEN vector using T4 DNA ligase and electroporated into BL21(DE3) Gold (Stratagene). In some cases, a second XTEN_AE sequence of 144 or 288 amino acids was ligated to the C-terminus of the hGH encoding gene, the steps of which are illustrated in FIG. 8. The gene encoding hGH was amplified by polymerase chain reaction (PCR), which introduced BsaI and HindIII (with additional BbsI in front of HindIII) restriction sites that are compatible with the BbsI and HindIII sites that flank the stuffer in the pNTS-XTEN destination vector. After restriction enzyme digestions, ligation and transformation, the resulting intermediate plasmid has the format of pNTS-XTEN-hGH with the BbsI/HindIII restriction sites at the C-terminus of hGH. The intermediate plasmid was further digested with BbsI and HindIII, ligated with the second XTEN_AE sequence of 144 or 288 amino acids flanked by BsaI and HindIII, placing the AE144 or the AE288 encoding sequenes at the C-terminus of the XTEN-hGH gene, and transformed into BL21(DE3)Gold. Transformants were screened by DNA miniprep and the desired construct was confirmed by DNA sequencing. The final vectors, described above, yield the genes in configurations of either NTS_XTEN_hGH or NTS_XTEN_hGH_XTEN, under the control of a T7 promoter, as shown in FIGS. 7C and 7D.


Example 23
Purification of GHXTEN_AE Constructs

Protein Expression


The plasmids described above were transformed into BL21(DE3)-Gold E. coli strain (Novagen) and plated on an LB-agar plate with the appropriate antibiotics and grown overnight at 37° C. A single colony was inoculated into 5 ml of TB125 medium and grown overnight at 37° C. The next day the inoculum was transformed into a 2 L vessel with 500 ml of TB125, and grown until an OD=0.6 was reached, followed by continued growth at 26° C. for 16 hr with 0.1 mM IPTG.


Cells were collected by centrifugation and the cell pellet was resuspended in 50 ml Buffer containing 5 mM Tris pH 8.0, 100 mM NaCl. Cells were disrupted using an APV-2000 homogenizer. The pH of the lysate was then adjusted to pH 4.5 with acetic acid to precipitate contaminating host cell proteins and was subsequently clarified by centrifugation. The clarified, acid-treated lysate was then applied to a DE52 Anion exchange chromatography column and eluted with NaCl. The eluted fraction was then further acidified to pH 4.2 and applied to a MacroCapSP cation exchange chromatography column Product was eluted using sequential elution with NaCl. An additional chromatography step employing Macrocap Q was implemented to remove product-related aggregates and residual host cell impurities (e.g. endotoxin, DNA, host cell protein).


Protein purity was estimated to be above 98%. The quantity of eluted fusion protein was determined by SDS-PAGE analysis and by measurement of total protein concentration. The high quantity of eluted GHXTEN fusion protein reflects the higher degree of solubility of the fusion protein relative to hGH not linked to XTEN (see, e.g., Singh, S. M., et al. (2005) J Biosci Bioeng, 99: 303; Patra, A. K., et al. (2000) Protein Expr Purif. 18: 182), as well as the ability to remain soluble at acidified conditions that result in the precipitation of host cell protein.


Final Formulation and Storage


The buffer exchanged proteins were then concentrated using 10K MWCO Vivacell 100 centrifugal ultrafiltration unit to not less than 15 mg/ml. The concentrate was sterile filtered using a 0.22 um syringe filter. The final solution was aliquoted and stored at −80° C.


Example 24
Characterization of GHXTEN Constructs

SDS-PAGE Analysis


5 μg of final purified GHXTEN proteins of GH linked to Y576 (either N- or C-terminus of Y576) was subjected to both non-reducing and reducing SDS-PAGE using NuPAGE 4-12% Bis-Tris gel from Invitrogen according to manufacturer's specifications. The resulting gel is shown in FIG. 20.


Analytical Size Exclusion Chromatography


Size exclusion chromatography analysis was performed using a TSKGel-G4000 SWXL (7.8 mm×30 cm) column. 20 ug of the purified protein at a concentration of 1 mg/ml was separated at a flowrate of 0.6 ml/min in 20 mM phosphate pH 6.8, 114 mM NaCl. Chromatogram profiles were monitored using OD214 nm and OD280 nm. Column calibration was performed using a size exclusion calibration standard from BioRad, the markers include thyroglobulin (670 kDa), bovine gamma-globulin (158 kDa), chicken ovalbumin (44 kDa), equine myoglobuin (17 kDa) and vitamin B12 (1.35 kDa). The chromatographic profiles of Y576-GH were generated and demonstrate that the apparent molecular weight of each construct is significantly larger than that expected for a globular protein, in comparison to the standard proteins run in the same assay (data not shown).


Analytical RP-HPLC


Analytical RP-HPLC chromatography analysis was performed using a C4 (7.8 mm×20 cm) column. The column was equilibrated with 100% AcetonNitrile plus 0.1% TFA in the mobile phase at a flowrate of 1 ml/min. Twenty micro gram of the purified protein, with and without denaturing, at a concentration of 0.2 mg/ml was injected separately. The protein was separated and eluted by liner gradient within 15 min from 5% to 60% of buffer containing HPLC grade H20 plus 0.1% TFA. Chromatogram profiles were monitored using OD214 nm and OD280 nm. The chromatographic profiles of native and denatured Y576-GH are shown as an overlay in FIG. 21.


Example 25
ELISA-Based Binding Assays

XTEN fusions to GH were tested in a standard ELISA-based assay to evaluate their ability to bind to GH Receptor. Assays were performed using a sandwich ELISA format in which a recombinant hGH receptor (hGHR-Fc) is coated onto wells of an ELISA plate. The wells were then blocked, washed, and GHXTEN samples are then incubated in the wells at varying dilutions to allow capture of the GHXTEN. Wells were washed extensively, and bound protein was detected using a biotinylated preparation of a polyclonal or monoclonal anti-GH or anti-XTEN antibody and streptavidin HRP. The fraction of bound protein can be calculated by comparing the colorimetric response at each serum dilution to a standard curve of unmodified GH. In a first assay comparing hGH bound to K288 compared to recombinant hGH, the results, show in FIG. 15, demonstrate the ability of GHXTEN to bind to the hGH receptor. In a second assay, two configurations of GHXTEN; AM864-hGH and hGH-AM864; compared to recombinant hGH. The results, shown in FIG. 16, indicate apparent EC50 values for native hGH of 0.0701 nM, AM864-hGH of 0.3905, and hGH-AM864 of 2.733. In a third assay, recombinant hGH was compared to AE912-hGH-AE144 in order to show the ability to reduce binding affinity by the addition of a C-terminal XTEN to the hGH component of an GHXTEN fusion protein, and the results (FIG. 18) demonstrate a decrease in binding affinity of approximately 17-fold compared to hGH.


Example 26
Effect of Heat Treatment on the Stability of hGH and GHXTEN

The ability of XTEN to confer structural stability on the attached therapeutic molecule was investigated. Samples of hGH and AM864-hGH were incubated at 25° C. and 80° C., and then analyzed by gel electrophoresis and Coomassie staining FIG. 17A is an SDS-PAGE gel of the two preparations treated at 25° C. and 80° C. for 15 minutes, while FIG. 17B shows the corresponding percentage of receptor binding activity of the 80° C. sample relative to the 25° C. treatment. The results indicate that hGH denatures under the treatment conditions while the GHXTEN construct remains largely stable under the experimental conditions, retaining nearly 80% of its receptor binding activity.


Conclusions: The XTEN component of the GHXTEN fusion protein confers enhanced solubility and stability properties to the fusion protein in comparison to hGH not linked to XTEN.


Example 27
Comparative Effects of hGH and AM864-hGH on Secretion of IGF-1

The ability of a GHXTEN to retain pharmacologic potency was assessed using the measured parameter of circulating IGF-1 in response to administered compound. FIG. 24 shows the effects of daily administration of hGH (0.071 mg/kg daily) or a single dose of AM864-hGH (5 mg/kg; equivalent to 1.1 mg/kg) on circulating IGF-1 levels in cynomolgus monkeys (n=4/group), depicted as percentage change compared to baseline. The results show enhanced activity by the GHXTEN construct, despite being dosed only once at the beginning of the experiment.


Example 28
Comparative Effects of hGH and AM864-hGH on Body Weight Gain

The ability of a GHXTEN to retain pharmacologic potency was assessed using the measured parameter of body weight gain in a hypox rat in response to administered compound. FIG. 25 shows the effects of administration of hGH or AM864-hGH at the indicated doses and dose frequency on body weight in hypox rats. The results show retention of biologic activity by the GHXTEN constructs that is equivalent in potency to comparable dosage of hGH, yet with less frequent dosing. Increased dosage of AM864-hGH led to increases in body weight gains showing enhancement of the pharmacodynamic properties of the GHXTEN compared to hGH under these conditions.


Example 29
Comparative Effects of hGH and AM864-hGH on Bone Cartilage

The ability of a GHXTEN to retain pharmacologic potency was assessed using the measured parameter of increase in tibial epiphyseal plate width in hypox rats. FIG. 26 shows the comparative effects of administration of placebo, hGH, and AM864-hGH, shown in histologic cross-sections of the tibia from rats after 9 days of treatment, with the margins denoted with dotted lines. Groups are the same as shown in FIG. 26. FIG. 26A shows that the placebo group had an average cross-section width of 344±38.6 μm of the plate after 9 days. FIG. 26B shows that the hGH group (10 μg daily) had an average cross-section width of 598±8.5 μm after 9 days. FIG. 26C shows that the AM864-hGH (15 mg/kg q3d) had an average cross-section width of 944±8.5 μm after 9 days. The results show enhanced activity by the GHXTEN construct compared to hGH, despite being dosed at less frequent intervals.


Example 30
PK Analysis of GHXTEN Protein Fusions

GH-Y576 and Y576h-GH (in this case indicating the N- to C-terminus order of GH and XTEN) were injected into cynomolgus monkeys in order to determine in vivo pharmacokinetic parameters. The compositions were provided in an aqueous buffer and were administered by intravenous routes into separate animals at 0.15 mg/kg dosing. Serum samples were collected at various time points following administration and analyzed for serum concentrations of the accessory proteins. Analysis was performed using a sandwich ELISA format. Rabbit polyclonal anti-XTEN (to Y-type XTEN) antibodies were coated onto wells of an ELISA plate. Serum samples were then incubated in the wells at varying dilutions to allow capture of the compound by the coated antibodies. Wells were washed extensively, and bound protein was detected using a biotinylated preparation of the polyclonal anti-XTEN antibody and streptavidin HRP. Serum protein concentrations were calculated at each time point by comparing the colorimetric response at each serum dilution to a standard curve. Pharmacokinetic parameters were calculated using the WinNonLin software package.



FIG. 22 shows the concentration profile of the two GH constructs following intravenous administration to cynomolgus monkeys. Following IV administration, the half-life was calculated to be 7 hours for hGH-Y576 and 10.5 hours for Y576-hGH. For reference, the published half-life of unmodified GH is well described in the literature as 10-15 minutes in adult humans (see, e.g., Hindmarch, P. C., et al., Clinical Endocrinology (2008) 30(4): 443-450). The results show that the orientation (N- versus C-terminal) of hGH relative to the XTEN did not affect the clearance of the fusion proteins, and that addition of the Y576 greatly extended the terminal half-life of the fusion protein.


Another pharmacokinetic study in cynomolgus monkeys was performed using the AM864-hGH construct. FIG. 23 shows the pharmacokinetic profile after a single dose of 5 mg/kg AM864-hGH administered subcutaneously to cynomolgus monkeys, with the derived equivalent hGH concentration shown (dashed line).


Conclusions: The XTEN component of the GHXTEN fusion protein confers enhanced pharmacokinetic properties to the fusion protein in comparison to hGH not linked to XTEN, under these conditions.


Example 31
PK Analysis of hGH XTEN Fusion Polypeptides in Rats

The GHXTEN fusion proteins AE912-hGH, AM864-hGH (synonym to AM875-hGH for this and following Examples), AE912-hGH-AE144 and AE912-hGH-AE288 were evaluated in rats in order to determine in vivo pharmacokinetic parameters of the hGHXTEN polypeptides. All compositions were provided in an aqueous buffer and were administered by subcutaneous (SC) route into separate animals using 1.5 mg/kg single doses. Plasma samples were collected at various time points following administration and analyzed for concentrations of the test articles. Analysis was performed using a sandwich ELISA format. Recombinant hGHR-Fc was coated onto wells of an ELISA plate. The wells were blocked, washed and plasma samples were then incubated in the wells at varying dilutions to allow capture of the compound by the coated antibodies. Wells were washed extensively, and bound protein was detected using a biotinylated preparation of the polyclonal anti hGH antibody and streptavidin HRP. Concentrations of test article were calculated at each time point by comparing the colorimetric response at each serum dilution to a standard curve. Pharmacokinetic parameters were calculated using the WinNonLin software package.



FIG. 27 shows the concentration profiles of the four hGH XTEN constructs after subcutaneous administration. The calculated terminal half-life for AE912-hGH was 7.5 h, 6.8 h for AM864-hGH (synonym for AM875-hGH), 12.4 h for AE912-hGH-AE144 and 13.1 h for AE912-hGH-AE288. For comparison, unmodified hGH was run in parallel in the same experiment and showed a dramatically shorter plasma half-life.


Conclusions: The incorporation of different XTEN sequences into fusion proteins comprising hGH results in significant enhancement of pharmacokinetic parameters for all four compositions compared to unmodified hGH, as demonstrated in the rodent model under these conditions. The addition of a second XTEN protein to the C-terminus of the AE-hGH constructs results in a further enhancement of the terminal half-life compared to the constructs with a single XTEN; likely due to reduced receptor mediated clearance.


Example 32
PK Analysis of hGH XTEN Fusion Polypeptides in Cynomolgus Monkeys

GHXTEN fusion proteins containing one or two XTEN molecules (AE912-hGH, AM864-hGH, and AE912-hGH-AE144) were evaluated in cynomolgus monkeys in order to determine the effect of the inclusion of a second XTEN on in vivo pharmacokinetic parameters of the hGHXTEN polypeptides. All compositions were provided in an aqueous buffer and were administered by subcutaneous (SC) route into separate animals using 1.5 mg/kg single doses. Plasma samples were collected at various time points following administration and analyzed for concentrations of the test articles. Analysis was performed using a sandwich ELISA format. Recombinant hGHR-Fc was coated onto wells of an ELISA plate. The wells were blocked, washed and plasma samples were then incubated in the wells at varying dilutions to allow capture of the compound by the coated antibodies. Wells were washed extensively, and bound protein was detected using a biotinylated preparation of the polyclonal anti hGH antibody and streptavidin HRP. Concentrations of test article were calculated at each time point by comparing the colorimetric response at each serum dilution to a standard curve. Pharmacokinetic parameters were calculated using the WinNonLin software package, and FIG. 28 shows the concentration profiles of the three hGH XTEN constructs after subcutaneous administration over the 336 h period. The average terminal half-life for the fusion proteins were 33 h for AM864-hGH, 44 h for AE912-hGH, and 110 h for the AE912-hGH-AE144 (containing two XTEN linked to the N- and C-termini of hGH).


Conclusions: The incorporation of different XTEN sequences into fusion proteins comprising hGH resulted in significant enhancement of pharmacokinetic parameters for all three compositions, as demonstrated in the cyno model under these conditions, with the construct containing a second XTEN linked to the C-terminus of the hGH showing a greater than about two-fold enhancement of the terminal half-life compared to the GHXTEN with a single XTEN at the N-terminus.


Example 33
Assessment of Pharmacodynamic Effects of AE912-hGH-AE144 GHXTEN by Measurement of IGF-1 Response in Cynomolgus Monkeys

AE912-hGH-AE144 was administered to male and female cynos SC at 0.3, 1.5, and 7.5 mg/kg and dose volumes ranging from 0.80 to 1.13 ml. Blood samples (1.0 mL) were collected into prechilled heparinized tubes at predose, 2, 4, 8, 24, 48, 72, 96, 120, 168, 216, 264, 336, 388, 432, 504 hour timepoints (16), and processed into plasma. PK was measured by ELISA assay using the anti-XTEN capture antibody and the biotinylated anti-hGH detection antibody. IGF-1 samples were sent to and analyzed by Millipore. PK parameters were calculated by analysis using the WinNonLin software package and are shown in the table below. Plasma concentration profiles of the three doses of GHXTEN and IGF-1 levels are shown in FIG. 29 and FIG. 30, respectively (open circles=0.3 mg/kg; squares=1.5 mg/kg; triangles=7.5 mg/kg). The results show that administration of AE912-hGH-AE144 results in a sustained increase in IGF-1 levels, consistent with both the biological mode of action of growth hormone and the long plasma half-life of AE912-hGH-AE144.









TABLE 22







PK parameters in cynomolgus monkeys











0.3 mg/kg
1.5 mg/kg
7.5 mg/kg





Route
SC
SC
SC


T ½ (hrs)
84.4
97.5
101.1


Cmax (nM)
41
910
340


AUC (nM*hr)
5,170
162,000
64,100









Example 34
Comparative Bioavailability of AE912-hGH-AE144 via Subcutaneous and Intramuscular Administration to Cynomolgus Monkeys

AE912-hGH-AE144 was administered to male and female cynos SC at 1.5 mg/kg via intravenous, subcutaneous, and intramuscular routes. Blood samples (1.0 mL) were collected into prechilled heparinized tubes at predose, 2, 4, 8, 24, 48, 72, 96, 120, 168, 216, 264, 336, 388, 432, 504 hour timepoints (16), and processed into plasma. Plasma levels at each time point were measured by ELISA assay using the anti-XTEN capture antibody and the biotinylated anti-hGH detection antibody. PK and bioavailability parameters were calculated by analysis using the WinNonLin software package and are shown in the table below. Plasma concentration profiles are shown in FIG. 31 (open circles=subcutaneous; triangle=IV; squares=intramuscular). For bioavailability calculations, the AUC for intravenous administration was defined to be 100%. The results show that AE912-hGH-AE144 shows a high bioavailability and distributes rapidly from the injection site to the blood compartment following injection.









TABLE 23







PK parameters in cynomolgus monkeys











1.5 mg/kg
1.5 mg/kg
1.5 mg/kg





Route
SC
IV
IM


T ½ (hrs)
97.5
107.7
102.2


Cmax (nM)
910
462
245


AUC (nM*hr)
162,000
60,300
43,200


Bioavailability
~100%
100%
72%









Example 35
Determination of the Therapeutic Window for AE912-hGH-AE144

The specific activity of the GHXTEN AE912-hGH-AE144 was assessed using the measured parameter of body weight gain in a hypophysectomized (hypox) rat in response to administered compound. FIG. 32 shows the effects of administration of vehicle (open circles), recombinant hGH dosed at 5 nmol/kg/day (closed circles), the GHXTEN AE912-hGH-AE144 at varying doses and dose frequency (closed triangles=0.5 nmol/kg/day; open triangles=1.5 nmol/day; squares=3 nmol/kg/Q2D) on body weight in hypox rats. The results show that a dose of the GHXTEN AE912-hGH-AE144 as low as 1.5 nmol/kg/day yields comparable growth to hGH alone. However, a lower dose of 0.5 nmol/kg/day does not promote growth in these animals. Based on the pharmacokinetic profiles determined in the rats, a model for plasma levels following repeat dosing was constructed as shown in FIG. 33 (same groups as per FIG. 32). The model clearly differentiates the efficacious doses from the non-efficacious lower dose. The results show that plasma concentration of AE912-hGH-AE144 generally should remain above about 1 nmol/L concentration in order to maintain optimal growth in the hypophysectomized rat model.


Example 36
Human Clinical Trial Designs for Evaluating GHXTEN

Clinical trials can be designed such that the efficacy and advantages of the GHXTEN compositions, relative to the corresponding growth hormone biologics, can be verified in humans. For example, the GHXTEN fusion constructs comprising growth, as described in the Examples above, can be used in clinical trials for characterizing the efficacy of the compositions. The trials can be conducted in one or more growth hormone-related diseases, disorders, or conditions that are improved, ameliorated, or inhibited by the administration of growth hormone. Such studies in adult patients comprise three phases. First, a Phase I safety and pharmacokinetics study in adult patients is conducted to determine the maximum tolerated dose and pharmacokinetics and pharmacodynamics in humans (either normal subjects or patients with a growth disease or condition), as well as to define potential toxicities and adverse events to be tracked in future studies. The study is conducted in which single rising doses of compositions of fusion proteins of GHXTEN is administered and biochemical, PK, and clinical parameters is measured. This permits the determination of the maximum tolerated dose and establishes the threshold and maximum concentrations in dosage and circulating drug that constitute the therapeutic window for the respective components. Thereafter, clinical trials are conducted in patients with the disease, disorder or condition.


Phase II and III Clinical Trials


A phase II dosing study is conducted in patients where blood growth hormone pharmacodynamics and other physiologic, PK, safety and clinical parameters (such as listed below) appropriate for trials, such as for reversal of short stature due to GH deficiency in pediatric patients, treatment of Turner syndrome, chronic renal failure, Prader-Willi syndrome, intrauterine growth retardation, or improvements in body mass composition (increase in lean body mass, decrease in fat mass) in adult patients (such as HIV+ or acquired pituitary tumor patients). Parameters and clinical endpoints are measured as a function of the dosing of the fusion proteins compositions, yielding dose-ranging information on doses that would be appropriate for a subsequent Phase III trial, in addition to collecting safety data related to adverse events. The PK parameters are correlated to the physiologic, clinical and safety parameter data to establish the therapeutic window and the therapeutic dose regimen for the GHXTEN composition, permitting the clinician to establish the approrpirate dose ranges for a GHXTEN composition. Finally, a phase III efficacy study is conducted wherein patients would be administered the GHXTEN composition at the dose regimen, and a positive control (such as a commercially-available, approved growth hormone), or a placebo is administered daily or using other dosing schedule deemed appropriate given the pharmacokinetic and pharmacodynamic properties of the control composition, with all agents administered for an appropriately extended period of time to achieve the study endpoints. Parameters that are monitored include GH, IGF-1 and IGFBP3 concentrations, changes in height velocity, lean body mass, total body fat, trunk fat, parameters associated with insulin resistance syndrome, measurement of division and multiplication rates of chondrocytes, and/or changes in bone density and/or bone growth; parameters that would be tracked relative to the placebo or positive control groups. Efficacy outcomes would be determined using standard statistical methods. Toxicity and adverse event markers are also be followed in this study to verify that the compound is safe when used in the manner described.


Example 37
Analytical Size Exclusion Chromatography of XTEN Fusion Proteins with Diverse Payloads

Size exclusion chromatography analyses were performed on fusion proteins containing various therapeutic proteins and unstructured recombinant proteins of increasing length. An exemplary assay used a TSKGel-G4000 SWXL (7.8 mm×30 cm) column in which 40 μg of purified glucagon fusion protein at a concentration of 1 mg/ml was separated at a flow rate of 0.6 ml/min in 20 mM phosphate pH 6.8, 114 mM NaCl. Chromatogram profiles were monitored using OD214 nm and OD280 nm. Column calibration for all assays were performed using a size exclusion calibration standard from BioRad; the markers include thyroglobulin (670 kDa), bovine gamma-globulin (158 kDa), chicken ovalbumin (44 kDa), equine myoglobuin (17 kDa) and vitamin B12 (1.35 kDa). Representative chromatographic profiles of Glucagon-Y288, Glucagon-Y144, Glucagon-Y72, Glucagon-Y36 are shown as an overlay in FIG. 34. The data show that the apparent molecular weight of each compound is proportional to the length of the attached XTEN sequence. However, the data also show that the apparent molecular weight of each construct is significantly larger than that expected for a globular protein (as shown by comparison to the standard proteins run in the same assay). Based on the SEC analyses for all constructs evaluated, including a GHXTEN composition, the Apparent Molecular Weights, the Apparent Molecular Weight Factor (expressed as the ratio of Apparent Molecular Weight to the calculated molecular weight) and the hydrodynamic radius (RH in nm) are shown in Table 24. The results indicate that incorporation of different XTENs of 576 amino acids or greater confers an apparent molecular weight for the fusion protein of approximately 339 kDa to 760, and that XTEN of 864 amino acids or greater confers an apparent molecular weight greater than approximately 800 kDA. The results of proportional increases in apparent molecular weight to actual molecular weight were consistent for fusion proteins created with XTEN from several different motif families; i.e., AD, AE, AF, AG, and AM, with increases of at least four-fold and ratios as high as about 17-fold. Additionally, the incorporation of XTEN fusion partners with 576 amino acids or more into fusion proteins with the various payloads (and 288 residues in the case of glucagon fused to Y288) resulted with a hydrodynamic radius of 7 nm or greater; well beyond the glomerular pore size of approximately 3-5 nm. Accordingly, it is expected that fusion proteins comprising growth and XTEN have reduced renal clearance, contributing to increased terminal half-life and improving the therapeutic or biologic effect relative to a corresponding un-fused biologic payload protein.









TABLE 24







SEC analysis of various polypeptides


















Apparent




XTEN or

Actual
Apparent
Molecular


Construct
fusion
Therapeutic
MW
MW
Weight
RH


Name
partner
Protein
(kDa)
(kDa)
Factor
(nm)
















AC14
Y288
Glucagon
28.7
370
12.9
7.0


AC28
Y144
Glucagon
16.1
117
7.3
5.0


AC34
Y72
Glucagon
9.9
58.6
5.9
3.8


AC33
Y36
Glucagon
6.8
29.4
4.3
2.6


AC89
AF120
Glucagon
14.1
76.4
5.4
4.3


AC88
AF108
Glucagon
13.1
61.2
4.7
3.9


AC73
AF144
Glucagon
16.3
95.2
5.8
4.7


AC53
AG576
GFP
74.9
339
4.5
7.0


AC39
AD576
GFP
76.4
546
7.1
7.7


AC41
AE576
GFP
80.4
760
9.5
8.3


AC52
AF576
GFP
78.3
526
6.7
7.6


AC85
AE864
Exendin-4
83.6
938
11.2
8.9


AC114
AM875
Exendin-4
82.4
1344
16.3
9.4


AC143
AM875
hGH
100.6
846
8.4
8.7


AC227
AM875
IL-1ra
95.4
1103
11.6
9.2


AC228
AM1318
IL-1ra
134.8
2286
17.0
10.5









Example 38
Pharmacokinetics of Extended Polypeptides Fused to GFP in Cynomolgus Monkeys

The pharmacokinetics of GFP-L288, GFP-L576, GFP-XTEN_AF576, GFP-XTEN_Y576 and XTEN_AD836-GFP were tested in cynomolgus monkeys to determine the effect of composition and length of the unstructured polypeptides on PK parameters. Blood samples were analyzed at various times after injection and the concentration of GFP in plasma was measured by ELISA using a polyclonal antibody against GFP for capture and a biotinylated preparation of the same polyclonal antibody for detection. Results are summarized in FIG. 35. They show a surprising increase of half-life with increasing length of the XTEN sequence. For example, a half-life of 10 h was determined for GFP-XTEN_L288 (with 288 amino acid residues in the XTEN). Doubling the length of the unstructured polypeptide fusion partner to 576 amino acids increased the half-life to 20-22 h for multiple fusion protein constructs; i.e., GFP-XTEN_L576, GFP-XTEN_AF576, GFP-XTEN_Y576. A further increase of the unstructured polypeptide fusion partner length to 836 residues resulted in a half-life of 72-75 h for XTEN_AD836-GFP. Thus, increasing the polymer length by 288 residues from 288 to 576 residues increased in vivo half-life by about 10 h. However, increasing the polypeptide length by 260 residues from 576 residues to 836 residues increased half-life by more than 50 h. These results show that there is a surprising threshold of unstructured polypeptide length that results in a greater than proportional gain in in vivo half-life. Thus, fusion proteins comprising extended, unstructured polypeptides are expected to have the property of enhanced pharmacokinetics compared to polypeptides of shorter lengths.


Example 39
Serum Stability of XTEN

A fusion protein containing XTEN_AE864 fused to the N-terminus of GFP was incubated in monkey plasma and rat kidney lysate for up to 7 days at 37° C. Samples were withdrawn at time 0, Day 1 and Day 7 and analyzed by SDS PAGE followed by detection using Western analysis and detection with antibodies against GFP as shown in FIG. 14. The sequence of XTEN_AE864 showed negligible signs of degradation over 7 days in plasma. However, XTEN_AE864 was rapidly degraded in rat kidney lysate over 3 days. The in vivo stability of the fusion protein was tested in plasma samples wherein the GFP_AE864 was immunoprecipitated and analyzed by SDS PAGE as described above. Samples that were withdrawn up to 7 days after injection showed very few signs of degradation. The results demonstrate the resistance of GHXTEN to degradation due to serum proteases; a factor in the enhancement of pharmacokinetic properties of the GHXTEN fusion proteins.


Example 40
PK Analysis of Ex4-XTEN Fusion Protein in Multiple Species and Predicted Human Half-Life

To determine the predicted pharmacokinetic profile in humans of a therapeutic protein fused to XTEN, studies were performed using exendin-4 fused to the AE864 XTEN as a single fusion polypeptide. The Ex4-XTEN construct was administered to four different animal species at 0.5-1.0 mg/kg, subcutaneously and intravenously. Serum samples were collected at intervals following administration, with serum concentrations determined using standard methods. The half-life for each species was determined, and is tabulated in Table 25. The results were used to predict the human half-life using allometric scaling of terminal half-life, volume of distribution, and clearance rates based on average body mass. FIG. 36A shows a plot of measured terminal half-life versus body mass in the animal species, with a predicted T1/2 in a 75 kg human of 140 h, compared to the reported half-life of exenatide of 2.4 h (Bond, A. Proc (Bayl Univ Med Cent) 19(3): 281-284. (2006)). FIG. 36B shows measured drug clearance versus body mass, with a predicted clearance rate value of 30 ml/h in a 75 kg human FIG. 36C shows measured volume of distribution versus body mass, with a predicted value of 5970 ml in a 75 kg human.


Conclusions: It can be concluded from the results that addition of an XTEN to a glucose-regulating peptide, such as exendin-4, can greatly increase the terminal half-life compared to the peptide not linked to XTEN.









TABLE 25







Half-life of Ex4-XTEN










Species
Half-Life (hr)






Mouse
 13.5



Rat
 31.7



Monkey
 60.7



Dog
 72.8



Human
140*





*Predicted value based on allometric scaling






Example 41
Increasing Solubility and Stability of a Peptide Payload by Linking to XTEN

In order to evaluate the ability of XTEN to enhance the physical/chemical properties of solubility and stability, fusion proteins of glucagon plus shorter-length XTEN were prepared and evaluated. The test articles were prepared in Tris-buffered saline at neutral pH and characterization of the Gcg-XTEN solution was by reverse-phase HPLC and size exclusion chromatography to affirm that the protein was homogeneous and non-aggregated in solution. The data are presented in Table 26. For comparative purposes, the solubility limit of unmodified glucagon in the same buffer was measured at 60 μM (0.2 mg/mL), and the result demonstrate that for all lengths of XTEN added, a substantial increase in solubility was attained. Importantly, in most cases the glucagon-XTEN fusion proteins were prepared to achieve target concentrations and were not evaluated to determine the maximum solubility limits for the given construct. However, in the case of glucagon linked to the AF-144 XTEN, the limit of solubility was determined, with the result that a 60-fold increase in solubility was achieved, compared to glucagon not linked to XTEN. In addition, the glucagon-AF144 GHXTEN was evaluated for stability, and was found to be stable in liquid formulation for at least 6 months under refrigerated conditions and for approximately one month at 37° C. (data not shown).


Conclusions: The data support the conclusion that the linking of short-length XTEN polypeptides to a biologically active protein such as glucagon can markedly enhance the solubility properties of the protein by the resulting fusion protein, as well as confer stability at the higher protein concentrations.









TABLE 26







Solubility of Glucagon-XTEN constructs










Test Article
Solubility






Glucagon
   60 μM



Glucagon-Y36
 >370 μM



Glucagon-Y72
 >293 μM



Glucagon-AF108
 >145 μM



Glucagon-AF120
 >160 μM



Glucagon-Y144
 >497 μM



Glucagon-AE144
 >467 μM



Glucagon-AF144
>3600 μM



Glucagon-Y288
 >163 μM









Example 42
Characterization of XTEN Fusion Protein Secondary Structure

The fusion protein Ex4-AE864 was evaluated for degree of secondary structure by circular dichroism spectroscopy. CD spectroscopy was performed on a Jasco J-715 (Jasco Corporation, Tokyo, Japan) spectropolarimeter equipped with Jasco Peltier temperature controller (TPC-348WI). The concentration of protein was adjusted to 0.2 mg/mL in 20 mM sodium phosphate pH 7.0, 50 mM NaCl. The experiments were carried out using HELLMA quartz cells with an optical path-length of 0.1 cm. The CD spectra were acquired at 5°, 25°, 45°, and 65° C. and processed using the J-700 version 1.08.01 (Build 1) Jasco software for Windows. The samples were equilibrated at each temperature for 5 min before performing CD measurements. All spectra were recorded in duplicate from 300 nm to 185 nm using a bandwidth of 1 nm and a time constant of 2 sec, at a scan speed of 100 nm/min. The CD spectrum shown in FIG. 37 shows no evidence of stable secondary structure and is consistent with an unstructured polypeptide.


Example 43
Analysis of Sequences for Secondary Structure by Prediction Algorithms

Amino acid sequences can be assessed for secondary structure via certain computer programs or algorithms, such as the well-known Chou-Fasman algorithm (Chou, P. Y., et al. (1974) Biochemistry, 13: 222-45) and the Garnier-Osguthorpe-Robson, or “GOR” method (Gamier J, Gibrat J F, Robson B. (1996). GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266:540-553). For a given sequence, the algorithms can predict whether there exists some or no secondary structure at all, expressed as total and/or percentage of residues of the sequence that form, for example, alpha-helices or beta-sheets or the percentage of residues of the sequence predicted to result in random coil formation.


Several representative sequences from XTEN “families” have been assessed using two algorithm tools for the Chou-Fasman and GOR methods to assess the degree of secondary structure in these sequences. The Chou-Fasman tool was provided by William R Pearson and the University of Virginia, at the “Biosupport” internet site, URL located on the World Wide Web at fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi?rm=misc1 as it existed on Jun. 19, 2009. The GOR tool was provided by Pole Informatique Lyonnais at the Network Protein Sequence Analysis internet site, URL located on the World Wide Web at .npsa-pbil.ibcp.fr/cgi-bin/secpred_gor4.pl as it existed on Jun. 19, 2008.


As a first step in the analyses, a single XTEN sequence was analyzed by the two algorithms. The AE864 composition is a XTEN with 864 amino acid residues created from multiple copies of four 12 amino acid sequence motifs consisting of the amino acids G, S, T, E, P, and A. The sequence motifs are characterized by the fact that there is limited repetitiveness within the motifs and within the overall sequence in that the sequence of any two consecutive amino acids is not repeated more than twice in any one 12 amino acid motif, and that no three contiguous amino acids of full-length the XTEN are identical. Successively longer portions of the AF 864 sequence from the N-terminus were analyzed by the Chou-Fasman and GOR algorithms (the latter requires a minimum length of 17 amino acids). The sequences were analyzed by entering the FASTA format sequences into the prediction tools and running the analysis. The results from the analyses are presented in Table 27.


The results indicate that, by the Chou-Fasman calculations, the four motifs of the AE family (Table 1) have no alpha-helices or beta sheets. The sequence up to 288 residues was similarly found to have no alpha-helices or beta sheets. The 432 residue sequence is predicted to have a small amount of secondary structure, with only 2 amino acids contributing to an alpha-helix for an overall percentage of 0.5%. The full-length AF864 polypeptide has the same two amino acids contributing to an alpha-helix, for an overall percentage of 0.2%. Calculations for random coil formation revealed that with increasing length, the percentage of random coil formation increased. The first 24 amino acids of the sequence had 91% random coil formation, which increased with increasing length up to the 99.77% value for the full-length sequence.


Numerous XTEN sequences of 500 amino acids or longer from the other motif families were also analyzed and revealed that the majority had greater than 95% random coil formation. The exceptions were those sequences with one or more instances of three contiguous serine residues, which resulted in predicted beta-sheet formation. However, even these sequences still had approximately 99% random coil formation.


In contrast, a polypeptide sequence of 84 residues limited to A, S, and P amino acids was assessed by the Chou-Fasman algorithm, which predicted a high degree of predicted alpha-helices. The sequence, which had multiple repeat “AA” and “AAA” sequences, had an overall predicted percentage of alpha-helix structure of 69%. The GOR algorithm predicted 78.57% random coil formation; far less than any sequence consisting of 12 amino acid sequence motifs consisting of the amino acids G, S, T, E, P, analyzed in the present Example.


Conclusions: The analysis supports the conclusion that: 1) XTEN created from multiple sequence motifs of G, S, T, E, P, and A that have limited repetitiveness as to contiguous amino acids are predicted to have very low amounts of alpha-helices and beta-sheets; 2) that increasing the length of the XTEN does not appreciably increase the probability of alpha-helix or beta-sheet formation; and 3) that progressively increasing the length of the XTEN sequence by addition of non-repetitive 12-mers consisting of the amino acids G, S, T, E, P, and A results in increased percentage of random coil formation. In contrast, polypeptides created from amino acids limited to A, S and P that have a higher degree of internal repetitiveness are predicted to have a high percentage of alpha-helices, as determined by the Chou-Fasman algorithm, as well as random coil formation. Based on the numerous sequences evaluated by these methods, it is concluded that XTEN created from sequence motifs of G, S, T, E, P, and A that have limited repetitiveness (defined as no more than two identical contiguous amino acids in any one motif) greater than about 400 amino acid residues in length are expected to have very limited secondary structure. With the exception of motifs containing three contiguous serines, it is believed that any order or combination of sequence motifs from Table 1 can be used to create an XTEN polypeptide of a length greater than about 400 residues that will result in an XTEN sequence that is substantially devoid of secondary structure. Such sequences are expected to have the characteristics described in the GHXTEN embodiments of the invention disclosed herein.









TABLE 27







CHOU-FASMAN and GOR prediction calculations of polypeptide sequences












SEQ

SEQ ID
No.
Chou-Fasman
GOR


NAME
Sequence
NO:
Residues
Calculation
Calculation
















GSTSESPSGTAP
624
12
Residue totals*: H: 0 E: 0
Not






percent: H: 0.0 E: 0.0
Determined






GTSTPESGSASP
625
12
Residue totals: H: 0 E: 0
Not






percent: H: 0.0 E: 0.0
Determined






GTSPSGESSTAP
626
12
Residue totals: H: 0 E: 0
Not






percent: H: 0.0 E: 0.0
Determined






GSTSSTAESPGP
627
12
Residue totals: H: 0 E: 0
Not






percent: H: 0.0 E: 0.0
Determined






GSPAGSPTSTEEGTSESATPESGP
628
24
Residue totals: H: 0 E: 0
91.67%






percent: H: 0.0 E: 0.0






GSPAGSPTSTEEGTSESATPESGPG
629
36
Residue totals: H: 0 E: 0
94.44%



TSTEPSEGSAP


percent: H: 0.0 E: 0.0






GSPAGSPTSTEEGTSESATPESGPG
630
48
Residue totals: H: 0 E: 0
93.75%



TSTEPSEGSAPGSPAGSPTSTEE


percent: H: 0.0 E: 0.0






GSPAGSPTSTEEGTSESATPESGPG
631
60
Residue totals: H: 0 E: 0
96.67%



TSTEPSEGSAPGSPAGSPTSTEEGTS


percent: H: 0.0 E: 0.0



TEPSEGSAP






GSPAGSPTSTEEGTSESATPESGPG
632
108
Residue totals: H: 0 E: 0
97.22%



TSTEPSEGSAPGSPAGSPTSTEEGTS


percent: H: 0.0 E: 0.0



TEPSEGSAPGTSTEPSEGSAPGTSES



ATPESGPGSEPATSGSE



TPGSEPATSGSETP






GSPAGSPTSTEEGTSESATPESGPG
633
216
Residue totals: H: 0 E: 0
99.07%



TSTEPSEGSAPGSPAGSPTSTEEGTS


percent: H: 0.0 E: 0.0



TEPSEGSAPGTSTEPSEGSAPGTSES



ATPESGPGSEPATSGSETPGSEPAT



SGSETPGSPAGSPTSTEEGTSESATP



ESGPGTSTEPSEGSAPGTSTEPSEGS



APGSPAGSPTSTEEGTSTEPSEGSA



PGTSTEPSEGSAPGTSESATPESGP



GTSTEPSEGSAP






GSPAGSPTSTEEGTSESATPESGPG
634
432
Residue totals: H: 2 E: 3
99.54%



TSTEPSEGSAPGSPAGSPTSTEEGTS


percent: H: 0.5 E: 0.7



TEPSEGSAPGTSTEPSEGSAPGTSES



ATPESGPGSEPATSGSETPGSEPAT



SGSETPGSPAGSPTSTEEGTSESATP



ESGPGTSTEPSEGSAPGTSTEPSEGS



APGSPAGSPTSTEEGTSTEPSEGSA



PGTSTEPSEGSAPGTSESATPESGP



GTSTEPSEGSAPGTSESATPESGPG



SEPATSGSETPGTSTEPSEGSAPGTS



TEPSEGSAPGTSESATPESGPGTSES



ATPESGPGSPAGSPTSTEEGTSESA



TPESGPGSEPATSGSETPGTSESATP



ESGPGTSTEPSEGSAPGTSTEPSEGS



APGTSTEPSEGSAPGTSTEPSEGSA



PGTSTEPSEGSAPGTSTEPSEGSAP



GSPAGSPTSTEEGTSTEPSEGSAP





AE864
GSPAGSPTSTEEGTSESATPESGPG
635
864
Residue totals: H: 2 E: 3
99.77%



TSTEPSEGSAPGSPAGSPTSTEEGTS


percent: H: 0.2 E: 0.3



TEPSEGSAPGTSTEPSEGSAPGTSES



ATPESGPGSEPATSGSETPGSEPAT



SGSETPGSPAGSPTSTEEGTSESATP



ESGPGTSTEPSEGSAPGTSTEPSEGS



APGSPAGSPTSTEEGTSTEPSEGSA



PGTSTEPSEGSAPGTSESATPESGP



GTSTEPSEGSAPGTSESATPESGPG



SEPATSGSETPGTSTEPSEGSAPGTS



TEPSEGSAPGTSESATPESGPGTSES



ATPESGPGSPAGSPTSTEEGTSESA



TPESGPGSEPATSGSETPGTSESATP



ESGPGTSTEPSEGSAPGTSTEPSEGS



APGTSTEPSEGSAPGTSTEPSEGSA



PGTSTEPSEGSAPGTSTEPSEGSAP



GSPAGSPTSTEEGTSTEPSEGSAPG



TSESATPESGPGSEPATSGSETPGTS



ESATPESGPGSEPATSGSETPGTSES



ATPESGPGTSTEPSEGSAPGTSESA



TPESGPGSPAGSPTSTEEGSPAGSPT



STEEGSPAGSPTSTEEGTSESATPES



GPGTSTEPSEGSAPGTSESATPESG



PGSEPATSGSETPGTSESATPESGP



GSEPATSGSETPGTSESATPESGPG



TSTEPSEGSAPGSPAGSPTSTEEGTS



ESATPESGPGSEPATSGSETPGTSES



ATPESGPGSPAGSPTSTEEGSPAGS



PTSTEEGTSTEPSEGSAPGTSESATP



ESGPGTSESATPESGPGTSESATPES



GPGSEPATSGSETPGSEPATSGSET



PGSPAGSPTSTEEGTSTEPSEGSAP



GTSTEPSEGSAPGSEPATSGSETPG



TSESATPESGPGTSTEPSEGSAP





AD 576
GSSESGSSEGGPGSGGEPSESGSSG
636
576
Residue totals: H: 7 E: 0
99.65%



SSESGSSEGGPGSSESGSSEGGPGSS


percent: H: 1.2 E: 0.0



ESGSSEGGPGSSESGSSEGGPGSSE



SGSSEGGPGESPGGSSGSESGSEGS



SGPGESSGSSESGSSEGGPGSSESGS



SEGGPGSSESGSSEGGPGSGGEPSE



SGSSGESPGGSSGSESGESPGGSSG



SESGSGGEPSESGSSGSSESGSSEG



GPGSGGEPSESGSSGSGGEPSESGS



SGSEGSSGPGESSGESPGGSSGSES



GSGGEPSESGSSGSGGEPSESGSSG



SGGEPSESGSSGSSESGSSEGGPGE



SPGGSSGSESGESPGGSSGSESGESP



GGSSGSESGESPGGSSGSESGESPG



GSSGSESGSSESGSSEGGPGSGGEP



SESGSSGSEGSSGPGESSGSSESGSS



EGGPGSGGEPSESGSSGSSESGSSE



GGPGSGGEPSESGSSGESPGGSSGS



ESGESPGGSSGSESGSSESGSSEGG



PGSGGEPSESGSSGSSESGSSEGGP



GSGGEPSESGSSGSGGEPSESGSSG



ESPGGSSGSESGSEGSSGPGESSGSS



ESGSSEGGPGSEGSSGPGESS





AE576
GSPAGSPTSTEEGTSESATPESGPG
637
576
Residue totals: H: 2 E: 0
99.65%



TSTEPSEGSAPGSPAGSPTSTEEGTS


percent: H: 0.4 E: 0.0



TEPSEGSAPGTSTEPSEGSAPGTSES



ATPESGPGSEPATSGSETPGSEPAT



SGSETPGSPAGSPTSTEEGTSESATP



ESGPGTSTEPSEGSAPGTSTEPSEGS



APGSPAGSPTSTEEGTSTEPSEGSA



PGTSTEPSEGSAPGTSESATPESGP



GTSTEPSEGSAPGTSESATPESGPG



SEPATSGSETPGTSTEPSEGSAPGTS



TEPSEGSAPGTSESATPESGPGTSES



ATPESGPGSPAGSPTSTEEGTSESA



TPESGPGSEPATSGSETPGTSESATP



ESGPGTSTEPSEGSAPGTSTEPSEGS



APGTSTEPSEGSAPGTSTEPSEGSA



PGTSTEPSEGSAPGTSTEPSEGSAP



GSPAGSPTSTEEGTSTEPSEGSAPG



TSESATPESGPGSEPATSGSETPGTS



ESATPESGPGSEPATSGSETPGTSES



ATPESGPGTSTEPSEGSAPGTSESA



TPESGPGSPAGSPTSTEEGSPAGSPT



STEEGSPAGSPTSTE7EGTSESATPE



SGPGTSTEPSEGSAP





AF540
GSTSSTAESPGPGSTSSTAESPGPGS
638
540
Residue totals: H: 2 E: 0
99.65



TSESPSGTAPGSTSSTAESPGPGSTS


percent: H: 0.4 E: 0.0



STAESPGPGTSTPESGSASPGSTSES



PSGTAPGTSPSGESSTAPGSTSESPS



GTAPGSTSESPSGTAPGTSPSGESST



APGSTSESPSGTAPGSTSESPSGTAP



GTSPSGESSTAPGSTSESPSGTAPGS



TSESPSGTAPGSTSESPSGTAPGTST



PESGSASPGSTSESPSGTAPGTSTPE



SGSASPGSTSSTAESPGPGSTSSTAE



SPGPGTSTPESGSASPGTSTPESGSA



SPGSTSESPSGTAPGTSTPESGSASP



GTSTPESGSASPGSTSESPSGTAPGS



TSESPSGTAPGSTSESPSGTAPGSTS



STAESPGPGTSTPESGSASPGTSTPE



SGSASPGSTSESPSGTAPGSTSESPS



GTAPGTSTPESGSASPGSTSESPSGT



APGSTSESPSGTAPGTSTPESGSASP



GTSPSGESSTAPGSTSSTAESPGPGT



SPSGESSTAPGSTSSTAESPGPGTST



PESGSASPGSTSESPSGTAP





AF504
GASPGTSSTGSPGSSPSASTGTGPG
639
504
Residue totals: H: 0 E: 0
94.44%



SSPSASTGTGPGTPGSGTASSSPGSS


percent: H: 0.0 E: 0.0



TPSGATGSPGSNPSASTGTGPGASP



GTSSTGSPGTPGSGTASSSPGSSTPS



GATGSPGTPGSGTASSSPGASPGTS



STGSPGASPGTSSTGSPGTPGSGTA



SSSPGSSTPSGATGSPGASPGTSSTG



SPGTPGSGTASSSPGSSTPSGATGSP



GSNPSASTGTGPGSSPSASTGTGPG



SSTPSGATGSPGSSTPSGATGSPGA



SPGTSSTGSPGASPGTSSTGSPGASP



GTSSTGSPGTPGSGTASSSPGASPG



TSSTGSPGASPGTSSTGSPGASPGT



SSTGSPGSSPSASTGTGPGTPGSGT



ASSSPGASPGTSSTGSPGASPGTSST



GSPGASPGTSSTGSPGSSTPSGATG



SPGSSTPSGATGSPGASPGTSSTGSP



GTPGSGTASSSPGSSTPSGATGSPG



SSTPSGATGSPGSSTPSGATGSPGSS



PSASTGTGPGASPGTSSTGSP





AE864
GSPAGSPTSTEEGTSESATPESGPG
640
864
Residue totals: H: 2 E: 3
99.77%



TSTEPSEGSAPGSPAGSPTSTEEGTS


percent: H: 0.2 E: 0.4



TEPSEGSAPGTSTEPSEGSAPGTSES



ATPESGPGSEPATSGSETPGSEPAT



SGSETPGSPAGSPTSTEEGTSESATP



ESGPGTSTEPSEGSAPGTSTEPSEGS



APGSPAGSPTSTEEGTSTEPSEGSA



PGTSTEPSEGSAPGTSESATPESGP



GTSTEPSEGSAPGTSESATPESGPG



SEPATSGSETPGTSTEPSEGSAPGTS



TEPSEGSAPGTSESATPESGPGTSES



ATPESGPGSPAGSPTSTEEGTSESA



TPESGPGSEPATSGSETPGTSESATP



ESGPGTSTEPSEGSAPGTSTEPSEGS



APGTSTEPSEGSAPGTSTEPSEGSA



PGTSTEPSEGSAPGTSTEPSEGSA



GSPAGSPTSTEEGTSTEPSEGSAPG



TSESATPESGPGSEPATSGSETPGTS



ESATPESGPGSEPATSGSETPGTSES



ATPESGPGTSTEPSEGSAPGTSESA



TPESGPGSPAGSPTSTEEGSPAGSPT



STEEGSPAGSPTSTEEGTSESATPES



GPGTSTEPSEGSAPGTSESATPESG



PGSEPATSGSETPGTSESATPESGP



GSEPATSGSETPGTSESATPESGPG



TSTEPSEGSAPGSPAGSPTSTEEGTS



ESATPESGPGSEPATSGSETPGTSES



ATPESGPGSPAGSPTSTEEGSPAGS



PTSTEEGTSTEPSEGSAPGTSESATP



ESGPGTSESATPESGPGTSESATPES



GPGSEPATSGSETPGSEPATSGSET



PGSPAGSPTSTEEGTSTEPSEGSAP



GTSTEPSEGSAPGSEPATSGSETPG



TSESATPESGPGTSTEPSSGSAP





AF864
GSTSESPSGTAPGTSPSGESSTAPGS
641
875
Residue totals: H: 2 E: 0
95.20%



TSESPSGTAPGSTSESPSGTAPGTST


percent: H: 0.2 E: 0.0



PESGSASPGTSTPESGSASPGSTSES



PSGTAPGSTSESPSGTAPGTSPSGES



STAPGSTSESPSGTAPGTSPSGESST



APGTSPSGESSTAPGSTSSTAESPGP



GTSPSGESSTAPGTSPSGESSTAPGS



TSSTAESPGPGTSTPESGSASPGTST



PESGSASPGSTSESPSGTAPGSTSES



PSGTAPGTSTPESGSASPGSTSSTAE



SPGPGTSTPESGSASPGSTSESPSGT



APGTSPSGESSTAPGSTSSTAESPGP



GTSPSGESSTAPGTSTPESGSASPGS



TSSTAESPGPGSTSSTAESPGPGSTS



STAESPGPGSTSSTAESPGPGTSPSG



ESSTAPGSTSESPSGTAPGSTSESPS



GTAPGTSTPESGPXXXGASASGAP



STXXXXSESPSGTAPGSTSESPSGT



APGSTSESPSGTAPGSTSESPSGTAP



GSTSESPSGTAPGSTSESPSGTAPGT



STPESGSASPGTSPSGESSTAPGTSP



SGESSTAPGSTSSTAESPGPGTSPSG



ESSTAPGTSTPESGSASPGSTSESPS



GTAPGSTSESPSGTAPGTSPSGESST



APGSTSESPSGTAPGTSTPESGSASP



GTSTPESGSASPGSTSESPSGTAPGT



STPESGSASPGSTSSTAESPGPGSTS



ESPSGTAPGSTSESPSGTAPGTSPSG



ESSTAPGSTSSTAESPGPGTSPSGES



STAPGTSTPESGSASPGTSPSGESST



APGTSPSGESSTAPGTSPSGESSTAP



GSTSSTAESPGPGSTSSTAESPGPGT



SPSGESSTAPGSSPSASTGTGPGSST



PSGATGSPGSSTPSGATGSP





AG864
GGSPGASPGTSSTGSPGSSPSASTG
642
868
Residue totals: H: 0 E: 0
94.70%



TGPGSSPSASTGTGPGTPGSGTASS


percent: H: 0.0 E: 00



SPGSSTPSGATGSPGSNPSASTGTG



PGASPGTSSTGSPGTPGSGTASSSP



GSSTPSGATGSPGTPGSGTASSSPG



ASPGTSSTGSPGASPGTSSTGSPGT



PGSGTASSSPGSSTPSGATGSPGAS



PGTSSTGSPGTPGSGTASSSPGSSTP



SGATGSPGSNPSASTGTGPGSSPSA



STGT7GPGSSTPSGATGSPGSSTPSG



ATGSPGASPGTSSTGSPGASPGTSS



TGSPGASPGTSSTGSPGTPGSGTAS



SSPGASPGTSSTGSPGASPGTSSTGS



PGASPGTSSTGSPGSSPSASTGTGP



GTPGSGTASSSPGASPGTSSTGSPG



ASPGTSSTGSPGASPGTSSTGSPGSS



TPSGATGSPGSSTPSGATGSPGASP



GTSSTGSPGTPGSGTASSSPGSSTPS



GATGSPGSSTPSGATGSPGSSTPSG



ATGSPGSSPSASTGTGPGASPGTSS



TGSPGASPGTSSTGSPGTPGSGTAS



SSPGASPGTSSTGSPGASPGTSSTGS



PGASPGTSSTGSPGASPGTSSTGSP



GTPGSGTASSSPGSSTPSGATGSPG



TPGSGTASSSPGSSTPSGATGSPGT



PGSGTASSSPGSSTPSGATGSPGSST



PSGATGSPGSSPSASTGTGPGSSPS



ASTGTGPGASPGTSSTGSPGTPGSG



TASSSPGSSTPSGATGSPGSSPSAST



GTGPGSSPSASTGTGPGASPGTSST



GSPGASPGTSSTGSPGSSTPSGATG



SPGSSPSASTGTGPGASPGTSSTGSP



GSSPSASTGTGPGTPGSGTASSSPG



SSTPSGATGSPGSSTPSGATGSPGA



SPGTSSTGSP





AM875
GTSTEPSEGSAPGSEPATSGSETPG
643
875
Residue totals: H: 7 E: 3
98.63%



SPAGSPTSTEEGSTSSTAESPGPGTS


percent: H: 0.8 E: 0.3



TPESGSASPGSTSESPSGTAPGSTSE



SPSGTAPGTSTPESGSASPGTSTPES



GSASPGSEPATSGSETPGTSESATP



ESGPGSPAGSPTSTEEGTSTEPSEGS



APGTSESATPESGPGTSTEPSEGSA



PGTSTEPSEGSAPGSPAGSPTSTEE



GTSTEPSEGSAPGTSTEPSEGSAPG



TSESATPESGPGTSESATPESGPGTS



TEPSEGSAPGTSTEPSEGSAPGTSES



ATPESGPGTSTEPSEGSAPGSEPAT



SGSETPGSPAGSPTSTEEGSSTPSGA



TGSPGTPGSGTASSSPGSSTPSGAT



GSPGTSTEPSEGSAPGTSTEPSEGS



APGSEPATSGSETPGSPAGSPTSTE



EGSPAGSPTSTEEGTSTEPSEGSAP



GASASGAPSTGGTSESATPESGPGS



PAGSPTSTEEGSPAGSPTSTEEGSTS



STAESPGPGSTSESPSGTAPGTSPSG



ESSTAPGTPGSGTASSSPGSSTPSG



ATGSPGSSPSASTGTGPGSEPATSG



SETPGTSESATPESGPGSEPATSGSE



TPGSTSSTAESPGPGSTSSTAESPGP



GTSPSGESSTAPGSEPATSGSETPGS



EPATSGSETPGTSTEPSEGSAPGSTS



STAESPGPGTSTPESGSASPGSTSES



PSGTAPGTSTEPSEGSAPGTSTEPSE



GSAPGTSTEPSEGSAPGSSTPSGAT



GSPGSSPSASTGTGPGASPGTSSTG



SPGSEPATSGSETPGTSESATPESGP



GSPAGSPTSTEEGSSTPSGATGSPG



SSPSASTGTGPGASPGTSSTGSPGT



SESATPESGPGTSTEPSEGSAPGTST



EPSEGSA





AM1318
GTSTEPSEGSAPGSEPATSGSETPG
644
1318
Residue totals: H: 7 E: 0
99.17%



SPAGSPTSTEEGSTSSTAESPGPGTS


percent: H: 0.7: E: 0.0



TPESGSASPGSTSESPSGTAPGSTSE



SPSGTAPGTSTPESGSASPGTSTPES



GSASPGSEPATSGSETPGTSESATP



ESGPGSPAGSPTSTEEGTSTEPSEGS



APGTSESATPESGPGTSTEPSEGSA



PGTSTEPSEGSAPGSPAGSPTSTEE



GTSTEPSEGSAPGTSTEPSEGSAPG



TSESATPESGPGTSESATPESGPGTS



TEPSEGSAPGTSTEPSEGSAPGTSES



ATPESGPGTSTEPSEGSAPGSEPAT



SGSETPGSPAGSPTSTEEGSSTPSGA



TGSPGTPGSGTASSSPGSSTPSGAT



GSPGTSTEPSEGSAPGTSTEPSEGS



APGSEPATSGSETPGSPAGSPTSTE



EGSPAGSPTSTEEGTSTEPSEGSAP



GPEPTGPAPSGGSEPATSGSETPGT



SESATPESGPGSPAGSPTSTEEGTSE



SATPESGPGSPAGSPTSTEEGSPAG



SPTSTEEGTSESATPESGPGSPAGSP



TSTEEGSPAGSPTSTEEGSTSSTAES



PGPGSTSESPSGTAPGTSPSGESSTA



PGSTSESPSGTAPGSTSESPSGTAPG



TSPSGESSTAPGTSTEPSEGSAPGTS



ESATPESGPGTSESATPESGPGSEP



ATSGSETPGTSESATPESGPGTSES



ATPESGPGTSTEPSEGSAPGTSESA



TPESGPGTSTEPSEGSAPGTSPSGES



STAPGTSPSGESSTAPGTSPSGESST



APGTSTEPSEGSAPGSPAGSPTSTE



EGTSTEPSEGSAPGSSPSASTGTGP



GSSTPSGATGSPGSSTPSGATGSPG



SSTPSGATGSPGSSTPSGATGSPGA



SPGTSSTGSPGASASGAPSTGGTSP



SGESSTAPGSTSSTAESPGPGTSPSG



ESSTAPGTSESATPESGPGTSTEPSE



GSAPGTSTEPSEGSAPGSSPSASTG



TGPGSSTPSGATGSPGASPGTSSTG



SPGTSTPESGSASPGTSPSGESSTAP



GTSPSGESSTAPGTSESATPESGPGS



EPATSGSETPGTSTEPSEGSAPGSTS



ESPSGTAPGSTSESPSGTAPGTSTPE



SGSASPGSPAGSPTSTEEGTSESATP



ESGPGTSTEPSEGSAPGSPAGSPTST



EEGTSESATPESGPGSEPATSGSETP



GSSTPSGATGSPGASPGTSSTGSPG



SSTPSGATGSPGSTSESPSGTAPGTS



PSGESSTAPGSTSSTAESPGPGSSTP



SGATGSPGASPGTSSTGSPGTPGSG



TASSSPGSPAGSPTSTEEGSPAGSPT



STEEGTSTEPSEGSAP





AM923
MAEPAGSPTSTEEGASPGTSSTGSP
645
924
Residue totals: H: 4 E: 3
98.70%



GSSTPSGATGSPGSSTPSGATGSPG


percent: H: 0.4 E: 0.3



TSTEPSEGSAPGSEPATSGSETPGSP



AGSPTSTEEGSTSSTAESPGPGTSTP



ESGSASPGSTSESPSGTAPGSTSESP



SGTAPGTSTPESGSASPGTSTPESGS



ASPGSEPATSGSETPGTSESATPES



GPGSPAGSPTSTEEGTSTEPSEGSA



PGTSESATPESGPGTSTEPSEGSAP



GTSTEPSEGSAPGSPAGSPTSTEEG



TSTEPSEGSAPGTSTEPSEGSAPGTS



ESATPESGPGTSESATPESGPGTSTE



PSEGSAPGTSTEPSEGSAPGTSESA



TPESGPGTSTEPSEGSAPGSEPATS



GSETPGSPAGSPTSTEEGSSTPSGA



TGSPGTPGSGTASSSPGSSTPSGAT



GSPGTSTEPSEGSAPGTSTEPSEGS



APGSEPATSGSETPGSPAGSPTSTE



EGSPAGSPTSTEEGTSTEPSEGSAP



GASASGAPSTGGTSESATPESGPGS



PAGSPTSTEEGSPAGSPTSTEEGSTS



STAESPGPGSTSESPSGTAPGTSPSG



ESSTAPGTPGSGTASSSPGSSTPSG



ATGSPGSSPSASTGTGPGSEPATSG



SETPGTSESATPESGPGSEPATSGSE



TPGSTSSTAESPGPGSTSSTAESPGP



GTSPSGESSTAPGSEPATSGSETPGS



EPATSGSETPGTSTEPSEGSAPGSTS



STAESPGPGTSTPESGSASPGSTSES



PSGTAPGTSTEPSEGSAPGTSTEPSE



GSAPGTSTEPSEGSAPGSSTPSGAT



GSPGSSPSASTGTGPGASPGTSSTG



SPGSEPATSGSETPGTSESATPESGP



GSPAGSPTSTEEGSSTPSGATGSPG



SSPSASTGTGPGASPGTSSTGSPGT



SESATPESGPGTSTEPSEGSAPGTST



EPSEGSAP





AE912
MAEPAGSPTSTEEGTPGSGTASSSP
646
913
Residue totals: H: 8 E: 3
99.45%



GSSTPSGATGSPGASPGTSSTGSPG


percent: H: 0.9 E: 0.3



SPAGSPTSTEEGTSESATPESGPGTS



TEPSEGSAPGSPAGSPTSTEEGTSTE



PSEGSAPGTSTEPSEGSAPGTSESA



TPESGPGSEPATSGSETPGSEPATS



GSETPGSPAGSPTSTEEGTSESATPE



SGPGTSTEPSEGSAPGTSTEPSEGS



APGSPAGSPTSTEEGTSTEPSEGSA



PGTSTEPSEGSAPGTSESATPESGP



GTSTEPSEGSAPGTSESATPESGPG



SEPATSGSETPGTSTEPSEGSAPGTS



TEPSEGSAPGTSESATPESGPGTSES



ATPESGPGSPAGSPTSTEEGTSESA



TPESGPGSEPATSGSETPGTSESATP



ESGPGTSTEPSEGSAPGTSTEPSEGS



APGTSTEPSEGSAPGTSTEPSEGSA



PGTSTEPSEGSAPGTSTEPSEGSAP



GSPAGSPTSTEEGTSTEPSEGSAPG



TSESATPESGPGSEPATSGSETPGTS



ESATPESGPGSEPATSGSETPGTSES



ATPESGPGTSTEPSEGSAPGTSESA



TPESGPGSPAGSPTSTEEGSPAGSPT



STEEGSPAGSPTSTEEGTSESATPES



GPGTSTEPSEGSAPGTSESATPESG



PGSEPATSGSETPGTSESATPESGP



GSEPATSGSETPGTSESATPESGPG



TSTEPSEGSAPGSPAGSPTSTEEGTS



ESATPESGPGSEPATSGSETPGTSES



ATPESGPGSPAGSPTSTEEGSPAGS



PTSTEEGTSTEPSEGSAPGTSESATP



ESGPGTSESATPESGPGTSESATPES



GPGSEPATSGSETPGSEPATSGSET



PGSPAGSPTSTEEGTSTEPSEGSAP



GTSTEPSEGSAPGSEPATSGSETPG



TSESATPESGPGTSTEPSEGSAP





BC 864
GTSTEPSEPGSAGTSTEPSEPGSAG
647

Residue totals: H: 0 E: 0
99.77%



SEPATSGTEPSGSGASEPTSTEPGSE


percent: H: 0 E: 0



PATSGTEPSGSEPATSGTEPSGSEP



ATSGTEPSGSGASEPTSTEPGTSTEP



SEPGSAGSEPATSGTEPSGTSTEPSE



PGSAGSEPATSGTEPSGSEPATSGT



EPSGTSTEPSEPGSAGTSTEPSEPGS



AGSEPATSGTEPSGSEPATSGTEPS



GTSEPSTSEPGAGSGASEPTSTEPG



TSEPSTSEPGAGSEPATSGTEPSGSE



PATSGTEPSGTSTEPSEPGSAGTSTE



PSEPGSAGSGASEPTSTEPGSEPATS



GTEPSGSEPATSGTEPSGSEPATSG



TEPSGSEPATSGTEPSGTSTEPSEPG



SAGSEPATSGTEPSGSGASEPTSTE



PGTSTEPSEPGSAGSEPATSGTEPS



GSGASEPTSTEPGTSTEPSEPGSAG



SGASEPTSTEPGSEPATSGTEPSGS



GASEPTSTEPGSEPATSGTEPSGSG



ASEPTSTEPGTSTEPSEPGSAGSEPA



TSGTEPSGSGASEPTSTEPGTSTEPS



EPGSAGSEPATSGTEPSGTSTEPSEP



GSAGSEPATSGTEPSGTSTEPSEPG



SAGTSTEPSEPGSAGTSTEPSEPGS



AGTSTEPSEPGSAGTSTEPSEPGSA



GTSTEPSEPGSAGTSEPSTSEPGAG



SGASEPTSTEPGTSTEPSEPGSAGTS



TEPSEPGSAGTSTEPSEPGSAGSEP



ATSGTEPSGSGASEPTSTEPGSEPA



TSGTEPSGSEPATSGTEPSGSEPATS



GTEPSGSEPATSGTEPSGTSEPSTSE



PGAGSEPATSGTEPSGSGASEPTST



EPGTSTEPSEPGSAGSEPATSGTEPS



GSGASEPTSTEPGTSTEPSEPGSA



ASPAAPAPASPAAPAPSAPAAAPA
648
84
Residue totals: H: 58 E: 0
78.57%



SPAPAAPSAPAPAAPSAASPAAPSA


percent: H: 69.0 E: 0.0



PPAAASPAAPSAPPAASAAAPAAA



SAAASAPSAAA





*H: alpha-helix E: beta-sheet






Example 44
Analysis of Polypeptide Sequences for Repetitiveness

Polypeptide amino acid sequences can be assessed for repetitiveness by quantifying the number of times a shorter subsequence appears within the overall polypeptide. For example, a polypeptide of 200 amino acid residues has 192 overlapping 9-amino acid subsequences (or 9-mer “frames”), but the number of unique 9-mer subsequences will depend on the amount of repetitiveness within the sequence. In the present analysis, different sequences were assessed for repetitiveness by summing the occurrence of all unique 3-mer subsequences for each 3-amino acid frame across the first 200 amino acids of the polymer portion divided by the absolute number of unique 3-mer subsequences within the 200 amino acid sequence. The resulting subsequence score is a reflection of the degree of repetitiveness within the polypeptide.


The results, shown in Table 28, indicate that the unstructured polypeptides consisting of 2 or 3 amino acid types have high subsequence scores, while those of consisting of 12 amino acids motifs of the six amino acids G, S, T, E, P, and A with a low degree of internal repetitiveness, have subsequence scores of less than 10, and in some cases, less than 5. For example, the L288 sequence has two amino acid types and has short, highly repetitive sequences, resulting in a subsequence score of 50.0. The polypeptide J288 has three amino acid types but also has short, repetitive sequences, resulting in a subsequence score of 33.3. Y576 also has three amino acid types, but is not made of internal repeats, reflected in the subsequence score of 15.7 over the first 200 amino acids. W576 consists of four types of amino acids, but has a higher degree of internal repetitiveness, e.g., “GGSG” (SEQ ID NO: 649), resulting in a subsequence score of 23.4. The AD576 consists of four types of 12 amino acid motifs, each consisting of four types of amino acids. Because of the low degree of internal repetitiveness of the individual motifs, the overall subsequence score over the first 200 amino acids is 13.6. In contrast, XTEN's consisting of four motifs contains six types of amino acids, each with a low degree of internal repetitiveness have lower subsequence scores; i.e., AE864 (6.1), AF864 (7.5), and AM875 (4.5).


Conclusions: The results indicate that the combination of 12 amino acid subsequence motifs, each consisting of four to six amino acid types that are essentially non-repetitive, into a longer XTEN polypeptide results in an overall sequence that is non-repetitive. This is despite the fact that each subsequence motif may be used multiple times across the sequence. In contrast, polymers created from smaller numbers of amino acid types resulted in higher subsequence scores, although the actual sequence can be tailored to reduce the degree of repetitiveness to result in lower subsequence scores.









TABLE 28







Subsequence score calculations of polypeptide sequences












SEQ



Seq

ID


Name
Amino Acid Sequence
NO:
Score













J288
GSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGE
650
33.3



GGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSG



GEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGS



GGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEG



GSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGE



GGSGGEGGSGGEGGSGGEGGSGGEG





K288
GEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGG
651
46.9



EGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEG



GGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEG



EGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGG



EGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGE



GGEGEGGGEGGEGEGGGEGGEGEGGGEG





L288
SSESSESSSSESSSESSESSSSESSSESSESSSSESSSESSESSSSESSSESSESSSSESSS
652
50.0



ESSESSSSESSSESSESSSSESSSESSESSSSESSSESSESSSSESSSESSESSSSESSSES



SESSSSESSSESSESSSSESSSESSESSSSESSSESSESSSSESSSESSESSSSESSSESSE



SSSSESSSESSESSSSESSSESSESSSSESSSESSESSSSESSSESSESSSSESSSESSESS



SSESSSESSESSSSESSSESSESSSSESSSESSESSSSES





Y288
GEGSGEGSEGEGSEGSGEGEGSEGSGEGEGGSEGSEGEGGSEGSEGEGGSEGSEG
653
26.8



EGSGEGSEGEGGSEGSEGEGSGEGSEGEGSEGGSEGEGGSEGSEGEGSGEGSEGE



GGEGGSEGEGSEGSGEGEGSGEGSEGEGSEGSGEGEGSGEGSEGEGSEGSGEGE



GSEGSGEGEGGSEGSEGEGSEGSGEGEGGEGSGEGEGSGEGSEGEGGGEGSEGE



GSGEGGEGEGSEGGSEGEGGSEGGEGEGSEGSGEGEGSEGGSEGEGSEGGSEGE



GSEGSGEGEGSEGSGE





Q576
GGKPGEGGKPEGGGGKPGGKPEGEGEGKPGGKPEGGGKPGGGEGGKPEGGKPE
654
18.5



GEGKPGGGEGKPGGKPEGGGGKPEGEGKPGGGGGKPGGKPEGEGKPGGGEGG



KPEGKPGEGGEGKPGGKPEGGGEGKPGGGKPGEGGKPGEGKPGGGEGGKPEGG



KPEGEGKPGGGEGKPGGKPGEGGKPEGGGEGKPGGKPGEGGEGKPGGGKPEGE



GKPGGGKPGGGEGGKPEGEGKPGGKPEGGGEGKPGGKPEGGGKPEGGGEGKP



GGGKPGEGGKPGEGEGKPGGKPEGEGKPGGEGGGKPEGKPGGGEGGKPEGGKP



GEGGKPEGGKPGEGGEGKPGGGKPGEGGKPEGGGKPEGEGKPGGGGKPGEGG



KPEGGKPEGGGEGKPGGGKPEGEGKPGGGEGKPGGKPEGGGGKPGEGGKPEGG



KPGGEGGGKPEGEGKPGGKPGEGGGGKPGGKPEGEGKPGEGGEGKPGGKPEGG



GEGKPGGKPEGGGEGKPGGGKPGEGGKPEGGGKPGEGGKPGEGGKPEGEGKPG



GGEGKPGGKPGEGGKPEGGGEGKPGGKPGGEGGGKPEGGKPGEGGKPEG





U576
GEGKPGGKPGSGGGKPGEGGKPGSGEGKPGGKPGSGGSGKPGGKPGEGGKPEG
655
18.1



GSGGKPGGGGKPGGKPGGEGSGKPGGKPEGGGKPEGGSGGKPGGKPEGGSGG



KPGGKPGSGEGGKPGGGKPGGEGKPGSGKPGGEGSGKPGGKPEGGSGGKPGGK



PEGGSGGKPGGSGKPGGKPGEGGKPEGGSGGKPGGSGKPGGKPEGGGSGKPGG



KPGEGGKPGSGEGGKPGGGKPGGEGKPGSGKPGGEGSGKPGGKPGSGGEGKPG



GKPEGGSGGKPGGGKPGGEGKPGSGGKPGEGGKPGSGGGKPGGKPGGEGEGKP



GGKPGEGGKPGGEGSGKPGGGGKPGGKPGGEGGKPEGSGKPGGGSGKPGGKPE



GGGGKPEGSGKPGGGGKPEGSGKPGGGKPEGGSGGKPGGSGKPGGKPGEGGG



KPEGSGKPGGGSGKPGGKPEGGGKPEGGSGGKPGGKPEGGSGGKPGGKPGGEG



SGKPGGKPGSGEGGKPGGKPGEGSGGKPGGKPEGGSGGKPGGSGKPGGKPEGG



GSGKPGGKPGEGGKPGGEGSGKPGGSGKPG





W576
GGSGKPGKPGGSGSGKPGSGKPGGGSGKPGSGKPGGGSGKPGSGKPGGGSGKP
656
23.4



GSGKPGGGGKPGSGSGKPGGGKPGGSGGKPGGGSGKPGKPGSGGSGKPGSGKP



GGGSGGKPGKPGSGGSGGKPGKPGSGGGSGKPGKPGSGGSGGKPGKPGSGGSG



GKPGKPGSGGSGKPGSGKPGGGSGKPGSGKPGSGGSGKPGKPGSGGSGKPGSG



KPGSGSGKPGSGKPGGGSGKPGSGKPGSGGSGKPGKPGSGGGKPGSGSGKPGG



GKPGSGSGKPGGGKPGGSGGKPGGSGGKPGKPGSGGGSGKPGKPGSGGGSGKP



GKPGGSGSGKPGSGKPGGGSGKPGSGKPGSGGSGKPGKPGSGGSGGKPGKPGS



GGGKPGSGSGKPGGGKPGSGSGKPGGGKPGSGSGKPGGGKPGSGSGKPGGSGK



PGSGKPGGGSGGKPGKPGSGGSGKPGSGKPGSGGSGKPGKPGGSGSGKPGSGKP



GGGSGKPGSGKPGGGSGKPGSGKPGGGSGKPGSGKPGGGGKPGSGSGKPGGSG



GKPGKPGSGGSGGKPGKPGSGGSGKPGSGKPGGGSGGKPGKPGSGG





Y576
GEGSGEGSEGEGSEGSGEGEGSEGSGEGEGGSEGSEGEGSEGSGEGEGGEGSGE
657
15.7



GEGSGEGSEGEGGGEGSEGEGSGEGGEGEGSEGGSEGEGGSEGGEGEGSEGSGE



GEGSEGGSEGEGSEGGSEGEGSEGSGEGEGSEGSGEGEGSEGSGEGEGSEGSGEG



EGSEGGSEGEGGSEGSEGEGSGEGSEGEGGSEGSEGEGGGEGSEGEGSGEGSEGE



GGSEGSEGEGGSEGSEGEGGEGSGEGEGSEGSGEGEGSGEGSEGEGSEGSGEGE



GSEGSGEGEGGSEGSEGEGSGEGSEGEGSEGSGEGEGSEGSGEGEGGSEGSEGEG



GSEGSEGEGGSEGSEGEGGEGSGEGEGSEGSGEGEGSGEGSEGEGSEGSGEGEGS



EGSGEGEGGSEGSEGEGSEGSGEGEGGEGSGEGEGSGEGSEGEGGGEGSEGEGS



EGSGEGEGSEGSGEGEGSEGGSEGEGGSEGSEGEGSEGGSEGEGSEGGSEGEGSE



GSGEGEGSEGSGEGEGSGEGSEGEGGSEGGEGEGSEGGSEGEGSEGGSEGEGGE



GSGEGEGGGEGSEGEGSEGSGEGEGSGEGSE





AD576
GSSESGSSEGGPGSGGEPSESGSSGSSESGSSEGGPGSSESGSSEGGPGSSESGSSE
658
13.6



GGPGSSESGSSEGGPGSSESGSSEGGPGESPGGSSGSESGSEGSSGPGESSGSSESG



SSEGGPGSSESGSSEGGPGSSESGSSEGGPGSGGEPSESGSSGESPGGSSGSESGES



PGGSSGSESGSGGEPSESGSSGSSESGSSEGGPGSGGEPSESGSSGSGGEPSESGSS



GSEGSSGPGESSGESPGGSSGSESGSGGEPSESGSSGSGGEPSESGSSGSGGEPSES



GSSGSSESGSSEGGPGESPGGSSGSESGESPGGSSGSESGESPGGSSGSESGESPGG



SSGSESGESPGGSSGSESGSSESGSSEGGPGSGGEPSESGSSGSEGSSGPGESSGSSE



SGSSEGGPGSGGEPSESGSSGSSESGSSEGGPGSGGEPSESGSSGESPGGSSGSESG



ESPGGSSGSESGSSESGSSEGGPGSGGEPSESGSSGSSESGSSEGGPGSGGEPSESG



SSGSGGEPSESGSSGESPGGSSGSESGSEGSSGPGESSGSSESGSSEGGPGSEGSSG



PGESS





AE576
AGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSE
659
6.1



GSAPGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGSEPATSGSETPGSPAG



SPTSTEEGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTS



TEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSTEPSEGSAPGTSESATPESGPG



SEPATSGSETPGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSESATPESG



PGSPAGSPTSTEEGTSESATPESGPGSEPATSGSETPGTSESATPESGPGTSTEPSEG



SAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPS



EGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGTSES



ATPESGPGSEPATSGSETPGTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSP



AGSPTSTEEGSPAGSPTSTEEGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAP





AF540
GSTSSTAESPGPGSTSSTAESPGPGSTSESPSGTAPGSTSSTAESPGPGSTSSTAESP
660
8.8



GPGTSTPESGSASPGSTSESPSGTAPGTSPSGESSTAPGSTSESPSGTAPGSTSESPS



GTAPGTSPSGESSTAPGSTSESPSGTAPGSTSESPSGTAPGTSPSGESSTAPGSTSES



PSGTAPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSASPGSTSESPSGTAPGTST



PESGSASPGSTSSTAESPGPGSTSSTAESPGPGTSTPESGSASPGTSTPESGSASPGS



TSESPSGTAPGTSTPESGSASPGTSTPESGSASPGSTSESPSGTAPGSTSESPSGTAP



GSTSESPSGTAPGSTSSTAESPGPGTSTPESGSASPGTSTPESGSASPGSTSESPSGT



APGSTSESPSGTAPGTSTPESGSASPGSTSESPSGTAPGSTSESPSGTAPGTSTPESG



SASPGTSPSGESSTAPGSTSSTAESPGPGTSPSGESSTAPGSTSSTAESPGPGTSTPE



SGSASPGSTSESPSGTAP





AF504
GASPGTSSTGSPGSSPSASTGTGPGSSPSASTGTGPGTPGSGTASSSPGSSTPSGAT
661
7.0



GSPGSNPSASTGTGPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGTPGSG



TASSSPGASPGTSSTGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGAS



PGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGSNPSASTGTGPGSSPSASTGTGP



GSSTPSGATGSPGSSTPSGATGSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSST



GSPGTPGSGTASSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGSSPSA



STGTGPGTPGSGTASSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGSS



TPSGATGSPGSSTPSGATGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSP



GSSTPSGATGSPGSSTPSGATGSPGSSPSASTGTGPGASPGTSSTGSP





AE864
GSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGS
662
6.1



APGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGSEPATSGSETPGSPAGSP



TSTEEGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTE



PSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSE



PATSGSETPGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSESATPESGPG



SPAGSPTSTEEGTSESATPESGPGSEPATSGSETPGTSESATPESGPGTSTEPSEGSA



PGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEG



SAPGSPAGSPTSTEEGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGTSESAT



PESGPGSEPATSGSETPGTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSPA



GSPTSTEEGSPAGSPTSTEEGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGT



SESATPESGPGSEPATSGSETPGTSESATPESGPGSEPATSGSETPGTSESATPESGP



GTSTEPSEGSAPGSPAGSPTSTEEGTSESATPESGPGSEPATSGSETPGTSESATPES



GPGSPAGSPTSTEEGSPAGSPTSTEEGTSTEPSEGSAPGTSESATPESGPGTSESATP



ESGPGTSESATPESGPGSEPATSGSETPGSEPATSGSETPGSPAGSPTSTEEGTSTEP



SEGSAP





AF864
GSTSESPSGTAPGTSPSGESSTAPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSA
663
7.5



SPGTSTPESGSASPGSTSESPSGTAPGSTSESPSGTAPGTSPSGESSTAPGSTSESPS



GTAPGTSPSGESSTAPGTSPSGESSTAPGSTSSTAESPGPGTSPSGESSTAPGTSPSG



ESSTAPGSTSSTAESPGPGTSTPESGSASPGTSTPESGSASPGSTSESPSGTAPGSTS



ESPSGTAPGTSTPESGSASPGSTSSTAESPGPGTSTPESGSASPGSTSESPSGTAPGT



SPSGESSTAPGSTSSTAESPGPGTSPSGESSTAPGTSTPESGSASPGSTSSTAESPGP



GSTSSTAESPGPGSTSSTAESPGPGSTSSTAESPGPGTSPSGESSTAPGSTSESPSGT



APGSTSESPSGTAPGTSTPESGPXXXGASASGAPSTXXXXSESPSGTAPGSTSESPS



GTAPGSTSESPSGTAPGSTSESPSGTAPGSTSESPSGTAPGSTSESPSGTAPGTSTPE



SGSASPGTSPSGESSTAPGTSPSGESSTAPGSTSSTAESPGPGTSPSGESSTAPGTST



PESGSASPGSTSESPSGTAPGSTSESPSGTAPGTSPSGESSTAPGSTSESPSGTAPGT



STPESGSASPGTSTPESGSASPGSTSESPSGTAPGTSTPESGSASPGSTSSTAESPGP



GSTSESPSGTAPGSTSESPSGTAPGTSPSGESSTAPGSTSSTAESPGPGTSPSGESST



APGTSTPESGSASPGTSPSGESSTAPGTSPSGESSTAPGTSPSGESSTAPGSTSSTAE



SPGPGSTSSTAESPGPGTSPSGESSTAPGSSPSASTGTGPGSSTPSGATGSPGSSTPS



GATGSP





AG868
GGSPGASPGTSSTGSPGSSPSASTGTGPGSSPSASTGTGPGTPGSGTASSSPGSSTP
664
7.5



SGATGSPGSNPSASTGTGPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGT



PGSGTASSSPGASPGTSSTGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGS



PGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGSNPSASTGTGPGSSPSAST



GTGPGSSTPSGATGSPGSSTPSGATGSPGASPGTSSTGSPGASPGTSSTGSPGASPG



TSSTGSPGTPGSGTASSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGSS



PSASTGTGPGTPGSGTASSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSP



GSSTPSGATGSPGSSTPSGATGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGAT



GSPGSSTPSGATGSPGSSTPSGATGSPGSSPSASTGTGPGASPGTSSTGSPGASPGT



SSTGSPGTPGSGTASSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGAS



PGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGTPGSGTASSSPGSSTPSGATGSP



GTPGSGTASSSPGSSTPSGATGSPGSSTPSGATGSPGSSPSASTGTGPGSSPSASTG



TGPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGSSPSASTGTGPGSSPSA



STGTGPGASPGTSSTGSPGASPGTSSTGSPGSSTPSGATGSPGSSPSASTGTGPGAS



PGTSSTGSPGSSPSASTGTGPGTPGSGTASSSPGSSTPSGATGSPGSSTPSGATGSP



GASPGTSSTGSP





AM875
GTSTEPSEGSAPGSEPATSGSETPGSPAGSPTSTEEGSTSSTAESPGPGTSTPESGSA
665
4.5



SPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSASPGTSTPESGSASPGSEPATSG



SETPGTSESATPESGPGSPAGSPTSTEEGTSTEPSEGSAPGTSESATPESGPGTSTEP



SEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAPGTSE



SATPESGPGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGT



STEPSEGSAPGSEPATSGSETPGSPAGSPTSTEEGSSTPSGATGSPGTPGSGTASSSP



GSSTPSGATGSPGTSTEPSEGSAPGTSTEPSEGSAPGSEPATSGSETPGSPAGSPTST



EEGSPAGSPTSTEEGTSTEPSEGSAPGASASGAPSTGGTSESATPESGPGSPAGSPT



STEEGSPAGSPTSTEEGSTSSTAESPGPGSTSESPSGTAPGTSPSGESSTAPGTPGSG



TASSSPGSSTPSGATGSPGSSPSASTGTGPGSEPATSGSETPGTSESATPESGPGSEP



ATSGSETPGSTSSTAESPGPGSTSSTAESPGPGTSPSGESSTAPGSEPATSGSETPGS



EPATSGSETPGTSTEPSEGSAPGSTSSTAESPGPGTSTPESGSASPGSTSESPSGTAP



GTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGSSTPSGATGSPGSSPSASTGT



GPGASPGTSSTGSPGSEPATSGSETPGTSESATPESGPGSPAGSPTSTEEGSSTPSG



ATGSPGSSPSASTGTGPGASPGTSSTGSPGTSESATPESGPGTSTEPSEGSAPGTST



EPSEGSAP





AM1318
GTSTEPSEGSAPGSEPATSGSETPGSPAGSPTSTEEGSTSSTAESPGPGTSTPESGSA
666
4.5



SPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSASPGTSTPESGSASPGSEPATSG



SETPGTSESATPESGPGSPAGSPTSTEEGTSTEPSEGSAPGTSESATPESGPGTSTEP



SEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAPGTSE



SATPESGPGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGT



STEPSEGSAPGSEPATSGSETPGSPAGSPTSTEEGSSTPSGATGSPGTPGSGTASSSP



GSSTPSGATGSPGTSTEPSEGSAPGTSTEPSEGSAPGSEPATSGSETPGSPAGSPTST



EEGSPAGSPTSTEEGTSTEPSEGSAPGPEPTGPAPSGGSEPATSGSETPGTSESATP



ESGPGSPAGSPTSTEEGTSESATPESGPGSPAGSPTSTEEGSPAGSPTSTEEGTSESA



TPESGPGSPAGSPTSTEEGSPAGSPTSTEEGSTSSTAESPGPGSTSESPSGTAPGTSP



SGESSTAPGSTSESPSGTAPGSTSESPSGTAPGTSPSGESSTAPGTSTEPSEGSAPGT



SESATPESGPGTSESATPESGPGSEPATSGSETPGTSESATPESGPGTSESATPESGP



GTSTEPSEGSAPGTSESATPESGPGTSTEPSEGSAPGTSPSGESSTAPGTSPSGESST



APGTSPSGESSTAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGSSPSAST



GTGPGSSTPSGATGSPGSSTPSGATGSPGSSTPSGATGSPGSSTPSGATGSPGASPG



TSSTGSPGASASGAPSTGGTSPSGESSTAPGSTSSTAESPGPGTSPSGESSTAPGTS



ESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGSSPSASTGTGPGSSTPSGATGSP



GASPGTSSTGSPGTSTPESGSASPGTSPSGESSTAPGTSPSGESSTAPGTSESATPES



GPGSEPATSGSETPGTSTEPSEGSAPGSTSESPSGTAPGSTSESPSGTAPGTSTPESG



SASPGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSESA



TPESGPGSEPATSGSETPGSSTPSGATGSPGASPGTSSTGSPGSSTPSGATGSPGSTS



ESPSGTAPGTSPSGESSTAPGSTSSTAESPGPGSSTPSGATGSPGASPGTSSTGSPGT



PGSGTASSSPGSPAGSPTSTEEGSPAGSPTSTEEGTSTEPSEGSAP









Example 45
Calculation of TEPITOPE Scores

TEPITOPE scores of 9mer peptide sequence can be calculated by adding pocket potentials as described by Sturniolo [Sturniolo, T., et al. (1999) Nat Biotechnol, 17: 555]. In the present Example, separate Tepitope scores were calculated for individual HLA alleles. Table 29 shows as an example the pocket potentials for HLA*0101B, which occurs in high frequency in the Caucasian population. To calculate the TEPITOPE score of a peptide with sequence P1-P2-P3-P4-P5-P6-P7-P8-P9, the corresponding individual pocket potentials in Table 29 were added. The HLA*0101B score of a 9mer peptide with the sequence FDKLPRTSG (SEQ ID NO: 667) would be the sum of 0, −1.3, 0, 0.9, 0, −1.8, 0.09, 0, 0.


To evaluate the TEPITOPE scores for long peptides one can repeat the process for all 9mer subsequences of the sequences. This process can be repeated for the proteins encoded by other HLA alleles. Tables 30-33 give pocket potentials for the protein products of HLA alleles that occur with high frequency in the Caucasian population.


TEPITOPE scores calculated by this method range from approximately −10 to +10. However, 9mer peptides that lack a hydrophobic amino acid (FKLMVWY (SEQ ID NO: 668)) in P1 position have calculated TEPITOPE scores in the range of −1009 to −989. This value is biologically meaningless and reflects the fact that a hydrophobic amino acid serves as an anchor residue for HLA binding and peptides lacking a hydrophobic residue in P1 are considered non binders to HLA. Because most XTEN sequences lack hydrophobic residues, all combinations of 9mer subsequences will have TEPITOPEs in the range in the range of −1009 to −989. This method confirms that XTEN polypeptides may have few or no predicted T-cell epitopes.









TABLE 29







Pocket potential for HLA*0101B allele.
















Amino











Acid
P1
P2
P3
P4
P5
P6
P7
P8
P9



















A
−999
0
0
0

0
0

0


C
−999
0
0
0

0
0

0


D
−999
−1.3
−1.3
−2.4

−2.7
−2

−1.9


E
−999
0.1
−1.2
−0.4

−2.4
−0.6

−1.9


F
0
0.8
0.8
0.08

−2.1
0.3

−0.4


G
−999
0.5
0.2
−0.7

−0.3
−1.1

−0.8


H
−999
0.8
0.2
−0.7

−2.2
0.1

−1.1


I
−1
1.1
1.5
0.5

−1.9
0.6

0.7


K
−999
1.1
0
−2.1

−2
−0.2

−1.7


L
−1
1
1
0.9

−2
0.3

0.5


M
−1
1.1
1.4
0.8

−1.8
0.09

0.08


N
−999
0.8
0.5
0.04

−1.1
0.1

−1.2


P
−999
−0.5
0.3
−1.9

−0.2
0.07

−1.1


Q
−999
1.2
0
0.1

−1.8
0.2

−1.6


R
−999
2.2
0.7
−2.1

−1.8
0.09

−1


S
−999
−0.3
0.2
−0.7

−0.6
−0.2

−0.3


T
−999
0
0
−1

−1.2
0.09

−0.2


V
−1
2.1
0.5
−0.1

−1.1
0.7

0.3


W
0
−0.1
0
−1.8

−2.4
−0.1

−1.4


Y
0
0.9
0.8
−1.1

−2
0.5

−0.9
















TABLE 30







Pocket potential for HLA*0301B allele.
















Amino











acid
P1
P2
P3
P4
P5
P6
P7
P8
P9



















A
−999
0
0
0

0
0

0


C
−999
0
0
0

0
0

0


D
−999
−1.3
−1.3
2.3

−2.4
−0.6

−0.6


E
−999
0.1
−1.2
−1

−1.4
−0.2

−0.3


F
−1
0.8
0.8
−1

−1.4
0.5

0.9


G
−999
0.5
0.2
0.5

−0.7
0.1

0.4


H
−999
0.8
0.2
0

−0.1
−0.8

−0.5


I
0
1.1
1.5
0.5

0.7
0.4

0.6


K
−999
1.1
0
−1

1.3
−0.9

−0.2


L
0
1
1
0

0.2
0.2

−0


M
0
1.1
1.4
0

−0.9
1.1

1.1


N
−999
0.8
0.5
0.2

−0.6
−0.1

−0.6


P
−999
−0.5
0.3
−1

0.5
0.7

−0.3


Q
−999
1.2
0
0

−0.3
−0.1

−0.2


R
−999
2.2
0.7
−1

1
−0.9

0.5


S
−999
−0.3
0.2
0.7

−0.1
0.07

1.1


T
−999
0
0
−1

0.8
−0.1

−0.5


V
0
2.1
0.5
0

1.2
0.2

0.3


W
−1
−0.1
0
−1

−1.4
−0.6

−1


Y
−1
0.9
0.8
−1

−1.4
−0.1

0.3
















TABLE 31







Pocket potential for HLA*0401B allele.
















Amino











acid
P1
P2
P3
P4
P5
P6
P7
P8
P9



















A
−999
0
0
0

0
0

0


C
−999
0
0
0

0
0

0


D
−999
−1.3
−1.3
1.4

−1.1
−0.3

−1.7


E
−999
0.1
−1.2
1.5

−2.4
0.2

−1.7


F
0
0.8
0.8
−0.9

−1.1
−1

−1


G
−999
0.5
0.2
−1.6

−1.5
−1.3

−1


H
−999
0.8
0.2
1.1

−1.4
0

0.08


I
−1
1.1
1.5
0.8

−0.1
0.08

−0.3


K
−999
1.1
0
−1.7

−2.4
−0.3

−0.3


L
−1
1
1
0.8

−1.1
0.7

−1


M
−1
1.1
1.4
0.9

−1.1
0.8

−0.4


N
−999
0.8
0.5
0.9

1.3
0.6

−1.4


P
−999
−0.5
0.3
−1.6

0
−0.7

−1.3


Q
−999
1.2
0
0.8

−1.5
0

0.5


R
−999
2.2
0.7
−1.9

−2.4
−1.2

−1


S
−999
−0.3
0.2
0.8

1
−0.2

0.7


T
−999
0
0
0.7

1.9
−0.1

−1.2


V
−1
2.1
0.5
−0.9

0.9
0.08

−0.7


W
0
−0.1
0
−1.2

−1
−1.4

−1


Y
0
0.9
0.8
−1.6

−1.5
−1.2

−1
















TABLE 32







Pocket potential for HLA*0701B allele.
















Amino











acid
P1
P2
P3
P4
P5
P6
P7
P8
P9



















A
−999
0
0
0

0
0

0


C
−999
0
0
0

0
0

0


D
−999
−1.3
−1.3
−1.6

−2.5
−1.3

−1.2


E
−999
0.1
−1.2
−1.4

−2.5
0.9

−0.3


F
0
0.8
0.8
0.2

−0.8
2.1

2.1


G
−999
0.5
0.2
−1.1

−0.6
0

−0.6


H
−999
0.8
0.2
0.1

−0.8
0.9

−0.2


I
−1
1.1
1.5
1.1

−0.5
2.4

3.4


K
−999
1.1
0
−1.3

−1.1
0.5

−1.1


L
−1
1
1
−0.8

−0.9
2.2

3.4


M
−1
1.1
1.4
−0.4

−0.8
1.8

2


N
−999
0.8
0.5
−1.1

−0.6
1.4

−0.5


P
−999
−0.5
0.3
−1.2

−0.5
−0.2

−0.6


Q
−999
1.2
0
−1.5

−1.1
1.1

−0.9


R
−999
2.2
0.7
−1.1

−1.1
0.7

−0.8


S
−999
−0.3
0.2
1.5

0.6
0.4

−0.3


T
−999
0
0
1.4

−0.1
0.9

0.4


V
−1
2.1
0.5
0.9

0.1
1.6

2


W
0
−0.1
0
−1.1

−0.9
1.4

0.8


Y
0
0.9
0.8
−0.9

−1
1.7

1.1
















TABLE 33







Pocket potential for HLA*1501B allele.
















Amino











acid
P1
P2
P3
P4
P5
P6
P7
P8
P9



















A
−999
0
0
0

0
0

0


C
−999
0
0
0

0
0

0


D
−999
−1.3
−1.3
−0.4

−0.4
−0.7

−1.9


E
−999
0.1
−1.2
−0.6

−1
−0.7

−1.9


F
−1
0.8
0.8
2.4

−0.3
1.4

−0.4


G
−999
0.5
0.2
0

0.5
0

−0.8


H
−999
0.8
0.2
1.1

−0.5
0.6

−1.1


I
0
1.1
1.5
0.6

0.05
1.5

0.7


K
−999
1.1
0
−0.7

−0.3
−0.3

−1.7


L
0
1
1
0.5

0.2
1.9

0.5


M
0
1.1
1.4
1

0.1
1.7

0.08


N
−999
0.8
0.5
−0.2

0.7
0.7

−1.2


P
−999
−0.5
0.3
−0.3

−0.2
0.3

−1.1


Q
−999
1.2
0
−0.8

−0.8
−0.3

−1.6


R
−999
2.2
0.7
0.2

1
−0.5

−1


S
−999
−0.3
0.2
−0.3

0.6
0.3

−0.3


T
−999
0
0
−0.3

−0
0.2

−0.2


V
0
2.1
0.5
0.2

−0.3
0.3

0.3


W
−1
−0.1
0
0.4

−0.4
0.6

−1.4


Y
−1
0.9
0.8
2.5

0.4
0.7

−0.9
















TABLE 34







Exemplary Biological Activity, Exemplary Assays and Preferred Indications










Biologically Active

Exemplary Activity



Protein
Biological Activity
Assay
Preferred Indication:





Insulin-like
IGF-1 is a pleiotropic
IGF-1 activity may be
Diabetes mellitus; Growth


growth
polypeptide with a
assayed in vitro using
disorders; Frailty;


factor-1
wide range of actions
an serum withdrawal
Amyotrophic lateral


(Mecasermin;
in both
apoptosis-protection
sclerosis; Osteoarthritis;


Somazon; IGF-1;
central and
assay. (J Endocrinol
Kidney disease &


IGF-1
peripheral
2000 October; 167(1):
neuropathy; Dwarfism; HIV-


complex; CEP
nervous sytems. It is
165-74). Proliferation
1 infections; Myocardial


151;
involved in growth
assay using breast
ischaemia; Osteoporosis;


CGP 35126; FK
and
carcinoma cell
Multiple sclerosis; Nerve


780;
development and
line MCF-7 (Karey
disorders; Burns; diabetes;


Mecar, RHIGF-1;
protects neurons
1988
peripheral


Somatomedin-1;
against cell death via
Cancer Res. 48:



Somatomedin-C;
the activation of
4083)



SOMATOKINE;
intracellular




MYOTROPHIN;
pathways




IGEF;
implicating




DepoIGF-1)
phosphatidylinositide





3/Akt kinase.




Human growth
Binds to two GHR
1) Ba/F3-hGHR
Acromegaly; Growth failure;


hormone
molecules and
proliferation assay, a
Growth hormone


(Pegvisamont;
Induces signal
novel specific
replacement; Growth


Somatrem;
transduction through
bioassay for serum
hormone deficiency;


Somatropin;
receptor dimerization
human growth
Pediatric Growth Hormone


TROVERT;

hormone. J Clin
Deficiency; Adult Growth


PROTROPIN;

Endocrinol Metab
Hormone Deficiency;


BIO-TROPIN;

2000 November; 85(11):
Idiopathic Growth Hormone


HUMATROPE;

4274-9 Plasma
Deficiency; Growth


NUTROPIN;

growth hormone (GH)
retardation; Prader-


NUTROPINAQ;

immunoassay and
Willi Syndrome; Prader-Willi


NUTROPHIN;

tibial bioassay, Appl
Syndrome in children 2


NORDITROPIN;

Physiol (2000) 89(6):
years or older; Growth


GENOTROPIN;

2174-8.
deficiencies; Growth failure


SAIZEN;

Growth hormone
associated with chronic


SEROSTIM)

(hGH) receptor
renal insufficiency;




mediated cell
Osteoporosis;




mediated
Postmenopausal




proliferation, Growth
osteoporosis; Osteopenia,




Horm IGF Res 2000
Osteoclastogenesis; burns;




October; 10(5): 248-55
Cachexia; Cancer




International standard
Cachexia; Dwarfism;




for growth hormone,
Metabolic Disorders;




Horm Res 1999; 51
Obesity; Renal failure;




Suppl 1: 7-12
Turner's Syndrome;




2) Detection of human
Fibromyalgia, Fracture




growth hormone
treatment; Frailty, AIDS




detected by direct
wasting; Muscle Wasting;




radioimmunoassay
Short Stature; Diagnostic




performed on serial
Agents; Female Infertility;




dilutions of lysed cell
lipodystrophy.




supernatants using





the Phadebas HGH





PRIST kit (Farmacia).





U.S. Pat. No.





4,898,830
















TABLE 35







Exemplary GHXTEN comprising growth hormones and single XTEN













SEQ

SEQ


GHXTEN

ID

ID


Name*
Amino Acid Sequence
NO:
DNA Nucleotide Sequence
NO:














AE48-
MAEPAGSPTSTEEGTPGSG
669
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAG
670


hGH
TASSSPGSSTPSGATGSPG

GAAGGTACCCCGGGTAGCGGTACTGCTTCTTCCTCTC



ASPGTSSTGSPGFPTIPLSR

CAGGTAGCTCTACCCCTTCTGGTGCAACCGGCTCTCC



LFDNAMLRAHRLHQLAFD

AGGTGCTTCTCCGGGCACCAGCTCTACCGGTTCTCCA



TYQEFEEAYIPKEQKYSFL

GGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGATA



QNPQTSLCFSESIPTPSNRE

ATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTGG



ETQQKSNLELLRISLLLIQS

CCTTTGATACTTACCAGGAATTTGAAGAAGCcTACAT



WLEPVQFLRSVFANSLVY

TCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACCC



GASDSNVYDLLKDLEEGI

ACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGACG



QTLMGRLEDGSPRTGQIFK

CCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAAT



QTYSKFDTNSHNDDALLK

CTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAGA



NYGLLYCFRKDMDKVETF

GCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCTT



LRIVQCRSVEGSCGF

CGCCAATAGCCTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCGAGGAAGGCAT





TCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC





GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA





ATTTGATACTAACAGCCACAATGACGATGCGCTTCT





AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT





ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT





GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA





AM48-
MAEPAGSPTSTEEGASPGT
671
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAG
672


hGH
SSTGSPGSSTPSGATGSPGS

GAAGGTGCATCCCCGGGCACCAGCTCTACCGGTTCT



STPSGATGSPGFPTIPLSRL

CCAGGTAGCTCTACCCCGTCTGGTGCTACCGGCTCTC



FDNAMLRAHRLHQLAFDT

CAGGTAGCTCTACCCCGTCTGGTGCTACTGGCTCTCC



YQEFEEAYIPKEQKYSFLQ

AGGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGAT



NPQTSLCFSESIPTPSNREE

AATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTG



TQQKSNLELLRISLLLIQS

GCCTTTGATACTTACCAGGAATTTGAAGAAGCcTACA



WLEPVQFLRSVFANSLVY

TTCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACC



GASDSNVYDLLKDLEEGI

CACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGAC



QTLMGRLEDGSPRTGQIFK

GCCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAA



QTYSKFDTNSHNDDALLK

TCTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAG



NYGLLYCFRKDMDKVETF

AGCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCT



LRIVQCRSVEGSCGF

TCGCCAATAGCCTAGTTTATGGCGCATCCGACAGCA





ACGTATACGATCTCCTGAAAGATCTCGAGGAAGGCA





TTCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC





GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA





ATTTGATACTAACAGCCACAATGACGATGCGCTTCT





AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT





ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT





GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA





AE144-
GSEPATSGSETPGTSESATP
673
GGTAGCGAACCGGCAACTTCCGGCTCTGAAACCCCA
674


hGH
ESGPGSEPATSGSETPGSPA

GGTACTTCTGAAAGCGCTACTCCTGAGTCTGGCCCA



GSPTSTEEGTSTEPSEGSAP

GGTAGCGAACCTGCTACCTCTGGCTCTGAAACCCCA



GSEPATSGSETPGSEPATS

GGTAGCCCGGCAGGCTCTCCGACTTCCACCGAGGAA



GSETPGSEPATSGSETPGTS

GGTACCTCTACTGAACCTTCTGAGGGTAGCGCTCCA



TEPSEGSAPGTSESATPESG

GGTAGCGAACCGGCAACCTCTGGCTCTGAAACCCCA



PGSEPATSGSETPGTSTEPS

GGTAGCGAACCTGCTACCTCCGGCTCTGAAACTCCA



EGSAPGFPTIPLSRLFDNA

GGTAGCGAACCGGCTACTTCCGGTTCTGAAACTCCA



MLRAHRLHQLAFDTYQEF

GGTACCTCTACCGAACCTTCCGAAGGCAGCGCACCA



EEAYIPKEQKYSFLQNPQT

GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCA



SLCFSESIPTPSNREETQQK

GGTAGCGAACCGGCTACTTCTGGCTCTGAGACTCCA



SNLELLRISLLLIQSWLEPV

GGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCA



QFLRSVFANSLVYGASDS

GGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGATA



NVYDLLKDLEEGIQTLMG

ATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTGG



RLEDGSPRTGQIFKQTYSK

CCTTTGATACTTACCAGGAATTTGAAGAAGCcTACAT



FDTNSHNDDALLKNYGLL

TCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACCC



YCFRKDMDKVETFLRIVQ

ACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGACG



CRSVEGSCGF

CCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAAT





CTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAGA





GCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCTT





CGCCAATAGCCTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCGAGGAAGGCAT





TCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC





GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA





ATTTGATACTAACAGCCACAATGACGATGCGCTTCT





AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT





ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT





GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA





AE288-
GTSESATPESGPGSEPATS
675
GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA
676


hGH
GSETPGTSESATPESGPGSE

GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA



PATSGSETPGTSESATPESG

GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA



PGTSTEPSEGSAPGSPAGSP

GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA



TSTEEGTSESATPESGPGSE

GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA



PATSGSETPGTSESATPESG

GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA



PGSPAGSPTSTEEGSPAGSP

GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA



TSTEEGTSTEPSEGSAPGTS

GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA



ESATPESGPGTSESATPESG

GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA



PGTSESATPESGPGSEPATS

GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA



GSETPGSEPATSGSETPGSP

GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA



AGSPTSTEEGTSTEPSEGSA

GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA



PGTSTEPSEGSAPGSEPATS

GGTACTTCTACCGAACCTTCCGAGGGCAGCGCACCA



GSETPGTSESATPESGPGTS

GGTACTTCTGAAAGCGCTACCCCTGAGTCCGGCCCA



TEPSEGSAPGFPTIPLSRLF

GGTACTTCTGAAAGCGCTACTCCTGAATCCGGTCCA



DNAMLRAHRLHQLAFDT

GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA



YQEFEEAYIPKEQKYSFLQ

GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA



NPQTSLCFSESIPTPSNREE

GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA



TQQKSNLELLRISLLLIQS

GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA



WLEPVQFLRSVFANSLVY

GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA



GASDSNVYDLLKDLEEGI

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA



QTLMGRLEDGSPRTGQIFK

GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA



QTYSKFDTNSHNDDALLK

GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA



NYGLLYCFRKDMDKVETF

GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA



LRIVQCRSVEGSCGF

GGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGATA





ATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTGG





CCTTTGATACTTACCAGGAATTTGAAGAAGCcTACAT





TCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACCC





ACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGACG





CCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAAT





CTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAGA





GCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCTT





CGCCAATAGCCTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCGAGGAAGGCAT





TCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC





GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA





ATTTGATACTAACAGCCACAATGACGATGCGCTTCT





AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT





ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT





GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA





AF144-
GTSTPESGSASPGTSPSGES
677
GGTACTTCTACTCCGGAAAGCGGTTCCGCATCTCCA
678


hGH
STAPGTSPSGESSTAPGSTS

GGTACTTCTCCTAGCGGTGAATCTTCTACTGCTCCAG



STAESPGPGSTSESPSGTAP

GTACCTCTCCTAGCGGCGAATCTTCTACTGCTCCAGG



GSTSSTAESPGPGTSPSGES

TTCTACCAGCTCTACCGCTGAATCTCCTGGCCCAGGT



STAPGTSTPESGSASPGSTS

TCTACCAGCGAATCCCCGTCTGGCACCGCACCAGGT



STAESPGPGTSPSGESSTAP

TCTACTAGCTCTACCGCAGAATCTCCGGGTCCAGGT



GTSPSGESSTAPGTSPSGES

ACTTCCCCTAGCGGTGAATCTTCTACTGCTCCAGGTA



STAPGFPTIPLSRLFDNAM

CCTCTACTCCGGAAAGCGGCTCCGCATCTCCAGGTTC



LRAHRLHQLAFDTYQEFE

TACTAGCTCTACTGCTGAATCTCCTGGTCCAGGTACC



EAYIPKEQKYSFLQNPQTS

TCCCCTAGCGGCGAATCTTCTACTGCTCCAGGTACCT



LCFSESIPTPSNREETQQKS

CTCCTAGCGGCGAATCTTCTACCGCTCCAGGTACCTC



NLELLRISLLLIQSWLEPVQ

CCCTAGCGGTGAATCTTCTACCGCACCAGGTTTTCCG



FLRSVFANSLVYGASDSN

ACTATTCCGCTGTCTCGTCTGTTTGATAATGCTATGC



VYDLLKDLEEGIQTLMGR

TGCGTGCGCACCGTCTGCACCAGCTGGCCTTTGATAC



LEDGSPRTGQIFKQTYSKF

TTACCAGGAATTTGAAGAAGCcTACATTCCTAAAGA



DTNSHNDDALLKNYGLLY

GCAGAAGTACTCTTTCCTGCAAAACCCACAGACTTC



CFRKDMDKVETFLRIVQC

TCTCTGCTTCAGCGAATCTATTCCGACGCCTTCCAAT



RSVEGSCGF

CGCGAGGAAACTCAGCAAAAGTCCAATCTGGAACTA





CTCCGCATTTCTCTGCTTCTGATTCAGAGCTGGCTAG





AACCAGTGCAATTTCTGCGTTCCGTCTTCGCCAATAG





CCTAGTTTATGGCGCATCCGACAGCAACGTATACGA





TCTCCTGAAAGATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTCCGCGTACTGG





TCAGATCTTCAAGCAGACTTACTCTAAATTTGATACT





AACAGCCACAATGACGATGCGCTTCTAAAAAACTAT





GGTCTGCTGTATTGTTTTCGTAAAGATATGGACAAA





GTTGAAACCTTCCTGCGTATTGTTCAGTGTCGTTCCG





TTGAGGGCAGCTGTGGTTTCTAA





AD576-
GSSESGSSEGGPGSGGEPS
679
GGTTCCTCTGAAAGCGGTTCTTCCGAAGGTGGTCCA
680


hGH
ESGSSGSSESGSSEGGPGSS

GGTTCCTCTGAAAGCGGTTCTTCTGAGGGTGGTCCA



ESGSSEGGPGSSESGSSEG

GGTGAATCTCCGGGTGGCTCCAGCGGTTCCGAGTCA



GPGSSESGSSEGGPGSSES

GGTTCTGGTGGCGAACCTTCCGAGTCTGGTAGCTCA



GSSEGGPGESPGGSSGSES

GGTGAATCTCCGGGTGGTTCTAGCGGTTCCGAGTCA



GSEGSSGPGESSGSSESGSS

GGTGAATCTCCGGGTGGTTCCAGCGGTTCTGAGTCA



EGGPGSSESGSSEGGPGSS

GGTTCCTCCGAAAGCGGTTCTTCTGAGGGCGGTCCA



ESGSSEGGPGSGGEPSESG

GGTTCCTCCGAAAGCGGTTCTTCCGAGGGCGGTCCA



SSGESPGGSSGSESGESPG

GGTTCTTCTGAAAGCGGTTCTTCCGAGGGCGGTCCA



GSSGSESGSGGEPSESGSS

GGTGAATCTCCTGGTGGTTCCAGCGGTTCCGAGTCA



GSSESGSSEGGPGSGGEPS

GGTGAATCTCCAGGTGGCTCTAGCGGTTCCGAGTCA



ESGSSGSGGEPSESGSSGSE

GGTGAATCTCCTGGTGGTTCTAGCGGTTCTGAATCAG



GSSGPGESSGESPGGSSGS

GTTCCTCCGAAAGCGGTTCTTCTGAGGGCGGTCCAG



ESGSGGEPSESGSSGSGGE

GTTCCTCCGAAAGCGGTTCTTCCGAGGGCGGTCCAG



PSESGSSGSGGEPSESGSSG

GTTCTTCTGAAAGCGGTTCTTCCGAGGGCGGTCCAG



SSESGSSEGGPGESPGGSS

GTTCCTCTGAAAGCGGTTCTTCTGAGGGCGGTCCAG



GSESGESPGGSSGSESGESP

GTTCTTCCGAAAGCGGTTCTTCCGAGGGCGGTCCAG



GGSSGSESGESPGGSSGSE

GTTCTTCCGAAAGCGGTTCTTCTGAAGGCGGTCCAG



SGESPGGSSGSESGSSESGS

GTTCTGGTGGCGAACCGTCCGAGTCTGGTAGCTCAG



SEGGPGSGGEPSESGSSGS

GTGAATCTCCGGGTGGCTCTAGCGGTTCCGAGTCAG



EGSSGPGESSGSSESGSSEG

GTGAATCTCCTGGTGGTTCCAGCGGTTCCGAGTCAG



GPGSGGEPSESGSSGSSES

GTTCCGGTGGCGAACCGTCCGAATCTGGTAGCTCAG



GSSEGGPGSGGEPSESGSS

GTAGCGAAGGTTCTTCTGGTCCAGGCGAATCTTCAG



GESPGGSSGSESGESPGGS

GTTCCTCTGAAAGCGGTTCTTCTGAGGGCGGTCCAG



SGSESGSSESGSSEGGPGS

GTTCCGGTGGCGAACCGTCCGAATCTGGTAGCTCAG



GGEPSESGSSGSSESGSSEG

GTAGCGAAGGTTCTTCTGGTCCAGGCGAATCTTCAG



GPGSGGEPSESGSSGSGGE

GTTCCTCTGAAAGCGGTTCTTCTGAGGGCGGTCCAG



PSESGSSGESPGGSSGSESG

GTTCCGGTGGCGAACCTTCCGAATCTGGTAGCTCAG



SEGSSGPGESSGSSESGSSE

GTGAATCTCCGGGTGGTTCTAGCGGTTCTGAGTCAG



GGPGSEGSSGPGESSGFPTI

GTTCTGGTGGTGAACCTTCCGAGTCTGGTAGCTCAG



PLSRLFDNAMLRAHRLHQ

GTTCTGGTGGCGAACCATCCGAGTCTGGTAGCTCAG



LAFDTYQEFEEAYIPKEQK

GTTCTTCCGAAAGCGGTTCTTCCGAAGGCGGTCCAG



YSFLQNPQTSLCFSESIPTP

GTTCTGGTGGTGAACCGTCCGAATCTGGTAGCTCAG



SNREETQQKSNLELLRISL

GTTCTGGTGGCGAACCATCCGAATCTGGTAGCTCAG



LLIQSWLEPVQFLRSVFAN

GTAGCGAAGGTTCTTCTGGTCCTGGCGAATCTTCAG



SLVYGASDSNVYDLLKDL

GTGAATCTCCAGGTGGCTCTAGCGGTTCCGAATCAG



EEGIQTLMGRLEDGSPRTG

GTAGCGAAGGTTCTTCCGGTCCAGGTGAATCTTCAG



QIFKQTYSKFDTNSHNDD

GTAGCGAAGGTTCTTCTGGTCCTGGTGAATCCTCAG



ALLKNYGLLYCFRKDMD

GTTCCGGTGGCGAACCATCTGAATCTGGTAGCTCAG



KVETFLRIVQCRSVEGSCGF

GTTCCTCTGAAAGCGGTTCTTCCGAAGGTGGTCCAG





GTTCCTCTGAAAGCGGTTCTTCTGAGGGTGGTCCAG





GTGAATCTCCGGGTGGCTCCAGCGGTTCCGAGTCAG





GTTCTGGTGGCGAACCATCCGAATCTGGTAGCTCAG





GTAGCGAAGGTTCTTCTGGTCCTGGCGAATCTTCAG





GTGAATCTCCAGGTGGCTCTAGCGGTTCCGAATCAG





GTAGCGAAGGTTCTTCCGGTCCTGGTGAGTCTTCAG





GTGAATCTCCAGGTGGCTCTAGCGGTTCCGAGTCAG





GTAGCGAAGGTTCTTCTGGTCCTGGCGAGTCCTCAG





GTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAA





TGCTATGCTGCGTGCGCACCGTCTGCACCAGCTGGC





CTTTGATACTTACCAGGAATTTGAAGAAGCcTACATT





CCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACCCA





CAGACTTCTCTCTGCTTCAGCGAATCTATTCCGACGC





CTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAATC





TGGAACTACTCCGCATTTCTCTGCTTCTGATTCAGAG





CTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTC





GCCAATAGCCTAGTTTATGGCGCATCCGACAGCAAC





GTATACGATCTCCTGAAAGATCTCGAGGAAGGCATT





CAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCCG





CGTACTGGTCAGATCTTCAAGCAGACTTACTCTAAAT





TTGATACTAACAGCCACAATGACGATGCGCTTCTAA





AAAACTATGGTCTGCTGTATTGTTTTCGTAAAGATAT





GGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGT





CGTTCCGTTGAGGGCAGCTGTGGTTTCTAA





AE576-
GSPAGSPTSTEEGTSESATP
681
GGTAGCCCGGCTGGCTCTCCTACCTCTACTGAGGAA
682


hGH
ESGPGTSTEPSEGSAPGSPA

GGTACTTCTGAAAGCGCTACTCCTGAGTCTGGTCCA



GSPTSTEEGTSTEPSEGSAP

GGTACCTCTACTGAACCGTCCGAAGGTAGCGCTCCA



GTSTEPSEGSAPGTSESATP

GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA



ESGPGSEPATSGSETPGSEP

GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA



ATSGSETPGSPAGSPTSTEE

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA



GTSESATPESGPGTSTEPSE

GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA



GSAPGTSTEPSEGSAPGSP

GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA



AGSPTSTEEGTSTEPSEGSA

GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA



PGTSTEPSEGSAPGTSESAT

GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA



PESGPGTSTEPSEGSAPGTS

GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA



ESATPESGPGSEPATSGSET

GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA



PGTSTEPSEGSAPGTSTEPS

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA



EGSAPGTSESATPESGPGT

GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA



SESATPESGPGSPAGSPTST

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA



EEGTSESATPESGPGSEPAT

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA



SGSETPGTSESATPESGPGT

GGTACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCA



STEPSEGSAPGTSTEPSEGS

GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA



APGTSTEPSEGSAPGTSTEP

GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCA



SEGSAPGTSTEPSEGSAPG

GGTAGCGAACCGGCTACTTCTGGCTCTGAGACTCCA



TSTEPSEGSAPGSPAGSPTS

GGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCA



TEEGTSTEPSEGSAPGTSES

GGTACTTCTACTGAACCGTCTGAAGGTAGCGCACCA



ATPESGPGSEPATSGSETP

GGTACTTCTGAAAGCGCAACCCCGGAATCCGGCCCA



GTSESATPESGPGSEPATS

GGTACCTCTGAAAGCGCAACCCCGGAGTCCGGCCCA



GSETPGTSESATPESGPGTS

GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA



TEPSEGSAPGTSESATPESG

GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA



PGSPAGSPTSTEEGSPAGSP

GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA



TSTEEGSPAGSPTSTEEGTS

GGTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCA



ESATPESGPGTSTEPSEGSA

GGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCA



PGFPTIPLSRLFDNAMLRA

GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA



HRLHQLAFDTYQEFEEAYI

GGTACTTCTACCGAACCGTCCGAAGGCAGCGCTCCA



PKEQKYSFLQNPQTSLCFS

GGTACCTCTACTGAACCTTCCGAGGGCAGCGCTCCA



ESIPTPSNREETQQKSNLEL

GGTACCTCTACCGAACCTTCTGAAGGTAGCGCACCA



LRISLLLIQSWLEPVQFLRS

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA



VFANSLVYGASDSNVYDL

GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA



LKDLEEGIQTLMGRLEDGS

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA



PRTGQIFKQTYSKFDTNSH

GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA



NDDALLKNYGLLYCFRKD

GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA



MDKVETFLRIVQCRSVEGS

GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA



CGF

GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA





GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA





GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA





GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA





GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA





GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA





GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA





GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA





GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA





GGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGATA





ATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTGG





CCTTTGATACTTACCAGGAATTTGAAGAAGCcTACAT





TCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACCC





ACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGACG





CCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAAT





CTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAGA





GCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCTT





CGCCAATAGCCTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCGAGGAAGGCAT





TCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC





GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA





ATTTGATACTAACAGCCACAATGACGATGCGCTTCT





AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT





ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT





GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA





AF576-
GSTSSTAESPGPGSTSSTAE
683
GGTTCTACTAGCTCTACCGCTGAATCTCCTGGCCCAG
684


hGH
SPGPGSTSESPSGTAPGSTS

GTTCCACTAGCTCTACCGCAGAATCTCCGGGCCCAG



STAESPGPGSTSSTAESPGP

GTTCTACTAGCGAATCCCCTTCTGGTACCGCTCCAGG



GTSTPESGSASPGSTSESPS

TTCTACTAGCTCTACCGCTGAATCTCCGGGTCCAGGT



GTAPGTSPSGESSTAPGSTS

TCTACCAGCTCTACTGCAGAATCTCCTGGCCCAGGTA



ESPSGTAPGSTSESPSGTAP

CTTCTACTCCGGAAAGCGGTTCCGCTTCTCCAGGTTC



GTSPSGESSTAPGSTSESPS

TACCAGCGAATCTCCTTCTGGCACCGCTCCAGGTACC



GTAPGSTSESPSGTAPGTSP

TCTCCTAGCGGCGAATCTTCTACCGCTCCAGGTTCTA



SGESSTAPGSTSESPSGTAP

CTAGCGAATCTCCTTCTGGCACTGCACCAGGTTCTAC



GSTSESPSGTAPGSTSESPS

CAGCGAATCTCCTTCTGGCACCGCTCCAGGTACCTCT



GTAPGTSTPESGSASPGSTS

CCTAGCGGCGAATCTTCTACCGCTCCAGGTTCTACTA



ESPSGTAPGTSTPESGSASP

GCGAATCTCCTTCTGGCACTGCACCAGGTTCTACCAG



GSTSSTAESPGPGSTSSTAE

CGAATCTCCTTCTGGCACCGCTCCAGGTACCTCTCCT



SPGPGTSTPESGSASPGTST

AGCGGCGAATCTTCTACCGCTCCAGGTTCTACTAGC



PESGSASPGSTSESPSGTAP

GAATCTCCTTCTGGCACTGCACCAGGTTCTACTAGCG



GTSTPESGSASPGTSTPESG

AATCTCCTTCTGGCACTGCACCAGGTTCTACCAGCGA



SASPGSTSESPSGTAPGSTS

ATCTCCGTCTGGCACTGCACCAGGTACCTCTACCCCT



ESPSGTAPGSTSESPSGTAP

GAAAGCGGTTCCGCTTCTCCAGGTTCTACTAGCGAA



GSTSSTAESPGPGTSTPESG

TCTCCTTCTGGTACCGCTCCAGGTACTTCTACCCCTG



SASPGTSTPESGSASPGSTS

AAAGCGGCTCCGCTTCTCCAGGTTCCACTAGCTCTAC



ESPSGTAPGSTSESPSGTAP

CGCTGAATCTCCGGGTCCAGGTTCTACTAGCTCTACT



GTSTPESGSASPGSTSESPS

GCAGAATCTCCTGGCCCAGGTACCTCTACTCCGGAA



GTAPGSTSESPSGTAPGTS

AGCGGCTCTGCATCTCCAGGTACTTCTACCCCTGAAA



TPESGSASPGTSPSGESSTA

GCGGTTCTGCATCTCCAGGTTCTACTAGCGAATCCCC



PGSTSSTAESPGPGTSPSGE

GTCTGGTACCGCACCAGGTACTTCTACCCCGGAAAG



SSTAPGSTSSTAESPGPGTS

CGGCTCTGCTTCTCCAGGTACTTCTACCCCGGAAAGC



TPESGSASPGSTSESPSGTA

GGCTCCGCATCTCCAGGTTCTACTAGCGAATCTCCTT



PGSTSSTAESPGPGTSTPES

CTGGTACCGCTCCAGGTTCTACCAGCGAATCCCCGTC



GSASPGTSTPESGSASPGFP

TGGTACTGCTCCAGGTTCTACCAGCGAATCTCCTTCT



TIPLSRLFDNAMLRAHRLH

GGTACTGCACCAGGTTCTACTAGCTCTACTGCAGAA



QLAFDTYQEFEEAYIPKEQ

TCTCCTGGCCCAGGTACCTCTACTCCGGAAAGCGGC



KYSFLQNPQTSLCFSESIPT

TCTGCATCTCCAGGTACTTCTACCCCTGAAAGCGGTT



PSNREETQQKSNLELLRISL

CTGCATCTCCAGGTTCTACTAGCGAATCTCCTTCTGG



LLIQSWLEPVQFLRSVFAN

CACTGCACCAGGTTCTACCAGCGAATCTCCGTCTGG



SLVYGASDSNVYDLLKDL

CACTGCACCAGGTACCTCTACCCCTGAAAGCGGTTC



EEGIQTLMGRLEDGSPRTG

CGCTTCTCCAGGTTCTACTAGCGAATCTCCTTCTGGC



QIFKQTYSKFDTNSHNDD

ACTGCACCAGGTTCTACCAGCGAATCTCCGTCTGGC



ALLKNYGLLYCFRKDMD

ACTGCACCAGGTACCTCTACCCCTGAAAGCGGTTCC



KVETFLRIVQCRSVEGSCGF

GCTTCTCCAGGTACTTCTCCGAGCGGTGAATCTTCTA





CCGCACCAGGTTCTACTAGCTCTACCGCTGAATCTCC





GGGCCCAGGTACTTCTCCGAGCGGTGAATCTTCTACT





GCTCCAGGTTCCACTAGCTCTACTGCTGAATCTCCTG





GCCCAGGTACTTCTACTCCGGAAAGCGGTTCCGCTTC





TCCAGGTTCTACTAGCGAATCTCCGTCTGGCACCGCA





CCAGGTTCTACTAGCTCTACTGCAGAATCTCCTGGCC





CAGGTACCTCTACTCCGGAAAGCGGCTCTGCATCTC





CAGGTACTTCTACCCCTGAAAGCGGTTCTGCATCTCC





AGGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGAT





AATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTG





GCCTTTGATACTTACCAGGAATTTGAAGAAGCcTACA





TTCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACC





CACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGAC





GCCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAA





TCTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAG





AGCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCT





TCGCCAATAGCCTAGTTTATGGCGCATCCGACAGCA





ACGTATACGATCTCCTGAAAGATCTCGAGGAAGGCA





TTCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC





GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA





ATTTGATACTAACAGCCACAATGACGATGCGCTTCT





AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT





ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT





GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA





AE624-
MAEPAGSPTSTEEGTPGSG
685
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAG
686


hGH
TASSSPGSSTPSGATGSPG

GAAGGTACCCCGGGTAGCGGTACTGCTTCTTCCTCTC



ASPGTSSTGSPGSPAGSPTS

CAGGTAGCTCTACCCCTTCTGGTGCAACCGGCTCTCC



TEEGTSESATPESGPGTSTE

AGGTGCTTCTCCGGGCACCAGCTCTACCGGTTCTCCA



PSEGSAPGSPAGSPTSTEEG

GGTAGCCCGGCTGGCTCTCCTACCTCTACTGAGGAA



TSTEPSEGSAPGTSTEPSEG

GGTACTTCTGAAAGCGCTACTCCTGAGTCTGGTCCA



SAPGTSESATPESGPGSEPA

GGTACCTCTACTGAACCGTCCGAAGGTAGCGCTCCA



TSGSETPGSEPATSGSETPG

GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA



SPAGSPTSTEEGTSESATPE

GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA



SGPGTSTEPSEGSAPGTSTE

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA



PSEGSAPGSPAGSPTSTEEG

GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA



TSTEPSEGSAPGTSTEPSEG

GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA



SAPGTSESATPESGPGTSTE

GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA



PSEGSAPGTSESATPESGPG

GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA



SEPATSGSETPGTSTEPSEG

GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA



SAPGTSTEPSEGSAPGTSES

GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA



ATPESGPGTSESATPESGP

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA



GSPAGSPTSTEEGTSESATP

GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA



ESGPGSEPATSGSETPGTSE

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA



SATPESGPGTSTEPSEGSAP

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA



GTSTEPSEGSAPGTSTEPSE

GGTACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCA



GSAPGTSTEPSEGSAPGTS

GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA



TEPSEGSAPGTSTEPSEGSA

GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCA



PGSPAGSPTSTEEGTSTEPS

GGTAGCGAACCGGCTACTTCTGGCTCTGAGACTCCA



EGSAPGTSESATPESGPGS

GGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCA



EPATSGSETPGTSESATPES

GGTACTTCTACTGAACCGTCTGAAGGTAGCGCACCA



GPGSEPATSGSETPGTSES

GGTACTTCTGAAAGCGCAACCCCGGAATCCGGCCCA



ATPESGPGTSTEPSEGSAP

GGTACCTCTGAAAGCGCAACCCCGGAGTCCGGCCCA



GTSESATPESGPGSPAGSPT

GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA



STEEGSPAGSPTSTEEGSPA

GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA



GSPTSTEEGTSESATPESGP

GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA



GTSTEPSEGSAPGFPTIPLS

GGTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCA



RLFDNAMLRAHRLHQLAF

GGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCA



DTYQEFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA



LQNPQTSLCFSESIPTPSNR

GGTACTTCTACCGAACCGTCCGAAGGCAGCGCTCCA



EETQQKSNLELLRISLLLIQ

GGTACCTCTACTGAACCTTCCGAGGGCAGCGCTCCA



SWLEPVQFLRSVFANSLV

GGTACCTCTACCGAACCTTCTGAAGGTAGCGCACCA



YGASDSNVYDLLKDLEEG

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA



IQTLMGRLEDGSPRTGQIF

GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA



KQTYSKFDTNSHNDDALL

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA



KNYGLLYCFRKDMDKVE

GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA



TFLRIVQCRSVEGSCGF

GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA





GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA





GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA





GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA





GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA





GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA





GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA





GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA





GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA





GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA





GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA





GGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGATA





ATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTGG





CCTTTGATACTTACCAGGAATTTGAAGAAGCcTACAT





TCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACCC





ACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGACG





CCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAAT





CTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAGA





GCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCTT





CGCCAATAGCCTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCGAGGAAGGCAT





TCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC





GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA





ATTTGATACTAACAGCCACAATGACGATGCGCTTCT





AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT





ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT





GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA





AD836-
GSSESGSSEGGPGSSESGSS
687
GGTTCCTCTGAAAGCGGTTCTTCCGAAGGTGGTCCA
688


hGH
EGGPGESPGGSSGSESGSG

GGTTCCTCTGAAAGCGGTTCTTCTGAGGGTGGTCCA



GEPSESGSSGESPGGSSGSE

GGTGAATCTCCGGGTGGCTCCAGCGGTTCCGAGTCA



SGESPGGSSGSESGSSESGS

GGTTCTGGTGGCGAACCTTCCGAGTCTGGTAGCTCA



SEGGPGSSESGSSEGGPGS

GGTGAATCTCCGGGTGGTTCTAGCGGTTCCGAGTCA



SESGSSEGGPGESPGGSSG

GGTGAATCTCCGGGTGGTTCCAGCGGTTCTGAGTCA



SESGESPGGSSGSESGESPG

GGTTCCTCCGAAAGCGGTTCTTCTGAGGGCGGTCCA



GSSGSESGSSESGSSEGGP

GGTTCCTCCGAAAGCGGTTCTTCCGAGGGCGGTCCA



GSSESGSSEGGPGSSESGSS

GGTTCTTCTGAAAGCGGTTCTTCCGAGGGCGGTCCA



EGGPGSSESGSSEGGPGSS

GGTGAATCTCCTGGTGGTTCCAGCGGTTCCGAGTCA



ESGSSEGGPGSSESGSSEG

GGTGAATCTCCAGGTGGCTCTAGCGGTTCCGAGTCA



GPGSGGEPSESGSSGESPG

GGTGAATCTCCTGGTGGTTCTAGCGGTTCTGAATCAG



GSSGSESGESPGGSSGSES

GTTCCTCCGAAAGCGGTTCTTCTGAGGGCGGTCCAG



GSGGEPSESGSSGSEGSSG

GTTCCTCCGAAAGCGGTTCTTCCGAGGGCGGTCCAG



PGESSGSSESGSSEGGPGS

GTTCTTCTGAAAGCGGTTCTTCCGAGGGCGGTCCAG



GGEPSESGSSGSEGSSGPG

GTTCCTCTGAAAGCGGTTCTTCTGAGGGCGGTCCAG



ESSGSSESGSSEGGPGSGG

GTTCTTCCGAAAGCGGTTCTTCCGAGGGCGGTCCAG



EPSESGSSGESPGGSSGSES

GTTCTTCCGAAAGCGGTTCTTCTGAAGGCGGTCCAG



GSGGEPSESGSSGSGGEPS

GTTCTGGTGGCGAACCGTCCGAGTCTGGTAGCTCAG



ESGSSGSSESGSSEGGPGS

GTGAATCTCCGGGTGGCTCTAGCGGTTCCGAGTCAG



GGEPSESGSSGSGGEPSES

GTGAATCTCCTGGTGGTTCCAGCGGTTCCGAGTCAG



GSSGSEGSSGPGESSGESP

GTTCCGGTGGCGAACCGTCCGAATCTGGTAGCTCAG



GGSSGSESGSEGSSGPGES

GTAGCGAAGGTTCTTCTGGTCCAGGCGAATCTTCAG



SGSEGSSGPGESSGSGGEP

GTTCCTCTGAAAGCGGTTCTTCTGAGGGCGGTCCAG



SESGSSGSSESGSSEGGPGS

GTTCCGGTGGCGAACCGTCCGAATCTGGTAGCTCAG



SESGSSEGGPGESPGGSSG

GTAGCGAAGGTTCTTCTGGTCCAGGCGAATCTTCAG



SESGSGGEPSESGSSGSEGS

GTTCCTCTGAAAGCGGTTCTTCTGAGGGCGGTCCAG



SGPGESSGESPGGSSGSES

GTTCCGGTGGCGAACCTTCCGAATCTGGTAGCTCAG



GSEGSSGPGSSESGSSEGG

GTGAATCTCCGGGTGGTTCTAGCGGTTCTGAGTCAG



PGSGGEPSESGSSGSEGSS

GTTCTGGTGGTGAACCTTCCGAGTCTGGTAGCTCAG



GPGESSGSEGSSGPGESSG

GTTCTGGTGGCGAACCATCCGAGTCTGGTAGCTCAG



SEGSSGPGESSGSGGEPSES

GTTCTTCCGAAAGCGGTTCTTCCGAAGGCGGTCCAG



GSSGSGGEPSESGSSGESP

GTTCTGGTGGTGAACCGTCCGAATCTGGTAGCTCAG



GGSSGSESGESPGGSSGSE

GTTCTGGTGGCGAACCATCCGAATCTGGTAGCTCAG



SGSGGEPSESGSSGSEGSS

GTAGCGAAGGTTCTTCTGGTCCTGGCGAATCTTCAG



GPGESSGESPGGSSGSESG

GTGAATCTCCAGGTGGCTCTAGCGGTTCCGAATCAG



SSESGSSEGGPGSSESGSSE

GTAGCGAAGGTTCTTCCGGTCCAGGTGAATCTTCAG



GGPGSSESGSSEGGPGSGG

GTAGCGAAGGTTCTTCTGGTCCTGGTGAATCCTCAG



EPSESGSSGSSESGSSEGGP

GTTCCGGTGGCGAACCATCTGAATCTGGTAGCTCAG



GESPGGSSGSESGSGGEPS

GTTCCTCTGAAAGCGGTTCTTCCGAAGGTGGTCCAG



ESGSSGSSESGSSEGGPGES

GTTCCTCTGAAAGCGGTTCTTCTGAGGGTGGTCCAG



PGGSSGSESGSGGEPSESG

GTGAATCTCCGGGTGGCTCCAGCGGTTCCGAGTCAG



SSGESPGGSSGSESGSGGE

GTTCTGGTGGCGAACCATCCGAATCTGGTAGCTCAG



PSESGSSGFPTIPLSRLFDN

GTAGCGAAGGTTCTTCTGGTCCTGGCGAATCTTCAG



AMLRAHRLHQLAFDTYQE

GTGAATCTCCAGGTGGCTCTAGCGGTTCCGAATCAG



FEEAYIPKEQKYSFLQNPQ

GTAGCGAAGGTTCTTCCGGTCCaGGTTCCTCTGAAAG



TSLCFSESIPTPSNREETQQ

CGGTTCTTCTGAGGGCGGTCCAGGTTCTGGTGGCGA



KSNLELLRISLLLIQSWLEP

ACCATCTGAATCTGGTAGCTCAGGTAGCGAAGGTTC



VQFLRSVFANSLVYGASD

TTCCGGTCCGGGTGAATCTTCAGGTAGCGAAGGTTC



SNVYDLLKDLEEGIQTLM

TTCCGGTCCAGGTGAATCTTCAGGTAGCGAAGGTTC



GRLEDGSPRTGQIFKQTYS

TTCTGGTCCTGGTGAATCCTCAGGTTCCGGTGGCGAA



KFDTNSHNDDALLKNYGL

CCATCTGAATCTGGTAGCTCAGGTTCTGGTGGCGAA



LYCFRKDMDKVETFLRIV

CCATCCGAATCTGGTAGCTCAGGTGAATCTCCGGGT



QCRSVEGSCGF

GGCTCCAGCGGTTCTGAATCAGGTGAATCTCCTGGT





GGCTCCAGCGGTTCTGAGTCAGGTTCTGGTGGCGAA





CCATCCGAATCTGGTAGCTCAGGTAGCGAAGGTTCT





TCTGGTCCTGGCGAATCTTCAGGTGAATCTCCAGGTG





GCTCTAGCGGTTCCGAATCAGGTTCCTCTGAAAGCG





GTTCTTCTGAGGGCGGTCCAGGTTCTTCCGAAAGCG





GTTCTTCCGAGGGCGGTCCAGGTTCTTCCGAAAGCG





GTTCTTCTGAAGGCGGTCCAGGTTCTGGTGGCGAAC





CGTCCGAATCTGGTAGCTCAGGTTCCTCCGAAAGCG





GTTCTTCTGAAGGTGGTCCAGGTGAATCTCCAGGTG





GTTCTAGCGGTTCTGAATCAGGTTCTGGTGGCGAAC





CGTCCGAATCTGGTAGCTCAGGTTCCTCCGAAAGCG





GTTCTTCTGAAGGTGGTCCAGGTGAATCTCCAGGTG





GTTCTAGCGGTTCTGAATCAGGTTCTGGTGGCGAAC





CGTCCGAATCTGGTAGCTCAGGTGAATCTCCTGGTG





GTTCCAGCGGTTCCGAGTCAGGTTCTGGTGGCGAAC





CTTCCGAATCTGGTAGCTCAGGTTTTCCGACTATTCC





GCTGTCTCGTCTGTTTGATAATGCTATGCTGCGTGCG





CACCGTCTGCACCAGCTGGCCTTTGATACTTACCAGG





AATTTGAAGAAGCcTACATTCCTAAAGAGCAGAAGT





ACTCTTTCCTGCAAAACCCACAGACTTCTCTCTGCTT





CAGCGAATCTATTCCGACGCCTTCCAATCGCGAGGA





AACTCAGCAAAAGTCCAATCTGGAACTACTCCGCAT





TTCTCTGCTTCTGATTCAGAGCTGGCTAGAACCAGTG





CAATTTCTGCGTTCCGTCTTCGCCAATAGCCTAGTTT





ATGGCGCATCCGACAGCAACGTATACGATCTCCTGA





AAGATCTCGAGGAAGGCATTCAGACCCTGATGGGTC





GTCTCGAGGATGGCTCTCCGCGTACTGGTCAGATCTT





CAAGCAGACTTACTCTAAATTTGATACTAACAGCCA





CAATGACGATGCGCTTCTAAAAAACTATGGTCTGCT





GTATTGTTTTCGTAAAGATATGGACAAAGTTGAAAC





CTTCCTGCGTATTGTTCAGTGTCGTTCCGTTGAGGGC





AGCTGTGGTTTCTAA





AE864-
GSPAGSPTSTEEGTSESATP
689
GGTAGCCCGGCTGGCTCTCCTACCTCTACTGAGGAA
690


hGH
ESGPGTSTEPSEGSAPGSPA

GGTACTTCTGAAAGCGCTACTCCTGAGTCTGGTCCA



GSPTSTEEGTSTEPSEGSAP

GGTACCTCTACTGAACCGTCCGAAGGTAGCGCTCCA



GTSTEPSEGSAPGTSESATP

GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA



ESGPGSEPATSGSETPGSEP

GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA



ATSGSETPGSPAGSPTSTEE

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA



GTSESATPESGPGTSTEPSE

GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA



GSAPGTSTEPSEGSAPGSP

GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA



AGSPTSTEEGTSTEPSEGSA

GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA



PGTSTEPSEGSAPGTSESAT

GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA



PESGPGTSTEPSEGSAPGTS

GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA



ESATPESGPGSEPATSGSET

GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA



PGTSTEPSEGSAPGTSTEPS

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA



EGSAPGTSESATPESGPGT

GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA



SESATPESGPGSPAGSPTST

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA



EEGTSESATPESGPGSEPAT

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA



SGSETPGTSESATPESGPGT

GGTACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCA



STEPSEGSAPGTSTEPSEGS

GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA



APGTSTEPSEGSAPGTSTEP

GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCA



SEGSAPGTSTEPSEGSAPG

GGTAGCGAACCGGCTACTTCTGGCTCTGAGACTCCA



TSTEPSEGSAPGSPAGSPTS

GGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCA



TEEGTSTEPSEGSAPGTSES

GGTACTTCTACTGAACCGTCTGAAGGTAGCGCACCA



ATPESGPGSEPATSGSETP

GGTACTTCTGAAAGCGCAACCCCGGAATCCGGCCCA



GTSESATPESGPGSEPATS

GGTACCTCTGAAAGCGCAACCCCGGAGTCCGGCCCA



GSETPGTSESATPESGPGTS

GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA



TEPSEGSAPGTSESATPESG

GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA



PGSPAGSPTSTEEGSPAGSP

GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA



TSTEEGSPAGSPTSTEEGTS

GGTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCA



ESATPESGPGTSTEPSEGSA

GGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCA



PGTSESATPESGPGSEPATS

GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA



GSETPGTSESATPESGPGSE

GGTACTTCTACCGAACCGTCCGAAGGCAGCGCTCCA



PATSGSETPGTSESATPESG

GGTACCTCTACTGAACCTTCCGAGGGCAGCGCTCCA



PGTSTEPSEGSAPGSPAGSP

GGTACCTCTACCGAACCTTCTGAAGGTAGCGCACCA



TSTEEGTSESATPESGPGSE

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA



PATSGSETPGTSESATPESG

GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA



PGSPAGSPTSTEEGSPAGSP

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA



TSTEEGTSTEPSEGSAPGTS

GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA



ESATPESGPGTSESATPESG

GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA



PGTSESATPESGPGSEPATS

GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA



GSETPGSEPATSGSETPGSP

GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA



AGSPTSTEEGTSTEPSEGSA

GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA



PGTSTEPSEGSAPGSEPATS

GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA



GSETPGTSESATPESGPGTS

GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA



TEPSEGSAPGFPTIPLSRLF

GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA



DNAMLRAHRLHQLAFDT

GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA



YQEFEEAYIPKEQKYSFLQ

GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA



NPQTSLCFSESIPTPSNREE

GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA



TQQKSNLELLRISLLLIQS

GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA



WLEPVQFLRSVFANSLVY

GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA



GASDSNVYDLLKDLEEGI

GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA



QTLMGRLEDGSPRTGQIFK

GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA



QTYSKFDTNSHNDDALLK

GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA



NYGLLYCFRKDMDKVETF

GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA



LRIVQCRSVEGSCGF

GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA





GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA





GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA





GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA





GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA





GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA





GGTACTTCTACCGAACCTTCCGAGGGCAGCGCACCA





GGTACTTCTGAAAGCGCTACCCCTGAGTCCGGCCCA





GGTACTTCTGAAAGCGCTACTCCTGAATCCGGTCCA





GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA





GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA





GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA





GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA





GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA





GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA





GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA





GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA





GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA





GGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGATA





ATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTGG





CCTTTGATACTTACCAGGAATTTGAAGAAGCcTACAT





TCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACCC





ACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGACG





CCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAAT





CTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAGA





GCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCTT





CGCCAATAGCCTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCGAGGAAGGCAT





TCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC





GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA





ATTTGATACTAACAGCCACAATGACGATGCGCTTCT





AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT





ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT





GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA





AF864-
GSTSESPSGTAPGTSPSGES
691
GGTTCTACCAGCGAATCTCCTTCTGGCACCGCTCCAG
692


hGH
STAPGSTSESPSGTAPGSTS

GTACCTCTCCTAGCGGCGAATCTTCTACCGCTCCAGG



ESPSGTAPGTSTPESGSASP

TTCTACTAGCGAATCTCCTTCTGGCACTGCACCAGGT



GTSTPESGSASPGSTSESPS

TCTACTAGCGAATCCCCGTCTGGTACTGCTCCAGGTA



GTAPGSTSESPSGTAPGTSP

CTTCTACTCCTGAAAGCGGTTCCGCTTCTCCAGGTAC



SGESSTAPGSTSESPSGTAP

CTCTACTCCGGAAAGCGGTTCTGCATCTCCAGGTTCT



GTSPSGESSTAPGTSPSGES

ACCAGCGAATCTCCTTCTGGCACCGCTCCAGGTTCTA



STAPGSTSSTAESPGPGTSP

CTAGCGAATCCCCGTCTGGTACCGCACCAGGTACTT



SGESSTAPGTSPSGESSTAP

CTCCTAGCGGCGAATCTTCTACCGCACCAGGTTCTAC



GSTSSTAESPGPGTSTPESG

TAGCGAATCTCCGTCTGGCACTGCTCCAGGTACTTCT



SASPGTSTPESGSASPGSTS

CCTAGCGGTGAATCTTCTACCGCTCCAGGTACTTCCC



ESPSGTAPGSTSESPSGTAP

CTAGCGGCGAATCTTCTACCGCTCCAGGTTCTACTAG



GTSTPESGSASPGSTSSTAE

CTCTACTGCAGAATCTCCGGGCCCAGGTACCTCTCCT



SPGPGTSTPESGSASPGSTS

AGCGGTGAATCTTCTACCGCTCCAGGTACTTCTCCGA



ESPSGTAPGTSPSGESSTAP

GCGGTGAATCTTCTACCGCTCCAGGTTCTACTAGCTC



GSTSSTAESPGPGTSPSGES

TACTGCAGAATCTCCTGGCCCAGGTACCTCTACTCCG



STAPGTSTPESGSASPGSTS

GAAAGCGGCTCTGCATCTCCAGGTACTTCTACCCCTG



STAESPGPGSTSSTAESPGP

AAAGCGGTTCTGCATCTCCAGGTTCTACTAGCGAAT



GSTSSTAESPGPGSTSSTAE

CTCCTTCTGGCACTGCACCAGGTTCTACCAGCGAATC



SPGPGTSPSGESSTAPGSTS

TCCGTCTGGCACTGCACCAGGTACCTCTACCCCTGAA



ESPSGTAPGSTSESPSGTAP

AGCGGTTCCGCTTCTCCAGGTTCTACCAGCTCTACCG



GTSTPESGPXXXGASASGA

CAGAATCTCCTGGTCCAGGTACCTCTACTCCGGAAA



PSTXXXXSESPSGTAPGST

GCGGCTCTGCATCTCCAGGTTCTACTAGCGAATCTCC



SESPSGTAPGSTSESPSGTA

TTCTGGCACTGCACCAGGTACTTCTCCGAGCGGTGA



PGSTSESPSGTAPGSTSESP

ATCTTCTACCGCACCAGGTTCTACTAGCTCTACCGCT



SGTAPGSTSESPSGTAPGTS

GAATCTCCGGGCCCAGGTACTTCTCCGAGCGGTGAA



TPESGSASPGTSPSGESSTA

TCTTCTACTGCTCCAGGTACCTCTACTCCTGAAAGCG



PGTSPSGESSTAPGSTSSTA

GTTCTGCATCTCCAGGTTCCACTAGCTCTACCGCAGA



ESPGPGTSPSGESSTAPGTS

ATCTCCGGGCCCAGGTTCTACTAGCTCTACTGCTGAA



TPESGSASPGSTSESPSGTA

TCTCCTGGCCCAGGTTCTACTAGCTCTACTGCTGAAT



PGSTSESPSGTAPGTSPSGE

CTCCGGGTCCAGGTTCTACCAGCTCTACTGCTGAATC



SSTAPGSTSESPSGTAPGTS

TCCTGGTCCAGGTACCTCCCCGAGCGGTGAATCTTCT



TPESGSASPGTSTPESGSAS

ACTGCACCAGGTTCTACTAGCGAATCTCCTTCTGGCA



PGSTSESPSGTAPGTSTPES

CTGCACCAGGTTCTACCAGCGAATCTCCGTCTGGCA



GSASPGSTSSTAESPGPGST

CTGCACCAGGTACCTCTACCCCTGAAAGCGGTCCXX



SESPSGTAPGSTSESPSGTA

XXXXXXXXXXTGCAAGCGCAAGCGGCGCGCCAAGC



PGTSPSGESSTAPGSTSSTA

ACGGGAXXXXXXXXTAGCGAATCTCCTTCTGGTACC



ESPGPGTSPSGESSTAPGTS

GCTCCAGGTTCTACCAGCGAATCCCCGTCTGGTACTG



TPESGSASPGTSPSGESSTA

CTCCAGGTTCTACCAGCGAATCTCCTTCTGGTACTGC



PGTSPSGESSTAPGTSPSGE

ACCAGGTTCTACTAGCGAATCTCCTTCTGGTACCGCT



SSTAPGSTSSTAESPGPGST

CCAGGTTCTACCAGCGAATCCCCGTCTGGTACTGCTC



SSTAESPGPGTSPSGESSTA

CAGGTTCTACCAGCGAATCTCCTTCTGGTACTGCACC



PGSSPSASTGTGPGSSTPSG

AGGTACTTCTACTCCGGAAAGCGGTTCCGCATCTCC



ATGSPGSSTPSGATGSPGF

AGGTACTTCTCCTAGCGGTGAATCTTCTACTGCTCCA



PTIPLSRLFDNAMLRAHRL

GGTACCTCTCCTAGCGGCGAATCTTCTACTGCTCCAG



HQLAFDTYQEFEEAYIPKE

GTTCTACCAGCTCTACTGCTGAATCTCCGGGTCCAGG



QKYSFLQNPQTSLCFSESIP

TACTTCCCCGAGCGGTGAATCTTCTACTGCACCAGGT



TPSNREETQQKSNLELLRIS

ACTTCTACTCCGGAAAGCGGTTCCGCTTCTCCAGGTT



LLLIQSWLEPVQFLRSVFA

CTACCAGCGAATCTCCTTCTGGCACCGCTCCAGGTTC



NSLVYGASDSNVYDLLKD

TACTAGCGAATCCCCGTCTGGTACCGCACCAGGTAC



LEEGIQTLMGRLEDGSPRT

TTCTCCTAGCGGCGAATCTTCTACCGCACCAGGTTCT



GQIFKQTYSKFDTNSHND

ACTAGCGAATCCCCGTCTGGTACCGCACCAGGTACT



DALLKNYGLLYCFRKDM

TCTACCCCGGAAAGCGGCTCTGCTTCTCCAGGTACTT



DKVETFLRIVQCRSVEGSC

CTACCCCGGAAAGCGGCTCCGCATCTCCAGGTTCTA



GF

CTAGCGAATCTCCTTCTGGTACCGCTCCAGGTACTTC





TACCCCTGAAAGCGGCTCCGCTTCTCCAGGTTCCACT





AGCTCTACCGCTGAATCTCCGGGTCCAGGTTCTACCA





GCGAATCTCCTTCTGGCACCGCTCCAGGTTCTACTAG





CGAATCCCCGTCTGGTACCGCACCAGGTACTTCTCCT





AGCGGCGAATCTTCTACCGCACCAGGTTCTACCAGC





TCTACTGCTGAATCTCCGGGTCCAGGTACTTCCCCGA





GCGGTGAATCTTCTACTGCACCAGGTACTTCTACTCC





GGAAAGCGGTTCCGCTTCTCCAGGTACCTCCCCTAG





CGGCGAATCTTCTACTGCTCCAGGTACCTCTCCTAGC





GGCGAATCTTCTACCGCTCCAGGTACCTCCCCTAGCG





GTGAATCTTCTACCGCACCAGGTTCTACTAGCTCTAC





TGCTGAATCTCCGGGTCCAGGTTCTACCAGCTCTACT





GCTGAATCTCCTGGTCCAGGTACCTCCCCGAGCGGT





GAATCTTCTACTGCACCAGGTTCTAGCCCTTCTGCTT





CCACCGGTACCGGCCCAGGTAGCTCTACTCCGTCTG





GTGCAACTGGCTCTCCAGGTAGCTCTACTCCGTCTGG





TGCAACCGGCTCCCCAGGTTTTCCGACTATTCCGCTG





TCTCGTCTGTTTGATAATGCTATGCTGCGTGCGCACC





GTCTGCACCAGCTGGCCTTTGATACTTACCAGGAATT





TGAAGAAGCcTACATTCCTAAAGAGCAGAAGTACTC





TTTCCTGCAAAACCCACAGACTTCTCTCTGCTTCAGC





GAATCTATTCCGACGCCTTCCAATCGCGAGGAAACT





CAGCAAAAGTCCAATCTGGAACTACTCCGCATTTCT





CTGCTTCTGATTCAGAGCTGGCTAGAACCAGTGCAA





TTTCTGCGTTCCGTCTTCGCCAATAGCCTAGTTTATG





GCGCATCCGACAGCAACGTATACGATCTCCTGAAAG





ATCTCGAGGAAGGCATTCAGACCCTGATGGGTCGTC





TCGAGGATGGCTCTCCGCGTACTGGTCAGATCTTCA





AGCAGACTTACTCTAAATTTGATACTAACAGCCACA





ATGACGATGCGCTTCTAAAAAACTATGGTCTGCTGT





ATTGTTTTCGTAAAGATATGGACAAAGTTGAAACCT





TCCTGCGTATTGTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAA





AG864-
GASPGTSSTGSPGSSPSAST
693
GGTGCTTCCCCGGGCACCAGCTCTACTGGTTCTCCAG
694


hGH
GTGPGSSPSASTGTGPGTP

GTTCTAGCCCGTCTGCTTCTACTGGTACTGGTCCAGG



GSGTASSSPGSSTPSGATG

TTCTAGCCCTTCTGCTTCCACTGGTACTGGTCCAGGT



SPGSNPSASTGTGPGASPG

ACCCCGGGTAGCGGTACCGCTTCTTCTTCTCCAGGTA



TSSTGSPGTPGSGTASSSPG

GCTCTACTCCGTCTGGTGCTACCGGCTCTCCAGGTTC



SSTPSGATGSPGTPGSGTA

TAACCCTTCTGCATCCACCGGTACCGGCCCAGGTGCT



SSSPGASPGTSSTGSPGASP

TCTCCGGGCACCAGCTCTACTGGTTCTCCAGGTACCC



GTSSTGSPGTPGSGTASSSP

CGGGCAGCGGTACCGCATCTTCTTCTCCAGGTAGCTC



GSSTPSGATGSPGASPGTS

TACTCCTTCTGGTGCAACTGGTTCTCCAGGTACTCCT



STGSPGTPGSGTASSSPGSS

GGCAGCGGTACCGCTTCTTCTTCTCCAGGTGCTTCTC



TPSGATGSPGSNPSASTGT

CTGGTACTAGCTCTACTGGTTCTCCAGGTGCTTCTCC



GPGSSPSASTGTGPGSSTPS

GGGCACTAGCTCTACTGGTTCTCCAGGTACCCCGGG



GATGSPGSSTPSGATGSPG

TAGCGGTACTGCTTCTTCCTCTCCAGGTAGCTCTACC



ASPGTSSTGSPGASPGTSST

CCTTCTGGTGCAACCGGCTCTCCAGGTGCTTCTCCGG



GSPGASPGTSSTGSPGTPG

GCACCAGCTCTACCGGTTCTCCAGGTACCCCGGGTA



SGTASSSPGASPGTSSTGSP

GCGGTACCGCTTCTTCTTCTCCAGGTAGCTCTACTCC



GASPGTSSTGSPGASPGTS

GTCTGGTGCTACCGGCTCTCCAGGTTCTAACCCTTCT



STGSPGSSPSASTGTGPGTP

GCATCCACCGGTACCGGCCCAGGTTCTAGCCCTTCTG



GSGTASSSPGASPGTSSTG

CTTCCACCGGTACTGGCCCAGGTAGCTCTACCCCTTC



SPGASPGTSSTGSPGASPG

TGGTGCTACCGGCTCCCCAGGTAGCTCTACTCCTTCT



TSSTGSPGSSTPSGATGSPG

GGTGCAACTGGCTCTCCAGGTGCATCTCCGGGCACT



SSTPSGATGSPGASPGTSST

AGCTCTACTGGTTCTCCAGGTGCATCCCCTGGCACTA



GSPGTPGSGTASSSPGSSTP

GCTCTACTGGTTCTCCAGGTGCTTCTCCTGGTACCAG



SGATGSPGSSTPSGATGSP

CTCTACTGGTTCTCCAGGTACTCCTGGCAGCGGTACC



GSSTPSGATGSPGSSPSAST

GCTTCTTCTTCTCCAGGTGCTTCTCCTGGTACTAGCT



GTGPGASPGTSSTGSPGAS

CTACTGGTTCTCCAGGTGCTTCTCCGGGCACTAGCTC



PGTSSTGSPGTPGSGTASSS

TACTGGTTCTCCAGGTGCTTCCCCGGGCACTAGCTCT



PGASPGTSSTGSPGASPGT

ACCGGTTCTCCAGGTTCTAGCCCTTCTGCATCTACTG



SSTGSPGASPGTSSTGSPG

GTACTGGCCCAGGTACTCCGGGCAGCGGTACTGCTT



ASPGTSSTGSPGTPGSGTA

CTTCCTCTCCAGGTGCATCTCCGGGCACTAGCTCTAC



SSSPGSSTPSGATGSPGTPG

TGGTTCTCCAGGTGCATCCCCTGGCACTAGCTCTACT



SGTASSSPGSSTPSGATGSP

GGTTCTCCAGGTGCTTCTCCTGGTACCAGCTCTACTG



GTPGSGTASSSPGSSTPSG

GTTCTCCAGGTAGCTCTACTCCGTCTGGTGCAACCGG



ATGSPGSSTPSGATGSPGS

TTCCCCAGGTAGCTCTACTCCTTCTGGTGCTACTGGC



SPSASTGTGPGSSPSASTGT

TCCCCAGGTGCATCCCCTGGCACCAGCTCTACCGGTT



GPGASPGTSSTGSPGTPGS

CTCCAGGTACCCCGGGCAGCGGTACCGCATCTTCCT



GTASSSPGSSTPSGATGSP

CTCCAGGTAGCTCTACCCCGTCTGGTGCTACCGGTTC



GSSPSASTGTGPGSSPSAST

CCCAGGTAGCTCTACCCCGTCTGGTGCAACCGGCTC



GTGPGASPGTSSTGSPGAS

CCCAGGTAGCTCTACTCCGTCTGGTGCAACCGGCTCC



PGTSSTGSPGSSTPSGATGS

CCAGGTTCTAGCCCGTCTGCTTCCACTGGTACTGGCC



PGSSPSASTGTGPGASPGT

CAGGTGCTTCCCCGGGCACCAGCTCTACTGGTTCTCC



SSTGSPGSSPSASTGTGPGT

AGGTGCATCCCCGGGTACCAGCTCTACCGGTTCTCC



PGSGTASSSPGSSTPSGAT

AGGTACTCCTGGCAGCGGTACTGCATCTTCCTCTCCA



GSPGSSTPSGATGSPGASP

GGTGCTTCTCCGGGCACCAGCTCTACTGGTTCTCCAG



GTSSTGSPGFPTIPLSRLFD

GTGCATCTCCGGGCACTAGCTCTACTGGTTCTCCAGG



NAMLRAHRLHQLAFDTY

TGCATCCCCTGGCACTAGCTCTACTGGTTCTCCAGGT



QEFEEAYIPKEQKYSFLQN

GCTTCTCCTGGTACCAGCTCTACTGGTTCTCCAGGTA



PQTSLCFSESIPTPSNREET

CCCCTGGTAGCGGTACTGCTTCTTCCTCTCCAGGTAG



QQKSNLELLRISLLLIQSW

CTCTACTCCGTCTGGTGCTACCGGTTCTCCAGGTACC



LEPVQFLRSVFANSLVYGA

CCGGGTAGCGGTACCGCATCTTCTTCTCCAGGTAGCT



SDSNVYDLLKDLEEGIQTL

CTACCCCGTCTGGTGCTACTGGTTCTCCAGGTACTCC



MGRLEDGSPRTGQIFKQT

GGGCAGCGGTACTGCTTCTTCCTCTCCAGGTAGCTCT



YSKFDTNSHNDDALLKNY

ACCCCTTCTGGTGCTACTGGCTCTCCAGGTAGCTCTA



GLLYCFRKDMDKVETFLR

CCCCGTCTGGTGCTACTGGCTCCCCAGGTTCTAGCCC



IVQCRSVEGSCGF

TTCTGCATCCACCGGTACCGGTCCAGGTTCTAGCCCG





TCTGCATCTACTGGTACTGGTCCAGGTGCATCCCCGG





GCACTAGCTCTACCGGTTCTCCAGGTACTCCTGGTAG





CGGTACTGCTTCTTCTTCTCCAGGTAGCTCTACTCCT





TCTGGTGCTACTGGTTCTCCAGGTTCTAGCCCTTCTG





CATCCACCGGTACCGGCCCAGGTTCTAGCCCGTCTG





CTTCTACCGGTACTGGTCCAGGTGCTTCTCCGGGTAC





TAGCTCTACTGGTTCTCCAGGTGCATCTCCTGGTACT





AGCTCTACTGGTTCTCCAGGTAGCTCTACTCCGTCTG





GTGCAACCGGCTCTCCAGGTTCTAGCCCTTCTGCATC





TACCGGTACTGGTCCAGGTGCATCCCCTGGTACCAG





CTCTACCGGTTCTCCAGGTTCTAGCCCTTCTGCTTCT





ACCGGTACCGGTCCAGGTACCCCTGGCAGCGGTACC





GCATCTTCCTCTCCAGGTAGCTCTACTCCGTCTGGTG





CAACCGGTTCCCCAGGTAGCTCTACTCCTTCTGGTGC





TACTGGCTCCCCAGGTGCATCCCCTGGCACCAGCTCT





ACCGGTTCTCCAGGTTTTCCGACTATTCCGCTGTCTC





GTCTGTTTGATAATGCTATGCTGCGTGCGCACCGTCT





GCACCAGCTGGCCTTTGATACTTACCAGGAATTTGA





AGAAGCcTACATTCCTAAAGAGCAGAAGTACTCTTTC





CTGCAAAACCCACAGACTTCTCTCTGCTTCAGCGAAT





CTATTCCGACGCCTTCCAATCGCGAGGAAACTCAGC





AAAAGTCCAATCTGGAACTACTCCGCATTTCTCTGCT





TCTGATTCAGAGCTGGCTAGAACCAGTGCAATTTCT





GCGTTCCGTCTTCGCCAATAGCCTAGTTTATGGCGCA





TCCGACAGCAACGTATACGATCTCCTGAAAGATCTC





GAGGAAGGCATTCAGACCCTGATGGGTCGTCTCGAG





GATGGCTCTCCGCGTACTGGTCAGATCTTCAAGCAG





ACTTACTCTAAATTTGATACTAACAGCCACAATGAC





GATGCGCTTCTAAAAAACTATGGTCTGCTGTATTGTT





TTCGTAAAGATATGGACAAAGTTGAAACCTTCCTGC





GTATTGTTCAGTGTCGTTCCGTTGAGGGCAGCTGTGG





TTTCTAA





AM875-
GTSTEPSEGSAPGSEPATS
695
GGTACTTCTACTGAACCGTCTGAAGGCAGCGCACCA
696


hGH
GSETPGSPAGSPTSTEEGST

GGTAGCGAACCGGCTACTTCCGGTTCTGAAACCCCA



SSTAESPGPGTSTPESGSAS

GGTAGCCCAGCAGGTTCTCCAACTTCTACTGAAGAA



PGSTSESPSGTAPGSTSESP

GGTTCTACCAGCTCTACCGCAGAATCTCCTGGTCCAG



SGTAPGTSTPESGSASPGTS

GTACCTCTACTCCGGAAAGCGGCTCTGCATCTCCAG



TPESGSASPGSEPATSGSET

GTTCTACTAGCGAATCTCCTTCTGGCACTGCACCAGG



PGTSESATPESGPGSPAGSP

TTCTACTAGCGAATCCCCGTCTGGTACTGCTCCAGGT



TSTEEGTSTEPSEGSAPGTS

ACTTCTACTCCTGAAAGCGGTTCCGCTTCTCCAGGTA



ESATPESGPGTSTEPSEGSA

CCTCTACTCCGGAAAGCGGTTCTGCATCTCCAGGTA



PGTSTEPSEGSAPGSPAGSP

GCGAACCGGCAACCTCCGGCTCTGAAACCCCAGGTA



TSTEEGTSTEPSEGSAPGTS

CCTCTGAAAGCGCTACTCCTGAATCCGGCCCAGGTA



TEPSEGSAPGTSESATPESG

GCCCGGCAGGTTCTCCGACTTCCACTGAGGAAGGTA



PGTSESATPESGPGTSTEPS

CCTCTACTGAACCTTCTGAGGGCAGCGCTCCAGGTA



EGSAPGTSTEPSEGSAPGT

CTTCTGAAAGCGCTACCCCGGAGTCCGGTCCAGGTA



SESATPESGPGTSTEPSEGS

CTTCTACTGAACCGTCCGAAGGTAGCGCACCAGGTA



APGSEPATSGSETPGSPAG

CTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTA



SPTSTEEGSSTPSGATGSPG

GCCCAGCAGGTTCTCCTACCTCCACCGAGGAAGGTA



TPGSGTASSSPGSSTPSGAT

CTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTA



GSPGTSTEPSEGSAPGTSTE

CTTCTACCGAACCTTCCGAGGGCAGCGCACCAGGTA



PSEGSAPGSEPATSGSETPG

CTTCTGAAAGCGCTACCCCTGAGTCCGGCCCAGGTA



SPAGSPTSTEEGSPAGSPTS

CTTCTGAAAGCGCTACTCCTGAATCCGGTCCAGGTA



TEEGTSTEPSEGSAPGASA

CCTCTACTGAACCTTCCGAAGGCAGCGCTCCAGGTA



SGAPSTGGTSESATPESGP

CCTCTACCGAACCGTCCGAGGGCAGCGCACCAGGTA



GSPAGSPTSTEEGSPAGSPT

CTTCTGAAAGCGCAACCCCTGAATCCGGTCCAGGTA



STEEGSTSSTAESPGPGSTS

CTTCTACTGAACCTTCCGAAGGTAGCGCTCCAGGTA



ESPSGTAPGTSPSGESSTAP

GCGAACCTGCTACTTCTGGTTCTGAAACCCCAGGTA



GTPGSGTASSSPGSSTPSG

GCCCGGCTGGCTCTCCGACCTCCACCGAGGAAGGTA



ATGSPGSSPSASTGTGPGS

GCTCTACCCCGTCTGGTGCTACTGGTTCTCCAGGTAC



EPATSGSETPGTSESATPES

TCCGGGCAGCGGTACTGCTTCTTCCTCTCCAGGTAGC



GPGSEPATSGSETPGSTSST

TCTACCCCTTCTGGTGCTACTGGCTCTCCAGGTACCT



AESPGPGSTSSTAESPGPGT

CTACCGAACCGTCCGAGGGTAGCGCACCAGGTACCT



SPSGESSTAPGSEPATSGSE

CTACTGAACCGTCTGAGGGTAGCGCTCCAGGTAGCG



TPGSEPATSGSETPGTSTEP

AACCGGCAACCTCCGGTTCTGAAACTCCAGGTAGCC



SEGSAPGSTSSTAESPGPGT

CTGCTGGCTCTCCGACTTCTACTGAGGAAGGTAGCC



STPESGSASPGSTSESPSGT

CGGCTGGTTCTCCGACTTCTACTGAGGAAGGTACTTC



APGTSTEPSEGSAPGTSTEP

TACCGAACCTTCCGAAGGTAGCGCTCCAGGTGCAAG



SEGSAPGTSTEPSEGSAPGS

CGCAAGCGGCGCGCCAAGCACGGGAGGTACTTCTGA



STPSGATGSPGSSPSASTGT

AAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGGC



GPGASPGTSSTGSPGSEPA

TGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGGC



TSGSETPGTSESATPESGPG

TGGCTCTCCAACTTCTACTGAAGAAGGTTCTACCAGC



SPAGSPTSTEEGSSTPSGAT

TCTACCGCTGAATCTCCTGGCCCAGGTTCTACTAGCG



GSPGSSPSASTGTGPGASP

AATCTCCGTCTGGCACCGCACCAGGTACTTCCCCTAG



GTSSTGSPGTSESATPESGP

CGGTGAATCTTCTACTGCACCAGGTACCCCTGGCAG



GTSTEPSEGSAPGTSTEPSE

CGGTACCGCTTCTTCCTCTCCAGGTAGCTCTACCCCG



GSAPGFPTIPLSRLFDNAM

TCTGGTGCTACTGGCTCTCCAGGTTCTAGCCCGTCTG



LRAHRLHQLAFDTYQEFE

CATCTACCGGTACCGGCCCAGGTAGCGAACCGGCAA



EAYIPKEQKYSFLQNPQTS

CCTCCGGCTCTGAAACTCCAGGTACTTCTGAAAGCG



LCFSESIPTPSNREETQQKS

CTACTCCGGAATCCGGCCCAGGTAGCGAACCGGCTA



NLELLRISLLLIQSWLEPVQ

CTTCCGGCTCTGAAACCCCAGGTTCCACCAGCTCTAC



FLRSVFANSLVYGASDSN

TGCAGAATCTCCGGGCCCAGGTTCTACTAGCTCTACT



VYDLLKDLEEGIQTLMGR

GCAGAATCTCCGGGTCCAGGTACTTCTCCTAGCGGC



LEDGSPRTGQIFKQTYSKF

GAATCTTCTACCGCTCCAGGTAGCGAACCGGCAACC



DTNSHNDDALLKNYGLLY

TCTGGCTCTGAAACTCCAGGTAGCGAACCTGCAACC



CFRKDMDKVETFLRIVQC

TCCGGCTCTGAAACCCCAGGTACTTCTACTGAACCTT



RSVEGSCGF

CTGAGGGCAGCGCACCAGGTTCTACCAGCTCTACCG





CAGAATCTCCTGGTCCAGGTACCTCTACTCCGGAAA





GCGGCTCTGCATCTCCAGGTTCTACTAGCGAATCTCC





TTCTGGCACTGCACCAGGTACTTCTACCGAACCGTCC





GAAGGCAGCGCTCCAGGTACCTCTACTGAACCTTCC





GAGGGCAGCGCTCCAGGTACCTCTACCGAACCTTCT





GAAGGTAGCGCACCAGGTAGCTCTACTCCGTCTGGT





GCAACCGGCTCCCCAGGTTCTAGCCCGTCTGCTTCCA





CTGGTACTGGCCCAGGTGCTTCCCCGGGCACCAGCT





CTACTGGTTCTCCAGGTAGCGAACCTGCTACCTCCGG





TTCTGAAACCCCAGGTACCTCTGAAAGCGCAACTCC





GGAGTCTGGTCCAGGTAGCCCTGCAGGTTCTCCTAC





CTCCACTGAGGAAGGTAGCTCTACTCCGTCTGGTGC





AACCGGCTCCCCAGGTTCTAGCCCGTCTGCTTCCACT





GGTACTGGCCCAGGTGCTTCCCCGGGCACCAGCTCT





ACTGGTTCTCCAGGTACCTCTGAAAGCGCTACTCCG





GAGTCTGGCCCAGGTACCTCTACTGAACCGTCTGAG





GGTAGCGCTCCAGGTACTTCTACTGAACCGTCCGAA





GGTAGCGCACCAGGTTTTCCGACTATTCCGCTGTCTC





GTCTGTTTGATAATGCTATGCTGCGTGCGCACCGTCT





GCACCAGCTGGCCTTTGATACTTACCAGGAATTTGA





AGAAGCcTACATTCCTAAAGAGCAGAAGTACTCTTTC





CTGCAAAACCCACAGACTTCTCTCTGCTTCAGCGAAT





CTATTCCGACGCCTTCCAATCGCGAGGAAACTCAGC





AAAAGTCCAATCTGGAACTACTCCGCATTTCTCTGCT





TCTGATTCAGAGCTGGCTAGAACCAGTGCAATTTCT





GCGTTCCGTCTTCGCCAATAGCCTAGTTTATGGCGCA





TCCGACAGCAACGTATACGATCTCCTGAAAGATCTC





GAGGAAGGCATTCAGACCCTGATGGGTCGTCTCGAG





GATGGCTCTCCGCGTACTGGTCAGATCTTCAAGCAG





ACTTACTCTAAATTTGATACTAACAGCCACAATGAC





GATGCGCTTCTAAAAAACTATGGTCTGCTGTATTGTT





TTCGTAAAGATATGGACAAAGTTGAAACCTTCCTGC





GTATTGTTCAGTGTCGTTCCGTTGAGGGCAGCTGTGG





TTTCTAA





AE912-
MAEPAGSPTSTEEGTPGSG
697
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAG
698


hGH
TASSSPGSSTPSGATGSPG

GAAGGTACCCCGGGTAGCGGTACTGCTTCTTCCTCTC



ASPGTSSTGSPGSPAGSPTS

CAGGTAGCTCTACCCCTTCTGGTGCAACCGGCTCTCC



TEEGTSESATPESGPGTSTE

AGGTGCTTCTCCGGGCACCAGCTCTACCGGTTCTCCA



PSEGSAPGSPAGSPTSTEEG

GGTAGCCCGGCTGGCTCTCCTACCTCTACTGAGGAA



TSTEPSEGSAPGTSTEPSEG

GGTACTTCTGAAAGCGCTACTCCTGAGTCTGGTCCA



SAPGTSESATPESGPGSEPA

GGTACCTCTACTGAACCGTCCGAAGGTAGCGCTCCA



TSGSETPGSEPATSGSETPG

GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA



SPAGSPTSTEEGTSESATPE

GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA



SGPGTSTEPSEGSAPGTSTE

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA



PSEGSAPGSPAGSPTSTEEG

GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA



TSTEPSEGSAPGTSTEPSEG

GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA



SAPGTSESATPESGPGTSTE

GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA



PSEGSAPGTSESATPESGPG

GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA



SEPATSGSETPGTSTEPSEG

GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA



SAPGTSTEPSEGSAPGTSES

GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA



ATPESGPGTSESATPESGP

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA



GSPAGSPTSTEEGTSESATP

GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA



ESGPGSEPATSGSETPGTSE

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA



SATPESGPGTSTEPSEGSAP

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA



GTSTEPSEGSAPGTSTEPSE

GGTACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCA



GSAPGTSTEPSEGSAPGTS

GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA



TEPSEGSAPGTSTEPSEGSA

GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCA



PGSPAGSPTSTEEGTSTEPS

GGTAGCGAACCGGCTACTTCTGGCTCTGAGACTCCA



EGSAPGTSESATPESGPGS

GGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCA



EPATSGSETPGTSESATPES

GGTACTTCTACTGAACCGTCTGAAGGTAGCGCACCA



GPGSEPATSGSETPGTSES

GGTACTTCTGAAAGCGCAACCCCGGAATCCGGCCCA



ATPESGPGTSTEPSEGSAP

GGTACCTCTGAAAGCGCAACCCCGGAGTCCGGCCCA



GTSESATPESGPGSPAGSPT

GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA



STEEGSPAGSPTSTEEGSPA

GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA



GSPTSTEEGTSESATPESGP

GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA



GTSTEPSEGSAPGTSESATP

GGTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCA



ESGPGSEPATSGSETPGTSE

GGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCA



SATPESGPGSEPATSGSETP

GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA



GTSESATPESGPGTSTEPSE

GGTACTTCTACCGAACCGTCCGAAGGCAGCGCTCCA



GSAPGSPAGSPTSTEEGTS

GGTACCTCTACTGAACCTTCCGAGGGCAGCGCTCCA



ESATPESGPGSEPATSGSET

GGTACCTCTACCGAACCTTCTGAAGGTAGCGCACCA



PGTSESATPESGPGSPAGSP

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA



TSTEEGSPAGSPTSTEEGTS

GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA



TEPSEGSAPGTSESATPESG

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA



PGTSESATPESGPGTSESAT

GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA



PESGPGSEPATSGSETPGSE

GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA



PATSGSETPGSPAGSPTSTE

GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA



EGTSTEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA



EGSAPGSEPATSGSETPGT

GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA



SESATPESGPGTSTEPSEGS

GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA



APGFPTIPLSRLFDNAMLR

GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA



AHRLHQLAFDTYQEFEEA

GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA



YIPKEQKYSFLQNPQTSLC

GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA



FSESIPTPSNREETQQKSNL

GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA



ELLRISLLLIQSWLEPVQFL

GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA



RSVFANSLVYGASDSNVY

GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA



DLLKDLEEGIQTLMGRLE

GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA



DGSPRTGQIFKQTYSKFDT

GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA



NSHNDDALLKNYGLLYCF

GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA



RKDMDKVETFLRIVQCRS

GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA



VEGSCGF

GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA





GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA





GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA





GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA





GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA





GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA





GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA





GGTACTTCTACCGAACCTTCCGAGGGCAGCGCACCA





GGTACTTCTGAAAGCGCTACCCCTGAGTCCGGCCCA





GGTACTTCTGAAAGCGCTACTCCTGAATCCGGTCCA





GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA





GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA





GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA





GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA





GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA





GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA





GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA





GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA





GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA





GGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGATA





ATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTGG





CCTTTGATACTTACCAGGAATTTGAAGAAGCcTACAT





TCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACCC





ACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGACG





CCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAAT





CTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAGA





GCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCTT





CGCCAATAGCCTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCGAGGAAGGCAT





TCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC





GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA





ATTTGATACTAACAGCCACAATGACGATGCGCTTCT





AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT





ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT





GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA





AM923-
MAEPAGSPTSTEEGASPGT
699
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAG
700


hGH
SSTGSPGSSTPSGATGSPGS

GAAGGTGCATCCCCGGGCACCAGCTCTACCGGTTCT



STPSGATGSPGTSTEPSEGS

CCAGGTAGCTCTACCCCGTCTGGTGCTACCGGCTCTC



APGSEPATSGSETPGSPAG

CAGGTAGCTCTACCCCGTCTGGTGCTACTGGCTCTCC



SPTSTEEGSTSSTAESPGPG

AGGTACTTCTACTGAACCGTCTGAAGGCAGCGCACC



TSTPESGSASPGSTSESPSG

AGGTAGCGAACCGGCTACTTCCGGTTCTGAAACCCC



TAPGSTSESPSGTAPGTSTP

AGGTAGCCCAGCAGGTTCTCCAACTTCTACTGAAGA



ESGSASPGTSTPESGSASPG

AGGTTCTACCAGCTCTACCGCAGAATCTCCTGGTCCA



SEPATSGSETPGTSESATPE

GGTACCTCTACTCCGGAAAGCGGCTCTGCATCTCCA



SGPGSPAGSPTSTEEGTSTE

GGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCAG



PSEGSAPGTSESATPESGPG

GTTCTACTAGCGAATCCCCGTCTGGTACTGCTCCAGG



TSTEPSEGSAPGTSTEPSEG

TACTTCTACTCCTGAAAGCGGTTCCGCTTCTCCAGGT



SAPGSPAGSPTSTEEGTSTE

ACCTCTACTCCGGAAAGCGGTTCTGCATCTCCAGGT



PSEGSAPGTSTEPSEGSAPG

AGCGAACCGGCAACCTCCGGCTCTGAAACCCCAGGT



TSESATPESGPGTSESATPE

ACCTCTGAAAGCGCTACTCCTGAATCCGGCCCAGGT



SGPGTSTEPSEGSAPGTSTE

AGCCCGGCAGGTTCTCCGACTTCCACTGAGGAAGGT



PSEGSAPGTSESATPESGPG

ACCTCTACTGAACCTTCTGAGGGCAGCGCTCCAGGT



TSTEPSEGSAPGSEPATSGS

ACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCAGGT



ETPGSPAGSPTSTEEGSSTP

ACTTCTACTGAACCGTCCGAAGGTAGCGCACCAGGT



SGATGSPGTPGSGTASSSP

ACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGT



GSSTPSGATGSPGTSTEPSE

AGCCCAGCAGGTTCTCCTACCTCCACCGAGGAAGGT



GSAPGTSTEPSEGSAPGSEP

ACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGT



ATSGSETPGSPAGSPTSTEE

ACTTCTACCGAACCTTCCGAGGGCAGCGCACCAGGT



GSPAGSPTSTEEGTSTEPSE

ACTTCTGAAAGCGCTACCCCTGAGTCCGGCCCAGGT



GSAPGASASGAPSTGGTSE

ACTTCTGAAAGCGCTACTCCTGAATCCGGTCCAGGT



SATPESGPGSPAGSPTSTEE

ACCTCTACTGAACCTTCCGAAGGCAGCGCTCCAGGT



GSPAGSPTSTEEGSTSSTAE

ACCTCTACCGAACCGTCCGAGGGCAGCGCACCAGGT



SPGPGSTSESPSGTAPGTSP

ACTTCTGAAAGCGCAACCCCTGAATCCGGTCCAGGT



SGESSTAPGTPGSGTASSSP

ACTTCTACTGAACCTTCCGAAGGTAGCGCTCCAGGT



GSSTPSGATGSPGSSPSAST

AGCGAACCTGCTACTTCTGGTTCTGAAACCCCAGGT



GTGPGSEPATSGSETPGTS

AGCCCGGCTGGCTCTCCGACCTCCACCGAGGAAGGT



ESATPESGPGSEPATSGSET

AGCTCTACCCCGTCTGGTGCTACTGGTTCTCCAGGTA



PGSTSSTAESPGPGSTSSTA

CTCCGGGCAGCGGTACTGCTTCTTCCTCTCCAGGTAG



ESPGPGTSPSGESSTAPGSE

CTCTACCCCTTCTGGTGCTACTGGCTCTCCAGGTACC



PATSGSETPGSEPATSGSET

TCTACCGAACCGTCCGAGGGTAGCGCACCAGGTACC



PGTSTEPSEGSAPGSTSSTA

TCTACTGAACCGTCTGAGGGTAGCGCTCCAGGTAGC



ESPGPGTSTPESGSASPGST

GAACCGGCAACCTCCGGTTCTGAAACTCCAGGTAGC



SESPSGTAPGTSTEPSEGSA

CCTGCTGGCTCTCCGACTTCTACTGAGGAAGGTAGC



PGTSTEPSEGSAPGTSTEPS

CCGGCTGGTTCTCCGACTTCTACTGAGGAAGGTACTT



EGSAPGSSTPSGATGSPGS

CTACCGAACCTTCCGAAGGTAGCGCTCCAGGTGCAA



SPSASTGTGPGASPGTSST

GCGCAAGCGGCGCGCCAAGCACGGGAGGTACTTCTG



GSPGSEPATSGSETPGTSES

AAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGG



ATPESGPGSPAGSPTSTEE

CTGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGG



GSSTPSGATGSPGSSPSAST

CTGGCTCTCCAACTTCTACTGAAGAAGGTTCTACCAG



GTGPGASPGTSSTGSPGTS

CTCTACCGCTGAATCTCCTGGCCCAGGTTCTACTAGC



ESATPESGPGTSTEPSEGSA

GAATCTCCGTCTGGCACCGCACCAGGTACTTCCCCTA



PGTSTEPSEGSAPGFPTIPL

GCGGTGAATCTTCTACTGCACCAGGTACCCCTGGCA



SRLFDNAMLRAHRLHQLA

GCGGTACCGCTTCTTCCTCTCCAGGTAGCTCTACCCC



FDTYQEFEEAYIPKEQKYS

GTCTGGTGCTACTGGCTCTCCAGGTTCTAGCCCGTCT



FLQNPQTSLCFSESIPTPSN

GCATCTACCGGTACCGGCCCAGGTAGCGAACCGGCA



REETQQKSNLELLRISLLLI

ACCTCCGGCTCTGAAACTCCAGGTACTTCTGAAAGC



QSWLEPVQFLRSVFANSL

GCTACTCCGGAATCCGGCCCAGGTAGCGAACCGGCT



VYGASDSNVYDLLKDLEE

ACTTCCGGCTCTGAAACCCCAGGTTCCACCAGCTCTA



GIQTLMGRLEDGSPRTGQI

CTGCAGAATCTCCGGGCCCAGGTTCTACTAGCTCTAC



FKQTYSKFDTNSHNDDAL

TGCAGAATCTCCGGGTCCAGGTACTTCTCCTAGCGG



LKNYGLLYCFRKDMDKV

CGAATCTTCTACCGCTCCAGGTAGCGAACCGGCAAC



ETFLRIVQCRSVEGSCGF

CTCTGGCTCTGAAACTCCAGGTAGCGAACCTGCAAC





CTCCGGCTCTGAAACCCCAGGTACTTCTACTGAACCT





TCTGAGGGCAGCGCACCAGGTTCTACCAGCTCTACC





GCAGAATCTCCTGGTCCAGGTACCTCTACTCCGGAA





AGCGGCTCTGCATCTCCAGGTTCTACTAGCGAATCTC





CTTCTGGCACTGCACCAGGTACTTCTACCGAACCGTC





CGAAGGCAGCGCTCCAGGTACCTCTACTGAACCTTC





CGAGGGCAGCGCTCCAGGTACCTCTACCGAACCTTC





TGAAGGTAGCGCACCAGGTAGCTCTACTCCGTCTGG





TGCAACCGGCTCCCCAGGTTCTAGCCCGTCTGCTTCC





ACTGGTACTGGCCCAGGTGCTTCCCCGGGCACCAGC





TCTACTGGTTCTCCAGGTAGCGAACCTGCTACCTCCG





GTTCTGAAACCCCAGGTACCTCTGAAAGCGCAACTC





CGGAGTCTGGTCCAGGTAGCCCTGCAGGTTCTCCTA





CCTCCACTGAGGAAGGTAGCTCTACTCCGTCTGGTG





CAACCGGCTCCCCAGGTTCTAGCCCGTCTGCTTCCAC





TGGTACTGGCCCAGGTGCTTCCCCGGGCACCAGCTC





TACTGGTTCTCCAGGTACCTCTGAAAGCGCTACTCCG





GAGTCTGGCCCAGGTACCTCTACTGAACCGTCTGAG





GGTAGCGCTCCAGGTACTTCTACTGAACCGTCCGAA





GGTAGCGCACCAGGTTTTCCGACTATTCCGCTGTCTC





GTCTGTTTGATAATGCTATGCTGCGTGCGCACCGTCT





GCACCAGCTGGCCTTTGATACTTACCAGGAATTTGA





AGAAGCcTACATTCCTAAAGAGCAGAAGTACTCTTTC





CTGCAAAACCCACAGACTTCTCTCTGCTTCAGCGAAT





CTATTCCGACGCCTTCCAATCGCGAGGAAACTCAGC





AAAAGTCCAATCTGGAACTACTCCGCATTTCTCTGCT





TCTGATTCAGAGCTGGCTAGAACCAGTGCAATTTCT





GCGTTCCGTCTTCGCCAATAGCCTAGTTTATGGCGCA





TCCGACAGCAACGTATACGATCTCCTGAAAGATCTC





GAGGAAGGCATTCAGACCCTGATGGGTCGTCTCGAG





GATGGCTCTCCGCGTACTGGTCAGATCTTCAAGCAG





ACTTACTCTAAATTTGATACTAACAGCCACAATGAC





GATGCGCTTCTAAAAAACTATGGTCTGCTGTATTGTT





TTCGTAAAGATATGGACAAAGTTGAAACCTTCCTGC





GTATTGTTCAGTGTCGTTCCGTTGAGGGCAGCTGTGG





TTTCTAA





AM1318-
GTSTEPSEGSAPGSEPATS
701
GGTACTTCTACTGAACCGTCTGAAGGCAGCGCACCA
702


hGH
GSETPGSPAGSPTSTEEGST

GGTAGCGAACCGGCTACTTCCGGTTCTGAAACCCCA



SSTAESPGPGTSTPESGSAS

GGTAGCCCAGCAGGTTCTCCAACTTCTACTGAAGAA



PGSTSESPSGTAPGSTSESP

GGTTCTACCAGCTCTACCGCAGAATCTCCTGGTCCAG



SGTAPGTSTPESGSASPGTS

GTACCTCTACTCCGGAAAGCGGCTCTGCATCTCCAG



TPESGSASPGSEPATSGSET

GTTCTACTAGCGAATCTCCTTCTGGCACTGCACCAGG



PGTSESATPESGPGSPAGSP

TTCTACTAGCGAATCCCCGTCTGGTACTGCTCCAGGT



TSTEEGTSTEPSEGSAPGTS

ACTTCTACTCCTGAAAGCGGTTCCGCTTCTCCAGGTA



ESATPESGPGTSTEPSEGSA

CCTCTACTCCGGAAAGCGGTTCTGCATCTCCAGGTA



PGTSTEPSEGSAPGSPAGSP

GCGAACCGGCAACCTCCGGCTCTGAAACCCCAGGTA



TSTEEGTSTEPSEGSAPGTS

CCTCTGAAAGCGCTACTCCTGAATCCGGCCCAGGTA



TEPSEGSAPGTSESATPESG

GCCCGGCAGGTTCTCCGACTTCCACTGAGGAAGGTA



PGTSESATPESGPGTSTEPS

CCTCTACTGAACCTTCTGAGGGCAGCGCTCCAGGTA



EGSAPGTSTEPSEGSAPGT

CTTCTGAAAGCGCTACCCCGGAGTCCGGTCCAGGTA



SESATPESGPGTSTEPSEGS

CTTCTACTGAACCGTCCGAAGGTAGCGCACCAGGTA



APGSEPATSGSETPGSPAG

CTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTA



SPTSTEEGSSTPSGATGSPG

GCCCAGCAGGTTCTCCTACCTCCACCGAGGAAGGTA



TPGSGTASSSPGSSTPSGAT

CTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTA



GSPGTSTEPSEGSAPGTSTE

CTTCTACCGAACCTTCCGAGGGCAGCGCACCAGGTA



PSEGSAPGSEPATSGSETPG

CTTCTGAAAGCGCTACCCCTGAGTCCGGCCCAGGTA



SPAGSPTSTEEGSPAGSPTS

CTTCTGAAAGCGCTACTCCTGAATCCGGTCCAGGTA



TEEGTSTEPSEGSAPGPEPT

CCTCTACTGAACCTTCCGAAGGCAGCGCTCCAGGTA



GPAPSGGSEPATSGSETPG

CCTCTACCGAACCGTCCGAGGGCAGCGCACCAGGTA



TSESATPESGPGSPAGSPTS

CTTCTGAAAGCGCAACCCCTGAATCCGGTCCAGGTA



TEEGTSESATPESGPGSPA

CTTCTACTGAACCTTCCGAAGGTAGCGCTCCAGGTA



GSPTSTEEGSPAGSPTSTEE

GCGAACCTGCTACTTCTGGTTCTGAAACCCCAGGTA



GTSESATPESGPGSPAGSPT

GCCCGGCTGGCTCTCCGACCTCCACCGAGGAAGGTA



STEEGSPAGSPTSTEEGSTS

GCTCTACCCCGTCTGGTGCTACTGGTTCTCCAGGTAC



STAESPGPGSTSESPSGTAP

TCCGGGCAGCGGTACTGCTTCTTCCTCTCCAGGTAGC



GTSPSGESSTAPGSTSESPS

TCTACCCCTTCTGGTGCTACTGGCTCTCCAGGTACCT



GTAPGSTSESPSGTAPGTSP

CTACCGAACCGTCCGAGGGTAGCGCACCAGGTACCT



SGESSTAPGTSTEPSEGSAP

CTACTGAACCGTCTGAGGGTAGCGCTCCAGGTAGCG



GTSESATPESGPGTSESATP

AACCGGCAACCTCCGGTTCTGAAACTCCAGGTAGCC



ESGPGSEPATSGSETPGTSE

CTGCTGGCTCTCCGACTTCTACTGAGGAAGGTAGCC



SATPESGPGTSESATPESGP

CGGCTGGTTCTCCGACTTCTACTGAGGAAGGTACTTC



GTSTEPSEGSAPGTSESATP

TACCGAACCTTCCGAAGGTAGCGCTCCAGGTCCAGA



ESGPGTSTEPSEGSAPGTSP

ACCAACGGGGCCGGCCCCAAGCGGAGGTAGCGAAC



SGESSTAPGTSPSGESSTAP

CGGCAACCTCCGGCTCTGAAACCCCAGGTACCTCTG



GTSPSGESSTAPGTSTEPSE

AAAGCGCTACTCCTGAATCCGGCCCAGGTAGCCCGG



GSAPGSPAGSPTSTEEGTS

CAGGTTCTCCGACTTCCACTGAGGAAGGTACTTCTG



TEPSEGSAPGSSPSASTGTG

AAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGG



PGSSTPSGATGSPGSSTPSG

CTGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGG



ATGSPGSSTPSGATGSPGS

CTGGCTCTCCAACTTCTACTGAAGAAGGTACTTCTGA



STPSGATGSPGASPGTSST

AAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGGC



GSPGASASGAPSTGGTSPS

TGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGGC



GESSTAPGSTSSTAESPGPG

TGGCTCTCCAACTTCTACTGAAGAAGGTTCTACCAGC



TSPSGESSTAPGTSESATPE

TCTACCGCTGAATCTCCTGGCCCAGGTTCTACTAGCG



SGPGTSTEPSEGSAPGTSTE

AATCTCCGTCTGGCACCGCACCAGGTACTTCCCCTAG



PSEGSAPGSSPSASTGTGP

CGGTGAATCTTCTACTGCACCAGGTTCTACCAGCGA



GSSTPSGATGSPGASPGTS

ATCTCCTTCTGGCACCGCTCCAGGTTCTACTAGCGAA



STGSPGTSTPESGSASPGTS

TCCCCGTCTGGTACCGCACCAGGTACTTCTCCTAGCG



PSGESSTAPGTSPSGESSTA

GCGAATCTTCTACCGCACCAGGTACTTCTACCGAAC



PGTSESATPESGPGSEPATS

CTTCCGAGGGCAGCGCACCAGGTACTTCTGAAAGCG



GSETPGTSTEPSEGSAPGST

CTACCCCTGAGTCCGGCCCAGGTACTTCTGAAAGCG



SESPSGTAPGSTSESPSGTA

CTACTCCTGAATCCGGTCCAGGTAGCGAACCGGCAA



PGTSTPESGSASPGSPAGSP

CCTCTGGCTCTGAAACCCCAGGTACCTCTGAAAGCG



TSTEEGTSESATPESGPGTS

CTACTCCGGAATCTGGTCCAGGTACTTCTGAAAGCG



TEPSEGSAPGSPAGSPTSTE

CTACTCCGGAATCCGGTCCAGGTACCTCTACTGAAC



EGTSESATPESGPGSEPATS

CTTCTGAGGGCAGCGCTCCAGGTACTTCTGAAAGCG



GSETPGSSTPSGATGSPGA

CTACCCCGGAGTCCGGTCCAGGTACTTCTACTGAAC



SPGTSSTGSPGSSTPSGATG

CGTCCGAAGGTAGCGCACCAGGTACCTCCCCTAGCG



SPGSTSESPSGTAPGTSPSG

GCGAATCTTCTACTGCTCCAGGTACCTCTCCTAGCGG



ESSTAPGSTSSTAESPGPGS

CGAATCTTCTACCGCTCCAGGTACCTCCCCTAGCGGT



STPSGATGSPGASPGTSST

GAATCTTCTACCGCACCAGGTACTTCTACCGAACCGT



GSPGTPGSGTASSSPGSPA

CCGAGGGTAGCGCACCAGGTAGCCCAGCAGGTTCTC



GSPTSTEEGSPAGSPTSTEE

CTACCTCCACCGAGGAAGGTACTTCTACCGAACCGT



GTSTEPSEGSAPGFPTIPLS

CCGAGGGTAGCGCACCAGGTTCTAGCCCTTCTGCTTC



RLFDNAMLRAHRLHQLAF

CACCGGTACCGGCCCAGGTAGCTCTACTCCGTCTGG



DTYQEFEEAYIPKEQKYSF

TGCAACTGGCTCTCCAGGTAGCTCTACTCCGTCTGGT



LQNPQTSLCFSESIPTPSNR

GCAACCGGCTCCCCAGGTAGCTCTACCCCGTCTGGT



EETQQKSNLELLRISLLLIQ

GCTACCGGCTCTCCAGGTAGCTCTACCCCGTCTGGTG



SWLEPVQFLRSVFANSLV

CAACCGGCTCCCCAGGTGCATCCCCGGGTACTAGCT



YGASDSNVYDLLKDLEEG

CTACCGGTTCTCCAGGTGCAAGCGCAAGCGGCGCGC



IQTLMGRLEDGSPRTGQIF

CAAGCACGGGAGGTACTTCTCCGAGCGGTGAATCTT



KQTYSKFDTNSHNDDALL

CTACCGCACCAGGTTCTACTAGCTCTACCGCTGAATC



KNYGLLYCFRKDMDKVE

TCCGGGCCCAGGTACTTCTCCGAGCGGTGAATCTTCT



TFLRIVQCRSVEGSCGF

ACTGCTCCAGGTACCTCTGAAAGCGCTACTCCGGAG





TCTGGCCCAGGTACCTCTACTGAACCGTCTGAGGGT





AGCGCTCCAGGTACTTCTACTGAACCGTCCGAAGGT





AGCGCACCAGGTTCTAGCCCTTCTGCATCTACTGGTA





CTGGCCCAGGTAGCTCTACTCCTTCTGGTGCTACCGG





CTCTCCAGGTGCTTCTCCGGGTACTAGCTCTACCGGT





TCTCCAGGTACTTCTACTCCGGAAAGCGGTTCCGCAT





CTCCAGGTACTTCTCCTAGCGGTGAATCTTCTACTGC





TCCAGGTACCTCTCCTAGCGGCGAATCTTCTACTGCT





CCAGGTACTTCTGAAAGCGCAACCCCTGAATCCGGT





CCAGGTAGCGAACCGGCTACTTCTGGCTCTGAGACT





CCAGGTACTTCTACCGAACCGTCCGAAGGTAGCGCA





CCAGGTTCTACCAGCGAATCCCCTTCTGGTACTGCTC





CAGGTTCTACCAGCGAATCCCCTTCTGGCACCGCAC





CAGGTACTTCTACCCCTGAAAGCGGCTCCGCTTCTCC





AGGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGA





AGGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCC





AGGTACCTCTACCGAACCGTCTGAGGGCAGCGCACC





AGGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGA





AGGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCC





AGGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCC





AGGTAGCTCTACCCCGTCTGGTGCTACCGGTTCCCCA





GGTGCTTCTCCTGGTACTAGCTCTACCGGTTCTCCAG





GTAGCTCTACCCCGTCTGGTGCTACTGGCTCTCCAGG





TTCTACTAGCGAATCCCCGTCTGGTACTGCTCCAGGT





ACTTCCCCTAGCGGTGAATCTTCTACTGCTCCAGGTT





CTACCAGCTCTACCGCAGAATCTCCGGGTCCAGGTA





GCTCTACCCCTTCTGGTGCAACCGGCTCTCCAGGTGC





ATCCCCGGGTACCAGCTCTACCGGTTCTCCAGGTACT





CCGGGTAGCGGTACCGCTTCTTCCTCTCCAGGTAGCC





CTGCTGGCTCTCCGACTTCTACTGAGGAAGGTAGCC





CGGCTGGTTCTCCGACTTCTACTGAGGAAGGTACTTC





TACCGAACCTTCCGAAGGTAGCGCTCCAGGTTTTCC





GACTATTCCGCTGTCTCGTCTGTTTGATAATGCTATG





CTGCGTGCGCACCGTCTGCACCAGCTGGCCTTTGATA





CTTACCAGGAATTTGAAGAAGCcTACATTCCTAAAG





AGCAGAAGTACTCTTTCCTGCAAAACCCACAGACTT





CTCTCTGCTTCAGCGAATCTATTCCGACGCCTTCCAA





TCGCGAGGAAACTCAGCAAAAGTCCAATCTGGAACT





ACTCCGCATTTCTCTGCTTCTGATTCAGAGCTGGCTA





GAACCAGTGCAATTTCTGCGTTCCGTCTTCGCCAATA





GCCTAGTTTATGGCGCATCCGACAGCAACGTATACG





ATCTCCTGAAAGATCTCGAGGAAGGCATTCAGACCC





TGATGGGTCGTCTCGAGGATGGCTCTCCGCGTACTG





GTCAGATCTTCAAGCAGACTTACTCTAAATTTGATAC





TAACAGCCACAATGACGATGCGCTTCTAAAAAACTA





TGGTCTGCTGTATTGTTTTCGTAAAGATATGGACAAA





GTTGAAACCTTCCTGCGTATTGTTCAGTGTCGTTCCG





TTGAGGGCAGCTGTGGTTTCTAA





hGH-
FPTIPLSRLFDNAMLRAHR
703
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
704


AE144
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT



EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT



PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG



SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT



ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG



DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG



TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC



DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA



DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG



GFGGSEPATSGSETPGTSE

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT



SATPESGPGSEPATSGSETP

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG



GSPAGSPTSTEEGTSTEPSE

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA



GSAPGSEPATSGSETPGSEP

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA



ATSGSETPGSEPATSGSETP

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT



GTSTEPSEGSAPGTSESATP

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTAGC



ESGPGSEPATSGSETPGTST

GAACCGGCAACTTCCGGCTCTGAAACCCCAGGTACT



EPSEGSAP

TCTGAAAGCGCTACTCCTGAGTCTGGCCCAGGTAGC





GAACCTGCTACCTCTGGCTCTGAAACCCCAGGTAGC





CCGGCAGGCTCTCCGACTTCCACCGAGGAAGGTACC





TCTACTGAACCTTCTGAGGGTAGCGCTCCAGGTAGC





GAACCGGCAACCTCTGGCTCTGAAACCCCAGGTAGC





GAACCTGCTACCTCCGGCTCTGAAACTCCAGGTAGC





GAACCGGCTACTTCCGGTTCTGAAACTCCAGGTACC





TCTACCGAACCTTCCGAAGGCAGCGCACCAGGTACT





TCTGAAAGCGCAACCCCTGAATCCGGTCCAGGTAGC





GAACCGGCTACTTCTGGCTCTGAGACTCCAGGTACTT





CTACCGAACCGTCCGAAGGTAGCGCACCA





hGH-
FPTIPLSRLFDNAMLRAHR
705
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
706


AE288
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT



EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT



PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG



SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT



ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG



DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG



TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC



DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA



DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG



GFGGTSESATPESGPGSEP

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT



ATSGSETPGTSESATPESGP

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG



GSEPATSGSETPGTSESATP

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA



ESGPGTSTEPSEGSAPGSPA

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA



GSPTSTEEGTSESATPESGP

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT



GSEPATSGSETPGTSESATP

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTACCT



ESGPGSPAGSPTSTEEGSPA

CTGAAAGCGCAACTCCTGAGTCTGGCCCAGGTAGCG



GSPTSTEEGTSTEPSEGSAP

AACCTGCTACCTCCGGCTCTGAGACTCCAGGTACCTC



GTSESATPESGPGTSESATP

TGAAAGCGCAACCCCGGAATCTGGTCCAGGTAGCGA



ESGPGTSESATPESGPGSEP

ACCTGCAACCTCTGGCTCTGAAACCCCAGGTACCTCT



ATSGSETPGSEPATSGSETP

GAAAGCGCTACTCCTGAATCTGGCCCAGGTACTTCT



GSPAGSPTSTEEGTSTEPSE

ACTGAACCGTCCGAGGGCAGCGCACCAGGTAGCCCT



GSAPGTSTEPSEGSAPGSEP

GCTGGCTCTCCAACCTCCACCGAAGAAGGTACCTCT



ATSGSETPGTSESATPESGP

GAAAGCGCAACCCCTGAATCCGGCCCAGGTAGCGAA



GTSTEPSEGSAP

CCGGCAACCTCCGGTTCTGAAACCCCAGGTACTTCT





GAAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCG





GCTGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCG





GCTGGCTCTCCAACTTCTACTGAAGAAGGTACTTCTA





CCGAACCTTCCGAGGGCAGCGCACCAGGTACTTCTG





AAAGCGCTACCCCTGAGTCCGGCCCAGGTACTTCTG





AAAGCGCTACTCCTGAATCCGGTCCAGGTACTTCTG





AAAGCGCTACCCCGGAATCTGGCCCAGGTAGCGAAC





CGGCTACTTCTGGTTCTGAAACCCCAGGTAGCGAAC





CGGCTACCTCCGGTTCTGAAACTCCAGGTAGCCCAG





CAGGCTCTCCGACTTCCACTGAGGAAGGTACTTCTA





CTGAACCTTCCGAAGGCAGCGCACCAGGTACCTCTA





CTGAACCTTCTGAGGGCAGCGCTCCAGGTAGCGAAC





CTGCAACCTCTGGCTCTGAAACCCCAGGTACCTCTG





AAAGCGCTACTCCTGAATCTGGCCCAGGTACTTCTA





CTGAACCGTCCGAGGGCAGCGCACCA





hGH-
FPTIPLSRLFDNAMLRAHR
707
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
708


AF144
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT



EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT



PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG



SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT



ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG



DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG



TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC



DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA



DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG



GFGGTSTPESGSASPGTSPS

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT



GESSTAPGTSPSGESSTAPG

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG



STSSTAESPGPGSTSESPSG

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA



TAPGSTSSTAESPGPGTSPS

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA



GESSTAPGTSTPESGSASPG

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT



STSSTAESPGPGTSPSGESS

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTACTT



TAPGTSPSGESSTAPGTSPS

CTACTCCGGAAAGCGGTTCCGCATCTCCAGGTACTTC



GESSTAP

TCCTAGCGGTGAATCTTCTACTGCTCCAGGTACCTCT





CCTAGCGGCGAATCTTCTACTGCTCCAGGTTCTACCA





GCTCTACCGCTGAATCTCCTGGCCCAGGTTCTACCAG





CGAATCCCCGTCTGGCACCGCACCAGGTTCTACTAG





CTCTACCGCAGAATCTCCGGGTCCAGGTACTTCCCCT





AGCGGTGAATCTTCTACTGCTCCAGGTACCTCTACTC





CGGAAAGCGGCTCCGCATCTCCAGGTTCTACTAGCT





CTACTGCTGAATCTCCTGGTCCAGGTACCTCCCCTAG





CGGCGAATCTTCTACTGCTCCAGGTACCTCTCCTAGC





GGCGAATCTTCTACCGCTCCAGGTACCTCCCCTAGCG





GTGAATCTTCTACCGCACCA





hGH-
FPTIPLSRLFDNAMLRAHR
709
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
710


AD576
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT



EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT



PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG



SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT



ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG



DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG



TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC



DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA



DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG



GFGGSSESGSSEGGPGSGG

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT



EPSESGSSGSSESGSSEGGP

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG



GSSESGSSEGGPGSSESGSS

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA



EGGPGSSESGSSEGGPGSS

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA



ESGSSEGGPGESPGGSSGS

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT



ESGSEGSSGPGESSGSSESG

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTTCCT



SSEGGPGSSESGSSEGGPG

CTGAAAGCGGTTCTTCCGAAGGTGGTCCAGGTTCCT



SSESGSSEGGPGSGGEPSES

CTGAAAGCGGTTCTTCTGAGGGTGGTCCAGGTGAAT



GSSGESPGGSSGSESGESP

CTCCGGGTGGCTCCAGCGGTTCCGAGTCAGGTTCTG



GGSSGSESGSGGEPSESGS

GTGGCGAACCTTCCGAGTCTGGTAGCTCAGGTGAAT



SGSSESGSSEGGPGSGGEP

CTCCGGGTGGTTCTAGCGGTTCCGAGTCAGGTGAAT



SESGSSGSGGEPSESGSSGS

CTCCGGGTGGTTCCAGCGGTTCTGAGTCAGGTTCCTC



EGSSGPGESSGESPGGSSG

CGAAAGCGGTTCTTCTGAGGGCGGTCCAGGTTCCTC



SESGSGGEPSESGSSGSGG

CGAAAGCGGTTCTTCCGAGGGCGGTCCAGGTTCTTC



EPSESGSSGSGGEPSESGSS

TGAAAGCGGTTCTTCCGAGGGCGGTCCAGGTGAATC



GSSESGSSEGGPGESPGGS

TCCTGGTGGTTCCAGCGGTTCCGAGTCAGGTGAATCT



SGSESGESPGGSSGSESGES

CCAGGTGGCTCTAGCGGTTCCGAGTCAGGTGAATCT



PGGSSGSESGESPGGSSGS

CCTGGTGGTTCTAGCGGTTCTGAATCAGGTTCCTCCG



ESGESPGGSSGSESGSSESG

AAAGCGGTTCTTCTGAGGGCGGTCCAGGTTCCTCCG



SSEGGPGSGGEPSESGSSG

AAAGCGGTTCTTCCGAGGGCGGTCCAGGTTCTTCTG



SEGSSGPGESSGSSESGSSE

AAAGCGGTTCTTCCGAGGGCGGTCCAGGTTCCTCTG



GGPGSGGEPSESGSSGSSE

AAAGCGGTTCTTCTGAGGGCGGTCCAGGTTCTTCCG



SGSSEGGPGSGGEPSESGS

AAAGCGGTTCTTCCGAGGGCGGTCCAGGTTCTTCCG



SGESPGGSSGSESGESPGG

AAAGCGGTTCTTCTGAAGGCGGTCCAGGTTCTGGTG



SSGSESGSSESGSSEGGPGS

GCGAACCGTCCGAGTCTGGTAGCTCAGGTGAATCTC



GGEPSESGSSGSSESGSSEG

CGGGTGGCTCTAGCGGTTCCGAGTCAGGTGAATCTC



GPGSGGEPSESGSSGSGGE

CTGGTGGTTCCAGCGGTTCCGAGTCAGGTTCCGGTG



PSESGSSGESPGGSSGSESG

GCGAACCGTCCGAATCTGGTAGCTCAGGTAGCGAAG



SEGSSGPGESSGSSESGSSE

GTTCTTCTGGTCCAGGCGAATCTTCAGGTTCCTCTGA



GGPGSEGSSGPGESS

AAGCGGTTCTTCTGAGGGCGGTCCAGGTTCCGGTGG





CGAACCGTCCGAATCTGGTAGCTCAGGTAGCGAAGG





TTCTTCTGGTCCAGGCGAATCTTCAGGTTCCTCTGAA





AGCGGTTCTTCTGAGGGCGGTCCAGGTTCCGGTGGC





GAACCTTCCGAATCTGGTAGCTCAGGTGAATCTCCG





GGTGGTTCTAGCGGTTCTGAGTCAGGTTCTGGTGGTG





AACCTTCCGAGTCTGGTAGCTCAGGTTCTGGTGGCG





AACCATCCGAGTCTGGTAGCTCAGGTTCTTCCGAAA





GCGGTTCTTCCGAAGGCGGTCCAGGTTCTGGTGGTG





AACCGTCCGAATCTGGTAGCTCAGGTTCTGGTGGCG





AACCATCCGAATCTGGTAGCTCAGGTAGCGAAGGTT





CTTCTGGTCCTGGCGAATCTTCAGGTGAATCTCCAGG





TGGCTCTAGCGGTTCCGAATCAGGTAGCGAAGGTTC





TTCCGGTCCAGGTGAATCTTCAGGTAGCGAAGGTTC





TTCTGGTCCTGGTGAATCCTCAGGTTCCGGTGGCGAA





CCATCTGAATCTGGTAGCTCAGGTTCCTCTGAAAGC





GGTTCTTCCGAAGGTGGTCCAGGTTCCTCTGAAAGC





GGTTCTTCTGAGGGTGGTCCAGGTGAATCTCCGGGT





GGCTCCAGCGGTTCCGAGTCAGGTTCTGGTGGCGAA





CCATCCGAATCTGGTAGCTCAGGTAGCGAAGGTTCT





TCTGGTCCTGGCGAATCTTCAGGTGAATCTCCAGGTG





GCTCTAGCGGTTCCGAATCAGGTAGCGAAGGTTCTT





CCGGTCCTGGTGAGTCTTCAGGTGAATCTCCAGGTG





GCTCTAGCGGTTCCGAGTCAGGTAGCGAAGGTTCTT





CTGGTCCTGGCGAGTCCTCA





hGH-
FPTIPLSRLFDNAMLRAHR
711
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
712


AE576
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT



EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT



PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG



SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT



ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG



DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG



TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC



DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA



DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG



GFGGSPAGSPTSTEEGTSE

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT



SATPESGPGTSTEPSEGSAP

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG



GSPAGSPTSTEEGTSTEPSE

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA



GSAPGTSTEPSEGSAPGTS

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA



ESATPESGPGSEPATSGSET

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT



PGSEPATSGSETPGSPAGSP

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTAGC



TSTEEGTSESATPESGPGTS

CCGGCTGGCTCTCCTACCTCTACTGAGGAAGGTACTT



TEPSEGSAPGTSTEPSEGSA

CTGAAAGCGCTACTCCTGAGTCTGGTCCAGGTACCT



PGSPAGSPTSTEEGTSTEPS

CTACTGAACCGTCCGAAGGTAGCGCTCCAGGTAGCC



EGSAPGTSTEPSEGSAPGT

CAGCAGGCTCTCCGACTTCCACTGAGGAAGGTACTT



SESATPESGPGTSTEPSEGS

CTACTGAACCTTCCGAAGGCAGCGCACCAGGTACCT



APGTSESATPESGPGSEPA

CTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTT



TSGSETPGTSTEPSEGSAPG

CTGAAAGCGCTACCCCGGAATCTGGCCCAGGTAGCG



TSTEPSEGSAPGTSESATPE

AACCGGCTACTTCTGGTTCTGAAACCCCAGGTAGCG



SGPGTSESATPESGPGSPA

AACCGGCTACCTCCGGTTCTGAAACTCCAGGTAGCC



GSPTSTEEGTSESATPESGP

CGGCAGGCTCTCCGACCTCTACTGAGGAAGGTACTT



GSEPATSGSETPGTSESATP

CTGAAAGCGCAACCCCGGAGTCCGGCCCAGGTACCT



ESGPGTSTEPSEGSAPGTST

CTACCGAACCGTCTGAGGGCAGCGCACCAGGTACTT



EPSEGSAPGTSTEPSEGSAP

CTACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCC



GTSTEPSEGSAPGTSTEPSE

CAGCAGGTTCTCCTACCTCCACCGAGGAAGGTACTT



GSAPGTSTEPSEGSAPGSP

CTACCGAACCGTCCGAGGGTAGCGCACCAGGTACCT



AGSPTSTEEGTSTEPSEGSA

CTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTT



PGTSESATPESGPGSEPATS

CTGAAAGCGCTACCCCGGAGTCCGGTCCAGGTACTT



GSETPGTSESATPESGPGSE

CTACTGAACCGTCCGAAGGTAGCGCACCAGGTACTT



PATSGSETPGTSESATPESG

CTGAAAGCGCAACCCCTGAATCCGGTCCAGGTAGCG



PGTSTEPSEGSAPGTSESAT

AACCGGCTACTTCTGGCTCTGAGACTCCAGGTACTTC



PESGPGSPAGSPTSTEEGSP

TACCGAACCGTCCGAAGGTAGCGCACCAGGTACTTC



AGSPTSTEEGSPAGSPTSTE

TACTGAACCGTCTGAAGGTAGCGCACCAGGTACTTC



EGTSESATPESGPGTSTEPS

TGAAAGCGCAACCCCGGAATCCGGCCCAGGTACCTC



EGSAP

TGAAAGCGCAACCCCGGAGTCCGGCCCAGGTAGCCC





TGCTGGCTCTCCAACCTCCACCGAAGAAGGTACCTC





TGAAAGCGCAACCCCTGAATCCGGCCCAGGTAGCGA





ACCGGCAACCTCCGGTTCTGAAACCCCAGGTACCTC





TGAAAGCGCTACTCCGGAGTCTGGCCCAGGTACCTC





TACTGAACCGTCTGAGGGTAGCGCTCCAGGTACTTC





TACTGAACCGTCCGAAGGTAGCGCACCAGGTACTTC





TACCGAACCGTCCGAAGGCAGCGCTCCAGGTACCTC





TACTGAACCTTCCGAGGGCAGCGCTCCAGGTACCTC





TACCGAACCTTCTGAAGGTAGCGCACCAGGTACTTC





TACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCCC





AGCAGGTTCTCCTACCTCCACCGAGGAAGGTACTTC





TACCGAACCGTCCGAGGGTAGCGCACCAGGTACCTC





TGAAAGCGCAACTCCTGAGTCTGGCCCAGGTAGCGA





ACCTGCTACCTCCGGCTCTGAGACTCCAGGTACCTCT





GAAAGCGCAACCCCGGAATCTGGTCCAGGTAGCGAA





CCTGCAACCTCTGGCTCTGAAACCCCAGGTACCTCTG





AAAGCGCTACTCCTGAATCTGGCCCAGGTACTTCTA





CTGAACCGTCCGAGGGCAGCGCACCAGGTACTTCTG





AAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGG





CTGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGG





CTGGCTCTCCAACTTCTACTGAAGAAGGTAGCCCGG





CAGGCTCTCCGACCTCTACTGAGGAAGGTACTTCTG





AAAGCGCAACCCCGGAGTCCGGCCCAGGTACCTCTA





CCGAACCGTCTGAGGGCAGCGCACCA





hGH-
FPTIPLSRLFDNAMLRAHR
713
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
714


AF576
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT



EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT



PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG



SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT



ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG



DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG



TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC



DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA



DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG



GFGGSTSSTAESPGPGSTSS

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT



TAESPGPGSTSESPSGTAPG

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG



STSSTAESPGPGSTSSTAES

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA



PGPGTSTPESGSASPGSTSE

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA



SPSGTAPGTSPSGESSTAPG

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT



STSESPSGTAPGSTSESPSG

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTTCTA



TAPGTSPSGESSTAPGSTSE

CTAGCTCTACCGCTGAATCTCCTGGCCCAGGTTCCAC



SPSGTAPGSTSESPSGTAPG

TAGCTCTACCGCAGAATCTCCGGGCCCAGGTTCTACT



TSPSGESSTAPGSTSESPSG

AGCGAATCCCCTTCTGGTACCGCTCCAGGTTCTACTA



TAPGSTSESPSGTAPGSTSE

GCTCTACCGCTGAATCTCCGGGTCCAGGTTCTACCAG



SPSGTAPGTSTPESGSASPG

CTCTACTGCAGAATCTCCTGGCCCAGGTACTTCTACT



STSESPSGTAPGTSTPESGS

CCGGAAAGCGGTTCCGCTTCTCCAGGTTCTACCAGC



ASPGSTSSTAESPGPGSTSS

GAATCTCCTTCTGGCACCGCTCCAGGTACCTCTCCTA



TAESPGPGTSTPESGSASPG

GCGGCGAATCTTCTACCGCTCCAGGTTCTACTAGCG



TSTPESGSASPGSTSESPSG

AATCTCCTTCTGGCACTGCACCAGGTTCTACCAGCGA



TAPGTSTPESGSASPGTSTP

ATCTCCTTCTGGCACCGCTCCAGGTACCTCTCCTAGC



ESGSASPGSTSESPSGTAPG

GGCGAATCTTCTACCGCTCCAGGTTCTACTAGCGAAT



STSESPSGTAPGSTSESPSG

CTCCTTCTGGCACTGCACCAGGTTCTACCAGCGAATC



TAPGSTSSTAESPGPGTSTP

TCCTTCTGGCACCGCTCCAGGTACCTCTCCTAGCGGC



ESGSASPGTSTPESGSASPG

GAATCTTCTACCGCTCCAGGTTCTACTAGCGAATCTC



STSESPSGTAPGSTSESPSG

CTTCTGGCACTGCACCAGGTTCTACTAGCGAATCTCC



TAPGTSTPESGSASPGSTSE

TTCTGGCACTGCACCAGGTTCTACCAGCGAATCTCCG



SPSGTAPGSTSESPSGTAPG

TCTGGCACTGCACCAGGTACCTCTACCCCTGAAAGC



TSTPESGSASPGTSPSGESS

GGTTCCGCTTCTCCAGGTTCTACTAGCGAATCTCCTT



TAPGSTSSTAESPGPGTSPS

CTGGTACCGCTCCAGGTACTTCTACCCCTGAAAGCG



GESSTAPGSTSSTAESPGPG

GCTCCGCTTCTCCAGGTTCCACTAGCTCTACCGCTGA



TSTPESGSASPGSTSESPSG

ATCTCCGGGTCCAGGTTCTACTAGCTCTACTGCAGAA



TAPGSTSSTAESPGPGTSTP

TCTCCTGGCCCAGGTACCTCTACTCCGGAAAGCGGC



ESGSASPGTSTPESGSASP

TCTGCATCTCCAGGTACTTCTACCCCTGAAAGCGGTT





CTGCATCTCCAGGTTCTACTAGCGAATCCCCGTCTGG





TACCGCACCAGGTACTTCTACCCCGGAAAGCGGCTC





TGCTTCTCCAGGTACTTCTACCCCGGAAAGCGGCTCC





GCATCTCCAGGTTCTACTAGCGAATCTCCTTCTGGTA





CCGCTCCAGGTTCTACCAGCGAATCCCCGTCTGGTAC





TGCTCCAGGTTCTACCAGCGAATCTCCTTCTGGTACT





GCACCAGGTTCTACTAGCTCTACTGCAGAATCTCCTG





GCCCAGGTACCTCTACTCCGGAAAGCGGCTCTGCAT





CTCCAGGTACTTCTACCCCTGAAAGCGGTTCTGCATC





TCCAGGTTCTACTAGCGAATCTCCTTCTGGCACTGCA





CCAGGTTCTACCAGCGAATCTCCGTCTGGCACTGCA





CCAGGTACCTCTACCCCTGAAAGCGGTTCCGCTTCTC





CAGGTTCTACTAGCGAATCTCCTTCTGGCACTGCACC





AGGTTCTACCAGCGAATCTCCGTCTGGCACTGCACC





AGGTACCTCTACCCCTGAAAGCGGTTCCGCTTCTCCA





GGTACTTCTCCGAGCGGTGAATCTTCTACCGCACCA





GGTTCTACTAGCTCTACCGCTGAATCTCCGGGCCCAG





GTACTTCTCCGAGCGGTGAATCTTCTACTGCTCCAGG





TTCCACTAGCTCTACTGCTGAATCTCCTGGCCCAGGT





ACTTCTACTCCGGAAAGCGGTTCCGCTTCTCCAGGTT





CTACTAGCGAATCTCCGTCTGGCACCGCACCAGGTT





CTACTAGCTCTACTGCAGAATCTCCTGGCCCAGGTAC





CTCTACTCCGGAAAGCGGCTCTGCATCTCCAGGTACT





TCTACCCCTGAAAGCGGTTCTGCATCTCCA





hGH-
FPTIPLSRLFDNAMLRAHR
715
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
716


AE624
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT



EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT



PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG



SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT



ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG



DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG



TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC



DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA



DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG



GFGMAEPAGSPTSTEEGTP

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT



GSGTASSSPGSSTPSGATG

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG



SPGASPGTSSTGSPGSPAGS

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA



PTSTEEGTSESATPESGPGT

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA



STEPSEGSAPGSPAGSPTST

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT



EEGTSTEPSEGSAPGTSTEP

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTATGGCT



SEGSAPGTSESATPESGPGS

GAACCTGCTGGCTCTCCAACCTCCACTGAGGAAGGT



EPATSGSETPGSEPATSGSE

ACCCCGGGTAGCGGTACTGCTTCTTCCTCTCCAGGTA



TPGSPAGSPTSTEEGTSESA

GCTCTACCCCTTCTGGTGCAACCGGCTCTCCAGGTGC



TPESGPGTSTEPSEGSAPGT

TTCTCCGGGCACCAGCTCTACCGGTTCTCCAGGTAGC



STEPSEGSAPGSPAGSPTST

CCGGCTGGCTCTCCTACCTCTACTGAGGAAGGTACTT



EEGTSTEPSEGSAPGTSTEP

CTGAAAGCGCTACTCCTGAGTCTGGTCCAGGTACCT



SEGSAPGTSESATPESGPG

CTACTGAACCGTCCGAAGGTAGCGCTCCAGGTAGCC



TSTEPSEGSAPGTSESATPE

CAGCAGGCTCTCCGACTTCCACTGAGGAAGGTACTT



SGPGSEPATSGSETPGTSTE

CTACTGAACCTTCCGAAGGCAGCGCACCAGGTACCT



PSEGSAPGTSTEPSEGSAPG

CTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTT



TSESATPESGPGTSESATPE

CTGAAAGCGCTACCCCGGAATCTGGCCCAGGTAGCG



SGPGSPAGSPTSTEEGTSES

AACCGGCTACTTCTGGTTCTGAAACCCCAGGTAGCG



ATPESGPGSEPATSGSETP

AACCGGCTACCTCCGGTTCTGAAACTCCAGGTAGCC



GTSESATPESGPGTSTEPSE

CGGCAGGCTCTCCGACCTCTACTGAGGAAGGTACTT



GSAPGTSTEPSEGSAPGTS

CTGAAAGCGCAACCCCGGAGTCCGGCCCAGGTACCT



TEPSEGSAPGTSTEPSEGSA

CTACCGAACCGTCTGAGGGCAGCGCACCAGGTACTT



PGTSTEPSEGSAPGTSTEPS

CTACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCC



EGSAPGSPAGSPTSTEEGT

CAGCAGGTTCTCCTACCTCCACCGAGGAAGGTACTT



STEPSEGSAPGTSESATPES

CTACCGAACCGTCCGAGGGTAGCGCACCAGGTACCT



GPGSEPATSGSETPGTSES

CTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTT



ATPESGPGSEPATSGSETP

CTGAAAGCGCTACCCCGGAGTCCGGTCCAGGTACTT



GTSESATPESGPGTSTEPSE

CTACTGAACCGTCCGAAGGTAGCGCACCAGGTACTT



GSAPGTSESATPESGPGSP

CTGAAAGCGCAACCCCTGAATCCGGTCCAGGTAGCG



AGSPTSTEEGSPAGSPTSTE

AACCGGCTACTTCTGGCTCTGAGACTCCAGGTACTTC



EGSPAGSPTSTEEGTSESAT

TACCGAACCGTCCGAAGGTAGCGCACCAGGTACTTC



PESGPGTSTEPSEGSAP

TACTGAACCGTCTGAAGGTAGCGCACCAGGTACTTC





TGAAAGCGCAACCCCGGAATCCGGCCCAGGTACCTC





TGAAAGCGCAACCCCGGAGTCCGGCCCAGGTAGCCC





TGCTGGCTCTCCAACCTCCACCGAAGAAGGTACCTC





TGAAAGCGCAACCCCTGAATCCGGCCCAGGTAGCGA





ACCGGCAACCTCCGGTTCTGAAACCCCAGGTACCTC





TGAAAGCGCTACTCCGGAGTCTGGCCCAGGTACCTC





TACTGAACCGTCTGAGGGTAGCGCTCCAGGTACTTC





TACTGAACCGTCCGAAGGTAGCGCACCAGGTACTTC





TACCGAACCGTCCGAAGGCAGCGCTCCAGGTACCTC





TACTGAACCTTCCGAGGGCAGCGCTCCAGGTACCTC





TACCGAACCTTCTGAAGGTAGCGCACCAGGTACTTC





TACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCCC





AGCAGGTTCTCCTACCTCCACCGAGGAAGGTACTTC





TACCGAACCGTCCGAGGGTAGCGCACCAGGTACCTC





TGAAAGCGCAACTCCTGAGTCTGGCCCAGGTAGCGA





ACCTGCTACCTCCGGCTCTGAGACTCCAGGTACCTCT





GAAAGCGCAACCCCGGAATCTGGTCCAGGTAGCGAA





CCTGCAACCTCTGGCTCTGAAACCCCAGGTACCTCTG





AAAGCGCTACTCCTGAATCTGGCCCAGGTACTTCTA





CTGAACCGTCCGAGGGCAGCGCACCAGGTACTTCTG





AAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGG





CTGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGG





CTGGCTCTCCAACTTCTACTGAAGAAGGTAGCCCGG





CAGGCTCTCCGACCTCTACTGAGGAAGGTACTTCTG





AAAGCGCAACCCCGGAGTCCGGCCCAGGTACCTCTA





CCGAACCGTCTGAGGGCAGCGCACCA





hGH-
FPTIPLSRLFDNAMLRAHR
717
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
718


AD836
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT



EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT



PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG



SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT



ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG



DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG



TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC



DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA



DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG



GFGGSSESGSSEGGPGSSE

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT



SGSSEGGPGESPGGSSGSE

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG



SGSGGEPSESGSSGESPGG

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA



SSGSESGESPGGSSGSESGS

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA



SESGSSEGGPGSSESGSSEG

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT



GPGSSESGSSEGGPGESPG

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTTCCT



GSSGSESGESPGGSSGSES

CTGAAAGCGGTTCTTCCGAAGGTGGTCCAGGTTCCT



GESPGGSSGSESGSSESGSS

CTGAAAGCGGTTCTTCTGAGGGTGGTCCAGGTGAAT



EGGPGSSESGSSEGGPGSS

CTCCGGGTGGCTCCAGCGGTTCCGAGTCAGGTTCTG



ESGSSEGGPGSSESGSSEG

GTGGCGAACCTTCCGAGTCTGGTAGCTCAGGTGAAT



GPGSSESGSSEGGPGSSES

CTCCGGGTGGTTCTAGCGGTTCCGAGTCAGGTGAAT



GSSEGGPGSGGEPSESGSS

CTCCGGGTGGTTCCAGCGGTTCTGAGTCAGGTTCCTC



GESPGGSSGSESGESPGGS

CGAAAGCGGTTCTTCTGAGGGCGGTCCAGGTTCCTC



SGSESGSGGEPSESGSSGSE

CGAAAGCGGTTCTTCCGAGGGCGGTCCAGGTTCTTC



GSSGPGESSGSSESGSSEG

TGAAAGCGGTTCTTCCGAGGGCGGTCCAGGTGAATC



GPGSGGEPSESGSSGSEGS

TCCTGGTGGTTCCAGCGGTTCCGAGTCAGGTGAATCT



SGPGESSGSSESGSSEGGP

CCAGGTGGCTCTAGCGGTTCCGAGTCAGGTGAATCT



GSGGEPSESGSSGESPGGS

CCTGGTGGTTCTAGCGGTTCTGAATCAGGTTCCTCCG



SGSESGSGGEPSESGSSGS

AAAGCGGTTCTTCTGAGGGCGGTCCAGGTTCCTCCG



GGEPSESGSSGSSESGSSEG

AAAGCGGTTCTTCCGAGGGCGGTCCAGGTTCTTCTG



GPGSGGEPSESGSSGSGGE

AAAGCGGTTCTTCCGAGGGCGGTCCAGGTTCCTCTG



PSESGSSGSEGSSGPGESSG

AAAGCGGTTCTTCTGAGGGCGGTCCAGGTTCTTCCG



ESPGGSSGSESGSEGSSGP

AAAGCGGTTCTTCCGAGGGCGGTCCAGGTTCTTCCG



GESSGSEGSSGPGESSGSG

AAAGCGGTTCTTCTGAAGGCGGTCCAGGTTCTGGTG



GEPSESGSSGSSESGSSEGG

GCGAACCGTCCGAGTCTGGTAGCTCAGGTGAATCTC



PGSSESGSSEGGPGESPGG

CGGGTGGCTCTAGCGGTTCCGAGTCAGGTGAATCTC



SSGSESGSGGEPSESGSSGS

CTGGTGGTTCCAGCGGTTCCGAGTCAGGTTCCGGTG



EGSSGPGESSGESPGGSSG

GCGAACCGTCCGAATCTGGTAGCTCAGGTAGCGAAG



SESGSEGSSGPGSSESGSSE

GTTCTTCTGGTCCAGGCGAATCTTCAGGTTCCTCTGA



GGPGSGGEPSESGSSGSEG

AAGCGGTTCTTCTGAGGGCGGTCCAGGTTCCGGTGG



SSGPGESSGSEGSSGPGESS

CGAACCGTCCGAATCTGGTAGCTCAGGTAGCGAAGG



GSEGSSGPGESSGSGGEPS

TTCTTCTGGTCCAGGCGAATCTTCAGGTTCCTCTGAA



ESGSSGSGGEPSESGSSGES

AGCGGTTCTTCTGAGGGCGGTCCAGGTTCCGGTGGC



PGGSSGSESGESPGGSSGS

GAACCTTCCGAATCTGGTAGCTCAGGTGAATCTCCG



ESGSGGEPSESGSSGSEGSS

GGTGGTTCTAGCGGTTCTGAGTCAGGTTCTGGTGGTG



GPGESSGESPGGSSGSESG

AACCTTCCGAGTCTGGTAGCTCAGGTTCTGGTGGCG



SSESGSSEGGPGSSESGSSE

AACCATCCGAGTCTGGTAGCTCAGGTTCTTCCGAAA



GGPGSSESGSSEGGPGSGG

GCGGTTCTTCCGAAGGCGGTCCAGGTTCTGGTGGTG



EPSESGSSGSSESGSSEGGP

AACCGTCCGAATCTGGTAGCTCAGGTTCTGGTGGCG



GESPGGSSGSESGSGGEPS

AACCATCCGAATCTGGTAGCTCAGGTAGCGAAGGTT



ESGSSGSSESGSSEGGPGES

CTTCTGGTCCTGGCGAATCTTCAGGTGAATCTCCAGG



PGGSSGSESGSGGEPSESG

TGGCTCTAGCGGTTCCGAATCAGGTAGCGAAGGTTC



SSGESPGGSSGSESGSGGE

TTCCGGTCCAGGTGAATCTTCAGGTAGCGAAGGTTC



PSESGSS

TTCTGGTCCTGGTGAATCCTCAGGTTCCGGTGGCGAA





CCATCTGAATCTGGTAGCTCAGGTTCCTCTGAAAGC





GGTTCTTCCGAAGGTGGTCCAGGTTCCTCTGAAAGC





GGTTCTTCTGAGGGTGGTCCAGGTGAATCTCCGGGT





GGCTCCAGCGGTTCCGAGTCAGGTTCTGGTGGCGAA





CCATCCGAATCTGGTAGCTCAGGTAGCGAAGGTTCT





TCTGGTCCTGGCGAATCTTCAGGTGAATCTCCAGGTG





GCTCTAGCGGTTCCGAATCAGGTAGCGAAGGTTCTT





CCGGTCCaGGTTCCTCTGAAAGCGGTTCTTCTGAGGG





CGGTCCAGGTTCTGGTGGCGAACCATCTGAATCTGG





TAGCTCAGGTAGCGAAGGTTCTTCCGGTCCGGGTGA





ATCTTCAGGTAGCGAAGGTTCTTCCGGTCCAGGTGA





ATCTTCAGGTAGCGAAGGTTCTTCTGGTCCTGGTGAA





TCCTCAGGTTCCGGTGGCGAACCATCTGAATCTGGT





AGCTCAGGTTCTGGTGGCGAACCATCCGAATCTGGT





AGCTCAGGTGAATCTCCGGGTGGCTCCAGCGGTTCT





GAATCAGGTGAATCTCCTGGTGGCTCCAGCGGTTCT





GAGTCAGGTTCTGGTGGCGAACCATCCGAATCTGGT





AGCTCAGGTAGCGAAGGTTCTTCTGGTCCTGGCGAA





TCTTCAGGTGAATCTCCAGGTGGCTCTAGCGGTTCCG





AATCAGGTTCCTCTGAAAGCGGTTCTTCTGAGGGCG





GTCCAGGTTCTTCCGAAAGCGGTTCTTCCGAGGGCG





GTCCAGGTTCTTCCGAAAGCGGTTCTTCTGAAGGCG





GTCCAGGTTCTGGTGGCGAACCGTCCGAATCTGGTA





GCTCAGGTTCCTCCGAAAGCGGTTCTTCTGAAGGTG





GTCCAGGTGAATCTCCAGGTGGTTCTAGCGGTTCTG





AATCAGGTTCTGGTGGCGAACCGTCCGAATCTGGTA





GCTCAGGTTCCTCCGAAAGCGGTTCTTCTGAAGGTG





GTCCAGGTGAATCTCCAGGTGGTTCTAGCGGTTCTG





AATCAGGTTCTGGTGGCGAACCGTCCGAATCTGGTA





GCTCAGGTGAATCTCCTGGTGGTTCCAGCGGTTCCG





AGTCAGGTTCTGGTGGCGAACCTTCCGAATCTGGTA





GCTCA





hGH-
FPTIPLSRLFDNAMLRAHR
719
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
720


AE864
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT



EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT



PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG



SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT



ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG



DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG



TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC



DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA



DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG



GFGGSPAGSPTSTEEGTSE

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT



SATPESGPGTSTEPSEGSAP

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG



GSPAGSPTSTEEGTSTEPSE

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA



GSAPGTSTEPSEGSAPGTS

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA



ESATPESGPGSEPATSGSET

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT



PGSEPATSGSETPGSPAGSP

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTAGC



TSTEEGTSESATPESGPGTS

CCGGCTGGCTCTCCTACCTCTACTGAGGAAGGTACTT



TEPSEGSAPGTSTEPSEGSA

CTGAAAGCGCTACTCCTGAGTCTGGTCCAGGTACCT



PGSPAGSPTSTEEGTSTEPS

CTACTGAACCGTCCGAAGGTAGCGCTCCAGGTAGCC



EGSAPGTSTEPSEGSAPGT

CAGCAGGCTCTCCGACTTCCACTGAGGAAGGTACTT



SESATPESGPGTSTEPSEGS

CTACTGAACCTTCCGAAGGCAGCGCACCAGGTACCT



APGTSESATPESGPGSEPA

CTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTT



TSGSETPGTSTEPSEGSAPG

CTGAAAGCGCTACCCCGGAATCTGGCCCAGGTAGCG



TSTEPSEGSAPGTSESATPE

AACCGGCTACTTCTGGTTCTGAAACCCCAGGTAGCG



SGPGTSESATPESGPGSPA

AACCGGCTACCTCCGGTTCTGAAACTCCAGGTAGCC



GSPTSTEEGTSESATPESGP

CGGCAGGCTCTCCGACCTCTACTGAGGAAGGTACTT



GSEPATSGSETPGTSESATP

CTGAAAGCGCAACCCCGGAGTCCGGCCCAGGTACCT



ESGPGTSTEPSEGSAPGTST

CTACCGAACCGTCTGAGGGCAGCGCACCAGGTACTT



EPSEGSAPGTSTEPSEGSAP

CTACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCC



GTSTEPSEGSAPGTSTEPSE

CAGCAGGTTCTCCTACCTCCACCGAGGAAGGTACTT



GSAPGTSTEPSEGSAPGSP

CTACCGAACCGTCCGAGGGTAGCGCACCAGGTACCT



AGSPTSTEEGTSTEPSEGSA

CTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTT



PGTSESATPESGPGSEPATS

CTGAAAGCGCTACCCCGGAGTCCGGTCCAGGTACTT



GSETPGTSESATPESGPGSE

CTACTGAACCGTCCGAAGGTAGCGCACCAGGTACTT



PATSGSETPGTSESATPESG

CTGAAAGCGCAACCCCTGAATCCGGTCCAGGTAGCG



PGTSTEPSEGSAPGTSESAT

AACCGGCTACTTCTGGCTCTGAGACTCCAGGTACTTC



PESGPGSPAGSPTSTEEGSP

TACCGAACCGTCCGAAGGTAGCGCACCAGGTACTTC



AGSPTSTEEGSPAGSPTSTE

TACTGAACCGTCTGAAGGTAGCGCACCAGGTACTTC



EGTSESATPESGPGTSTEPS

TGAAAGCGCAACCCCGGAATCCGGCCCAGGTACCTC



EGSAPGTSESATPESGPGS

TGAAAGCGCAACCCCGGAGTCCGGCCCAGGTAGCCC



EPATSGSETPGTSESATPES

TGCTGGCTCTCCAACCTCCACCGAAGAAGGTACCTC



GPGSEPATSGSETPGTSES

TGAAAGCGCAACCCCTGAATCCGGCCCAGGTAGCGA



ATPESGPGTSTEPSEGSAP

ACCGGCAACCTCCGGTTCTGAAACCCCAGGTACCTC



GSPAGSPTSTEEGTSESATP

TGAAAGCGCTACTCCGGAGTCTGGCCCAGGTACCTC



ESGPGSEPATSGSETPGTSE

TACTGAACCGTCTGAGGGTAGCGCTCCAGGTACTTC



SATPESGPGSPAGSPTSTEE

TACTGAACCGTCCGAAGGTAGCGCACCAGGTACTTC



GSPAGSPTSTEEGTSTEPSE

TACCGAACCGTCCGAAGGCAGCGCTCCAGGTACCTC



GSAPGTSESATPESGPGTS

TACTGAACCTTCCGAGGGCAGCGCTCCAGGTACCTC



ESATPESGPGTSESATPESG

TACCGAACCTTCTGAAGGTAGCGCACCAGGTACTTC



PGSEPATSGSETPGSEPATS

TACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCCC



GSETPGSPAGSPTSTEEGTS

AGCAGGTTCTCCTACCTCCACCGAGGAAGGTACTTC



TEPSEGSAPGTSTEPSEGSA

TACCGAACCGTCCGAGGGTAGCGCACCAGGTACCTC



PGSEPATSGSETPGTSESAT

TGAAAGCGCAACTCCTGAGTCTGGCCCAGGTAGCGA



PESGPGTSTEPSEGSAP

ACCTGCTACCTCCGGCTCTGAGACTCCAGGTACCTCT





GAAAGCGCAACCCCGGAATCTGGTCCAGGTAGCGAA





CCTGCAACCTCTGGCTCTGAAACCCCAGGTACCTCTG





AAAGCGCTACTCCTGAATCTGGCCCAGGTACTTCTA





CTGAACCGTCCGAGGGCAGCGCACCAGGTACTTCTG





AAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGG





CTGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGG





CTGGCTCTCCAACTTCTACTGAAGAAGGTAGCCCGG





CAGGCTCTCCGACCTCTACTGAGGAAGGTACTTCTG





AAAGCGCAACCCCGGAGTCCGGCCCAGGTACCTCTA





CCGAACCGTCTGAGGGCAGCGCACCAGGTACCTCTG





AAAGCGCAACTCCTGAGTCTGGCCCAGGTAGCGAAC





CTGCTACCTCCGGCTCTGAGACTCCAGGTACCTCTGA





AAGCGCAACCCCGGAATCTGGTCCAGGTAGCGAACC





TGCAACCTCTGGCTCTGAAACCCCAGGTACCTCTGA





AAGCGCTACTCCTGAATCTGGCCCAGGTACTTCTACT





GAACCGTCCGAGGGCAGCGCACCAGGTAGCCCTGCT





GGCTCTCCAACCTCCACCGAAGAAGGTACCTCTGAA





AGCGCAACCCCTGAATCCGGCCCAGGTAGCGAACCG





GCAACCTCCGGTTCTGAAACCCCAGGTACTTCTGAA





AGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGGCT





GGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGGCT





GGCTCTCCAACTTCTACTGAAGAAGGTACTTCTACCG





AACCTTCCGAGGGCAGCGCACCAGGTACTTCTGAAA





GCGCTACCCCTGAGTCCGGCCCAGGTACTTCTGAAA





GCGCTACTCCTGAATCCGGTCCAGGTACTTCTGAAA





GCGCTACCCCGGAATCTGGCCCAGGTAGCGAACCGG





CTACTTCTGGTTCTGAAACCCCAGGTAGCGAACCGG





CTACCTCCGGTTCTGAAACTCCAGGTAGCCCAGCAG





GCTCTCCGACTTCCACTGAGGAAGGTACTTCTACTGA





ACCTTCCGAAGGCAGCGCACCAGGTACCTCTACTGA





ACCTTCTGAGGGCAGCGCTCCAGGTAGCGAACCTGC





AACCTCTGGCTCTGAAACCCCAGGTACCTCTGAAAG





CGCTACTCCTGAATCTGGCCCAGGTACTTCTACTGAA





CCGTCCGAGGGCAGCGCACCA





hGH-
FPTIPLSRLFDNAMLRAHR
721
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
722


AF864
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT



EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT



PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG



SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT



ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG



DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG



TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC



DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA



DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG



GFGGSTSESPSGTAPGTSPS

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT



GESSTAPGSTSESPSGTAPG

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG



STSESPSGTAPGTSTPESGS

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA



ASPGTSTPESGSASPGSTSE

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA



SPSGTAPGSTSESPSGTAPG

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT



TSPSGESSTAPGSTSESPSG

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTTCTA



TAPGTSPSGESSTAPGTSPS

CCAGCGAATCTCCTTCTGGCACCGCTCCAGGTACCTC



GESSTAPGSTSSTAESPGPG

TCCTAGCGGCGAATCTTCTACCGCTCCAGGTTCTACT



TSPSGESSTAPGTSPSGESS

AGCGAATCTCCTTCTGGCACTGCACCAGGTTCTACTA



TAPGSTSSTAESPGPGTSTP

GCGAATCCCCGTCTGGTACTGCTCCAGGTACTTCTAC



ESGSASPGTSTPESGSASPG

TCCTGAAAGCGGTTCCGCTTCTCCAGGTACCTCTACT



STSESPSGTAPGSTSESPSG

CCGGAAAGCGGTTCTGCATCTCCAGGTTCTACCAGC



TAPGTSTPESGSASPGSTSS

GAATCTCCTTCTGGCACCGCTCCAGGTTCTACTAGCG



TAESPGPGTSTPESGSASPG

AATCCCCGTCTGGTACCGCACCAGGTACTTCTCCTAG



STSESPSGTAPGTSPSGESS

CGGCGAATCTTCTACCGCACCAGGTTCTACTAGCGA



TAPGSTSSTAESPGPGTSPS

ATCTCCGTCTGGCACTGCTCCAGGTACTTCTCCTAGC



GESSTAPGTSTPESGSASPG

GGTGAATCTTCTACCGCTCCAGGTACTTCCCCTAGCG



STSSTAESPGPGSTSSTAES

GCGAATCTTCTACCGCTCCAGGTTCTACTAGCTCTAC



PGPGSTSSTAESPGPGSTSS

TGCAGAATCTCCGGGCCCAGGTACCTCTCCTAGCGG



TAESPGPGTSPSGESSTAPG

TGAATCTTCTACCGCTCCAGGTACTTCTCCGAGCGGT



STSESPSGTAPGSTSESPSG

GAATCTTCTACCGCTCCAGGTTCTACTAGCTCTACTG



TAPGTSTPESGPXXXGASA

CAGAATCTCCTGGCCCAGGTACCTCTACTCCGGAAA



SGAPSTXXXXSESPSGTAP

GCGGCTCTGCATCTCCAGGTACTTCTACCCCTGAAAG



GSTSESPSGTAPGSTSESPS

CGGTTCTGCATCTCCAGGTTCTACTAGCGAATCTCCT



GTAPGSTSESPSGTAPGSTS

TCTGGCACTGCACCAGGTTCTACCAGCGAATCTCCGT



ESPSGTAPGSTSESPSGTAP

CTGGCACTGCACCAGGTACCTCTACCCCTGAAAGCG



GTSTPESGSASPGTSPSGES

GTTCCGCTTCTCCAGGTTCTACCAGCTCTACCGCAGA



STAPGTSPSGESSTAPGSTS

ATCTCCTGGTCCAGGTACCTCTACTCCGGAAAGCGG



STAESPGPGTSPSGESSTAP

CTCTGCATCTCCAGGTTCTACTAGCGAATCTCCTTCT



GTSTPESGSASPGSTSESPS

GGCACTGCACCAGGTACTTCTCCGAGCGGTGAATCT



GTAPGSTSESPSGTAPGTSP

TCTACCGCACCAGGTTCTACTAGCTCTACCGCTGAAT



SGESSTAPGSTSESPSGTAP

CTCCGGGCCCAGGTACTTCTCCGAGCGGTGAATCTTC



GTSTPESGSASPGTSTPESG

TACTGCTCCAGGTACCTCTACTCCTGAAAGCGGTTCT



SASPGSTSESPSGTAPGTST

GCATCTCCAGGTTCCACTAGCTCTACCGCAGAATCTC



PESGSASPGSTSSTAESPGP

CGGGCCCAGGTTCTACTAGCTCTACTGCTGAATCTCC



GSTSESPSGTAPGSTSESPS

TGGCCCAGGTTCTACTAGCTCTACTGCTGAATCTCCG



GTAPGTSPSGESSTAPGSTS

GGTCCAGGTTCTACCAGCTCTACTGCTGAATCTCCTG



STAESPGPGTSPSGESSTAP

GTCCAGGTACCTCCCCGAGCGGTGAATCTTCTACTGC



GTSTPESGSASPGTSPSGES

ACCAGGTTCTACTAGCGAATCTCCTTCTGGCACTGCA



STAPGTSPSGESSTAPGTSP

CCAGGTTCTACCAGCGAATCTCCGTCTGGCACTGCA



SGESSTAPGSTSSTAESPGP

CCAGGTACCTCTACCCCTGAAAGCGGTCCXXXXXXX



GSTSSTAESPGPGTSPSGES

XXXXXTGCAAGCGCAAGCGGCGCGCCAAGCACGGG



STAPGSSPSASTGTGPGSST

AXXXXXXXXTAGCGAATCTCCTTCTGGTACCGCTCC



PSGATGSPGSSTPSGATGSP

AGGTTCTACCAGCGAATCCCCGTCTGGTACTGCTCCA





GGTTCTACCAGCGAATCTCCTTCTGGTACTGCACCAG





GTTCTACTAGCGAATCTCCTTCTGGTACCGCTCCAGG





TTCTACCAGCGAATCCCCGTCTGGTACTGCTCCAGGT





TCTACCAGCGAATCTCCTTCTGGTACTGCACCAGGTA





CTTCTACTCCGGAAAGCGGTTCCGCATCTCCAGGTAC





TTCTCCTAGCGGTGAATCTTCTACTGCTCCAGGTACC





TCTCCTAGCGGCGAATCTTCTACTGCTCCAGGTTCTA





CCAGCTCTACTGCTGAATCTCCGGGTCCAGGTACTTC





CCCGAGCGGTGAATCTTCTACTGCACCAGGTACTTCT





ACTCCGGAAAGCGGTTCCGCTTCTCCAGGTTCTACCA





GCGAATCTCCTTCTGGCACCGCTCCAGGTTCTACTAG





CGAATCCCCGTCTGGTACCGCACCAGGTACTTCTCCT





AGCGGCGAATCTTCTACCGCACCAGGTTCTACTAGC





GAATCCCCGTCTGGTACCGCACCAGGTACTTCTACCC





CGGAAAGCGGCTCTGCTTCTCCAGGTACTTCTACCCC





GGAAAGCGGCTCCGCATCTCCAGGTTCTACTAGCGA





ATCTCCTTCTGGTACCGCTCCAGGTACTTCTACCCCT





GAAAGCGGCTCCGCTTCTCCAGGTTCCACTAGCTCTA





CCGCTGAATCTCCGGGTCCAGGTTCTACCAGCGAAT





CTCCTTCTGGCACCGCTCCAGGTTCTACTAGCGAATC





CCCGTCTGGTACCGCACCAGGTACTTCTCCTAGCGGC





GAATCTTCTACCGCACCAGGTTCTACCAGCTCTACTG





CTGAATCTCCGGGTCCAGGTACTTCCCCGAGCGGTG





AATCTTCTACTGCACCAGGTACTTCTACTCCGGAAAG





CGGTTCCGCTTCTCCAGGTACCTCCCCTAGCGGCGAA





TCTTCTACTGCTCCAGGTACCTCTCCTAGCGGCGAAT





CTTCTACCGCTCCAGGTACCTCCCCTAGCGGTGAATC





TTCTACCGCACCAGGTTCTACTAGCTCTACTGCTGAA





TCTCCGGGTCCAGGTTCTACCAGCTCTACTGCTGAAT





CTCCTGGTCCAGGTACCTCCCCGAGCGGTGAATCTTC





TACTGCACCAGGTTCTAGCCCTTCTGCTTCCACCGGT





ACCGGCCCAGGTAGCTCTACTCCGTCTGGTGCAACT





GGCTCTCCAGGTAGCTCTACTCCGTCTGGTGCAACCG





GCTCCCCA





hGH-
FPTIPLSRLFDNAMLRAHR
723
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
724


AG864
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT



EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT



PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG



SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT



ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG



DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG



TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC



DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA



DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG



GFGGASPGTSSTGSPGSSPS

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT



ASTGTGPGSSPSASTGTGP

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG



GTPGSGTASSSPGSSTPSG

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA



ATGSPGSNPSASTGTGPGA

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA



SPGTSSTGSPGTPGSGTASS

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT



SPGSSTPSGATGSPGTPGS

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTGCTT



GTASSSPGASPGTSSTGSP

CCCCGGGCACCAGCTCTACTGGTTCTCCAGGTTCTAG



GASPGTSSTGSPGTPGSGT

CCCGTCTGCTTCTACTGGTACTGGTCCAGGTTCTAGC



ASSSPGSSTPSGATGSPGAS

CCTTCTGCTTCCACTGGTACTGGTCCAGGTACCCCGG



PGTSSTGSPGTPGSGTASSS

GTAGCGGTACCGCTTCTTCTTCTCCAGGTAGCTCTAC



PGSSTPSGATGSPGSNPSAS

TCCGTCTGGTGCTACCGGCTCTCCAGGTTCTAACCCT



TGTGPGSSPSASTGTGPGS

TCTGCATCCACCGGTACCGGCCCAGGTGCTTCTCCGG



STPSGATGSPGSSTPSGAT

GCACCAGCTCTACTGGTTCTCCAGGTACCCCGGGCA



GSPGASPGTSSTGSPGASP

GCGGTACCGCATCTTCTTCTCCAGGTAGCTCTACTCC



GTSSTGSPGASPGTSSTGSP

TTCTGGTGCAACTGGTTCTCCAGGTACTCCTGGCAGC



GTPGSGTASSSPGASPGTS

GGTACCGCTTCTTCTTCTCCAGGTGCTTCTCCTGGTA



STGSPGASPGTSSTGSPGA

CTAGCTCTACTGGTTCTCCAGGTGCTTCTCCGGGCAC



SPGTSSTGSPGSSPSASTGT

TAGCTCTACTGGTTCTCCAGGTACCCCGGGTAGCGGT



GPGTPGSGTASSSPGASPG

ACTGCTTCTTCCTCTCCAGGTAGCTCTACCCCTTCTG



TSSTGSPGASPGTSSTGSPG

GTGCAACCGGCTCTCCAGGTGCTTCTCCGGGCACCA



ASPGTSSTGSPGSSTPSGAT

GCTCTACCGGTTCTCCAGGTACCCCGGGTAGCGGTA



GSPGSSTPSGATGSPGASP

CCGCTTCTTCTTCTCCAGGTAGCTCTACTCCGTCTGG



GTSSTGSPGTPGSGTASSSP

TGCTACCGGCTCTCCAGGTTCTAACCCTTCTGCATCC



GSSTPSGATGSPGSSTPSG

ACCGGTACCGGCCCAGGTTCTAGCCCTTCTGCTTCCA



ATGSPGSSTPSGATGSPGS

CCGGTACTGGCCCAGGTAGCTCTACCCCTTCTGGTGC



SPSASTGTGPGASPGTSST

TACCGGCTCCCCAGGTAGCTCTACTCCTTCTGGTGCA



GSPGASPGTSSTGSPGTPG

ACTGGCTCTCCAGGTGCATCTCCGGGCACTAGCTCTA



SGTASSSPGASPGTSSTGSP

CTGGTTCTCCAGGTGCATCCCCTGGCACTAGCTCTAC



GASPGTSSTGSPGASPGTS

TGGTTCTCCAGGTGCTTCTCCTGGTACCAGCTCTACT



STGSPGASPGTSSTGSPGTP

GGTTCTCCAGGTACTCCTGGCAGCGGTACCGCTTCTT



GSGTASSSPGSSTPSGATG

CTTCTCCAGGTGCTTCTCCTGGTACTAGCTCTACTGG



SPGTPGSGTASSSPGSSTPS

TTCTCCAGGTGCTTCTCCGGGCACTAGCTCTACTGGT



GATGSPGTPGSGTASSSPG

TCTCCAGGTGCTTCCCCGGGCACTAGCTCTACCGGTT



SSTPSGATGSPGSSTPSGAT

CTCCAGGTTCTAGCCCTTCTGCATCTACTGGTACTGG



GSPGSSPSASTGTGPGSSPS

CCCAGGTACTCCGGGCAGCGGTACTGCTTCTTCCTCT



ASTGTGPGASPGTSSTGSP

CCAGGTGCATCTCCGGGCACTAGCTCTACTGGTTCTC



GTPGSGTASSSPGSSTPSG

CAGGTGCATCCCCTGGCACTAGCTCTACTGGTTCTCC



ATGSPGSSPSASTGTGPGS

AGGTGCTTCTCCTGGTACCAGCTCTACTGGTTCTCCA



SPSASTGTGPGASPGTSST

GGTAGCTCTACTCCGTCTGGTGCAACCGGTTCCCCAG



GSPGASPGTSSTGSPGSSTP

GTAGCTCTACTCCTTCTGGTGCTACTGGCTCCCCAGG



SGATGSPGSSPSASTGTGP

TGCATCCCCTGGCACCAGCTCTACCGGTTCTCCAGGT



GASPGTSSTGSPGSSPSAST

ACCCCGGGCAGCGGTACCGCATCTTCCTCTCCAGGT



GTGPGTPGSGTASSSPGSS

AGCTCTACCCCGTCTGGTGCTACCGGTTCCCCAGGTA



TPSGATGSPGSSTPSGATG

GCTCTACCCCGTCTGGTGCAACCGGCTCCCCAGGTA



SPGASPGTSSTGSP

GCTCTACTCCGTCTGGTGCAACCGGCTCCCCAGGTTC





TAGCCCGTCTGCTTCCACTGGTACTGGCCCAGGTGCT





TCCCCGGGCACCAGCTCTACTGGTTCTCCAGGTGCAT





CCCCGGGTACCAGCTCTACCGGTTCTCCAGGTACTCC





TGGCAGCGGTACTGCATCTTCCTCTCCAGGTGCTTCT





CCGGGCACCAGCTCTACTGGTTCTCCAGGTGCATCTC





CGGGCACTAGCTCTACTGGTTCTCCAGGTGCATCCCC





TGGCACTAGCTCTACTGGTTCTCCAGGTGCTTCTCCT





GGTACCAGCTCTACTGGTTCTCCAGGTACCCCTGGTA





GCGGTACTGCTTCTTCCTCTCCAGGTAGCTCTACTCC





GTCTGGTGCTACCGGTTCTCCAGGTACCCCGGGTAG





CGGTACCGCATCTTCTTCTCCAGGTAGCTCTACCCCG





TCTGGTGCTACTGGTTCTCCAGGTACTCCGGGCAGCG





GTACTGCTTCTTCCTCTCCAGGTAGCTCTACCCCTTC





TGGTGCTACTGGCTCTCCAGGTAGCTCTACCCCGTCT





GGTGCTACTGGCTCCCCAGGTTCTAGCCCTTCTGCAT





CCACCGGTACCGGTCCAGGTTCTAGCCCGTCTGCATC





TACTGGTACTGGTCCAGGTGCATCCCCGGGCACTAG





CTCTACCGGTTCTCCAGGTACTCCTGGTAGCGGTACT





GCTTCTTCTTCTCCAGGTAGCTCTACTCCTTCTGGTG





CTACTGGTTCTCCAGGTTCTAGCCCTTCTGCATCCAC





CGGTACCGGCCCAGGTTCTAGCCCGTCTGCTTCTACC





GGTACTGGTCCAGGTGCTTCTCCGGGTACTAGCTCTA





CTGGTTCTCCAGGTGCATCTCCTGGTACTAGCTCTAC





TGGTTCTCCAGGTAGCTCTACTCCGTCTGGTGCAACC





GGCTCTCCAGGTTCTAGCCCTTCTGCATCTACCGGTA





CTGGTCCAGGTGCATCCCCTGGTACCAGCTCTACCG





GTTCTCCAGGTTCTAGCCCTTCTGCTTCTACCGGTAC





CGGTCCAGGTACCCCTGGCAGCGGTACCGCATCTTC





CTCTCCAGGTAGCTCTACTCCGTCTGGTGCAACCGGT





TCCCCAGGTAGCTCTACTCCTTCTGGTGCTACTGGCT





CCCCAGGTGCATCCCCTGGCACCAGCTCTACCGGTTC





TCCA





hGH-
FPTIPLSRLFDNAMLRAHR
725
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
726


AM875
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT



EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT



PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG



SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT



ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG



DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG



TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC



DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA



DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG



GFGGTSTEPSEGSAPGSEP

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT



ATSGSETPGSPAGSPTSTEE

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG



GSTSSTAESPGPGTSTPESG

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA



SASPGSTSESPSGTAPGSTS

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA



ESPSGTAPGTSTPESGSASP

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT



GTSTPESGSASPGSEPATSG

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTACTT



SETPGTSESATPESGPGSPA

CTACTGAACCGTCTGAAGGCAGCGCACCAGGTAGCG



GSPTSTEEGTSTEPSEGSAP

AACCGGCTACTTCCGGTTCTGAAACCCCAGGTAGCC



GTSESATPESGPGTSTEPSE

CAGCAGGTTCTCCAACTTCTACTGAAGAAGGTTCTA



GSAPGTSTEPSEGSAPGSP

CCAGCTCTACCGCAGAATCTCCTGGTCCAGGTACCTC



AGSPTSTEEGTSTEPSEGSA

TACTCCGGAAAGCGGCTCTGCATCTCCAGGTTCTACT



PGTSTEPSEGSAPGTSESAT

AGCGAATCTCCTTCTGGCACTGCACCAGGTTCTACTA



PESGPGTSESATPESGPGTS

GCGAATCCCCGTCTGGTACTGCTCCAGGTACTTCTAC



TEPSEGSAPGTSTEPSEGSA

TCCTGAAAGCGGTTCCGCTTCTCCAGGTACCTCTACT



PGTSESATPESGPGTSTEPS

CCGGAAAGCGGTTCTGCATCTCCAGGTAGCGAACCG



EGSAPGSEPATSGSETPGSP

GCAACCTCCGGCTCTGAAACCCCAGGTACCTCTGAA



AGSPTSTEEGSSTPSGATG

AGCGCTACTCCTGAATCCGGCCCAGGTAGCCCGGCA



SPGTPGSGTASSSPGSSTPS

GGTTCTCCGACTTCCACTGAGGAAGGTACCTCTACTG



GATGSPGTSTEPSEGSAPG

AACCTTCTGAGGGCAGCGCTCCAGGTACTTCTGAAA



TSTEPSEGSAPGSEPATSGS

GCGCTACCCCGGAGTCCGGTCCAGGTACTTCTACTG



ETPGSPAGSPTSTEEGSPA

AACCGTCCGAAGGTAGCGCACCAGGTACTTCTACCG



GSPTSTEEGTSTEPSEGSAP

AACCGTCCGAGGGTAGCGCACCAGGTAGCCCAGCAG



GASASGAPSTGGTSESATP

GTTCTCCTACCTCCACCGAGGAAGGTACTTCTACCGA



ESGPGSPAGSPTSTEEGSPA

ACCGTCCGAGGGTAGCGCACCAGGTACTTCTACCGA



GSPTSTEEGSTSSTAESPGP

ACCTTCCGAGGGCAGCGCACCAGGTACTTCTGAAAG



GSTSESPSGTAPGTSPSGES

CGCTACCCCTGAGTCCGGCCCAGGTACTTCTGAAAG



STAPGTPGSGTASSSPGSST

CGCTACTCCTGAATCCGGTCCAGGTACCTCTACTGAA



PSGATGSPGSSPSASTGTG

CCTTCCGAAGGCAGCGCTCCAGGTACCTCTACCGAA



PGSEPATSGSETPGTSESAT

CCGTCCGAGGGCAGCGCACCAGGTACTTCTGAAAGC



PESGPGSEPATSGSETPGST

GCAACCCCTGAATCCGGTCCAGGTACTTCTACTGAA



SSTAESPGPGSTSSTAESPG

CCTTCCGAAGGTAGCGCTCCAGGTAGCGAACCTGCT



PGTSPSGESSTAPGSEPATS

ACTTCTGGTTCTGAAACCCCAGGTAGCCCGGCTGGC



GSETPGSEPATSGSETPGTS

TCTCCGACCTCCACCGAGGAAGGTAGCTCTACCCCG



TEPSEGSAPGSTSSTAESPG

TCTGGTGCTACTGGTTCTCCAGGTACTCCGGGCAGCG



PGTSTPESGSASPGSTSESP

GTACTGCTTCTTCCTCTCCAGGTAGCTCTACCCCTTC



SGTAPGTSTEPSEGSAPGT

TGGTGCTACTGGCTCTCCAGGTACCTCTACCGAACCG



STEPSEGSAPGTSTEPSEGS

TCCGAGGGTAGCGCACCAGGTACCTCTACTGAACCG



APGSSTPSGATGSPGSSPSA

TCTGAGGGTAGCGCTCCAGGTAGCGAACCGGCAACC



STGTGPGASPGTSSTGSPG

TCCGGTTCTGAAACTCCAGGTAGCCCTGCTGGCTCTC



SEPATSGSETPGTSESATPE

CGACTTCTACTGAGGAAGGTAGCCCGGCTGGTTCTC



SGPGSPAGSPTSTEEGSSTP

CGACTTCTACTGAGGAAGGTACTTCTACCGAACCTTC



SGATGSPGSSPSASTGTGP

CGAAGGTAGCGCTCCAGGTGCAAGCGCAAGCGGCG



GASPGTSSTGSPGTSESATP

CGCCAAGCACGGGAGGTACTTCTGAAAGCGCTACTC



ESGPGTSTEPSEGSAPGTST

CTGAGTCCGGCCCAGGTAGCCCGGCTGGCTCTCCGA



EPSEGSAP

CTTCCACCGAGGAAGGTAGCCCGGCTGGCTCTCCAA





CTTCTACTGAAGAAGGTTCTACCAGCTCTACCGCTGA





ATCTCCTGGCCCAGGTTCTACTAGCGAATCTCCGTCT





GGCACCGCACCAGGTACTTCCCCTAGCGGTGAATCT





TCTACTGCACCAGGTACCCCTGGCAGCGGTACCGCT





TCTTCCTCTCCAGGTAGCTCTACCCCGTCTGGTGCTA





CTGGCTCTCCAGGTTCTAGCCCGTCTGCATCTACCGG





TACCGGCCCAGGTAGCGAACCGGCAACCTCCGGCTC





TGAAACTCCAGGTACTTCTGAAAGCGCTACTCCGGA





ATCCGGCCCAGGTAGCGAACCGGCTACTTCCGGCTC





TGAAACCCCAGGTTCCACCAGCTCTACTGCAGAATC





TCCGGGCCCAGGTTCTACTAGCTCTACTGCAGAATCT





CCGGGTCCAGGTACTTCTCCTAGCGGCGAATCTTCTA





CCGCTCCAGGTAGCGAACCGGCAACCTCTGGCTCTG





AAACTCCAGGTAGCGAACCTGCAACCTCCGGCTCTG





AAACCCCAGGTACTTCTACTGAACCTTCTGAGGGCA





GCGCACCAGGTTCTACCAGCTCTACCGCAGAATCTC





CTGGTCCAGGTACCTCTACTCCGGAAAGCGGCTCTG





CATCTCCAGGTTCTACTAGCGAATCTCCTTCTGGCAC





TGCACCAGGTACTTCTACCGAACCGTCCGAAGGCAG





CGCTCCAGGTACCTCTACTGAACCTTCCGAGGGCAG





CGCTCCAGGTACCTCTACCGAACCTTCTGAAGGTAG





CGCACCAGGTAGCTCTACTCCGTCTGGTGCAACCGG





CTCCCCAGGTTCTAGCCCGTCTGCTTCCACTGGTACT





GGCCCAGGTGCTTCCCCGGGCACCAGCTCTACTGGT





TCTCCAGGTAGCGAACCTGCTACCTCCGGTTCTGAA





ACCCCAGGTACCTCTGAAAGCGCAACTCCGGAGTCT





GGTCCAGGTAGCCCTGCAGGTTCTCCTACCTCCACTG





AGGAAGGTAGCTCTACTCCGTCTGGTGCAACCGGCT





CCCCAGGTTCTAGCCCGTCTGCTTCCACTGGTACTGG





CCCAGGTGCTTCCCCGGGCACCAGCTCTACTGGTTCT





CCAGGTACCTCTGAAAGCGCTACTCCGGAGTCTGGC





CCAGGTACCTCTACTGAACCGTCTGAGGGTAGCGCT





CCAGGTACTTCTACTGAACCGTCCGAAGGTAGCGCA





CCA





hGH-
FPTIPLSRLFDNAMLRAHR
727
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
728


AM1318
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT



EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT



PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG



SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT



ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG



DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG



TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC



DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA



DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG



GFGGTSTEPSEGSAPGSEP

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT



ATSGSETPGSPAGSPTSTEE

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG



GSTSSTAESPGPGTSTPESG

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA



SASPGSTSESPSGTAPGSTS

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA



ESPSGTAPGTSTPESGSASP

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT



GTSTPESGSASPGSEPATSG

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTACTT



SETPGTSESATPESGPGSPA

CTACTGAACCGTCTGAAGGCAGCGCACCAGGTAGCG



GSPTSTEEGTSTEPSEGSAP

AACCGGCTACTTCCGGTTCTGAAACCCCAGGTAGCC



GTSESATPESGPGTSTEPSE

CAGCAGGTTCTCCAACTTCTACTGAAGAAGGTTCTA



GSAPGTSTEPSEGSAPGSP

CCAGCTCTACCGCAGAATCTCCTGGTCCAGGTACCTC



AGSPTSTEEGTSTEPSEGSA

TACTCCGGAAAGCGGCTCTGCATCTCCAGGTTCTACT



PGTSTEPSEGSAPGTSESAT

AGCGAATCTCCTTCTGGCACTGCACCAGGTTCTACTA



PESGPGTSESATPESGPGTS

GCGAATCCCCGTCTGGTACTGCTCCAGGTACTTCTAC



TEPSEGSAPGTSTEPSEGSA

TCCTGAAAGCGGTTCCGCTTCTCCAGGTACCTCTACT



PGTSESATPESGPGTSTEPS

CCGGAAAGCGGTTCTGCATCTCCAGGTAGCGAACCG



EGSAPGSEPATSGSETPGSP

GCAACCTCCGGCTCTGAAACCCCAGGTACCTCTGAA



AGSPTSTEEGSSTPSGATG

AGCGCTACTCCTGAATCCGGCCCAGGTAGCCCGGCA



SPGTPGSGTASSSPGSSTPS

GGTTCTCCGACTTCCACTGAGGAAGGTACCTCTACTG



GATGSPGTSTEPSEGSAPG

AACCTTCTGAGGGCAGCGCTCCAGGTACTTCTGAAA



TSTEPSEGSAPGSEPATSGS

GCGCTACCCCGGAGTCCGGTCCAGGTACTTCTACTG



ETPGSPAGSPTSTEEGSPA

AACCGTCCGAAGGTAGCGCACCAGGTACTTCTACCG



GSPTSTEEGTSTEPSEGSAP

AACCGTCCGAGGGTAGCGCACCAGGTAGCCCAGCAG



GPEPTGPAPSGGSEPATSG

GTTCTCCTACCTCCACCGAGGAAGGTACTTCTACCGA



SETPGTSESATPESGPGSPA

ACCGTCCGAGGGTAGCGCACCAGGTACTTCTACCGA



GSPTSTEEGTSESATPESGP

ACCTTCCGAGGGCAGCGCACCAGGTACTTCTGAAAG



GSPAGSPTSTEEGSPAGSPT

CGCTACCCCTGAGTCCGGCCCAGGTACTTCTGAAAG



STEEGTSESATPESGPGSPA

CGCTACTCCTGAATCCGGTCCAGGTACCTCTACTGAA



GSPTSTEEGSPAGSPTSTEE

CCTTCCGAAGGCAGCGCTCCAGGTACCTCTACCGAA



GSTSSTAESPGPGSTSESPS

CCGTCCGAGGGCAGCGCACCAGGTACTTCTGAAAGC



GTAPGTSPSGESSTAPGSTS

GCAACCCCTGAATCCGGTCCAGGTACTTCTACTGAA



ESPSGTAPGSTSESPSGTAP

CCTTCCGAAGGTAGCGCTCCAGGTAGCGAACCTGCT



GTSPSGESSTAPGTSTEPSE

ACTTCTGGTTCTGAAACCCCAGGTAGCCCGGCTGGC



GSAPGTSESATPESGPGTS

TCTCCGACCTCCACCGAGGAAGGTAGCTCTACCCCG



ESATPESGPGSEPATSGSET

TCTGGTGCTACTGGTTCTCCAGGTACTCCGGGCAGCG



PGTSESATPESGPGTSESAT

GTACTGCTTCTTCCTCTCCAGGTAGCTCTACCCCTTC



PESGPGTSTEPSEGSAPGTS

TGGTGCTACTGGCTCTCCAGGTACCTCTACCGAACCG



ESATPESGPGTSTEPSEGSA

TCCGAGGGTAGCGCACCAGGTACCTCTACTGAACCG



PGTSPSGESSTAPGTSPSGE

TCTGAGGGTAGCGCTCCAGGTAGCGAACCGGCAACC



SSTAPGTSPSGESSTAPGTS

TCCGGTTCTGAAACTCCAGGTAGCCCTGCTGGCTCTC



TEPSEGSAPGSPAGSPTSTE

CGACTTCTACTGAGGAAGGTAGCCCGGCTGGTTCTC



EGTSTEPSEGSAPGSSPSAS

CGACTTCTACTGAGGAAGGTACTTCTACCGAACCTTC



TGTGPGSSTPSGATGSPGS

CGAAGGTAGCGCTCCAGGTCCAGAACCAACGGGGCC



STPSGATGSPGSSTPSGAT

GGCCCCAAGCGGAGGTAGCGAACCGGCAACCTCCG



GSPGSSTPSGATGSPGASP

GCTCTGAAACCCCAGGTACCTCTGAAAGCGCTACTC



GTSSTGSPGASASGAPSTG

CTGAATCCGGCCCAGGTAGCCCGGCAGGTTCTCCGA



GTSPSGESSTAPGSTSSTAE

CTTCCACTGAGGAAGGTACTTCTGAAAGCGCTACTC



SPGPGTSPSGESSTAPGTSE

CTGAGTCCGGCCCAGGTAGCCCGGCTGGCTCTCCGA



SATPESGPGTSTEPSEGSAP

CTTCCACCGAGGAAGGTAGCCCGGCTGGCTCTCCAA



GTSTEPSEGSAPGSSPSAST

CTTCTACTGAAGAAGGTACTTCTGAAAGCGCTACTC



GTGPGSSTPSGATGSPGAS

CTGAGTCCGGCCCAGGTAGCCCGGCTGGCTCTCCGA



PGTSSTGSPGTSTPESGSAS

CTTCCACCGAGGAAGGTAGCCCGGCTGGCTCTCCAA



PGTSPSGESSTAPGTSPSGE

CTTCTACTGAAGAAGGTTCTACCAGCTCTACCGCTGA



SSTAPGTSESATPESGPGSE

ATCTCCTGGCCCAGGTTCTACTAGCGAATCTCCGTCT



PATSGSETPGTSTEPSEGSA

GGCACCGCACCAGGTACTTCCCCTAGCGGTGAATCT



PGSTSESPSGTAPGSTSESP

TCTACTGCACCAGGTTCTACCAGCGAATCTCCTTCTG



SGTAPGTSTPESGSASPGSP

GCACCGCTCCAGGTTCTACTAGCGAATCCCCGTCTG



AGSPTSTEEGTSESATPESG

GTACCGCACCAGGTACTTCTCCTAGCGGCGAATCTTC



PGTSTEPSEGSAPGSPAGSP

TACCGCACCAGGTACTTCTACCGAACCTTCCGAGGG



TSTEEGTSESATPESGPGSE

CAGCGCACCAGGTACTTCTGAAAGCGCTACCCCTGA



PATSGSETPGSSTPSGATGS

GTCCGGCCCAGGTACTTCTGAAAGCGCTACTCCTGA



PGASPGTSSTGSPGSSTPSG

ATCCGGTCCAGGTAGCGAACCGGCAACCTCTGGCTC



ATGSPGSTSESPSGTAPGTS

TGAAACCCCAGGTACCTCTGAAAGCGCTACTCCGGA



PSGESSTAPGSTSSTAESPG

ATCTGGTCCAGGTACTTCTGAAAGCGCTACTCCGGA



PGSSTPSGATGSPGASPGT

ATCCGGTCCAGGTACCTCTACTGAACCTTCTGAGGG



SSTGSPGTPGSGTASSSPGS

CAGCGCTCCAGGTACTTCTGAAAGCGCTACCCCGGA



PAGSPTSTEEGSPAGSPTST

GTCCGGTCCAGGTACTTCTACTGAACCGTCCGAAGG



EEGTSTEPSEGSAP

TAGCGCACCAGGTACCTCCCCTAGCGGCGAATCTTC





TACTGCTCCAGGTACCTCTCCTAGCGGCGAATCTTCT





ACCGCTCCAGGTACCTCCCCTAGCGGTGAATCTTCTA





CCGCACCAGGTACTTCTACCGAACCGTCCGAGGGTA





GCGCACCAGGTAGCCCAGCAGGTTCTCCTACCTCCA





CCGAGGAAGGTACTTCTACCGAACCGTCCGAGGGTA





GCGCACCAGGTTCTAGCCCTTCTGCTTCCACCGGTAC





CGGCCCAGGTAGCTCTACTCCGTCTGGTGCAACTGG





CTCTCCAGGTAGCTCTACTCCGTCTGGTGCAACCGGC





TCCCCAGGTAGCTCTACCCCGTCTGGTGCTACCGGCT





CTCCAGGTAGCTCTACCCCGTCTGGTGCAACCGGCTC





CCCAGGTGCATCCCCGGGTACTAGCTCTACCGGTTCT





CCAGGTGCAAGCGCAAGCGGCGCGCCAAGCACGGG





AGGTACTTCTCCGAGCGGTGAATCTTCTACCGCACC





AGGTTCTACTAGCTCTACCGCTGAATCTCCGGGCCCA





GGTACTTCTCCGAGCGGTGAATCTTCTACTGCTCCAG





GTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCAG





GTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCAG





GTACTTCTACTGAACCGTCCGAAGGTAGCGCACCAG





GTTCTAGCCCTTCTGCATCTACTGGTACTGGCCCAGG





TAGCTCTACTCCTTCTGGTGCTACCGGCTCTCCAGGT





GCTTCTCCGGGTACTAGCTCTACCGGTTCTCCAGGTA





CTTCTACTCCGGAAAGCGGTTCCGCATCTCCAGGTAC





TTCTCCTAGCGGTGAATCTTCTACTGCTCCAGGTACC





TCTCCTAGCGGCGAATCTTCTACTGCTCCAGGTACTT





CTGAAAGCGCAACCCCTGAATCCGGTCCAGGTAGCG





AACCGGCTACTTCTGGCTCTGAGACTCCAGGTACTTC





TACCGAACCGTCCGAAGGTAGCGCACCAGGTTCTAC





CAGCGAATCCCCTTCTGGTACTGCTCCAGGTTCTACC





AGCGAATCCCCTTCTGGCACCGCACCAGGTACTTCT





ACCCCTGAAAGCGGCTCCGCTTCTCCAGGTAGCCCG





GCAGGCTCTCCGACCTCTACTGAGGAAGGTACTTCT





GAAAGCGCAACCCCGGAGTCCGGCCCAGGTACCTCT





ACCGAACCGTCTGAGGGCAGCGCACCAGGTAGCCCT





GCTGGCTCTCCAACCTCCACCGAAGAAGGTACCTCT





GAAAGCGCAACCCCTGAATCCGGCCCAGGTAGCGAA





CCGGCAACCTCCGGTTCTGAAACCCCAGGTAGCTCT





ACCCCGTCTGGTGCTACCGGTTCCCCAGGTGCTTCTC





CTGGTACTAGCTCTACCGGTTCTCCAGGTAGCTCTAC





CCCGTCTGGTGCTACTGGCTCTCCAGGTTCTACTAGC





GAATCCCCGTCTGGTACTGCTCCAGGTACTTCCCCTA





GCGGTGAATCTTCTACTGCTCCAGGTTCTACCAGCTC





TACCGCAGAATCTCCGGGTCCAGGTAGCTCTACCCC





TTCTGGTGCAACCGGCTCTCCAGGTGCATCCCCGGGT





ACCAGCTCTACCGGTTCTCCAGGTACTCCGGGTAGC





GGTACCGCTTCTTCCTCTCCAGGTAGCCCTGCTGGCT





CTCCGACTTCTACTGAGGAAGGTAGCCCGGCTGGTT





CTCCGACTTCTACTGAGGAAGGTACTTCTACCGAAC





CTTCCGAAGGTAGCGCTCCA





*Sequence name reflects N- to C-terminus configuration of the growth factor and XTEN components













TABLE 36







Exemplary GHXTEN comprising growth hormones and two XTEN sequences











GHXTEN






Name*
Amino Acid Sequence
SEQ ID NO:
DNA Nucleotide Sequence
SEQ ID NO:














AE48-
MAEPAGSPTSTEEGT
729
ATGGCTGAACCTGCTGGCTCTCCAAC
730


hGH-
PGSGTASSSPGSSTPS

CTCCACTGAGGAAGGTACCCCGGGTA


AE144
GATGSPGASPGTSST

GCGGTACTGCTTCTTCCTCTCCAGGTA



GSPGFPTIPLSRLFDN

GCTCTACCCCTTCTGGTGCAACCGGCT



AMLRAHRLHQLAFD

CTCCAGGTGCTTCTCCGGGCACCAGCT



TYQEFEEAYIPKEQK

CTACCGGTTCTCCAGGTTTTCCGACTA



YSFLQNPQTSLCFSE

TTCCGCTGTCTCGTCTGTTTGATAATG



SIPTPSNREETQQKS

CTATGCTGCGTGCGCACCGTCTGCACC



NLELLRISLLLIQSWL

AGCTGGCCTTTGATACTTACCAGGAA



EPVQFLRSVFANSLV

TTTGAAGAAGCcTACATTCCTAAAGAG



YGASDSNVYDLLKD

CAGAAGTACTCTTTCCTGCAAAACCC



LEEGIQTLMGRLEDG

ACAGACTTCTCTCTGCTTCAGCGAATC



SPRTGQIFKQTYSKF

TATTCCGACGCCTTCCAATCGCGAGG



DTNSHNDDALLKNY

AAACTCAGCAAAAGTCCAATCTGGAA



GLLYCFRKDMDKVE

CTACTCCGCATTTCTCTGCTTCTGATT



TFLRIVQCRSVEGSC

CAGAGCTGGCTAGAACCAGTGCAATT



GFGGSEPATSGSETP

TCTGCGTTCCGTCTTCGCCAATAGCCT



GTSESATPESGPGSE

AGTTTATGGCGCATCCGACAGCAACG



PATSGSETPGSPAGS

TATACGATCTCCTGAAAGATCTCGAG



PTSTEEGTSTEPSEGS

GAAGGCATTCAGACCCTGATGGGTCG



APGSEPATSGSETPG

TCTCGAGGATGGCTCTCCGCGTACTG



SEPATSGSETPGSEP

GTCAGATCTTCAAGCAGACTTACTCTA



ATSGSETPGTSTEPSE

AATTTGATACTAACAGCCACAATGAC



GSAPGTSESATPESG

GATGCGCTTCTAAAAAACTATGGTCT



PGSEPATSGSETPGT

GCTGTATTGTTTTCGTAAAGATATGGA



STEPSEGSAP

CAAAGTTGAAACCTTCCTGCGTATTGT





TCAGTGTCGTTCCGTTGAGGGCAGCT





GTGGTTTCTAAGGTGGTAGCGAACCG





GCAACTTCCGGCTCTGAAACCCCAGG





TACTTCTGAAAGCGCTACTCCTGAGTC





TGGCCCAGGTAGCGAACCTGCTACCT





CTGGCTCTGAAACCCCAGGTAGCCCG





GCAGGCTCTCCGACTTCCACCGAGGA





AGGTACCTCTACTGAACCTTCTGAGG





GTAGCGCTCCAGGTAGCGAACCGGCA





ACCTCTGGCTCTGAAACCCCAGGTAG





CGAACCTGCTACCTCCGGCTCTGAAA





CTCCAGGTAGCGAACCGGCTACTTCC





GGTTCTGAAACTCCAGGTACCTCTACC





GAACCTTCCGAAGGCAGCGCACCAGG





TACTTCTGAAAGCGCAACCCCTGAAT





CCGGTCCAGGTAGCGAACCGGCTACT





TCTGGCTCTGAGACTCCAGGTACTTCT





ACCGAACCGTCCGAAGGTAGCGCACCA





AM48-
MAEPAGSPTSTEEGA
731
ATGGCTGAACCTGCTGGCTCTCCAAC
732


hGH-
SPGTSSTGSPGSSTPS

CTCCACTGAGGAAGGTGCATCCCCGG


AE144
GATGSPGSSTPSGAT

GCACCAGCTCTACCGGTTCTCCAGGT



GSPGFPTIPLSRLFDN

AGCTCTACCCCGTCTGGTGCTACCGGC



AMLRAHRLHQLAFD

TCTCCAGGTAGCTCTACCCCGTCTGGT



TYQEFEEAYIPKEQK

GCTACTGGCTCTCCAGGTTTTCCGACT



YSFLQNPQTSLCFSE

ATTCCGCTGTCTCGTCTGTTTGATAAT



SIPTPSNREETQQKS

GCTATGCTGCGTGCGCACCGTCTGCA



NLELLRISLLLIQSWL

CCAGCTGGCCTTTGATACTTACCAGG



EPVQFLRSVFANSLV

AATTTGAAGAAGCcTACATTCCTAAAG



YGASDSNVYDLLKD

AGCAGAAGTACTCTTTCCTGCAAAAC



LEEGIQTLMGRLEDG

CCACAGACTTCTCTCTGCTTCAGCGAA



SPRTGQIFKQTYSKF

TCTATTCCGACGCCTTCCAATCGCGAG



DTNSHNDDALLKNY

GAAACTCAGCAAAAGTCCAATCTGGA



GLLYCFRKDMDKVE

ACTACTCCGCATTTCTCTGCTTCTGAT



TFLRIVQCRSVEGSC

TCAGAGCTGGCTAGAACCAGTGCAAT



GFGGSEPATSGSETP

TTCTGCGTTCCGTCTTCGCCAATAGCC



GTSESATPESGPGSE

TAGTTTATGGCGCATCCGACAGCAAC



PATSGSETPGSPAGS

GTATACGATCTCCTGAAAGATCTCGA



PTSTEEGTSTEPSEGS

GGAAGGCATTCAGACCCTGATGGGTC



APGSEPATSGSETPG

GTCTCGAGGATGGCTCTCCGCGTACT



SEPATSGSETPGSEP

GGTCAGATCTTCAAGCAGACTTACTCT



ATSGSETPGTSTEPSE

AAATTTGATACTAACAGCCACAATGA



GSAPGTSESATPESG

CGATGCGCTTCTAAAAAACTATGGTC



PGSEPATSGSETPGT

TGCTGTATTGTTTTCGTAAAGATATGG



STEPSEGSAP

ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTAGCGAAC





CGGCAACTTCCGGCTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGA





GTCTGGCCCAGGTAGCGAACCTGCTA





CCTCTGGCTCTGAAACCCCAGGTAGC





CCGGCAGGCTCTCCGACTTCCACCGA





GGAAGGTACCTCTACTGAACCTTCTG





AGGGTAGCGCTCCAGGTAGCGAACCG





GCAACCTCTGGCTCTGAAACCCCAGG





TAGCGAACCTGCTACCTCCGGCTCTG





AAACTCCAGGTAGCGAACCGGCTACT





TCCGGTTCTGAAACTCCAGGTACCTCT





ACCGAACCTTCCGAAGGCAGCGCACC





AGGTACTTCTGAAAGCGCAACCCCTG





AATCCGGTCCAGGTAGCGAACCGGCT





ACTTCTGGCTCTGAGACTCCAGGTACT





TCTACCGAACCGTCCGAAGGTAGCGC





ACCA





AE144-
GSEPATSGSETPGTS
733
GGTAGCGAACCGGCAACTTCCGGCTC
734


hGH-
ESATPESGPGSEPAT

TGAAACCCCAGGTACTTCTGAAAGCG


AE144
SGSETPGSPAGSPTST

CTACTCCTGAGTCTGGCCCAGGTAGC



EEGTSTEPSEGSAPG

GAACCTGCTACCTCTGGCTCTGAAAC



SEPATSGSETPGSEP

CCCAGGTAGCCCGGCAGGCTCTCCGA



ATSGSETPGSEPATS

CTTCCACCGAGGAAGGTACCTCTACT



GSETPGTSTEPSEGS

GAACCTTCTGAGGGTAGCGCTCCAGG



APGTSESATPESGPG

TAGCGAACCGGCAACCTCTGGCTCTG



SEPATSGSETPGTSTE

AAACCCCAGGTAGCGAACCTGCTACC



PSEGSAPGFPTIPLSR

TCCGGCTCTGAAACTCCAGGTAGCGA



LFDNAMLRAHRLHQ

ACCGGCTACTTCCGGTTCTGAAACTCC



LAFDTYQEFEEAYIP

AGGTACCTCTACCGAACCTTCCGAAG



KEQKYSFLQNPQTSL

GCAGCGCACCAGGTACTTCTGAAAGC



CFSESIPTPSNREETQ

GCAACCCCTGAATCCGGTCCAGGTAG



QKSNLELLRISLLLIQ

CGAACCGGCTACTTCTGGCTCTGAGA



SWLEPVQFLRSVFA

CTCCAGGTACTTCTACCGAACCGTCCG



NSLVYGASDSNVYD

AAGGTAGCGCACCAGGTTTTCCGACT



LLKDLEEGIQTLMGR

ATTCCGCTGTCTCGTCTGTTTGATAAT



LEDGSPRTGQIFKQT

GCTATGCTGCGTGCGCACCGTCTGCA



YSKFDTNSHNDDAL

CCAGCTGGCCTTTGATACTTACCAGG



LKNYGLLYCFRKDM

AATTTGAAGAAGCcTACATTCCTAAAG



DKVETFLRIVQCRSV

AGCAGAAGTACTCTTTCCTGCAAAAC



EGSCGFGGSEPATSG

CCACAGACTTCTCTCTGCTTCAGCGAA



SETPGTSESATPESGP

TCTATTCCGACGCCTTCCAATCGCGAG



GSEPATSGSETPGSP

GAAACTCAGCAAAAGTCCAATCTGGA



AGSPTSTEEGTSTEPS

ACTACTCCGCATTTCTCTGCTTCTGAT



EGSAPGSEPATSGSE

TCAGAGCTGGCTAGAACCAGTGCAAT



TPGSEPATSGSETPG

TTCTGCGTTCCGTCTTCGCCAATAGCC



SEPATSGSETPGTSTE

TAGTTTATGGCGCATCCGACAGCAAC



PSEGSAPGTSESATP

GTATACGATCTCCTGAAAGATCTCGA



ESGPGSEPATSGSET

GGAAGGCATTCAGACCCTGATGGGTC



PGTSTEPSEGSAP

GTCTCGAGGATGGCTCTCCGCGTACT





GGTCAGATCTTCAAGCAGACTTACTCT





AAATTTGATACTAACAGCCACAATGA





CGATGCGCTTCTAAAAAACTATGGTC





TGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTAGCGAAC





CGGCAACTTCCGGCTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGA





GTCTGGCCCAGGTAGCGAACCTGCTA





CCTCTGGCTCTGAAACCCCAGGTAGC





CCGGCAGGCTCTCCGACTTCCACCGA





GGAAGGTACCTCTACTGAACCTTCTG





AGGGTAGCGCTCCAGGTAGCGAACCG





GCAACCTCTGGCTCTGAAACCCCAGG





TAGCGAACCTGCTACCTCCGGCTCTG





AAACTCCAGGTAGCGAACCGGCTACT





TCCGGTTCTGAAACTCCAGGTACCTCT





ACCGAACCTTCCGAAGGCAGCGCACC





AGGTACTTCTGAAAGCGCAACCCCTG





AATCCGGTCCAGGTAGCGAACCGGCT





ACTTCTGGCTCTGAGACTCCAGGTACT





TCTACCGAACCGTCCGAAGGTAGCGC





ACCA





AE288-
GTSESATPESGPGSE
735
GGTACCTCTGAAAGCGCAACTCCTGA
736


hGH-
PATSGSETPGTSESA

GTCTGGCCCAGGTAGCGAACCTGCTA


AE144
TPESGPGSEPATSGS

CCTCCGGCTCTGAGACTCCAGGTACCT



ETPGTSESATPESGP

CTGAAAGCGCAACCCCGGAATCTGGT



GTSTEPSEGSAPGSP

CCAGGTAGCGAACCTGCAACCTCTGG



AGSPTSTEEGTSESA

CTCTGAAACCCCAGGTACCTCTGAAA



TPESGPGSEPATSGS

GCGCTACTCCTGAATCTGGCCCAGGT



ETPGTSESATPESGP

ACTTCTACTGAACCGTCCGAGGGCAG



GSPAGSPTSTEEGSP

CGCACCAGGTAGCCCTGCTGGCTCTC



AGSPTSTEEGTSTEPS

CAACCTCCACCGAAGAAGGTACCTCT



EGSAPGTSESATPES

GAAAGCGCAACCCCTGAATCCGGCCC



GPGTSESATPESGPG

AGGTAGCGAACCGGCAACCTCCGGTT



TSESATPESGPGSEP

CTGAAACCCCAGGTACTTCTGAAAGC



ATSGSETPGSEPATS

GCTACTCCTGAGTCCGGCCCAGGTAG



GSETPGSPAGSPTST

CCCGGCTGGCTCTCCGACTTCCACCGA



EEGTSTEPSEGSAPG

GGAAGGTAGCCCGGCTGGCTCTCCAA



TSTEPSEGSAPGSEP

CTTCTACTGAAGAAGGTACTTCTACCG



ATSGSETPGTSESAT

AACCTTCCGAGGGCAGCGCACCAGGT



PESGPGTSTEPSEGS

ACTTCTGAAAGCGCTACCCCTGAGTC



APGFPTIPLSRLFDNA

CGGCCCAGGTACTTCTGAAAGCGCTA



MLRAHRLHQLAFDT

CTCCTGAATCCGGTCCAGGTACTTCTG



YQEFEEAYIPKEQKY

AAAGCGCTACCCCGGAATCTGGCCCA



SFLQNPQTSLCFSESI

GGTAGCGAACCGGCTACTTCTGGTTCT



PTPSNREETQQKSNL

GAAACCCCAGGTAGCGAACCGGCTAC



ELLRISLLLIQSWLEP

CTCCGGTTCTGAAACTCCAGGTAGCC



VQFLRSVFANSLVY

CAGCAGGCTCTCCGACTTCCACTGAG



GASDSNVYDLLKDL

GAAGGTACTTCTACTGAACCTTCCGA



EEGIQTLMGRLEDGS

AGGCAGCGCACCAGGTACCTCTACTG



PRTGQIFKQTYSKFD

AACCTTCTGAGGGCAGCGCTCCAGGT



TNSHNDDALLKNYG

AGCGAACCTGCAACCTCTGGCTCTGA



LLYCFRKDMDKVET

AACCCCAGGTACCTCTGAAAGCGCTA



FLRIVQCRSVEGSCG

CTCCTGAATCTGGCCCAGGTACTTCTA



FGGSEPATSGSETPG

CTGAACCGTCCGAGGGCAGCGCACCA



TSESATPESGPGSEP

GGTTTTCCGACTATTCCGCTGTCTCGT



ATSGSETPGSPAGSP

CTGTTTGATAATGCTATGCTGCGTGCG



TSTEEGTSTEPSEGS

CACCGTCTGCACCAGCTGGCCTTTGAT



APGSEPATSGSETPG

ACTTACCAGGAATTTGAAGAAGCcTA



SEPATSGSETPGSEP

CATTCCTAAAGAGCAGAAGTACTCTT



ATSGSETPGTSTEPSE

TCCTGCAAAACCCACAGACTTCTCTCT



GSAPGTSESATPESG

GCTTCAGCGAATCTATTCCGACGCCTT



PGSEPATSGSETPGT

CCAATCGCGAGGAAACTCAGCAAAAG



STEPSEGSAP

TCCAATCTGGAACTACTCCGCATTTCT





CTGCTTCTGATTCAGAGCTGGCTAGA





ACCAGTGCAATTTCTGCGTTCCGTCTT





CGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTG





AAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCT





CTCCGCGTACTGGTCAGATCTTCAAGC





AGACTTACTCTAAATTTGATACTAACA





GCCACAATGACGATGCGCTTCTAAAA





AACTATGGTCTGCTGTATTGTTTTCGT





AAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGT





TGAGGGCAGCTGTGGTTTCTAAGGTG





GTAGCGAACCGGCAACTTCCGGCTCT





GAAACCCCAGGTACTTCTGAAAGCGC





TACTCCTGAGTCTGGCCCAGGTAGCG





AACCTGCTACCTCTGGCTCTGAAACCC





CAGGTAGCCCGGCAGGCTCTCCGACT





TCCACCGAGGAAGGTACCTCTACTGA





ACCTTCTGAGGGTAGCGCTCCAGGTA





GCGAACCGGCAACCTCTGGCTCTGAA





ACCCCAGGTAGCGAACCTGCTACCTC





CGGCTCTGAAACTCCAGGTAGCGAAC





CGGCTACTTCCGGTTCTGAAACTCCAG





GTACCTCTACCGAACCTTCCGAAGGC





AGCGCACCAGGTACTTCTGAAAGCGC





AACCCCTGAATCCGGTCCAGGTAGCG





AACCGGCTACTTCTGGCTCTGAGACTC





CAGGTACTTCTACCGAACCGTCCGAA





GGTAGCGCACCA





AF144-
GTSTPESGSASPGTSP
737
GGTACTTCTACTCCGGAAAGCGGTTC
738


hGH-
SGESSTAPGTSPSGES

CGCATCTCCAGGTACTTCTCCTAGCGG


AE144
STAPGSTSSTAESPGP

TGAATCTTCTACTGCTCCAGGTACCTC



GSTSESPSGTAPGSTS

TCCTAGCGGCGAATCTTCTACTGCTCC



STAESPGPGTSPSGES

AGGTTCTACCAGCTCTACCGCTGAATC



STAPGTSTPESGSASP

TCCTGGCCCAGGTTCTACCAGCGAAT



GSTSSTAESPGPGTSP

CCCCGTCTGGCACCGCACCAGGTTCT



SGESSTAPGTSPSGES

ACTAGCTCTACCGCAGAATCTCCGGG



STAPGTSPSGESSTAP

TCCAGGTACTTCCCCTAGCGGTGAATC



GFPTIPLSRLFDNAM

TTCTACTGCTCCAGGTACCTCTACTCC



LRAHRLHQLAFDTY

GGAAAGCGGCTCCGCATCTCCAGGTT



QEFEEAYIPKEQKYS

CTACTAGCTCTACTGCTGAATCTCCTG



FLQNPQTSLCFSESIP

GTCCAGGTACCTCCCCTAGCGGCGAA



TPSNREETQQKSNLE

TCTTCTACTGCTCCAGGTACCTCTCCT



LLRISLLLIQSWLEPV

AGCGGCGAATCTTCTACCGCTCCAGG



QFLRSVFANSLVYG

TACCTCCCCTAGCGGTGAATCTTCTAC



ASDSNVYDLLKDLE

CGCACCAGGTTTTCCGACTATTCCGCT



EGIQTLMGRLEDGSP

GTCTCGTCTGTTTGATAATGCTATGCT



RTGQIFKQTYSKFDT

GCGTGCGCACCGTCTGCACCAGCTGG



NSHNDDALLKNYGL

CCTTTGATACTTACCAGGAATTTGAAG



LYCFRKDMDKVETF

AAGCcTACATTCCTAAAGAGCAGAAG



LRIVQCRSVEGSCGF

TACTCTTTCCTGCAAAACCCACAGACT



GGSEPATSGSETPGT

TCTCTCTGCTTCAGCGAATCTATTCCG



SESATPESGPGSEPA

ACGCCTTCCAATCGCGAGGAAACTCA



TSGSETPGSPAGSPTS

GCAAAAGTCCAATCTGGAACTACTCC



TEEGTSTEPSEGSAP

GCATTTCTCTGCTTCTGATTCAGAGCT



GSEPATSGSETPGSE

GGCTAGAACCAGTGCAATTTCTGCGT



PATSGSETPGSEPAT

TCCGTCTTCGCCAATAGCCTAGTTTAT



SGSETPGTSTEPSEGS

GGCGCATCCGACAGCAACGTATACGA



APGTSESATPESGPG

TCTCCTGAAAGATCTCGAGGAAGGCA



SEPATSGSETPGTSTE

TTCAGACCCTGATGGGTCGTCTCGAG



PSEGSAP

GATGGCTCTCCGCGTACTGGTCAGAT





CTTCAAGCAGACTTACTCTAAATTTGA





TACTAACAGCCACAATGACGATGCGC





TTCTAAAAAACTATGGTCTGCTGTATT





GTTTTCGTAAAGATATGGACAAAGTT





GAAACCTTCCTGCGTATTGTTCAGTGT





CGTTCCGTTGAGGGCAGCTGTGGTTTC





TAAGGTGGTAGCGAACCGGCAACTTC





CGGCTCTGAAACCCCAGGTACTTCTG





AAAGCGCTACTCCTGAGTCTGGCCCA





GGTAGCGAACCTGCTACCTCTGGCTCT





GAAACCCCAGGTAGCCCGGCAGGCTC





TCCGACTTCCACCGAGGAAGGTACCT





CTACTGAACCTTCTGAGGGTAGCGCT





CCAGGTAGCGAACCGGCAACCTCTGG





CTCTGAAACCCCAGGTAGCGAACCTG





CTACCTCCGGCTCTGAAACTCCAGGT





AGCGAACCGGCTACTTCCGGTTCTGA





AACTCCAGGTACCTCTACCGAACCTTC





CGAAGGCAGCGCACCAGGTACTTCTG





AAAGCGCAACCCCTGAATCCGGTCCA





GGTAGCGAACCGGCTACTTCTGGCTC





TGAGACTCCAGGTACTTCTACCGAAC





CGTCCGAAGGTAGCGCACCA





AD576-
GSSESGSSEGGPGSG
739
GGTTCCTCTGAAAGCGGTTCTTCCGAA
740


hGH-
GEPSESGSSGSSESGS

GGTGGTCCAGGTTCCTCTGAAAGCGG


AE144
SEGGPGSSESGSSEG

TTCTTCTGAGGGTGGTCCAGGTGAATC



GPGSSESGSSEGGPG

TCCGGGTGGCTCCAGCGGTTCCGAGT



SSESGSSEGGPGSSES

CAGGTTCTGGTGGCGAACCTTCCGAG



GSSEGGPGESPGGSS

TCTGGTAGCTCAGGTGAATCTCCGGG



GSESGSEGSSGPGES

TGGTTCTAGCGGTTCCGAGTCAGGTG



SGSSESGSSEGGPGS

AATCTCCGGGTGGTTCCAGCGGTTCTG



SESGSSEGGPGSSES

AGTCAGGTTCCTCCGAAAGCGGTTCTT



GSSEGGPGSGGEPSE

CTGAGGGCGGTCCAGGTTCCTCCGAA



SGSSGESPGGSSGSE

AGCGGTTCTTCCGAGGGCGGTCCAGG



SGESPGGSSGSESGS

TTCTTCTGAAAGCGGTTCTTCCGAGGG



GGEPSESGSSGSSES

CGGTCCAGGTGAATCTCCTGGTGGTTC



GSSEGGPGSGGEPSE

CAGCGGTTCCGAGTCAGGTGAATCTC



SGSSGSGGEPSESGS

CAGGTGGCTCTAGCGGTTCCGAGTCA



SGSEGSSGPGESSGE

GGTGAATCTCCTGGTGGTTCTAGCGGT



SPGGSSGSESGSGGE

TCTGAATCAGGTTCCTCCGAAAGCGG



PSESGSSGSGGEPSES

TTCTTCTGAGGGCGGTCCAGGTTCCTC



GSSGSGGEPSESGSS

CGAAAGCGGTTCTTCCGAGGGCGGTC



GSSESGSSEGGPGES

CAGGTTCTTCTGAAAGCGGTTCTTCCG



PGGSSGSESGESPGG

AGGGCGGTCCAGGTTCCTCTGAAAGC



SSGSESGESPGGSSG

GGTTCTTCTGAGGGCGGTCCAGGTTCT



SESGESPGGSSGSES

TCCGAAAGCGGTTCTTCCGAGGGCGG



GESPGGSSGSESGSS

TCCAGGTTCTTCCGAAAGCGGTTCTTC



ESGSSEGGPGSGGEP

TGAAGGCGGTCCAGGTTCTGGTGGCG



SESGSSGSEGSSGPG

AACCGTCCGAGTCTGGTAGCTCAGGT



ESSGSSESGSSEGGP

GAATCTCCGGGTGGCTCTAGCGGTTC



GSGGEPSESGSSGSS

CGAGTCAGGTGAATCTCCTGGTGGTT



ESGSSEGGPGSGGEP

CCAGCGGTTCCGAGTCAGGTTCCGGT



SESGSSGESPGGSSG

GGCGAACCGTCCGAATCTGGTAGCTC



SESGESPGGSSGSES

AGGTAGCGAAGGTTCTTCTGGTCCAG



GSSESGSSEGGPGSG

GCGAATCTTCAGGTTCCTCTGAAAGC



GEPSESGSSGSSESGS

GGTTCTTCTGAGGGCGGTCCAGGTTCC



SEGGPGSGGEPSESG

GGTGGCGAACCGTCCGAATCTGGTAG



SSGSGGEPSESGSSG

CTCAGGTAGCGAAGGTTCTTCTGGTCC



ESPGGSSGSESGSEG

AGGCGAATCTTCAGGTTCCTCTGAAA



SSGPGESSGSSESGSS

GCGGTTCTTCTGAGGGCGGTCCAGGT



EGGPGSEGSSGPGES

TCCGGTGGCGAACCTTCCGAATCTGG



SGFPTIPLSRLFDNA

TAGCTCAGGTGAATCTCCGGGTGGTT



MLRAHRLHQLAFDT

CTAGCGGTTCTGAGTCAGGTTCTGGTG



YQEFEEAYIPKEQKY

GTGAACCTTCCGAGTCTGGTAGCTCA



SFLQNPQTSLCFSESI

GGTTCTGGTGGCGAACCATCCGAGTC



PTPSNREETQQKSNL

TGGTAGCTCAGGTTCTTCCGAAAGCG



ELLRISLLLIQSWLEP

GTTCTTCCGAAGGCGGTCCAGGTTCTG



VQFLRSVFANSLVY

GTGGTGAACCGTCCGAATCTGGTAGC



GASDSNVYDLLKDL

TCAGGTTCTGGTGGCGAACCATCCGA



EEGIQTLMGRLEDGS

ATCTGGTAGCTCAGGTAGCGAAGGTT



PRTGQIFKQTYSKFD

CTTCTGGTCCTGGCGAATCTTCAGGTG



TNSHNDDALLKNYG

AATCTCCAGGTGGCTCTAGCGGTTCC



LLYCFRKDMDKVET

GAATCAGGTAGCGAAGGTTCTTCCGG



FLRIVQCRSVEGSCG

TCCAGGTGAATCTTCAGGTAGCGAAG



FGGSEPATSGSETPG

GTTCTTCTGGTCCTGGTGAATCCTCAG



TSESATPESGPGSEP

GTTCCGGTGGCGAACCATCTGAATCT



ATSGSETPGSPAGSP

GGTAGCTCAGGTTCCTCTGAAAGCGG



TSTEEGTSTEPSEGS

TTCTTCCGAAGGTGGTCCAGGTTCCTC



APGSEPATSGSETPG

TGAAAGCGGTTCTTCTGAGGGTGGTC



SEPATSGSETPGSEP

CAGGTGAATCTCCGGGTGGCTCCAGC



ATSGSETPGTSTEPSE

GGTTCCGAGTCAGGTTCTGGTGGCGA



GSAPGTSESATPESG

ACCATCCGAATCTGGTAGCTCAGGTA



PGSEPATSGSETPGT

GCGAAGGTTCTTCTGGTCCTGGCGAA



STEPSEGSAP

TCTTCAGGTGAATCTCCAGGTGGCTCT





AGCGGTTCCGAATCAGGTAGCGAAGG





TTCTTCCGGTCCTGGTGAGTCTTCAGG





TGAATCTCCAGGTGGCTCTAGCGGTTC





CGAGTCAGGTAGCGAAGGTTCTTCTG





GTCCTGGCGAGTCCTCAGGTTTTCCGA





CTATTCCGCTGTCTCGTCTGTTTGATA





ATGCTATGCTGCGTGCGCACCGTCTGC





ACCAGCTGGCCTTTGATACTTACCAG





GAATTTGAAGAAGCcTACATTCCTAAA





GAGCAGAAGTACTCTTTCCTGCAAAA





CCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGA





GGAAACTCAGCAAAAGTCCAATCTGG





AACTACTCCGCATTTCTCTGCTTCTGA





TTCAGAGCTGGCTAGAACCAGTGCAA





TTTCTGCGTTCCGTCTTCGCCAATAGC





CTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCG





AGGAAGGCATTCAGACCCTGATGGGT





CGTCTCGAGGATGGCTCTCCGCGTACT





GGTCAGATCTTCAAGCAGACTTACTCT





AAATTTGATACTAACAGCCACAATGA





CGATGCGCTTCTAAAAAACTATGGTC





TGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTAGCGAAC





CGGCAACTTCCGGCTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGA





GTCTGGCCCAGGTAGCGAACCTGCTA





CCTCTGGCTCTGAAACCCCAGGTAGC





CCGGCAGGCTCTCCGACTTCCACCGA





GGAAGGTACCTCTACTGAACCTTCTG





AGGGTAGCGCTCCAGGTAGCGAACCG





GCAACCTCTGGCTCTGAAACCCCAGG





TAGCGAACCTGCTACCTCCGGCTCTG





AAACTCCAGGTAGCGAACCGGCTACT





TCCGGTTCTGAAACTCCAGGTACCTCT





ACCGAACCTTCCGAAGGCAGCGCACC





AGGTACTTCTGAAAGCGCAACCCCTG





AATCCGGTCCAGGTAGCGAACCGGCT





ACTTCTGGCTCTGAGACTCCAGGTACT





TCTACCGAACCGTCCGAAGGTAGCGC





ACCA





AE576-
GSPAGSPTSTEEGTS
741
GGTAGCCCGGCTGGCTCTCCTACCTCT
742


hGH-
ESATPESGPGTSTEPS

ACTGAGGAAGGTACTTCTGAAAGCGC


AE144
EGSAPGSPAGSPTST

TACTCCTGAGTCTGGTCCAGGTACCTC



EEGTSTEPSEGSAPG

TACTGAACCGTCCGAAGGTAGCGCTC



TSTEPSEGSAPGTSES

CAGGTAGCCCAGCAGGCTCTCCGACT



ATPESGPGSEPATSG

TCCACTGAGGAAGGTACTTCTACTGA



SETPGSEPATSGSETP

ACCTTCCGAAGGCAGCGCACCAGGTA



GSPAGSPTSTEEGTS

CCTCTACTGAACCTTCTGAGGGCAGC



ESATPESGPGTSTEPS

GCTCCAGGTACTTCTGAAAGCGCTAC



EGSAPGTSTEPSEGS

CCCGGAATCTGGCCCAGGTAGCGAAC



APGSPAGSPTSTEEG

CGGCTACTTCTGGTTCTGAAACCCCAG



TSTEPSEGSAPGTSTE

GTAGCGAACCGGCTACCTCCGGTTCT



PSEGSAPGTSESATP

GAAACTCCAGGTAGCCCGGCAGGCTC



ESGPGTSTEPSEGSA

TCCGACCTCTACTGAGGAAGGTACTT



PGTSESATPESGPGS

CTGAAAGCGCAACCCCGGAGTCCGGC



EPATSGSETPGTSTEP

CCAGGTACCTCTACCGAACCGTCTGA



SEGSAPGTSTEPSEG

GGGCAGCGCACCAGGTACTTCTACCG



SAPGTSESATPESGP

AACCGTCCGAGGGTAGCGCACCAGGT



GTSESATPESGPGSP

AGCCCAGCAGGTTCTCCTACCTCCACC



AGSPTSTEEGTSESA

GAGGAAGGTACTTCTACCGAACCGTC



TPESGPGSEPATSGS

CGAGGGTAGCGCACCAGGTACCTCTA



ETPGTSESATPESGP

CTGAACCTTCTGAGGGCAGCGCTCCA



GTSTEPSEGSAPGTS

GGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACC



EGSAPGTSTEPSEGS

GTCCGAAGGTAGCGCACCAGGTACTT



APGTSTEPSEGSAPG

CTGAAAGCGCAACCCCTGAATCCGGT



TSTEPSEGSAPGSPA

CCAGGTAGCGAACCGGCTACTTCTGG



GSPTSTEEGTSTEPSE

CTCTGAGACTCCAGGTACTTCTACCGA



GSAPGTSESATPESG

ACCGTCCGAAGGTAGCGCACCAGGTA



PGSEPATSGSETPGT

CTTCTACTGAACCGTCTGAAGGTAGC



SESATPESGPGSEPA

GCACCAGGTACTTCTGAAAGCGCAAC



TSGSETPGTSESATPE

CCCGGAATCCGGCCCAGGTACCTCTG



SGPGTSTEPSEGSAP

AAAGCGCAACCCCGGAGTCCGGCCCA



GTSESATPESGPGSP

GGTAGCCCTGCTGGCTCTCCAACCTCC



AGSPTSTEEGSPAGS

ACCGAAGAAGGTACCTCTGAAAGCGC



PTSTEEGSPAGSPTST

AACCCCTGAATCCGGCCCAGGTAGCG



EEGTSESATPESGPG

AACCGGCAACCTCCGGTTCTGAAACC



TSTEPSEGSAPGFPTI

CCAGGTACCTCTGAAAGCGCTACTCC



PLSRLFDNAMLRAH

GGAGTCTGGCCCAGGTACCTCTACTG



RLHQLAFDTYQEFEE

AACCGTCTGAGGGTAGCGCTCCAGGT



AYIPKEQKYSFLQNP

ACTTCTACTGAACCGTCCGAAGGTAG



QTSLCFSESIPTPSNR

CGCACCAGGTACTTCTACCGAACCGT



EETQQKSNLELLRIS

CCGAAGGCAGCGCTCCAGGTACCTCT



LLLIQSWLEPVQFLR

ACTGAACCTTCCGAGGGCAGCGCTCC



SVFANSLVYGASDS

AGGTACCTCTACCGAACCTTCTGAAG



NVYDLLKDLEEGIQT

GTAGCGCACCAGGTACTTCTACCGAA



LMGRLEDGSPRTGQI

CCGTCCGAGGGTAGCGCACCAGGTAG



FKQTYSKFDTNSHN

CCCAGCAGGTTCTCCTACCTCCACCGA



DDALLKNYGLLYCF

GGAAGGTACTTCTACCGAACCGTCCG



RKDMDKVETFLRIV

AGGGTAGCGCACCAGGTACCTCTGAA



QCRSVEGSCGFGGSE

AGCGCAACTCCTGAGTCTGGCCCAGG



PATSGSETPGTSESA

TAGCGAACCTGCTACCTCCGGCTCTG



TPESGPGSEPATSGS

AGACTCCAGGTACCTCTGAAAGCGCA



ETPGSPAGSPTSTEE

ACCCCGGAATCTGGTCCAGGTAGCGA



GTSTEPSEGSAPGSE

ACCTGCAACCTCTGGCTCTGAAACCC



PATSGSETPGSEPAT

CAGGTACCTCTGAAAGCGCTACTCCT



SGSETPGSEPATSGS

GAATCTGGCCCAGGTACTTCTACTGA



ETPGTSTEPSEGSAP

ACCGTCCGAGGGCAGCGCACCAGGTA



GTSESATPESGPGSE

CTTCTGAAAGCGCTACTCCTGAGTCCG



PATSGSETPGTSTEPS

GCCCAGGTAGCCCGGCTGGCTCTCCG



EGSAP

ACTTCCACCGAGGAAGGTAGCCCGGC





TGGCTCTCCAACTTCTACTGAAGAAG





GTAGCCCGGCAGGCTCTCCGACCTCT





ACTGAGGAAGGTACTTCTGAAAGCGC





AACCCCGGAGTCCGGCCCAGGTACCT





CTACCGAACCGTCTGAGGGCAGCGCA





CCAGGTTTTCCGACTATTCCGCTGTCT





CGTCTGTTTGATAATGCTATGCTGCGT





GCGCACCGTCTGCACCAGCTGGCCTTT





GATACTTACCAGGAATTTGAAGAAGC





cTACATTCCTAAAGAGCAGAAGTACTC





TTTCCTGCAAAACCCACAGACTTCTCT





CTGCTTCAGCGAATCTATTCCGACGCC





TTCCAATCGCGAGGAAACTCAGCAAA





AGTCCAATCTGGAACTACTCCGCATTT





CTCTGCTTCTGATTCAGAGCTGGCTAG





AACCAGTGCAATTTCTGCGTTCCGTCT





TCGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTG





AAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCT





CTCCGCGTACTGGTCAGATCTTCAAGC





AGACTTACTCTAAATTTGATACTAACA





GCCACAATGACGATGCGCTTCTAAAA





AACTATGGTCTGCTGTATTGTTTTCGT





AAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGT





TGAGGGCAGCTGTGGTTTCTAAGGTG





GTAGCGAACCGGCAACTTCCGGCTCT





GAAACCCCAGGTACTTCTGAAAGCGC





TACTCCTGAGTCTGGCCCAGGTAGCG





AACCTGCTACCTCTGGCTCTGAAACCC





CAGGTAGCCCGGCAGGCTCTCCGACT





TCCACCGAGGAAGGTACCTCTACTGA





ACCTTCTGAGGGTAGCGCTCCAGGTA





GCGAACCGGCAACCTCTGGCTCTGAA





ACCCCAGGTAGCGAACCTGCTACCTC





CGGCTCTGAAACTCCAGGTAGCGAAC





CGGCTACTTCCGGTTCTGAAACTCCAG





GTACCTCTACCGAACCTTCCGAAGGC





AGCGCACCAGGTACTTCTGAAAGCGC





AACCCCTGAATCCGGTCCAGGTAGCG





AACCGGCTACTTCTGGCTCTGAGACTC





CAGGTACTTCTACCGAACCGTCCGAA





GGTAGCGCACCA





AF576-
GSTSSTAESPGPGSTS
743
GGTTCTACTAGCTCTACCGCTGAATCT
744


hGH-
STAESPGPGSTSESPS

CCTGGCCCAGGTTCCACTAGCTCTACC


AE144
GTAPGSTSSTAESPG

GCAGAATCTCCGGGCCCAGGTTCTAC



PGSTSSTAESPGPGTS

TAGCGAATCCCCTTCTGGTACCGCTCC



TPESGSASPGSTSESP

AGGTTCTACTAGCTCTACCGCTGAATC



SGTAPGTSPSGESST

TCCGGGTCCAGGTTCTACCAGCTCTAC



APGSTSESPSGTAPG

TGCAGAATCTCCTGGCCCAGGTACTTC



STSESPSGTAPGTSPS

TACTCCGGAAAGCGGTTCCGCTTCTCC



GESSTAPGSTSESPSG

AGGTTCTACCAGCGAATCTCCTTCTGG



TAPGSTSESPSGTAP

CACCGCTCCAGGTACCTCTCCTAGCG



GTSPSGESSTAPGSTS

GCGAATCTTCTACCGCTCCAGGTTCTA



ESPSGTAPGSTSESPS

CTAGCGAATCTCCTTCTGGCACTGCAC



GTAPGSTSESPSGTA

CAGGTTCTACCAGCGAATCTCCTTCTG



PGTSTPESGSASPGST

GCACCGCTCCAGGTACCTCTCCTAGC



SESPSGTAPGTSTPES

GGCGAATCTTCTACCGCTCCAGGTTCT



GSASPGSTSSTAESP

ACTAGCGAATCTCCTTCTGGCACTGCA



GPGSTSSTAESPGPG

CCAGGTTCTACCAGCGAATCTCCTTCT



TSTPESGSASPGTSTP

GGCACCGCTCCAGGTACCTCTCCTAG



ESGSASPGSTSESPSG

CGGCGAATCTTCTACCGCTCCAGGTTC



TAPGTSTPESGSASP

TACTAGCGAATCTCCTTCTGGCACTGC



GTSTPESGSASPGSTS

ACCAGGTTCTACTAGCGAATCTCCTTC



ESPSGTAPGSTSESPS

TGGCACTGCACCAGGTTCTACCAGCG



GTAPGSTSESPSGTA

AATCTCCGTCTGGCACTGCACCAGGT



PGSTSSTAESPGPGTS

ACCTCTACCCCTGAAAGCGGTTCCGCT



TPESGSASPGTSTPES

TCTCCAGGTTCTACTAGCGAATCTCCT



GSASPGSTSESPSGT

TCTGGTACCGCTCCAGGTACTTCTACC



APGSTSESPSGTAPG

CCTGAAAGCGGCTCCGCTTCTCCAGG



TSTPESGSASPGSTSE

TTCCACTAGCTCTACCGCTGAATCTCC



SPSGTAPGSTSESPSG

GGGTCCAGGTTCTACTAGCTCTACTGC



TAPGTSTPESGSASP

AGAATCTCCTGGCCCAGGTACCTCTA



GTSPSGESSTAPGSTS

CTCCGGAAAGCGGCTCTGCATCTCCA



STAESPGPGTSPSGES

GGTACTTCTACCCCTGAAAGCGGTTCT



STAPGSTSSTAESPGP

GCATCTCCAGGTTCTACTAGCGAATCC



GTSTPESGSASPGSTS

CCGTCTGGTACCGCACCAGGTACTTCT



ESPSGTAPGSTSSTA

ACCCCGGAAAGCGGCTCTGCTTCTCC



ESPGPGTSTPESGSAS

AGGTACTTCTACCCCGGAAAGCGGCT



PGTSTPESGSASPGFP

CCGCATCTCCAGGTTCTACTAGCGAAT



TIPLSRLFDNAMLRA

CTCCTTCTGGTACCGCTCCAGGTTCTA



HRLHQLAFDTYQEF

CCAGCGAATCCCCGTCTGGTACTGCTC



EEAYIPKEQKYSFLQ

CAGGTTCTACCAGCGAATCTCCTTCTG



NPQTSLCFSESIPTPS

GTACTGCACCAGGTTCTACTAGCTCTA



NREETQQKSNLELLR

CTGCAGAATCTCCTGGCCCAGGTACC



ISLLLIQSWLEPVQFL

TCTACTCCGGAAAGCGGCTCTGCATCT



RSVFANSLVYGASD

CCAGGTACTTCTACCCCTGAAAGCGG



SNVYDLLKDLEEGIQ

TTCTGCATCTCCAGGTTCTACTAGCGA



TLMGRLEDGSPRTG

ATCTCCTTCTGGCACTGCACCAGGTTC



QIFKQTYSKFDTNSH

TACCAGCGAATCTCCGTCTGGCACTG



NDDALLKNYGLLYC

CACCAGGTACCTCTACCCCTGAAAGC



FRKDMDKVETFLRI

GGTTCCGCTTCTCCAGGTTCTACTAGC



VQCRSVEGSCGFGG

GAATCTCCTTCTGGCACTGCACCAGGT



SEPATSGSETPGTSES

TCTACCAGCGAATCTCCGTCTGGCACT



ATPESGPGSEPATSG

GCACCAGGTACCTCTACCCCTGAAAG



SETPGSPAGSPTSTEE

CGGTTCCGCTTCTCCAGGTACTTCTCC



GTSTEPSEGSAPGSE

GAGCGGTGAATCTTCTACCGCACCAG



PATSGSETPGSEPAT

GTTCTACTAGCTCTACCGCTGAATCTC



SGSETPGSEPATSGS

CGGGCCCAGGTACTTCTCCGAGCGGT



ETPGTSTEPSEGSAP

GAATCTTCTACTGCTCCAGGTTCCACT



GTSESATPESGPGSE

AGCTCTACTGCTGAATCTCCTGGCCCA



PATSGSETPGTSTEPS

GGTACTTCTACTCCGGAAAGCGGTTC



EGSAP

CGCTTCTCCAGGTTCTACTAGCGAATC





TCCGTCTGGCACCGCACCAGGTTCTAC





TAGCTCTACTGCAGAATCTCCTGGCCC





AGGTACCTCTACTCCGGAAAGCGGCT





CTGCATCTCCAGGTACTTCTACCCCTG





AAAGCGGTTCTGCATCTCCAGGTTTTC





CGACTATTCCGCTGTCTCGTCTGTTTG





ATAATGCTATGCTGCGTGCGCACCGT





CTGCACCAGCTGGCCTTTGATACTTAC





CAGGAATTTGAAGAAGCcTACATTCCT





AAAGAGCAGAAGTACTCTTTCCTGCA





AAACCCACAGACTTCTCTCTGCTTCAG





CGAATCTATTCCGACGCCTTCCAATCG





CGAGGAAACTCAGCAAAAGTCCAATC





TGGAACTACTCCGCATTTCTCTGCTTC





TGATTCAGAGCTGGCTAGAACCAGTG





CAATTTCTGCGTTCCGTCTTCGCCAAT





AGCCTAGTTTATGGCGCATCCGACAG





CAACGTATACGATCTCCTGAAAGATC





TCGAGGAAGGCATTCAGACCCTGATG





GGTCGTCTCGAGGATGGCTCTCCGCG





TACTGGTCAGATCTTCAAGCAGACTT





ACTCTAAATTTGATACTAACAGCCAC





AATGACGATGCGCTTCTAAAAAACTA





TGGTCTGCTGTATTGTTTTCGTAAAGA





TATGGACAAAGTTGAAACCTTCCTGC





GTATTGTTCAGTGTCGTTCCGTTGAGG





GCAGCTGTGGTTTCTAAGGTGGTAGC





GAACCGGCAACTTCCGGCTCTGAAAC





CCCAGGTACTTCTGAAAGCGCTACTC





CTGAGTCTGGCCCAGGTAGCGAACCT





GCTACCTCTGGCTCTGAAACCCCAGG





TAGCCCGGCAGGCTCTCCGACTTCCA





CCGAGGAAGGTACCTCTACTGAACCT





TCTGAGGGTAGCGCTCCAGGTAGCGA





ACCGGCAACCTCTGGCTCTGAAACCC





CAGGTAGCGAACCTGCTACCTCCGGC





TCTGAAACTCCAGGTAGCGAACCGGC





TACTTCCGGTTCTGAAACTCCAGGTAC





CTCTACCGAACCTTCCGAAGGCAGCG





CACCAGGTACTTCTGAAAGCGCAACC





CCTGAATCCGGTCCAGGTAGCGAACC





GGCTACTTCTGGCTCTGAGACTCCAG





GTACTTCTACCGAACCGTCCGAAGGT





AGCGCACCA





AE624-
MAEPAGSPTSTEEGT
745
ATGGCTGAACCTGCTGGCTCTCCAAC
746


hGH-
PGSGTASSSPGSSTPS

CTCCACTGAGGAAGGTACCCCGGGTA


AE144
GATGSPGASPGTSST

GCGGTACTGCTTCTTCCTCTCCAGGTA



GSPGSPAGSPTSTEE

GCTCTACCCCTTCTGGTGCAACCGGCT



GTSESATPESGPGTS

CTCCAGGTGCTTCTCCGGGCACCAGCT



TEPSEGSAPGSPAGS

CTACCGGTTCTCCAGGTAGCCCGGCT



PTSTEEGTSTEPSEGS

GGCTCTCCTACCTCTACTGAGGAAGG



APGTSTEPSEGSAPG

TACTTCTGAAAGCGCTACTCCTGAGTC



TSESATPESGPGSEP

TGGTCCAGGTACCTCTACTGAACCGTC



ATSGSETPGSEPATS

CGAAGGTAGCGCTCCAGGTAGCCCAG



GSETPGSPAGSPTST

CAGGCTCTCCGACTTCCACTGAGGAA



EEGTSESATPESGPG

GGTACTTCTACTGAACCTTCCGAAGG



TSTEPSEGSAPGTSTE

CAGCGCACCAGGTACCTCTACTGAAC



PSEGSAPGSPAGSPT

CTTCTGAGGGCAGCGCTCCAGGTACT



STEEGTSTEPSEGSAP

TCTGAAAGCGCTACCCCGGAATCTGG



GTSTEPSEGSAPGTS

CCCAGGTAGCGAACCGGCTACTTCTG



ESATPESGPGTSTEPS

GTTCTGAAACCCCAGGTAGCGAACCG



EGSAPGTSESATPES

GCTACCTCCGGTTCTGAAACTCCAGGT



GPGSEPATSGSETPG

AGCCCGGCAGGCTCTCCGACCTCTAC



TSTEPSEGSAPGTSTE

TGAGGAAGGTACTTCTGAAAGCGCAA



PSEGSAPGTSESATP

CCCCGGAGTCCGGCCCAGGTACCTCT



ESGPGTSESATPESG

ACCGAACCGTCTGAGGGCAGCGCACC



PGSPAGSPTSTEEGT

AGGTACTTCTACCGAACCGTCCGAGG



SESATPESGPGSEPA

GTAGCGCACCAGGTAGCCCAGCAGGT



TSGSETPGTSESATPE

TCTCCTACCTCCACCGAGGAAGGTAC



SGPGTSTEPSEGSAP

TTCTACCGAACCGTCCGAGGGTAGCG



GTSTEPSEGSAPGTS

CACCAGGTACCTCTACTGAACCTTCTG



TEPSEGSAPGTSTEPS

AGGGCAGCGCTCCAGGTACTTCTGAA



EGSAPGTSTEPSEGS

AGCGCTACCCCGGAGTCCGGTCCAGG



APGTSTEPSEGSAPG

TACTTCTACTGAACCGTCCGAAGGTA



SPAGSPTSTEEGTSTE

GCGCACCAGGTACTTCTGAAAGCGCA



PSEGSAPGTSESATP

ACCCCTGAATCCGGTCCAGGTAGCGA



ESGPGSEPATSGSET

ACCGGCTACTTCTGGCTCTGAGACTCC



PGTSESATPESGPGS

AGGTACTTCTACCGAACCGTCCGAAG



EPATSGSETPGTSES

GTAGCGCACCAGGTACTTCTACTGAA



ATPESGPGTSTEPSE

CCGTCTGAAGGTAGCGCACCAGGTAC



GSAPGTSESATPESG

TTCTGAAAGCGCAACCCCGGAATCCG



PGSPAGSPTSTEEGSP

GCCCAGGTACCTCTGAAAGCGCAACC



AGSPTSTEEGSPAGS

CCGGAGTCCGGCCCAGGTAGCCCTGC



PTSTEEGTSESATPES

TGGCTCTCCAACCTCCACCGAAGAAG



GPGTSTEPSEGSAPG

GTACCTCTGAAAGCGCAACCCCTGAA



FPTIPLSRLFDNAML

TCCGGCCCAGGTAGCGAACCGGCAAC



RAHRLHQLAFDTYQ

CTCCGGTTCTGAAACCCCAGGTACCTC



EFEEAYIPKEQKYSF

TGAAAGCGCTACTCCGGAGTCTGGCC



LQNPQTSLCFSESIPT

CAGGTACCTCTACTGAACCGTCTGAG



PSNREETQQKSNLEL

GGTAGCGCTCCAGGTACTTCTACTGA



LRISLLLIQSWLEPVQ

ACCGTCCGAAGGTAGCGCACCAGGTA



FLRSVFANSLVYGAS

CTTCTACCGAACCGTCCGAAGGCAGC



DSNVYDLLKDLEEGI

GCTCCAGGTACCTCTACTGAACCTTCC



QTLMGRLEDGSPRT

GAGGGCAGCGCTCCAGGTACCTCTAC



GQIFKQTYSKFDTNS

CGAACCTTCTGAAGGTAGCGCACCAG



HNDDALLKNYGLLY

GTACTTCTACCGAACCGTCCGAGGGT



CFRKDMDKVETFLRI

AGCGCACCAGGTAGCCCAGCAGGTTC



VQCRSVEGSCGFGG

TCCTACCTCCACCGAGGAAGGTACTT



SEPATSGSETPGTSES

CTACCGAACCGTCCGAGGGTAGCGCA



ATPESGPGSEPATSG

CCAGGTACCTCTGAAAGCGCAACTCC



SETPGSPAGSPTSTEE

TGAGTCTGGCCCAGGTAGCGAACCTG



GTSTEPSEGSAPGSE

CTACCTCCGGCTCTGAGACTCCAGGT



PATSGSETPGSEPAT

ACCTCTGAAAGCGCAACCCCGGAATC



SGSETPGSEPATSGS

TGGTCCAGGTAGCGAACCTGCAACCT



ETPGTSTEPSEGSAP

CTGGCTCTGAAACCCCAGGTACCTCT



GTSESATPESGPGSE

GAAAGCGCTACTCCTGAATCTGGCCC



PATSGSETPGTSTEPS

AGGTACTTCTACTGAACCGTCCGAGG



EGSAP

GCAGCGCACCAGGTACTTCTGAAAGC





GCTACTCCTGAGTCCGGCCCAGGTAG





CCCGGCTGGCTCTCCGACTTCCACCGA





GGAAGGTAGCCCGGCTGGCTCTCCAA





CTTCTACTGAAGAAGGTAGCCCGGCA





GGCTCTCCGACCTCTACTGAGGAAGG





TACTTCTGAAAGCGCAACCCCGGAGT





CCGGCCCAGGTACCTCTACCGAACCG





TCTGAGGGCAGCGCACCAGGTTTTCC





GACTATTCCGCTGTCTCGTCTGTTTGA





TAATGCTATGCTGCGTGCGCACCGTCT





GCACCAGCTGGCCTTTGATACTTACCA





GGAATTTGAAGAAGCcTACATTCCTAA





AGAGCAGAAGTACTCTTTCCTGCAAA





ACCCACAGACTTCTCTCTGCTTCAGCG





AATCTATTCCGACGCCTTCCAATCGCG





AGGAAACTCAGCAAAAGTCCAATCTG





GAACTACTCCGCATTTCTCTGCTTCTG





ATTCAGAGCTGGCTAGAACCAGTGCA





ATTTCTGCGTTCCGTCTTCGCCAATAG





CCTAGTTTATGGCGCATCCGACAGCA





ACGTATACGATCTCCTGAAAGATCTC





GAGGAAGGCATTCAGACCCTGATGGG





TCGTCTCGAGGATGGCTCTCCGCGTAC





TGGTCAGATCTTCAAGCAGACTTACTC





TAAATTTGATACTAACAGCCACAATG





ACGATGCGCTTCTAAAAAACTATGGT





CTGCTGTATTGTTTTCGTAAAGATATG





GACAAAGTTGAAACCTTCCTGCGTAT





TGTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTAGCGAAC





CGGCAACTTCCGGCTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGA





GTCTGGCCCAGGTAGCGAACCTGCTA





CCTCTGGCTCTGAAACCCCAGGTAGC





CCGGCAGGCTCTCCGACTTCCACCGA





GGAAGGTACCTCTACTGAACCTTCTG





AGGGTAGCGCTCCAGGTAGCGAACCG





GCAACCTCTGGCTCTGAAACCCCAGG





TAGCGAACCTGCTACCTCCGGCTCTG





AAACTCCAGGTAGCGAACCGGCTACT





TCCGGTTCTGAAACTCCAGGTACCTCT





ACCGAACCTTCCGAAGGCAGCGCACC





AGGTACTTCTGAAAGCGCAACCCCTG





AATCCGGTCCAGGTAGCGAACCGGCT





ACTTCTGGCTCTGAGACTCCAGGTACT





TCTACCGAACCGTCCGAAGGTAGCGC





ACCA





AD836-
GSSESGSSEGGPGSS
747
GGTTCCTCTGAAAGCGGTTCTTCCGAA
748


hGH-
ESGSSEGGPGESPGG

GGTGGTCCAGGTTCCTCTGAAAGCGG


AE144
SSGSESGSGGEPSES

TTCTTCTGAGGGTGGTCCAGGTGAATC



GSSGESPGGSSGSES

TCCGGGTGGCTCCAGCGGTTCCGAGT



GESPGGSSGSESGSS

CAGGTTCTGGTGGCGAACCTTCCGAG



ESGSSEGGPGSSESG

TCTGGTAGCTCAGGTGAATCTCCGGG



SSEGGPGSSESGSSE

TGGTTCTAGCGGTTCCGAGTCAGGTG



GGPGESPGGSSGSES

AATCTCCGGGTGGTTCCAGCGGTTCTG



GESPGGSSGSESGES

AGTCAGGTTCCTCCGAAAGCGGTTCTT



PGGSSGSESGSSESG

CTGAGGGCGGTCCAGGTTCCTCCGAA



SSEGGPGSSESGSSE

AGCGGTTCTTCCGAGGGCGGTCCAGG



GGPGSSESGSSEGGP

TTCTTCTGAAAGCGGTTCTTCCGAGGG



GSSESGSSEGGPGSS

CGGTCCAGGTGAATCTCCTGGTGGTTC



ESGSSEGGPGSSESG

CAGCGGTTCCGAGTCAGGTGAATCTC



SSEGGPGSGGEPSES

CAGGTGGCTCTAGCGGTTCCGAGTCA



GSSGESPGGSSGSES

GGTGAATCTCCTGGTGGTTCTAGCGGT



GESPGGSSGSESGSG

TCTGAATCAGGTTCCTCCGAAAGCGG



GEPSESGSSGSEGSS

TTCTTCTGAGGGCGGTCCAGGTTCCTC



GPGESSGSSESGSSE

CGAAAGCGGTTCTTCCGAGGGCGGTC



GGPGSGGEPSESGSS

CAGGTTCTTCTGAAAGCGGTTCTTCCG



GSEGSSGPGESSGSS

AGGGCGGTCCAGGTTCCTCTGAAAGC



ESGSSEGGPGSGGEP

GGTTCTTCTGAGGGCGGTCCAGGTTCT



SESGSSGESPGGSSG

TCCGAAAGCGGTTCTTCCGAGGGCGG



SESGSGGEPSESGSS

TCCAGGTTCTTCCGAAAGCGGTTCTTC



GSGGEPSESGSSGSS

TGAAGGCGGTCCAGGTTCTGGTGGCG



ESGSSEGGPGSGGEP

AACCGTCCGAGTCTGGTAGCTCAGGT



SESGSSGSGGEPSES

GAATCTCCGGGTGGCTCTAGCGGTTC



GSSGSEGSSGPGESS

CGAGTCAGGTGAATCTCCTGGTGGTT



GESPGGSSGSESGSE

CCAGCGGTTCCGAGTCAGGTTCCGGT



GSSGPGESSGSEGSS

GGCGAACCGTCCGAATCTGGTAGCTC



GPGESSGSGGEPSES

AGGTAGCGAAGGTTCTTCTGGTCCAG



GSSGSSESGSSEGGP

GCGAATCTTCAGGTTCCTCTGAAAGC



GSSESGSSEGGPGES

GGTTCTTCTGAGGGCGGTCCAGGTTCC



PGGSSGSESGSGGEP

GGTGGCGAACCGTCCGAATCTGGTAG



SESGSSGSEGSSGPG

CTCAGGTAGCGAAGGTTCTTCTGGTCC



ESSGESPGGSSGSES

AGGCGAATCTTCAGGTTCCTCTGAAA



GSEGSSGPGSSESGS

GCGGTTCTTCTGAGGGCGGTCCAGGT



SEGGPGSGGEPSESG

TCCGGTGGCGAACCTTCCGAATCTGG



SSGSEGSSGPGESSG

TAGCTCAGGTGAATCTCCGGGTGGTT



SEGSSGPGESSGSEG

CTAGCGGTTCTGAGTCAGGTTCTGGTG



SSGPGESSGSGGEPS

GTGAACCTTCCGAGTCTGGTAGCTCA



ESGSSGSGGEPSESG

GGTTCTGGTGGCGAACCATCCGAGTC



SSGESPGGSSGSESG

TGGTAGCTCAGGTTCTTCCGAAAGCG



ESPGGSSGSESGSGG

GTTCTTCCGAAGGCGGTCCAGGTTCTG



EPSESGSSGSEGSSGP

GTGGTGAACCGTCCGAATCTGGTAGC



GESSGESPGGSSGSE

TCAGGTTCTGGTGGCGAACCATCCGA



SGSSESGSSEGGPGS

ATCTGGTAGCTCAGGTAGCGAAGGTT



SESGSSEGGPGSSES

CTTCTGGTCCTGGCGAATCTTCAGGTG



GSSEGGPGSGGEPSE

AATCTCCAGGTGGCTCTAGCGGTTCC



SGSSGSSESGSSEGG

GAATCAGGTAGCGAAGGTTCTTCCGG



PGESPGGSSGSESGS

TCCAGGTGAATCTTCAGGTAGCGAAG



GGEPSESGSSGSSES

GTTCTTCTGGTCCTGGTGAATCCTCAG



GSSEGGPGESPGGSS

GTTCCGGTGGCGAACCATCTGAATCT



GSESGSGGEPSESGS

GGTAGCTCAGGTTCCTCTGAAAGCGG



SGESPGGSSGSESGS

TTCTTCCGAAGGTGGTCCAGGTTCCTC



GGEPSESGSSGFPTIP

TGAAAGCGGTTCTTCTGAGGGTGGTC



LSRLFDNAMLRAHR

CAGGTGAATCTCCGGGTGGCTCCAGC



LHQLAFDTYQEFEE

GGTTCCGAGTCAGGTTCTGGTGGCGA



AYIPKEQKYSFLQNP

ACCATCCGAATCTGGTAGCTCAGGTA



QTSLCFSESIPTPSNR

GCGAAGGTTCTTCTGGTCCTGGCGAA



EETQQKSNLELLRIS

TCTTCAGGTGAATCTCCAGGTGGCTCT



LLLIQSWLEPVQFLR

AGCGGTTCCGAATCAGGTAGCGAAGG



SVFANSLVYGASDS

TTCTTCCGGTCCaGGTTCCTCTGAAAG



NVYDLLKDLEEGIQT

CGGTTCTTCTGAGGGCGGTCCAGGTTC



LMGRLEDGSPRTGQI

TGGTGGCGAACCATCTGAATCTGGTA



FKQTYSKFDTNSHN

GCTCAGGTAGCGAAGGTTCTTCCGGT



DDALLKNYGLLYCF

CCGGGTGAATCTTCAGGTAGCGAAGG



RKDMDKVETFLRIV

TTCTTCCGGTCCAGGTGAATCTTCAGG



QCRSVEGSCGFGGSE

TAGCGAAGGTTCTTCTGGTCCTGGTGA



PATSGSETPGTSESA

ATCCTCAGGTTCCGGTGGCGAACCAT



TPESGPGSEPATSGS

CTGAATCTGGTAGCTCAGGTTCTGGTG



ETPGSPAGSPTSTEE

GCGAACCATCCGAATCTGGTAGCTCA



GTSTEPSEGSAPGSE

GGTGAATCTCCGGGTGGCTCCAGCGG



PATSGSETPGSEPAT

TTCTGAATCAGGTGAATCTCCTGGTGG



SGSETPGSEPATSGS

CTCCAGCGGTTCTGAGTCAGGTTCTGG



ETPGTSTEPSEGSAP

TGGCGAACCATCCGAATCTGGTAGCT



GTSESATPESGPGSE

CAGGTAGCGAAGGTTCTTCTGGTCCT



PATSGSETPGTSTEPS

GGCGAATCTTCAGGTGAATCTCCAGG



EGSAP

TGGCTCTAGCGGTTCCGAATCAGGTTC





CTCTGAAAGCGGTTCTTCTGAGGGCG





GTCCAGGTTCTTCCGAAAGCGGTTCTT





CCGAGGGCGGTCCAGGTTCTTCCGAA





AGCGGTTCTTCTGAAGGCGGTCCAGG





TTCTGGTGGCGAACCGTCCGAATCTG





GTAGCTCAGGTTCCTCCGAAAGCGGT





TCTTCTGAAGGTGGTCCAGGTGAATCT





CCAGGTGGTTCTAGCGGTTCTGAATC





AGGTTCTGGTGGCGAACCGTCCGAAT





CTGGTAGCTCAGGTTCCTCCGAAAGC





GGTTCTTCTGAAGGTGGTCCAGGTGA





ATCTCCAGGTGGTTCTAGCGGTTCTGA





ATCAGGTTCTGGTGGCGAACCGTCCG





AATCTGGTAGCTCAGGTGAATCTCCT





GGTGGTTCCAGCGGTTCCGAGTCAGG





TTCTGGTGGCGAACCTTCCGAATCTGG





TAGCTCAGGTTTTCCGACTATTCCGCT





GTCTCGTCTGTTTGATAATGCTATGCT





GCGTGCGCACCGTCTGCACCAGCTGG





CCTTTGATACTTACCAGGAATTTGAAG





AAGCcTACATTCCTAAAGAGCAGAAG





TACTCTTTCCTGCAAAACCCACAGACT





TCTCTCTGCTTCAGCGAATCTATTCCG





ACGCCTTCCAATCGCGAGGAAACTCA





GCAAAAGTCCAATCTGGAACTACTCC





GCATTTCTCTGCTTCTGATTCAGAGCT





GGCTAGAACCAGTGCAATTTCTGCGT





TCCGTCTTCGCCAATAGCCTAGTTTAT





GGCGCATCCGACAGCAACGTATACGA





TCTCCTGAAAGATCTCGAGGAAGGCA





TTCAGACCCTGATGGGTCGTCTCGAG





GATGGCTCTCCGCGTACTGGTCAGAT





CTTCAAGCAGACTTACTCTAAATTTGA





TACTAACAGCCACAATGACGATGCGC





TTCTAAAAAACTATGGTCTGCTGTATT





GTTTTCGTAAAGATATGGACAAAGTT





GAAACCTTCCTGCGTATTGTTCAGTGT





CGTTCCGTTGAGGGCAGCTGTGGTTTC





TAAGGTGGTAGCGAACCGGCAACTTC





CGGCTCTGAAACCCCAGGTACTTCTG





AAAGCGCTACTCCTGAGTCTGGCCCA





GGTAGCGAACCTGCTACCTCTGGCTCT





GAAACCCCAGGTAGCCCGGCAGGCTC





TCCGACTTCCACCGAGGAAGGTACCT





CTACTGAACCTTCTGAGGGTAGCGCT





CCAGGTAGCGAACCGGCAACCTCTGG





CTCTGAAACCCCAGGTAGCGAACCTG





CTACCTCCGGCTCTGAAACTCCAGGT





AGCGAACCGGCTACTTCCGGTTCTGA





AACTCCAGGTACCTCTACCGAACCTTC





CGAAGGCAGCGCACCAGGTACTTCTG





AAAGCGCAACCCCTGAATCCGGTCCA





GGTAGCGAACCGGCTACTTCTGGCTC





TGAGACTCCAGGTACTTCTACCGAAC





CGTCCGAAGGTAGCGCACCA





AE864-
GSPAGSPTSTEEGTS
749
GGTAGCCCGGCTGGCTCTCCTACCTCT
750


hGH-
ESATPESGPGTSTEPS

ACTGAGGAAGGTACTTCTGAAAGCGC


AE144
EGSAPGSPAGSPTST

TACTCCTGAGTCTGGTCCAGGTACCTC



EEGTSTEPSEGSAPG

TACTGAACCGTCCGAAGGTAGCGCTC



TSTEPSEGSAPGTSES

CAGGTAGCCCAGCAGGCTCTCCGACT



ATPESGPGSEPATSG

TCCACTGAGGAAGGTACTTCTACTGA



SETPGSEPATSGSETP

ACCTTCCGAAGGCAGCGCACCAGGTA



GSPAGSPTSTEEGTS

CCTCTACTGAACCTTCTGAGGGCAGC



ESATPESGPGTSTEPS

GCTCCAGGTACTTCTGAAAGCGCTAC



EGSAPGTSTEPSEGS

CCCGGAATCTGGCCCAGGTAGCGAAC



APGSPAGSPTSTEEG

CGGCTACTTCTGGTTCTGAAACCCCAG



TSTEPSEGSAPGTSTE

GTAGCGAACCGGCTACCTCCGGTTCT



PSEGSAPGTSESATP

GAAACTCCAGGTAGCCCGGCAGGCTC



ESGPGTSTEPSEGSA

TCCGACCTCTACTGAGGAAGGTACTT



PGTSESATPESGPGS

CTGAAAGCGCAACCCCGGAGTCCGGC



EPATSGSETPGTSTEP

CCAGGTACCTCTACCGAACCGTCTGA



SEGSAPGTSTEPSEG

GGGCAGCGCACCAGGTACTTCTACCG



SAPGTSESATPESGP

AACCGTCCGAGGGTAGCGCACCAGGT



GTSESATPESGPGSP

AGCCCAGCAGGTTCTCCTACCTCCACC



AGSPTSTEEGTSESA

GAGGAAGGTACTTCTACCGAACCGTC



TPESGPGSEPATSGS

CGAGGGTAGCGCACCAGGTACCTCTA



ETPGTSESATPESGP

CTGAACCTTCTGAGGGCAGCGCTCCA



GTSTEPSEGSAPGTS

GGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACC



EGSAPGTSTEPSEGS

GTCCGAAGGTAGCGCACCAGGTACTT



APGTSTEPSEGSAPG

CTGAAAGCGCAACCCCTGAATCCGGT



TSTEPSEGSAPGSPA

CCAGGTAGCGAACCGGCTACTTCTGG



GSPTSTEEGTSTEPSE

CTCTGAGACTCCAGGTACTTCTACCGA



GSAPGTSESATPESG

ACCGTCCGAAGGTAGCGCACCAGGTA



PGSEPATSGSETPGT

CTTCTACTGAACCGTCTGAAGGTAGC



SESATPESGPGSEPA

GCACCAGGTACTTCTGAAAGCGCAAC



TSGSETPGTSESATPE

CCCGGAATCCGGCCCAGGTACCTCTG



SGPGTSTEPSEGSAP

AAAGCGCAACCCCGGAGTCCGGCCCA



GTSESATPESGPGSP

GGTAGCCCTGCTGGCTCTCCAACCTCC



AGSPTSTEEGSPAGS

ACCGAAGAAGGTACCTCTGAAAGCGC



PTSTEEGSPAGSPTST

AACCCCTGAATCCGGCCCAGGTAGCG



EEGTSESATPESGPG

AACCGGCAACCTCCGGTTCTGAAACC



TSTEPSEGSAPGTSES

CCAGGTACCTCTGAAAGCGCTACTCC



ATPESGPGSEPATSG

GGAGTCTGGCCCAGGTACCTCTACTG



SETPGTSESATPESGP

AACCGTCTGAGGGTAGCGCTCCAGGT



GSEPATSGSETPGTS

ACTTCTACTGAACCGTCCGAAGGTAG



ESATPESGPGTSTEPS

CGCACCAGGTACTTCTACCGAACCGT



EGSAPGSPAGSPTST

CCGAAGGCAGCGCTCCAGGTACCTCT



EEGTSESATPESGPG

ACTGAACCTTCCGAGGGCAGCGCTCC



SEPATSGSETPGTSES

AGGTACCTCTACCGAACCTTCTGAAG



ATPESGPGSPAGSPT

GTAGCGCACCAGGTACTTCTACCGAA



STEEGSPAGSPTSTEE

CCGTCCGAGGGTAGCGCACCAGGTAG



GTSTEPSEGSAPGTS

CCCAGCAGGTTCTCCTACCTCCACCGA



ESATPESGPGTSESA

GGAAGGTACTTCTACCGAACCGTCCG



TPESGPGTSESATPES

AGGGTAGCGCACCAGGTACCTCTGAA



GPGSEPATSGSETPG

AGCGCAACTCCTGAGTCTGGCCCAGG



SEPATSGSETPGSPA

TAGCGAACCTGCTACCTCCGGCTCTG



GSPTSTEEGTSTEPSE

AGACTCCAGGTACCTCTGAAAGCGCA



GSAPGTSTEPSEGSA

ACCCCGGAATCTGGTCCAGGTAGCGA



PGSEPATSGSETPGT

ACCTGCAACCTCTGGCTCTGAAACCC



SESATPESGPGTSTEP

CAGGTACCTCTGAAAGCGCTACTCCT



SEGSAPGFPTIPLSRL

GAATCTGGCCCAGGTACTTCTACTGA



FDNAMLRAHRLHQL

ACCGTCCGAGGGCAGCGCACCAGGTA



AFDTYQEFEEAYIPK

CTTCTGAAAGCGCTACTCCTGAGTCCG



EQKYSFLQNPQTSLC

GCCCAGGTAGCCCGGCTGGCTCTCCG



FSESIPTPSNREETQQ

ACTTCCACCGAGGAAGGTAGCCCGGC



KSNLELLRISLLLIQS

TGGCTCTCCAACTTCTACTGAAGAAG



WLEPVQFLRSVFAN

GTAGCCCGGCAGGCTCTCCGACCTCT



SLVYGASDSNVYDL

ACTGAGGAAGGTACTTCTGAAAGCGC



LKDLEEGIQTLMGRL

AACCCCGGAGTCCGGCCCAGGTACCT



EDGSPRTGQIFKQTY

CTACCGAACCGTCTGAGGGCAGCGCA



SKFDTNSHNDDALL

CCAGGTACCTCTGAAAGCGCAACTCC



KNYGLLYCFRKDMD

TGAGTCTGGCCCAGGTAGCGAACCTG



KVETFLRIVQCRSVE

CTACCTCCGGCTCTGAGACTCCAGGT



GSCGFGGSEPATSGS

ACCTCTGAAAGCGCAACCCCGGAATC



ETPGTSESATPESGP

TGGTCCAGGTAGCGAACCTGCAACCT



GSEPATSGSETPGSP

CTGGCTCTGAAACCCCAGGTACCTCT



AGSPTSTEEGTSTEPS

GAAAGCGCTACTCCTGAATCTGGCCC



EGSAPGSEPATSGSE

AGGTACTTCTACTGAACCGTCCGAGG



TPGSEPATSGSETPG

GCAGCGCACCAGGTAGCCCTGCTGGC



SEPATSGSETPGTSTE

TCTCCAACCTCCACCGAAGAAGGTAC



PSEGSAPGTSESATP

CTCTGAAAGCGCAACCCCTGAATCCG



ESGPGSEPATSGSET

GCCCAGGTAGCGAACCGGCAACCTCC



PGTSTEPSEGSAP

GGTTCTGAAACCCCAGGTACTTCTGA





AAGCGCTACTCCTGAGTCCGGCCCAG





GTAGCCCGGCTGGCTCTCCGACTTCCA





CCGAGGAAGGTAGCCCGGCTGGCTCT





CCAACTTCTACTGAAGAAGGTACTTCT





ACCGAACCTTCCGAGGGCAGCGCACC





AGGTACTTCTGAAAGCGCTACCCCTG





AGTCCGGCCCAGGTACTTCTGAAAGC





GCTACTCCTGAATCCGGTCCAGGTACT





TCTGAAAGCGCTACCCCGGAATCTGG





CCCAGGTAGCGAACCGGCTACTTCTG





GTTCTGAAACCCCAGGTAGCGAACCG





GCTACCTCCGGTTCTGAAACTCCAGGT





AGCCCAGCAGGCTCTCCGACTTCCAC





TGAGGAAGGTACTTCTACTGAACCTT





CCGAAGGCAGCGCACCAGGTACCTCT





ACTGAACCTTCTGAGGGCAGCGCTCC





AGGTAGCGAACCTGCAACCTCTGGCT





CTGAAACCCCAGGTACCTCTGAAAGC





GCTACTCCTGAATCTGGCCCAGGTACT





TCTACTGAACCGTCCGAGGGCAGCGC





ACCAGGTTTTCCGACTATTCCGCTGTC





TCGTCTGTTTGATAATGCTATGCTGCG





TGCGCACCGTCTGCACCAGCTGGCCTT





TGATACTTACCAGGAATTTGAAGAAG





CcTACATTCCTAAAGAGCAGAAGTACT





CTTTCCTGCAAAACCCACAGACTTCTC





TCTGCTTCAGCGAATCTATTCCGACGC





CTTCCAATCGCGAGGAAACTCAGCAA





AAGTCCAATCTGGAACTACTCCGCAT





TTCTCTGCTTCTGATTCAGAGCTGGCT





AGAACCAGTGCAATTTCTGCGTTCCGT





CTTCGCCAATAGCCTAGTTTATGGCGC





ATCCGACAGCAACGTATACGATCTCC





TGAAAGATCTCGAGGAAGGCATTCAG





ACCCTGATGGGTCGTCTCGAGGATGG





CTCTCCGCGTACTGGTCAGATCTTCAA





GCAGACTTACTCTAAATTTGATACTAA





CAGCCACAATGACGATGCGCTTCTAA





AAAACTATGGTCTGCTGTATTGTTTTC





GTAAAGATATGGACAAAGTTGAAACC





TTCCTGCGTATTGTTCAGTGTCGTTCC





GTTGAGGGCAGCTGTGGTTTCTAAGG





TGGTAGCGAACCGGCAACTTCCGGCT





CTGAAACCCCAGGTACTTCTGAAAGC





GCTACTCCTGAGTCTGGCCCAGGTAG





CGAACCTGCTACCTCTGGCTCTGAAA





CCCCAGGTAGCCCGGCAGGCTCTCCG





ACTTCCACCGAGGAAGGTACCTCTAC





TGAACCTTCTGAGGGTAGCGCTCCAG





GTAGCGAACCGGCAACCTCTGGCTCT





GAAACCCCAGGTAGCGAACCTGCTAC





CTCCGGCTCTGAAACTCCAGGTAGCG





AACCGGCTACTTCCGGTTCTGAAACTC





CAGGTACCTCTACCGAACCTTCCGAA





GGCAGCGCACCAGGTACTTCTGAAAG





CGCAACCCCTGAATCCGGTCCAGGTA





GCGAACCGGCTACTTCTGGCTCTGAG





ACTCCAGGTACTTCTACCGAACCGTCC





GAAGGTAGCGCACCA





AF864-
GSTSESPSGTAPGTSP
751
GGTTCTACCAGCGAATCTCCTTCTGGC
752


hGH-
SGESSTAPGSTSESPS

ACCGCTCCAGGTACCTCTCCTAGCGG


AE144
GTAPGSTSESPSGTA

CGAATCTTCTACCGCTCCAGGTTCTAC



PGTSTPESGSASPGTS

TAGCGAATCTCCTTCTGGCACTGCACC



TPESGSASPGSTSESP

AGGTTCTACTAGCGAATCCCCGTCTG



SGTAPGSTSESPSGT

GTACTGCTCCAGGTACTTCTACTCCTG



APGTSPSGESSTAPG

AAAGCGGTTCCGCTTCTCCAGGTACCT



STSESPSGTAPGTSPS

CTACTCCGGAAAGCGGTTCTGCATCTC



GESSTAPGTSPSGESS

CAGGTTCTACCAGCGAATCTCCTTCTG



TAPGSTSSTAESPGP

GCACCGCTCCAGGTTCTACTAGCGAA



GTSPSGESSTAPGTSP

TCCCCGTCTGGTACCGCACCAGGTACT



SGESSTAPGSTSSTA

TCTCCTAGCGGCGAATCTTCTACCGCA



ESPGPGTSTPESGSAS

CCAGGTTCTACTAGCGAATCTCCGTCT



PGTSTPESGSASPGST

GGCACTGCTCCAGGTACTTCTCCTAGC



SESPSGTAPGSTSESP

GGTGAATCTTCTACCGCTCCAGGTACT



SGTAPGTSTPESGSA

TCCCCTAGCGGCGAATCTTCTACCGCT



SPGSTSSTAESPGPGT

CCAGGTTCTACTAGCTCTACTGCAGA



STPESGSASPGSTSES

ATCTCCGGGCCCAGGTACCTCTCCTAG



PSGTAPGTSPSGESST

CGGTGAATCTTCTACCGCTCCAGGTAC



APGSTSSTAESPGPG

TTCTCCGAGCGGTGAATCTTCTACCGC



TSPSGESSTAPGTSTP

TCCAGGTTCTACTAGCTCTACTGCAGA



ESGSASPGSTSSTAES

ATCTCCTGGCCCAGGTACCTCTACTCC



PGPGSTSSTAESPGP

GGAAAGCGGCTCTGCATCTCCAGGTA



GSTSSTAESPGPGSTS

CTTCTACCCCTGAAAGCGGTTCTGCAT



STAESPGPGTSPSGES

CTCCAGGTTCTACTAGCGAATCTCCTT



STAPGSTSESPSGTAP

CTGGCACTGCACCAGGTTCTACCAGC



GSTSESPSGTAPGTS

GAATCTCCGTCTGGCACTGCACCAGG



TPESGPXXXGASASG

TACCTCTACCCCTGAAAGCGGTTCCGC



APSTXXXXSESPSGT

TTCTCCAGGTTCTACCAGCTCTACCGC



APGSTSESPSGTAPG

AGAATCTCCTGGTCCAGGTACCTCTAC



STSESPSGTAPGSTSE

TCCGGAAAGCGGCTCTGCATCTCCAG



SPSGTAPGSTSESPSG

GTTCTACTAGCGAATCTCCTTCTGGCA



TAPGSTSESPSGTAP

CTGCACCAGGTACTTCTCCGAGCGGT



GTSTPESGSASPGTSP

GAATCTTCTACCGCACCAGGTTCTACT



SGESSTAPGTSPSGES

AGCTCTACCGCTGAATCTCCGGGCCC



STAPGSTSSTAESPGP

AGGTACTTCTCCGAGCGGTGAATCTTC



GTSPSGESSTAPGTS

TACTGCTCCAGGTACCTCTACTCCTGA



TPESGSASPGSTSESP

AAGCGGTTCTGCATCTCCAGGTTCCAC



SGTAPGSTSESPSGT

TAGCTCTACCGCAGAATCTCCGGGCC



APGTSPSGESSTAPG

CAGGTTCTACTAGCTCTACTGCTGAAT



STSESPSGTAPGTSTP

CTCCTGGCCCAGGTTCTACTAGCTCTA



ESGSASPGTSTPESGS

CTGCTGAATCTCCGGGTCCAGGTTCTA



ASPGSTSESPSGTAP

CCAGCTCTACTGCTGAATCTCCTGGTC



GTSTPESGSASPGSTS

CAGGTACCTCCCCGAGCGGTGAATCT



STAESPGPGSTSESPS

TCTACTGCACCAGGTTCTACTAGCGA



GTAPGSTSESPSGTA

ATCTCCTTCTGGCACTGCACCAGGTTC



PGTSPSGESSTAPGST

TACCAGCGAATCTCCGTCTGGCACTG



SSTAESPGPGTSPSGE

CACCAGGTACCTCTACCCCTGAAAGC



SSTAPGTSTPESGSAS

GGTCCXXXXXXXXXXXXTGCAAGCG



PGTSPSGESSTAPGTS

CAAGCGGCGCGCCAAGCACGGGAXX



PSGESSTAPGTSPSGE

XXXXXXTAGCGAATCTCCTTCTGGTA



SSTAPGSTSSTAESPG

CCGCTCCAGGTTCTACCAGCGAATCC



PGSTSSTAESPGPGTS

CCGTCTGGTACTGCTCCAGGTTCTACC



PSGESSTAPGSSPSAS

AGCGAATCTCCTTCTGGTACTGCACCA



TGTGPGSSTPSGATG

GGTTCTACTAGCGAATCTCCTTCTGGT



SPGSSTPSGATGSPG

ACCGCTCCAGGTTCTACCAGCGAATC



FPTIPLSRLFDNAML

CCCGTCTGGTACTGCTCCAGGTTCTAC



RAHRLHQLAFDTYQ

CAGCGAATCTCCTTCTGGTACTGCACC



EFEEAYIPKEQKYSF

AGGTACTTCTACTCCGGAAAGCGGTT



LQNPQTSLCFSESIPT

CCGCATCTCCAGGTACTTCTCCTAGCG



PSNREETQQKSNLEL

GTGAATCTTCTACTGCTCCAGGTACCT



LRISLLLIQSWLEPVQ

CTCCTAGCGGCGAATCTTCTACTGCTC



FLRSVFANSLVYGAS

CAGGTTCTACCAGCTCTACTGCTGAAT



DSNVYDLLKDLEEGI

CTCCGGGTCCAGGTACTTCCCCGAGC



QTLMGRLEDGSPRT

GGTGAATCTTCTACTGCACCAGGTACT



GQIFKQTYSKFDTNS

TCTACTCCGGAAAGCGGTTCCGCTTCT



HNDDALLKNYGLLY

CCAGGTTCTACCAGCGAATCTCCTTCT



CFRKDMDKVETFLRI

GGCACCGCTCCAGGTTCTACTAGCGA



VQCRSVEGSCGFGG

ATCCCCGTCTGGTACCGCACCAGGTA



SEPATSGSETPGTSES

CTTCTCCTAGCGGCGAATCTTCTACCG



ATPESGPGSEPATSG

CACCAGGTTCTACTAGCGAATCCCCG



SETPGSPAGSPTSTEE

TCTGGTACCGCACCAGGTACTTCTACC



GTSTEPSEGSAPGSE

CCGGAAAGCGGCTCTGCTTCTCCAGG



PATSGSETPGSEPAT

TACTTCTACCCCGGAAAGCGGCTCCG



SGSETPGSEPATSGS

CATCTCCAGGTTCTACTAGCGAATCTC



ETPGTSTEPSEGSAP

CTTCTGGTACCGCTCCAGGTACTTCTA



GTSESATPESGPGSE

CCCCTGAAAGCGGCTCCGCTTCTCCA



PATSGSETPGTSTEPS

GGTTCCACTAGCTCTACCGCTGAATCT



EGSAP

CCGGGTCCAGGTTCTACCAGCGAATC





TCCTTCTGGCACCGCTCCAGGTTCTAC





TAGCGAATCCCCGTCTGGTACCGCAC





CAGGTACTTCTCCTAGCGGCGAATCTT





CTACCGCACCAGGTTCTACCAGCTCTA





CTGCTGAATCTCCGGGTCCAGGTACTT





CCCCGAGCGGTGAATCTTCTACTGCA





CCAGGTACTTCTACTCCGGAAAGCGG





TTCCGCTTCTCCAGGTACCTCCCCTAG





CGGCGAATCTTCTACTGCTCCAGGTAC





CTCTCCTAGCGGCGAATCTTCTACCGC





TCCAGGTACCTCCCCTAGCGGTGAAT





CTTCTACCGCACCAGGTTCTACTAGCT





CTACTGCTGAATCTCCGGGTCCAGGTT





CTACCAGCTCTACTGCTGAATCTCCTG





GTCCAGGTACCTCCCCGAGCGGTGAA





TCTTCTACTGCACCAGGTTCTAGCCCT





TCTGCTTCCACCGGTACCGGCCCAGGT





AGCTCTACTCCGTCTGGTGCAACTGGC





TCTCCAGGTAGCTCTACTCCGTCTGGT





GCAACCGGCTCCCCAGGTTTTCCGACT





ATTCCGCTGTCTCGTCTGTTTGATAAT





GCTATGCTGCGTGCGCACCGTCTGCA





CCAGCTGGCCTTTGATACTTACCAGG





AATTTGAAGAAGCcTACATTCCTAAAG





AGCAGAAGTACTCTTTCCTGCAAAAC





CCACAGACTTCTCTCTGCTTCAGCGAA





TCTATTCCGACGCCTTCCAATCGCGAG





GAAACTCAGCAAAAGTCCAATCTGGA





ACTACTCCGCATTTCTCTGCTTCTGAT





TCAGAGCTGGCTAGAACCAGTGCAAT





TTCTGCGTTCCGTCTTCGCCAATAGCC





TAGTTTATGGCGCATCCGACAGCAAC





GTATACGATCTCCTGAAAGATCTCGA





GGAAGGCATTCAGACCCTGATGGGTC





GTCTCGAGGATGGCTCTCCGCGTACT





GGTCAGATCTTCAAGCAGACTTACTCT





AAATTTGATACTAACAGCCACAATGA





CGATGCGCTTCTAAAAAACTATGGTC





TGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTAGCGAAC





CGGCAACTTCCGGCTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGA





GTCTGGCCCAGGTAGCGAACCTGCTA





CCTCTGGCTCTGAAACCCCAGGTAGC





CCGGCAGGCTCTCCGACTTCCACCGA





GGAAGGTACCTCTACTGAACCTTCTG





AGGGTAGCGCTCCAGGTAGCGAACCG





GCAACCTCTGGCTCTGAAACCCCAGG





TAGCGAACCTGCTACCTCCGGCTCTG





AAACTCCAGGTAGCGAACCGGCTACT





TCCGGTTCTGAAACTCCAGGTACCTCT





ACCGAACCTTCCGAAGGCAGCGCACC





AGGTACTTCTGAAAGCGCAACCCCTG





AATCCGGTCCAGGTAGCGAACCGGCT





ACTTCTGGCTCTGAGACTCCAGGTACT





TCTACCGAACCGTCCGAAGGTAGCGC





ACCA





AG864-
GASPGTSSTGSPGSS
753
GGTGCTTCCCCGGGCACCAGCTCTACT
754


hGH-
PSASTGTGPGSSPSA

GGTTCTCCAGGTTCTAGCCCGTCTGCT


AE144
STGTGPGTPGSGTAS

TCTACTGGTACTGGTCCAGGTTCTAGC



SSPGSSTPSGATGSP

CCTTCTGCTTCCACTGGTACTGGTCCA



GSNPSASTGTGPGAS

GGTACCCCGGGTAGCGGTACCGCTTC



PGTSSTGSPGTPGSG

TTCTTCTCCAGGTAGCTCTACTCCGTC



TASSSPGSSTPSGAT

TGGTGCTACCGGCTCTCCAGGTTCTAA



GSPGTPGSGTASSSP

CCCTTCTGCATCCACCGGTACCGGCCC



GASPGTSSTGSPGAS

AGGTGCTTCTCCGGGCACCAGCTCTA



PGTSSTGSPGTPGSG

CTGGTTCTCCAGGTACCCCGGGCAGC



TASSSPGSSTPSGAT

GGTACCGCATCTTCTTCTCCAGGTAGC



GSPGASPGTSSTGSP

TCTACTCCTTCTGGTGCAACTGGTTCT



GTPGSGTASSSPGSS

CCAGGTACTCCTGGCAGCGGTACCGC



TPSGATGSPGSNPSA

TTCTTCTTCTCCAGGTGCTTCTCCTGG



STGTGPGSSPSASTG

TACTAGCTCTACTGGTTCTCCAGGTGC



TGPGSSTPSGATGSP

TTCTCCGGGCACTAGCTCTACTGGTTC



GSSTPSGATGSPGAS

TCCAGGTACCCCGGGTAGCGGTACTG



PGTSSTGSPGASPGT

CTTCTTCCTCTCCAGGTAGCTCTACCC



SSTGSPGASPGTSST

CTTCTGGTGCAACCGGCTCTCCAGGTG



GSPGTPGSGTASSSP

CTTCTCCGGGCACCAGCTCTACCGGTT



GASPGTSSTGSPGAS

CTCCAGGTACCCCGGGTAGCGGTACC



PGTSSTGSPGASPGT

GCTTCTTCTTCTCCAGGTAGCTCTACT



SSTGSPGSSPSASTGT

CCGTCTGGTGCTACCGGCTCTCCAGGT



GPGTPGSGTASSSPG

TCTAACCCTTCTGCATCCACCGGTACC



ASPGTSSTGSPGASP

GGCCCAGGTTCTAGCCCTTCTGCTTCC



GTSSTGSPGASPGTS

ACCGGTACTGGCCCAGGTAGCTCTAC



STGSPGSSTPSGATG

CCCTTCTGGTGCTACCGGCTCCCCAGG



SPGSSTPSGATGSPG

TAGCTCTACTCCTTCTGGTGCAACTGG



ASPGTSSTGSPGTPG

CTCTCCAGGTGCATCTCCGGGCACTA



SGTASSSPGSSTPSG

GCTCTACTGGTTCTCCAGGTGCATCCC



ATGSPGSSTPSGATG

CTGGCACTAGCTCTACTGGTTCTCCAG



SPGSSTPSGATGSPG

GTGCTTCTCCTGGTACCAGCTCTACTG



SSPSASTGTGPGASP

GTTCTCCAGGTACTCCTGGCAGCGGT



GTSSTGSPGASPGTS

ACCGCTTCTTCTTCTCCAGGTGCTTCT



STGSPGTPGSGTASS

CCTGGTACTAGCTCTACTGGTTCTCCA



SPGASPGTSSTGSPG

GGTGCTTCTCCGGGCACTAGCTCTACT



ASPGTSSTGSPGASP

GGTTCTCCAGGTGCTTCCCCGGGCACT



GTSSTGSPGASPGTS

AGCTCTACCGGTTCTCCAGGTTCTAGC



STGSPGTPGSGTASS

CCTTCTGCATCTACTGGTACTGGCCCA



SPGSSTPSGATGSPG

GGTACTCCGGGCAGCGGTACTGCTTC



TPGSGTASSSPGSSTP

TTCCTCTCCAGGTGCATCTCCGGGCAC



SGATGSPGTPGSGTA

TAGCTCTACTGGTTCTCCAGGTGCATC



SSSPGSSTPSGATGSP

CCCTGGCACTAGCTCTACTGGTTCTCC



GSSTPSGATGSPGSS

AGGTGCTTCTCCTGGTACCAGCTCTAC



PSASTGTGPGSSPSA

TGGTTCTCCAGGTAGCTCTACTCCGTC



STGTGPGASPGTSST

TGGTGCAACCGGTTCCCCAGGTAGCT



GSPGTPGSGTASSSP

CTACTCCTTCTGGTGCTACTGGCTCCC



GSSTPSGATGSPGSS

CAGGTGCATCCCCTGGCACCAGCTCT



PSASTGTGPGSSPSA

ACCGGTTCTCCAGGTACCCCGGGCAG



STGTGPGASPGTSST

CGGTACCGCATCTTCCTCTCCAGGTAG



GSPGASPGTSSTGSP

CTCTACCCCGTCTGGTGCTACCGGTTC



GSSTPSGATGSPGSS

CCCAGGTAGCTCTACCCCGTCTGGTGC



PSASTGTGPGASPGT

AACCGGCTCCCCAGGTAGCTCTACTC



SSTGSPGSSPSASTGT

CGTCTGGTGCAACCGGCTCCCCAGGT



GPGTPGSGTASSSPG

TCTAGCCCGTCTGCTTCCACTGGTACT



SSTPSGATGSPGSSTP

GGCCCAGGTGCTTCCCCGGGCACCAG



SGATGSPGASPGTSS

CTCTACTGGTTCTCCAGGTGCATCCCC



TGSPGFPTIPLSRLFD

GGGTACCAGCTCTACCGGTTCTCCAG



NAMLRAHRLHQLAF

GTACTCCTGGCAGCGGTACTGCATCTT



DTYQEFEEAYIPKEQ

CCTCTCCAGGTGCTTCTCCGGGCACCA



KYSFLQNPQTSLCFS

GCTCTACTGGTTCTCCAGGTGCATCTC



ESIPTPSNREETQQKS

CGGGCACTAGCTCTACTGGTTCTCCAG



NLELLRISLLLIQSWL

GTGCATCCCCTGGCACTAGCTCTACTG



EPVQFLRSVFANSLV

GTTCTCCAGGTGCTTCTCCTGGTACCA



YGASDSNVYDLLKD

GCTCTACTGGTTCTCCAGGTACCCCTG



LEEGIQTLMGRLEDG

GTAGCGGTACTGCTTCTTCCTCTCCAG



SPRTGQIFKQTYSKF

GTAGCTCTACTCCGTCTGGTGCTACCG



DTNSHNDDALLKNY

GTTCTCCAGGTACCCCGGGTAGCGGT



GLLYCFRKDMDKVE

ACCGCATCTTCTTCTCCAGGTAGCTCT



TFLRIVQCRSVEGSC

ACCCCGTCTGGTGCTACTGGTTCTCCA



GFGGSEPATSGSETP

GGTACTCCGGGCAGCGGTACTGCTTC



GTSESATPESGPGSE

TTCCTCTCCAGGTAGCTCTACCCCTTC



PATSGSETPGSPAGS

TGGTGCTACTGGCTCTCCAGGTAGCTC



PTSTEEGTSTEPSEGS

TACCCCGTCTGGTGCTACTGGCTCCCC



APGSEPATSGSETPG

AGGTTCTAGCCCTTCTGCATCCACCGG



SEPATSGSETPGSEP

TACCGGTCCAGGTTCTAGCCCGTCTGC



ATSGSETPGTSTEPSE

ATCTACTGGTACTGGTCCAGGTGCATC



GSAPGTSESATPESG

CCCGGGCACTAGCTCTACCGGTTCTCC



PGSEPATSGSETPGT

AGGTACTCCTGGTAGCGGTACTGCTTC



STEPSEGSAP

TTCTTCTCCAGGTAGCTCTACTCCTTC





TGGTGCTACTGGTTCTCCAGGTTCTAG





CCCTTCTGCATCCACCGGTACCGGCCC





AGGTTCTAGCCCGTCTGCTTCTACCGG





TACTGGTCCAGGTGCTTCTCCGGGTAC





TAGCTCTACTGGTTCTCCAGGTGCATC





TCCTGGTACTAGCTCTACTGGTTCTCC





AGGTAGCTCTACTCCGTCTGGTGCAA





CCGGCTCTCCAGGTTCTAGCCCTTCTG





CATCTACCGGTACTGGTCCAGGTGCA





TCCCCTGGTACCAGCTCTACCGGTTCT





CCAGGTTCTAGCCCTTCTGCTTCTACC





GGTACCGGTCCAGGTACCCCTGGCAG





CGGTACCGCATCTTCCTCTCCAGGTAG





CTCTACTCCGTCTGGTGCAACCGGTTC





CCCAGGTAGCTCTACTCCTTCTGGTGC





TACTGGCTCCCCAGGTGCATCCCCTGG





CACCAGCTCTACCGGTTCTCCAGGTTT





TCCGACTATTCCGCTGTCTCGTCTGTT





TGATAATGCTATGCTGCGTGCGCACC





GTCTGCACCAGCTGGCCTTTGATACTT





ACCAGGAATTTGAAGAAGCcTACATT





CCTAAAGAGCAGAAGTACTCTTTCCT





GCAAAACCCACAGACTTCTCTCTGCTT





CAGCGAATCTATTCCGACGCCTTCCA





ATCGCGAGGAAACTCAGCAAAAGTCC





AATCTGGAACTACTCCGCATTTCTCTG





CTTCTGATTCAGAGCTGGCTAGAACC





AGTGCAATTTCTGCGTTCCGTCTTCGC





CAATAGCCTAGTTTATGGCGCATCCG





ACAGCAACGTATACGATCTCCTGAAA





GATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTC





CGCGTACTGGTCAGATCTTCAAGCAG





ACTTACTCTAAATTTGATACTAACAGC





CACAATGACGATGCGCTTCTAAAAAA





CTATGGTCTGCTGTATTGTTTTCGTAA





AGATATGGACAAAGTTGAAACCTTCC





TGCGTATTGTTCAGTGTCGTTCCGTTG





AGGGCAGCTGTGGTTTCTAAGGTGGT





AGCGAACCGGCAACTTCCGGCTCTGA





AACCCCAGGTACTTCTGAAAGCGCTA





CTCCTGAGTCTGGCCCAGGTAGCGAA





CCTGCTACCTCTGGCTCTGAAACCCCA





GGTAGCCCGGCAGGCTCTCCGACTTC





CACCGAGGAAGGTACCTCTACTGAAC





CTTCTGAGGGTAGCGCTCCAGGTAGC





GAACCGGCAACCTCTGGCTCTGAAAC





CCCAGGTAGCGAACCTGCTACCTCCG





GCTCTGAAACTCCAGGTAGCGAACCG





GCTACTTCCGGTTCTGAAACTCCAGGT





ACCTCTACCGAACCTTCCGAAGGCAG





CGCACCAGGTACTTCTGAAAGCGCAA





CCCCTGAATCCGGTCCAGGTAGCGAA





CCGGCTACTTCTGGCTCTGAGACTCCA





GGTACTTCTACCGAACCGTCCGAAGG





TAGCGCACCA





AM875-
GTSTEPSEGSAPGSE
755
GGTACTTCTACTGAACCGTCTGAAGG
756


hGH-
PATSGSETPGSPAGS

CAGCGCACCAGGTAGCGAACCGGCTA


AE144
PTSTEEGSTSSTAESP

CTTCCGGTTCTGAAACCCCAGGTAGC



GPGTSTPESGSASPG

CCAGCAGGTTCTCCAACTTCTACTGAA



STSESPSGTAPGSTSE

GAAGGTTCTACCAGCTCTACCGCAGA



SPSGTAPGTSTPESGS

ATCTCCTGGTCCAGGTACCTCTACTCC



ASPGTSTPESGSASP

GGAAAGCGGCTCTGCATCTCCAGGTT



GSEPATSGSETPGTS

CTACTAGCGAATCTCCTTCTGGCACTG



ESATPESGPGSPAGS

CACCAGGTTCTACTAGCGAATCCCCG



PTSTEEGTSTEPSEGS

TCTGGTACTGCTCCAGGTACTTCTACT



APGTSESATPESGPG

CCTGAAAGCGGTTCCGCTTCTCCAGGT



TSTEPSEGSAPGTSTE

ACCTCTACTCCGGAAAGCGGTTCTGC



PSEGSAPGSPAGSPT

ATCTCCAGGTAGCGAACCGGCAACCT



STEEGTSTEPSEGSAP

CCGGCTCTGAAACCCCAGGTACCTCT



GTSTEPSEGSAPGTS

GAAAGCGCTACTCCTGAATCCGGCCC



ESATPESGPGTSESA

AGGTAGCCCGGCAGGTTCTCCGACTT



TPESGPGTSTEPSEGS

CCACTGAGGAAGGTACCTCTACTGAA



APGTSTEPSEGSAPG

CCTTCTGAGGGCAGCGCTCCAGGTAC



TSESATPESGPGTSTE

TTCTGAAAGCGCTACCCCGGAGTCCG



PSEGSAPGSEPATSG

GTCCAGGTACTTCTACTGAACCGTCCG



SETPGSPAGSPTSTEE

AAGGTAGCGCACCAGGTACTTCTACC



GSSTPSGATGSPGTP

GAACCGTCCGAGGGTAGCGCACCAGG



GSGTASSSPGSSTPS

TAGCCCAGCAGGTTCTCCTACCTCCAC



GATGSPGTSTEPSEG

CGAGGAAGGTACTTCTACCGAACCGT



SAPGTSTEPSEGSAP

CCGAGGGTAGCGCACCAGGTACTTCT



GSEPATSGSETPGSP

ACCGAACCTTCCGAGGGCAGCGCACC



AGSPTSTEEGSPAGS

AGGTACTTCTGAAAGCGCTACCCCTG



PTSTEEGTSTEPSEGS

AGTCCGGCCCAGGTACTTCTGAAAGC



APGASASGAPSTGGT

GCTACTCCTGAATCCGGTCCAGGTAC



SESATPESGPGSPAG

CTCTACTGAACCTTCCGAAGGCAGCG



SPTSTEEGSPAGSPTS

CTCCAGGTACCTCTACCGAACCGTCC



TEEGSTSSTAESPGP

GAGGGCAGCGCACCAGGTACTTCTGA



GSTSESPSGTAPGTSP

AAGCGCAACCCCTGAATCCGGTCCAG



SGESSTAPGTPGSGT

GTACTTCTACTGAACCTTCCGAAGGTA



ASSSPGSSTPSGATG

GCGCTCCAGGTAGCGAACCTGCTACT



SPGSSPSASTGTGPG

TCTGGTTCTGAAACCCCAGGTAGCCC



SEPATSGSETPGTSES

GGCTGGCTCTCCGACCTCCACCGAGG



ATPESGPGSEPATSG

AAGGTAGCTCTACCCCGTCTGGTGCT



SETPGSTSSTAESPGP

ACTGGTTCTCCAGGTACTCCGGGCAG



GSTSSTAESPGPGTSP

CGGTACTGCTTCTTCCTCTCCAGGTAG



SGESSTAPGSEPATS

CTCTACCCCTTCTGGTGCTACTGGCTC



GSETPGSEPATSGSE

TCCAGGTACCTCTACCGAACCGTCCG



TPGTSTEPSEGSAPG

AGGGTAGCGCACCAGGTACCTCTACT



STSSTAESPGPGTSTP

GAACCGTCTGAGGGTAGCGCTCCAGG



ESGSASPGSTSESPSG

TAGCGAACCGGCAACCTCCGGTTCTG



TAPGTSTEPSEGSAP

AAACTCCAGGTAGCCCTGCTGGCTCT



GTSTEPSEGSAPGTS

CCGACTTCTACTGAGGAAGGTAGCCC



TEPSEGSAPGSSTPSG

GGCTGGTTCTCCGACTTCTACTGAGGA



ATGSPGSSPSASTGT

AGGTACTTCTACCGAACCTTCCGAAG



GPGASPGTSSTGSPG

GTAGCGCTCCAGGTGCAAGCGCAAGC



SEPATSGSETPGTSES

GGCGCGCCAAGCACGGGAGGTACTTC



ATPESGPGSPAGSPT

TGAAAGCGCTACTCCTGAGTCCGGCC



STEEGSSTPSGATGS

CAGGTAGCCCGGCTGGCTCTCCGACT



PGSSPSASTGTGPGA

TCCACCGAGGAAGGTAGCCCGGCTGG



SPGTSSTGSPGTSESA

CTCTCCAACTTCTACTGAAGAAGGTTC



TPESGPGTSTEPSEGS

TACCAGCTCTACCGCTGAATCTCCTGG



APGTSTEPSEGSAPG

CCCAGGTTCTACTAGCGAATCTCCGTC



FPTIPLSRLFDNAML

TGGCACCGCACCAGGTACTTCCCCTA



RAHRLHQLAFDTYQ

GCGGTGAATCTTCTACTGCACCAGGT



EFEEAYIPKEQKYSF

ACCCCTGGCAGCGGTACCGCTTCTTCC



LQNPQTSLCFSESIPT

TCTCCAGGTAGCTCTACCCCGTCTGGT



PSNREETQQKSNLEL

GCTACTGGCTCTCCAGGTTCTAGCCCG



LRISLLLIQSWLEPVQ

TCTGCATCTACCGGTACCGGCCCAGG



FLRSVFANSLVYGAS

TAGCGAACCGGCAACCTCCGGCTCTG



DSNVYDLLKDLEEGI

AAACTCCAGGTACTTCTGAAAGCGCT



QTLMGRLEDGSPRT

ACTCCGGAATCCGGCCCAGGTAGCGA



GQIFKQTYSKFDTNS

ACCGGCTACTTCCGGCTCTGAAACCC



HNDDALLKNYGLLY

CAGGTTCCACCAGCTCTACTGCAGAA



CFRKDMDKVETFLRI

TCTCCGGGCCCAGGTTCTACTAGCTCT



VQCRSVEGSCGFGG

ACTGCAGAATCTCCGGGTCCAGGTAC



SEPATSGSETPGTSES

TTCTCCTAGCGGCGAATCTTCTACCGC



ATPESGPGSEPATSG

TCCAGGTAGCGAACCGGCAACCTCTG



SETPGSPAGSPTSTEE

GCTCTGAAACTCCAGGTAGCGAACCT



GTSTEPSEGSAPGSE

GCAACCTCCGGCTCTGAAACCCCAGG



PATSGSETPGSEPAT

TACTTCTACTGAACCTTCTGAGGGCAG



SGSETPGSEPATSGS

CGCACCAGGTTCTACCAGCTCTACCG



ETPGTSTEPSEGSAP

CAGAATCTCCTGGTCCAGGTACCTCTA



GTSESATPESGPGSE

CTCCGGAAAGCGGCTCTGCATCTCCA



PATSGSETPGTSTEPS

GGTTCTACTAGCGAATCTCCTTCTGGC



EGSAP

ACTGCACCAGGTACTTCTACCGAACC





GTCCGAAGGCAGCGCTCCAGGTACCT





CTACTGAACCTTCCGAGGGCAGCGCT





CCAGGTACCTCTACCGAACCTTCTGA





AGGTAGCGCACCAGGTAGCTCTACTC





CGTCTGGTGCAACCGGCTCCCCAGGT





TCTAGCCCGTCTGCTTCCACTGGTACT





GGCCCAGGTGCTTCCCCGGGCACCAG





CTCTACTGGTTCTCCAGGTAGCGAACC





TGCTACCTCCGGTTCTGAAACCCCAG





GTACCTCTGAAAGCGCAACTCCGGAG





TCTGGTCCAGGTAGCCCTGCAGGTTCT





CCTACCTCCACTGAGGAAGGTAGCTC





TACTCCGTCTGGTGCAACCGGCTCCCC





AGGTTCTAGCCCGTCTGCTTCCACTGG





TACTGGCCCAGGTGCTTCCCCGGGCA





CCAGCTCTACTGGTTCTCCAGGTACCT





CTGAAAGCGCTACTCCGGAGTCTGGC





CCAGGTACCTCTACTGAACCGTCTGA





GGGTAGCGCTCCAGGTACTTCTACTG





AACCGTCCGAAGGTAGCGCACCAGGT





TTTCCGACTATTCCGCTGTCTCGTCTG





TTTGATAATGCTATGCTGCGTGCGCAC





CGTCTGCACCAGCTGGCCTTTGATACT





TACCAGGAATTTGAAGAAGCcTACATT





CCTAAAGAGCAGAAGTACTCTTTCCT





GCAAAACCCACAGACTTCTCTCTGCTT





CAGCGAATCTATTCCGACGCCTTCCA





ATCGCGAGGAAACTCAGCAAAAGTCC





AATCTGGAACTACTCCGCATTTCTCTG





CTTCTGATTCAGAGCTGGCTAGAACC





AGTGCAATTTCTGCGTTCCGTCTTCGC





CAATAGCCTAGTTTATGGCGCATCCG





ACAGCAACGTATACGATCTCCTGAAA





GATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTC





CGCGTACTGGTCAGATCTTCAAGCAG





ACTTACTCTAAATTTGATACTAACAGC





CACAATGACGATGCGCTTCTAAAAAA





CTATGGTCTGCTGTATTGTTTTCGTAA





AGATATGGACAAAGTTGAAACCTTCC





TGCGTATTGTTCAGTGTCGTTCCGTTG





AGGGCAGCTGTGGTTTCTAAGGTGGT





AGCGAACCGGCAACTTCCGGCTCTGA





AACCCCAGGTACTTCTGAAAGCGCTA





CTCCTGAGTCTGGCCCAGGTAGCGAA





CCTGCTACCTCTGGCTCTGAAACCCCA





GGTAGCCCGGCAGGCTCTCCGACTTC





CACCGAGGAAGGTACCTCTACTGAAC





CTTCTGAGGGTAGCGCTCCAGGTAGC





GAACCGGCAACCTCTGGCTCTGAAAC





CCCAGGTAGCGAACCTGCTACCTCCG





GCTCTGAAACTCCAGGTAGCGAACCG





GCTACTTCCGGTTCTGAAACTCCAGGT





ACCTCTACCGAACCTTCCGAAGGCAG





CGCACCAGGTACTTCTGAAAGCGCAA





CCCCTGAATCCGGTCCAGGTAGCGAA





CCGGCTACTTCTGGCTCTGAGACTCCA





GGTACTTCTACCGAACCGTCCGAAGG





TAGCGCACCA





AE912-
MAEPAGSPTSTEEGT
757
ATGGCTGAACCTGCTGGCTCTCCAAC
758


hGH-
PGSGTASSSPGSSTPS

CTCCACTGAGGAAGGTACCCCGGGTA


AE144
GATGSPGASPGTSST

GCGGTACTGCTTCTTCCTCTCCAGGTA



GSPGSPAGSPTSTEE

GCTCTACCCCTTCTGGTGCAACCGGCT



GTSESATPESGPGTS

CTCCAGGTGCTTCTCCGGGCACCAGCT



TEPSEGSAPGSPAGS

CTACCGGTTCTCCAGGTAGCCCGGCT



PTSTEEGTSTEPSEGS

GGCTCTCCTACCTCTACTGAGGAAGG



APGTSTEPSEGSAPG

TACTTCTGAAAGCGCTACTCCTGAGTC



TSESATPESGPGSEP

TGGTCCAGGTACCTCTACTGAACCGTC



ATSGSETPGSEPATS

CGAAGGTAGCGCTCCAGGTAGCCCAG



GSETPGSPAGSPTST

CAGGCTCTCCGACTTCCACTGAGGAA



EEGTSESATPESGPG

GGTACTTCTACTGAACCTTCCGAAGG



TSTEPSEGSAPGTSTE

CAGCGCACCAGGTACCTCTACTGAAC



PSEGSAPGSPAGSPT

CTTCTGAGGGCAGCGCTCCAGGTACT



STEEGTSTEPSEGSAP

TCTGAAAGCGCTACCCCGGAATCTGG



GTSTEPSEGSAPGTS

CCCAGGTAGCGAACCGGCTACTTCTG



ESATPESGPGTSTEPS

GTTCTGAAACCCCAGGTAGCGAACCG



EGSAPGTSESATPES

GCTACCTCCGGTTCTGAAACTCCAGGT



GPGSEPATSGSETPG

AGCCCGGCAGGCTCTCCGACCTCTAC



TSTEPSEGSAPGTSTE

TGAGGAAGGTACTTCTGAAAGCGCAA



PSEGSAPGTSESATP

CCCCGGAGTCCGGCCCAGGTACCTCT



ESGPGTSESATPESG

ACCGAACCGTCTGAGGGCAGCGCACC



PGSPAGSPTSTEEGT

AGGTACTTCTACCGAACCGTCCGAGG



SESATPESGPGSEPA

GTAGCGCACCAGGTAGCCCAGCAGGT



TSGSETPGTSESATPE

TCTCCTACCTCCACCGAGGAAGGTAC



SGPGTSTEPSEGSAP

TTCTACCGAACCGTCCGAGGGTAGCG



GTSTEPSEGSAPGTS

CACCAGGTACCTCTACTGAACCTTCTG



TEPSEGSAPGTSTEPS

AGGGCAGCGCTCCAGGTACTTCTGAA



EGSAPGTSTEPSEGS

AGCGCTACCCCGGAGTCCGGTCCAGG



APGTSTEPSEGSAPG

TACTTCTACTGAACCGTCCGAAGGTA



SPAGSPTSTEEGTSTE

GCGCACCAGGTACTTCTGAAAGCGCA



PSEGSAPGTSESATP

ACCCCTGAATCCGGTCCAGGTAGCGA



ESGPGSEPATSGSET

ACCGGCTACTTCTGGCTCTGAGACTCC



PGTSESATPESGPGS

AGGTACTTCTACCGAACCGTCCGAAG



EPATSGSETPGTSES

GTAGCGCACCAGGTACTTCTACTGAA



ATPESGPGTSTEPSE

CCGTCTGAAGGTAGCGCACCAGGTAC



GSAPGTSESATPESG

TTCTGAAAGCGCAACCCCGGAATCCG



PGSPAGSPTSTEEGSP

GCCCAGGTACCTCTGAAAGCGCAACC



AGSPTSTEEGSPAGS

CCGGAGTCCGGCCCAGGTAGCCCTGC



PTSTEEGTSESATPES

TGGCTCTCCAACCTCCACCGAAGAAG



GPGTSTEPSEGSAPG

GTACCTCTGAAAGCGCAACCCCTGAA



TSESATPESGPGSEP

TCCGGCCCAGGTAGCGAACCGGCAAC



ATSGSETPGTSESAT

CTCCGGTTCTGAAACCCCAGGTACCTC



PESGPGSEPATSGSE

TGAAAGCGCTACTCCGGAGTCTGGCC



TPGTSESATPESGPG

CAGGTACCTCTACTGAACCGTCTGAG



TSTEPSEGSAPGSPA

GGTAGCGCTCCAGGTACTTCTACTGA



GSPTSTEEGTSESATP

ACCGTCCGAAGGTAGCGCACCAGGTA



ESGPGSEPATSGSET

CTTCTACCGAACCGTCCGAAGGCAGC



PGTSESATPESGPGSP

GCTCCAGGTACCTCTACTGAACCTTCC



AGSPTSTEEGSPAGS

GAGGGCAGCGCTCCAGGTACCTCTAC



PTSTEEGTSTEPSEGS

CGAACCTTCTGAAGGTAGCGCACCAG



APGTSESATPESGPG

GTACTTCTACCGAACCGTCCGAGGGT



TSESATPESGPGTSES

AGCGCACCAGGTAGCCCAGCAGGTTC



ATPESGPGSEPATSG

TCCTACCTCCACCGAGGAAGGTACTT



SETPGSEPATSGSETP

CTACCGAACCGTCCGAGGGTAGCGCA



GSPAGSPTSTEEGTS

CCAGGTACCTCTGAAAGCGCAACTCC



TEPSEGSAPGTSTEPS

TGAGTCTGGCCCAGGTAGCGAACCTG



EGSAPGSEPATSGSE

CTACCTCCGGCTCTGAGACTCCAGGT



TPGTSESATPESGPG

ACCTCTGAAAGCGCAACCCCGGAATC



TSTEPSEGSAPGFPTI

TGGTCCAGGTAGCGAACCTGCAACCT



PLSRLFDNAMLRAH

CTGGCTCTGAAACCCCAGGTACCTCT



RLHQLAFDTYQEFEE

GAAAGCGCTACTCCTGAATCTGGCCC



AYIPKEQKYSFLQNP

AGGTACTTCTACTGAACCGTCCGAGG



QTSLCFSESIPTPSNR

GCAGCGCACCAGGTACTTCTGAAAGC



EETQQKSNLELLRIS

GCTACTCCTGAGTCCGGCCCAGGTAG



LLLIQSWLEPVQFLR

CCCGGCTGGCTCTCCGACTTCCACCGA



SVFANSLVYGASDS

GGAAGGTAGCCCGGCTGGCTCTCCAA



NVYDLLKDLEEGIQT

CTTCTACTGAAGAAGGTAGCCCGGCA



LMGRLEDGSPRTGQI

GGCTCTCCGACCTCTACTGAGGAAGG



FKQTYSKFDTNSHN

TACTTCTGAAAGCGCAACCCCGGAGT



DDALLKNYGLLYCF

CCGGCCCAGGTACCTCTACCGAACCG



RKDMDKVETFLRIV

TCTGAGGGCAGCGCACCAGGTACCTC



QCRSVEGSCGFGGTS

TGAAAGCGCAACTCCTGAGTCTGGCC



ESATPESGPGTSTEPS

CAGGTAGCGAACCTGCTACCTCCGGC



EGSAPGTSTEPSEGS

TCTGAGACTCCAGGTACCTCTGAAAG



APGTSESATPESGPG

CGCAACCCCGGAATCTGGTCCAGGTA



TSTEPSEGSAPGTSTE

GCGAACCTGCAACCTCTGGCTCTGAA



PSEGSAPGTSESATP

ACCCCAGGTACCTCTGAAAGCGCTAC



ESGPGTSTEPSEGSA

TCCTGAATCTGGCCCAGGTACTTCTAC



PGTSTEPSEGSAPGT

TGAACCGTCCGAGGGCAGCGCACCAG



STEPSEGSAPGSPAG

GTAGCCCTGCTGGCTCTCCAACCTCCA



SPTSTEEGTSTEPSEG

CCGAAGAAGGTACCTCTGAAAGCGCA



SAPG

ACCCCTGAATCCGGCCCAGGTAGCGA





ACCGGCAACCTCCGGTTCTGAAACCC





CAGGTACTTCTGAAAGCGCTACTCCT





GAGTCCGGCCCAGGTAGCCCGGCTGG





CTCTCCGACTTCCACCGAGGAAGGTA





GCCCGGCTGGCTCTCCAACTTCTACTG





AAGAAGGTACTTCTACCGAACCTTCC





GAGGGCAGCGCACCAGGTACTTCTGA





AAGCGCTACCCCTGAGTCCGGCCCAG





GTACTTCTGAAAGCGCTACTCCTGAAT





CCGGTCCAGGTACTTCTGAAAGCGCT





ACCCCGGAATCTGGCCCAGGTAGCGA





ACCGGCTACTTCTGGTTCTGAAACCCC





AGGTAGCGAACCGGCTACCTCCGGTT





CTGAAACTCCAGGTAGCCCAGCAGGC





TCTCCGACTTCCACTGAGGAAGGTAC





TTCTACTGAACCTTCCGAAGGCAGCG





CACCAGGTACCTCTACTGAACCTTCTG





AGGGCAGCGCTCCAGGTAGCGAACCT





GCAACCTCTGGCTCTGAAACCCCAGG





TACCTCTGAAAGCGCTACTCCTGAATC





TGGCCCAGGTACTTCTACTGAACCGTC





CGAGGGCAGCGCACCAGGTTTTCCGA





CTATTCCGCTGTCTCGTCTGTTTGATA





ATGCTATGCTGCGTGCGCACCGTCTGC





ACCAGCTGGCCTTTGATACTTACCAG





GAATTTGAAGAAGCcTACATTCCTAAA





GAGCAGAAGTACTCTTTCCTGCAAAA





CCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGA





GGAAACTCAGCAAAAGTCCAATCTGG





AACTACTCCGCATTTCTCTGCTTCTGA





TTCAGAGCTGGCTAGAACCAGTGCAA





TTTCTGCGTTCCGTCTTCGCCAATAGC





CTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCG





AGGAAGGCATTCAGACCCTGATGGGT





CGTCTCGAGGATGGCTCTCCGCGTACT





GGTCAGATCTTCAAGCAGACTTACTCT





AAATTTGATACTAACAGCCACAATGA





CGATGCGCTTCTAAAAAACTATGGTC





TGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTAGCGAAC





CGGCAACTTCCGGCTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGA





GTCTGGCCCAGGTAGCGAACCTGCTA





CCTCTGGCTCTGAAACCCCAGGTAGC





CCGGCAGGCTCTCCGACTTCCACCGA





GGAAGGTACCTCTACTGAACCTTCTG





AGGGTAGCGCTCCAGGTAGCGAACCG





GCAACCTCTGGCTCTGAAACCCCAGG





TAGCGAACCTGCTACCTCCGGCTCTG





AAACTCCAGGTAGCGAACCGGCTACT





TCCGGTTCTGAAACTCCAGGTACCTCT





ACCGAACCTTCCGAAGGCAGCGCACC





AGGTACTTCTGAAAGCGCAACCCCTG





AATCCGGTCCAGGTAGCGAACCGGCT





ACTTCTGGCTCTGAGACTCCAGGTACT





TCTACCGAACCGTCCGAAGGTAGCGC





ACCA





AM923-
MAEPAGSPTSTEEGA
759
ATGGCTGAACCTGCTGGCTCTCCAAC
760


hGH-
SPGTSSTGSPGSSTPS

CTCCACTGAGGAAGGTACCCCGGGTA


AE144
GATGSPGSSTPSGAT

GCGGTACTGCTTCTTCCTCTCCAGGTA



GSPGTSTEPSEGSAP

GCTCTACCCCTTCTGGTGCAACCGGCT



GSEPATSGSETPGSP

CTCCAGGTGCTTCTCCGGGCACCAGCT



AGSPTSTEEGSTSST

CTACCGGTTCTCCAGGTAGCCCGGCT



AESPGPGTSTPESGS

GGCTCTCCTACCTCTACTGAGGAAGG



ASPGSTSESPSGTAP

TACTTCTGAAAGCGCTACTCCTGAGTC



GSTSESPSGTAPGTS

TGGTCCAGGTACCTCTACTGAACCGTC



TPESGSASPGTSTPES

CGAAGGTAGCGCTCCAGGTAGCCCAG



GSASPGSEPATSGSE

CAGGCTCTCCGACTTCCACTGAGGAA



TPGTSESATPESGPG

GGTACTTCTACTGAACCTTCCGAAGG



SPAGSPTSTEEGTSTE

CAGCGCACCAGGTACCTCTACTGAAC



PSEGSAPGTSESATP

CTTCTGAGGGCAGCGCTCCAGGTACT



ESGPGTSTEPSEGSA

TCTGAAAGCGCTACCCCGGAATCTGG



PGTSTEPSEGSAPGSP

CCCAGGTAGCGAACCGGCTACTTCTG



AGSPTSTEEGTSTEPS

GTTCTGAAACCCCAGGTAGCGAACCG



EGSAPGTSTEPSEGS

GCTACCTCCGGTTCTGAAACTCCAGGT



APGTSESATPESGPG

AGCCCGGCAGGCTCTCCGACCTCTAC



TSESATPESGPGTSTE

TGAGGAAGGTACTTCTGAAAGCGCAA



PSEGSAPGTSTEPSE

CCCCGGAGTCCGGCCCAGGTACCTCT



GSAPGTSESATPESG

ACCGAACCGTCTGAGGGCAGCGCACC



PGTSTEPSEGSAPGS

AGGTACTTCTACCGAACCGTCCGAGG



EPATSGSETPGSPAG

GTAGCGCACCAGGTAGCCCAGCAGGT



SPTSTEEGSSTPSGAT

TCTCCTACCTCCACCGAGGAAGGTAC



GSPGTPGSGTASSSP

TTCTACCGAACCGTCCGAGGGTAGCG



GSSTPSGATGSPGTS

CACCAGGTACCTCTACTGAACCTTCTG



TEPSEGSAPGTSTEPS

AGGGCAGCGCTCCAGGTACTTCTGAA



EGSAPGSEPATSGSE

AGCGCTACCCCGGAGTCCGGTCCAGG



TPGSPAGSPTSTEEG

TACTTCTACTGAACCGTCCGAAGGTA



SPAGSPTSTEEGTSTE

GCGCACCAGGTACTTCTGAAAGCGCA



PSEGSAPGASASGAP

ACCCCTGAATCCGGTCCAGGTAGCGA



STGGTSESATPESGP

ACCGGCTACTTCTGGCTCTGAGACTCC



GSPAGSPTSTEEGSP

AGGTACTTCTACCGAACCGTCCGAAG



AGSPTSTEEGSTSST

GTAGCGCACCAGGTACTTCTACTGAA



AESPGPGSTSESPSGT

CCGTCTGAAGGTAGCGCACCAGGTAC



APGTSPSGESSTAPG

TTCTGAAAGCGCAACCCCGGAATCCG



TPGSGTASSSPGSSTP

GCCCAGGTACCTCTGAAAGCGCAACC



SGATGSPGSSPSAST

CCGGAGTCCGGCCCAGGTAGCCCTGC



GTGPGSEPATSGSET

TGGCTCTCCAACCTCCACCGAAGAAG



PGTSESATPESGPGS

GTACCTCTGAAAGCGCAACCCCTGAA



EPATSGSETPGSTSST

TCCGGCCCAGGTAGCGAACCGGCAAC



AESPGPGSTSSTAESP

CTCCGGTTCTGAAACCCCAGGTACCTC



GPGTSPSGESSTAPG

TGAAAGCGCTACTCCGGAGTCTGGCC



SEPATSGSETPGSEP

CAGGTACCTCTACTGAACCGTCTGAG



ATSGSETPGTSTEPSE

GGTAGCGCTCCAGGTACTTCTACTGA



GSAPGSTSSTAESPG

ACCGTCCGAAGGTAGCGCACCAGGTA



PGTSTPESGSASPGST

CTTCTACCGAACCGTCCGAAGGCAGC



SESPSGTAPGTSTEPS

GCTCCAGGTACCTCTACTGAACCTTCC



EGSAPGTSTEPSEGS

GAGGGCAGCGCTCCAGGTACCTCTAC



APGTSTEPSEGSAPG

CGAACCTTCTGAAGGTAGCGCACCAG



SSTPSGATGSPGSSPS

GTACTTCTACCGAACCGTCCGAGGGT



ASTGTGPGASPGTSS

AGCGCACCAGGTAGCCCAGCAGGTTC



TGSPGSEPATSGSET

TCCTACCTCCACCGAGGAAGGTACTT



PGTSESATPESGPGSP

CTACCGAACCGTCCGAGGGTAGCGCA



AGSPTSTEEGSSTPS

CCAGGTACCTCTGAAAGCGCAACTCC



GATGSPGSSPSASTG

TGAGTCTGGCCCAGGTAGCGAACCTG



TGPGASPGTSSTGSP

CTACCTCCGGCTCTGAGACTCCAGGT



GTSESATPESGPGTS

ACCTCTGAAAGCGCAACCCCGGAATC



TEPSEGSAPGTSTEPS

TGGTCCAGGTAGCGAACCTGCAACCT



EGSAPGFPTIPLSRLF

CTGGCTCTGAAACCCCAGGTACCTCT



DNAMLRAHRLHQL

GAAAGCGCTACTCCTGAATCTGGCCC



AFDTYQEFEEAYIPK

AGGTACTTCTACTGAACCGTCCGAGG



EQKYSFLQNPQTSLC

GCAGCGCACCAGGTACTTCTGAAAGC



FSESIPTPSNREETQQ

GCTACTCCTGAGTCCGGCCCAGGTAG



KSNLELLRISLLLIQS

CCCGGCTGGCTCTCCGACTTCCACCGA



WLEPVQFLRSVFAN

GGAAGGTAGCCCGGCTGGCTCTCCAA



SLVYGASDSNVYDL

CTTCTACTGAAGAAGGTAGCCCGGCA



LKDLEEGIQTLMGRL

GGCTCTCCGACCTCTACTGAGGAAGG



EDGSPRTGQIFKQTY

TACTTCTGAAAGCGCAACCCCGGAGT



SKFDTNSHNDDALL

CCGGCCCAGGTACCTCTACCGAACCG



KNYGLLYCFRKDMD

TCTGAGGGCAGCGCACCAGGTACCTC



KVETFLRIVQCRSVE

TGAAAGCGCAACTCCTGAGTCTGGCC



GSCGFGGSEPATSGS

CAGGTAGCGAACCTGCTACCTCCGGC



ETPGTSESATPESGP

TCTGAGACTCCAGGTACCTCTGAAAG



GSEPATSGSETPGSP

CGCAACCCCGGAATCTGGTCCAGGTA



AGSPTSTEEGTSTEPS

GCGAACCTGCAACCTCTGGCTCTGAA



EGSAPGSEPATSGSE

ACCCCAGGTACCTCTGAAAGCGCTAC



TPGSEPATSGSETPG

TCCTGAATCTGGCCCAGGTACTTCTAC



SEPATSGSETPGTSTE

TGAACCGTCCGAGGGCAGCGCACCAG



PSEGSAPGTSESATP

GTAGCCCTGCTGGCTCTCCAACCTCCA



ESGPGSEPATSGSET

CCGAAGAAGGTACCTCTGAAAGCGCA



PGTSTEPSEGSAP

ACCCCTGAATCCGGCCCAGGTAGCGA





ACCGGCAACCTCCGGTTCTGAAACCC





CAGGTACTTCTGAAAGCGCTACTCCT





GAGTCCGGCCCAGGTAGCCCGGCTGG





CTCTCCGACTTCCACCGAGGAAGGTA





GCCCGGCTGGCTCTCCAACTTCTACTG





AAGAAGGTACTTCTACCGAACCTTCC





GAGGGCAGCGCACCAGGTACTTCTGA





AAGCGCTACCCCTGAGTCCGGCCCAG





GTACTTCTGAAAGCGCTACTCCTGAAT





CCGGTCCAGGTACTTCTGAAAGCGCT





ACCCCGGAATCTGGCCCAGGTAGCGA





ACCGGCTACTTCTGGTTCTGAAACCCC





AGGTAGCGAACCGGCTACCTCCGGTT





CTGAAACTCCAGGTAGCCCAGCAGGC





TCTCCGACTTCCACTGAGGAAGGTAC





TTCTACTGAACCTTCCGAAGGCAGCG





CACCAGGTACCTCTACTGAACCTTCTG





AGGGCAGCGCTCCAGGTAGCGAACCT





GCAACCTCTGGCTCTGAAACCCCAGG





TACCTCTGAAAGCGCTACTCCTGAATC





TGGCCCAGGTACTTCTACTGAACCGTC





CGAGGGCAGCGCACCAGGTTTTCCGA





CTATTCCGCTGTCTCGTCTGTTTGATA





ATGCTATGCTGCGTGCGCACCGTCTGC





ACCAGCTGGCCTTTGATACTTACCAG





GAATTTGAAGAAGCcTACATTCCTAAA





GAGCAGAAGTACTCTTTCCTGCAAAA





CCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGA





GGAAACTCAGCAAAAGTCCAATCTGG





AACTACTCCGCATTTCTCTGCTTCTGA





TTCAGAGCTGGCTAGAACCAGTGCAA





TTTCTGCGTTCCGTgTTCGCCAATAGC





CTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCG





AGGAAGGCATTCAGACCCTGATGGGT





CGTCTCGAGGATGGCTCTCCGCGTACT





GGTCAGATCTTCAAGCAGACTTACTCT





AAATTTGATACTAACAGCCACAATGA





CGATGCGCTTCTAAAAAACTATGGTC





TGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCGGAGGTACTTCTGAAA





GCGCTACTCCGGAGTCCGGTCCAGGT





ACCTCTACCGAACCGTCCGAAGGCAG





CGCTCCAGGTACTTCTACTGAACCTTC





TGAGGGTAGCGCTCCAGGTACTTCTG





AAAGCGCTACTCCGGAGTCCGGTCCA





GGTACCTCTACCGAACCGTCCGAAGG





CAGCGCTCCAGGTACTTCTACTGAAC





CTTCTGAGGGTAGCGCTCCAGGTACC





TCTGAAAGCGCTACTCCGGAGTCTGG





CCCAGGTACCTCTACTGAACCGTCTG





AGGGTAGCGCTCCAGGTACTTCTACT





GAACCGTCCGAAGGTAGCGCACCAGG





TACTTCTACCGAACCGTCCGAGGGTA





GCGCACCAGGTAGCCCAGCAGGTTCT





CCTACCTCCACCGAGGAAGGTACTTC





TACCGAACCGTCCGAGGGTAGCGCAC





CAGGTTAA





AM1318-
GTSTEPSEGSAPGSE
761
GGTACTTCTACTGAACCGTCTGAAGG
762


hGH-
PATSGSETPGSPAGS

CAGCGCACCAGGTAGCGAACCGGCTA


AE144
PTSTEEGSTSSTAESP

CTTCCGGTTCTGAAACCCCAGGTAGC



GPGTSTPESGSASPG

CCAGCAGGTTCTCCAACTTCTACTGAA



STSESPSGTAPGSTSE

GAAGGTTCTACCAGCTCTACCGCAGA



SPSGTAPGTSTPESGS

ATCTCCTGGTCCAGGTACCTCTACTCC



ASPGTSTPESGSASP

GGAAAGCGGCTCTGCATCTCCAGGTT



GSEPATSGSETPGTS

CTACTAGCGAATCTCCTTCTGGCACTG



ESATPESGPGSPAGS

CACCAGGTTCTACTAGCGAATCCCCG



PTSTEEGTSTEPSEGS

TCTGGTACTGCTCCAGGTACTTCTACT



APGTSESATPESGPG

CCTGAAAGCGGTTCCGCTTCTCCAGGT



TSTEPSEGSAPGTSTE

ACCTCTACTCCGGAAAGCGGTTCTGC



PSEGSAPGSPAGSPT

ATCTCCAGGTAGCGAACCGGCAACCT



STEEGTSTEPSEGSAP

CCGGCTCTGAAACCCCAGGTACCTCT



GTSTEPSEGSAPGTS

GAAAGCGCTACTCCTGAATCCGGCCC



ESATPESGPGTSESA

AGGTAGCCCGGCAGGTTCTCCGACTT



TPESGPGTSTEPSEGS

CCACTGAGGAAGGTACCTCTACTGAA



APGTSTEPSEGSAPG

CCTTCTGAGGGCAGCGCTCCAGGTAC



TSESATPESGPGTSTE

TTCTGAAAGCGCTACCCCGGAGTCCG



PSEGSAPGSEPATSG

GTCCAGGTACTTCTACTGAACCGTCCG



SETPGSPAGSPTSTEE

AAGGTAGCGCACCAGGTACTTCTACC



GSSTPSGATGSPGTP

GAACCGTCCGAGGGTAGCGCACCAGG



GSGTASSSPGSSTPS

TAGCCCAGCAGGTTCTCCTACCTCCAC



GATGSPGTSTEPSEG

CGAGGAAGGTACTTCTACCGAACCGT



SAPGTSTEPSEGSAP

CCGAGGGTAGCGCACCAGGTACTTCT



GSEPATSGSETPGSP

ACCGAACCTTCCGAGGGCAGCGCACC



AGSPTSTEEGSPAGS

AGGTACTTCTGAAAGCGCTACCCCTG



PTSTEEGTSTEPSEGS

AGTCCGGCCCAGGTACTTCTGAAAGC



APGPEPTGPAPSGGS

GCTACTCCTGAATCCGGTCCAGGTAC



EPATSGSETPGTSES

CTCTACTGAACCTTCCGAAGGCAGCG



ATPESGPGSPAGSPT

CTCCAGGTACCTCTACCGAACCGTCC



STEEGTSESATPESGP

GAGGGCAGCGCACCAGGTACTTCTGA



GSPAGSPTSTEEGSP

AAGCGCAACCCCTGAATCCGGTCCAG



AGSPTSTEEGTSESA

GTACTTCTACTGAACCTTCCGAAGGTA



TPESGPGSPAGSPTST

GCGCTCCAGGTAGCGAACCTGCTACT



EEGSPAGSPTSTEEG

TCTGGTTCTGAAACCCCAGGTAGCCC



STSSTAESPGPGSTSE

GGCTGGCTCTCCGACCTCCACCGAGG



SPSGTAPGTSPSGESS

AAGGTAGCTCTACCCCGTCTGGTGCT



TAPGSTSESPSGTAP

ACTGGTTCTCCAGGTACTCCGGGCAG



GSTSESPSGTAPGTSP

CGGTACTGCTTCTTCCTCTCCAGGTAG



SGESSTAPGTSTEPSE

CTCTACCCCTTCTGGTGCTACTGGCTC



GSAPGTSESATPESG

TCCAGGTACCTCTACCGAACCGTCCG



PGTSESATPESGPGS

AGGGTAGCGCACCAGGTACCTCTACT



EPATSGSETPGTSES

GAACCGTCTGAGGGTAGCGCTCCAGG



ATPESGPGTSESATP

TAGCGAACCGGCAACCTCCGGTTCTG



ESGPGTSTEPSEGSA

AAACTCCAGGTAGCCCTGCTGGCTCT



PGTSESATPESGPGT

CCGACTTCTACTGAGGAAGGTAGCCC



STEPSEGSAPGTSPSG

GGCTGGTTCTCCGACTTCTACTGAGGA



ESSTAPGTSPSGESST

AGGTACTTCTACCGAACCTTCCGAAG



APGTSPSGESSTAPG

GTAGCGCTCCAGGTCCAGAACCAACG



TSTEPSEGSAPGSPA

GGGCCGGCCCCAAGCGGAGGTAGCGA



GSPTSTEEGTSTEPSE

ACCGGCAACCTCCGGCTCTGAAACCC



GSAPGSSPSASTGTG

CAGGTACCTCTGAAAGCGCTACTCCT



PGSSTPSGATGSPGS

GAATCCGGCCCAGGTAGCCCGGCAGG



STPSGATGSPGSSTPS

TTCTCCGACTTCCACTGAGGAAGGTA



GATGSPGSSTPSGAT

CTTCTGAAAGCGCTACTCCTGAGTCCG



GSPGASPGTSSTGSP

GCCCAGGTAGCCCGGCTGGCTCTCCG



GASASGAPSTGGTSP

ACTTCCACCGAGGAAGGTAGCCCGGC



SGESSTAPGSTSSTA

TGGCTCTCCAACTTCTACTGAAGAAG



ESPGPGTSPSGESSTA

GTACTTCTGAAAGCGCTACTCCTGAGT



PGTSESATPESGPGT

CCGGCCCAGGTAGCCCGGCTGGCTCT



STEPSEGSAPGTSTEP

CCGACTTCCACCGAGGAAGGTAGCCC



SEGSAPGSSPSASTG

GGCTGGCTCTCCAACTTCTACTGAAG



TGPGSSTPSGATGSP

AAGGTTCTACCAGCTCTACCGCTGAA



GASPGTSSTGSPGTS

TCTCCTGGCCCAGGTTCTACTAGCGAA



TPESGSASPGTSPSGE

TCTCCGTCTGGCACCGCACCAGGTACT



SSTAPGTSPSGESSTA

TCCCCTAGCGGTGAATCTTCTACTGCA



PGTSESATPESGPGS

CCAGGTTCTACCAGCGAATCTCCTTCT



EPATSGSETPGTSTEP

GGCACCGCTCCAGGTTCTACTAGCGA



SEGSAPGSTSESPSGT

ATCCCCGTCTGGTACCGCACCAGGTA



APGSTSESPSGTAPG

CTTCTCCTAGCGGCGAATCTTCTACCG



TSTPESGSASPGSPA

CACCAGGTACTTCTACCGAACCTTCCG



GSPTSTEEGTSESATP

AGGGCAGCGCACCAGGTACTTCTGAA



ESGPGTSTEPSEGSA

AGCGCTACCCCTGAGTCCGGCCCAGG



PGSPAGSPTSTEEGT

TACTTCTGAAAGCGCTACTCCTGAATC



SESATPESGPGSEPA

CGGTCCAGGTAGCGAACCGGCAACCT



TSGSETPGSSTPSGA

CTGGCTCTGAAACCCCAGGTACCTCT



TGSPGASPGTSSTGS

GAAAGCGCTACTCCGGAATCTGGTCC



PGSSTPSGATGSPGS

AGGTACTTCTGAAAGCGCTACTCCGG



TSESPSGTAPGTSPSG

AATCCGGTCCAGGTACCTCTACTGAA



ESSTAPGSTSSTAESP

CCTTCTGAGGGCAGCGCTCCAGGTAC



GPGSSTPSGATGSPG

TTCTGAAAGCGCTACCCCGGAGTCCG



ASPGTSSTGSPGTPG

GTCCAGGTACTTCTACTGAACCGTCCG



SGTASSSPGSPAGSP

AAGGTAGCGCACCAGGTACCTCCCCT



TSTEEGSPAGSPTSTE

AGCGGCGAATCTTCTACTGCTCCAGG



EGTSTEPSEGSAPGF

TACCTCTCCTAGCGGCGAATCTTCTAC



PTIPLSRLFDNAMLR

CGCTCCAGGTACCTCCCCTAGCGGTG



AHRLHQLAFDTYQE

AATCTTCTACCGCACCAGGTACTTCTA



FEEAYIPKEQKYSFL

CCGAACCGTCCGAGGGTAGCGCACCA



QNPQTSLCFSESIPTP

GGTAGCCCAGCAGGTTCTCCTACCTCC



SNREETQQKSNLELL

ACCGAGGAAGGTACTTCTACCGAACC



RISLLLIQSWLEPVQF

GTCCGAGGGTAGCGCACCAGGTTCTA



LRSVFANSLVYGAS

GCCCTTCTGCTTCCACCGGTACCGGCC



DSNVYDLLKDLEEGI

CAGGTAGCTCTACTCCGTCTGGTGCA



QTLMGRLEDGSPRT

ACTGGCTCTCCAGGTAGCTCTACTCCG



GQIFKQTYSKFDTNS

TCTGGTGCAACCGGCTCCCCAGGTAG



HNDDALLKNYGLLY

CTCTACCCCGTCTGGTGCTACCGGCTC



CFRKDMDKVETFLRI

TCCAGGTAGCTCTACCCCGTCTGGTGC



VQCRSVEGSCGFGG

AACCGGCTCCCCAGGTGCATCCCCGG



SEPATSGSETPGTSES

GTACTAGCTCTACCGGTTCTCCAGGTG



ATPESGPGSEPATSG

CAAGCGCAAGCGGCGCGCCAAGCACG



SETPGSPAGSPTSTEE

GGAGGTACTTCTCCGAGCGGTGAATC



GTSTEPSEGSAPGSE

TTCTACCGCACCAGGTTCTACTAGCTC



PATSGSETPGSEPAT

TACCGCTGAATCTCCGGGCCCAGGTA



SGSETPGSEPATSGS

CTTCTCCGAGCGGTGAATCTTCTACTG



ETPGTSTEPSEGSAP

CTCCAGGTACCTCTGAAAGCGCTACT



GTSESATPESGPGSE

CCGGAGTCTGGCCCAGGTACCTCTAC



PATSGSETPGTSTEPS

TGAACCGTCTGAGGGTAGCGCTCCAG



EGSAP

GTACTTCTACTGAACCGTCCGAAGGT





AGCGCACCAGGTTCTAGCCCTTCTGC





ATCTACTGGTACTGGCCCAGGTAGCT





CTACTCCTTCTGGTGCTACCGGCTCTC





CAGGTGCTTCTCCGGGTACTAGCTCTA





CCGGTTCTCCAGGTACTTCTACTCCGG





AAAGCGGTTCCGCATCTCCAGGTACT





TCTCCTAGCGGTGAATCTTCTACTGCT





CCAGGTACCTCTCCTAGCGGCGAATC





TTCTACTGCTCCAGGTACTTCTGAAAG





CGCAACCCCTGAATCCGGTCCAGGTA





GCGAACCGGCTACTTCTGGCTCTGAG





ACTCCAGGTACTTCTACCGAACCGTCC





GAAGGTAGCGCACCAGGTTCTACCAG





CGAATCCCCTTCTGGTACTGCTCCAGG





TTCTACCAGCGAATCCCCTTCTGGCAC





CGCACCAGGTACTTCTACCCCTGAAA





GCGGCTCCGCTTCTCCAGGTAGCCCG





GCAGGCTCTCCGACCTCTACTGAGGA





AGGTACTTCTGAAAGCGCAACCCCGG





AGTCCGGCCCAGGTACCTCTACCGAA





CCGTCTGAGGGCAGCGCACCAGGTAG





CCCTGCTGGCTCTCCAACCTCCACCGA





AGAAGGTACCTCTGAAAGCGCAACCC





CTGAATCCGGCCCAGGTAGCGAACCG





GCAACCTCCGGTTCTGAAACCCCAGG





TAGCTCTACCCCGTCTGGTGCTACCGG





TTCCCCAGGTGCTTCTCCTGGTACTAG





CTCTACCGGTTCTCCAGGTAGCTCTAC





CCCGTCTGGTGCTACTGGCTCTCCAGG





TTCTACTAGCGAATCCCCGTCTGGTAC





TGCTCCAGGTACTTCCCCTAGCGGTGA





ATCTTCTACTGCTCCAGGTTCTACCAG





CTCTACCGCAGAATCTCCGGGTCCAG





GTAGCTCTACCCCTTCTGGTGCAACCG





GCTCTCCAGGTGCATCCCCGGGTACC





AGCTCTACCGGTTCTCCAGGTACTCCG





GGTAGCGGTACCGCTTCTTCCTCTCCA





GGTAGCCCTGCTGGCTCTCCGACTTCT





ACTGAGGAAGGTAGCCCGGCTGGTTC





TCCGACTTCTACTGAGGAAGGTACTTC





TACCGAACCTTCCGAAGGTAGCGCTC





CAGGTTTTCCGACTATTCCGCTGTCTC





GTCTGTTTGATAATGCTATGCTGCGTG





CGCACCGTCTGCACCAGCTGGCCTTTG





ATACTTACCAGGAATTTGAAGAAGCcT





ACATTCCTAAAGAGCAGAAGTACTCT





TTCCTGCAAAACCCACAGACTTCTCTC





TGCTTCAGCGAATCTATTCCGACGCCT





TCCAATCGCGAGGAAACTCAGCAAAA





GTCCAATCTGGAACTACTCCGCATTTC





TCTGCTTCTGATTCAGAGCTGGCTAGA





ACCAGTGCAATTTCTGCGTTCCGTCTT





CGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTG





AAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCT





CTCCGCGTACTGGTCAGATCTTCAAGC





AGACTTACTCTAAATTTGATACTAACA





GCCACAATGACGATGCGCTTCTAAAA





AACTATGGTCTGCTGTATTGTTTTCGT





AAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGT





TGAGGGCAGCTGTGGTTTCTAAGGTG





GTAGCGAACCGGCAACTTCCGGCTCT





GAAACCCCAGGTACTTCTGAAAGCGC





TACTCCTGAGTCTGGCCCAGGTAGCG





AACCTGCTACCTCTGGCTCTGAAACCC





CAGGTAGCCCGGCAGGCTCTCCGACT





TCCACCGAGGAAGGTACCTCTACTGA





ACCTTCTGAGGGTAGCGCTCCAGGTA





GCGAACCGGCAACCTCTGGCTCTGAA





ACCCCAGGTAGCGAACCTGCTACCTC





CGGCTCTGAAACTCCAGGTAGCGAAC





CGGCTACTTCCGGTTCTGAAACTCCAG





GTACCTCTACCGAACCTTCCGAAGGC





AGCGCACCAGGTACTTCTGAAAGCGC





AACCCCTGAATCCGGTCCAGGTAGCG





AACCGGCTACTTCTGGCTCTGAGACTC





CAGGTACTTCTACCGAACCGTCCGAA





GGTAGCGCACCA





AE48-
MAEPAGSPTSTEEGT
763
ATGGCTGAACCTGCTGGCTCTCCAAC
764


hGH-
PGSGTASSSPGSSTPS

CTCCACTGAGGAAGGTACCCCGGGTA


AE288
GATGSPGASPGTSST

GCGGTACTGCTTCTTCCTCTCCAGGTA



GSPGFPTIPLSRLFDN

GCTCTACCCCTTCTGGTGCAACCGGCT



AMLRAHRLHQLAFD

CTCCAGGTGCTTCTCCGGGCACCAGCT



TYQEFEEAYIPKEQK

CTACCGGTTCTCCAGGTTTTCCGACTA



YSFLQNPQTSLCFSE

TTCCGCTGTCTCGTCTGTTTGATAATG



SIPTPSNREETQQKS

CTATGCTGCGTGCGCACCGTCTGCACC



NLELLRISLLLIQSWL

AGCTGGCCTTTGATACTTACCAGGAA



EPVQFLRSVFANSLV

TTTGAAGAAGCcTACATTCCTAAAGAG



YGASDSNVYDLLKD

CAGAAGTACTCTTTCCTGCAAAACCC



LEEGIQTLMGRLEDG

ACAGACTTCTCTCTGCTTCAGCGAATC



SPRTGQIFKQTYSKF

TATTCCGACGCCTTCCAATCGCGAGG



DTNSHNDDALLKNY

AAACTCAGCAAAAGTCCAATCTGGAA



GLLYCFRKDMDKVE

CTACTCCGCATTTCTCTGCTTCTGATT



TFLRIVQCRSVEGSC

CAGAGCTGGCTAGAACCAGTGCAATT



GFGGTSESATPESGP

TCTGCGTTCCGTCTTCGCCAATAGCCT



GSEPATSGSETPGTS

AGTTTATGGCGCATCCGACAGCAACG



ESATPESGPGSEPAT

TATACGATCTCCTGAAAGATCTCGAG



SGSETPGTSESATPES

GAAGGCATTCAGACCCTGATGGGTCG



GPGTSTEPSEGSAPG

TCTCGAGGATGGCTCTCCGCGTACTG



SPAGSPTSTEEGTSES

GTCAGATCTTCAAGCAGACTTACTCTA



ATPESGPGSEPATSG

AATTTGATACTAACAGCCACAATGAC



SETPGTSESATPESGP

GATGCGCTTCTAAAAAACTATGGTCT



GSPAGSPTSTEEGSP

GCTGTATTGTTTTCGTAAAGATATGGA



AGSPTSTEEGTSTEPS

CAAAGTTGAAACCTTCCTGCGTATTGT



EGSAPGTSESATPES

TCAGTGTCGTTCCGTTGAGGGCAGCT



GPGTSESATPESGPG

GTGGTTTCTAAGGTGGTACCTCTGAA



TSESATPESGPGSEP

AGCGCAACTCCTGAGTCTGGCCCAGG



ATSGSETPGSEPATS

TAGCGAACCTGCTACCTCCGGCTCTG



GSETPGSPAGSPTST

AGACTCCAGGTACCTCTGAAAGCGCA



EEGTSTEPSEGSAPG

ACCCCGGAATCTGGTCCAGGTAGCGA



TSTEPSEGSAPGSEP

ACCTGCAACCTCTGGCTCTGAAACCC



ATSGSETPGTSESAT

CAGGTACCTCTGAAAGCGCTACTCCT



PESGPGTSTEPSEGS

GAATCTGGCCCAGGTACTTCTACTGA



AP

ACCGTCCGAGGGCAGCGCACCAGGTA





GCCCTGCTGGCTCTCCAACCTCCACCG





AAGAAGGTACCTCTGAAAGCGCAACC





CCTGAATCCGGCCCAGGTAGCGAACC





GGCAACCTCCGGTTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGT





CCGGCCCAGGTAGCCCGGCTGGCTCT





CCGACTTCCACCGAGGAAGGTAGCCC





GGCTGGCTCTCCAACTTCTACTGAAG





AAGGTACTTCTACCGAACCTTCCGAG





GGCAGCGCACCAGGTACTTCTGAAAG





CGCTACCCCTGAGTCCGGCCCAGGTA





CTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACC





GGCTACTTCTGGTTCTGAAACCCCAG





GTAGCGAACCGGCTACCTCCGGTTCT





GAAACTCCAGGTAGCCCAGCAGGCTC





TCCGACTTCCACTGAGGAAGGTACTT





CTACTGAACCTTCCGAAGGCAGCGCA





CCAGGTACCTCTACTGAACCTTCTGAG





GGCAGCGCTCCAGGTAGCGAACCTGC





AACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTG





GCCCAGGTACTTCTACTGAACCGTCC





GAGGGCAGCGCACCA





AM48-
MAEPAGSPTSTEEGA
765
ATGGCTGAACCTGCTGGCTCTCCAAC
766


hGH-
SPGTSSTGSPGSSTPS

CTCCACTGAGGAAGGTGCATCCCCGG


AE288
GATGSPGSSTPSGAT

GCACCAGCTCTACCGGTTCTCCAGGT



GSPGFPTIPLSRLFDN

AGCTCTACCCCGTCTGGTGCTACCGGC



AMLRAHRLHQLAFD

TCTCCAGGTAGCTCTACCCCGTCTGGT



TYQEFEEAYIPKEQK

GCTACTGGCTCTCCAGGTTTTCCGACT



YSFLQNPQTSLCFSE

ATTCCGCTGTCTCGTCTGTTTGATAAT



SIPTPSNREETQQKS

GCTATGCTGCGTGCGCACCGTCTGCA



NLELLRISLLLIQSWL

CCAGCTGGCCTTTGATACTTACCAGG



EPVQFLRSVFANSLV

AATTTGAAGAAGCcTACATTCCTAAAG



YGASDSNVYDLLKD

AGCAGAAGTACTCTTTCCTGCAAAAC



LEEGIQTLMGRLEDG

CCACAGACTTCTCTCTGCTTCAGCGAA



SPRTGQIFKQTYSKF

TCTATTCCGACGCCTTCCAATCGCGAG



DTNSHNDDALLKNY

GAAACTCAGCAAAAGTCCAATCTGGA



GLLYCFRKDMDKVE

ACTACTCCGCATTTCTCTGCTTCTGAT



TFLRIVQCRSVEGSC

TCAGAGCTGGCTAGAACCAGTGCAAT



GFGGTSESATPESGP

TTCTGCGTTCCGTCTTCGCCAATAGCC



GSEPATSGSETPGTS

TAGTTTATGGCGCATCCGACAGCAAC



ESATPESGPGSEPAT

GTATACGATCTCCTGAAAGATCTCGA



SGSETPGTSESATPES

GGAAGGCATTCAGACCCTGATGGGTC



GPGTSTEPSEGSAPG

GTCTCGAGGATGGCTCTCCGCGTACT



SPAGSPTSTEEGTSES

GGTCAGATCTTCAAGCAGACTTACTCT



ATPESGPGSEPATSG

AAATTTGATACTAACAGCCACAATGA



SETPGTSESATPESGP

CGATGCGCTTCTAAAAAACTATGGTC



GSPAGSPTSTEEGSP

TGCTGTATTGTTTTCGTAAAGATATGG



AGSPTSTEEGTSTEPS

ACAAAGTTGAAACCTTCCTGCGTATT



EGSAPGTSESATPES

GTTCAGTGTCGTTCCGTTGAGGGCAG



GPGTSESATPESGPG

CTGTGGTTTCTAAGGTGGTACCTCTGA



TSESATPESGPGSEP

AAGCGCAACTCCTGAGTCTGGCCCAG



ATSGSETPGSEPATS

GTAGCGAACCTGCTACCTCCGGCTCT



GSETPGSPAGSPTST

GAGACTCCAGGTACCTCTGAAAGCGC



EEGTSTEPSEGSAPG

AACCCCGGAATCTGGTCCAGGTAGCG



TSTEPSEGSAPGSEP

AACCTGCAACCTCTGGCTCTGAAACC



ATSGSETPGTSESAT

CCAGGTACCTCTGAAAGCGCTACTCC



PESGPGTSTEPSEGS

TGAATCTGGCCCAGGTACTTCTACTGA



AP

ACCGTCCGAGGGCAGCGCACCAGGTA





GCCCTGCTGGCTCTCCAACCTCCACCG





AAGAAGGTACCTCTGAAAGCGCAACC





CCTGAATCCGGCCCAGGTAGCGAACC





GGCAACCTCCGGTTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGT





CCGGCCCAGGTAGCCCGGCTGGCTCT





CCGACTTCCACCGAGGAAGGTAGCCC





GGCTGGCTCTCCAACTTCTACTGAAG





AAGGTACTTCTACCGAACCTTCCGAG





GGCAGCGCACCAGGTACTTCTGAAAG





CGCTACCCCTGAGTCCGGCCCAGGTA





CTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACC





GGCTACTTCTGGTTCTGAAACCCCAG





GTAGCGAACCGGCTACCTCCGGTTCT





GAAACTCCAGGTAGCCCAGCAGGCTC





TCCGACTTCCACTGAGGAAGGTACTT





CTACTGAACCTTCCGAAGGCAGCGCA





CCAGGTACCTCTACTGAACCTTCTGAG





GGCAGCGCTCCAGGTAGCGAACCTGC





AACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTG





GCCCAGGTACTTCTACTGAACCGTCC





GAGGGCAGCGCACCA





AE144-
GSEPATSGSETPGTS
767
GGTAGCGAACCGGCAACTTCCGGCTC
768


hGH-
ESATPESGPGSEPAT

TGAAACCCCAGGTACTTCTGAAAGCG


AE288
SGSETPGSPAGSPTST

CTACTCCTGAGTCTGGCCCAGGTAGC



EEGTSTEPSEGSAPG

GAACCTGCTACCTCTGGCTCTGAAAC



SEPATSGSETPGSEP

CCCAGGTAGCCCGGCAGGCTCTCCGA



ATSGSETPGSEPATS

CTTCCACCGAGGAAGGTACCTCTACT



GSETPGTSTEPSEGS

GAACCTTCTGAGGGTAGCGCTCCAGG



APGTSESATPESGPG

TAGCGAACCGGCAACCTCTGGCTCTG



SEPATSGSETPGTSTE

AAACCCCAGGTAGCGAACCTGCTACC



PSEGSAPGFPTIPLSR

TCCGGCTCTGAAACTCCAGGTAGCGA



LFDNAMLRAHRLHQ

ACCGGCTACTTCCGGTTCTGAAACTCC



LAFDTYQEFEEAYIP

AGGTACCTCTACCGAACCTTCCGAAG



KEQKYSFLQNPQTSL

GCAGCGCACCAGGTACTTCTGAAAGC



CFSESIPTPSNREETQ

GCAACCCCTGAATCCGGTCCAGGTAG



QKSNLELLRISLLLIQ

CGAACCGGCTACTTCTGGCTCTGAGA



SWLEPVQFLRSVFA

CTCCAGGTACTTCTACCGAACCGTCCG



NSLVYGASDSNVYD

AAGGTAGCGCACCAGGTTTTCCGACT



LLKDLEEGIQTLMGR

ATTCCGCTGTCTCGTCTGTTTGATAAT



LEDGSPRTGQIFKQT

GCTATGCTGCGTGCGCACCGTCTGCA



YSKFDTNSHNDDAL

CCAGCTGGCCTTTGATACTTACCAGG



LKNYGLLYCFRKDM

AATTTGAAGAAGCcTACATTCCTAAAG



DKVETFLRIVQCRSV

AGCAGAAGTACTCTTTCCTGCAAAAC



EGSCGFGGTSESATP

CCACAGACTTCTCTCTGCTTCAGCGAA



ESGPGSEPATSGSET

TCTATTCCGACGCCTTCCAATCGCGAG



PGTSESATPESGPGS

GAAACTCAGCAAAAGTCCAATCTGGA



EPATSGSETPGTSES

ACTACTCCGCATTTCTCTGCTTCTGAT



ATPESGPGTSTEPSE

TCAGAGCTGGCTAGAACCAGTGCAAT



GSAPGSPAGSPTSTE

TTCTGCGTTCCGTCTTCGCCAATAGCC



EGTSESATPESGPGS

TAGTTTATGGCGCATCCGACAGCAAC



EPATSGSETPGTSES

GTATACGATCTCCTGAAAGATCTCGA



ATPESGPGSPAGSPT

GGAAGGCATTCAGACCCTGATGGGTC



STEEGSPAGSPTSTEE

GTCTCGAGGATGGCTCTCCGCGTACT



GTSTEPSEGSAPGTS

GGTCAGATCTTCAAGCAGACTTACTCT



ESATPESGPGTSESA

AAATTTGATACTAACAGCCACAATGA



TPESGPGTSESATPES

CGATGCGCTTCTAAAAAACTATGGTC



GPGSEPATSGSETPG

TGCTGTATTGTTTTCGTAAAGATATGG



SEPATSGSETPGSPA

ACAAAGTTGAAACCTTCCTGCGTATT



GSPTSTEEGTSTEPSE

GTTCAGTGTCGTTCCGTTGAGGGCAG



GSAPGTSTEPSEGSA

CTGTGGTTTCTAAGGTGGTACCTCTGA



PGSEPATSGSETPGT

AAGCGCAACTCCTGAGTCTGGCCCAG



SESATPESGPGTSTEP

GTAGCGAACCTGCTACCTCCGGCTCT



SEGSAP

GAGACTCCAGGTACCTCTGAAAGCGC





AACCCCGGAATCTGGTCCAGGTAGCG





AACCTGCAACCTCTGGCTCTGAAACC





CCAGGTACCTCTGAAAGCGCTACTCC





TGAATCTGGCCCAGGTACTTCTACTGA





ACCGTCCGAGGGCAGCGCACCAGGTA





GCCCTGCTGGCTCTCCAACCTCCACCG





AAGAAGGTACCTCTGAAAGCGCAACC





CCTGAATCCGGCCCAGGTAGCGAACC





GGCAACCTCCGGTTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGT





CCGGCCCAGGTAGCCCGGCTGGCTCT





CCGACTTCCACCGAGGAAGGTAGCCC





GGCTGGCTCTCCAACTTCTACTGAAG





AAGGTACTTCTACCGAACCTTCCGAG





GGCAGCGCACCAGGTACTTCTGAAAG





CGCTACCCCTGAGTCCGGCCCAGGTA





CTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACC





GGCTACTTCTGGTTCTGAAACCCCAG





GTAGCGAACCGGCTACCTCCGGTTCT





GAAACTCCAGGTAGCCCAGCAGGCTC





TCCGACTTCCACTGAGGAAGGTACTT





CTACTGAACCTTCCGAAGGCAGCGCA





CCAGGTACCTCTACTGAACCTTCTGAG





GGCAGCGCTCCAGGTAGCGAACCTGC





AACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTG





GCCCAGGTACTTCTACTGAACCGTCC





GAGGGCAGCGCACCA





AE288-
GTSESATPESGPGSE
769
GGTACCTCTGAAAGCGCAACTCCTGA
770


hGH-
PATSGSETPGTSESA

GTCTGGCCCAGGTAGCGAACCTGCTA


AE288
TPESGPGSEPATSGS

CCTCCGGCTCTGAGACTCCAGGTACCT



ETPGTSESATPESGP

CTGAAAGCGCAACCCCGGAATCTGGT



GTSTEPSEGSAPGSP

CCAGGTAGCGAACCTGCAACCTCTGG



AGSPTSTEEGTSESA

CTCTGAAACCCCAGGTACCTCTGAAA



TPESGPGSEPATSGS

GCGCTACTCCTGAATCTGGCCCAGGT



ETPGTSESATPESGP

ACTTCTACTGAACCGTCCGAGGGCAG



GSPAGSPTSTEEGSP

CGCACCAGGTAGCCCTGCTGGCTCTC



AGSPTSTEEGTSTEPS

CAACCTCCACCGAAGAAGGTACCTCT



EGSAPGTSESATPES

GAAAGCGCAACCCCTGAATCCGGCCC



GPGTSESATPESGPG

AGGTAGCGAACCGGCAACCTCCGGTT



TSESATPESGPGSEP

CTGAAACCCCAGGTACTTCTGAAAGC



ATSGSETPGSEPATS

GCTACTCCTGAGTCCGGCCCAGGTAG



GSETPGSPAGSPTST

CCCGGCTGGCTCTCCGACTTCCACCGA



EEGTSTEPSEGSAPG

GGAAGGTAGCCCGGCTGGCTCTCCAA



TSTEPSEGSAPGSEP

CTTCTACTGAAGAAGGTACTTCTACCG



ATSGSETPGTSESAT

AACCTTCCGAGGGCAGCGCACCAGGT



PESGPGTSTEPSEGS

ACTTCTGAAAGCGCTACCCCTGAGTC



APGFPTIPLSRLFDNA

CGGCCCAGGTACTTCTGAAAGCGCTA



MLRAHRLHQLAFDT

CTCCTGAATCCGGTCCAGGTACTTCTG



YQEFEEAYIPKEQKY

AAAGCGCTACCCCGGAATCTGGCCCA



SFLQNPQTSLCFSESI

GGTAGCGAACCGGCTACTTCTGGTTCT



PTPSNREETQQKSNL

GAAACCCCAGGTAGCGAACCGGCTAC



ELLRISLLLIQSWLEP

CTCCGGTTCTGAAACTCCAGGTAGCC



VQFLRSVFANSLVY

CAGCAGGCTCTCCGACTTCCACTGAG



GASDSNVYDLLKDL

GAAGGTACTTCTACTGAACCTTCCGA



EEGIQTLMGRLEDGS

AGGCAGCGCACCAGGTACCTCTACTG



PRTGQIFKQTYSKFD

AACCTTCTGAGGGCAGCGCTCCAGGT



TNSHNDDALLKNYG

AGCGAACCTGCAACCTCTGGCTCTGA



LLYCFRKDMDKVET

AACCCCAGGTACCTCTGAAAGCGCTA



FLRIVQCRSVEGSCG

CTCCTGAATCTGGCCCAGGTACTTCTA



FGGTSESATPESGPG

CTGAACCGTCCGAGGGCAGCGCACCA



SEPATSGSETPGTSES

GGTTTTCCGACTATTCCGCTGTCTCGT



ATPESGPGSEPATSG

CTGTTTGATAATGCTATGCTGCGTGCG



SETPGTSESATPESGP

CACCGTCTGCACCAGCTGGCCTTTGAT



GTSTEPSEGSAPGSP

ACTTACCAGGAATTTGAAGAAGCcTA



AGSPTSTEEGTSESA

CATTCCTAAAGAGCAGAAGTACTCTT



TPESGPGSEPATSGS

TCCTGCAAAACCCACAGACTTCTCTCT



ETPGTSESATPESGP

GCTTCAGCGAATCTATTCCGACGCCTT



GSPAGSPTSTEEGSP

CCAATCGCGAGGAAACTCAGCAAAAG



AGSPTSTEEGTSTEPS

TCCAATCTGGAACTACTCCGCATTTCT



EGSAPGTSESATPES

CTGCTTCTGATTCAGAGCTGGCTAGA



GPGTSESATPESGPG

ACCAGTGCAATTTCTGCGTTCCGTCTT



TSESATPESGPGSEP

CGCCAATAGCCTAGTTTATGGCGCAT



ATSGSETPGSEPATS

CCGACAGCAACGTATACGATCTCCTG



GSETPGSPAGSPTST

AAAGATCTCGAGGAAGGCATTCAGAC



EEGTSTEPSEGSAPG

CCTGATGGGTCGTCTCGAGGATGGCT



TSTEPSEGSAPGSEP

CTCCGCGTACTGGTCAGATCTTCAAGC



ATSGSETPGTSESAT

AGACTTACTCTAAATTTGATACTAACA



PESGPGTSTEPSEGS

GCCACAATGACGATGCGCTTCTAAAA



AP

AACTATGGTCTGCTGTATTGTTTTCGT





AAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGT





TGAGGGCAGCTGTGGTTTCTAAGGTG





GTACCTCTGAAAGCGCAACTCCTGAG





TCTGGCCCAGGTAGCGAACCTGCTAC





CTCCGGCTCTGAGACTCCAGGTACCTC





TGAAAGCGCAACCCCGGAATCTGGTC





CAGGTAGCGAACCTGCAACCTCTGGC





TCTGAAACCCCAGGTACCTCTGAAAG





CGCTACTCCTGAATCTGGCCCAGGTA





CTTCTACTGAACCGTCCGAGGGCAGC





GCACCAGGTAGCCCTGCTGGCTCTCC





AACCTCCACCGAAGAAGGTACCTCTG





AAAGCGCAACCCCTGAATCCGGCCCA





GGTAGCGAACCGGCAACCTCCGGTTC





TGAAACCCCAGGTACTTCTGAAAGCG





CTACTCCTGAGTCCGGCCCAGGTAGC





CCGGCTGGCTCTCCGACTTCCACCGA





GGAAGGTAGCCCGGCTGGCTCTCCAA





CTTCTACTGAAGAAGGTACTTCTACCG





AACCTTCCGAGGGCAGCGCACCAGGT





ACTTCTGAAAGCGCTACCCCTGAGTC





CGGCCCAGGTACTTCTGAAAGCGCTA





CTCCTGAATCCGGTCCAGGTACTTCTG





AAAGCGCTACCCCGGAATCTGGCCCA





GGTAGCGAACCGGCTACTTCTGGTTCT





GAAACCCCAGGTAGCGAACCGGCTAC





CTCCGGTTCTGAAACTCCAGGTAGCC





CAGCAGGCTCTCCGACTTCCACTGAG





GAAGGTACTTCTACTGAACCTTCCGA





AGGCAGCGCACCAGGTACCTCTACTG





AACCTTCTGAGGGCAGCGCTCCAGGT





AGCGAACCTGCAACCTCTGGCTCTGA





AACCCCAGGTACCTCTGAAAGCGCTA





CTCCTGAATCTGGCCCAGGTACTTCTA





CTGAACCGTCCGAGGGCAGCGCACCA





AF144-
GTSTPESGSASPGTSP
771
GGTACTTCTACTCCGGAAAGCGGTTC
772


hGH-
SGESSTAPGTSPSGES

CGCATCTCCAGGTACTTCTCCTAGCGG


AE288
STAPGSTSSTAESPGP

TGAATCTTCTACTGCTCCAGGTACCTC



GSTSESPSGTAPGSTS

TCCTAGCGGCGAATCTTCTACTGCTCC



STAESPGPGTSPSGES

AGGTTCTACCAGCTCTACCGCTGAATC



STAPGTSTPESGSASP

TCCTGGCCCAGGTTCTACCAGCGAAT



GSTSSTAESPGPGTSP

CCCCGTCTGGCACCGCACCAGGTTCT



SGESSTAPGTSPSGES

ACTAGCTCTACCGCAGAATCTCCGGG



STAPGTSPSGESSTAP

TCCAGGTACTTCCCCTAGCGGTGAATC



GFPTIPLSRLFDNAM

TTCTACTGCTCCAGGTACCTCTACTCC



LRAHRLHQLAFDTY

GGAAAGCGGCTCCGCATCTCCAGGTT



QEFEEAYIPKEQKYS

CTACTAGCTCTACTGCTGAATCTCCTG



FLQNPQTSLCFSESIP

GTCCAGGTACCTCCCCTAGCGGCGAA



TPSNREETQQKSNLE

TCTTCTACTGCTCCAGGTACCTCTCCT



LLRISLLLIQSWLEPV

AGCGGCGAATCTTCTACCGCTCCAGG



QFLRSVFANSLVYG

TACCTCCCCTAGCGGTGAATCTTCTAC



ASDSNVYDLLKDLE

CGCACCAGGTTTTCCGACTATTCCGCT



EGIQTLMGRLEDGSP

GTCTCGTCTGTTTGATAATGCTATGCT



RTGQIFKQTYSKFDT

GCGTGCGCACCGTCTGCACCAGCTGG



NSHNDDALLKNYGL

CCTTTGATACTTACCAGGAATTTGAAG



LYCFRKDMDKVETF

AAGCcTACATTCCTAAAGAGCAGAAG



LRIVQCRSVEGSCGF

TACTCTTTCCTGCAAAACCCACAGACT



GGTSESATPESGPGS

TCTCTCTGCTTCAGCGAATCTATTCCG



EPATSGSETPGTSES

ACGCCTTCCAATCGCGAGGAAACTCA



ATPESGPGSEPATSG

GCAAAAGTCCAATCTGGAACTACTCC



SETPGTSESATPESGP

GCATTTCTCTGCTTCTGATTCAGAGCT



GTSTEPSEGSAPGSP

GGCTAGAACCAGTGCAATTTCTGCGT



AGSPTSTEEGTSESA

TCCGTCTTCGCCAATAGCCTAGTTTAT



TPESGPGSEPATSGS

GGCGCATCCGACAGCAACGTATACGA



ETPGTSESATPESGP

TCTCCTGAAAGATCTCGAGGAAGGCA



GSPAGSPTSTEEGSP

TTCAGACCCTGATGGGTCGTCTCGAG



AGSPTSTEEGTSTEPS

GATGGCTCTCCGCGTACTGGTCAGAT



EGSAPGTSESATPES

CTTCAAGCAGACTTACTCTAAATTTGA



GPGTSESATPESGPG

TACTAACAGCCACAATGACGATGCGC



TSESATPESGPGSEP

TTCTAAAAAACTATGGTCTGCTGTATT



ATSGSETPGSEPATS

GTTTTCGTAAAGATATGGACAAAGTT



GSETPGSPAGSPTST

GAAACCTTCCTGCGTATTGTTCAGTGT



EEGTSTEPSEGSAPG

CGTTCCGTTGAGGGCAGCTGTGGTTTC



TSTEPSEGSAPGSEP

TAAGGTGGTACCTCTGAAAGCGCAAC



ATSGSETPGTSESAT

TCCTGAGTCTGGCCCAGGTAGCGAAC



PESGPGTSTEPSEGS

CTGCTACCTCCGGCTCTGAGACTCCAG



AP

GTACCTCTGAAAGCGCAACCCCGGAA





TCTGGTCCAGGTAGCGAACCTGCAAC





CTCTGGCTCTGAAACCCCAGGTACCTC





TGAAAGCGCTACTCCTGAATCTGGCC





CAGGTACTTCTACTGAACCGTCCGAG





GGCAGCGCACCAGGTAGCCCTGCTGG





CTCTCCAACCTCCACCGAAGAAGGTA





CCTCTGAAAGCGCAACCCCTGAATCC





GGCCCAGGTAGCGAACCGGCAACCTC





CGGTTCTGAAACCCCAGGTACTTCTG





AAAGCGCTACTCCTGAGTCCGGCCCA





GGTAGCCCGGCTGGCTCTCCGACTTCC





ACCGAGGAAGGTAGCCCGGCTGGCTC





TCCAACTTCTACTGAAGAAGGTACTTC





TACCGAACCTTCCGAGGGCAGCGCAC





CAGGTACTTCTGAAAGCGCTACCCCT





GAGTCCGGCCCAGGTACTTCTGAAAG





CGCTACTCCTGAATCCGGTCCAGGTA





CTTCTGAAAGCGCTACCCCGGAATCT





GGCCCAGGTAGCGAACCGGCTACTTC





TGGTTCTGAAACCCCAGGTAGCGAAC





CGGCTACCTCCGGTTCTGAAACTCCA





GGTAGCCCAGCAGGCTCTCCGACTTC





CACTGAGGAAGGTACTTCTACTGAAC





CTTCCGAAGGCAGCGCACCAGGTACC





TCTACTGAACCTTCTGAGGGCAGCGC





TCCAGGTAGCGAACCTGCAACCTCTG





GCTCTGAAACCCCAGGTACCTCTGAA





AGCGCTACTCCTGAATCTGGCCCAGG





TACTTCTACTGAACCGTCCGAGGGCA





GCGCACCA





AD576-
GSSESGSSEGGPGSG
773
GGTTCCTCTGAAAGCGGTTCTTCCGAA
774


hGH-
GEPSESGSSGSSESGS

GGTGGTCCAGGTTCCTCTGAAAGCGG


AE288
SEGGPGSSESGSSEG

TTCTTCTGAGGGTGGTCCAGGTGAATC



GPGSSESGSSEGGPG

TCCGGGTGGCTCCAGCGGTTCCGAGT



SSESGSSEGGPGSSES

CAGGTTCTGGTGGCGAACCTTCCGAG



GSSEGGPGESPGGSS

TCTGGTAGCTCAGGTGAATCTCCGGG



GSESGSEGSSGPGES

TGGTTCTAGCGGTTCCGAGTCAGGTG



SGSSESGSSEGGPGS

AATCTCCGGGTGGTTCCAGCGGTTCTG



SESGSSEGGPGSSES

AGTCAGGTTCCTCCGAAAGCGGTTCTT



GSSEGGPGSGGEPSE

CTGAGGGCGGTCCAGGTTCCTCCGAA



SGSSGESPGGSSGSE

AGCGGTTCTTCCGAGGGCGGTCCAGG



SGESPGGSSGSESGS

TTCTTCTGAAAGCGGTTCTTCCGAGGG



GGEPSESGSSGSSES

CGGTCCAGGTGAATCTCCTGGTGGTTC



GSSEGGPGSGGEPSE

CAGCGGTTCCGAGTCAGGTGAATCTC



SGSSGSGGEPSESGS

CAGGTGGCTCTAGCGGTTCCGAGTCA



SGSEGSSGPGESSGE

GGTGAATCTCCTGGTGGTTCTAGCGGT



SPGGSSGSESGSGGE

TCTGAATCAGGTTCCTCCGAAAGCGG



PSESGSSGSGGEPSES

TTCTTCTGAGGGCGGTCCAGGTTCCTC



GSSGSGGEPSESGSS

CGAAAGCGGTTCTTCCGAGGGCGGTC



GSSESGSSEGGPGES

CAGGTTCTTCTGAAAGCGGTTCTTCCG



PGGSSGSESGESPGG

AGGGCGGTCCAGGTTCCTCTGAAAGC



SSGSESGESPGGSSG

GGTTCTTCTGAGGGCGGTCCAGGTTCT



SESGESPGGSSGSES

TCCGAAAGCGGTTCTTCCGAGGGCGG



GESPGGSSGSESGSS

TCCAGGTTCTTCCGAAAGCGGTTCTTC



ESGSSEGGPGSGGEP

TGAAGGCGGTCCAGGTTCTGGTGGCG



SESGSSGSEGSSGPG

AACCGTCCGAGTCTGGTAGCTCAGGT



ESSGSSESGSSEGGP

GAATCTCCGGGTGGCTCTAGCGGTTC



GSGGEPSESGSSGSS

CGAGTCAGGTGAATCTCCTGGTGGTT



ESGSSEGGPGSGGEP

CCAGCGGTTCCGAGTCAGGTTCCGGT



SESGSSGESPGGSSG

GGCGAACCGTCCGAATCTGGTAGCTC



SESGESPGGSSGSES

AGGTAGCGAAGGTTCTTCTGGTCCAG



GSSESGSSEGGPGSG

GCGAATCTTCAGGTTCCTCTGAAAGC



GEPSESGSSGSSESGS

GGTTCTTCTGAGGGCGGTCCAGGTTCC



SEGGPGSGGEPSESG

GGTGGCGAACCGTCCGAATCTGGTAG



SSGSGGEPSESGSSG

CTCAGGTAGCGAAGGTTCTTCTGGTCC



ESPGGSSGSESGSEG

AGGCGAATCTTCAGGTTCCTCTGAAA



SSGPGESSGSSESGSS

GCGGTTCTTCTGAGGGCGGTCCAGGT



EGGPGSEGSSGPGES

TCCGGTGGCGAACCTTCCGAATCTGG



SGFPTIPLSRLFDNA

TAGCTCAGGTGAATCTCCGGGTGGTT



MLRAHRLHQLAFDT

CTAGCGGTTCTGAGTCAGGTTCTGGTG



YQEFEEAYIPKEQKY

GTGAACCTTCCGAGTCTGGTAGCTCA



SFLQNPQTSLCFSESI

GGTTCTGGTGGCGAACCATCCGAGTC



PTPSNREETQQKSNL

TGGTAGCTCAGGTTCTTCCGAAAGCG



ELLRISLLLIQSWLEP

GTTCTTCCGAAGGCGGTCCAGGTTCTG



VQFLRSVFANSLVY

GTGGTGAACCGTCCGAATCTGGTAGC



GASDSNVYDLLKDL

TCAGGTTCTGGTGGCGAACCATCCGA



EEGIQTLMGRLEDGS

ATCTGGTAGCTCAGGTAGCGAAGGTT



PRTGQIFKQTYSKFD

CTTCTGGTCCTGGCGAATCTTCAGGTG



TNSHNDDALLKNYG

AATCTCCAGGTGGCTCTAGCGGTTCC



LLYCFRKDMDKVET

GAATCAGGTAGCGAAGGTTCTTCCGG



FLRIVQCRSVEGSCG

TCCAGGTGAATCTTCAGGTAGCGAAG



FGGTSESATPESGPG

GTTCTTCTGGTCCTGGTGAATCCTCAG



SEPATSGSETPGTSES

GTTCCGGTGGCGAACCATCTGAATCT



ATPESGPGSEPATSG

GGTAGCTCAGGTTCCTCTGAAAGCGG



SETPGTSESATPESGP

TTCTTCCGAAGGTGGTCCAGGTTCCTC



GTSTEPSEGSAPGSP

TGAAAGCGGTTCTTCTGAGGGTGGTC



AGSPTSTEEGTSESA

CAGGTGAATCTCCGGGTGGCTCCAGC



TPESGPGSEPATSGS

GGTTCCGAGTCAGGTTCTGGTGGCGA



ETPGTSESATPESGP

ACCATCCGAATCTGGTAGCTCAGGTA



GSPAGSPTSTEEGSP

GCGAAGGTTCTTCTGGTCCTGGCGAA



AGSPTSTEEGTSTEPS

TCTTCAGGTGAATCTCCAGGTGGCTCT



EGSAPGTSESATPES

AGCGGTTCCGAATCAGGTAGCGAAGG



GPGTSESATPESGPG

TTCTTCCGGTCCTGGTGAGTCTTCAGG



TSESATPESGPGSEP

TGAATCTCCAGGTGGCTCTAGCGGTTC



ATSGSETPGSEPATS

CGAGTCAGGTAGCGAAGGTTCTTCTG



GSETPGSPAGSPTST

GTCCTGGCGAGTCCTCAGGTTTTCCGA



EEGTSTEPSEGSAPG

CTATTCCGCTGTCTCGTCTGTTTGATA



TSTEPSEGSAPGSEP

ATGCTATGCTGCGTGCGCACCGTCTGC



ATSGSETPGTSESAT

ACCAGCTGGCCTTTGATACTTACCAG



PESGPGTSTEPSEGS

GAATTTGAAGAAGCcTACATTCCTAAA



AP

GAGCAGAAGTACTCTTTCCTGCAAAA





CCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGA





GGAAACTCAGCAAAAGTCCAATCTGG





AACTACTCCGCATTTCTCTGCTTCTGA





TTCAGAGCTGGCTAGAACCAGTGCAA





TTTCTGCGTTCCGTCTTCGCCAATAGC





CTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCG





AGGAAGGCATTCAGACCCTGATGGGT





CGTCTCGAGGATGGCTCTCCGCGTACT





GGTCAGATCTTCAAGCAGACTTACTCT





AAATTTGATACTAACAGCCACAATGA





CGATGCGCTTCTAAAAAACTATGGTC





TGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTACCTCTGA





AAGCGCAACTCCTGAGTCTGGCCCAG





GTAGCGAACCTGCTACCTCCGGCTCT





GAGACTCCAGGTACCTCTGAAAGCGC





AACCCCGGAATCTGGTCCAGGTAGCG





AACCTGCAACCTCTGGCTCTGAAACC





CCAGGTACCTCTGAAAGCGCTACTCC





TGAATCTGGCCCAGGTACTTCTACTGA





ACCGTCCGAGGGCAGCGCACCAGGTA





GCCCTGCTGGCTCTCCAACCTCCACCG





AAGAAGGTACCTCTGAAAGCGCAACC





CCTGAATCCGGCCCAGGTAGCGAACC





GGCAACCTCCGGTTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGT





CCGGCCCAGGTAGCCCGGCTGGCTCT





CCGACTTCCACCGAGGAAGGTAGCCC





GGCTGGCTCTCCAACTTCTACTGAAG





AAGGTACTTCTACCGAACCTTCCGAG





GGCAGCGCACCAGGTACTTCTGAAAG





CGCTACCCCTGAGTCCGGCCCAGGTA





CTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACC





GGCTACTTCTGGTTCTGAAACCCCAG





GTAGCGAACCGGCTACCTCCGGTTCT





GAAACTCCAGGTAGCCCAGCAGGCTC





TCCGACTTCCACTGAGGAAGGTACTT





CTACTGAACCTTCCGAAGGCAGCGCA





CCAGGTACCTCTACTGAACCTTCTGAG





GGCAGCGCTCCAGGTAGCGAACCTGC





AACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTG





GCCCAGGTACTTCTACTGAACCGTCC





GAGGGCAGCGCACCA





AE576-
GSPAGSPTSTEEGTS
775
GGTAGCCCGGCTGGCTCTCCTACCTCT
776


hGH-
ESATPESGPGTSTEPS

ACTGAGGAAGGTACTTCTGAAAGCGC


AE288
EGSAPGSPAGSPTST

TACTCCTGAGTCTGGTCCAGGTACCTC



EEGTSTEPSEGSAPG

TACTGAACCGTCCGAAGGTAGCGCTC



TSTEPSEGSAPGTSES

CAGGTAGCCCAGCAGGCTCTCCGACT



ATPESGPGSEPATSG

TCCACTGAGGAAGGTACTTCTACTGA



SETPGSEPATSGSETP

ACCTTCCGAAGGCAGCGCACCAGGTA



GSPAGSPTSTEEGTS

CCTCTACTGAACCTTCTGAGGGCAGC



ESATPESGPGTSTEPS

GCTCCAGGTACTTCTGAAAGCGCTAC



EGSAPGTSTEPSEGS

CCCGGAATCTGGCCCAGGTAGCGAAC



APGSPAGSPTSTEEG

CGGCTACTTCTGGTTCTGAAACCCCAG



TSTEPSEGSAPGTSTE

GTAGCGAACCGGCTACCTCCGGTTCT



PSEGSAPGTSESATP

GAAACTCCAGGTAGCCCGGCAGGCTC



ESGPGTSTEPSEGSA

TCCGACCTCTACTGAGGAAGGTACTT



PGTSESATPESGPGS

CTGAAAGCGCAACCCCGGAGTCCGGC



EPATSGSETPGTSTEP

CCAGGTACCTCTACCGAACCGTCTGA



SEGSAPGTSTEPSEG

GGGCAGCGCACCAGGTACTTCTACCG



SAPGTSESATPESGP

AACCGTCCGAGGGTAGCGCACCAGGT



GTSESATPESGPGSP

AGCCCAGCAGGTTCTCCTACCTCCACC



AGSPTSTEEGTSESA

GAGGAAGGTACTTCTACCGAACCGTC



TPESGPGSEPATSGS

CGAGGGTAGCGCACCAGGTACCTCTA



ETPGTSESATPESGP

CTGAACCTTCTGAGGGCAGCGCTCCA



GTSTEPSEGSAPGTS

GGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACC



EGSAPGTSTEPSEGS

GTCCGAAGGTAGCGCACCAGGTACTT



APGTSTEPSEGSAPG

CTGAAAGCGCAACCCCTGAATCCGGT



TSTEPSEGSAPGSPA

CCAGGTAGCGAACCGGCTACTTCTGG



GSPTSTEEGTSTEPSE

CTCTGAGACTCCAGGTACTTCTACCGA



GSAPGTSESATPESG

ACCGTCCGAAGGTAGCGCACCAGGTA



PGSEPATSGSETPGT

CTTCTACTGAACCGTCTGAAGGTAGC



SESATPESGPGSEPA

GCACCAGGTACTTCTGAAAGCGCAAC



TSGSETPGTSESATPE

CCCGGAATCCGGCCCAGGTACCTCTG



SGPGTSTEPSEGSAP

AAAGCGCAACCCCGGAGTCCGGCCCA



GTSESATPESGPGSP

GGTAGCCCTGCTGGCTCTCCAACCTCC



AGSPTSTEEGSPAGS

ACCGAAGAAGGTACCTCTGAAAGCGC



PTSTEEGSPAGSPTST

AACCCCTGAATCCGGCCCAGGTAGCG



EEGTSESATPESGPG

AACCGGCAACCTCCGGTTCTGAAACC



TSTEPSEGSAPGFPTI

CCAGGTACCTCTGAAAGCGCTACTCC



PLSRLFDNAMLRAH

GGAGTCTGGCCCAGGTACCTCTACTG



RLHQLAFDTYQEFEE

AACCGTCTGAGGGTAGCGCTCCAGGT



AYIPKEQKYSFLQNP

ACTTCTACTGAACCGTCCGAAGGTAG



QTSLCFSESIPTPSNR

CGCACCAGGTACTTCTACCGAACCGT



EETQQKSNLELLRIS

CCGAAGGCAGCGCTCCAGGTACCTCT



LLLIQSWLEPVQFLR

ACTGAACCTTCCGAGGGCAGCGCTCC



SVFANSLVYGASDS

AGGTACCTCTACCGAACCTTCTGAAG



NVYDLLKDLEEGIQT

GTAGCGCACCAGGTACTTCTACCGAA



LMGRLEDGSPRTGQI

CCGTCCGAGGGTAGCGCACCAGGTAG



FKQTYSKFDTNSHN

CCCAGCAGGTTCTCCTACCTCCACCGA



DDALLKNYGLLYCF

GGAAGGTACTTCTACCGAACCGTCCG



RKDMDKVETFLRIV

AGGGTAGCGCACCAGGTACCTCTGAA



QCRSVEGSCGFGGTS

AGCGCAACTCCTGAGTCTGGCCCAGG



ESATPESGPGSEPAT

TAGCGAACCTGCTACCTCCGGCTCTG



SGSETPGTSESATPES

AGACTCCAGGTACCTCTGAAAGCGCA



GPGSEPATSGSETPG

ACCCCGGAATCTGGTCCAGGTAGCGA



TSESATPESGPGTSTE

ACCTGCAACCTCTGGCTCTGAAACCC



PSEGSAPGSPAGSPT

CAGGTACCTCTGAAAGCGCTACTCCT



STEEGTSESATPESGP

GAATCTGGCCCAGGTACTTCTACTGA



GSEPATSGSETPGTS

ACCGTCCGAGGGCAGCGCACCAGGTA



ESATPESGPGSPAGS

CTTCTGAAAGCGCTACTCCTGAGTCCG



PTSTEEGSPAGSPTST

GCCCAGGTAGCCCGGCTGGCTCTCCG



EEGTSTEPSEGSAPG

ACTTCCACCGAGGAAGGTAGCCCGGC



TSESATPESGPGTSES

TGGCTCTCCAACTTCTACTGAAGAAG



ATPESGPGTSESATP

GTAGCCCGGCAGGCTCTCCGACCTCT



ESGPGSEPATSGSET

ACTGAGGAAGGTACTTCTGAAAGCGC



PGSEPATSGSETPGSP

AACCCCGGAGTCCGGCCCAGGTACCT



AGSPTSTEEGTSTEPS

CTACCGAACCGTCTGAGGGCAGCGCA



EGSAPGTSTEPSEGS

CCAGGTTTTCCGACTATTCCGCTGTCT



APGSEPATSGSETPG

CGTCTGTTTGATAATGCTATGCTGCGT



TSESATPESGPGTSTE

GCGCACCGTCTGCACCAGCTGGCCTTT



PSEGSAP

GATACTTACCAGGAATTTGAAGAAGC





cTACATTCCTAAAGAGCAGAAGTACTC





TTTCCTGCAAAACCCACAGACTTCTCT





CTGCTTCAGCGAATCTATTCCGACGCC





TTCCAATCGCGAGGAAACTCAGCAAA





AGTCCAATCTGGAACTACTCCGCATTT





CTCTGCTTCTGATTCAGAGCTGGCTAG





AACCAGTGCAATTTCTGCGTTCCGTCT





TCGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTG





AAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCT





CTCCGCGTACTGGTCAGATCTTCAAGC





AGACTTACTCTAAATTTGATACTAACA





GCCACAATGACGATGCGCTTCTAAAA





AACTATGGTCTGCTGTATTGTTTTCGT





AAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGT





TGAGGGCAGCTGTGGTTTCTAAGGTG





GTACCTCTGAAAGCGCAACTCCTGAG





TCTGGCCCAGGTAGCGAACCTGCTAC





CTCCGGCTCTGAGACTCCAGGTACCTC





TGAAAGCGCAACCCCGGAATCTGGTC





CAGGTAGCGAACCTGCAACCTCTGGC





TCTGAAACCCCAGGTACCTCTGAAAG





CGCTACTCCTGAATCTGGCCCAGGTA





CTTCTACTGAACCGTCCGAGGGCAGC





GCACCAGGTAGCCCTGCTGGCTCTCC





AACCTCCACCGAAGAAGGTACCTCTG





AAAGCGCAACCCCTGAATCCGGCCCA





GGTAGCGAACCGGCAACCTCCGGTTC





TGAAACCCCAGGTACTTCTGAAAGCG





CTACTCCTGAGTCCGGCCCAGGTAGC





CCGGCTGGCTCTCCGACTTCCACCGA





GGAAGGTAGCCCGGCTGGCTCTCCAA





CTTCTACTGAAGAAGGTACTTCTACCG





AACCTTCCGAGGGCAGCGCACCAGGT





ACTTCTGAAAGCGCTACCCCTGAGTC





CGGCCCAGGTACTTCTGAAAGCGCTA





CTCCTGAATCCGGTCCAGGTACTTCTG





AAAGCGCTACCCCGGAATCTGGCCCA





GGTAGCGAACCGGCTACTTCTGGTTCT





GAAACCCCAGGTAGCGAACCGGCTAC





CTCCGGTTCTGAAACTCCAGGTAGCC





CAGCAGGCTCTCCGACTTCCACTGAG





GAAGGTACTTCTACTGAACCTTCCGA





AGGCAGCGCACCAGGTACCTCTACTG





AACCTTCTGAGGGCAGCGCTCCAGGT





AGCGAACCTGCAACCTCTGGCTCTGA





AACCCCAGGTACCTCTGAAAGCGCTA





CTCCTGAATCTGGCCCAGGTACTTCTA





CTGAACCGTCCGAGGGCAGCGCACCA





AF576-
GSTSSTAESPGPGSTS
777
GGTTCTACTAGCTCTACCGCTGAATCT
778


hGH-
STAESPGPGSTSESPS

CCTGGCCCAGGTTCCACTAGCTCTACC


AE288
GTAPGSTSSTAESPG

GCAGAATCTCCGGGCCCAGGTTCTAC



PGSTSSTAESPGPGTS

TAGCGAATCCCCTTCTGGTACCGCTCC



TPESGSASPGSTSESP

AGGTTCTACTAGCTCTACCGCTGAATC



SGTAPGTSPSGESST

TCCGGGTCCAGGTTCTACCAGCTCTAC



APGSTSESPSGTAPG

TGCAGAATCTCCTGGCCCAGGTACTTC



STSESPSGTAPGTSPS

TACTCCGGAAAGCGGTTCCGCTTCTCC



GESSTAPGSTSESPSG

AGGTTCTACCAGCGAATCTCCTTCTGG



TAPGSTSESPSGTAP

CACCGCTCCAGGTACCTCTCCTAGCG



GTSPSGESSTAPGSTS

GCGAATCTTCTACCGCTCCAGGTTCTA



ESPSGTAPGSTSESPS

CTAGCGAATCTCCTTCTGGCACTGCAC



GTAPGSTSESPSGTA

CAGGTTCTACCAGCGAATCTCCTTCTG



PGTSTPESGSASPGST

GCACCGCTCCAGGTACCTCTCCTAGC



SESPSGTAPGTSTPES

GGCGAATCTTCTACCGCTCCAGGTTCT



GSASPGSTSSTAESP

ACTAGCGAATCTCCTTCTGGCACTGCA



GPGSTSSTAESPGPG

CCAGGTTCTACCAGCGAATCTCCTTCT



TSTPESGSASPGTSTP

GGCACCGCTCCAGGTACCTCTCCTAG



ESGSASPGSTSESPSG

CGGCGAATCTTCTACCGCTCCAGGTTC



TAPGTSTPESGSASP

TACTAGCGAATCTCCTTCTGGCACTGC



GTSTPESGSASPGSTS

ACCAGGTTCTACTAGCGAATCTCCTTC



ESPSGTAPGSTSESPS

TGGCACTGCACCAGGTTCTACCAGCG



GTAPGSTSESPSGTA

AATCTCCGTCTGGCACTGCACCAGGT



PGSTSSTAESPGPGTS

ACCTCTACCCCTGAAAGCGGTTCCGCT



TPESGSASPGTSTPES

TCTCCAGGTTCTACTAGCGAATCTCCT



GSASPGSTSESPSGT

TCTGGTACCGCTCCAGGTACTTCTACC



APGSTSESPSGTAPG

CCTGAAAGCGGCTCCGCTTCTCCAGG



TSTPESGSASPGSTSE

TTCCACTAGCTCTACCGCTGAATCTCC



SPSGTAPGSTSESPSG

GGGTCCAGGTTCTACTAGCTCTACTGC



TAPGTSTPESGSASP

AGAATCTCCTGGCCCAGGTACCTCTA



GTSPSGESSTAPGSTS

CTCCGGAAAGCGGCTCTGCATCTCCA



STAESPGPGTSPSGES

GGTACTTCTACCCCTGAAAGCGGTTCT



STAPGSTSSTAESPGP

GCATCTCCAGGTTCTACTAGCGAATCC



GTSTPESGSASPGSTS

CCGTCTGGTACCGCACCAGGTACTTCT



ESPSGTAPGSTSSTA

ACCCCGGAAAGCGGCTCTGCTTCTCC



ESPGPGTSTPESGSAS

AGGTACTTCTACCCCGGAAAGCGGCT



PGTSTPESGSASPGFP

CCGCATCTCCAGGTTCTACTAGCGAAT



TIPLSRLFDNAMLRA

CTCCTTCTGGTACCGCTCCAGGTTCTA



HRLHQLAFDTYQEF

CCAGCGAATCCCCGTCTGGTACTGCTC



EEAYIPKEQKYSFLQ

CAGGTTCTACCAGCGAATCTCCTTCTG



NPQTSLCFSESIPTPS

GTACTGCACCAGGTTCTACTAGCTCTA



NREETQQKSNLELLR

CTGCAGAATCTCCTGGCCCAGGTACC



ISLLLIQSWLEPVQFL

TCTACTCCGGAAAGCGGCTCTGCATCT



RSVFANSLVYGASD

CCAGGTACTTCTACCCCTGAAAGCGG



SNVYDLLKDLEEGIQ

TTCTGCATCTCCAGGTTCTACTAGCGA



TLMGRLEDGSPRTG

ATCTCCTTCTGGCACTGCACCAGGTTC



QIFKQTYSKFDTNSH

TACCAGCGAATCTCCGTCTGGCACTG



NDDALLKNYGLLYC

CACCAGGTACCTCTACCCCTGAAAGC



FRKDMDKVETFLRI

GGTTCCGCTTCTCCAGGTTCTACTAGC



VQCRSVEGSCGFGG

GAATCTCCTTCTGGCACTGCACCAGGT



TSESATPESGPGSEP

TCTACCAGCGAATCTCCGTCTGGCACT



ATSGSETPGTSESAT

GCACCAGGTACCTCTACCCCTGAAAG



PESGPGSEPATSGSE

CGGTTCCGCTTCTCCAGGTACTTCTCC



TPGTSESATPESGPG

GAGCGGTGAATCTTCTACCGCACCAG



TSTEPSEGSAPGSPA

GTTCTACTAGCTCTACCGCTGAATCTC



GSPTSTEEGTSESATP

CGGGCCCAGGTACTTCTCCGAGCGGT



ESGPGSEPATSGSET

GAATCTTCTACTGCTCCAGGTTCCACT



PGTSESATPESGPGSP

AGCTCTACTGCTGAATCTCCTGGCCCA



AGSPTSTEEGSPAGS

GGTACTTCTACTCCGGAAAGCGGTTC



PTSTEEGTSTEPSEGS

CGCTTCTCCAGGTTCTACTAGCGAATC



APGTSESATPESGPG

TCCGTCTGGCACCGCACCAGGTTCTAC



TSESATPESGPGTSES

TAGCTCTACTGCAGAATCTCCTGGCCC



ATPESGPGSEPATSG

AGGTACCTCTACTCCGGAAAGCGGCT



SETPGSEPATSGSETP

CTGCATCTCCAGGTACTTCTACCCCTG



GSPAGSPTSTEEGTS

AAAGCGGTTCTGCATCTCCAGGTTTTC



TEPSEGSAPGTSTEPS

CGACTATTCCGCTGTCTCGTCTGTTTG



EGSAPGSEPATSGSE

ATAATGCTATGCTGCGTGCGCACCGT



TPGTSESATPESGPG

CTGCACCAGCTGGCCTTTGATACTTAC



TSTEPSEGSAP

CAGGAATTTGAAGAAGCcTACATTCCT





AAAGAGCAGAAGTACTCTTTCCTGCA





AAACCCACAGACTTCTCTCTGCTTCAG





CGAATCTATTCCGACGCCTTCCAATCG





CGAGGAAACTCAGCAAAAGTCCAATC





TGGAACTACTCCGCATTTCTCTGCTTC





TGATTCAGAGCTGGCTAGAACCAGTG





CAATTTCTGCGTTCCGTCTTCGCCAAT





AGCCTAGTTTATGGCGCATCCGACAG





CAACGTATACGATCTCCTGAAAGATC





TCGAGGAAGGCATTCAGACCCTGATG





GGTCGTCTCGAGGATGGCTCTCCGCG





TACTGGTCAGATCTTCAAGCAGACTT





ACTCTAAATTTGATACTAACAGCCAC





AATGACGATGCGCTTCTAAAAAACTA





TGGTCTGCTGTATTGTTTTCGTAAAGA





TATGGACAAAGTTGAAACCTTCCTGC





GTATTGTTCAGTGTCGTTCCGTTGAGG





GCAGCTGTGGTTTCTAAGGTGGTACCT





CTGAAAGCGCAACTCCTGAGTCTGGC





CCAGGTAGCGAACCTGCTACCTCCGG





CTCTGAGACTCCAGGTACCTCTGAAA





GCGCAACCCCGGAATCTGGTCCAGGT





AGCGAACCTGCAACCTCTGGCTCTGA





AACCCCAGGTACCTCTGAAAGCGCTA





CTCCTGAATCTGGCCCAGGTACTTCTA





CTGAACCGTCCGAGGGCAGCGCACCA





GGTAGCCCTGCTGGCTCTCCAACCTCC





ACCGAAGAAGGTACCTCTGAAAGCGC





AACCCCTGAATCCGGCCCAGGTAGCG





AACCGGCAACCTCCGGTTCTGAAACC





CCAGGTACTTCTGAAAGCGCTACTCCT





GAGTCCGGCCCAGGTAGCCCGGCTGG





CTCTCCGACTTCCACCGAGGAAGGTA





GCCCGGCTGGCTCTCCAACTTCTACTG





AAGAAGGTACTTCTACCGAACCTTCC





GAGGGCAGCGCACCAGGTACTTCTGA





AAGCGCTACCCCTGAGTCCGGCCCAG





GTACTTCTGAAAGCGCTACTCCTGAAT





CCGGTCCAGGTACTTCTGAAAGCGCT





ACCCCGGAATCTGGCCCAGGTAGCGA





ACCGGCTACTTCTGGTTCTGAAACCCC





AGGTAGCGAACCGGCTACCTCCGGTT





CTGAAACTCCAGGTAGCCCAGCAGGC





TCTCCGACTTCCACTGAGGAAGGTAC





TTCTACTGAACCTTCCGAAGGCAGCG





CACCAGGTACCTCTACTGAACCTTCTG





AGGGCAGCGCTCCAGGTAGCGAACCT





GCAACCTCTGGCTCTGAAACCCCAGG





TACCTCTGAAAGCGCTACTCCTGAATC





TGGCCCAGGTACTTCTACTGAACCGTC





CGAGGGCAGCGCACCA





AE624-
MAEPAGSPTSTEEGT
779
ATGGCTGAACCTGCTGGCTCTCCAAC
780


hGH-
PGSGTASSSPGSSTPS

CTCCACTGAGGAAGGTACCCCGGGTA


AE288
GATGSPGASPGTSST

GCGGTACTGCTTCTTCCTCTCCAGGTA



GSPGSPAGSPTSTEE

GCTCTACCCCTTCTGGTGCAACCGGCT



GTSESATPESGPGTS

CTCCAGGTGCTTCTCCGGGCACCAGCT



TEPSEGSAPGSPAGS

CTACCGGTTCTCCAGGTAGCCCGGCT



PTSTEEGTSTEPSEGS

GGCTCTCCTACCTCTACTGAGGAAGG



APGTSTEPSEGSAPG

TACTTCTGAAAGCGCTACTCCTGAGTC



TSESATPESGPGSEP

TGGTCCAGGTACCTCTACTGAACCGTC



ATSGSETPGSEPATS

CGAAGGTAGCGCTCCAGGTAGCCCAG



GSETPGSPAGSPTST

CAGGCTCTCCGACTTCCACTGAGGAA



EEGTSESATPESGPG

GGTACTTCTACTGAACCTTCCGAAGG



TSTEPSEGSAPGTSTE

CAGCGCACCAGGTACCTCTACTGAAC



PSEGSAPGSPAGSPT

CTTCTGAGGGCAGCGCTCCAGGTACT



STEEGTSTEPSEGSAP

TCTGAAAGCGCTACCCCGGAATCTGG



GTSTEPSEGSAPGTS

CCCAGGTAGCGAACCGGCTACTTCTG



ESATPESGPGTSTEPS

GTTCTGAAACCCCAGGTAGCGAACCG



EGSAPGTSESATPES

GCTACCTCCGGTTCTGAAACTCCAGGT



GPGSEPATSGSETPG

AGCCCGGCAGGCTCTCCGACCTCTAC



TSTEPSEGSAPGTSTE

TGAGGAAGGTACTTCTGAAAGCGCAA



PSEGSAPGTSESATP

CCCCGGAGTCCGGCCCAGGTACCTCT



ESGPGTSESATPESG

ACCGAACCGTCTGAGGGCAGCGCACC



PGSPAGSPTSTEEGT

AGGTACTTCTACCGAACCGTCCGAGG



SESATPESGPGSEPA

GTAGCGCACCAGGTAGCCCAGCAGGT



TSGSETPGTSESATPE

TCTCCTACCTCCACCGAGGAAGGTAC



SGPGTSTEPSEGSAP

TTCTACCGAACCGTCCGAGGGTAGCG



GTSTEPSEGSAPGTS

CACCAGGTACCTCTACTGAACCTTCTG



TEPSEGSAPGTSTEPS

AGGGCAGCGCTCCAGGTACTTCTGAA



EGSAPGTSTEPSEGS

AGCGCTACCCCGGAGTCCGGTCCAGG



APGTSTEPSEGSAPG

TACTTCTACTGAACCGTCCGAAGGTA



SPAGSPTSTEEGTSTE

GCGCACCAGGTACTTCTGAAAGCGCA



PSEGSAPGTSESATP

ACCCCTGAATCCGGTCCAGGTAGCGA



ESGPGSEPATSGSET

ACCGGCTACTTCTGGCTCTGAGACTCC



PGTSESATPESGPGS

AGGTACTTCTACCGAACCGTCCGAAG



EPATSGSETPGTSES

GTAGCGCACCAGGTACTTCTACTGAA



ATPESGPGTSTEPSE

CCGTCTGAAGGTAGCGCACCAGGTAC



GSAPGTSESATPESG

TTCTGAAAGCGCAACCCCGGAATCCG



PGSPAGSPTSTEEGSP

GCCCAGGTACCTCTGAAAGCGCAACC



AGSPTSTEEGSPAGS

CCGGAGTCCGGCCCAGGTAGCCCTGC



PTSTEEGTSESATPES

TGGCTCTCCAACCTCCACCGAAGAAG



GPGTSTEPSEGSAPG

GTACCTCTGAAAGCGCAACCCCTGAA



FPTIPLSRLFDNAML

TCCGGCCCAGGTAGCGAACCGGCAAC



RAHRLHQLAFDTYQ

CTCCGGTTCTGAAACCCCAGGTACCTC



EFEEAYIPKEQKYSF

TGAAAGCGCTACTCCGGAGTCTGGCC



LQNPQTSLCFSESIPT

CAGGTACCTCTACTGAACCGTCTGAG



PSNREETQQKSNLEL

GGTAGCGCTCCAGGTACTTCTACTGA



LRISLLLIQSWLEPVQ

ACCGTCCGAAGGTAGCGCACCAGGTA



FLRSVFANSLVYGAS

CTTCTACCGAACCGTCCGAAGGCAGC



DSNVYDLLKDLEEGI

GCTCCAGGTACCTCTACTGAACCTTCC



QTLMGRLEDGSPRT

GAGGGCAGCGCTCCAGGTACCTCTAC



GQIFKQTYSKFDTNS

CGAACCTTCTGAAGGTAGCGCACCAG



HNDDALLKNYGLLY

GTACTTCTACCGAACCGTCCGAGGGT



CFRKDMDKVETFLRI

AGCGCACCAGGTAGCCCAGCAGGTTC



VQCRSVEGSCGFGG

TCCTACCTCCACCGAGGAAGGTACTT



TSESATPESGPGSEP

CTACCGAACCGTCCGAGGGTAGCGCA



ATSGSETPGTSESAT

CCAGGTACCTCTGAAAGCGCAACTCC



PESGPGSEPATSGSE

TGAGTCTGGCCCAGGTAGCGAACCTG



TPGTSESATPESGPG

CTACCTCCGGCTCTGAGACTCCAGGT



TSTEPSEGSAPGSPA

ACCTCTGAAAGCGCAACCCCGGAATC



GSPTSTEEGTSESATP

TGGTCCAGGTAGCGAACCTGCAACCT



ESGPGSEPATSGSET

CTGGCTCTGAAACCCCAGGTACCTCT



PGTSESATPESGPGSP

GAAAGCGCTACTCCTGAATCTGGCCC



AGSPTSTEEGSPAGS

AGGTACTTCTACTGAACCGTCCGAGG



PTSTEEGTSTEPSEGS

GCAGCGCACCAGGTACTTCTGAAAGC



APGTSESATPESGPG

GCTACTCCTGAGTCCGGCCCAGGTAG



TSESATPESGPGTSES

CCCGGCTGGCTCTCCGACTTCCACCGA



ATPESGPGSEPATSG

GGAAGGTAGCCCGGCTGGCTCTCCAA



SETPGSEPATSGSETP

CTTCTACTGAAGAAGGTAGCCCGGCA



GSPAGSPTSTEEGTS

GGCTCTCCGACCTCTACTGAGGAAGG



TEPSEGSAPGTSTEPS

TACTTCTGAAAGCGCAACCCCGGAGT



EGSAPGSEPATSGSE

CCGGCCCAGGTACCTCTACCGAACCG



TPGTSESATPESGPG

TCTGAGGGCAGCGCACCAGGTTTTCC



TSTEPSEGSAP

GACTATTCCGCTGTCTCGTCTGTTTGA





TAATGCTATGCTGCGTGCGCACCGTCT





GCACCAGCTGGCCTTTGATACTTACCA





GGAATTTGAAGAAGCcTACATTCCTAA





AGAGCAGAAGTACTCTTTCCTGCAAA





ACCCACAGACTTCTCTCTGCTTCAGCG





AATCTATTCCGACGCCTTCCAATCGCG





AGGAAACTCAGCAAAAGTCCAATCTG





GAACTACTCCGCATTTCTCTGCTTCTG





ATTCAGAGCTGGCTAGAACCAGTGCA





ATTTCTGCGTTCCGTCTTCGCCAATAG





CCTAGTTTATGGCGCATCCGACAGCA





ACGTATACGATCTCCTGAAAGATCTC





GAGGAAGGCATTCAGACCCTGATGGG





TCGTCTCGAGGATGGCTCTCCGCGTAC





TGGTCAGATCTTCAAGCAGACTTACTC





TAAATTTGATACTAACAGCCACAATG





ACGATGCGCTTCTAAAAAACTATGGT





CTGCTGTATTGTTTTCGTAAAGATATG





GACAAAGTTGAAACCTTCCTGCGTAT





TGTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTACCTCTGA





AAGCGCAACTCCTGAGTCTGGCCCAG





GTAGCGAACCTGCTACCTCCGGCTCT





GAGACTCCAGGTACCTCTGAAAGCGC





AACCCCGGAATCTGGTCCAGGTAGCG





AACCTGCAACCTCTGGCTCTGAAACC





CCAGGTACCTCTGAAAGCGCTACTCC





TGAATCTGGCCCAGGTACTTCTACTGA





ACCGTCCGAGGGCAGCGCACCAGGTA





GCCCTGCTGGCTCTCCAACCTCCACCG





AAGAAGGTACCTCTGAAAGCGCAACC





CCTGAATCCGGCCCAGGTAGCGAACC





GGCAACCTCCGGTTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGT





CCGGCCCAGGTAGCCCGGCTGGCTCT





CCGACTTCCACCGAGGAAGGTAGCCC





GGCTGGCTCTCCAACTTCTACTGAAG





AAGGTACTTCTACCGAACCTTCCGAG





GGCAGCGCACCAGGTACTTCTGAAAG





CGCTACCCCTGAGTCCGGCCCAGGTA





CTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACC





GGCTACTTCTGGTTCTGAAACCCCAG





GTAGCGAACCGGCTACCTCCGGTTCT





GAAACTCCAGGTAGCCCAGCAGGCTC





TCCGACTTCCACTGAGGAAGGTACTT





CTACTGAACCTTCCGAAGGCAGCGCA





CCAGGTACCTCTACTGAACCTTCTGAG





GGCAGCGCTCCAGGTAGCGAACCTGC





AACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTG





GCCCAGGTACTTCTACTGAACCGTCC





GAGGGCAGCGCACCA





AD836-
GSSESGSSEGGPGSS
781
GGTTCCTCTGAAAGCGGTTCTTCCGAA
782


hGH-
ESGSSEGGPGESPGG

GGTGGTCCAGGTTCCTCTGAAAGCGG


AE288
SSGSESGSGGEPSES

TTCTTCTGAGGGTGGTCCAGGTGAATC



GSSGESPGGSSGSES

TCCGGGTGGCTCCAGCGGTTCCGAGT



GESPGGSSGSESGSS

CAGGTTCTGGTGGCGAACCTTCCGAG



ESGSSEGGPGSSESG

TCTGGTAGCTCAGGTGAATCTCCGGG



SSEGGPGSSESGSSE

TGGTTCTAGCGGTTCCGAGTCAGGTG



GGPGESPGGSSGSES

AATCTCCGGGTGGTTCCAGCGGTTCTG



GESPGGSSGSESGES

AGTCAGGTTCCTCCGAAAGCGGTTCTT



PGGSSGSESGSSESG

CTGAGGGCGGTCCAGGTTCCTCCGAA



SSEGGPGSSESGSSE

AGCGGTTCTTCCGAGGGCGGTCCAGG



GGPGSSESGSSEGGP

TTCTTCTGAAAGCGGTTCTTCCGAGGG



GSSESGSSEGGPGSS

CGGTCCAGGTGAATCTCCTGGTGGTTC



ESGSSEGGPGSSESG

CAGCGGTTCCGAGTCAGGTGAATCTC



SSEGGPGSGGEPSES

CAGGTGGCTCTAGCGGTTCCGAGTCA



GSSGESPGGSSGSES

GGTGAATCTCCTGGTGGTTCTAGCGGT



GESPGGSSGSESGSG

TCTGAATCAGGTTCCTCCGAAAGCGG



GEPSESGSSGSEGSS

TTCTTCTGAGGGCGGTCCAGGTTCCTC



GPGESSGSSESGSSE

CGAAAGCGGTTCTTCCGAGGGCGGTC



GGPGSGGEPSESGSS

CAGGTTCTTCTGAAAGCGGTTCTTCCG



GSEGSSGPGESSGSS

AGGGCGGTCCAGGTTCCTCTGAAAGC



ESGSSEGGPGSGGEP

GGTTCTTCTGAGGGCGGTCCAGGTTCT



SESGSSGESPGGSSG

TCCGAAAGCGGTTCTTCCGAGGGCGG



SESGSGGEPSESGSS

TCCAGGTTCTTCCGAAAGCGGTTCTTC



GSGGEPSESGSSGSS

TGAAGGCGGTCCAGGTTCTGGTGGCG



ESGSSEGGPGSGGEP

AACCGTCCGAGTCTGGTAGCTCAGGT



SESGSSGSGGEPSES

GAATCTCCGGGTGGCTCTAGCGGTTC



GSSGSEGSSGPGESS

CGAGTCAGGTGAATCTCCTGGTGGTT



GESPGGSSGSESGSE

CCAGCGGTTCCGAGTCAGGTTCCGGT



GSSGPGESSGSEGSS

GGCGAACCGTCCGAATCTGGTAGCTC



GPGESSGSGGEPSES

AGGTAGCGAAGGTTCTTCTGGTCCAG



GSSGSSESGSSEGGP

GCGAATCTTCAGGTTCCTCTGAAAGC



GSSESGSSEGGPGES

GGTTCTTCTGAGGGCGGTCCAGGTTCC



PGGSSGSESGSGGEP

GGTGGCGAACCGTCCGAATCTGGTAG



SESGSSGSEGSSGPG

CTCAGGTAGCGAAGGTTCTTCTGGTCC



ESSGESPGGSSGSES

AGGCGAATCTTCAGGTTCCTCTGAAA



GSEGSSGPGSSESGS

GCGGTTCTTCTGAGGGCGGTCCAGGT



SEGGPGSGGEPSESG

TCCGGTGGCGAACCTTCCGAATCTGG



SSGSEGSSGPGESSG

TAGCTCAGGTGAATCTCCGGGTGGTT



SEGSSGPGESSGSEG

CTAGCGGTTCTGAGTCAGGTTCTGGTG



SSGPGESSGSGGEPS

GTGAACCTTCCGAGTCTGGTAGCTCA



ESGSSGSGGEPSESG

GGTTCTGGTGGCGAACCATCCGAGTC



SSGESPGGSSGSESG

TGGTAGCTCAGGTTCTTCCGAAAGCG



ESPGGSSGSESGSGG

GTTCTTCCGAAGGCGGTCCAGGTTCTG



EPSESGSSGSEGSSGP

GTGGTGAACCGTCCGAATCTGGTAGC



GESSGESPGGSSGSE

TCAGGTTCTGGTGGCGAACCATCCGA



SGSSESGSSEGGPGS

ATCTGGTAGCTCAGGTAGCGAAGGTT



SESGSSEGGPGSSES

CTTCTGGTCCTGGCGAATCTTCAGGTG



GSSEGGPGSGGEPSE

AATCTCCAGGTGGCTCTAGCGGTTCC



SGSSGSSESGSSEGG

GAATCAGGTAGCGAAGGTTCTTCCGG



PGESPGGSSGSESGS

TCCAGGTGAATCTTCAGGTAGCGAAG



GGEPSESGSSGSSES

GTTCTTCTGGTCCTGGTGAATCCTCAG



GSSEGGPGESPGGSS

GTTCCGGTGGCGAACCATCTGAATCT



GSESGSGGEPSESGS

GGTAGCTCAGGTTCCTCTGAAAGCGG



SGESPGGSSGSESGS

TTCTTCCGAAGGTGGTCCAGGTTCCTC



GGEPSESGSSGFPTIP

TGAAAGCGGTTCTTCTGAGGGTGGTC



LSRLFDNAMLRAHR

CAGGTGAATCTCCGGGTGGCTCCAGC



LHQLAFDTYQEFEE

GGTTCCGAGTCAGGTTCTGGTGGCGA



AYIPKEQKYSFLQNP

ACCATCCGAATCTGGTAGCTCAGGTA



QTSLCFSESIPTPSNR

GCGAAGGTTCTTCTGGTCCTGGCGAA



EETQQKSNLELLRIS

TCTTCAGGTGAATCTCCAGGTGGCTCT



LLLIQSWLEPVQFLR

AGCGGTTCCGAATCAGGTAGCGAAGG



SVFANSLVYGASDS

TTCTTCCGGTCCaGGTTCCTCTGAAAG



NVYDLLKDLEEGIQT

CGGTTCTTCTGAGGGCGGTCCAGGTTC



LMGRLEDGSPRTGQI

TGGTGGCGAACCATCTGAATCTGGTA



FKQTYSKFDTNSHN

GCTCAGGTAGCGAAGGTTCTTCCGGT



DDALLKNYGLLYCF

CCGGGTGAATCTTCAGGTAGCGAAGG



RKDMDKVETFLRIV

TTCTTCCGGTCCAGGTGAATCTTCAGG



QCRSVEGSCGFGGTS

TAGCGAAGGTTCTTCTGGTCCTGGTGA



ESATPESGPGSEPAT

ATCCTCAGGTTCCGGTGGCGAACCAT



SGSETPGTSESATPES

CTGAATCTGGTAGCTCAGGTTCTGGTG



GPGSEPATSGSETPG

GCGAACCATCCGAATCTGGTAGCTCA



TSESATPESGPGTSTE

GGTGAATCTCCGGGTGGCTCCAGCGG



PSEGSAPGSPAGSPT

TTCTGAATCAGGTGAATCTCCTGGTGG



STEEGTSESATPESGP

CTCCAGCGGTTCTGAGTCAGGTTCTGG



GSEPATSGSETPGTS

TGGCGAACCATCCGAATCTGGTAGCT



ESATPESGPGSPAGS

CAGGTAGCGAAGGTTCTTCTGGTCCT



PTSTEEGSPAGSPTST

GGCGAATCTTCAGGTGAATCTCCAGG



EEGTSTEPSEGSAPG

TGGCTCTAGCGGTTCCGAATCAGGTTC



TSESATPESGPGTSES

CTCTGAAAGCGGTTCTTCTGAGGGCG



ATPESGPGTSESATP

GTCCAGGTTCTTCCGAAAGCGGTTCTT



ESGPGSEPATSGSET

CCGAGGGCGGTCCAGGTTCTTCCGAA



PGSEPATSGSETPGSP

AGCGGTTCTTCTGAAGGCGGTCCAGG



AGSPTSTEEGTSTEPS

TTCTGGTGGCGAACCGTCCGAATCTG



EGSAPGTSTEPSEGS

GTAGCTCAGGTTCCTCCGAAAGCGGT



APGSEPATSGSETPG

TCTTCTGAAGGTGGTCCAGGTGAATCT



TSESATPESGPGTSTE

CCAGGTGGTTCTAGCGGTTCTGAATC



PSEGSAP

AGGTTCTGGTGGCGAACCGTCCGAAT





CTGGTAGCTCAGGTTCCTCCGAAAGC





GGTTCTTCTGAAGGTGGTCCAGGTGA





ATCTCCAGGTGGTTCTAGCGGTTCTGA





ATCAGGTTCTGGTGGCGAACCGTCCG





AATCTGGTAGCTCAGGTGAATCTCCT





GGTGGTTCCAGCGGTTCCGAGTCAGG





TTCTGGTGGCGAACCTTCCGAATCTGG





TAGCTCAGGTTTTCCGACTATTCCGCT





GTCTCGTCTGTTTGATAATGCTATGCT





GCGTGCGCACCGTCTGCACCAGCTGG





CCTTTGATACTTACCAGGAATTTGAAG





AAGCcTACATTCCTAAAGAGCAGAAG





TACTCTTTCCTGCAAAACCCACAGACT





TCTCTCTGCTTCAGCGAATCTATTCCG





ACGCCTTCCAATCGCGAGGAAACTCA





GCAAAAGTCCAATCTGGAACTACTCC





GCATTTCTCTGCTTCTGATTCAGAGCT





GGCTAGAACCAGTGCAATTTCTGCGT





TCCGTCTTCGCCAATAGCCTAGTTTAT





GGCGCATCCGACAGCAACGTATACGA





TCTCCTGAAAGATCTCGAGGAAGGCA





TTCAGACCCTGATGGGTCGTCTCGAG





GATGGCTCTCCGCGTACTGGTCAGAT





CTTCAAGCAGACTTACTCTAAATTTGA





TACTAACAGCCACAATGACGATGCGC





TTCTAAAAAACTATGGTCTGCTGTATT





GTTTTCGTAAAGATATGGACAAAGTT





GAAACCTTCCTGCGTATTGTTCAGTGT





CGTTCCGTTGAGGGCAGCTGTGGTTTC





TAAGGTGGTACCTCTGAAAGCGCAAC





TCCTGAGTCTGGCCCAGGTAGCGAAC





CTGCTACCTCCGGCTCTGAGACTCCAG





GTACCTCTGAAAGCGCAACCCCGGAA





TCTGGTCCAGGTAGCGAACCTGCAAC





CTCTGGCTCTGAAACCCCAGGTACCTC





TGAAAGCGCTACTCCTGAATCTGGCC





CAGGTACTTCTACTGAACCGTCCGAG





GGCAGCGCACCAGGTAGCCCTGCTGG





CTCTCCAACCTCCACCGAAGAAGGTA





CCTCTGAAAGCGCAACCCCTGAATCC





GGCCCAGGTAGCGAACCGGCAACCTC





CGGTTCTGAAACCCCAGGTACTTCTG





AAAGCGCTACTCCTGAGTCCGGCCCA





GGTAGCCCGGCTGGCTCTCCGACTTCC





ACCGAGGAAGGTAGCCCGGCTGGCTC





TCCAACTTCTACTGAAGAAGGTACTTC





TACCGAACCTTCCGAGGGCAGCGCAC





CAGGTACTTCTGAAAGCGCTACCCCT





GAGTCCGGCCCAGGTACTTCTGAAAG





CGCTACTCCTGAATCCGGTCCAGGTA





CTTCTGAAAGCGCTACCCCGGAATCT





GGCCCAGGTAGCGAACCGGCTACTTC





TGGTTCTGAAACCCCAGGTAGCGAAC





CGGCTACCTCCGGTTCTGAAACTCCA





GGTAGCCCAGCAGGCTCTCCGACTTC





CACTGAGGAAGGTACTTCTACTGAAC





CTTCCGAAGGCAGCGCACCAGGTACC





TCTACTGAACCTTCTGAGGGCAGCGC





TCCAGGTAGCGAACCTGCAACCTCTG





GCTCTGAAACCCCAGGTACCTCTGAA





AGCGCTACTCCTGAATCTGGCCCAGG





TACTTCTACTGAACCGTCCGAGGGCA





GCGCACCA





AE864-
GSPAGSPTSTEEGTS
783
GGTAGCCCGGCTGGCTCTCCTACCTCT
784


hGH-
ESATPESGPGTSTEPS

ACTGAGGAAGGTACTTCTGAAAGCGC


AE288
EGSAPGSPAGSPTST

TACTCCTGAGTCTGGTCCAGGTACCTC



EEGTSTEPSEGSAPG

TACTGAACCGTCCGAAGGTAGCGCTC



TSTEPSEGSAPGTSES

CAGGTAGCCCAGCAGGCTCTCCGACT



ATPESGPGSEPATSG

TCCACTGAGGAAGGTACTTCTACTGA



SETPGSEPATSGSETP

ACCTTCCGAAGGCAGCGCACCAGGTA



GSPAGSPTSTEEGTS

CCTCTACTGAACCTTCTGAGGGCAGC



ESATPESGPGTSTEPS

GCTCCAGGTACTTCTGAAAGCGCTAC



EGSAPGTSTEPSEGS

CCCGGAATCTGGCCCAGGTAGCGAAC



APGSPAGSPTSTEEG

CGGCTACTTCTGGTTCTGAAACCCCAG



TSTEPSEGSAPGTSTE

GTAGCGAACCGGCTACCTCCGGTTCT



PSEGSAPGTSESATP

GAAACTCCAGGTAGCCCGGCAGGCTC



ESGPGTSTEPSEGSA

TCCGACCTCTACTGAGGAAGGTACTT



PGTSESATPESGPGS

CTGAAAGCGCAACCCCGGAGTCCGGC



EPATSGSETPGTSTEP

CCAGGTACCTCTACCGAACCGTCTGA



SEGSAPGTSTEPSEG

GGGCAGCGCACCAGGTACTTCTACCG



SAPGTSESATPESGP

AACCGTCCGAGGGTAGCGCACCAGGT



GTSESATPESGPGSP

AGCCCAGCAGGTTCTCCTACCTCCACC



AGSPTSTEEGTSESA

GAGGAAGGTACTTCTACCGAACCGTC



TPESGPGSEPATSGS

CGAGGGTAGCGCACCAGGTACCTCTA



ETPGTSESATPESGP

CTGAACCTTCTGAGGGCAGCGCTCCA



GTSTEPSEGSAPGTS

GGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACC



EGSAPGTSTEPSEGS

GTCCGAAGGTAGCGCACCAGGTACTT



APGTSTEPSEGSAPG

CTGAAAGCGCAACCCCTGAATCCGGT



TSTEPSEGSAPGSPA

CCAGGTAGCGAACCGGCTACTTCTGG



GSPTSTEEGTSTEPSE

CTCTGAGACTCCAGGTACTTCTACCGA



GSAPGTSESATPESG

ACCGTCCGAAGGTAGCGCACCAGGTA



PGSEPATSGSETPGT

CTTCTACTGAACCGTCTGAAGGTAGC



SESATPESGPGSEPA

GCACCAGGTACTTCTGAAAGCGCAAC



TSGSETPGTSESATPE

CCCGGAATCCGGCCCAGGTACCTCTG



SGPGTSTEPSEGSAP

AAAGCGCAACCCCGGAGTCCGGCCCA



GTSESATPESGPGSP

GGTAGCCCTGCTGGCTCTCCAACCTCC



AGSPTSTEEGSPAGS

ACCGAAGAAGGTACCTCTGAAAGCGC



PTSTEEGSPAGSPTST

AACCCCTGAATCCGGCCCAGGTAGCG



EEGTSESATPESGPG

AACCGGCAACCTCCGGTTCTGAAACC



TSTEPSEGSAPGTSES

CCAGGTACCTCTGAAAGCGCTACTCC



ATPESGPGSEPATSG

GGAGTCTGGCCCAGGTACCTCTACTG



SETPGTSESATPESGP

AACCGTCTGAGGGTAGCGCTCCAGGT



GSEPATSGSETPGTS

ACTTCTACTGAACCGTCCGAAGGTAG



ESATPESGPGTSTEPS

CGCACCAGGTACTTCTACCGAACCGT



EGSAPGSPAGSPTST

CCGAAGGCAGCGCTCCAGGTACCTCT



EEGTSESATPESGPG

ACTGAACCTTCCGAGGGCAGCGCTCC



SEPATSGSETPGTSES

AGGTACCTCTACCGAACCTTCTGAAG



ATPESGPGSPAGSPT

GTAGCGCACCAGGTACTTCTACCGAA



STEEGSPAGSPTSTEE

CCGTCCGAGGGTAGCGCACCAGGTAG



GTSTEPSEGSAPGTS

CCCAGCAGGTTCTCCTACCTCCACCGA



ESATPESGPGTSESA

GGAAGGTACTTCTACCGAACCGTCCG



TPESGPGTSESATPES

AGGGTAGCGCACCAGGTACCTCTGAA



GPGSEPATSGSETPG

AGCGCAACTCCTGAGTCTGGCCCAGG



SEPATSGSETPGSPA

TAGCGAACCTGCTACCTCCGGCTCTG



GSPTSTEEGTSTEPSE

AGACTCCAGGTACCTCTGAAAGCGCA



GSAPGTSTEPSEGSA

ACCCCGGAATCTGGTCCAGGTAGCGA



PGSEPATSGSETPGT

ACCTGCAACCTCTGGCTCTGAAACCC



SESATPESGPGTSTEP

CAGGTACCTCTGAAAGCGCTACTCCT



SEGSAPGFPTIPLSRL

GAATCTGGCCCAGGTACTTCTACTGA



FDNAMLRAHRLHQL

ACCGTCCGAGGGCAGCGCACCAGGTA



AFDTYQEFEEAYIPK

CTTCTGAAAGCGCTACTCCTGAGTCCG



EQKYSFLQNPQTSLC

GCCCAGGTAGCCCGGCTGGCTCTCCG



FSESIPTPSNREETQQ

ACTTCCACCGAGGAAGGTAGCCCGGC



KSNLELLRISLLLIQS

TGGCTCTCCAACTTCTACTGAAGAAG



WLEPVQFLRSVFAN

GTAGCCCGGCAGGCTCTCCGACCTCT



SLVYGASDSNVYDL

ACTGAGGAAGGTACTTCTGAAAGCGC



LKDLEEGIQTLMGRL

AACCCCGGAGTCCGGCCCAGGTACCT



EDGSPRTGQIFKQTY

CTACCGAACCGTCTGAGGGCAGCGCA



SKFDTNSHNDDALL

CCAGGTACCTCTGAAAGCGCAACTCC



KNYGLLYCFRKDMD

TGAGTCTGGCCCAGGTAGCGAACCTG



KVETFLRIVQCRSVE

CTACCTCCGGCTCTGAGACTCCAGGT



GSCGFGGTSESATPE

ACCTCTGAAAGCGCAACCCCGGAATC



SGPGSEPATSGSETP

TGGTCCAGGTAGCGAACCTGCAACCT



GTSESATPESGPGSE

CTGGCTCTGAAACCCCAGGTACCTCT



PATSGSETPGTSESA

GAAAGCGCTACTCCTGAATCTGGCCC



TPESGPGTSTEPSEGS

AGGTACTTCTACTGAACCGTCCGAGG



APGSPAGSPTSTEEG

GCAGCGCACCAGGTAGCCCTGCTGGC



TSESATPESGPGSEP

TCTCCAACCTCCACCGAAGAAGGTAC



ATSGSETPGTSESAT

CTCTGAAAGCGCAACCCCTGAATCCG



PESGPGSPAGSPTSTE

GCCCAGGTAGCGAACCGGCAACCTCC



EGSPAGSPTSTEEGT

GGTTCTGAAACCCCAGGTACTTCTGA



STEPSEGSAPGTSES

AAGCGCTACTCCTGAGTCCGGCCCAG



ATPESGPGTSESATP

GTAGCCCGGCTGGCTCTCCGACTTCCA



ESGPGTSESATPESG

CCGAGGAAGGTAGCCCGGCTGGCTCT



PGSEPATSGSETPGS

CCAACTTCTACTGAAGAAGGTACTTCT



EPATSGSETPGSPAG

ACCGAACCTTCCGAGGGCAGCGCACC



SPTSTEEGTSTEPSEG

AGGTACTTCTGAAAGCGCTACCCCTG



SAPGTSTEPSEGSAP

AGTCCGGCCCAGGTACTTCTGAAAGC



GSEPATSGSETPGTS

GCTACTCCTGAATCCGGTCCAGGTACT



ESATPESGPGTSTEPS

TCTGAAAGCGCTACCCCGGAATCTGG



EGSAP

CCCAGGTAGCGAACCGGCTACTTCTG





GTTCTGAAACCCCAGGTAGCGAACCG





GCTACCTCCGGTTCTGAAACTCCAGGT





AGCCCAGCAGGCTCTCCGACTTCCAC





TGAGGAAGGTACTTCTACTGAACCTT





CCGAAGGCAGCGCACCAGGTACCTCT





ACTGAACCTTCTGAGGGCAGCGCTCC





AGGTAGCGAACCTGCAACCTCTGGCT





CTGAAACCCCAGGTACCTCTGAAAGC





GCTACTCCTGAATCTGGCCCAGGTACT





TCTACTGAACCGTCCGAGGGCAGCGC





ACCAGGTTTTCCGACTATTCCGCTGTC





TCGTCTGTTTGATAATGCTATGCTGCG





TGCGCACCGTCTGCACCAGCTGGCCTT





TGATACTTACCAGGAATTTGAAGAAG





CcTACATTCCTAAAGAGCAGAAGTACT





CTTTCCTGCAAAACCCACAGACTTCTC





TCTGCTTCAGCGAATCTATTCCGACGC





CTTCCAATCGCGAGGAAACTCAGCAA





AAGTCCAATCTGGAACTACTCCGCAT





TTCTCTGCTTCTGATTCAGAGCTGGCT





AGAACCAGTGCAATTTCTGCGTTCCGT





CTTCGCCAATAGCCTAGTTTATGGCGC





ATCCGACAGCAACGTATACGATCTCC





TGAAAGATCTCGAGGAAGGCATTCAG





ACCCTGATGGGTCGTCTCGAGGATGG





CTCTCCGCGTACTGGTCAGATCTTCAA





GCAGACTTACTCTAAATTTGATACTAA





CAGCCACAATGACGATGCGCTTCTAA





AAAACTATGGTCTGCTGTATTGTTTTC





GTAAAGATATGGACAAAGTTGAAACC





TTCCTGCGTATTGTTCAGTGTCGTTCC





GTTGAGGGCAGCTGTGGTTTCTAAGG





TGGTACCTCTGAAAGCGCAACTCCTG





AGTCTGGCCCAGGTAGCGAACCTGCT





ACCTCCGGCTCTGAGACTCCAGGTAC





CTCTGAAAGCGCAACCCCGGAATCTG





GTCCAGGTAGCGAACCTGCAACCTCT





GGCTCTGAAACCCCAGGTACCTCTGA





AAGCGCTACTCCTGAATCTGGCCCAG





GTACTTCTACTGAACCGTCCGAGGGC





AGCGCACCAGGTAGCCCTGCTGGCTC





TCCAACCTCCACCGAAGAAGGTACCT





CTGAAAGCGCAACCCCTGAATCCGGC





CCAGGTAGCGAACCGGCAACCTCCGG





TTCTGAAACCCCAGGTACTTCTGAAA





GCGCTACTCCTGAGTCCGGCCCAGGT





AGCCCGGCTGGCTCTCCGACTTCCACC





GAGGAAGGTAGCCCGGCTGGCTCTCC





AACTTCTACTGAAGAAGGTACTTCTA





CCGAACCTTCCGAGGGCAGCGCACCA





GGTACTTCTGAAAGCGCTACCCCTGA





GTCCGGCCCAGGTACTTCTGAAAGCG





CTACTCCTGAATCCGGTCCAGGTACTT





CTGAAAGCGCTACCCCGGAATCTGGC





CCAGGTAGCGAACCGGCTACTTCTGG





TTCTGAAACCCCAGGTAGCGAACCGG





CTACCTCCGGTTCTGAAACTCCAGGTA





GCCCAGCAGGCTCTCCGACTTCCACT





GAGGAAGGTACTTCTACTGAACCTTC





CGAAGGCAGCGCACCAGGTACCTCTA





CTGAACCTTCTGAGGGCAGCGCTCCA





GGTAGCGAACCTGCAACCTCTGGCTC





TGAAACCCCAGGTACCTCTGAAAGCG





CTACTCCTGAATCTGGCCCAGGTACTT





CTACTGAACCGTCCGAGGGCAGCGCA





CCA





AF864-
GSTSESPSGTAPGTSP
785
GGTTCTACCAGCGAATCTCCTTCTGGC
786


hGH-
SGESSTAPGSTSESPS

ACCGCTCCAGGTACCTCTCCTAGCGG


AE288
GTAPGSTSESPSGTA

CGAATCTTCTACCGCTCCAGGTTCTAC



PGTSTPESGSASPGTS

TAGCGAATCTCCTTCTGGCACTGCACC



TPESGSASPGSTSESP

AGGTTCTACTAGCGAATCCCCGTCTG



SGTAPGSTSESPSGT

GTACTGCTCCAGGTACTTCTACTCCTG



APGTSPSGESSTAPG

AAAGCGGTTCCGCTTCTCCAGGTACCT



STSESPSGTAPGTSPS

CTACTCCGGAAAGCGGTTCTGCATCTC



GESSTAPGTSPSGESS

CAGGTTCTACCAGCGAATCTCCTTCTG



TAPGSTSSTAESPGP

GCACCGCTCCAGGTTCTACTAGCGAA



GTSPSGESSTAPGTSP

TCCCCGTCTGGTACCGCACCAGGTACT



SGESSTAPGSTSSTA

TCTCCTAGCGGCGAATCTTCTACCGCA



ESPGPGTSTPESGSAS

CCAGGTTCTACTAGCGAATCTCCGTCT



PGTSTPESGSASPGST

GGCACTGCTCCAGGTACTTCTCCTAGC



SESPSGTAPGSTSESP

GGTGAATCTTCTACCGCTCCAGGTACT



SGTAPGTSTPESGSA

TCCCCTAGCGGCGAATCTTCTACCGCT



SPGSTSSTAESPGPGT

CCAGGTTCTACTAGCTCTACTGCAGA



STPESGSASPGSTSES

ATCTCCGGGCCCAGGTACCTCTCCTAG



PSGTAPGTSPSGESST

CGGTGAATCTTCTACCGCTCCAGGTAC



APGSTSSTAESPGPG

TTCTCCGAGCGGTGAATCTTCTACCGC



TSPSGESSTAPGTSTP

TCCAGGTTCTACTAGCTCTACTGCAGA



ESGSASPGSTSSTAES

ATCTCCTGGCCCAGGTACCTCTACTCC



PGPGSTSSTAESPGP

GGAAAGCGGCTCTGCATCTCCAGGTA



GSTSSTAESPGPGSTS

CTTCTACCCCTGAAAGCGGTTCTGCAT



STAESPGPGTSPSGES

CTCCAGGTTCTACTAGCGAATCTCCTT



STAPGSTSESPSGTAP

CTGGCACTGCACCAGGTTCTACCAGC



GSTSESPSGTAPGTS

GAATCTCCGTCTGGCACTGCACCAGG



TPESGPXXXGASASG

TACCTCTACCCCTGAAAGCGGTTCCGC



APSTXXXXSESPSGT

TTCTCCAGGTTCTACCAGCTCTACCGC



APGSTSESPSGTAPG

AGAATCTCCTGGTCCAGGTACCTCTAC



STSESPSGTAPGSTSE

TCCGGAAAGCGGCTCTGCATCTCCAG



SPSGTAPGSTSESPSG

GTTCTACTAGCGAATCTCCTTCTGGCA



TAPGSTSESPSGTAP

CTGCACCAGGTACTTCTCCGAGCGGT



GTSTPESGSASPGTSP

GAATCTTCTACCGCACCAGGTTCTACT



SGESSTAPGTSPSGES

AGCTCTACCGCTGAATCTCCGGGCCC



STAPGSTSSTAESPGP

AGGTACTTCTCCGAGCGGTGAATCTTC



GTSPSGESSTAPGTS

TACTGCTCCAGGTACCTCTACTCCTGA



TPESGSASPGSTSESP

AAGCGGTTCTGCATCTCCAGGTTCCAC



SGTAPGSTSESPSGT

TAGCTCTACCGCAGAATCTCCGGGCC



APGTSPSGESSTAPG

CAGGTTCTACTAGCTCTACTGCTGAAT



STSESPSGTAPGTSTP

CTCCTGGCCCAGGTTCTACTAGCTCTA



ESGSASPGTSTPESGS

CTGCTGAATCTCCGGGTCCAGGTTCTA



ASPGSTSESPSGTAP

CCAGCTCTACTGCTGAATCTCCTGGTC



GTSTPESGSASPGSTS

CAGGTACCTCCCCGAGCGGTGAATCT



STAESPGPGSTSESPS

TCTACTGCACCAGGTTCTACTAGCGA



GTAPGSTSESPSGTA

ATCTCCTTCTGGCACTGCACCAGGTTC



PGTSPSGESSTAPGST

TACCAGCGAATCTCCGTCTGGCACTG



SSTAESPGPGTSPSGE

CACCAGGTACCTCTACCCCTGAAAGC



SSTAPGTSTPESGSAS

GGTCCXXXXXXXXXXXXTGCAAGCG



PGTSPSGESSTAPGTS

CAAGCGGCGCGCCAAGCACGGGAXX



PSGESSTAPGTSPSGE

XXXXXXTAGCGAATCTCCTTCTGGTA



SSTAPGSTSSTAESPG

CCGCTCCAGGTTCTACCAGCGAATCC



PGSTSSTAESPGPGTS

CCGTCTGGTACTGCTCCAGGTTCTACC



PSGESSTAPGSSPSAS

AGCGAATCTCCTTCTGGTACTGCACCA



TGTGPGSSTPSGATG

GGTTCTACTAGCGAATCTCCTTCTGGT



SPGSSTPSGATGSPG

ACCGCTCCAGGTTCTACCAGCGAATC



FPTIPLSRLFDNAML

CCCGTCTGGTACTGCTCCAGGTTCTAC



RAHRLHQLAFDTYQ

CAGCGAATCTCCTTCTGGTACTGCACC



EFEEAYIPKEQKYSF

AGGTACTTCTACTCCGGAAAGCGGTT



LQNPQTSLCFSESIPT

CCGCATCTCCAGGTACTTCTCCTAGCG



PSNREETQQKSNLEL

GTGAATCTTCTACTGCTCCAGGTACCT



LRISLLLIQSWLEPVQ

CTCCTAGCGGCGAATCTTCTACTGCTC



FLRSVFANSLVYGAS

CAGGTTCTACCAGCTCTACTGCTGAAT



DSNVYDLLKDLEEGI

CTCCGGGTCCAGGTACTTCCCCGAGC



QTLMGRLEDGSPRT

GGTGAATCTTCTACTGCACCAGGTACT



GQIFKQTYSKFDTNS

TCTACTCCGGAAAGCGGTTCCGCTTCT



HNDDALLKNYGLLY

CCAGGTTCTACCAGCGAATCTCCTTCT



CFRKDMDKVETFLRI

GGCACCGCTCCAGGTTCTACTAGCGA



VQCRSVEGSCGFGG

ATCCCCGTCTGGTACCGCACCAGGTA



TSESATPESGPGSEP

CTTCTCCTAGCGGCGAATCTTCTACCG



ATSGSETPGTSESAT

CACCAGGTTCTACTAGCGAATCCCCG



PESGPGSEPATSGSE

TCTGGTACCGCACCAGGTACTTCTACC



TPGTSESATPESGPG

CCGGAAAGCGGCTCTGCTTCTCCAGG



TSTEPSEGSAPGSPA

TACTTCTACCCCGGAAAGCGGCTCCG



GSPTSTEEGTSESATP

CATCTCCAGGTTCTACTAGCGAATCTC



ESGPGSEPATSGSET

CTTCTGGTACCGCTCCAGGTACTTCTA



PGTSESATPESGPGSP

CCCCTGAAAGCGGCTCCGCTTCTCCA



AGSPTSTEEGSPAGS

GGTTCCACTAGCTCTACCGCTGAATCT



PTSTEEGTSTEPSEGS

CCGGGTCCAGGTTCTACCAGCGAATC



APGTSESATPESGPG

TCCTTCTGGCACCGCTCCAGGTTCTAC



TSESATPESGPGTSES

TAGCGAATCCCCGTCTGGTACCGCAC



ATPESGPGSEPATSG

CAGGTACTTCTCCTAGCGGCGAATCTT



SETPGSEPATSGSETP

CTACCGCACCAGGTTCTACCAGCTCTA



GSPAGSPTSTEEGTS

CTGCTGAATCTCCGGGTCCAGGTACTT



TEPSEGSAPGTSTEPS

CCCCGAGCGGTGAATCTTCTACTGCA



EGSAPGSEPATSGSE

CCAGGTACTTCTACTCCGGAAAGCGG



TPGTSESATPESGPG

TTCCGCTTCTCCAGGTACCTCCCCTAG



TSTEPSEGSAP

CGGCGAATCTTCTACTGCTCCAGGTAC





CTCTCCTAGCGGCGAATCTTCTACCGC





TCCAGGTACCTCCCCTAGCGGTGAAT





CTTCTACCGCACCAGGTTCTACTAGCT





CTACTGCTGAATCTCCGGGTCCAGGTT





CTACCAGCTCTACTGCTGAATCTCCTG





GTCCAGGTACCTCCCCGAGCGGTGAA





TCTTCTACTGCACCAGGTTCTAGCCCT





TCTGCTTCCACCGGTACCGGCCCAGGT





AGCTCTACTCCGTCTGGTGCAACTGGC





TCTCCAGGTAGCTCTACTCCGTCTGGT





GCAACCGGCTCCCCAGGTTTTCCGACT





ATTCCGCTGTCTCGTCTGTTTGATAAT





GCTATGCTGCGTGCGCACCGTCTGCA





CCAGCTGGCCTTTGATACTTACCAGG





AATTTGAAGAAGCcTACATTCCTAAAG





AGCAGAAGTACTCTTTCCTGCAAAAC





CCACAGACTTCTCTCTGCTTCAGCGAA





TCTATTCCGACGCCTTCCAATCGCGAG





GAAACTCAGCAAAAGTCCAATCTGGA





ACTACTCCGCATTTCTCTGCTTCTGAT





TCAGAGCTGGCTAGAACCAGTGCAAT





TTCTGCGTTCCGTCTTCGCCAATAGCC





TAGTTTATGGCGCATCCGACAGCAAC





GTATACGATCTCCTGAAAGATCTCGA





GGAAGGCATTCAGACCCTGATGGGTC





GTCTCGAGGATGGCTCTCCGCGTACT





GGTCAGATCTTCAAGCAGACTTACTCT





AAATTTGATACTAACAGCCACAATGA





CGATGCGCTTCTAAAAAACTATGGTC





TGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTACCTCTGA





AAGCGCAACTCCTGAGTCTGGCCCAG





GTAGCGAACCTGCTACCTCCGGCTCT





GAGACTCCAGGTACCTCTGAAAGCGC





AACCCCGGAATCTGGTCCAGGTAGCG





AACCTGCAACCTCTGGCTCTGAAACC





CCAGGTACCTCTGAAAGCGCTACTCC





TGAATCTGGCCCAGGTACTTCTACTGA





ACCGTCCGAGGGCAGCGCACCAGGTA





GCCCTGCTGGCTCTCCAACCTCCACCG





AAGAAGGTACCTCTGAAAGCGCAACC





CCTGAATCCGGCCCAGGTAGCGAACC





GGCAACCTCCGGTTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGT





CCGGCCCAGGTAGCCCGGCTGGCTCT





CCGACTTCCACCGAGGAAGGTAGCCC





GGCTGGCTCTCCAACTTCTACTGAAG





AAGGTACTTCTACCGAACCTTCCGAG





GGCAGCGCACCAGGTACTTCTGAAAG





CGCTACCCCTGAGTCCGGCCCAGGTA





CTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACC





GGCTACTTCTGGTTCTGAAACCCCAG





GTAGCGAACCGGCTACCTCCGGTTCT





GAAACTCCAGGTAGCCCAGCAGGCTC





TCCGACTTCCACTGAGGAAGGTACTT





CTACTGAACCTTCCGAAGGCAGCGCA





CCAGGTACCTCTACTGAACCTTCTGAG





GGCAGCGCTCCAGGTAGCGAACCTGC





AACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTG





GCCCAGGTACTTCTACTGAACCGTCC





GAGGGCAGCGCACCA





AG864-
GASPGTSSTGSPGSS
787
GGTGCTTCCCCGGGCACCAGCTCTACT
788


hGH-
PSASTGTGPGSSPSA

GGTTCTCCAGGTTCTAGCCCGTCTGCT


AE288
STGTGPGTPGSGTAS

TCTACTGGTACTGGTCCAGGTTCTAGC



SSPGSSTPSGATGSP

CCTTCTGCTTCCACTGGTACTGGTCCA



GSNPSASTGTGPGAS

GGTACCCCGGGTAGCGGTACCGCTTC



PGTSSTGSPGTPGSG

TTCTTCTCCAGGTAGCTCTACTCCGTC



TASSSPGSSTPSGAT

TGGTGCTACCGGCTCTCCAGGTTCTAA



GSPGTPGSGTASSSP

CCCTTCTGCATCCACCGGTACCGGCCC



GASPGTSSTGSPGAS

AGGTGCTTCTCCGGGCACCAGCTCTA



PGTSSTGSPGTPGSG

CTGGTTCTCCAGGTACCCCGGGCAGC



TASSSPGSSTPSGAT

GGTACCGCATCTTCTTCTCCAGGTAGC



GSPGASPGTSSTGSP

TCTACTCCTTCTGGTGCAACTGGTTCT



GTPGSGTASSSPGSS

CCAGGTACTCCTGGCAGCGGTACCGC



TPSGATGSPGSNPSA

TTCTTCTTCTCCAGGTGCTTCTCCTGG



STGTGPGSSPSASTG

TACTAGCTCTACTGGTTCTCCAGGTGC



TGPGSSTPSGATGSP

TTCTCCGGGCACTAGCTCTACTGGTTC



GSSTPSGATGSPGAS

TCCAGGTACCCCGGGTAGCGGTACTG



PGTSSTGSPGASPGT

CTTCTTCCTCTCCAGGTAGCTCTACCC



SSTGSPGASPGTSST

CTTCTGGTGCAACCGGCTCTCCAGGTG



GSPGTPGSGTASSSP

CTTCTCCGGGCACCAGCTCTACCGGTT



GASPGTSSTGSPGAS

CTCCAGGTACCCCGGGTAGCGGTACC



PGTSSTGSPGASPGT

GCTTCTTCTTCTCCAGGTAGCTCTACT



SSTGSPGSSPSASTGT

CCGTCTGGTGCTACCGGCTCTCCAGGT



GPGTPGSGTASSSPG

TCTAACCCTTCTGCATCCACCGGTACC



ASPGTSSTGSPGASP

GGCCCAGGTTCTAGCCCTTCTGCTTCC



GTSSTGSPGASPGTS

ACCGGTACTGGCCCAGGTAGCTCTAC



STGSPGSSTPSGATG

CCCTTCTGGTGCTACCGGCTCCCCAGG



SPGSSTPSGATGSPG

TAGCTCTACTCCTTCTGGTGCAACTGG



ASPGTSSTGSPGTPG

CTCTCCAGGTGCATCTCCGGGCACTA



SGTASSSPGSSTPSG

GCTCTACTGGTTCTCCAGGTGCATCCC



ATGSPGSSTPSGATG

CTGGCACTAGCTCTACTGGTTCTCCAG



SPGSSTPSGATGSPG

GTGCTTCTCCTGGTACCAGCTCTACTG



SSPSASTGTGPGASP

GTTCTCCAGGTACTCCTGGCAGCGGT



GTSSTGSPGASPGTS

ACCGCTTCTTCTTCTCCAGGTGCTTCT



STGSPGTPGSGTASS

CCTGGTACTAGCTCTACTGGTTCTCCA



SPGASPGTSSTGSPG

GGTGCTTCTCCGGGCACTAGCTCTACT



ASPGTSSTGSPGASP

GGTTCTCCAGGTGCTTCCCCGGGCACT



GTSSTGSPGASPGTS

AGCTCTACCGGTTCTCCAGGTTCTAGC



STGSPGTPGSGTASS

CCTTCTGCATCTACTGGTACTGGCCCA



SPGSSTPSGATGSPG

GGTACTCCGGGCAGCGGTACTGCTTC



TPGSGTASSSPGSSTP

TTCCTCTCCAGGTGCATCTCCGGGCAC



SGATGSPGTPGSGTA

TAGCTCTACTGGTTCTCCAGGTGCATC



SSSPGSSTPSGATGSP

CCCTGGCACTAGCTCTACTGGTTCTCC



GSSTPSGATGSPGSS

AGGTGCTTCTCCTGGTACCAGCTCTAC



PSASTGTGPGSSPSA

TGGTTCTCCAGGTAGCTCTACTCCGTC



STGTGPGASPGTSST

TGGTGCAACCGGTTCCCCAGGTAGCT



GSPGTPGSGTASSSP

CTACTCCTTCTGGTGCTACTGGCTCCC



GSSTPSGATGSPGSS

CAGGTGCATCCCCTGGCACCAGCTCT



PSASTGTGPGSSPSA

ACCGGTTCTCCAGGTACCCCGGGCAG



STGTGPGASPGTSST

CGGTACCGCATCTTCCTCTCCAGGTAG



GSPGASPGTSSTGSP

CTCTACCCCGTCTGGTGCTACCGGTTC



GSSTPSGATGSPGSS

CCCAGGTAGCTCTACCCCGTCTGGTGC



PSASTGTGPGASPGT

AACCGGCTCCCCAGGTAGCTCTACTC



SSTGSPGSSPSASTGT

CGTCTGGTGCAACCGGCTCCCCAGGT



GPGTPGSGTASSSPG

TCTAGCCCGTCTGCTTCCACTGGTACT



SSTPSGATGSPGSSTP

GGCCCAGGTGCTTCCCCGGGCACCAG



SGATGSPGASPGTSS

CTCTACTGGTTCTCCAGGTGCATCCCC



TGSPGFPTIPLSRLFD

GGGTACCAGCTCTACCGGTTCTCCAG



NAMLRAHRLHQLAF

GTACTCCTGGCAGCGGTACTGCATCTT



DTYQEFEEAYIPKEQ

CCTCTCCAGGTGCTTCTCCGGGCACCA



KYSFLQNPQTSLCFS

GCTCTACTGGTTCTCCAGGTGCATCTC



ESIPTPSNREETQQKS

CGGGCACTAGCTCTACTGGTTCTCCAG



NLELLRISLLLIQSWL

GTGCATCCCCTGGCACTAGCTCTACTG



EPVQFLRSVFANSLV

GTTCTCCAGGTGCTTCTCCTGGTACCA



YGASDSNVYDLLKD

GCTCTACTGGTTCTCCAGGTACCCCTG



LEEGIQTLMGRLEDG

GTAGCGGTACTGCTTCTTCCTCTCCAG



SPRTGQIFKQTYSKF

GTAGCTCTACTCCGTCTGGTGCTACCG



DTNSHNDDALLKNY

GTTCTCCAGGTACCCCGGGTAGCGGT



GLLYCFRKDMDKVE

ACCGCATCTTCTTCTCCAGGTAGCTCT



TFLRIVQCRSVEGSC

ACCCCGTCTGGTGCTACTGGTTCTCCA



GFGGTSESATPESGP

GGTACTCCGGGCAGCGGTACTGCTTC



GSEPATSGSETPGTS

TTCCTCTCCAGGTAGCTCTACCCCTTC



ESATPESGPGSEPAT

TGGTGCTACTGGCTCTCCAGGTAGCTC



SGSETPGTSESATPES

TACCCCGTCTGGTGCTACTGGCTCCCC



GPGTSTEPSEGSAPG

AGGTTCTAGCCCTTCTGCATCCACCGG



SPAGSPTSTEEGTSES

TACCGGTCCAGGTTCTAGCCCGTCTGC



ATPESGPGSEPATSG

ATCTACTGGTACTGGTCCAGGTGCATC



SETPGTSESATPESGP

CCCGGGCACTAGCTCTACCGGTTCTCC



GSPAGSPTSTEEGSP

AGGTACTCCTGGTAGCGGTACTGCTTC



AGSPTSTEEGTSTEPS

TTCTTCTCCAGGTAGCTCTACTCCTTC



EGSAPGTSESATPES

TGGTGCTACTGGTTCTCCAGGTTCTAG



GPGTSESATPESGPG

CCCTTCTGCATCCACCGGTACCGGCCC



TSESATPESGPGSEP

AGGTTCTAGCCCGTCTGCTTCTACCGG



ATSGSETPGSEPATS

TACTGGTCCAGGTGCTTCTCCGGGTAC



GSETPGSPAGSPTST

TAGCTCTACTGGTTCTCCAGGTGCATC



EEGTSTEPSEGSAPG

TCCTGGTACTAGCTCTACTGGTTCTCC



TSTEPSEGSAPGSEP

AGGTAGCTCTACTCCGTCTGGTGCAA



ATSGSETPGTSESAT

CCGGCTCTCCAGGTTCTAGCCCTTCTG



PESGPGTSTEPSEGS

CATCTACCGGTACTGGTCCAGGTGCA



AP

TCCCCTGGTACCAGCTCTACCGGTTCT





CCAGGTTCTAGCCCTTCTGCTTCTACC





GGTACCGGTCCAGGTACCCCTGGCAG





CGGTACCGCATCTTCCTCTCCAGGTAG





CTCTACTCCGTCTGGTGCAACCGGTTC





CCCAGGTAGCTCTACTCCTTCTGGTGC





TACTGGCTCCCCAGGTGCATCCCCTGG





CACCAGCTCTACCGGTTCTCCAGGTTT





TCCGACTATTCCGCTGTCTCGTCTGTT





TGATAATGCTATGCTGCGTGCGCACC





GTCTGCACCAGCTGGCCTTTGATACTT





ACCAGGAATTTGAAGAAGCcTACATT





CCTAAAGAGCAGAAGTACTCTTTCCT





GCAAAACCCACAGACTTCTCTCTGCTT





CAGCGAATCTATTCCGACGCCTTCCA





ATCGCGAGGAAACTCAGCAAAAGTCC





AATCTGGAACTACTCCGCATTTCTCTG





CTTCTGATTCAGAGCTGGCTAGAACC





AGTGCAATTTCTGCGTTCCGTCTTCGC





CAATAGCCTAGTTTATGGCGCATCCG





ACAGCAACGTATACGATCTCCTGAAA





GATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTC





CGCGTACTGGTCAGATCTTCAAGCAG





ACTTACTCTAAATTTGATACTAACAGC





CACAATGACGATGCGCTTCTAAAAAA





CTATGGTCTGCTGTATTGTTTTCGTAA





AGATATGGACAAAGTTGAAACCTTCC





TGCGTATTGTTCAGTGTCGTTCCGTTG





AGGGCAGCTGTGGTTTCTAAGGTGGT





ACCTCTGAAAGCGCAACTCCTGAGTC





TGGCCCAGGTAGCGAACCTGCTACCT





CCGGCTCTGAGACTCCAGGTACCTCT





GAAAGCGCAACCCCGGAATCTGGTCC





AGGTAGCGAACCTGCAACCTCTGGCT





CTGAAACCCCAGGTACCTCTGAAAGC





GCTACTCCTGAATCTGGCCCAGGTACT





TCTACTGAACCGTCCGAGGGCAGCGC





ACCAGGTAGCCCTGCTGGCTCTCCAA





CCTCCACCGAAGAAGGTACCTCTGAA





AGCGCAACCCCTGAATCCGGCCCAGG





TAGCGAACCGGCAACCTCCGGTTCTG





AAACCCCAGGTACTTCTGAAAGCGCT





ACTCCTGAGTCCGGCCCAGGTAGCCC





GGCTGGCTCTCCGACTTCCACCGAGG





AAGGTAGCCCGGCTGGCTCTCCAACT





TCTACTGAAGAAGGTACTTCTACCGA





ACCTTCCGAGGGCAGCGCACCAGGTA





CTTCTGAAAGCGCTACCCCTGAGTCC





GGCCCAGGTACTTCTGAAAGCGCTAC





TCCTGAATCCGGTCCAGGTACTTCTGA





AAGCGCTACCCCGGAATCTGGCCCAG





GTAGCGAACCGGCTACTTCTGGTTCTG





AAACCCCAGGTAGCGAACCGGCTACC





TCCGGTTCTGAAACTCCAGGTAGCCC





AGCAGGCTCTCCGACTTCCACTGAGG





AAGGTACTTCTACTGAACCTTCCGAA





GGCAGCGCACCAGGTACCTCTACTGA





ACCTTCTGAGGGCAGCGCTCCAGGTA





GCGAACCTGCAACCTCTGGCTCTGAA





ACCCCAGGTACCTCTGAAAGCGCTAC





TCCTGAATCTGGCCCAGGTACTTCTAC





TGAACCGTCCGAGGGCAGCGCACCA





AM875-
GTSTEPSEGSAPGSE
789
GGTACTTCTACTGAACCGTCTGAAGG
790


hGH-
PATSGSETPGSPAGS

CAGCGCACCAGGTAGCGAACCGGCTA


AE288
PTSTEEGSTSSTAESP

CTTCCGGTTCTGAAACCCCAGGTAGC



GPGTSTPESGSASPG

CCAGCAGGTTCTCCAACTTCTACTGAA



STSESPSGTAPGSTSE

GAAGGTTCTACCAGCTCTACCGCAGA



SPSGTAPGTSTPESGS

ATCTCCTGGTCCAGGTACCTCTACTCC



ASPGTSTPESGSASP

GGAAAGCGGCTCTGCATCTCCAGGTT



GSEPATSGSETPGTS

CTACTAGCGAATCTCCTTCTGGCACTG



ESATPESGPGSPAGS

CACCAGGTTCTACTAGCGAATCCCCG



PTSTEEGTSTEPSEGS

TCTGGTACTGCTCCAGGTACTTCTACT



APGTSESATPESGPG

CCTGAAAGCGGTTCCGCTTCTCCAGGT



TSTEPSEGSAPGTSTE

ACCTCTACTCCGGAAAGCGGTTCTGC



PSEGSAPGSPAGSPT

ATCTCCAGGTAGCGAACCGGCAACCT



STEEGTSTEPSEGSAP

CCGGCTCTGAAACCCCAGGTACCTCT



GTSTEPSEGSAPGTS

GAAAGCGCTACTCCTGAATCCGGCCC



ESATPESGPGTSESA

AGGTAGCCCGGCAGGTTCTCCGACTT



TPESGPGTSTEPSEGS

CCACTGAGGAAGGTACCTCTACTGAA



APGTSTEPSEGSAPG

CCTTCTGAGGGCAGCGCTCCAGGTAC



TSESATPESGPGTSTE

TTCTGAAAGCGCTACCCCGGAGTCCG



PSEGSAPGSEPATSG

GTCCAGGTACTTCTACTGAACCGTCCG



SETPGSPAGSPTSTEE

AAGGTAGCGCACCAGGTACTTCTACC



GSSTPSGATGSPGTP

GAACCGTCCGAGGGTAGCGCACCAGG



GSGTASSSPGSSTPS

TAGCCCAGCAGGTTCTCCTACCTCCAC



GATGSPGTSTEPSEG

CGAGGAAGGTACTTCTACCGAACCGT



SAPGTSTEPSEGSAP

CCGAGGGTAGCGCACCAGGTACTTCT



GSEPATSGSETPGSP

ACCGAACCTTCCGAGGGCAGCGCACC



AGSPTSTEEGSPAGS

AGGTACTTCTGAAAGCGCTACCCCTG



PTSTEEGTSTEPSEGS

AGTCCGGCCCAGGTACTTCTGAAAGC



APGASASGAPSTGGT

GCTACTCCTGAATCCGGTCCAGGTAC



SESATPESGPGSPAG

CTCTACTGAACCTTCCGAAGGCAGCG



SPTSTEEGSPAGSPTS

CTCCAGGTACCTCTACCGAACCGTCC



TEEGSTSSTAESPGP

GAGGGCAGCGCACCAGGTACTTCTGA



GSTSESPSGTAPGTSP

AAGCGCAACCCCTGAATCCGGTCCAG



SGESSTAPGTPGSGT

GTACTTCTACTGAACCTTCCGAAGGTA



ASSSPGSSTPSGATG

GCGCTCCAGGTAGCGAACCTGCTACT



SPGSSPSASTGTGPG

TCTGGTTCTGAAACCCCAGGTAGCCC



SEPATSGSETPGTSES

GGCTGGCTCTCCGACCTCCACCGAGG



ATPESGPGSEPATSG

AAGGTAGCTCTACCCCGTCTGGTGCT



SETPGSTSSTAESPGP

ACTGGTTCTCCAGGTACTCCGGGCAG



GSTSSTAESPGPGTSP

CGGTACTGCTTCTTCCTCTCCAGGTAG



SGESSTAPGSEPATS

CTCTACCCCTTCTGGTGCTACTGGCTC



GSETPGSEPATSGSE

TCCAGGTACCTCTACCGAACCGTCCG



TPGTSTEPSEGSAPG

AGGGTAGCGCACCAGGTACCTCTACT



STSSTAESPGPGTSTP

GAACCGTCTGAGGGTAGCGCTCCAGG



ESGSASPGSTSESPSG

TAGCGAACCGGCAACCTCCGGTTCTG



TAPGTSTEPSEGSAP

AAACTCCAGGTAGCCCTGCTGGCTCT



GTSTEPSEGSAPGTS

CCGACTTCTACTGAGGAAGGTAGCCC



TEPSEGSAPGSSTPSG

GGCTGGTTCTCCGACTTCTACTGAGGA



ATGSPGSSPSASTGT

AGGTACTTCTACCGAACCTTCCGAAG



GPGASPGTSSTGSPG

GTAGCGCTCCAGGTGCAAGCGCAAGC



SEPATSGSETPGTSES

GGCGCGCCAAGCACGGGAGGTACTTC



ATPESGPGSPAGSPT

TGAAAGCGCTACTCCTGAGTCCGGCC



STEEGSSTPSGATGS

CAGGTAGCCCGGCTGGCTCTCCGACT



PGSSPSASTGTGPGA

TCCACCGAGGAAGGTAGCCCGGCTGG



SPGTSSTGSPGTSESA

CTCTCCAACTTCTACTGAAGAAGGTTC



TPESGPGTSTEPSEGS

TACCAGCTCTACCGCTGAATCTCCTGG



APGTSTEPSEGSAPG

CCCAGGTTCTACTAGCGAATCTCCGTC



FPTIPLSRLFDNAML

TGGCACCGCACCAGGTACTTCCCCTA



RAHRLHQLAFDTYQ

GCGGTGAATCTTCTACTGCACCAGGT



EFEEAYIPKEQKYSF

ACCCCTGGCAGCGGTACCGCTTCTTCC



LQNPQTSLCFSESIPT

TCTCCAGGTAGCTCTACCCCGTCTGGT



PSNREETQQKSNLEL

GCTACTGGCTCTCCAGGTTCTAGCCCG



LRISLLLIQSWLEPVQ

TCTGCATCTACCGGTACCGGCCCAGG



FLRSVFANSLVYGAS

TAGCGAACCGGCAACCTCCGGCTCTG



DSNVYDLLKDLEEGI

AAACTCCAGGTACTTCTGAAAGCGCT



QTLMGRLEDGSPRT

ACTCCGGAATCCGGCCCAGGTAGCGA



GQIFKQTYSKFDTNS

ACCGGCTACTTCCGGCTCTGAAACCC



HNDDALLKNYGLLY

CAGGTTCCACCAGCTCTACTGCAGAA



CFRKDMDKVETFLRI

TCTCCGGGCCCAGGTTCTACTAGCTCT



VQCRSVEGSCGFGG

ACTGCAGAATCTCCGGGTCCAGGTAC



TSESATPESGPGSEP

TTCTCCTAGCGGCGAATCTTCTACCGC



ATSGSETPGTSESAT

TCCAGGTAGCGAACCGGCAACCTCTG



PESGPGSEPATSGSE

GCTCTGAAACTCCAGGTAGCGAACCT



TPGTSESATPESGPG

GCAACCTCCGGCTCTGAAACCCCAGG



TSTEPSEGSAPGSPA

TACTTCTACTGAACCTTCTGAGGGCAG



GSPTSTEEGTSESATP

CGCACCAGGTTCTACCAGCTCTACCG



ESGPGSEPATSGSET

CAGAATCTCCTGGTCCAGGTACCTCTA



PGTSESATPESGPGSP

CTCCGGAAAGCGGCTCTGCATCTCCA



AGSPTSTEEGSPAGS

GGTTCTACTAGCGAATCTCCTTCTGGC



PTSTEEGTSTEPSEGS

ACTGCACCAGGTACTTCTACCGAACC



APGTSESATPESGPG

GTCCGAAGGCAGCGCTCCAGGTACCT



TSESATPESGPGTSES

CTACTGAACCTTCCGAGGGCAGCGCT



ATPESGPGSEPATSG

CCAGGTACCTCTACCGAACCTTCTGA



SETPGSEPATSGSETP

AGGTAGCGCACCAGGTAGCTCTACTC



GSPAGSPTSTEEGTS

CGTCTGGTGCAACCGGCTCCCCAGGT



TEPSEGSAPGTSTEPS

TCTAGCCCGTCTGCTTCCACTGGTACT



EGSAPGSEPATSGSE

GGCCCAGGTGCTTCCCCGGGCACCAG



TPGTSESATPESGPG

CTCTACTGGTTCTCCAGGTAGCGAACC



TSTEPSEGSAP

TGCTACCTCCGGTTCTGAAACCCCAG





GTACCTCTGAAAGCGCAACTCCGGAG





TCTGGTCCAGGTAGCCCTGCAGGTTCT





CCTACCTCCACTGAGGAAGGTAGCTC





TACTCCGTCTGGTGCAACCGGCTCCCC





AGGTTCTAGCCCGTCTGCTTCCACTGG





TACTGGCCCAGGTGCTTCCCCGGGCA





CCAGCTCTACTGGTTCTCCAGGTACCT





CTGAAAGCGCTACTCCGGAGTCTGGC





CCAGGTACCTCTACTGAACCGTCTGA





GGGTAGCGCTCCAGGTACTTCTACTG





AACCGTCCGAAGGTAGCGCACCAGGT





TTTCCGACTATTCCGCTGTCTCGTCTG





TTTGATAATGCTATGCTGCGTGCGCAC





CGTCTGCACCAGCTGGCCTTTGATACT





TACCAGGAATTTGAAGAAGCcTACATT





CCTAAAGAGCAGAAGTACTCTTTCCT





GCAAAACCCACAGACTTCTCTCTGCTT





CAGCGAATCTATTCCGACGCCTTCCA





ATCGCGAGGAAACTCAGCAAAAGTCC





AATCTGGAACTACTCCGCATTTCTCTG





CTTCTGATTCAGAGCTGGCTAGAACC





AGTGCAATTTCTGCGTTCCGTCTTCGC





CAATAGCCTAGTTTATGGCGCATCCG





ACAGCAACGTATACGATCTCCTGAAA





GATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTC





CGCGTACTGGTCAGATCTTCAAGCAG





ACTTACTCTAAATTTGATACTAACAGC





CACAATGACGATGCGCTTCTAAAAAA





CTATGGTCTGCTGTATTGTTTTCGTAA





AGATATGGACAAAGTTGAAACCTTCC





TGCGTATTGTTCAGTGTCGTTCCGTTG





AGGGCAGCTGTGGTTTCTAAGGTGGT





ACCTCTGAAAGCGCAACTCCTGAGTC





TGGCCCAGGTAGCGAACCTGCTACCT





CCGGCTCTGAGACTCCAGGTACCTCT





GAAAGCGCAACCCCGGAATCTGGTCC





AGGTAGCGAACCTGCAACCTCTGGCT





CTGAAACCCCAGGTACCTCTGAAAGC





GCTACTCCTGAATCTGGCCCAGGTACT





TCTACTGAACCGTCCGAGGGCAGCGC





ACCAGGTAGCCCTGCTGGCTCTCCAA





CCTCCACCGAAGAAGGTACCTCTGAA





AGCGCAACCCCTGAATCCGGCCCAGG





TAGCGAACCGGCAACCTCCGGTTCTG





AAACCCCAGGTACTTCTGAAAGCGCT





ACTCCTGAGTCCGGCCCAGGTAGCCC





GGCTGGCTCTCCGACTTCCACCGAGG





AAGGTAGCCCGGCTGGCTCTCCAACT





TCTACTGAAGAAGGTACTTCTACCGA





ACCTTCCGAGGGCAGCGCACCAGGTA





CTTCTGAAAGCGCTACCCCTGAGTCC





GGCCCAGGTACTTCTGAAAGCGCTAC





TCCTGAATCCGGTCCAGGTACTTCTGA





AAGCGCTACCCCGGAATCTGGCCCAG





GTAGCGAACCGGCTACTTCTGGTTCTG





AAACCCCAGGTAGCGAACCGGCTACC





TCCGGTTCTGAAACTCCAGGTAGCCC





AGCAGGCTCTCCGACTTCCACTGAGG





AAGGTACTTCTACTGAACCTTCCGAA





GGCAGCGCACCAGGTACCTCTACTGA





ACCTTCTGAGGGCAGCGCTCCAGGTA





GCGAACCTGCAACCTCTGGCTCTGAA





ACCCCAGGTACCTCTGAAAGCGCTAC





TCCTGAATCTGGCCCAGGTACTTCTAC





TGAACCGTCCGAGGGCAGCGCACCA





AE912-
MAEPAGSPTSTEEGT
791
ATGGCTGAACCTGCTGGCTCTCCAAC
792


hGH-
PGSGTASSSPGSSTPS

CTCCACTGAGGAAGGTACCCCGGGTA


AE288
GATGSPGASPGTSST

GCGGTACTGCTTCTTCCTCTCCAGGTA



GSPGSPAGSPTSTEE

GCTCTACCCCTTCTGGTGCAACCGGCT



GTSESATPESGPGTS

CTCCAGGTGCTTCTCCGGGCACCAGCT



TEPSEGSAPGSPAGS

CTACCGGTTCTCCAGGTAGCCCGGCT



PTSTEEGTSTEPSEGS

GGCTCTCCTACCTCTACTGAGGAAGG



APGTSTEPSEGSAPG

TACTTCTGAAAGCGCTACTCCTGAGTC



TSESATPESGPGSEP

TGGTCCAGGTACCTCTACTGAACCGTC



ATSGSETPGSEPATS

CGAAGGTAGCGCTCCAGGTAGCCCAG



GSETPGSPAGSPTST

CAGGCTCTCCGACTTCCACTGAGGAA



EEGTSESATPESGPG

GGTACTTCTACTGAACCTTCCGAAGG



TSTEPSEGSAPGTSTE

CAGCGCACCAGGTACCTCTACTGAAC



PSEGSAPGSPAGSPT

CTTCTGAGGGCAGCGCTCCAGGTACT



STEEGTSTEPSEGSAP

TCTGAAAGCGCTACCCCGGAATCTGG



GTSTEPSEGSAPGTS

CCCAGGTAGCGAACCGGCTACTTCTG



ESATPESGPGTSTEPS

GTTCTGAAACCCCAGGTAGCGAACCG



EGSAPGTSESATPES

GCTACCTCCGGTTCTGAAACTCCAGGT



GPGSEPATSGSETPG

AGCCCGGCAGGCTCTCCGACCTCTAC



TSTEPSEGSAPGTSTE

TGAGGAAGGTACTTCTGAAAGCGCAA



PSEGSAPGTSESATP

CCCCGGAGTCCGGCCCAGGTACCTCT



ESGPGTSESATPESG

ACCGAACCGTCTGAGGGCAGCGCACC



PGSPAGSPTSTEEGT

AGGTACTTCTACCGAACCGTCCGAGG



SESATPESGPGSEPA

GTAGCGCACCAGGTAGCCCAGCAGGT



TSGSETPGTSESATPE

TCTCCTACCTCCACCGAGGAAGGTAC



SGPGTSTEPSEGSAP

TTCTACCGAACCGTCCGAGGGTAGCG



GTSTEPSEGSAPGTS

CACCAGGTACCTCTACTGAACCTTCTG



TEPSEGSAPGTSTEPS

AGGGCAGCGCTCCAGGTACTTCTGAA



EGSAPGTSTEPSEGS

AGCGCTACCCCGGAGTCCGGTCCAGG



APGTSTEPSEGSAPG

TACTTCTACTGAACCGTCCGAAGGTA



SPAGSPTSTEEGTSTE

GCGCACCAGGTACTTCTGAAAGCGCA



PSEGSAPGTSESATP

ACCCCTGAATCCGGTCCAGGTAGCGA



ESGPGSEPATSGSET

ACCGGCTACTTCTGGCTCTGAGACTCC



PGTSESATPESGPGS

AGGTACTTCTACCGAACCGTCCGAAG



EPATSGSETPGTSES

GTAGCGCACCAGGTACTTCTACTGAA



ATPESGPGTSTEPSE

CCGTCTGAAGGTAGCGCACCAGGTAC



GSAPGTSESATPESG

TTCTGAAAGCGCAACCCCGGAATCCG



PGSPAGSPTSTEEGSP

GCCCAGGTACCTCTGAAAGCGCAACC



AGSPTSTEEGSPAGS

CCGGAGTCCGGCCCAGGTAGCCCTGC



PTSTEEGTSESATPES

TGGCTCTCCAACCTCCACCGAAGAAG



GPGTSTEPSEGSAPG

GTACCTCTGAAAGCGCAACCCCTGAA



TSESATPESGPGSEP

TCCGGCCCAGGTAGCGAACCGGCAAC



ATSGSETPGTSESAT

CTCCGGTTCTGAAACCCCAGGTACCTC



PESGPGSEPATSGSE

TGAAAGCGCTACTCCGGAGTCTGGCC



TPGTSESATPESGPG

CAGGTACCTCTACTGAACCGTCTGAG



TSTEPSEGSAPGSPA

GGTAGCGCTCCAGGTACTTCTACTGA



GSPTSTEEGTSESATP

ACCGTCCGAAGGTAGCGCACCAGGTA



ESGPGSEPATSGSET

CTTCTACCGAACCGTCCGAAGGCAGC



PGTSESATPESGPGSP

GCTCCAGGTACCTCTACTGAACCTTCC



AGSPTSTEEGSPAGS

GAGGGCAGCGCTCCAGGTACCTCTAC



PTSTEEGTSTEPSEGS

CGAACCTTCTGAAGGTAGCGCACCAG



APGTSESATPESGPG

GTACTTCTACCGAACCGTCCGAGGGT



TSESATPESGPGTSES

AGCGCACCAGGTAGCCCAGCAGGTTC



ATPESGPGSEPATSG

TCCTACCTCCACCGAGGAAGGTACTT



SETPGSEPATSGSETP

CTACCGAACCGTCCGAGGGTAGCGCA



GSPAGSPTSTEEGTS

CCAGGTACCTCTGAAAGCGCAACTCC



TEPSEGSAPGTSTEPS

TGAGTCTGGCCCAGGTAGCGAACCTG



EGSAPGSEPATSGSE

CTACCTCCGGCTCTGAGACTCCAGGT



TPGTSESATPESGPG

ACCTCTGAAAGCGCAACCCCGGAATC



TSTEPSEGSAPGFPTI

TGGTCCAGGTAGCGAACCTGCAACCT



PLSRLFDNAMLRAH

CTGGCTCTGAAACCCCAGGTACCTCT



RLHQLAFDTYQEFEE

GAAAGCGCTACTCCTGAATCTGGCCC



AYIPKEQKYSFLQNP

AGGTACTTCTACTGAACCGTCCGAGG



QTSLCFSESIPTPSNR

GCAGCGCACCAGGTACTTCTGAAAGC



EETQQKSNLELLRIS

GCTACTCCTGAGTCCGGCCCAGGTAG



LLLIQSWLEPVQFLR

CCCGGCTGGCTCTCCGACTTCCACCGA



SVFANSLVYGASDS

GGAAGGTAGCCCGGCTGGCTCTCCAA



NVYDLLKDLEEGIQT

CTTCTACTGAAGAAGGTAGCCCGGCA



LMGRLEDGSPRTGQI

GGCTCTCCGACCTCTACTGAGGAAGG



FKQTYSKFDTNSHN

TACTTCTGAAAGCGCAACCCCGGAGT



DDALLKNYGLLYCF

CCGGCCCAGGTACCTCTACCGAACCG



RKDMDKVETFLRIV

TCTGAGGGCAGCGCACCAGGTACCTC



QCRSVEGSCGFGGTS

TGAAAGCGCAACTCCTGAGTCTGGCC



ESATPESGPGSEPAT

CAGGTAGCGAACCTGCTACCTCCGGC



SGSETPGTSESATPES

TCTGAGACTCCAGGTACCTCTGAAAG



GPGSEPATSGSETPG

CGCAACCCCGGAATCTGGTCCAGGTA



TSESATPESGPGTSTE

GCGAACCTGCAACCTCTGGCTCTGAA



PSEGSAPGSPAGSPT

ACCCCAGGTACCTCTGAAAGCGCTAC



STEEGTSESATPESGP

TCCTGAATCTGGCCCAGGTACTTCTAC



GSEPATSGSETPGTS

TGAACCGTCCGAGGGCAGCGCACCAG



ESATPESGPGSPAGS

GTAGCCCTGCTGGCTCTCCAACCTCCA



PTSTEEGSPAGSPTST

CCGAAGAAGGTACCTCTGAAAGCGCA



EEGTSTEPSEGSAPG

ACCCCTGAATCCGGCCCAGGTAGCGA



TSESATPESGPGTSES

ACCGGCAACCTCCGGTTCTGAAACCC



ATPESGPGTSESATP

CAGGTACTTCTGAAAGCGCTACTCCT



ESGPGSEPATSGSET

GAGTCCGGCCCAGGTAGCCCGGCTGG



PGSEPATSGSETPGSP

CTCTCCGACTTCCACCGAGGAAGGTA



AGSPTSTEEGTSTEPS

GCCCGGCTGGCTCTCCAACTTCTACTG



EGSAPGTSTEPSEGS

AAGAAGGTACTTCTACCGAACCTTCC



APGSEPATSGSETPG

GAGGGCAGCGCACCAGGTACTTCTGA



TSESATPESGPGTSTE

AAGCGCTACCCCTGAGTCCGGCCCAG



PSEGSAP

GTACTTCTGAAAGCGCTACTCCTGAAT





CCGGTCCAGGTACTTCTGAAAGCGCT





ACCCCGGAATCTGGCCCAGGTAGCGA





ACCGGCTACTTCTGGTTCTGAAACCCC





AGGTAGCGAACCGGCTACCTCCGGTT





CTGAAACTCCAGGTAGCCCAGCAGGC





TCTCCGACTTCCACTGAGGAAGGTAC





TTCTACTGAACCTTCCGAAGGCAGCG





CACCAGGTACCTCTACTGAACCTTCTG





AGGGCAGCGCTCCAGGTAGCGAACCT





GCAACCTCTGGCTCTGAAACCCCAGG





TACCTCTGAAAGCGCTACTCCTGAATC





TGGCCCAGGTACTTCTACTGAACCGTC





CGAGGGCAGCGCACCAGGTTTTCCGA





CTATTCCGCTGTCTCGTCTGTTTGATA





ATGCTATGCTGCGTGCGCACCGTCTGC





ACCAGCTGGCCTTTGATACTTACCAG





GAATTTGAAGAAGCcTACATTCCTAAA





GAGCAGAAGTACTCTTTCCTGCAAAA





CCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGA





GGAAACTCAGCAAAAGTCCAATCTGG





AACTACTCCGCATTTCTCTGCTTCTGA





TTCAGAGCTGGCTAGAACCAGTGCAA





TTTCTGCGTTCCGTCTTCGCCAATAGC





CTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCG





AGGAAGGCATTCAGACCCTGATGGGT





CGTCTCGAGGATGGCTCTCCGCGTACT





GGTCAGATCTTCAAGCAGACTTACTCT





AAATTTGATACTAACAGCCACAATGA





CGATGCGCTTCTAAAAAACTATGGTC





TGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTACCTCTGA





AAGCGCAACTCCTGAGTCTGGCCCAG





GTAGCGAACCTGCTACCTCCGGCTCT





GAGACTCCAGGTACCTCTGAAAGCGC





AACCCCGGAATCTGGTCCAGGTAGCG





AACCTGCAACCTCTGGCTCTGAAACC





CCAGGTACCTCTGAAAGCGCTACTCC





TGAATCTGGCCCAGGTACTTCTACTGA





ACCGTCCGAGGGCAGCGCACCAGGTA





GCCCTGCTGGCTCTCCAACCTCCACCG





AAGAAGGTACCTCTGAAAGCGCAACC





CCTGAATCCGGCCCAGGTAGCGAACC





GGCAACCTCCGGTTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGT





CCGGCCCAGGTAGCCCGGCTGGCTCT





CCGACTTCCACCGAGGAAGGTAGCCC





GGCTGGCTCTCCAACTTCTACTGAAG





AAGGTACTTCTACCGAACCTTCCGAG





GGCAGCGCACCAGGTACTTCTGAAAG





CGCTACCCCTGAGTCCGGCCCAGGTA





CTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACC





GGCTACTTCTGGTTCTGAAACCCCAG





GTAGCGAACCGGCTACCTCCGGTTCT





GAAACTCCAGGTAGCCCAGCAGGCTC





TCCGACTTCCACTGAGGAAGGTACTT





CTACTGAACCTTCCGAAGGCAGCGCA





CCAGGTACCTCTACTGAACCTTCTGAG





GGCAGCGCTCCAGGTAGCGAACCTGC





AACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTG





GCCCAGGTACTTCTACTGAACCGTCC





GAGGGCAGCGCACCA





AM923-
MAEPAGSPTSTEEGA
793
ATGGCTGAACCTGCTGGCTCTCCAAC
794


hGH-
SPGTSSTGSPGSSTPS

CTCCACTGAGGAAGGTGCATCCCCGG


AE288
GATGSPGSSTPSGAT

GCACCAGCTCTACCGGTTCTCCAGGT



GSPGTSTEPSEGSAP

AGCTCTACCCCGTCTGGTGCTACCGGC



GSEPATSGSETPGSP

TCTCCAGGTAGCTCTACCCCGTCTGGT



AGSPTSTEEGSTSST

GCTACTGGCTCTCCAGGTACTTCTACT



AESPGPGTSTPESGS

GAACCGTCTGAAGGCAGCGCACCAGG



ASPGSTSESPSGTAP

TAGCGAACCGGCTACTTCCGGTTCTG



GSTSESPSGTAPGTS

AAACCCCAGGTAGCCCAGCAGGTTCT



TPESGSASPGTSTPES

CCAACTTCTACTGAAGAAGGTTCTAC



GSASPGSEPATSGSE

CAGCTCTACCGCAGAATCTCCTGGTCC



TPGTSESATPESGPG

AGGTACCTCTACTCCGGAAAGCGGCT



SPAGSPTSTEEGTSTE

CTGCATCTCCAGGTTCTACTAGCGAAT



PSEGSAPGTSESATP

CTCCTTCTGGCACTGCACCAGGTTCTA



ESGPGTSTEPSEGSA

CTAGCGAATCCCCGTCTGGTACTGCTC



PGTSTEPSEGSAPGSP

CAGGTACTTCTACTCCTGAAAGCGGTT



AGSPTSTEEGTSTEPS

CCGCTTCTCCAGGTACCTCTACTCCGG



EGSAPGTSTEPSEGS

AAAGCGGTTCTGCATCTCCAGGTAGC



APGTSESATPESGPG

GAACCGGCAACCTCCGGCTCTGAAAC



TSESATPESGPGTSTE

CCCAGGTACCTCTGAAAGCGCTACTC



PSEGSAPGTSTEPSE

CTGAATCCGGCCCAGGTAGCCCGGCA



GSAPGTSESATPESG

GGTTCTCCGACTTCCACTGAGGAAGG



PGTSTEPSEGSAPGS

TACCTCTACTGAACCTTCTGAGGGCA



EPATSGSETPGSPAG

GCGCTCCAGGTACTTCTGAAAGCGCT



SPTSTEEGSSTPSGAT

ACCCCGGAGTCCGGTCCAGGTACTTC



GSPGTPGSGTASSSP

TACTGAACCGTCCGAAGGTAGCGCAC



GSSTPSGATGSPGTS

CAGGTACTTCTACCGAACCGTCCGAG



TEPSEGSAPGTSTEPS

GGTAGCGCACCAGGTAGCCCAGCAGG



EGSAPGSEPATSGSE

TTCTCCTACCTCCACCGAGGAAGGTA



TPGSPAGSPTSTEEG

CTTCTACCGAACCGTCCGAGGGTAGC



SPAGSPTSTEEGTSTE

GCACCAGGTACTTCTACCGAACCTTCC



PSEGSAPGASASGAP

GAGGGCAGCGCACCAGGTACTTCTGA



STGGTSESATPESGP

AAGCGCTACCCCTGAGTCCGGCCCAG



GSPAGSPTSTEEGSP

GTACTTCTGAAAGCGCTACTCCTGAAT



AGSPTSTEEGSTSST

CCGGTCCAGGTACCTCTACTGAACCTT



AESPGPGSTSESPSGT

CCGAAGGCAGCGCTCCAGGTACCTCT



APGTSPSGESSTAPG

ACCGAACCGTCCGAGGGCAGCGCACC



TPGSGTASSSPGSSTP

AGGTACTTCTGAAAGCGCAACCCCTG



SGATGSPGSSPSAST

AATCCGGTCCAGGTACTTCTACTGAA



GTGPGSEPATSGSET

CCTTCCGAAGGTAGCGCTCCAGGTAG



PGTSESATPESGPGS

CGAACCTGCTACTTCTGGTTCTGAAAC



EPATSGSETPGSTSST

CCCAGGTAGCCCGGCTGGCTCTCCGA



AESPGPGSTSSTAESP

CCTCCACCGAGGAAGGTAGCTCTACC



GPGTSPSGESSTAPG

CCGTCTGGTGCTACTGGTTCTCCAGGT



SEPATSGSETPGSEP

ACTCCGGGCAGCGGTACTGCTTCTTCC



ATSGSETPGTSTEPSE

TCTCCAGGTAGCTCTACCCCTTCTGGT



GSAPGSTSSTAESPG

GCTACTGGCTCTCCAGGTACCTCTACC



PGTSTPESGSASPGST

GAACCGTCCGAGGGTAGCGCACCAGG



SESPSGTAPGTSTEPS

TACCTCTACTGAACCGTCTGAGGGTA



EGSAPGTSTEPSEGS

GCGCTCCAGGTAGCGAACCGGCAACC



APGTSTEPSEGSAPG

TCCGGTTCTGAAACTCCAGGTAGCCCT



SSTPSGATGSPGSSPS

GCTGGCTCTCCGACTTCTACTGAGGA



ASTGTGPGASPGTSS

AGGTAGCCCGGCTGGTTCTCCGACTTC



TGSPGSEPATSGSET

TACTGAGGAAGGTACTTCTACCGAAC



PGTSESATPESGPGSP

CTTCCGAAGGTAGCGCTCCAGGTGCA



AGSPTSTEEGSSTPS

AGCGCAAGCGGCGCGCCAAGCACGG



GATGSPGSSPSASTG

GAGGTACTTCTGAAAGCGCTACTCCT



TGPGASPGTSSTGSP

GAGTCCGGCCCAGGTAGCCCGGCTGG



GTSESATPESGPGTS

CTCTCCGACTTCCACCGAGGAAGGTA



TEPSEGSAPGTSTEPS

GCCCGGCTGGCTCTCCAACTTCTACTG



EGSAPGFPTIPLSRLF

AAGAAGGTTCTACCAGCTCTACCGCT



DNAMLRAHRLHQL

GAATCTCCTGGCCCAGGTTCTACTAGC



AFDTYQEFEEAYIPK

GAATCTCCGTCTGGCACCGCACCAGG



EQKYSFLQNPQTSLC

TACTTCCCCTAGCGGTGAATCTTCTAC



FSESIPTPSNREETQQ

TGCACCAGGTACCCCTGGCAGCGGTA



KSNLELLRISLLLIQS

CCGCTTCTTCCTCTCCAGGTAGCTCTA



WLEPVQFLRSVFAN

CCCCGTCTGGTGCTACTGGCTCTCCAG



SLVYGASDSNVYDL

GTTCTAGCCCGTCTGCATCTACCGGTA



LKDLEEGIQTLMGRL

CCGGCCCAGGTAGCGAACCGGCAACC



EDGSPRTGQIFKQTY

TCCGGCTCTGAAACTCCAGGTACTTCT



SKFDTNSHNDDALL

GAAAGCGCTACTCCGGAATCCGGCCC



KNYGLLYCFRKDMD

AGGTAGCGAACCGGCTACTTCCGGCT



KVETFLRIVQCRSVE

CTGAAACCCCAGGTTCCACCAGCTCT



GSCGFGGTSESATPE

ACTGCAGAATCTCCGGGCCCAGGTTC



SGPGSEPATSGSETP

TACTAGCTCTACTGCAGAATCTCCGG



GTSESATPESGPGSE

GTCCAGGTACTTCTCCTAGCGGCGAA



PATSGSETPGTSESA

TCTTCTACCGCTCCAGGTAGCGAACC



TPESGPGTSTEPSEGS

GGCAACCTCTGGCTCTGAAACTCCAG



APGSPAGSPTSTEEG

GTAGCGAACCTGCAACCTCCGGCTCT



TSESATPESGPGSEP

GAAACCCCAGGTACTTCTACTGAACC



ATSGSETPGTSESAT

TTCTGAGGGCAGCGCACCAGGTTCTA



PESGPGSPAGSPTSTE

CCAGCTCTACCGCAGAATCTCCTGGTC



EGSPAGSPTSTEEGT

CAGGTACCTCTACTCCGGAAAGCGGC



STEPSEGSAPGTSES

TCTGCATCTCCAGGTTCTACTAGCGAA



ATPESGPGTSESATP

TCTCCTTCTGGCACTGCACCAGGTACT



ESGPGTSESATPESG

TCTACCGAACCGTCCGAAGGCAGCGC



PGSEPATSGSETPGS

TCCAGGTACCTCTACTGAACCTTCCGA



EPATSGSETPGSPAG

GGGCAGCGCTCCAGGTACCTCTACCG



SPTSTEEGTSTEPSEG

AACCTTCTGAAGGTAGCGCACCAGGT



SAPGTSTEPSEGSAP

AGCTCTACTCCGTCTGGTGCAACCGG



GSEPATSGSETPGTS

CTCCCCAGGTTCTAGCCCGTCTGCTTC



ESATPESGPGTSTEPS

CACTGGTACTGGCCCAGGTGCTTCCCC



EGSAP

GGGCACCAGCTCTACTGGTTCTCCAG





GTAGCGAACCTGCTACCTCCGGTTCTG





AAACCCCAGGTACCTCTGAAAGCGCA





ACTCCGGAGTCTGGTCCAGGTAGCCC





TGCAGGTTCTCCTACCTCCACTGAGGA





AGGTAGCTCTACTCCGTCTGGTGCAA





CCGGCTCCCCAGGTTCTAGCCCGTCTG





CTTCCACTGGTACTGGCCCAGGTGCTT





CCCCGGGCACCAGCTCTACTGGTTCTC





CAGGTACCTCTGAAAGCGCTACTCCG





GAGTCTGGCCCAGGTACCTCTACTGA





ACCGTCTGAGGGTAGCGCTCCAGGTA





CTTCTACTGAACCGTCCGAAGGTAGC





GCACCAGGTTTTCCGACTATTCCGCTG





TCTCGTCTGTTTGATAATGCTATGCTG





CGTGCGCACCGTCTGCACCAGCTGGC





CTTTGATACTTACCAGGAATTTGAAG





AAGCcTACATTCCTAAAGAGCAGAAG





TACTCTTTCCTGCAAAACCCACAGACT





TCTCTCTGCTTCAGCGAATCTATTCCG





ACGCCTTCCAATCGCGAGGAAACTCA





GCAAAAGTCCAATCTGGAACTACTCC





GCATTTCTCTGCTTCTGATTCAGAGCT





GGCTAGAACCAGTGCAATTTCTGCGT





TCCGTCTTCGCCAATAGCCTAGTTTAT





GGCGCATCCGACAGCAACGTATACGA





TCTCCTGAAAGATCTCGAGGAAGGCA





TTCAGACCCTGATGGGTCGTCTCGAG





GATGGCTCTCCGCGTACTGGTCAGAT





CTTCAAGCAGACTTACTCTAAATTTGA





TACTAACAGCCACAATGACGATGCGC





TTCTAAAAAACTATGGTCTGCTGTATT





GTTTTCGTAAAGATATGGACAAAGTT





GAAACCTTCCTGCGTATTGTTCAGTGT





CGTTCCGTTGAGGGCAGCTGTGGTTTC





TAAGGTGGTACCTCTGAAAGCGCAAC





TCCTGAGTCTGGCCCAGGTAGCGAAC





CTGCTACCTCCGGCTCTGAGACTCCAG





GTACCTCTGAAAGCGCAACCCCGGAA





TCTGGTCCAGGTAGCGAACCTGCAAC





CTCTGGCTCTGAAACCCCAGGTACCTC





TGAAAGCGCTACTCCTGAATCTGGCC





CAGGTACTTCTACTGAACCGTCCGAG





GGCAGCGCACCAGGTAGCCCTGCTGG





CTCTCCAACCTCCACCGAAGAAGGTA





CCTCTGAAAGCGCAACCCCTGAATCC





GGCCCAGGTAGCGAACCGGCAACCTC





CGGTTCTGAAACCCCAGGTACTTCTG





AAAGCGCTACTCCTGAGTCCGGCCCA





GGTAGCCCGGCTGGCTCTCCGACTTCC





ACCGAGGAAGGTAGCCCGGCTGGCTC





TCCAACTTCTACTGAAGAAGGTACTTC





TACCGAACCTTCCGAGGGCAGCGCAC





CAGGTACTTCTGAAAGCGCTACCCCT





GAGTCCGGCCCAGGTACTTCTGAAAG





CGCTACTCCTGAATCCGGTCCAGGTA





CTTCTGAAAGCGCTACCCCGGAATCT





GGCCCAGGTAGCGAACCGGCTACTTC





TGGTTCTGAAACCCCAGGTAGCGAAC





CGGCTACCTCCGGTTCTGAAACTCCA





GGTAGCCCAGCAGGCTCTCCGACTTC





CACTGAGGAAGGTACTTCTACTGAAC





CTTCCGAAGGCAGCGCACCAGGTACC





TCTACTGAACCTTCTGAGGGCAGCGC





TCCAGGTAGCGAACCTGCAACCTCTG





GCTCTGAAACCCCAGGTACCTCTGAA





AGCGCTACTCCTGAATCTGGCCCAGG





TACTTCTACTGAACCGTCCGAGGGCA





GCGCACCA





AM1318-
GTSTEPSEGSAPGSE
795
GGTACTTCTACTGAACCGTCTGAAGG
796


hGH-
PATSGSETPGSPAGS

CAGCGCACCAGGTAGCGAACCGGCTA


AE288
PTSTEEGSTSSTAESP

CTTCCGGTTCTGAAACCCCAGGTAGC



GPGTSTPESGSASPG

CCAGCAGGTTCTCCAACTTCTACTGAA



STSESPSGTAPGSTSE

GAAGGTTCTACCAGCTCTACCGCAGA



SPSGTAPGTSTPESGS

ATCTCCTGGTCCAGGTACCTCTACTCC



ASPGTSTPESGSASP

GGAAAGCGGCTCTGCATCTCCAGGTT



GSEPATSGSETPGTS

CTACTAGCGAATCTCCTTCTGGCACTG



ESATPESGPGSPAGS

CACCAGGTTCTACTAGCGAATCCCCG



PTSTEEGTSTEPSEGS

TCTGGTACTGCTCCAGGTACTTCTACT



APGTSESATPESGPG

CCTGAAAGCGGTTCCGCTTCTCCAGGT



TSTEPSEGSAPGTSTE

ACCTCTACTCCGGAAAGCGGTTCTGC



PSEGSAPGSPAGSPT

ATCTCCAGGTAGCGAACCGGCAACCT



STEEGTSTEPSEGSAP

CCGGCTCTGAAACCCCAGGTACCTCT



GTSTEPSEGSAPGTS

GAAAGCGCTACTCCTGAATCCGGCCC



ESATPESGPGTSESA

AGGTAGCCCGGCAGGTTCTCCGACTT



TPESGPGTSTEPSEGS

CCACTGAGGAAGGTACCTCTACTGAA



APGTSTEPSEGSAPG

CCTTCTGAGGGCAGCGCTCCAGGTAC



TSESATPESGPGTSTE

TTCTGAAAGCGCTACCCCGGAGTCCG



PSEGSAPGSEPATSG

GTCCAGGTACTTCTACTGAACCGTCCG



SETPGSPAGSPTSTEE

AAGGTAGCGCACCAGGTACTTCTACC



GSSTPSGATGSPGTP

GAACCGTCCGAGGGTAGCGCACCAGG



GSGTASSSPGSSTPS

TAGCCCAGCAGGTTCTCCTACCTCCAC



GATGSPGTSTEPSEG

CGAGGAAGGTACTTCTACCGAACCGT



SAPGTSTEPSEGSAP

CCGAGGGTAGCGCACCAGGTACTTCT



GSEPATSGSETPGSP

ACCGAACCTTCCGAGGGCAGCGCACC



AGSPTSTEEGSPAGS

AGGTACTTCTGAAAGCGCTACCCCTG



PTSTEEGTSTEPSEGS

AGTCCGGCCCAGGTACTTCTGAAAGC



APGPEPTGPAPSGGS

GCTACTCCTGAATCCGGTCCAGGTAC



EPATSGSETPGTSES

CTCTACTGAACCTTCCGAAGGCAGCG



ATPESGPGSPAGSPT

CTCCAGGTACCTCTACCGAACCGTCC



STEEGTSESATPESGP

GAGGGCAGCGCACCAGGTACTTCTGA



GSPAGSPTSTEEGSP

AAGCGCAACCCCTGAATCCGGTCCAG



AGSPTSTEEGTSESA

GTACTTCTACTGAACCTTCCGAAGGTA



TPESGPGSPAGSPTST

GCGCTCCAGGTAGCGAACCTGCTACT



EEGSPAGSPTSTEEG

TCTGGTTCTGAAACCCCAGGTAGCCC



STSSTAESPGPGSTSE

GGCTGGCTCTCCGACCTCCACCGAGG



SPSGTAPGTSPSGESS

AAGGTAGCTCTACCCCGTCTGGTGCT



TAPGSTSESPSGTAP

ACTGGTTCTCCAGGTACTCCGGGCAG



GSTSESPSGTAPGTSP

CGGTACTGCTTCTTCCTCTCCAGGTAG



SGESSTAPGTSTEPSE

CTCTACCCCTTCTGGTGCTACTGGCTC



GSAPGTSESATPESG

TCCAGGTACCTCTACCGAACCGTCCG



PGTSESATPESGPGS

AGGGTAGCGCACCAGGTACCTCTACT



EPATSGSETPGTSES

GAACCGTCTGAGGGTAGCGCTCCAGG



ATPESGPGTSESATP

TAGCGAACCGGCAACCTCCGGTTCTG



ESGPGTSTEPSEGSA

AAACTCCAGGTAGCCCTGCTGGCTCT



PGTSESATPESGPGT

CCGACTTCTACTGAGGAAGGTAGCCC



STEPSEGSAPGTSPSG

GGCTGGTTCTCCGACTTCTACTGAGGA



ESSTAPGTSPSGESST

AGGTACTTCTACCGAACCTTCCGAAG



APGTSPSGESSTAPG

GTAGCGCTCCAGGTCCAGAACCAACG



TSTEPSEGSAPGSPA

GGGCCGGCCCCAAGCGGAGGTAGCGA



GSPTSTEEGTSTEPSE

ACCGGCAACCTCCGGCTCTGAAACCC



GSAPGSSPSASTGTG

CAGGTACCTCTGAAAGCGCTACTCCT



PGSSTPSGATGSPGS

GAATCCGGCCCAGGTAGCCCGGCAGG



STPSGATGSPGSSTPS

TTCTCCGACTTCCACTGAGGAAGGTA



GATGSPGSSTPSGAT

CTTCTGAAAGCGCTACTCCTGAGTCCG



GSPGASPGTSSTGSP

GCCCAGGTAGCCCGGCTGGCTCTCCG



GASASGAPSTGGTSP

ACTTCCACCGAGGAAGGTAGCCCGGC



SGESSTAPGSTSSTA

TGGCTCTCCAACTTCTACTGAAGAAG



ESPGPGTSPSGESSTA

GTACTTCTGAAAGCGCTACTCCTGAGT



PGTSESATPESGPGT

CCGGCCCAGGTAGCCCGGCTGGCTCT



STEPSEGSAPGTSTEP

CCGACTTCCACCGAGGAAGGTAGCCC



SEGSAPGSSPSASTG

GGCTGGCTCTCCAACTTCTACTGAAG



TGPGSSTPSGATGSP

AAGGTTCTACCAGCTCTACCGCTGAA



GASPGTSSTGSPGTS

TCTCCTGGCCCAGGTTCTACTAGCGAA



TPESGSASPGTSPSGE

TCTCCGTCTGGCACCGCACCAGGTACT



SSTAPGTSPSGESSTA

TCCCCTAGCGGTGAATCTTCTACTGCA



PGTSESATPESGPGS

CCAGGTTCTACCAGCGAATCTCCTTCT



EPATSGSETPGTSTEP

GGCACCGCTCCAGGTTCTACTAGCGA



SEGSAPGSTSESPSGT

ATCCCCGTCTGGTACCGCACCAGGTA



APGSTSESPSGTAPG

CTTCTCCTAGCGGCGAATCTTCTACCG



TSTPESGSASPGSPA

CACCAGGTACTTCTACCGAACCTTCCG



GSPTSTEEGTSESATP

AGGGCAGCGCACCAGGTACTTCTGAA



ESGPGTSTEPSEGSA

AGCGCTACCCCTGAGTCCGGCCCAGG



PGSPAGSPTSTEEGT

TACTTCTGAAAGCGCTACTCCTGAATC



SESATPESGPGSEPA

CGGTCCAGGTAGCGAACCGGCAACCT



TSGSETPGSSTPSGA

CTGGCTCTGAAACCCCAGGTACCTCT



TGSPGASPGTSSTGS

GAAAGCGCTACTCCGGAATCTGGTCC



PGSSTPSGATGSPGS

AGGTACTTCTGAAAGCGCTACTCCGG



TSESPSGTAPGTSPSG

AATCCGGTCCAGGTACCTCTACTGAA



ESSTAPGSTSSTAESP

CCTTCTGAGGGCAGCGCTCCAGGTAC



GPGSSTPSGATGSPG

TTCTGAAAGCGCTACCCCGGAGTCCG



ASPGTSSTGSPGTPG

GTCCAGGTACTTCTACTGAACCGTCCG



SGTASSSPGSPAGSP

AAGGTAGCGCACCAGGTACCTCCCCT



TSTEEGSPAGSPTSTE

AGCGGCGAATCTTCTACTGCTCCAGG



EGTSTEPSEGSAPGF

TACCTCTCCTAGCGGCGAATCTTCTAC



PTIPLSRLFDNAMLR

CGCTCCAGGTACCTCCCCTAGCGGTG



AHRLHQLAFDTYQE

AATCTTCTACCGCACCAGGTACTTCTA



FEEAYIPKEQKYSFL

CCGAACCGTCCGAGGGTAGCGCACCA



QNPQTSLCFSESIPTP

GGTAGCCCAGCAGGTTCTCCTACCTCC



SNREETQQKSNLELL

ACCGAGGAAGGTACTTCTACCGAACC



RISLLLIQSWLEPVQF

GTCCGAGGGTAGCGCACCAGGTTCTA



LRSVFANSLVYGAS

GCCCTTCTGCTTCCACCGGTACCGGCC



DSNVYDLLKDLEEGI

CAGGTAGCTCTACTCCGTCTGGTGCA



QTLMGRLEDGSPRT

ACTGGCTCTCCAGGTAGCTCTACTCCG



GQIFKQTYSKFDTNS

TCTGGTGCAACCGGCTCCCCAGGTAG



HNDDALLKNYGLLY

CTCTACCCCGTCTGGTGCTACCGGCTC



CFRKDMDKVETFLRI

TCCAGGTAGCTCTACCCCGTCTGGTGC



VQCRSVEGSCGFGG

AACCGGCTCCCCAGGTGCATCCCCGG



TSESATPESGPGSEP

GTACTAGCTCTACCGGTTCTCCAGGTG



ATSGSETPGTSESAT

CAAGCGCAAGCGGCGCGCCAAGCACG



PESGPGSEPATSGSE

GGAGGTACTTCTCCGAGCGGTGAATC



TPGTSESATPESGPG

TTCTACCGCACCAGGTTCTACTAGCTC



TSTEPSEGSAPGSPA

TACCGCTGAATCTCCGGGCCCAGGTA



GSPTSTEEGTSESATP

CTTCTCCGAGCGGTGAATCTTCTACTG



ESGPGSEPATSGSET

CTCCAGGTACCTCTGAAAGCGCTACT



PGTSESATPESGPGSP

CCGGAGTCTGGCCCAGGTACCTCTAC



AGSPTSTEEGSPAGS

TGAACCGTCTGAGGGTAGCGCTCCAG



PTSTEEGTSTEPSEGS

GTACTTCTACTGAACCGTCCGAAGGT



APGTSESATPESGPG

AGCGCACCAGGTTCTAGCCCTTCTGC



TSESATPESGPGTSES

ATCTACTGGTACTGGCCCAGGTAGCT



ATPESGPGSEPATSG

CTACTCCTTCTGGTGCTACCGGCTCTC



SETPGSEPATSGSETP

CAGGTGCTTCTCCGGGTACTAGCTCTA



GSPAGSPTSTEEGTS

CCGGTTCTCCAGGTACTTCTACTCCGG



TEPSEGSAPGTSTEPS

AAAGCGGTTCCGCATCTCCAGGTACT



EGSAPGSEPATSGSE

TCTCCTAGCGGTGAATCTTCTACTGCT



TPGTSESATPESGPG

CCAGGTACCTCTCCTAGCGGCGAATC



TSTEPSEGSAP

TTCTACTGCTCCAGGTACTTCTGAAAG





CGCAACCCCTGAATCCGGTCCAGGTA





GCGAACCGGCTACTTCTGGCTCTGAG





ACTCCAGGTACTTCTACCGAACCGTCC





GAAGGTAGCGCACCAGGTTCTACCAG





CGAATCCCCTTCTGGTACTGCTCCAGG





TTCTACCAGCGAATCCCCTTCTGGCAC





CGCACCAGGTACTTCTACCCCTGAAA





GCGGCTCCGCTTCTCCAGGTAGCCCG





GCAGGCTCTCCGACCTCTACTGAGGA





AGGTACTTCTGAAAGCGCAACCCCGG





AGTCCGGCCCAGGTACCTCTACCGAA





CCGTCTGAGGGCAGCGCACCAGGTAG





CCCTGCTGGCTCTCCAACCTCCACCGA





AGAAGGTACCTCTGAAAGCGCAACCC





CTGAATCCGGCCCAGGTAGCGAACCG





GCAACCTCCGGTTCTGAAACCCCAGG





TAGCTCTACCCCGTCTGGTGCTACCGG





TTCCCCAGGTGCTTCTCCTGGTACTAG





CTCTACCGGTTCTCCAGGTAGCTCTAC





CCCGTCTGGTGCTACTGGCTCTCCAGG





TTCTACTAGCGAATCCCCGTCTGGTAC





TGCTCCAGGTACTTCCCCTAGCGGTGA





ATCTTCTACTGCTCCAGGTTCTACCAG





CTCTACCGCAGAATCTCCGGGTCCAG





GTAGCTCTACCCCTTCTGGTGCAACCG





GCTCTCCAGGTGCATCCCCGGGTACC





AGCTCTACCGGTTCTCCAGGTACTCCG





GGTAGCGGTACCGCTTCTTCCTCTCCA





GGTAGCCCTGCTGGCTCTCCGACTTCT





ACTGAGGAAGGTAGCCCGGCTGGTTC





TCCGACTTCTACTGAGGAAGGTACTTC





TACCGAACCTTCCGAAGGTAGCGCTC





CAGGTTTTCCGACTATTCCGCTGTCTC





GTCTGTTTGATAATGCTATGCTGCGTG





CGCACCGTCTGCACCAGCTGGCCTTTG





ATACTTACCAGGAATTTGAAGAAGCcT





ACATTCCTAAAGAGCAGAAGTACTCT





TTCCTGCAAAACCCACAGACTTCTCTC





TGCTTCAGCGAATCTATTCCGACGCCT





TCCAATCGCGAGGAAACTCAGCAAAA





GTCCAATCTGGAACTACTCCGCATTTC





TCTGCTTCTGATTCAGAGCTGGCTAGA





ACCAGTGCAATTTCTGCGTTCCGTCTT





CGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTG





AAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCT





CTCCGCGTACTGGTCAGATCTTCAAGC





AGACTTACTCTAAATTTGATACTAACA





GCCACAATGACGATGCGCTTCTAAAA





AACTATGGTCTGCTGTATTGTTTTCGT





AAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGT





TGAGGGCAGCTGTGGTTTCTAAGGTG





GTACCTCTGAAAGCGCAACTCCTGAG





TCTGGCCCAGGTAGCGAACCTGCTAC





CTCCGGCTCTGAGACTCCAGGTACCTC





TGAAAGCGCAACCCCGGAATCTGGTC





CAGGTAGCGAACCTGCAACCTCTGGC





TCTGAAACCCCAGGTACCTCTGAAAG





CGCTACTCCTGAATCTGGCCCAGGTA





CTTCTACTGAACCGTCCGAGGGCAGC





GCACCAGGTAGCCCTGCTGGCTCTCC





AACCTCCACCGAAGAAGGTACCTCTG





AAAGCGCAACCCCTGAATCCGGCCCA





GGTAGCGAACCGGCAACCTCCGGTTC





TGAAACCCCAGGTACTTCTGAAAGCG





CTACTCCTGAGTCCGGCCCAGGTAGC





CCGGCTGGCTCTCCGACTTCCACCGA





GGAAGGTAGCCCGGCTGGCTCTCCAA





CTTCTACTGAAGAAGGTACTTCTACCG





AACCTTCCGAGGGCAGCGCACCAGGT





ACTTCTGAAAGCGCTACCCCTGAGTC





CGGCCCAGGTACTTCTGAAAGCGCTA





CTCCTGAATCCGGTCCAGGTACTTCTG





AAAGCGCTACCCCGGAATCTGGCCCA





GGTAGCGAACCGGCTACTTCTGGTTCT





GAAACCCCAGGTAGCGAACCGGCTAC





CTCCGGTTCTGAAACTCCAGGTAGCC





CAGCAGGCTCTCCGACTTCCACTGAG





GAAGGTACTTCTACTGAACCTTCCGA





AGGCAGCGCACCAGGTACCTCTACTG





AACCTTCTGAGGGCAGCGCTCCAGGT





AGCGAACCTGCAACCTCTGGCTCTGA





AACCCCAGGTACCTCTGAAAGCGCTA





CTCCTGAATCTGGCCCAGGTACTTCTA





CTGAACCGTCCGAGGGCAGCGCACCA





*Sequence name reflects N- to C-terminus configuration of the growth factor and XTEN components













TABLE 37







Exemplary GHXTEN comprising growth hormones, XTEN and cleavage sequences











GHXTEN

SEQ ID




Name*
Amino Acid Sequence
NO:
DNA Nucleotide Sequence
SEQ ID NO:





AE912-
MAEPAGSPTSTEEGT
797
ATGGCTGAACCTGCTGGCTCTCCAACCT
798


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG


Thrombin-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT


AE144
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG



GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG



TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT



PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA



APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC



TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT



ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT



GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC



EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT



TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG



PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC



STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT



GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG



ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA



EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA



GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC



TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA



PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC



ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA



PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT



SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC



TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT



SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC



GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG



EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG



APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG



SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA



PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC



ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG



PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA



EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG



ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC



GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG



PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC



AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC



PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT



GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG



TSESATPESGPGSEP

CTACTCCGGAGTCTGGCCCAGGTACCTC



ATSGSETPGTSESAT

TACTGAACCGTCTGAGGGTAGCGCTCCA



PESGPGSEPATSGSE

GGTACTTCTACTGAACCGTCCGAAGGTA



TPGTSESATPESGPG

GCGCACCAGGTACTTCTACCGAACCGTC



TSTEPSEGSAPGSPA

CGAAGGCAGCGCTCCAGGTACCTCTACT



GSPTSTEEGTSESATP

GAACCTTCCGAGGGCAGCGCTCCAGGT



ESGPGSEPATSGSET

ACCTCTACCGAACCTTCTGAAGGTAGCG



PGTSESATPESGPGSP

CACCAGGTACTTCTACCGAACCGTCCGA



AGSPTSTEEGSPAGS

GGGTAGCGCACCAGGTAGCCCAGCAGG



PTSTEEGTSTEPSEGS

TTCTCCTACCTCCACCGAGGAAGGTACT



APGTSESATPESGPG

TCTACCGAACCGTCCGAGGGTAGCGCA



TSESATPESGPGTSES

CCAGGTACCTCTGAAAGCGCAACTCCTG



ATPESGPGSEPATSG

AGTCTGGCCCAGGTAGCGAACCTGCTAC



SETPGSEPATSGSETP

CTCCGGCTCTGAGACTCCAGGTACCTCT



GSPAGSPTSTEEGTS

GAAAGCGCAACCCCGGAATCTGGTCCA



TEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTG



EGSAPGSEPATSGSE

AAACCCCAGGTACCTCTGAAAGCGCTA



TPGTSESATPESGPG

CTCCTGAATCTGGCCCAGGTACTTCTAC



TSTEPSEGSAPGFPTI

TGAACCGTCCGAGGGCAGCGCACCAGG



PLSRLFDNAMLRAH

TACTTCTGAAAGCGCTACTCCTGAGTCC



RLHQLAFDTYQEFEE

GGCCCAGGTAGCCCGGCTGGCTCTCCGA



AYIPKEQKYSFLQNP

CTTCCACCGAGGAAGGTAGCCCGGCTG



QTSLCFSESIPTPSNR

GCTCTCCAACTTCTACTGAAGAAGGTAG



EETQQKSNLELLRIS

CCCGGCAGGCTCTCCGACCTCTACTGAG



LLLIQSWLEPVQFLR

GAAGGTACTTCTGAAAGCGCAACCCCG



SVFANSLVYGASDS

GAGTCCGGCCCAGGTACCTCTACCGAAC



NVYDLLKDLEEGIQT

CGTCTGAGGGCAGCGCACCAGGTACCT



LMGRLEDGSPRTGQI

CTGAAAGCGCAACTCCTGAGTCTGGCCC



FKQTYSKFDTNSHN

AGGTAGCGAACCTGCTACCTCCGGCTCT



DDALLKNYGLLYCF

GAGACTCCAGGTACCTCTGAAAGCGCA



RKDMDKVETFLRIV

ACCCCGGAATCTGGTCCAGGTAGCGAA



QCRSVEGSCGFGLTP

CCTGCAACCTCTGGCTCTGAAACCCCAG



RSLLVGGGGSEPATS

GTACCTCTGAAAGCGCTACTCCTGAATC



GSETPGTSESATPES

TGGCCCAGGTACTTCTACTGAACCGTCC



GPGSEPATSGSETPG

GAGGGCAGCGCACCAGGTAGCCCTGCT



SPAGSPTSTEEGTSTE

GGCTCTCCAACCTCCACCGAAGAAGGT



PSEGSAPGSEPATSG

ACCTCTGAAAGCGCAACCCCTGAATCCG



SETPGSEPATSGSETP

GCCCAGGTAGCGAACCGGCAACCTCCG



GSEPATSGSETPGTS

GTTCTGAAACCCCAGGTACTTCTGAAAG



TEPSEGSAPGTSESA

CGCTACTCCTGAGTCCGGCCCAGGTAGC



TPESGPGSEPATSGS

CCGGCTGGCTCTCCGACTTCCACCGAGG



ETPGTSTEPSEGSAP

AAGGTAGCCCGGCTGGCTCTCCAACTTC





TACTGAAGAAGGTACTTCTACCGAACCT





TCCGAGGGCAGCGCACCAGGTACTTCTG





AAAGCGCTACCCCTGAGTCCGGCCCAG





GTACTTCTGAAAGCGCTACTCCTGAATC





CGGTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACCG





GCTACTTCTGGTTCTGAAACCCCAGGTA





GCGAACCGGCTACCTCCGGTTCTGAAAC





TCCAGGTAGCCCAGCAGGCTCTCCGACT





TCCACTGAGGAAGGTACTTCTACTGAAC





CTTCCGAAGGCAGCGCACCAGGTACCTC





TACTGAACCTTCTGAGGGCAGCGCTCCA





GGTAGCGAACCTGCAACCTCTGGCTCTG





AAACCCCAGGTACCTCTGAAAGCGCTA





CTCCTGAATCTGGCCCAGGTACTTCTAC





TGAACCGTCCGAGGGCAGCGCACCAGG





TTTTCCGACTATTCCGCTGTCTCGTCTGT





TTGATAATGCTATGCTGCGTGCGCACCG





TCTGCACCAGCTGGCCTTTGATACTTAC





CAGGAATTTGAAGAAGCcTACATTCCTA





AAGAGCAGAAGTACTCTTTCCTGCAAA





ACCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGAG





GAAACTCAGCAAAAGTCCAATCTGGAA





CTACTCCGCATTTCTCTGCTTCTGATTCA





GAGCTGGCTAGAACCAGTGCAATTTCTG





CGTTCCGTCTTCGCCAATAGCCTAGTTT





ATGGCGCATCCGACAGCAACGTATACG





ATCTCCTGAAAGATCTCGAGGAAGGCA





TTCAGACCCTGATGGGTCGTCTCGAGGA





TGGCTCTCCGCGTACTGGTCAGATCTTC





AAGCAGACTTACTCTAAATTTGATACTA





ACAGCCACAATGACGATGCGCTTCTAA





AAAACTATGGTCTGCTGTATTGTTTTCG





TAAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGTT





GAGGGCAGCTGTGGTTTCTAAGGTctgacc





ccgcgcagcctgctggtgggcggcGGTGGTAGCGAA





CCGGCAACTTCCGGCTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGTC





TGGCCCAGGTAGCGAACCTGCTACCTCT





GGCTCTGAAACCCCAGGTAGCCCGGCA





GGCTCTCCGACTTCCACCGAGGAAGGTA





CCTCTACTGAACCTTCTGAGGGTAGCGC





TCCAGGTAGCGAACCGGCAACCTCTGG





CTCTGAAACCCCAGGTAGCGAACCTGCT





ACCTCCGGCTCTGAAACTCCAGGTAGCG





AACCGGCTACTTCCGGTTCTGAAACTCC





AGGTACCTCTACCGAACCTTCCGAAGGC





AGCGCACCAGGTACTTCTGAAAGCGCA





ACCCCTGAATCCGGTCCAGGTAGCGAA





CCGGCTACTTCTGGCTCTGAGACTCCAG





GTACTTCTACCGAACCGTCCGAAGGTAG





CGCACCA





AE912-
MAEPAGSPTSTEEGT
799
ATGGCTGAACCTGCTGGCTCTCCAACCT
800


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG


FXIa-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT


AE144
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG



GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG



TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT



PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA



APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC



TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT



ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT



GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC



EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT



TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG



PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC



STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT



GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG



ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA



EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA



GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC



TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA



PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC



ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA



PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT



SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC



TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT



SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC



GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG



EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG



APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG



SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA



PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC



ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG



PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA



EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG



ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC



GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG



PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC



AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC



PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT



GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG



TSESATPESGPGSEP

CTACTCCGGAGTCTGGCCCAGGTACCTC



ATSGSETPGTSESAT

TACTGAACCGTCTGAGGGTAGCGCTCCA



PESGPGSEPATSGSE

GGTACTTCTACTGAACCGTCCGAAGGTA



TPGTSESATPESGPG

GCGCACCAGGTACTTCTACCGAACCGTC



TSTEPSEGSAPGSPA

CGAAGGCAGCGCTCCAGGTACCTCTACT



GSPTSTEEGTSESATP

GAACCTTCCGAGGGCAGCGCTCCAGGT



ESGPGSEPATSGSET

ACCTCTACCGAACCTTCTGAAGGTAGCG



PGTSESATPESGPGSP

CACCAGGTACTTCTACCGAACCGTCCGA



AGSPTSTEEGSPAGS

GGGTAGCGCACCAGGTAGCCCAGCAGG



PTSTEEGTSTEPSEGS

TTCTCCTACCTCCACCGAGGAAGGTACT



APGTSESATPESGPG

TCTACCGAACCGTCCGAGGGTAGCGCA



TSESATPESGPGTSES

CCAGGTACCTCTGAAAGCGCAACTCCTG



ATPESGPGSEPATSG

AGTCTGGCCCAGGTAGCGAACCTGCTAC



SETPGSEPATSGSETP

CTCCGGCTCTGAGACTCCAGGTACCTCT



GSPAGSPTSTEEGTS

GAAAGCGCAACCCCGGAATCTGGTCCA



TEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTG



EGSAPGSEPATSGSE

AAACCCCAGGTACCTCTGAAAGCGCTA



TPGTSESATPESGPG

CTCCTGAATCTGGCCCAGGTACTTCTAC



TSTEPSEGSAPGFPTI

TGAACCGTCCGAGGGCAGCGCACCAGG



PLSRLFDNAMLRAH

TACTTCTGAAAGCGCTACTCCTGAGTCC



RLHQLAFDTYQEFEE

GGCCCAGGTAGCCCGGCTGGCTCTCCGA



AYIPKEQKYSFLQNP

CTTCCACCGAGGAAGGTAGCCCGGCTG



QTSLCFSESIPTPSNR

GCTCTCCAACTTCTACTGAAGAAGGTAG



EETQQKSNLELLRIS

CCCGGCAGGCTCTCCGACCTCTACTGAG



LLLIQSWLEPVQFLR

GAAGGTACTTCTGAAAGCGCAACCCCG



SVFANSLVYGASDS

GAGTCCGGCCCAGGTACCTCTACCGAAC



NVYDLLKDLEEGIQT

CGTCTGAGGGCAGCGCACCAGGTACCT



LMGRLEDGSPRTGQI

CTGAAAGCGCAACTCCTGAGTCTGGCCC



FKQTYSKFDTNSHN

AGGTAGCGAACCTGCTACCTCCGGCTCT



DDALLKNYGLLYCF

GAGACTCCAGGTACCTCTGAAAGCGCA



RKDMDKVETFLRIV

ACCCCGGAATCTGGTCCAGGTAGCGAA



QCRSVEGSCGFGGG

CCTGCAACCTCTGGCTCTGAAACCCCAG



KLTRVVGGGGSEPA

GTACCTCTGAAAGCGCTACTCCTGAATC



TSGSETPGTSESATPE

TGGCCCAGGTACTTCTACTGAACCGTCC



SGPGSEPATSGSETP

GAGGGCAGCGCACCAGGTAGCCCTGCT



GSPAGSPTSTEEGTS

GGCTCTCCAACCTCCACCGAAGAAGGT



TEPSEGSAPGSEPAT

ACCTCTGAAAGCGCAACCCCTGAATCCG



SGSETPGSEPATSGS

GCCCAGGTAGCGAACCGGCAACCTCCG



ETPGSEPATSGSETP

GTTCTGAAACCCCAGGTACTTCTGAAAG



GTSTEPSEGSAPGTS

CGCTACTCCTGAGTCCGGCCCAGGTAGC



ESATPESGPGSEPAT

CCGGCTGGCTCTCCGACTTCCACCGAGG



SGSETPGTSTEPSEGS

AAGGTAGCCCGGCTGGCTCTCCAACTTC



AP

TACTGAAGAAGGTACTTCTACCGAACCT





TCCGAGGGCAGCGCACCAGGTACTTCTG





AAAGCGCTACCCCTGAGTCCGGCCCAG





GTACTTCTGAAAGCGCTACTCCTGAATC





CGGTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACCG





GCTACTTCTGGTTCTGAAACCCCAGGTA





GCGAACCGGCTACCTCCGGTTCTGAAAC





TCCAGGTAGCCCAGCAGGCTCTCCGACT





TCCACTGAGGAAGGTACTTCTACTGAAC





CTTCCGAAGGCAGCGCACCAGGTACCTC





TACTGAACCTTCTGAGGGCAGCGCTCCA





GGTAGCGAACCTGCAACCTCTGGCTCTG





AAACCCCAGGTACCTCTGAAAGCGCTA





CTCCTGAATCTGGCCCAGGTACTTCTAC





TGAACCGTCCGAGGGCAGCGCACCAGG





TTTTCCGACTATTCCGCTGTCTCGTCTGT





TTGATAATGCTATGCTGCGTGCGCACCG





TCTGCACCAGCTGGCCTTTGATACTTAC





CAGGAATTTGAAGAAGCcTACATTCCTA





AAGAGCAGAAGTACTCTTTCCTGCAAA





ACCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGAG





GAAACTCAGCAAAAGTCCAATCTGGAA





CTACTCCGCATTTCTCTGCTTCTGATTCA





GAGCTGGCTAGAACCAGTGCAATTTCTG





CGTTCCGTCTTCGCCAATAGCCTAGTTT





ATGGCGCATCCGACAGCAACGTATACG





ATCTCCTGAAAGATCTCGAGGAAGGCA





TTCAGACCCTGATGGGTCGTCTCGAGGA





TGGCTCTCCGCGTACTGGTCAGATCTTC





AAGCAGACTTACTCTAAATTTGATACTA





ACAGCCACAATGACGATGCGCTTCTAA





AAAACTATGGTCTGCTGTATTGTTTTCG





TAAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGTT





GAGGGCAGCTGTGGTTTCTAAGGTggcgg





caaactgacccgcgtggtgggcggcGGTGGTAGCGA





ACCGGCAACTTCCGGCTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGAGT





CTGGCCCAGGTAGCGAACCTGCTACCTC





TGGCTCTGAAACCCCAGGTAGCCCGGC





AGGCTCTCCGACTTCCACCGAGGAAGGT





ACCTCTACTGAACCTTCTGAGGGTAGCG





CTCCAGGTAGCGAACCGGCAACCTCTG





GCTCTGAAACCCCAGGTAGCGAACCTG





CTACCTCCGGCTCTGAAACTCCAGGTAG





CGAACCGGCTACTTCCGGTTCTGAAACT





CCAGGTACCTCTACCGAACCTTCCGAAG





GCAGCGCACCAGGTACTTCTGAAAGCG





CAACCCCTGAATCCGGTCCAGGTAGCG





AACCGGCTACTTCTGGCTCTGAGACTCC





AGGTACTTCTACCGAACCGTCCGAAGGT





AGCGCACCA





AE912-
MAEPAGSPTSTEEGT
801
ATGGCTGAACCTGCTGGCTCTCCAACCT
802


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG


Elastase-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT


AE144
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG



GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG



TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT



PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA



APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC



TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT



ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT



GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC



EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT



TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG



PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC



STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT



GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG



ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA



EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA



GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC



TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA



PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC



ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA



PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT



SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC



TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT



SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC



GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG



EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG



APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG



SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA



PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC



ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG



PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA



EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG



ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC



GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG



PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC



AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC



PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT



GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG



TSESATPESGPGSEP

CTACTCCGGAGTCTGGCCCAGGTACCTC



ATSGSETPGTSESAT

TACTGAACCGTCTGAGGGTAGCGCTCCA



PESGPGSEPATSGSE

GGTACTTCTACTGAACCGTCCGAAGGTA



TPGTSESATPESGPG

GCGCACCAGGTACTTCTACCGAACCGTC



TSTEPSEGSAPGSPA

CGAAGGCAGCGCTCCAGGTACCTCTACT



GSPTSTEEGTSESATP

GAACCTTCCGAGGGCAGCGCTCCAGGT



ESGPGSEPATSGSET

ACCTCTACCGAACCTTCTGAAGGTAGCG



PGTSESATPESGPGSP

CACCAGGTACTTCTACCGAACCGTCCGA



AGSPTSTEEGSPAGS

GGGTAGCGCACCAGGTAGCCCAGCAGG



PTSTEEGTSTEPSEGS

TTCTCCTACCTCCACCGAGGAAGGTACT



APGTSESATPESGPG

TCTACCGAACCGTCCGAGGGTAGCGCA



TSESATPESGPGTSES

CCAGGTACCTCTGAAAGCGCAACTCCTG



ATPESGPGSEPATSG

AGTCTGGCCCAGGTAGCGAACCTGCTAC



SETPGSEPATSGSETP

CTCCGGCTCTGAGACTCCAGGTACCTCT



GSPAGSPTSTEEGTS

GAAAGCGCAACCCCGGAATCTGGTCCA



TEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTG



EGSAPGSEPATSGSE

AAACCCCAGGTACCTCTGAAAGCGCTA



TPGTSESATPESGPG

CTCCTGAATCTGGCCCAGGTACTTCTAC



TSTEPSEGSAPGFPTI

TGAACCGTCCGAGGGCAGCGCACCAGG



PLSRLFDNAMLRAH

TACTTCTGAAAGCGCTACTCCTGAGTCC



RLHQLAFDTYQEFEE

GGCCCAGGTAGCCCGGCTGGCTCTCCGA



AYIPKEQKYSFLQNP

CTTCCACCGAGGAAGGTAGCCCGGCTG



QTSLCFSESIPTPSNR

GCTCTCCAACTTCTACTGAAGAAGGTAG



EETQQKSNLELLRIS

CCCGGCAGGCTCTCCGACCTCTACTGAG



LLLIQSWLEPVQFLR

GAAGGTACTTCTGAAAGCGCAACCCCG



SVFANSLVYGASDS

GAGTCCGGCCCAGGTACCTCTACCGAAC



NVYDLLKDLEEGIQT

CGTCTGAGGGCAGCGCACCAGGTACCT



LMGRLEDGSPRTGQI

CTGAAAGCGCAACTCCTGAGTCTGGCCC



FKQTYSKFDTNSHN

AGGTAGCGAACCTGCTACCTCCGGCTCT



DDALLKNYGLLYCF

GAGACTCCAGGTACCTCTGAAAGCGCA



RKDMDKVETFLRIV

ACCCCGGAATCTGGTCCAGGTAGCGAA



QCRSVEGSCGFGGG

CCTGCAACCTCTGGCTCTGAAACCCCAG



LGPVSGVPGGSEPAT

GTACCTCTGAAAGCGCTACTCCTGAATC



SGSETPGTSESATPES

TGGCCCAGGTACTTCTACTGAACCGTCC



GPGSEPATSGSETPG

GAGGGCAGCGCACCAGGTAGCCCTGCT



SPAGSPTSTEEGTSTE

GGCTCTCCAACCTCCACCGAAGAAGGT



PSEGSAPGSEPATSG

ACCTCTGAAAGCGCAACCCCTGAATCCG



SETPGSEPATSGSETP

GCCCAGGTAGCGAACCGGCAACCTCCG



GSEPATSGSETPGTS

GTTCTGAAACCCCAGGTACTTCTGAAAG



TEPSEGSAPGTSESA

CGCTACTCCTGAGTCCGGCCCAGGTAGC



TPESGPGSEPATSGS

CCGGCTGGCTCTCCGACTTCCACCGAGG



ETPGTSTEPSEGSAP

AAGGTAGCCCGGCTGGCTCTCCAACTTC





TACTGAAGAAGGTACTTCTACCGAACCT





TCCGAGGGCAGCGCACCAGGTACTTCTG





AAAGCGCTACCCCTGAGTCCGGCCCAG





GTACTTCTGAAAGCGCTACTCCTGAATC





CGGTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACCG





GCTACTTCTGGTTCTGAAACCCCAGGTA





GCGAACCGGCTACCTCCGGTTCTGAAAC





TCCAGGTAGCCCAGCAGGCTCTCCGACT





TCCACTGAGGAAGGTACTTCTACTGAAC





CTTCCGAAGGCAGCGCACCAGGTACCTC





TACTGAACCTTCTGAGGGCAGCGCTCCA





GGTAGCGAACCTGCAACCTCTGGCTCTG





AAACCCCAGGTACCTCTGAAAGCGCTA





CTCCTGAATCTGGCCCAGGTACTTCTAC





TGAACCGTCCGAGGGCAGCGCACCAGG





TTTTCCGACTATTCCGCTGTCTCGTCTGT





TTGATAATGCTATGCTGCGTGCGCACCG





TCTGCACCAGCTGGCCTTTGATACTTAC





CAGGAATTTGAAGAAGCcTACATTCCTA





AAGAGCAGAAGTACTCTTTCCTGCAAA





ACCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGAG





GAAACTCAGCAAAAGTCCAATCTGGAA





CTACTCCGCATTTCTCTGCTTCTGATTCA





GAGCTGGCTAGAACCAGTGCAATTTCTG





CGTTCCGTCTTCGCCAATAGCCTAGTTT





ATGGCGCATCCGACAGCAACGTATACG





ATCTCCTGAAAGATCTCGAGGAAGGCA





TTCAGACCCTGATGGGTCGTCTCGAGGA





TGGCTCTCCGCGTACTGGTCAGATCTTC





AAGCAGACTTACTCTAAATTTGATACTA





ACAGCCACAATGACGATGCGCTTCTAA





AAAACTATGGTCTGCTGTATTGTTTTCG





TAAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGTT





GAGGGCAGCTGTGGTTTCTAAGGTggcgg





cctgggcccggtgagcggcgtgccgGGTGGTAGCGA





ACCGGCAACTTCCGGCTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGAGT





CTGGCCCAGGTAGCGAACCTGCTACCTC





TGGCTCTGAAACCCCAGGTAGCCCGGC





AGGCTCTCCGACTTCCACCGAGGAAGGT





ACCTCTACTGAACCTTCTGAGGGTAGCG





CTCCAGGTAGCGAACCGGCAACCTCTG





GCTCTGAAACCCCAGGTAGCGAACCTG





CTACCTCCGGCTCTGAAACTCCAGGTAG





CGAACCGGCTACTTCCGGTTCTGAAACT





CCAGGTACCTCTACCGAACCTTCCGAAG





GCAGCGCACCAGGTACTTCTGAAAGCG





CAACCCCTGAATCCGGTCCAGGTAGCG





AACCGGCTACTTCTGGCTCTGAGACTCC





AGGTACTTCTACCGAACCGTCCGAAGGT





AGCGCACCA





AE912-
MAEPAGSPTSTEEGT
803
ATGGCTGAACCTGCTGGCTCTCCAACCT
804


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG


MMP-17-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT


AE144
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG



GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG



TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT



PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA



APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC



TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT



ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT



GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC



EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT



TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG



PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC



STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT



GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG



ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA



EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA



GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC



TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA



PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC



ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA



PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT



SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC



TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT



SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC



GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG



EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG



APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG



SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA



PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC



ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG



PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA



EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG



ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC



GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG



PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC



AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC



PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT



GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG



TSESATPESGPGSEP

CTACTCCGGAGTCTGGCCCAGGTACCTC



ATSGSETPGTSESAT

TACTGAACCGTCTGAGGGTAGCGCTCCA



PESGPGSEPATSGSE

GGTACTTCTACTGAACCGTCCGAAGGTA



TPGTSESATPESGPG

GCGCACCAGGTACTTCTACCGAACCGTC



TSTEPSEGSAPGSPA

CGAAGGCAGCGCTCCAGGTACCTCTACT



GSPTSTEEGTSESATP

GAACCTTCCGAGGGCAGCGCTCCAGGT



ESGPGSEPATSGSET

ACCTCTACCGAACCTTCTGAAGGTAGCG



PGTSESATPESGPGSP

CACCAGGTACTTCTACCGAACCGTCCGA



AGSPTSTEEGSPAGS

GGGTAGCGCACCAGGTAGCCCAGCAGG



PTSTEEGTSTEPSEGS

TTCTCCTACCTCCACCGAGGAAGGTACT



APGTSESATPESGPG

TCTACCGAACCGTCCGAGGGTAGCGCA



TSESATPESGPGTSES

CCAGGTACCTCTGAAAGCGCAACTCCTG



ATPESGPGSEPATSG

AGTCTGGCCCAGGTAGCGAACCTGCTAC



SETPGSEPATSGSETP

CTCCGGCTCTGAGACTCCAGGTACCTCT



GSPAGSPTSTEEGTS

GAAAGCGCAACCCCGGAATCTGGTCCA



TEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTG



EGSAPGSEPATSGSE

AAACCCCAGGTACCTCTGAAAGCGCTA



TPGTSESATPESGPG

CTCCTGAATCTGGCCCAGGTACTTCTAC



TSTEPSEGSAPGFPTI

TGAACCGTCCGAGGGCAGCGCACCAGG



PLSRLFDNAMLRAH

TACTTCTGAAAGCGCTACTCCTGAGTCC



RLHQLAFDTYQEFEE

GGCCCAGGTAGCCCGGCTGGCTCTCCGA



AYIPKEQKYSFLQNP

CTTCCACCGAGGAAGGTAGCCCGGCTG



QTSLCFSESIPTPSNR

GCTCTCCAACTTCTACTGAAGAAGGTAG



EETQQKSNLELLRIS

CCCGGCAGGCTCTCCGACCTCTACTGAG



LLLIQSWLEPVQFLR

GAAGGTACTTCTGAAAGCGCAACCCCG



SVFANSLVYGASDS

GAGTCCGGCCCAGGTACCTCTACCGAAC



NVYDLLKDLEEGIQT

CGTCTGAGGGCAGCGCACCAGGTACCT



LMGRLEDGSPRTGQI

CTGAAAGCGCAACTCCTGAGTCTGGCCC



FKQTYSKFDTNSHN

AGGTAGCGAACCTGCTACCTCCGGCTCT



DDALLKNYGLLYCF

GAGACTCCAGGTACCTCTGAAAGCGCA



RKDMDKVETFLRIV

ACCCCGGAATCTGGTCCAGGTAGCGAA



QCRSVEGSCGFGAPL

CCTGCAACCTCTGGCTCTGAAACCCCAG



GLRLRGGGGSEPATS

GTACCTCTGAAAGCGCTACTCCTGAATC



GSETPGTSESATPES

TGGCCCAGGTACTTCTACTGAACCGTCC



GPGSEPATSGSETPG

GAGGGCAGCGCACCAGGTAGCCCTGCT



SPAGSPTSTEEGTSTE

GGCTCTCCAACCTCCACCGAAGAAGGT



PSEGSAPGSEPATSG

ACCTCTGAAAGCGCAACCCCTGAATCCG



SETPGSEPATSGSETP

GCCCAGGTAGCGAACCGGCAACCTCCG



GSEPATSGSETPGTS

GTTCTGAAACCCCAGGTACTTCTGAAAG



TEPSEGSAPGTSESA

CGCTACTCCTGAGTCCGGCCCAGGTAGC



TPESGPGSEPATSGS

CCGGCTGGCTCTCCGACTTCCACCGAGG



ETPGTSTEPSEGSAP

AAGGTAGCCCGGCTGGCTCTCCAACTTC





TACTGAAGAAGGTACTTCTACCGAACCT





TCCGAGGGCAGCGCACCAGGTACTTCTG





AAAGCGCTACCCCTGAGTCCGGCCCAG





GTACTTCTGAAAGCGCTACTCCTGAATC





CGGTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACCG





GCTACTTCTGGTTCTGAAACCCCAGGTA





GCGAACCGGCTACCTCCGGTTCTGAAAC





TCCAGGTAGCCCAGCAGGCTCTCCGACT





TCCACTGAGGAAGGTACTTCTACTGAAC





CTTCCGAAGGCAGCGCACCAGGTACCTC





TACTGAACCTTCTGAGGGCAGCGCTCCA





GGTAGCGAACCTGCAACCTCTGGCTCTG





AAACCCCAGGTACCTCTGAAAGCGCTA





CTCCTGAATCTGGCCCAGGTACTTCTAC





TGAACCGTCCGAGGGCAGCGCACCAGG





TTTTCCGACTATTCCGCTGTCTCGTCTGT





TTGATAATGCTATGCTGCGTGCGCACCG





TCTGCACCAGCTGGCCTTTGATACTTAC





CAGGAATTTGAAGAAGCcTACATTCCTA





AAGAGCAGAAGTACTCTTTCCTGCAAA





ACCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGAG





GAAACTCAGCAAAAGTCCAATCTGGAA





CTACTCCGCATTTCTCTGCTTCTGATTCA





GAGCTGGCTAGAACCAGTGCAATTTCTG





CGTTCCGTCTTCGCCAATAGCCTAGTTT





ATGGCGCATCCGACAGCAACGTATACG





ATCTCCTGAAAGATCTCGAGGAAGGCA





TTCAGACCCTGATGGGTCGTCTCGAGGA





TGGCTCTCCGCGTACTGGTCAGATCTTC





AAGCAGACTTACTCTAAATTTGATACTA





ACAGCCACAATGACGATGCGCTTCTAA





AAAACTATGGTCTGCTGTATTGTTTTCG





TAAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGTT





GAGGGCAGCTGTGGTTTCTAAGGTgcgcc





gctgggcctgcgcctgcgcggcggcGGTGGTAGCGA





ACCGGCAACTTCCGGCTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGAGT





CTGGCCCAGGTAGCGAACCTGCTACCTC





TGGCTCTGAAACCCCAGGTAGCCCGGC





AGGCTCTCCGACTTCCACCGAGGAAGGT





ACCTCTACTGAACCTTCTGAGGGTAGCG





CTCCAGGTAGCGAACCGGCAACCTCTG





GCTCTGAAACCCCAGGTAGCGAACCTG





CTACCTCCGGCTCTGAAACTCCAGGTAG





CGAACCGGCTACTTCCGGTTCTGAAACT





CCAGGTACCTCTACCGAACCTTCCGAAG





GCAGCGCACCAGGTACTTCTGAAAGCG





CAACCCCTGAATCCGGTCCAGGTAGCG





AACCGGCTACTTCTGGCTCTGAGACTCC





AGGTACTTCTACCGAACCGTCCGAAGGT





AGCGCACCA





AE912-
MAEPAGSPTSTEEGT
805
ATGGCTGAACCTGCTGGCTCTCCAACCT
806


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG


Thrombin-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT


AE288
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG



GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG



TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT



PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA



APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC



TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT



ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT



GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC



EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT



TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG



PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC



STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT



GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG



ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA



EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA



GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC



TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA



PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC



ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA



PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT



SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC



TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT



SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC



GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG



EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG



APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG



SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA



PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC



ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG



PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA



EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG



ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC



GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG



PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC



AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC



PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT



GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG



TSESATPESGPGSEP

CTACTCCGGAGTCTGGCCCAGGTACCTC



ATSGSETPGTSESAT

TACTGAACCGTCTGAGGGTAGCGCTCCA



PESGPGSEPATSGSE

GGTACTTCTACTGAACCGTCCGAAGGTA



TPGTSESATPESGPG

GCGCACCAGGTACTTCTACCGAACCGTC



TSTEPSEGSAPGSPA

CGAAGGCAGCGCTCCAGGTACCTCTACT



GSPTSTEEGTSESATP

GAACCTTCCGAGGGCAGCGCTCCAGGT



ESGPGSEPATSGSET

ACCTCTACCGAACCTTCTGAAGGTAGCG



PGTSESATPESGPGSP

CACCAGGTACTTCTACCGAACCGTCCGA



AGSPTSTEEGSPAGS

GGGTAGCGCACCAGGTAGCCCAGCAGG



PTSTEEGTSTEPSEGS

TTCTCCTACCTCCACCGAGGAAGGTACT



APGTSESATPESGPG

TCTACCGAACCGTCCGAGGGTAGCGCA



TSESATPESGPGTSES

CCAGGTACCTCTGAAAGCGCAACTCCTG



ATPESGPGSEPATSG

AGTCTGGCCCAGGTAGCGAACCTGCTAC



SETPGSEPATSGSETP

CTCCGGCTCTGAGACTCCAGGTACCTCT



GSPAGSPTSTEEGTS

GAAAGCGCAACCCCGGAATCTGGTCCA



TEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTG



EGSAPGSEPATSGSE

AAACCCCAGGTACCTCTGAAAGCGCTA



TPGTSESATPESGPG

CTCCTGAATCTGGCCCAGGTACTTCTAC



TSTEPSEGSAPGFPTI

TGAACCGTCCGAGGGCAGCGCACCAGG



PLSRLFDNAMLRAH

TACTTCTGAAAGCGCTACTCCTGAGTCC



RLHQLAFDTYQEFEE

GGCCCAGGTAGCCCGGCTGGCTCTCCGA



AYIPKEQKYSFLQNP

CTTCCACCGAGGAAGGTAGCCCGGCTG



QTSLCFSESIPTPSNR

GCTCTCCAACTTCTACTGAAGAAGGTAG



EETQQKSNLELLRIS

CCCGGCAGGCTCTCCGACCTCTACTGAG



LLLIQSWLEPVQFLR

GAAGGTACTTCTGAAAGCGCAACCCCG



SVFANSLVYGASDS

GAGTCCGGCCCAGGTACCTCTACCGAAC



NVYDLLKDLEEGIQT

CGTCTGAGGGCAGCGCACCAGGTACCT



LMGRLEDGSPRTGQI

CTGAAAGCGCAACTCCTGAGTCTGGCCC



FKQTYSKFDTNSHN

AGGTAGCGAACCTGCTACCTCCGGCTCT



DDALLKNYGLLYCF

GAGACTCCAGGTACCTCTGAAAGCGCA



RKDMDKVETFLRIV

ACCCCGGAATCTGGTCCAGGTAGCGAA



QCRSVEGSCGFGLTP

CCTGCAACCTCTGGCTCTGAAACCCCAG



RSLLVGGGGTSESAT

GTACCTCTGAAAGCGCTACTCCTGAATC



PESGPGSEPATSGSE

TGGCCCAGGTACTTCTACTGAACCGTCC



TPGTSESATPESGPG

GAGGGCAGCGCACCAGGTAGCCCTGCT



SEPATSGSETPGTSES

GGCTCTCCAACCTCCACCGAAGAAGGT



ATPESGPGTSTEPSE

ACCTCTGAAAGCGCAACCCCTGAATCCG



GSAPGSPAGSPTSTE

GCCCAGGTAGCGAACCGGCAACCTCCG



EGTSESATPESGPGS

GTTCTGAAACCCCAGGTACTTCTGAAAG



EPATSGSETPGTSES

CGCTACTCCTGAGTCCGGCCCAGGTAGC



ATPESGPGSPAGSPT

CCGGCTGGCTCTCCGACTTCCACCGAGG



STEEGSPAGSPTSTEE

AAGGTAGCCCGGCTGGCTCTCCAACTTC



GTSTEPSEGSAPGTS

TACTGAAGAAGGTACTTCTACCGAACCT



ESATPESGPGTSESA

TCCGAGGGCAGCGCACCAGGTACTTCTG



TPESGPGTSESATPES

AAAGCGCTACCCCTGAGTCCGGCCCAG



GPGSEPATSGSETPG

GTACTTCTGAAAGCGCTACTCCTGAATC



SEPATSGSETPGSPA

CGGTCCAGGTACTTCTGAAAGCGCTACC



GSPTSTEEGTSTEPSE

CCGGAATCTGGCCCAGGTAGCGAACCG



GSAPGTSTEPSEGSA

GCTACTTCTGGTTCTGAAACCCCAGGTA



PGSEPATSGSETPGT

GCGAACCGGCTACCTCCGGTTCTGAAAC



SESATPESGPGTSTEP

TCCAGGTAGCCCAGCAGGCTCTCCGACT



SEGSAP

TCCACTGAGGAAGGTACTTCTACTGAAC





CTTCCGAAGGCAGCGCACCAGGTACCTC





TACTGAACCTTCTGAGGGCAGCGCTCCA





GGTAGCGAACCTGCAACCTCTGGCTCTG





AAACCCCAGGTACCTCTGAAAGCGCTA





CTCCTGAATCTGGCCCAGGTACTTCTAC





TGAACCGTCCGAGGGCAGCGCACCAGG





TTTTCCGACTATTCCGCTGTCTCGTCTGT





TTGATAATGCTATGCTGCGTGCGCACCG





TCTGCACCAGCTGGCCTTTGATACTTAC





CAGGAATTTGAAGAAGCcTACATTCCTA





AAGAGCAGAAGTACTCTTTCCTGCAAA





ACCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGAG





GAAACTCAGCAAAAGTCCAATCTGGAA





CTACTCCGCATTTCTCTGCTTCTGATTCA





GAGCTGGCTAGAACCAGTGCAATTTCTG





CGTTCCGTCTTCGCCAATAGCCTAGTTT





ATGGCGCATCCGACAGCAACGTATACG





ATCTCCTGAAAGATCTCGAGGAAGGCA





TTCAGACCCTGATGGGTCGTCTCGAGGA





TGGCTCTCCGCGTACTGGTCAGATCTTC





AAGCAGACTTACTCTAAATTTGATACTA





ACAGCCACAATGACGATGCGCTTCTAA





AAAACTATGGTCTGCTGTATTGTTTTCG





TAAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGTT





GAGGGCAGCTGTGGTTTCTAAGGTctgacc





ccgcgcagcctgctggtgggcggcGGTGGTACCTCT





GAAAGCGCAACTCCTGAGTCTGGCCCA





GGTAGCGAACCTGCTACCTCCGGCTCTG





AGACTCCAGGTACCTCTGAAAGCGCAA





CCCCGGAATCTGGTCCAGGTAGCGAAC





CTGCAACCTCTGGCTCTGAAACCCCAGG





TACCTCTGAAAGCGCTACTCCTGAATCT





GGCCCAGGTACTTCTACTGAACCGTCCG





AGGGCAGCGCACCAGGTAGCCCTGCTG





GCTCTCCAACCTCCACCGAAGAAGGTAC





CTCTGAAAGCGCAACCCCTGAATCCGGC





CCAGGTAGCGAACCGGCAACCTCCGGT





TCTGAAACCCCAGGTACTTCTGAAAGCG





CTACTCCTGAGTCCGGCCCAGGTAGCCC





GGCTGGCTCTCCGACTTCCACCGAGGAA





GGTAGCCCGGCTGGCTCTCCAACTTCTA





CTGAAGAAGGTACTTCTACCGAACCTTC





CGAGGGCAGCGCACCAGGTACTTCTGA





AAGCGCTACCCCTGAGTCCGGCCCAGGT





ACTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACCCC





GGAATCTGGCCCAGGTAGCGAACCGGC





TACTTCTGGTTCTGAAACCCCAGGTAGC





GAACCGGCTACCTCCGGTTCTGAAACTC





CAGGTAGCCCAGCAGGCTCTCCGACTTC





CACTGAGGAAGGTACTTCTACTGAACCT





TCCGAAGGCAGCGCACCAGGTACCTCT





ACTGAACCTTCTGAGGGCAGCGCTCCAG





GTAGCGAACCTGCAACCTCTGGCTCTGA





AACCCCAGGTACCTCTGAAAGCGCTACT





CCTGAATCTGGCCCAGGTACTTCTACTG





AACCGTCCGAGGGCAGCGCACCA





AE912-
MAEPAGSPTSTEEGT
807
ATGGCTGAACCTGCTGGCTCTCCAACCT
808


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG


FXIa-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT


AE288
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG



GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG



TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT



PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA



APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC



TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT



ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT



GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC



EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT



TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG



PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC



STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT



GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG



ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA



EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA



GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC



TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA



PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC



ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA



PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT



SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC



TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT



SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC



GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG



EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG



APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG



SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA



PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC



ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG



PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA



EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG



ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC



GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG



PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC



AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC



PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT



GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG



TSESATPESGPGSEP

CTACTCCGGAGTCTGGCCCAGGTACCTC



ATSGSETPGTSESAT

TACTGAACCGTCTGAGGGTAGCGCTCCA



PESGPGSEPATSGSE

GGTACTTCTACTGAACCGTCCGAAGGTA



TPGTSESATPESGPG

GCGCACCAGGTACTTCTACCGAACCGTC



TSTEPSEGSAPGSPA

CGAAGGCAGCGCTCCAGGTACCTCTACT



GSPTSTEEGTSESATP

GAACCTTCCGAGGGCAGCGCTCCAGGT



ESGPGSEPATSGSET

ACCTCTACCGAACCTTCTGAAGGTAGCG



PGTSESATPESGPGSP

CACCAGGTACTTCTACCGAACCGTCCGA



AGSPTSTEEGSPAGS

GGGTAGCGCACCAGGTAGCCCAGCAGG



PTSTEEGTSTEPSEGS

TTCTCCTACCTCCACCGAGGAAGGTACT



APGTSESATPESGPG

TCTACCGAACCGTCCGAGGGTAGCGCA



TSESATPESGPGTSES

CCAGGTACCTCTGAAAGCGCAACTCCTG



ATPESGPGSEPATSG

AGTCTGGCCCAGGTAGCGAACCTGCTAC



SETPGSEPATSGSETP

CTCCGGCTCTGAGACTCCAGGTACCTCT



GSPAGSPTSTEEGTS

GAAAGCGCAACCCCGGAATCTGGTCCA



TEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTG



EGSAPGSEPATSGSE

AAACCCCAGGTACCTCTGAAAGCGCTA



TPGTSESATPESGPG

CTCCTGAATCTGGCCCAGGTACTTCTAC



TSTEPSEGSAPGFPTI

TGAACCGTCCGAGGGCAGCGCACCAGG



PL SRLFDNAMLRAH

TACTTCTGAAAGCGCTACTCCTGAGTCC



RLHQLAFDTYQEFEE

GGCCCAGGTAGCCCGGCTGGCTCTCCGA



AYIPKEQKYSFLQNP

CTTCCACCGAGGAAGGTAGCCCGGCTG



QTSLCFSESIPTPSNR

GCTCTCCAACTTCTACTGAAGAAGGTAG



EETQQKSNLELLRIS

CCCGGCAGGCTCTCCGACCTCTACTGAG



LLLIQSWLEPVQFLR

GAAGGTACTTCTGAAAGCGCAACCCCG



SVFANSLVYGASDS

GAGTCCGGCCCAGGTACCTCTACCGAAC



NVYDLLKDLEEGIQT

CGTCTGAGGGCAGCGCACCAGGTACCT



LMGRLEDGSPRTGQI

CTGAAAGCGCAACTCCTGAGTCTGGCCC



FKQTYSKFDTNSHN

AGGTAGCGAACCTGCTACCTCCGGCTCT



DDALLKNYGLLYCF

GAGACTCCAGGTACCTCTGAAAGCGCA



RKDMDKVETFLRIV

ACCCCGGAATCTGGTCCAGGTAGCGAA



QCRSVEGSCGFGGG

CCTGCAACCTCTGGCTCTGAAACCCCAG



KLTRVVGGGGTSES

GTACCTCTGAAAGCGCTACTCCTGAATC



ATPESGPGSEPATSG

TGGCCCAGGTACTTCTACTGAACCGTCC



SETPGTSESATPESGP

GAGGGCAGCGCACCAGGTAGCCCTGCT



GSEPATSGSETPGTS

GGCTCTCCAACCTCCACCGAAGAAGGT



ESATPESGPGTSTEPS

ACCTCTGAAAGCGCAACCCCTGAATCCG



EGSAPGSPAGSPTST

GCCCAGGTAGCGAACCGGCAACCTCCG



EEGTSESATPESGPG

GTTCTGAAACCCCAGGTACTTCTGAAAG



SEPATSGSETPGTSES

CGCTACTCCTGAGTCCGGCCCAGGTAGC



ATPESGPGSPAGSPT

CCGGCTGGCTCTCCGACTTCCACCGAGG



STEEGSPAGSPTSTEE

AAGGTAGCCCGGCTGGCTCTCCAACTTC



GTSTEPSEGSAPGTS

TACTGAAGAAGGTACTTCTACCGAACCT



ESATPESGPGTSESA

TCCGAGGGCAGCGCACCAGGTACTTCTG



TPESGPGTSESATPES

AAAGCGCTACCCCTGAGTCCGGCCCAG



GPGSEPATSGSETPG

GTACTTCTGAAAGCGCTACTCCTGAATC



SEPATSGSETPGSPA

CGGTCCAGGTACTTCTGAAAGCGCTACC



GSPTSTEEGTSTEPSE

CCGGAATCTGGCCCAGGTAGCGAACCG



GSAPGTSTEPSEGSA

GCTACTTCTGGTTCTGAAACCCCAGGTA



PGSEPATSGSETPGT

GCGAACCGGCTACCTCCGGTTCTGAAAC



SESATPESGPGTSTEP

TCCAGGTAGCCCAGCAGGCTCTCCGACT



SEGSAP

TCCACTGAGGAAGGTACTTCTACTGAAC





CTTCCGAAGGCAGCGCACCAGGTACCTC





TACTGAACCTTCTGAGGGCAGCGCTCCA





GGTAGCGAACCTGCAACCTCTGGCTCTG





AAACCCCAGGTACCTCTGAAAGCGCTA





CTCCTGAATCTGGCCCAGGTACTTCTAC





TGAACCGTCCGAGGGCAGCGCACCAGG





TTTTCCGACTATTCCGCTGTCTCGTCTGT





TTGATAATGCTATGCTGCGTGCGCACCG





TCTGCACCAGCTGGCCTTTGATACTTAC





CAGGAATTTGAAGAAGCcTACATTCCTA





AAGAGCAGAAGTACTCTTTCCTGCAAA





ACCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGAG





GAAACTCAGCAAAAGTCCAATCTGGAA





CTACTCCGCATTTCTCTGCTTCTGATTCA





GAGCTGGCTAGAACCAGTGCAATTTCTG





CGTTCCGTCTTCGCCAATAGCCTAGTTT





ATGGCGCATCCGACAGCAACGTATACG





ATCTCCTGAAAGATCTCGAGGAAGGCA





TTCAGACCCTGATGGGTCGTCTCGAGGA





TGGCTCTCCGCGTACTGGTCAGATCTTC





AAGCAGACTTACTCTAAATTTGATACTA





ACAGCCACAATGACGATGCGCTTCTAA





AAAACTATGGTCTGCTGTATTGTTTTCG





TAAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGTT





GAGGGCAGCTGTGGTTTCTAAGGTggcgg





caaactgacccgcgtggtgggcggcGGTGGTACCTC





TGAAAGCGCAACTCCTGAGTCTGGCCCA





GGTAGCGAACCTGCTACCTCCGGCTCTG





AGACTCCAGGTACCTCTGAAAGCGCAA





CCCCGGAATCTGGTCCAGGTAGCGAAC





CTGCAACCTCTGGCTCTGAAACCCCAGG





TACCTCTGAAAGCGCTACTCCTGAATCT





GGCCCAGGTACTTCTACTGAACCGTCCG





AGGGCAGCGCACCAGGTAGCCCTGCTG





GCTCTCCAACCTCCACCGAAGAAGGTAC





CTCTGAAAGCGCAACCCCTGAATCCGGC





CCAGGTAGCGAACCGGCAACCTCCGGT





TCTGAAACCCCAGGTACTTCTGAAAGCG





CTACTCCTGAGTCCGGCCCAGGTAGCCC





GGCTGGCTCTCCGACTTCCACCGAGGAA





GGTAGCCCGGCTGGCTCTCCAACTTCTA





CTGAAGAAGGTACTTCTACCGAACCTTC





CGAGGGCAGCGCACCAGGTACTTCTGA





AAGCGCTACCCCTGAGTCCGGCCCAGGT





ACTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACCCC





GGAATCTGGCCCAGGTAGCGAACCGGC





TACTTCTGGTTCTGAAACCCCAGGTAGC





GAACCGGCTACCTCCGGTTCTGAAACTC





CAGGTAGCCCAGCAGGCTCTCCGACTTC





CACTGAGGAAGGTACTTCTACTGAACCT





TCCGAAGGCAGCGCACCAGGTACCTCT





ACTGAACCTTCTGAGGGCAGCGCTCCAG





GTAGCGAACCTGCAACCTCTGGCTCTGA





AACCCCAGGTACCTCTGAAAGCGCTACT





CCTGAATCTGGCCCAGGTACTTCTACTG





AACCGTCCGAGGGCAGCGCACCA





AE912-
MAEPAGSPTSTEEGT
809
ATGGCTGAACCTGCTGGCTCTCCAACCT
810


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG


Elastase-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT


AE288
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG



GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG



TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT



PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA



APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC



TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT



ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT



GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC



EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT



TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG



PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC



STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT



GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG



ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA



EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA



GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC



TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA



PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC



ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA



PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT



SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC



TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT



SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC



GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG



EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG



APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG



SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA



PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC



ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG



PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA



EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG



ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC



GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG



PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC



AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC



PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT



GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG



TSESATPESGPGSEP

CTACTCCGGAGTCTGGCCCAGGTACCTC



ATSGSETPGTSESAT

TACTGAACCGTCTGAGGGTAGCGCTCCA



PESGPGSEPATSGSE

GGTACTTCTACTGAACCGTCCGAAGGTA



TPGTSESATPESGPG

GCGCACCAGGTACTTCTACCGAACCGTC



TSTEPSEGSAPGSPA

CGAAGGCAGCGCTCCAGGTACCTCTACT



GSPTSTEEGTSESATP

GAACCTTCCGAGGGCAGCGCTCCAGGT



ESGPGSEPATSGSET

ACCTCTACCGAACCTTCTGAAGGTAGCG



PGTSESATPESGPGSP

CACCAGGTACTTCTACCGAACCGTCCGA



AGSPTSTEEGSPAGS

GGGTAGCGCACCAGGTAGCCCAGCAGG



PTSTEEGTSTEPSEGS

TTCTCCTACCTCCACCGAGGAAGGTACT



APGTSESATPESGPG

TCTACCGAACCGTCCGAGGGTAGCGCA



TSESATPESGPGTSES

CCAGGTACCTCTGAAAGCGCAACTCCTG



ATPESGPGSEPATSG

AGTCTGGCCCAGGTAGCGAACCTGCTAC



SETPGSEPATSGSETP

CTCCGGCTCTGAGACTCCAGGTACCTCT



GSPAGSPTSTEEGTS

GAAAGCGCAACCCCGGAATCTGGTCCA



TEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTG



EGSAPGSEPATSGSE

AAACCCCAGGTACCTCTGAAAGCGCTA



TPGTSESATPESGPG

CTCCTGAATCTGGCCCAGGTACTTCTAC



TSTEPSEGSAPGFPTI

TGAACCGTCCGAGGGCAGCGCACCAGG



PLSRLFDNAMLRAH

TACTTCTGAAAGCGCTACTCCTGAGTCC



RLHQLAFDTYQEFEE

GGCCCAGGTAGCCCGGCTGGCTCTCCGA



AYIPKEQKYSFLQNP

CTTCCACCGAGGAAGGTAGCCCGGCTG



QTSLCFSESIPTPSNR

GCTCTCCAACTTCTACTGAAGAAGGTAG



EETQQKSNLELLRIS

CCCGGCAGGCTCTCCGACCTCTACTGAG



LLLIQSWLEPVQFLR

GAAGGTACTTCTGAAAGCGCAACCCCG



SVFANSLVYGASDS

GAGTCCGGCCCAGGTACCTCTACCGAAC



NVYDLLKDLEEGIQT

CGTCTGAGGGCAGCGCACCAGGTACCT



LMGRLEDGSPRTGQI

CTGAAAGCGCAACTCCTGAGTCTGGCCC



FKQTYSKFDTNSHN

AGGTAGCGAACCTGCTACCTCCGGCTCT



DDALLKNYGLLYCF

GAGACTCCAGGTACCTCTGAAAGCGCA



RKDMDKVETFLRIV

ACCCCGGAATCTGGTCCAGGTAGCGAA



QCRSVEGSCGFGGG

CCTGCAACCTCTGGCTCTGAAACCCCAG



LGPVSGVPGGTSESA

GTACCTCTGAAAGCGCTACTCCTGAATC



TPESGPGSEPATSGS

TGGCCCAGGTACTTCTACTGAACCGTCC



ETPGTSESATPESGP

GAGGGCAGCGCACCAGGTAGCCCTGCT



GSEPATSGSETPGTS

GGCTCTCCAACCTCCACCGAAGAAGGT



ESATPESGPGTSTEPS

ACCTCTGAAAGCGCAACCCCTGAATCCG



EGSAPGSPAGSPTST

GCCCAGGTAGCGAACCGGCAACCTCCG



EEGTSESATPESGPG

GTTCTGAAACCCCAGGTACTTCTGAAAG



SEPATSGSETPGTSES

CGCTACTCCTGAGTCCGGCCCAGGTAGC



ATPESGPGSPAGSPT

CCGGCTGGCTCTCCGACTTCCACCGAGG



STEEGSPAGSPTSTEE

AAGGTAGCCCGGCTGGCTCTCCAACTTC



GTSTEPSEGSAPGTS

TACTGAAGAAGGTACTTCTACCGAACCT



ESATPESGPGTSESA

TCCGAGGGCAGCGCACCAGGTACTTCTG



TPESGPGTSESATPES

AAAGCGCTACCCCTGAGTCCGGCCCAG



GPGSEPATSGSETPG

GTACTTCTGAAAGCGCTACTCCTGAATC



SEPATSGSETPGSPA

CGGTCCAGGTACTTCTGAAAGCGCTACC



GSPTSTEEGTSTEPSE

CCGGAATCTGGCCCAGGTAGCGAACCG



GSAPGTSTEPSEGSA

GCTACTTCTGGTTCTGAAACCCCAGGTA



PGSEPATSGSETPGT

GCGAACCGGCTACCTCCGGTTCTGAAAC



SESATPESGPGTSTEP

TCCAGGTAGCCCAGCAGGCTCTCCGACT



SEGSAP

TCCACTGAGGAAGGTACTTCTACTGAAC





CTTCCGAAGGCAGCGCACCAGGTACCTC





TACTGAACCTTCTGAGGGCAGCGCTCCA





GGTAGCGAACCTGCAACCTCTGGCTCTG





AAACCCCAGGTACCTCTGAAAGCGCTA





CTCCTGAATCTGGCCCAGGTACTTCTAC





TGAACCGTCCGAGGGCAGCGCACCAGG





TTTTCCGACTATTCCGCTGTCTCGTCTGT





TTGATAATGCTATGCTGCGTGCGCACCG





TCTGCACCAGCTGGCCTTTGATACTTAC





CAGGAATTTGAAGAAGCcTACATTCCTA





AAGAGCAGAAGTACTCTTTCCTGCAAA





ACCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGAG





GAAACTCAGCAAAAGTCCAATCTGGAA





CTACTCCGCATTTCTCTGCTTCTGATTCA





GAGCTGGCTAGAACCAGTGCAATTTCTG





CGTTCCGTCTTCGCCAATAGCCTAGTTT





ATGGCGCATCCGACAGCAACGTATACG





ATCTCCTGAAAGATCTCGAGGAAGGCA





TTCAGACCCTGATGGGTCGTCTCGAGGA





TGGCTCTCCGCGTACTGGTCAGATCTTC





AAGCAGACTTACTCTAAATTTGATACTA





ACAGCCACAATGACGATGCGCTTCTAA





AAAACTATGGTCTGCTGTATTGTTTTCG





TAAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGTT





GAGGGCAGCTGTGGTTTCTAAGGTggcgg





cctgggcccggtgagcggcgtgccgGGTGGTACCTC





TGAAAGCGCAACTCCTGAGTCTGGCCCA





GGTAGCGAACCTGCTACCTCCGGCTCTG





AGACTCCAGGTACCTCTGAAAGCGCAA





CCCCGGAATCTGGTCCAGGTAGCGAAC





CTGCAACCTCTGGCTCTGAAACCCCAGG





TACCTCTGAAAGCGCTACTCCTGAATCT





GGCCCAGGTACTTCTACTGAACCGTCCG





AGGGCAGCGCACCAGGTAGCCCTGCTG





GCTCTCCAACCTCCACCGAAGAAGGTAC





CTCTGAAAGCGCAACCCCTGAATCCGGC





CCAGGTAGCGAACCGGCAACCTCCGGT





TCTGAAACCCCAGGTACTTCTGAAAGCG





CTACTCCTGAGTCCGGCCCAGGTAGCCC





GGCTGGCTCTCCGACTTCCACCGAGGAA





GGTAGCCCGGCTGGCTCTCCAACTTCTA





CTGAAGAAGGTACTTCTACCGAACCTTC





CGAGGGCAGCGCACCAGGTACTTCTGA





AAGCGCTACCCCTGAGTCCGGCCCAGGT





ACTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACCCC





GGAATCTGGCCCAGGTAGCGAACCGGC





TACTTCTGGTTCTGAAACCCCAGGTAGC





GAACCGGCTACCTCCGGTTCTGAAACTC





CAGGTAGCCCAGCAGGCTCTCCGACTTC





CACTGAGGAAGGTACTTCTACTGAACCT





TCCGAAGGCAGCGCACCAGGTACCTCT





ACTGAACCTTCTGAGGGCAGCGCTCCAG





GTAGCGAACCTGCAACCTCTGGCTCTGA





AACCCCAGGTACCTCTGAAAGCGCTACT





CCTGAATCTGGCCCAGGTACTTCTACTG





AACCGTCCGAGGGCAGCGCACCA





AE912-
MAEPAGSPTSTEEGT
811
ATGGCTGAACCTGCTGGCTCTCCAACCT
812


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG


MMP-17-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT


AE288
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG



GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG



TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT



PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA



APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC



TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT



ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT



GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC



EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT



TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG



PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC



STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT



GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG



ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA



EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA



GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC



TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA



PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC



ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA



PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT



SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC



TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT



SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC



GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG



EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG



APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG



SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA



PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC



ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG



PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA



EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG



ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC



GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG



PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC



AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC



PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT



GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG



TSESATPESGPGSEP

CTACTCCGGAGTCTGGCCCAGGTACCTC



ATSGSETPGTSESAT

TACTGAACCGTCTGAGGGTAGCGCTCCA



PESGPGSEPATSGSE

GGTACTTCTACTGAACCGTCCGAAGGTA



TPGTSESATPESGPG

GCGCACCAGGTACTTCTACCGAACCGTC



TSTEPSEGSAPGSPA

CGAAGGCAGCGCTCCAGGTACCTCTACT



GSPTSTEEGTSESATP

GAACCTTCCGAGGGCAGCGCTCCAGGT



ESGPGSEPATSGSET

ACCTCTACCGAACCTTCTGAAGGTAGCG



PGTSESATPESGPGSP

CACCAGGTACTTCTACCGAACCGTCCGA



AGSPTSTEEGSPAGS

GGGTAGCGCACCAGGTAGCCCAGCAGG



PTSTEEGTSTEPSEGS

TTCTCCTACCTCCACCGAGGAAGGTACT



APGTSESATPESGPG

TCTACCGAACCGTCCGAGGGTAGCGCA



TSESATPESGPGTSES

CCAGGTACCTCTGAAAGCGCAACTCCTG



ATPESGPGSEPATSG

AGTCTGGCCCAGGTAGCGAACCTGCTAC



SETPGSEPATSGSETP

CTCCGGCTCTGAGACTCCAGGTACCTCT



GSPAGSPTSTEEGTS

GAAAGCGCAACCCCGGAATCTGGTCCA



TEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTG



EGSAPGSEPATSGSE

AAACCCCAGGTACCTCTGAAAGCGCTA



TPGTSESATPESGPG

CTCCTGAATCTGGCCCAGGTACTTCTAC



TSTEPSEGSAPGFPTI

TGAACCGTCCGAGGGCAGCGCACCAGG



PLSRLFDNAMLRAH

TACTTCTGAAAGCGCTACTCCTGAGTCC



RLHQLAFDTYQEFEE

GGCCCAGGTAGCCCGGCTGGCTCTCCGA



AYIPKEQKYSFLQNP

CTTCCACCGAGGAAGGTAGCCCGGCTG



QTSLCFSESIPTPSNR

GCTCTCCAACTTCTACTGAAGAAGGTAG



EETQQKSNLELLRIS

CCCGGCAGGCTCTCCGACCTCTACTGAG



LLLIQSWLEPVQFLR

GAAGGTACTTCTGAAAGCGCAACCCCG



SVFANSLVYGASDS

GAGTCCGGCCCAGGTACCTCTACCGAAC



NVYDLLKDLEEGIQT

CGTCTGAGGGCAGCGCACCAGGTACCT



LMGRLEDGSPRTGQI

CTGAAAGCGCAACTCCTGAGTCTGGCCC



FKQTYSKFDTNSHN

AGGTAGCGAACCTGCTACCTCCGGCTCT



DDALLKNYGLLYCF

GAGACTCCAGGTACCTCTGAAAGCGCA



RKDMDKVETFLRIV

ACCCCGGAATCTGGTCCAGGTAGCGAA



QCRSVEGSCGFGAPL

CCTGCAACCTCTGGCTCTGAAACCCCAG



GLRLRGGGGTSESA

GTACCTCTGAAAGCGCTACTCCTGAATC



TPESGPGSEPATSGS

TGGCCCAGGTACTTCTACTGAACCGTCC



ETPGTSESATPESGP

GAGGGCAGCGCACCAGGTAGCCCTGCT



GSEPATSGSETPGTS

GGCTCTCCAACCTCCACCGAAGAAGGT



ESATPESGPGTSTEPS

ACCTCTGAAAGCGCAACCCCTGAATCCG



EGSAPGSPAGSPTST

GCCCAGGTAGCGAACCGGCAACCTCCG



EEGTSESATPESGPG

GTTCTGAAACCCCAGGTACTTCTGAAAG



SEPATSGSETPGTSES

CGCTACTCCTGAGTCCGGCCCAGGTAGC



ATPESGPGSPAGSPT

CCGGCTGGCTCTCCGACTTCCACCGAGG



STEEGSPAGSPTSTEE

AAGGTAGCCCGGCTGGCTCTCCAACTTC



GTSTEPSEGSAPGTS

TACTGAAGAAGGTACTTCTACCGAACCT



ESATPESGPGTSESA

TCCGAGGGCAGCGCACCAGGTACTTCTG



TPESGPGTSESATPES

AAAGCGCTACCCCTGAGTCCGGCCCAG



GPGSEPATSGSETPG

GTACTTCTGAAAGCGCTACTCCTGAATC



SEPATSGSETPGSPA

CGGTCCAGGTACTTCTGAAAGCGCTACC



GSPTSTEEGTSTEPSE

CCGGAATCTGGCCCAGGTAGCGAACCG



GSAPGTSTEPSEGSA

GCTACTTCTGGTTCTGAAACCCCAGGTA



PGSEPATSGSETPGT

GCGAACCGGCTACCTCCGGTTCTGAAAC



SESATPESGPGTSTEP

TCCAGGTAGCCCAGCAGGCTCTCCGACT



SEGSAP

TCCACTGAGGAAGGTACTTCTACTGAAC





CTTCCGAAGGCAGCGCACCAGGTACCTC





TACTGAACCTTCTGAGGGCAGCGCTCCA





GGTAGCGAACCTGCAACCTCTGGCTCTG





AAACCCCAGGTACCTCTGAAAGCGCTA





CTCCTGAATCTGGCCCAGGTACTTCTAC





TGAACCGTCCGAGGGCAGCGCACCAGG





TTTTCCGACTATTCCGCTGTCTCGTCTGT





TTGATAATGCTATGCTGCGTGCGCACCG





TCTGCACCAGCTGGCCTTTGATACTTAC





CAGGAATTTGAAGAAGCcTACATTCCTA





AAGAGCAGAAGTACTCTTTCCTGCAAA





ACCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGAG





GAAACTCAGCAAAAGTCCAATCTGGAA





CTACTCCGCATTTCTCTGCTTCTGATTCA





GAGCTGGCTAGAACCAGTGCAATTTCTG





CGTTCCGTCTTCGCCAATAGCCTAGTTT





ATGGCGCATCCGACAGCAACGTATACG





ATCTCCTGAAAGATCTCGAGGAAGGCA





TTCAGACCCTGATGGGTCGTCTCGAGGA





TGGCTCTCCGCGTACTGGTCAGATCTTC





AAGCAGACTTACTCTAAATTTGATACTA





ACAGCCACAATGACGATGCGCTTCTAA





AAAACTATGGTCTGCTGTATTGTTTTCG





TAAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGTT





GAGGGCAGCTGTGGTTTCTAAGGTgcgcc





gctgggcctgcgcctgcgcggcggcGGTGGTACCTC





TGAAAGCGCAACTCCTGAGTCTGGCCCA





GGTAGCGAACCTGCTACCTCCGGCTCTG





AGACTCCAGGTACCTCTGAAAGCGCAA





CCCCGGAATCTGGTCCAGGTAGCGAAC





CTGCAACCTCTGGCTCTGAAACCCCAGG





TACCTCTGAAAGCGCTACTCCTGAATCT





GGCCCAGGTACTTCTACTGAACCGTCCG





AGGGCAGCGCACCAGGTAGCCCTGCTG





GCTCTCCAACCTCCACCGAAGAAGGTAC





CTCTGAAAGCGCAACCCCTGAATCCGGC





CCAGGTAGCGAACCGGCAACCTCCGGT





TCTGAAACCCCAGGTACTTCTGAAAGCG





CTACTCCTGAGTCCGGCCCAGGTAGCCC





GGCTGGCTCTCCGACTTCCACCGAGGAA





GGTAGCCCGGCTGGCTCTCCAACTTCTA





CTGAAGAAGGTACTTCTACCGAACCTTC





CGAGGGCAGCGCACCAGGTACTTCTGA





AAGCGCTACCCCTGAGTCCGGCCCAGGT





ACTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACCCC





GGAATCTGGCCCAGGTAGCGAACCGGC





TACTTCTGGTTCTGAAACCCCAGGTAGC





GAACCGGCTACCTCCGGTTCTGAAACTC





CAGGTAGCCCAGCAGGCTCTCCGACTTC





CACTGAGGAAGGTACTTCTACTGAACCT





TCCGAAGGCAGCGCACCAGGTACCTCT





ACTGAACCTTCTGAGGGCAGCGCTCCAG





GTAGCGAACCTGCAACCTCTGGCTCTGA





AACCCCAGGTACCTCTGAAAGCGCTACT





CCTGAATCTGGCCCAGGTACTTCTACTG





AACCGTCCGAGGGCAGCGCACCA





AM923-
MAEPAGSPTSTEEGA
813
ATGGCTGAACCTGCTGGCTCTCCAACCT
814


hGH-
SPGTSSTGSPGSSTPS

CCACTGAGGAAGGTGCATCCCCGGGCA


Thrombin-
GATGSPGSSTPSGAT

CCAGCTCTACCGGTTCTCCAGGTAGCTC


AE144
GSPGTSTEPSEGSAP

TACCCCGTCTGGTGCTACCGGCTCTCCA



GSEPATSGSETPGSP

GGTAGCTCTACCCCGTCTGGTGCTACTG



AGSPTSTEEGSTSST

GCTCTCCAGGTACTTCTACTGAACCGTC



AESPGPGTSTPESGS

TGAAGGCAGCGCACCAGGTAGCGAACC



ASPGSTSESPSGTAP

GGCTACTTCCGGTTCTGAAACCCCAGGT



GSTSESPSGTAPGTS

AGCCCAGCAGGTTCTCCAACTTCTACTG



TPESGSASPGTSTPES

AAGAAGGTTCTACCAGCTCTACCGCAG



GSASPGSEPATSGSE

AATCTCCTGGTCCAGGTACCTCTACTCC



TPGTSESATPESGPG

GGAAAGCGGCTCTGCATCTCCAGGTTCT



SPAGSPTSTEEGTSTE

ACTAGCGAATCTCCTTCTGGCACTGCAC



PSEGSAPGTSESATP

CAGGTTCTACTAGCGAATCCCCGTCTGG



ESGPGTSTEPSEGSA

TACTGCTCCAGGTACTTCTACTCCTGAA



PGTSTEPSEGSAPGSP

AGCGGTTCCGCTTCTCCAGGTACCTCTA



AGSPTSTEEGTSTEPS

CTCCGGAAAGCGGTTCTGCATCTCCAGG



EGSAPGTSTEPSEGS

TAGCGAACCGGCAACCTCCGGCTCTGA



APGTSESATPESGPG

AACCCCAGGTACCTCTGAAAGCGCTACT



TSESATPESGPGTSTE

CCTGAATCCGGCCCAGGTAGCCCGGCA



PSEGSAPGTSTEPSE

GGTTCTCCGACTTCCACTGAGGAAGGTA



GSAPGTSESATPESG

CCTCTACTGAACCTTCTGAGGGCAGCGC



PGTSTEPSEGSAPGS

TCCAGGTACTTCTGAAAGCGCTACCCCG



EPATSGSETPGSPAG

GAGTCCGGTCCAGGTACTTCTACTGAAC



SPTSTEEGSSTPSGAT

CGTCCGAAGGTAGCGCACCAGGTACTTC



GSPGTPGSGTASSSP

TACCGAACCGTCCGAGGGTAGCGCACC



GSSTPSGATGSPGTS

AGGTAGCCCAGCAGGTTCTCCTACCTCC



TEPSEGSAPGTSTEPS

ACCGAGGAAGGTACTTCTACCGAACCG



EGSAPGSEPATSGSE

TCCGAGGGTAGCGCACCAGGTACTTCTA



TPGSPAGSPTSTEEG

CCGAACCTTCCGAGGGCAGCGCACCAG



SPAGSPTSTEEGTSTE

GTACTTCTGAAAGCGCTACCCCTGAGTC



PSEGSAPGASASGAP

CGGCCCAGGTACTTCTGAAAGCGCTACT



STGGTSESATPESGP

CCTGAATCCGGTCCAGGTACCTCTACTG



GSPAGSPTSTEEGSP

AACCTTCCGAAGGCAGCGCTCCAGGTA



AGSPTSTEEGSTSST

CCTCTACCGAACCGTCCGAGGGCAGCG



AESPGPGSTSESPSGT

CACCAGGTACTTCTGAAAGCGCAACCCC



APGTSPSGESSTAPG

TGAATCCGGTCCAGGTACTTCTACTGAA



TPGSGTASSSPGSSTP

CCTTCCGAAGGTAGCGCTCCAGGTAGCG



SGATGSPGSSPSAST

AACCTGCTACTTCTGGTTCTGAAACCCC



GTGPGSEPATSGSET

AGGTAGCCCGGCTGGCTCTCCGACCTCC



PGTSESATPESGPGS

ACCGAGGAAGGTAGCTCTACCCCGTCTG



EPATSGSETPGSTSST

GTGCTACTGGTTCTCCAGGTACTCCGGG



AESPGPGSTSSTAESP

CAGCGGTACTGCTTCTTCCTCTCCAGGT



GPGTSPSGESSTAPG

AGCTCTACCCCTTCTGGTGCTACTGGCT



SEPATSGSETPGSEP

CTCCAGGTACCTCTACCGAACCGTCCGA



ATSGSETPGTSTEPSE

GGGTAGCGCACCAGGTACCTCTACTGA



GSAPGSTSSTAESPG

ACCGTCTGAGGGTAGCGCTCCAGGTAG



PGTSTPESGSASPGST

CGAACCGGCAACCTCCGGTTCTGAAACT



SESPSGTAPGTSTEPS

CCAGGTAGCCCTGCTGGCTCTCCGACTT



EGSAPGTSTEPSEGS

CTACTGAGGAAGGTAGCCCGGCTGGTTC



APGTSTEPSEGSAPG

TCCGACTTCTACTGAGGAAGGTACTTCT



SSTPSGATGSPGSSPS

ACCGAACCTTCCGAAGGTAGCGCTCCA



ASTGTGPGASPGTSS

GGTGCAAGCGCAAGCGGCGCGCCAAGC



TGSPGSEPATSGSET

ACGGGAGGTACTTCTGAAAGCGCTACTC



PGTSESATPESGPGSP

CTGAGTCCGGCCCAGGTAGCCCGGCTG



AGSPTSTEEGSSTPS

GCTCTCCGACTTCCACCGAGGAAGGTAG



GATGSPGSSPSASTG

CCCGGCTGGCTCTCCAACTTCTACTGAA



TGPGASPGTSSTGSP

GAAGGTTCTACCAGCTCTACCGCTGAAT



GTSESATPESGPGTS

CTCCTGGCCCAGGTTCTACTAGCGAATC



TEPSEGSAPGTSTEPS

TCCGTCTGGCACCGCACCAGGTACTTCC



EGSAPGFPTIPLSRLF

CCTAGCGGTGAATCTTCTACTGCACCAG



DNAMLRAHRLHQL

GTACCCCTGGCAGCGGTACCGCTTCTTC



AFDTYQEFEEAYIPK

CTCTCCAGGTAGCTCTACCCCGTCTGGT



EQKYSFLQNPQTSLC

GCTACTGGCTCTCCAGGTTCTAGCCCGT



FSESIPTPSNREETQQ

CTGCATCTACCGGTACCGGCCCAGGTAG



KSNLELLRISLLLIQS

CGAACCGGCAACCTCCGGCTCTGAAACT



WLEPVQFLRSVFAN

CCAGGTACTTCTGAAAGCGCTACTCCGG



SLVYGASDSNVYDL

AATCCGGCCCAGGTAGCGAACCGGCTA



LKDLEEGIQTLMGRL

CTTCCGGCTCTGAAACCCCAGGTTCCAC



EDGSPRTGQIFKQTY

CAGCTCTACTGCAGAATCTCCGGGCCCA



SKFDTNSHNDDALL

GGTTCTACTAGCTCTACTGCAGAATCTC



KNYGLLYCFRKDMD

CGGGTCCAGGTACTTCTCCTAGCGGCGA



KVETFLRIVQCRSVE

ATCTTCTACCGCTCCAGGTAGCGAACCG



GSCGFGLTPRSLLVG

GCAACCTCTGGCTCTGAAACTCCAGGTA



GGGSEPATSGSETPG

GCGAACCTGCAACCTCCGGCTCTGAAAC



TSESATPESGPGSEP

CCCAGGTACTTCTACTGAACCTTCTGAG



ATSGSETPGSPAGSP

GGCAGCGCACCAGGTTCTACCAGCTCTA



TSTEEGTSTEPSEGS

CCGCAGAATCTCCTGGTCCAGGTACCTC



APGSEPATSGSETPG

TACTCCGGAAAGCGGCTCTGCATCTCCA



SEPATSGSETPGSEP

GGTTCTACTAGCGAATCTCCTTCTGGCA



ATSGSETPGTSTEPSE

CTGCACCAGGTACTTCTACCGAACCGTC



GSAPGTSESATPESG

CGAAGGCAGCGCTCCAGGTACCTCTACT



PGSEPATSGSETPGT

GAACCTTCCGAGGGCAGCGCTCCAGGT



STEPSEGSAP

ACCTCTACCGAACCTTCTGAAGGTAGCG





CACCAGGTAGCTCTACTCCGTCTGGTGC





AACCGGCTCCCCAGGTTCTAGCCCGTCT





GCTTCCACTGGTACTGGCCCAGGTGCTT





CCCCGGGCACCAGCTCTACTGGTTCTCC





AGGTAGCGAACCTGCTACCTCCGGTTCT





GAAACCCCAGGTACCTCTGAAAGCGCA





ACTCCGGAGTCTGGTCCAGGTAGCCCTG





CAGGTTCTCCTACCTCCACTGAGGAAGG





TAGCTCTACTCCGTCTGGTGCAACCGGC





TCCCCAGGTTCTAGCCCGTCTGCTTCCA





CTGGTACTGGCCCAGGTGCTTCCCCGGG





CACCAGCTCTACTGGTTCTCCAGGTACC





TCTGAAAGCGCTACTCCGGAGTCTGGCC





CAGGTACCTCTACTGAACCGTCTGAGGG





TAGCGCTCCAGGTACTTCTACTGAACCG





TCCGAAGGTAGCGCACCAGGTTTTCCGA





CTATTCCGCTGTCTCGTCTGTTTGATAAT





GCTATGCTGCGTGCGCACCGTCTGCACC





AGCTGGCCTTTGATACTTACCAGGAATT





TGAAGAAGCcTACATTCCTAAAGAGCAG





AAGTACTCTTTCCTGCAAAACCCACAGA





CTTCTCTCTGCTTCAGCGAATCTATTCCG





ACGCCTTCCAATCGCGAGGAAACTCAG





CAAAAGTCCAATCTGGAACTACTCCGCA





TTTCTCTGCTTCTGATTCAGAGCTGGCT





AGAACCAGTGCAATTTCTGCGTTCCGTC





TTCGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTGAA





AGATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTCCG





CGTACTGGTCAGATCTTCAAGCAGACTT





ACTCTAAATTTGATACTAACAGCCACAA





TGACGATGCGCTTCTAAAAAACTATGGT





CTGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATTGT





TCAGTGTCGTTCCGTTGAGGGCAGCTGT





GGTTTCTAAGGTctgaccccgcgcagcctgctggtgg





gcggcGGTGGTAGCGAACCGGCAACTTCC





GGCTCTGAAACCCCAGGTACTTCTGAAA





GCGCTACTCCTGAGTCTGGCCCAGGTAG





CGAACCTGCTACCTCTGGCTCTGAAACC





CCAGGTAGCCCGGCAGGCTCTCCGACTT





CCACCGAGGAAGGTACCTCTACTGAAC





CTTCTGAGGGTAGCGCTCCAGGTAGCGA





ACCGGCAACCTCTGGCTCTGAAACCCCA





GGTAGCGAACCTGCTACCTCCGGCTCTG





AAACTCCAGGTAGCGAACCGGCTACTTC





CGGTTCTGAAACTCCAGGTACCTCTACC





GAACCTTCCGAAGGCAGCGCACCAGGT





ACTTCTGAAAGCGCAACCCCTGAATCCG





GTCCAGGTAGCGAACCGGCTACTTCTGG





CTCTGAGACTCCAGGTACTTCTACCGAA





CCGTCCGAAGGTAGCGCACCA





AM923-
MAEPAGSPTSTEEGA
815
ATGGCTGAACCTGCTGGCTCTCCAACCT
816


hGH-
SPGTSSTGSPGSSTPS

CCACTGAGGAAGGTGCATCCCCGGGCA


FXIa-
GATGSPGSSTPSGAT

CCAGCTCTACCGGTTCTCCAGGTAGCTC


AE144
GSPGTSTEPSEGSAP

TACCCCGTCTGGTGCTACCGGCTCTCCA



GSEPATSGSETPGSP

GGTAGCTCTACCCCGTCTGGTGCTACTG



AGSPTSTEEGSTSST

GCTCTCCAGGTACTTCTACTGAACCGTC



AESPGPGTSTPESGS

TGAAGGCAGCGCACCAGGTAGCGAACC



ASPGSTSESPSGTAP

GGCTACTTCCGGTTCTGAAACCCCAGGT



GSTSESPSGTAPGTS

AGCCCAGCAGGTTCTCCAACTTCTACTG



TPESGSASPGTSTPES

AAGAAGGTTCTACCAGCTCTACCGCAG



GSASPGSEPATSGSE

AATCTCCTGGTCCAGGTACCTCTACTCC



TPGTSESATPESGPG

GGAAAGCGGCTCTGCATCTCCAGGTTCT



SPAGSPTSTEEGTSTE

ACTAGCGAATCTCCTTCTGGCACTGCAC



PSEGSAPGTSESATP

CAGGTTCTACTAGCGAATCCCCGTCTGG



ESGPGTSTEPSEGSA

TACTGCTCCAGGTACTTCTACTCCTGAA



PGTSTEPSEGSAPGSP

AGCGGTTCCGCTTCTCCAGGTACCTCTA



AGSPTSTEEGTSTEPS

CTCCGGAAAGCGGTTCTGCATCTCCAGG



EGSAPGTSTEPSEGS

TAGCGAACCGGCAACCTCCGGCTCTGA



APGTSESATPESGPG

AACCCCAGGTACCTCTGAAAGCGCTACT



TSESATPESGPGTSTE

CCTGAATCCGGCCCAGGTAGCCCGGCA



PSEGSAPGTSTEPSE

GGTTCTCCGACTTCCACTGAGGAAGGTA



GSAPGTSESATPESG

CCTCTACTGAACCTTCTGAGGGCAGCGC



PGTSTEPSEGSAPGS

TCCAGGTACTTCTGAAAGCGCTACCCCG



EPATSGSETPGSPAG

GAGTCCGGTCCAGGTACTTCTACTGAAC



SPTSTEEGSSTPSGAT

CGTCCGAAGGTAGCGCACCAGGTACTTC



GSPGTPGSGTASSSP

TACCGAACCGTCCGAGGGTAGCGCACC



GSSTPSGATGSPGTS

AGGTAGCCCAGCAGGTTCTCCTACCTCC



TEPSEGSAPGTSTEPS

ACCGAGGAAGGTACTTCTACCGAACCG



EGSAPGSEPATSGSE

TCCGAGGGTAGCGCACCAGGTACTTCTA



TPGSPAGSPTSTEEG

CCGAACCTTCCGAGGGCAGCGCACCAG



SPAGSPTSTEEGTSTE

GTACTTCTGAAAGCGCTACCCCTGAGTC



PSEGSAPGASASGAP

CGGCCCAGGTACTTCTGAAAGCGCTACT



STGGTSESATPESGP

CCTGAATCCGGTCCAGGTACCTCTACTG



GSPAGSPTSTEEGSP

AACCTTCCGAAGGCAGCGCTCCAGGTA



AGSPTSTEEGSTSST

CCTCTACCGAACCGTCCGAGGGCAGCG



AESPGPGSTSESPSGT

CACCAGGTACTTCTGAAAGCGCAACCCC



APGTSPSGESSTAPG

TGAATCCGGTCCAGGTACTTCTACTGAA



TPGSGTASSSPGSSTP

CCTTCCGAAGGTAGCGCTCCAGGTAGCG



SGATGSPGSSPSAST

AACCTGCTACTTCTGGTTCTGAAACCCC



GTGPGSEPATSGSET

AGGTAGCCCGGCTGGCTCTCCGACCTCC



PGTSESATPESGPGS

ACCGAGGAAGGTAGCTCTACCCCGTCTG



EPATSGSETPGSTSST

GTGCTACTGGTTCTCCAGGTACTCCGGG



AESPGPGSTSSTAESP

CAGCGGTACTGCTTCTTCCTCTCCAGGT



GPGTSPSGESSTAPG

AGCTCTACCCCTTCTGGTGCTACTGGCT



SEPATSGSETPGSEP

CTCCAGGTACCTCTACCGAACCGTCCGA



ATSGSETPGTSTEPSE

GGGTAGCGCACCAGGTACCTCTACTGA



GSAPGSTSSTAESPG

ACCGTCTGAGGGTAGCGCTCCAGGTAG



PGTSTPESGSASPGST

CGAACCGGCAACCTCCGGTTCTGAAACT



SESPSGTAPGTSTEPS

CCAGGTAGCCCTGCTGGCTCTCCGACTT



EGSAPGTSTEPSEGS

CTACTGAGGAAGGTAGCCCGGCTGGTTC



APGTSTEPSEGSAPG

TCCGACTTCTACTGAGGAAGGTACTTCT



SSTPSGATGSPGSSPS

ACCGAACCTTCCGAAGGTAGCGCTCCA



ASTGTGPGASPGTSS

GGTGCAAGCGCAAGCGGCGCGCCAAGC



TGSPGSEPATSGSET

ACGGGAGGTACTTCTGAAAGCGCTACTC



PGTSESATPESGPGSP

CTGAGTCCGGCCCAGGTAGCCCGGCTG



AGSPTSTEEGSSTPS

GCTCTCCGACTTCCACCGAGGAAGGTAG



GATGSPGSSPSASTG

CCCGGCTGGCTCTCCAACTTCTACTGAA



TGPGASPGTSSTGSP

GAAGGTTCTACCAGCTCTACCGCTGAAT



GTSESATPESGPGTS

CTCCTGGCCCAGGTTCTACTAGCGAATC



TEPSEGSAPGTSTEPS

TCCGTCTGGCACCGCACCAGGTACTTCC



EGSAPGFPTIPLSRLF

CCTAGCGGTGAATCTTCTACTGCACCAG



DNAMLRAHRLHQL

GTACCCCTGGCAGCGGTACCGCTTCTTC



AFDTYQEFEEAYIPK

CTCTCCAGGTAGCTCTACCCCGTCTGGT



EQKYSFLQNPQTSLC

GCTACTGGCTCTCCAGGTTCTAGCCCGT



FSESIPTPSNREETQQ

CTGCATCTACCGGTACCGGCCCAGGTAG



KSNLELLRISLLLIQS

CGAACCGGCAACCTCCGGCTCTGAAACT



WLEPVQFLRSVFAN

CCAGGTACTTCTGAAAGCGCTACTCCGG



SLVYGASDSNVYDL

AATCCGGCCCAGGTAGCGAACCGGCTA



LKDLEEGIQTLMGRL

CTTCCGGCTCTGAAACCCCAGGTTCCAC



EDGSPRTGQIFKQTY

CAGCTCTACTGCAGAATCTCCGGGCCCA



SKFDTNSHNDDALL

GGTTCTACTAGCTCTACTGCAGAATCTC



KNYGLLYCFRKDMD

CGGGTCCAGGTACTTCTCCTAGCGGCGA



KVETFLRIVQCRSVE

ATCTTCTACCGCTCCAGGTAGCGAACCG



GSCGFGGGKLTRVV

GCAACCTCTGGCTCTGAAACTCCAGGTA



GGGGSEPATSGSETP

GCGAACCTGCAACCTCCGGCTCTGAAAC



GTSESATPESGPGSE

CCCAGGTACTTCTACTGAACCTTCTGAG



PATSGSETPGSPAGS

GGCAGCGCACCAGGTTCTACCAGCTCTA



PTSTEEGTSTEPSEGS

CCGCAGAATCTCCTGGTCCAGGTACCTC



APGSEPATSGSETPG

TACTCCGGAAAGCGGCTCTGCATCTCCA



SEPATSGSETPGSEP

GGTTCTACTAGCGAATCTCCTTCTGGCA



ATSGSETPGTSTEPSE

CTGCACCAGGTACTTCTACCGAACCGTC



GSAPGTSESATPESG

CGAAGGCAGCGCTCCAGGTACCTCTACT



PGSEPATSGSETPGT

GAACCTTCCGAGGGCAGCGCTCCAGGT



STEPSEGSAP

ACCTCTACCGAACCTTCTGAAGGTAGCG





CACCAGGTAGCTCTACTCCGTCTGGTGC





AACCGGCTCCCCAGGTTCTAGCCCGTCT





GCTTCCACTGGTACTGGCCCAGGTGCTT





CCCCGGGCACCAGCTCTACTGGTTCTCC





AGGTAGCGAACCTGCTACCTCCGGTTCT





GAAACCCCAGGTACCTCTGAAAGCGCA





ACTCCGGAGTCTGGTCCAGGTAGCCCTG





CAGGTTCTCCTACCTCCACTGAGGAAGG





TAGCTCTACTCCGTCTGGTGCAACCGGC





TCCCCAGGTTCTAGCCCGTCTGCTTCCA





CTGGTACTGGCCCAGGTGCTTCCCCGGG





CACCAGCTCTACTGGTTCTCCAGGTACC





TCTGAAAGCGCTACTCCGGAGTCTGGCC





CAGGTACCTCTACTGAACCGTCTGAGGG





TAGCGCTCCAGGTACTTCTACTGAACCG





TCCGAAGGTAGCGCACCAGGTTTTCCGA





CTATTCCGCTGTCTCGTCTGTTTGATAAT





GCTATGCTGCGTGCGCACCGTCTGCACC





AGCTGGCCTTTGATACTTACCAGGAATT





TGAAGAAGCcTACATTCCTAAAGAGCAG





AAGTACTCTTTCCTGCAAAACCCACAGA





CTTCTCTCTGCTTCAGCGAATCTATTCCG





ACGCCTTCCAATCGCGAGGAAACTCAG





CAAAAGTCCAATCTGGAACTACTCCGCA





TTTCTCTGCTTCTGATTCAGAGCTGGCT





AGAACCAGTGCAATTTCTGCGTTCCGTC





TTCGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTGAA





AGATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTCCG





CGTACTGGTCAGATCTTCAAGCAGACTT





ACTCTAAATTTGATACTAACAGCCACAA





TGACGATGCGCTTCTAAAAAACTATGGT





CTGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATTGT





TCAGTGTCGTTCCGTTGAGGGCAGCTGT





GGTTTCTAAGGTggcggcaaactgacccgcgtggtg





ggcggcGGTGGTAGCGAACCGGCAACTTC





CGGCTCTGAAACCCCAGGTACTTCTGAA





AGCGCTACTCCTGAGTCTGGCCCAGGTA





GCGAACCTGCTACCTCTGGCTCTGAAAC





CCCAGGTAGCCCGGCAGGCTCTCCGACT





TCCACCGAGGAAGGTACCTCTACTGAAC





CTTCTGAGGGTAGCGCTCCAGGTAGCGA





ACCGGCAACCTCTGGCTCTGAAACCCCA





GGTAGCGAACCTGCTACCTCCGGCTCTG





AAACTCCAGGTAGCGAACCGGCTACTTC





CGGTTCTGAAACTCCAGGTACCTCTACC





GAACCTTCCGAAGGCAGCGCACCAGGT





ACTTCTGAAAGCGCAACCCCTGAATCCG





GTCCAGGTAGCGAACCGGCTACTTCTGG





CTCTGAGACTCCAGGTACTTCTACCGAA





CCGTCCGAAGGTAGCGCACCA





AM923-
MAEPAGSPTSTEEGA
817
ATGGCTGAACCTGCTGGCTCTCCAACCT
818


hGH-
SPGTSSTGSPGSSTPS

CCACTGAGGAAGGTGCATCCCCGGGCA


Elastase-
GATGSPGSSTPSGAT

CCAGCTCTACCGGTTCTCCAGGTAGCTC


AE144
GSPGTSTEPSEGSAP

TACCCCGTCTGGTGCTACCGGCTCTCCA



GSEPATSGSETPGSP

GGTAGCTCTACCCCGTCTGGTGCTACTG



AGSPTSTEEGSTSST

GCTCTCCAGGTACTTCTACTGAACCGTC



AESPGPGTSTPESGS

TGAAGGCAGCGCACCAGGTAGCGAACC



ASPGSTSESPSGTAP

GGCTACTTCCGGTTCTGAAACCCCAGGT



GSTSESPSGTAPGTS

AGCCCAGCAGGTTCTCCAACTTCTACTG



TPESGSASPGTSTPES

AAGAAGGTTCTACCAGCTCTACCGCAG



GSASPGSEPATSGSE

AATCTCCTGGTCCAGGTACCTCTACTCC



TPGTSESATPESGPG

GGAAAGCGGCTCTGCATCTCCAGGTTCT



SPAGSPTSTEEGTSTE

ACTAGCGAATCTCCTTCTGGCACTGCAC



PSEGSAPGTSESATP

CAGGTTCTACTAGCGAATCCCCGTCTGG



ESGPGTSTEPSEGSA

TACTGCTCCAGGTACTTCTACTCCTGAA



PGTSTEPSEGSAPGSP

AGCGGTTCCGCTTCTCCAGGTACCTCTA



AGSPTSTEEGTSTEPS

CTCCGGAAAGCGGTTCTGCATCTCCAGG



EGSAPGTSTEPSEGS

TAGCGAACCGGCAACCTCCGGCTCTGA



APGTSESATPESGPG

AACCCCAGGTACCTCTGAAAGCGCTACT



TSESATPESGPGTSTE

CCTGAATCCGGCCCAGGTAGCCCGGCA



PSEGSAPGTSTEPSE

GGTTCTCCGACTTCCACTGAGGAAGGTA



GSAPGTSESATPESG

CCTCTACTGAACCTTCTGAGGGCAGCGC



PGTSTEPSEGSAPGS

TCCAGGTACTTCTGAAAGCGCTACCCCG



EPATSGSETPGSPAG

GAGTCCGGTCCAGGTACTTCTACTGAAC



SPTSTEEGSSTPSGAT

CGTCCGAAGGTAGCGCACCAGGTACTTC



GSPGTPGSGTASSSP

TACCGAACCGTCCGAGGGTAGCGCACC



GSSTPSGATGSPGTS

AGGTAGCCCAGCAGGTTCTCCTACCTCC



TEPSEGSAPGTSTEPS

ACCGAGGAAGGTACTTCTACCGAACCG



EGSAPGSEPATSGSE

TCCGAGGGTAGCGCACCAGGTACTTCTA



TPGSPAGSPTSTEEG

CCGAACCTTCCGAGGGCAGCGCACCAG



SPAGSPTSTEEGTSTE

GTACTTCTGAAAGCGCTACCCCTGAGTC



PSEGSAPGASASGAP

CGGCCCAGGTACTTCTGAAAGCGCTACT



STGGTSESATPESGP

CCTGAATCCGGTCCAGGTACCTCTACTG



GSPAGSPTSTEEGSP

AACCTTCCGAAGGCAGCGCTCCAGGTA



AGSPTSTEEGSTSST

CCTCTACCGAACCGTCCGAGGGCAGCG



AESPGPGSTSESPSGT

CACCAGGTACTTCTGAAAGCGCAACCCC



APGTSPSGESSTAPG

TGAATCCGGTCCAGGTACTTCTACTGAA



TPGSGTASSSPGSSTP

CCTTCCGAAGGTAGCGCTCCAGGTAGCG



SGATGSPGSSPSAST

AACCTGCTACTTCTGGTTCTGAAACCCC



GTGPGSEPATSGSET

AGGTAGCCCGGCTGGCTCTCCGACCTCC



PGTSESATPESGPGS

ACCGAGGAAGGTAGCTCTACCCCGTCTG



EPATSGSETPGSTSST

GTGCTACTGGTTCTCCAGGTACTCCGGG



AESPGPGSTSSTAESP

CAGCGGTACTGCTTCTTCCTCTCCAGGT



GPGTSPSGESSTAPG

AGCTCTACCCCTTCTGGTGCTACTGGCT



SEPATSGSETPGSEP

CTCCAGGTACCTCTACCGAACCGTCCGA



ATSGSETPGTSTEPSE

GGGTAGCGCACCAGGTACCTCTACTGA



GSAPGSTSSTAESPG

ACCGTCTGAGGGTAGCGCTCCAGGTAG



PGTSTPESGSASPGST

CGAACCGGCAACCTCCGGTTCTGAAACT



SESPSGTAPGTSTEPS

CCAGGTAGCCCTGCTGGCTCTCCGACTT



EGSAPGTSTEPSEGS

CTACTGAGGAAGGTAGCCCGGCTGGTTC



APGTSTEPSEGSAPG

TCCGACTTCTACTGAGGAAGGTACTTCT



SSTPSGATGSPGSSPS

ACCGAACCTTCCGAAGGTAGCGCTCCA



ASTGTGPGASPGTSS

GGTGCAAGCGCAAGCGGCGCGCCAAGC



TGSPGSEPATSGSET

ACGGGAGGTACTTCTGAAAGCGCTACTC



PGTSESATPESGPGSP

CTGAGTCCGGCCCAGGTAGCCCGGCTG



AGSPTSTEEGSSTPS

GCTCTCCGACTTCCACCGAGGAAGGTAG



GATGSPGSSPSASTG

CCCGGCTGGCTCTCCAACTTCTACTGAA



TGPGASPGTSSTGSP

GAAGGTTCTACCAGCTCTACCGCTGAAT



GTSESATPESGPGTS

CTCCTGGCCCAGGTTCTACTAGCGAATC



TEPSEGSAPGTSTEPS

TCCGTCTGGCACCGCACCAGGTACTTCC



EGSAPGFPTIPLSRLF

CCTAGCGGTGAATCTTCTACTGCACCAG



DNAMLRAHRLHQL

GTACCCCTGGCAGCGGTACCGCTTCTTC



AFDTYQEFEEAYIPK

CTCTCCAGGTAGCTCTACCCCGTCTGGT



EQKYSFLQNPQTSLC

GCTACTGGCTCTCCAGGTTCTAGCCCGT



FSESIPTPSNREETQQ

CTGCATCTACCGGTACCGGCCCAGGTAG



KSNLELLRISLLLIQS

CGAACCGGCAACCTCCGGCTCTGAAACT



WLEPVQFLRSVFAN

CCAGGTACTTCTGAAAGCGCTACTCCGG



SLVYGASDSNVYDL

AATCCGGCCCAGGTAGCGAACCGGCTA



LKDLEEGIQTLMGRL

CTTCCGGCTCTGAAACCCCAGGTTCCAC



EDGSPRTGQIFKQTY

CAGCTCTACTGCAGAATCTCCGGGCCCA



SKFDTNSHNDDALL

GGTTCTACTAGCTCTACTGCAGAATCTC



KNYGLLYCFRKDMD

CGGGTCCAGGTACTTCTCCTAGCGGCGA



KVETFLRIVQCRSVE

ATCTTCTACCGCTCCAGGTAGCGAACCG



GSCGFGGGLGPVSG

GCAACCTCTGGCTCTGAAACTCCAGGTA



VPGGSEPATSGSETP

GCGAACCTGCAACCTCCGGCTCTGAAAC



GTSESATPESGPGSE

CCCAGGTACTTCTACTGAACCTTCTGAG



PATSGSETPGSPAGS

GGCAGCGCACCAGGTTCTACCAGCTCTA



PTSTEEGTSTEPSEGS

CCGCAGAATCTCCTGGTCCAGGTACCTC



APGSEPATSGSETPG

TACTCCGGAAAGCGGCTCTGCATCTCCA



SEPATSGSETPGSEP

GGTTCTACTAGCGAATCTCCTTCTGGCA



ATSGSETPGTSTEPSE

CTGCACCAGGTACTTCTACCGAACCGTC



GSAPGTSESATPESG

CGAAGGCAGCGCTCCAGGTACCTCTACT



PGSEPATSGSETPGT

GAACCTTCCGAGGGCAGCGCTCCAGGT



STEPSEGSAP

ACCTCTACCGAACCTTCTGAAGGTAGCG





CACCAGGTAGCTCTACTCCGTCTGGTGC





AACCGGCTCCCCAGGTTCTAGCCCGTCT





GCTTCCACTGGTACTGGCCCAGGTGCTT





CCCCGGGCACCAGCTCTACTGGTTCTCC





AGGTAGCGAACCTGCTACCTCCGGTTCT





GAAACCCCAGGTACCTCTGAAAGCGCA





ACTCCGGAGTCTGGTCCAGGTAGCCCTG





CAGGTTCTCCTACCTCCACTGAGGAAGG





TAGCTCTACTCCGTCTGGTGCAACCGGC





TCCCCAGGTTCTAGCCCGTCTGCTTCCA





CTGGTACTGGCCCAGGTGCTTCCCCGGG





CACCAGCTCTACTGGTTCTCCAGGTACC





TCTGAAAGCGCTACTCCGGAGTCTGGCC





CAGGTACCTCTACTGAACCGTCTGAGGG





TAGCGCTCCAGGTACTTCTACTGAACCG





TCCGAAGGTAGCGCACCAGGTTTTCCGA





CTATTCCGCTGTCTCGTCTGTTTGATAAT





GCTATGCTGCGTGCGCACCGTCTGCACC





AGCTGGCCTTTGATACTTACCAGGAATT





TGAAGAAGCcTACATTCCTAAAGAGCAG





AAGTACTCTTTCCTGCAAAACCCACAGA





CTTCTCTCTGCTTCAGCGAATCTATTCCG





ACGCCTTCCAATCGCGAGGAAACTCAG





CAAAAGTCCAATCTGGAACTACTCCGCA





TTTCTCTGCTTCTGATTCAGAGCTGGCT





AGAACCAGTGCAATTTCTGCGTTCCGTC





TTCGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTGAA





AGATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTCCG





CGTACTGGTCAGATCTTCAAGCAGACTT





ACTCTAAATTTGATACTAACAGCCACAA





TGACGATGCGCTTCTAAAAAACTATGGT





CTGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATTGT





TCAGTGTCGTTCCGTTGAGGGCAGCTGT





GGTTTCTAAGGTggcggcctgggcccggtgagcggc





gtgccgGGTGGTAGCGAACCGGCAACTTCC





GGCTCTGAAACCCCAGGTACTTCTGAAA





GCGCTACTCCTGAGTCTGGCCCAGGTAG





CGAACCTGCTACCTCTGGCTCTGAAACC





CCAGGTAGCCCGGCAGGCTCTCCGACTT





CCACCGAGGAAGGTACCTCTACTGAAC





CTTCTGAGGGTAGCGCTCCAGGTAGCGA





ACCGGCAACCTCTGGCTCTGAAACCCCA





GGTAGCGAACCTGCTACCTCCGGCTCTG





AAACTCCAGGTAGCGAACCGGCTACTTC





CGGTTCTGAAACTCCAGGTACCTCTACC





GAACCTTCCGAAGGCAGCGCACCAGGT





ACTTCTGAAAGCGCAACCCCTGAATCCG





GTCCAGGTAGCGAACCGGCTACTTCTGG





CTCTGAGACTCCAGGTACTTCTACCGAA





CCGTCCGAAGGTAGCGCACCA





AM923-
MAEPAGSPTSTEEGA
819
ATGGCTGAACCTGCTGGCTCTCCAACCT
820


hGH-
SPGTSSTGSPGSSTPS

CCACTGAGGAAGGTGCATCCCCGGGCA


MMP-17-
GATGSPGSSTPSGAT

CCAGCTCTACCGGTTCTCCAGGTAGCTC


AE144
GSPGTSTEPSEGSAP

TACCCCGTCTGGTGCTACCGGCTCTCCA



GSEPATSGSETPGSP

GGTAGCTCTACCCCGTCTGGTGCTACTG



AGSPTSTEEGSTSST

GCTCTCCAGGTACTTCTACTGAACCGTC



AESPGPGTSTPESGS

TGAAGGCAGCGCACCAGGTAGCGAACC



ASPGSTSESPSGTAP

GGCTACTTCCGGTTCTGAAACCCCAGGT



GSTSESPSGTAPGTS

AGCCCAGCAGGTTCTCCAACTTCTACTG



TPESGSASPGTSTPES

AAGAAGGTTCTACCAGCTCTACCGCAG



GSASPGSEPATSGSE

AATCTCCTGGTCCAGGTACCTCTACTCC



TPGTSESATPESGPG

GGAAAGCGGCTCTGCATCTCCAGGTTCT



SPAGSPTSTEEGTSTE

ACTAGCGAATCTCCTTCTGGCACTGCAC



PSEGSAPGTSESATP

CAGGTTCTACTAGCGAATCCCCGTCTGG



ESGPGTSTEPSEGSA

TACTGCTCCAGGTACTTCTACTCCTGAA



PGTSTEPSEGSAPGSP

AGCGGTTCCGCTTCTCCAGGTACCTCTA



AGSPTSTEEGTSTEPS

CTCCGGAAAGCGGTTCTGCATCTCCAGG



EGSAPGTSTEPSEGS

TAGCGAACCGGCAACCTCCGGCTCTGA



APGTSESATPESGPG

AACCCCAGGTACCTCTGAAAGCGCTACT



TSESATPESGPGTSTE

CCTGAATCCGGCCCAGGTAGCCCGGCA



PSEGSAPGTSTEPSE

GGTTCTCCGACTTCCACTGAGGAAGGTA



GSAPGTSESATPESG

CCTCTACTGAACCTTCTGAGGGCAGCGC



PGTSTEPSEGSAPGS

TCCAGGTACTTCTGAAAGCGCTACCCCG



EPATSGSETPGSPAG

GAGTCCGGTCCAGGTACTTCTACTGAAC



SPTSTEEGSSTPSGAT

CGTCCGAAGGTAGCGCACCAGGTACTTC



GSPGTPGSGTASSSP

TACCGAACCGTCCGAGGGTAGCGCACC



GSSTPSGATGSPGTS

AGGTAGCCCAGCAGGTTCTCCTACCTCC



TEPSEGSAPGTSTEPS

ACCGAGGAAGGTACTTCTACCGAACCG



EGSAPGSEPATSGSE

TCCGAGGGTAGCGCACCAGGTACTTCTA



TPGSPAGSPTSTEEG

CCGAACCTTCCGAGGGCAGCGCACCAG



SPAGSPTSTEEGTSTE

GTACTTCTGAAAGCGCTACCCCTGAGTC



PSEGSAPGASASGAP

CGGCCCAGGTACTTCTGAAAGCGCTACT



STGGTSESATPESGP

CCTGAATCCGGTCCAGGTACCTCTACTG



GSPAGSPTSTEEGSP

AACCTTCCGAAGGCAGCGCTCCAGGTA



AGSPTSTEEGSTSST

CCTCTACCGAACCGTCCGAGGGCAGCG



AESPGPGSTSESPSGT

CACCAGGTACTTCTGAAAGCGCAACCCC



APGTSPSGESSTAPG

TGAATCCGGTCCAGGTACTTCTACTGAA



TPGSGTASSSPGSSTP

CCTTCCGAAGGTAGCGCTCCAGGTAGCG



SGATGSPGSSPSAST

AACCTGCTACTTCTGGTTCTGAAACCCC



GTGPGSEPATSGSET

AGGTAGCCCGGCTGGCTCTCCGACCTCC



PGTSESATPESGPGS

ACCGAGGAAGGTAGCTCTACCCCGTCTG



EPATSGSETPGSTSST

GTGCTACTGGTTCTCCAGGTACTCCGGG



AESPGPGSTSSTAESP

CAGCGGTACTGCTTCTTCCTCTCCAGGT



GPGTSPSGESSTAPG

AGCTCTACCCCTTCTGGTGCTACTGGCT



SEPATSGSETPGSEP

CTCCAGGTACCTCTACCGAACCGTCCGA



ATSGSETPGTSTEPSE

GGGTAGCGCACCAGGTACCTCTACTGA



GSAPGSTSSTAESPG

ACCGTCTGAGGGTAGCGCTCCAGGTAG



PGTSTPESGSASPGST

CGAACCGGCAACCTCCGGTTCTGAAACT



SESPSGTAPGTSTEPS

CCAGGTAGCCCTGCTGGCTCTCCGACTT



EGSAPGTSTEPSEGS

CTACTGAGGAAGGTAGCCCGGCTGGTTC



APGTSTEPSEGSAPG

TCCGACTTCTACTGAGGAAGGTACTTCT



SSTPSGATGSPGSSPS

ACCGAACCTTCCGAAGGTAGCGCTCCA



ASTGTGPGASPGTSS

GGTGCAAGCGCAAGCGGCGCGCCAAGC



TGSPGSEPATSGSET

ACGGGAGGTACTTCTGAAAGCGCTACTC



PGTSESATPESGPGSP

CTGAGTCCGGCCCAGGTAGCCCGGCTG



AGSPTSTEEGSSTPS

GCTCTCCGACTTCCACCGAGGAAGGTAG



GATGSPGSSPSASTG

CCCGGCTGGCTCTCCAACTTCTACTGAA



TGPGASPGTSSTGSP

GAAGGTTCTACCAGCTCTACCGCTGAAT



GTSESATPESGPGTS

CTCCTGGCCCAGGTTCTACTAGCGAATC



TEPSEGSAPGTSTEPS

TCCGTCTGGCACCGCACCAGGTACTTCC



EGSAPGFPTIPLSRLF

CCTAGCGGTGAATCTTCTACTGCACCAG



DNAMLRAHRLHQL

GTACCCCTGGCAGCGGTACCGCTTCTTC



AFDTYQEFEEAYIPK

CTCTCCAGGTAGCTCTACCCCGTCTGGT



EQKYSFLQNPQTSLC

GCTACTGGCTCTCCAGGTTCTAGCCCGT



FSESIPTPSNREETQQ

CTGCATCTACCGGTACCGGCCCAGGTAG



KSNLELLRISLLLIQS

CGAACCGGCAACCTCCGGCTCTGAAACT



WLEPVQFLRSVFAN

CCAGGTACTTCTGAAAGCGCTACTCCGG



SLVYGASDSNVYDL

AATCCGGCCCAGGTAGCGAACCGGCTA



LKDLEEGIQTLMGRL

CTTCCGGCTCTGAAACCCCAGGTTCCAC



EDGSPRTGQIFKQTY

CAGCTCTACTGCAGAATCTCCGGGCCCA



SKFDTNSHNDDALL

GGTTCTACTAGCTCTACTGCAGAATCTC



KNYGLLYCFRKDMD

CGGGTCCAGGTACTTCTCCTAGCGGCGA



KVETFLRIVQCRSVE

ATCTTCTACCGCTCCAGGTAGCGAACCG



GSCGFGAPLGLRLR

GCAACCTCTGGCTCTGAAACTCCAGGTA



GGGGSEPATSGSETP

GCGAACCTGCAACCTCCGGCTCTGAAAC



GTSESATPESGPGSE

CCCAGGTACTTCTACTGAACCTTCTGAG



PATSGSETPGSPAGS

GGCAGCGCACCAGGTTCTACCAGCTCTA



PTSTEEGTSTEPSEGS

CCGCAGAATCTCCTGGTCCAGGTACCTC



APGSEPATSGSETPG

TACTCCGGAAAGCGGCTCTGCATCTCCA



SEPATSGSETPGSEP

GGTTCTACTAGCGAATCTCCTTCTGGCA



ATSGSETPGTSTEPSE

CTGCACCAGGTACTTCTACCGAACCGTC



GSAPGTSESATPESG

CGAAGGCAGCGCTCCAGGTACCTCTACT



PGSEPATSGSETPGT

GAACCTTCCGAGGGCAGCGCTCCAGGT



STEPSEGSAP

ACCTCTACCGAACCTTCTGAAGGTAGCG





CACCAGGTAGCTCTACTCCGTCTGGTGC





AACCGGCTCCCCAGGTTCTAGCCCGTCT





GCTTCCACTGGTACTGGCCCAGGTGCTT





CCCCGGGCACCAGCTCTACTGGTTCTCC





AGGTAGCGAACCTGCTACCTCCGGTTCT





GAAACCCCAGGTACCTCTGAAAGCGCA





ACTCCGGAGTCTGGTCCAGGTAGCCCTG





CAGGTTCTCCTACCTCCACTGAGGAAGG





TAGCTCTACTCCGTCTGGTGCAACCGGC





TCCCCAGGTTCTAGCCCGTCTGCTTCCA





CTGGTACTGGCCCAGGTGCTTCCCCGGG





CACCAGCTCTACTGGTTCTCCAGGTACC





TCTGAAAGCGCTACTCCGGAGTCTGGCC





CAGGTACCTCTACTGAACCGTCTGAGGG





TAGCGCTCCAGGTACTTCTACTGAACCG





TCCGAAGGTAGCGCACCAGGTTTTCCGA





CTATTCCGCTGTCTCGTCTGTTTGATAAT





GCTATGCTGCGTGCGCACCGTCTGCACC





AGCTGGCCTTTGATACTTACCAGGAATT





TGAAGAAGCcTACATTCCTAAAGAGCAG





AAGTACTCTTTCCTGCAAAACCCACAGA





CTTCTCTCTGCTTCAGCGAATCTATTCCG





ACGCCTTCCAATCGCGAGGAAACTCAG





CAAAAGTCCAATCTGGAACTACTCCGCA





TTTCTCTGCTTCTGATTCAGAGCTGGCT





AGAACCAGTGCAATTTCTGCGTTCCGTC





TTCGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTGAA





AGATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTCCG





CGTACTGGTCAGATCTTCAAGCAGACTT





ACTCTAAATTTGATACTAACAGCCACAA





TGACGATGCGCTTCTAAAAAACTATGGT





CTGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATTGT





TCAGTGTCGTTCCGTTGAGGGCAGCTGT





GGTTTCTAAGGTgcgccgctgggcctgcgcctgcgc





ggcggcGGTGGTAGCGAACCGGCAACTTC





CGGCTCTGAAACCCCAGGTACTTCTGAA





AGCGCTACTCCTGAGTCTGGCCCAGGTA





GCGAACCTGCTACCTCTGGCTCTGAAAC





CCCAGGTAGCCCGGCAGGCTCTCCGACT





TCCACCGAGGAAGGTACCTCTACTGAAC





CTTCTGAGGGTAGCGCTCCAGGTAGCGA





ACCGGCAACCTCTGGCTCTGAAACCCCA





GGTAGCGAACCTGCTACCTCCGGCTCTG





AAACTCCAGGTAGCGAACCGGCTACTTC





CGGTTCTGAAACTCCAGGTACCTCTACC





GAACCTTCCGAAGGCAGCGCACCAGGT





ACTTCTGAAAGCGCAACCCCTGAATCCG





GTCCAGGTAGCGAACCGGCTACTTCTGG





CTCTGAGACTCCAGGTACTTCTACCGAA





CCGTCCGAAGGTAGCGCACCA





AM923-
MAEPAGSPTSTEEGA
821
ATGGCTGAACCTGCTGGCTCTCCAACCT
822


hGH-
SPGTSSTGSPGSSTPS

CCACTGAGGAAGGTGCATCCCCGGGCA


Thrombin-
GATGSPGSSTPSGAT

CCAGCTCTACCGGTTCTCCAGGTAGCTC


AE288
GSPGTSTEPSEGSAP

TACCCCGTCTGGTGCTACCGGCTCTCCA



GSEPATSGSETPGSP

GGTAGCTCTACCCCGTCTGGTGCTACTG



AGSPTSTEEGSTSST

GCTCTCCAGGTACTTCTACTGAACCGTC



AESPGPGTSTPESGS

TGAAGGCAGCGCACCAGGTAGCGAACC



ASPGSTSESPSGTAP

GGCTACTTCCGGTTCTGAAACCCCAGGT



GSTSESPSGTAPGTS

AGCCCAGCAGGTTCTCCAACTTCTACTG



TPESGSASPGTSTPES

AAGAAGGTTCTACCAGCTCTACCGCAG



GSASPGSEPATSGSE

AATCTCCTGGTCCAGGTACCTCTACTCC



TPGTSESATPESGPG

GGAAAGCGGCTCTGCATCTCCAGGTTCT



SPAGSPTSTEEGTSTE

ACTAGCGAATCTCCTTCTGGCACTGCAC



PSEGSAPGTSESATP

CAGGTTCTACTAGCGAATCCCCGTCTGG



ESGPGTSTEPSEGSA

TACTGCTCCAGGTACTTCTACTCCTGAA



PGTSTEPSEGSAPGSP

AGCGGTTCCGCTTCTCCAGGTACCTCTA



AGSPTSTEEGTSTEPS

CTCCGGAAAGCGGTTCTGCATCTCCAGG



EGSAPGTSTEPSEGS

TAGCGAACCGGCAACCTCCGGCTCTGA



APGTSESATPESGPG

AACCCCAGGTACCTCTGAAAGCGCTACT



TSESATPESGPGTSTE

CCTGAATCCGGCCCAGGTAGCCCGGCA



PSEGSAPGTSTEPSE

GGTTCTCCGACTTCCACTGAGGAAGGTA



GSAPGTSESATPESG

CCTCTACTGAACCTTCTGAGGGCAGCGC



PGTSTEPSEGSAPGS

TCCAGGTACTTCTGAAAGCGCTACCCCG



EPATSGSETPGSPAG

GAGTCCGGTCCAGGTACTTCTACTGAAC



SPTSTEEGSSTPSGAT

CGTCCGAAGGTAGCGCACCAGGTACTTC



GSPGTPGSGTASSSP

TACCGAACCGTCCGAGGGTAGCGCACC



GSSTPSGATGSPGTS

AGGTAGCCCAGCAGGTTCTCCTACCTCC



TEPSEGSAPGTSTEPS

ACCGAGGAAGGTACTTCTACCGAACCG



EGSAPGSEPATSGSE

TCCGAGGGTAGCGCACCAGGTACTTCTA



TPGSPAGSPTSTEEG

CCGAACCTTCCGAGGGCAGCGCACCAG



SPAGSPTSTEEGTSTE

GTACTTCTGAAAGCGCTACCCCTGAGTC



PSEGSAPGASASGAP

CGGCCCAGGTACTTCTGAAAGCGCTACT



STGGTSESATPESGP

CCTGAATCCGGTCCAGGTACCTCTACTG



GSPAGSPTSTEEGSP

AACCTTCCGAAGGCAGCGCTCCAGGTA



AGSPTSTEEGSTSST

CCTCTACCGAACCGTCCGAGGGCAGCG



AESPGPGSTSESPSGT

CACCAGGTACTTCTGAAAGCGCAACCCC



APGTSPSGESSTAPG

TGAATCCGGTCCAGGTACTTCTACTGAA



TPGSGTASSSPGSSTP

CCTTCCGAAGGTAGCGCTCCAGGTAGCG



SGATGSPGSSPSAST

AACCTGCTACTTCTGGTTCTGAAACCCC



GTGPGSEPATSGSET

AGGTAGCCCGGCTGGCTCTCCGACCTCC



PGTSESATPESGPGS

ACCGAGGAAGGTAGCTCTACCCCGTCTG



EPATSGSETPGSTSST

GTGCTACTGGTTCTCCAGGTACTCCGGG



AESPGPGSTSSTAESP

CAGCGGTACTGCTTCTTCCTCTCCAGGT



GPGTSPSGESSTAPG

AGCTCTACCCCTTCTGGTGCTACTGGCT



SEPATSGSETPGSEP

CTCCAGGTACCTCTACCGAACCGTCCGA



ATSGSETPGTSTEPSE

GGGTAGCGCACCAGGTACCTCTACTGA



GSAPGSTSSTAESPG

ACCGTCTGAGGGTAGCGCTCCAGGTAG



PGTSTPESGSASPGST

CGAACCGGCAACCTCCGGTTCTGAAACT



SESPSGTAPGTSTEPS

CCAGGTAGCCCTGCTGGCTCTCCGACTT



EGSAPGTSTEPSEGS

CTACTGAGGAAGGTAGCCCGGCTGGTTC



APGTSTEPSEGSAPG

TCCGACTTCTACTGAGGAAGGTACTTCT



SSTPSGATGSPGSSPS

ACCGAACCTTCCGAAGGTAGCGCTCCA



ASTGTGPGASPGTSS

GGTGCAAGCGCAAGCGGCGCGCCAAGC



TGSPGSEPATSGSET

ACGGGAGGTACTTCTGAAAGCGCTACTC



PGTSESATPESGPGSP

CTGAGTCCGGCCCAGGTAGCCCGGCTG



AGSPTSTEEGSSTPS

GCTCTCCGACTTCCACCGAGGAAGGTAG



GATGSPGSSPSASTG

CCCGGCTGGCTCTCCAACTTCTACTGAA



TGPGASPGTSSTGSP

GAAGGTTCTACCAGCTCTACCGCTGAAT



GTSESATPESGPGTS

CTCCTGGCCCAGGTTCTACTAGCGAATC



TEPSEGSAPGTSTEPS

TCCGTCTGGCACCGCACCAGGTACTTCC



EGSAPGFPTIPL SRLF

CCTAGCGGTGAATCTTCTACTGCACCAG



DNAMLRAHRLHQL

GTACCCCTGGCAGCGGTACCGCTTCTTC



AFDTYQEFEEAYIPK

CTCTCCAGGTAGCTCTACCCCGTCTGGT



EQKYSFLQNPQTSLC

GCTACTGGCTCTCCAGGTTCTAGCCCGT



FSESIPTPSNREETQQ

CTGCATCTACCGGTACCGGCCCAGGTAG



KSNLELLRISLLLIQS

CGAACCGGCAACCTCCGGCTCTGAAACT



WLEPVQFLRSVFAN

CCAGGTACTTCTGAAAGCGCTACTCCGG



SLVYGASDSNVYDL

AATCCGGCCCAGGTAGCGAACCGGCTA



LKDLEEGIQTLMGRL

CTTCCGGCTCTGAAACCCCAGGTTCCAC



EDGSPRTGQIFKQTY

CAGCTCTACTGCAGAATCTCCGGGCCCA



SKFDTNSHNDDALL

GGTTCTACTAGCTCTACTGCAGAATCTC



KNYGLLYCFRKDMD

CGGGTCCAGGTACTTCTCCTAGCGGCGA



KVETFLRIVQCRSVE

ATCTTCTACCGCTCCAGGTAGCGAACCG



GSCGFGLTPRSLLVG

GCAACCTCTGGCTCTGAAACTCCAGGTA



GGGTSESATPESGPG

GCGAACCTGCAACCTCCGGCTCTGAAAC



SEPATSGSETPGTSES

CCCAGGTACTTCTACTGAACCTTCTGAG



ATPESGPGSEPATSG

GGCAGCGCACCAGGTTCTACCAGCTCTA



SETPGTSESATPESGP

CCGCAGAATCTCCTGGTCCAGGTACCTC



GTSTEPSEGSAPGSP

TACTCCGGAAAGCGGCTCTGCATCTCCA



AGSPTSTEEGTSESA

GGTTCTACTAGCGAATCTCCTTCTGGCA



TPESGPGSEPATSGS

CTGCACCAGGTACTTCTACCGAACCGTC



ETPGTSESATPESGP

CGAAGGCAGCGCTCCAGGTACCTCTACT



GSPAGSPTSTEEGSP

GAACCTTCCGAGGGCAGCGCTCCAGGT



AGSPTSTEEGTSTEPS

ACCTCTACCGAACCTTCTGAAGGTAGCG



EGSAPGTSESATPES

CACCAGGTAGCTCTACTCCGTCTGGTGC



GPGTSESATPESGPG

AACCGGCTCCCCAGGTTCTAGCCCGTCT



TSESATPESGPGSEP

GCTTCCACTGGTACTGGCCCAGGTGCTT



ATSGSETPGSEPATS

CCCCGGGCACCAGCTCTACTGGTTCTCC



GSETPGSPAGSPTST

AGGTAGCGAACCTGCTACCTCCGGTTCT



EEGTSTEPSEGSAPG

GAAACCCCAGGTACCTCTGAAAGCGCA



TSTEPSEGSAPGSEP

ACTCCGGAGTCTGGTCCAGGTAGCCCTG



ATSGSETPGTSESAT

CAGGTTCTCCTACCTCCACTGAGGAAGG



PESGPGTSTEPSEGS

TAGCTCTACTCCGTCTGGTGCAACCGGC



AP

TCCCCAGGTTCTAGCCCGTCTGCTTCCA





CTGGTACTGGCCCAGGTGCTTCCCCGGG





CACCAGCTCTACTGGTTCTCCAGGTACC





TCTGAAAGCGCTACTCCGGAGTCTGGCC





CAGGTACCTCTACTGAACCGTCTGAGGG





TAGCGCTCCAGGTACTTCTACTGAACCG





TCCGAAGGTAGCGCACCAGGTTTTCCGA





CTATTCCGCTGTCTCGTCTGTTTGATAAT





GCTATGCTGCGTGCGCACCGTCTGCACC





AGCTGGCCTTTGATACTTACCAGGAATT





TGAAGAAGCcTACATTCCTAAAGAGCAG





AAGTACTCTTTCCTGCAAAACCCACAGA





CTTCTCTCTGCTTCAGCGAATCTATTCCG





ACGCCTTCCAATCGCGAGGAAACTCAG





CAAAAGTCCAATCTGGAACTACTCCGCA





TTTCTCTGCTTCTGATTCAGAGCTGGCT





AGAACCAGTGCAATTTCTGCGTTCCGTC





TTCGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTGAA





AGATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTCCG





CGTACTGGTCAGATCTTCAAGCAGACTT





ACTCTAAATTTGATACTAACAGCCACAA





TGACGATGCGCTTCTAAAAAACTATGGT





CTGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATTGT





TCAGTGTCGTTCCGTTGAGGGCAGCTGT





GGTTTCTAAGGTctgaccccgcgcagcctgctggtgg





gcggcGGTGGTACCTCTGAAAGCGCAACT





CCTGAGTCTGGCCCAGGTAGCGAACCTG





CTACCTCCGGCTCTGAGACTCCAGGTAC





CTCTGAAAGCGCAACCCCGGAATCTGGT





CCAGGTAGCGAACCTGCAACCTCTGGCT





CTGAAACCCCAGGTACCTCTGAAAGCG





CTACTCCTGAATCTGGCCCAGGTACTTC





TACTGAACCGTCCGAGGGCAGCGCACC





AGGTAGCCCTGCTGGCTCTCCAACCTCC





ACCGAAGAAGGTACCTCTGAAAGCGCA





ACCCCTGAATCCGGCCCAGGTAGCGAA





CCGGCAACCTCCGGTTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGTC





CGGCCCAGGTAGCCCGGCTGGCTCTCCG





ACTTCCACCGAGGAAGGTAGCCCGGCT





GGCTCTCCAACTTCTACTGAAGAAGGTA





CTTCTACCGAACCTTCCGAGGGCAGCGC





ACCAGGTACTTCTGAAAGCGCTACCCCT





GAGTCCGGCCCAGGTACTTCTGAAAGC





GCTACTCCTGAATCCGGTCCAGGTACTT





CTGAAAGCGCTACCCCGGAATCTGGCCC





AGGTAGCGAACCGGCTACTTCTGGTTCT





GAAACCCCAGGTAGCGAACCGGCTACC





TCCGGTTCTGAAACTCCAGGTAGCCCAG





CAGGCTCTCCGACTTCCACTGAGGAAGG





TACTTCTACTGAACCTTCCGAAGGCAGC





GCACCAGGTACCTCTACTGAACCTTCTG





AGGGCAGCGCTCCAGGTAGCGAACCTG





CAACCTCTGGCTCTGAAACCCCAGGTAC





CTCTGAAAGCGCTACTCCTGAATCTGGC





CCAGGTACTTCTACTGAACCGTCCGAGG





GCAGCGCACCA





AM923-
MAEPAGSPTSTEEGA
823
ATGGCTGAACCTGCTGGCTCTCCAACCT
824


hGH-
SPGTSSTGSPGSSTPS

CCACTGAGGAAGGTGCATCCCCGGGCA


FXIa-
GATGSPGSSTPSGAT

CCAGCTCTACCGGTTCTCCAGGTAGCTC


AE288
GSPGTSTEPSEGSAP

TACCCCGTCTGGTGCTACCGGCTCTCCA



GSEPATSGSETPGSP

GGTAGCTCTACCCCGTCTGGTGCTACTG



AGSPTSTEEGSTSST

GCTCTCCAGGTACTTCTACTGAACCGTC



AESPGPGTSTPESGS

TGAAGGCAGCGCACCAGGTAGCGAACC



ASPGSTSESPSGTAP

GGCTACTTCCGGTTCTGAAACCCCAGGT



GSTSESPSGTAPGTS

AGCCCAGCAGGTTCTCCAACTTCTACTG



TPESGSASPGTSTPES

AAGAAGGTTCTACCAGCTCTACCGCAG



GSASPGSEPATSGSE

AATCTCCTGGTCCAGGTACCTCTACTCC



TPGTSESATPESGPG

GGAAAGCGGCTCTGCATCTCCAGGTTCT



SPAGSPTSTEEGTSTE

ACTAGCGAATCTCCTTCTGGCACTGCAC



PSEGSAPGTSESATP

CAGGTTCTACTAGCGAATCCCCGTCTGG



ESGPGTSTEPSEGSA

TACTGCTCCAGGTACTTCTACTCCTGAA



PGTSTEPSEGSAPGSP

AGCGGTTCCGCTTCTCCAGGTACCTCTA



AGSPTSTEEGTSTEPS

CTCCGGAAAGCGGTTCTGCATCTCCAGG



EGSAPGTSTEPSEGS

TAGCGAACCGGCAACCTCCGGCTCTGA



APGTSESATPESGPG

AACCCCAGGTACCTCTGAAAGCGCTACT



TSESATPESGPGTSTE

CCTGAATCCGGCCCAGGTAGCCCGGCA



PSEGSAPGTSTEPSE

GGTTCTCCGACTTCCACTGAGGAAGGTA



GSAPGTSESATPESG

CCTCTACTGAACCTTCTGAGGGCAGCGC



PGTSTEPSEGSAPGS

TCCAGGTACTTCTGAAAGCGCTACCCCG



EPATSGSETPGSPAG

GAGTCCGGTCCAGGTACTTCTACTGAAC



SPTSTEEGSSTPSGAT

CGTCCGAAGGTAGCGCACCAGGTACTTC



GSPGTPGSGTASSSP

TACCGAACCGTCCGAGGGTAGCGCACC



GSSTPSGATGSPGTS

AGGTAGCCCAGCAGGTTCTCCTACCTCC



TEPSEGSAPGTSTEPS

ACCGAGGAAGGTACTTCTACCGAACCG



EGSAPGSEPATSGSE

TCCGAGGGTAGCGCACCAGGTACTTCTA



TPGSPAGSPTSTEEG

CCGAACCTTCCGAGGGCAGCGCACCAG



SPAGSPTSTEEGTSTE

GTACTTCTGAAAGCGCTACCCCTGAGTC



PSEGSAPGASASGAP

CGGCCCAGGTACTTCTGAAAGCGCTACT



STGGTSESATPESGP

CCTGAATCCGGTCCAGGTACCTCTACTG



GSPAGSPTSTEEGSP

AACCTTCCGAAGGCAGCGCTCCAGGTA



AGSPTSTEEGSTSST

CCTCTACCGAACCGTCCGAGGGCAGCG



AESPGPGSTSESPSGT

CACCAGGTACTTCTGAAAGCGCAACCCC



APGTSPSGESSTAPG

TGAATCCGGTCCAGGTACTTCTACTGAA



TPGSGTASSSPGSSTP

CCTTCCGAAGGTAGCGCTCCAGGTAGCG



SGATGSPGSSPSAST

AACCTGCTACTTCTGGTTCTGAAACCCC



GTGPGSEPATSGSET

AGGTAGCCCGGCTGGCTCTCCGACCTCC



PGTSESATPESGPGS

ACCGAGGAAGGTAGCTCTACCCCGTCTG



EPATSGSETPGSTSST

GTGCTACTGGTTCTCCAGGTACTCCGGG



AESPGPGSTSSTAESP

CAGCGGTACTGCTTCTTCCTCTCCAGGT



GPGTSPSGESSTAPG

AGCTCTACCCCTTCTGGTGCTACTGGCT



SEPATSGSETPGSEP

CTCCAGGTACCTCTACCGAACCGTCCGA



ATSGSETPGTSTEPSE

GGGTAGCGCACCAGGTACCTCTACTGA



GSAPGSTSSTAESPG

ACCGTCTGAGGGTAGCGCTCCAGGTAG



PGTSTPESGSASPGST

CGAACCGGCAACCTCCGGTTCTGAAACT



SESPSGTAPGTSTEPS

CCAGGTAGCCCTGCTGGCTCTCCGACTT



EGSAPGTSTEPSEGS

CTACTGAGGAAGGTAGCCCGGCTGGTTC



APGTSTEPSEGSAPG

TCCGACTTCTACTGAGGAAGGTACTTCT



SSTPSGATGSPGSSPS

ACCGAACCTTCCGAAGGTAGCGCTCCA



ASTGTGPGASPGTSS

GGTGCAAGCGCAAGCGGCGCGCCAAGC



TGSPGSEPATSGSET

ACGGGAGGTACTTCTGAAAGCGCTACTC



PGTSESATPESGPGSP

CTGAGTCCGGCCCAGGTAGCCCGGCTG



AGSPTSTEEGSSTPS

GCTCTCCGACTTCCACCGAGGAAGGTAG



GATGSPGSSPSASTG

CCCGGCTGGCTCTCCAACTTCTACTGAA



TGPGASPGTSSTGSP

GAAGGTTCTACCAGCTCTACCGCTGAAT



GTSESATPESGPGTS

CTCCTGGCCCAGGTTCTACTAGCGAATC



TEPSEGSAPGTSTEPS

TCCGTCTGGCACCGCACCAGGTACTTCC



EGSAPGFPTIPLSRLF

CCTAGCGGTGAATCTTCTACTGCACCAG



DNAMLRAHRLHQL

GTACCCCTGGCAGCGGTACCGCTTCTTC



AFDTYQEFEEAYIPK

CTCTCCAGGTAGCTCTACCCCGTCTGGT



EQKYSFLQNPQTSLC

GCTACTGGCTCTCCAGGTTCTAGCCCGT



FSESIPTPSNREETQQ

CTGCATCTACCGGTACCGGCCCAGGTAG



KSNLELLRISLLLIQS

CGAACCGGCAACCTCCGGCTCTGAAACT



WLEPVQFLRSVFAN

CCAGGTACTTCTGAAAGCGCTACTCCGG



SLVYGASDSNVYDL

AATCCGGCCCAGGTAGCGAACCGGCTA



LKDLEEGIQTLMGRL

CTTCCGGCTCTGAAACCCCAGGTTCCAC



EDGSPRTGQIFKQTY

CAGCTCTACTGCAGAATCTCCGGGCCCA



SKFDTNSHNDDALL

GGTTCTACTAGCTCTACTGCAGAATCTC



KNYGLLYCFRKDMD

CGGGTCCAGGTACTTCTCCTAGCGGCGA



KVETFLRIVQCRSVE

ATCTTCTACCGCTCCAGGTAGCGAACCG



GSCGFGGGKLTRVV

GCAACCTCTGGCTCTGAAACTCCAGGTA



GGGGTSESATPESGP

GCGAACCTGCAACCTCCGGCTCTGAAAC



GSEPATSGSETPGTS

CCCAGGTACTTCTACTGAACCTTCTGAG



ESATPESGPGSEPAT

GGCAGCGCACCAGGTTCTACCAGCTCTA



SGSETPGTSESATPES

CCGCAGAATCTCCTGGTCCAGGTACCTC



GPGTSTEPSEGSAPG

TACTCCGGAAAGCGGCTCTGCATCTCCA



SPAGSPTSTEEGTSES

GGTTCTACTAGCGAATCTCCTTCTGGCA



ATPESGPGSEPATSG

CTGCACCAGGTACTTCTACCGAACCGTC



SETPGTSESATPESGP

CGAAGGCAGCGCTCCAGGTACCTCTACT



GSPAGSPTSTEEGSP

GAACCTTCCGAGGGCAGCGCTCCAGGT



AGSPTSTEEGTSTEPS

ACCTCTACCGAACCTTCTGAAGGTAGCG



EGSAPGTSESATPES

CACCAGGTAGCTCTACTCCGTCTGGTGC



GPGTSESATPESGPG

AACCGGCTCCCCAGGTTCTAGCCCGTCT



TSESATPESGPGSEP

GCTTCCACTGGTACTGGCCCAGGTGCTT



ATSGSETPGSEPATS

CCCCGGGCACCAGCTCTACTGGTTCTCC



GSETPGSPAGSPTST

AGGTAGCGAACCTGCTACCTCCGGTTCT



EEGTSTEPSEGSAPG

GAAACCCCAGGTACCTCTGAAAGCGCA



TSTEPSEGSAPGSEP

ACTCCGGAGTCTGGTCCAGGTAGCCCTG



ATSGSETPGTSESAT

CAGGTTCTCCTACCTCCACTGAGGAAGG



PESGPGTSTEPSEGS

TAGCTCTACTCCGTCTGGTGCAACCGGC



AP

TCCCCAGGTTCTAGCCCGTCTGCTTCCA





CTGGTACTGGCCCAGGTGCTTCCCCGGG





CACCAGCTCTACTGGTTCTCCAGGTACC





TCTGAAAGCGCTACTCCGGAGTCTGGCC





CAGGTACCTCTACTGAACCGTCTGAGGG





TAGCGCTCCAGGTACTTCTACTGAACCG





TCCGAAGGTAGCGCACCAGGTTTTCCGA





CTATTCCGCTGTCTCGTCTGTTTGATAAT





GCTATGCTGCGTGCGCACCGTCTGCACC





AGCTGGCCTTTGATACTTACCAGGAATT





TGAAGAAGCcTACATTCCTAAAGAGCAG





AAGTACTCTTTCCTGCAAAACCCACAGA





CTTCTCTCTGCTTCAGCGAATCTATTCCG





ACGCCTTCCAATCGCGAGGAAACTCAG





CAAAAGTCCAATCTGGAACTACTCCGCA





TTTCTCTGCTTCTGATTCAGAGCTGGCT





AGAACCAGTGCAATTTCTGCGTTCCGTC





TTCGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTGAA





AGATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTCCG





CGTACTGGTCAGATCTTCAAGCAGACTT





ACTCTAAATTTGATACTAACAGCCACAA





TGACGATGCGCTTCTAAAAAACTATGGT





CTGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATTGT





TCAGTGTCGTTCCGTTGAGGGCAGCTGT





GGTTTCTAAGGTggcggcaaactgacccgcgtggtg





ggcggcGGTGGTACCTCTGAAAGCGCAAC





TCCTGAGTCTGGCCCAGGTAGCGAACCT





GCTACCTCCGGCTCTGAGACTCCAGGTA





CCTCTGAAAGCGCAACCCCGGAATCTG





GTCCAGGTAGCGAACCTGCAACCTCTGG





CTCTGAAACCCCAGGTACCTCTGAAAGC





GCTACTCCTGAATCTGGCCCAGGTACTT





CTACTGAACCGTCCGAGGGCAGCGCAC





CAGGTAGCCCTGCTGGCTCTCCAACCTC





CACCGAAGAAGGTACCTCTGAAAGCGC





AACCCCTGAATCCGGCCCAGGTAGCGA





ACCGGCAACCTCCGGTTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGAGT





CCGGCCCAGGTAGCCCGGCTGGCTCTCC





GACTTCCACCGAGGAAGGTAGCCCGGC





TGGCTCTCCAACTTCTACTGAAGAAGGT





ACTTCTACCGAACCTTCCGAGGGCAGCG





CACCAGGTACTTCTGAAAGCGCTACCCC





TGAGTCCGGCCCAGGTACTTCTGAAAGC





GCTACTCCTGAATCCGGTCCAGGTACTT





CTGAAAGCGCTACCCCGGAATCTGGCCC





AGGTAGCGAACCGGCTACTTCTGGTTCT





GAAACCCCAGGTAGCGAACCGGCTACC





TCCGGTTCTGAAACTCCAGGTAGCCCAG





CAGGCTCTCCGACTTCCACTGAGGAAGG





TACTTCTACTGAACCTTCCGAAGGCAGC





GCACCAGGTACCTCTACTGAACCTTCTG





AGGGCAGCGCTCCAGGTAGCGAACCTG





CAACCTCTGGCTCTGAAACCCCAGGTAC





CTCTGAAAGCGCTACTCCTGAATCTGGC





CCAGGTACTTCTACTGAACCGTCCGAGG





GCAGCGCACCA





AM923-
MAEPAGSPTSTEEGA
825
ATGGCTGAACCTGCTGGCTCTCCAACCT
826


hGH-
SPGTSSTGSPGSSTPS

CCACTGAGGAAGGTGCATCCCCGGGCA


Elastase-
GATGSPGSSTPSGAT

CCAGCTCTACCGGTTCTCCAGGTAGCTC


AE288
GSPGTSTEPSEGSAP

TACCCCGTCTGGTGCTACCGGCTCTCCA



GSEPATSGSETPGSP

GGTAGCTCTACCCCGTCTGGTGCTACTG



AGSPTSTEEGSTSST

GCTCTCCAGGTACTTCTACTGAACCGTC



AESPGPGTSTPESGS

TGAAGGCAGCGCACCAGGTAGCGAACC



ASPGSTSESPSGTAP

GGCTACTTCCGGTTCTGAAACCCCAGGT



GSTSESPSGTAPGTS

AGCCCAGCAGGTTCTCCAACTTCTACTG



TPESGSASPGTSTPES

AAGAAGGTTCTACCAGCTCTACCGCAG



GSASPGSEPATSGSE

AATCTCCTGGTCCAGGTACCTCTACTCC



TPGTSESATPESGPG

GGAAAGCGGCTCTGCATCTCCAGGTTCT



SPAGSPTSTEEGTSTE

ACTAGCGAATCTCCTTCTGGCACTGCAC



PSEGSAPGTSESATP

CAGGTTCTACTAGCGAATCCCCGTCTGG



ESGPGTSTEPSEGSA

TACTGCTCCAGGTACTTCTACTCCTGAA



PGTSTEPSEGSAPGSP

AGCGGTTCCGCTTCTCCAGGTACCTCTA



AGSPTSTEEGTSTEPS

CTCCGGAAAGCGGTTCTGCATCTCCAGG



EGSAPGTSTEPSEGS

TAGCGAACCGGCAACCTCCGGCTCTGA



APGTSESATPESGPG

AACCCCAGGTACCTCTGAAAGCGCTACT



TSESATPESGPGTSTE

CCTGAATCCGGCCCAGGTAGCCCGGCA



PSEGSAPGTSTEPSE

GGTTCTCCGACTTCCACTGAGGAAGGTA



GSAPGTSESATPESG

CCTCTACTGAACCTTCTGAGGGCAGCGC



PGTSTEPSEGSAPGS

TCCAGGTACTTCTGAAAGCGCTACCCCG



EPATSGSETPGSPAG

GAGTCCGGTCCAGGTACTTCTACTGAAC



SPTSTEEGSSTPSGAT

CGTCCGAAGGTAGCGCACCAGGTACTTC



GSPGTPGSGTASSSP

TACCGAACCGTCCGAGGGTAGCGCACC



GSSTPSGATGSPGTS

AGGTAGCCCAGCAGGTTCTCCTACCTCC



TEPSEGSAPGTSTEPS

ACCGAGGAAGGTACTTCTACCGAACCG



EGSAPGSEPATSGSE

TCCGAGGGTAGCGCACCAGGTACTTCTA



TPGSPAGSPTSTEEG

CCGAACCTTCCGAGGGCAGCGCACCAG



SPAGSPTSTEEGTSTE

GTACTTCTGAAAGCGCTACCCCTGAGTC



PSEGSAPGASASGAP

CGGCCCAGGTACTTCTGAAAGCGCTACT



STGGTSESATPESGP

CCTGAATCCGGTCCAGGTACCTCTACTG



GSPAGSPTSTEEGSP

AACCTTCCGAAGGCAGCGCTCCAGGTA



AGSPTSTEEGSTSST

CCTCTACCGAACCGTCCGAGGGCAGCG



AESPGPGSTSESPSGT

CACCAGGTACTTCTGAAAGCGCAACCCC



APGTSPSGESSTAPG

TGAATCCGGTCCAGGTACTTCTACTGAA



TPGSGTASSSPGSSTP

CCTTCCGAAGGTAGCGCTCCAGGTAGCG



SGATGSPGSSPSAST

AACCTGCTACTTCTGGTTCTGAAACCCC



GTGPGSEPATSGSET

AGGTAGCCCGGCTGGCTCTCCGACCTCC



PGTSESATPESGPGS

ACCGAGGAAGGTAGCTCTACCCCGTCTG



EPATSGSETPGSTSST

GTGCTACTGGTTCTCCAGGTACTCCGGG



AESPGPGSTSSTAESP

CAGCGGTACTGCTTCTTCCTCTCCAGGT



GPGTSPSGESSTAPG

AGCTCTACCCCTTCTGGTGCTACTGGCT



SEPATSGSETPGSEP

CTCCAGGTACCTCTACCGAACCGTCCGA



ATSGSETPGTSTEPSE

GGGTAGCGCACCAGGTACCTCTACTGA



GSAPGSTSSTAESPG

ACCGTCTGAGGGTAGCGCTCCAGGTAG



PGTSTPESGSASPGST

CGAACCGGCAACCTCCGGTTCTGAAACT



SESPSGTAPGTSTEPS

CCAGGTAGCCCTGCTGGCTCTCCGACTT



EGSAPGTSTEPSEGS

CTACTGAGGAAGGTAGCCCGGCTGGTTC



APGTSTEPSEGSAPG

TCCGACTTCTACTGAGGAAGGTACTTCT



SSTPSGATGSPGSSPS

ACCGAACCTTCCGAAGGTAGCGCTCCA



ASTGTGPGASPGTSS

GGTGCAAGCGCAAGCGGCGCGCCAAGC



TGSPGSEPATSGSET

ACGGGAGGTACTTCTGAAAGCGCTACTC



PGTSESATPESGPGSP

CTGAGTCCGGCCCAGGTAGCCCGGCTG



AGSPTSTEEGSSTPS

GCTCTCCGACTTCCACCGAGGAAGGTAG



GATGSPGSSPSASTG

CCCGGCTGGCTCTCCAACTTCTACTGAA



TGPGASPGTSSTGSP

GAAGGTTCTACCAGCTCTACCGCTGAAT



GTSESATPESGPGTS

CTCCTGGCCCAGGTTCTACTAGCGAATC



TEPSEGSAPGTSTEPS

TCCGTCTGGCACCGCACCAGGTACTTCC



EGSAPGFPTIPLSRLF

CCTAGCGGTGAATCTTCTACTGCACCAG



DNAMLRAHRLHQL

GTACCCCTGGCAGCGGTACCGCTTCTTC



AFDTYQEFEEAYIPK

CTCTCCAGGTAGCTCTACCCCGTCTGGT



EQKYSFLQNPQTSLC

GCTACTGGCTCTCCAGGTTCTAGCCCGT



FSESIPTPSNREETQQ

CTGCATCTACCGGTACCGGCCCAGGTAG



KSNLELLRISLLLIQS

CGAACCGGCAACCTCCGGCTCTGAAACT



WLEPVQFLRSVFAN

CCAGGTACTTCTGAAAGCGCTACTCCGG



SLVYGASDSNVYDL

AATCCGGCCCAGGTAGCGAACCGGCTA



LKDLEEGIQTLMGRL

CTTCCGGCTCTGAAACCCCAGGTTCCAC



EDGSPRTGQIFKQTY

CAGCTCTACTGCAGAATCTCCGGGCCCA



SKFDTNSHNDDALL

GGTTCTACTAGCTCTACTGCAGAATCTC



KNYGLLYCFRKDMD

CGGGTCCAGGTACTTCTCCTAGCGGCGA



KVETFLRIVQCRSVE

ATCTTCTACCGCTCCAGGTAGCGAACCG



GSCGFGGGLGPVSG

GCAACCTCTGGCTCTGAAACTCCAGGTA



VPGGTSESATPESGP

GCGAACCTGCAACCTCCGGCTCTGAAAC



GSEPATSGSETPGTS

CCCAGGTACTTCTACTGAACCTTCTGAG



ESATPESGPGSEPAT

GGCAGCGCACCAGGTTCTACCAGCTCTA



SGSETPGTSESATPES

CCGCAGAATCTCCTGGTCCAGGTACCTC



GPGTSTEPSEGSAPG

TACTCCGGAAAGCGGCTCTGCATCTCCA



SPAGSPTSTEEGTSES

GGTTCTACTAGCGAATCTCCTTCTGGCA



ATPESGPGSEPATSG

CTGCACCAGGTACTTCTACCGAACCGTC



SETPGTSESATPESGP

CGAAGGCAGCGCTCCAGGTACCTCTACT



GSPAGSPTSTEEGSP

GAACCTTCCGAGGGCAGCGCTCCAGGT



AGSPTSTEEGTSTEPS

ACCTCTACCGAACCTTCTGAAGGTAGCG



EGSAPGTSESATPES

CACCAGGTAGCTCTACTCCGTCTGGTGC



GPGTSESATPESGPG

AACCGGCTCCCCAGGTTCTAGCCCGTCT



TSESATPESGPGSEP

GCTTCCACTGGTACTGGCCCAGGTGCTT



ATSGSETPGSEPATS

CCCCGGGCACCAGCTCTACTGGTTCTCC



GSETPGSPAGSPTST

AGGTAGCGAACCTGCTACCTCCGGTTCT



EEGTSTEPSEGSAPG

GAAACCCCAGGTACCTCTGAAAGCGCA



TSTEPSEGSAPGSEP

ACTCCGGAGTCTGGTCCAGGTAGCCCTG



ATSGSETPGTSESAT

CAGGTTCTCCTACCTCCACTGAGGAAGG



PESGPGTSTEPSEGS

TAGCTCTACTCCGTCTGGTGCAACCGGC



AP

TCCCCAGGTTCTAGCCCGTCTGCTTCCA





CTGGTACTGGCCCAGGTGCTTCCCCGGG





CACCAGCTCTACTGGTTCTCCAGGTACC





TCTGAAAGCGCTACTCCGGAGTCTGGCC





CAGGTACCTCTACTGAACCGTCTGAGGG





TAGCGCTCCAGGTACTTCTACTGAACCG





TCCGAAGGTAGCGCACCAGGTTTTCCGA





CTATTCCGCTGTCTCGTCTGTTTGATAAT





GCTATGCTGCGTGCGCACCGTCTGCACC





AGCTGGCCTTTGATACTTACCAGGAATT





TGAAGAAGCcTACATTCCTAAAGAGCAG





AAGTACTCTTTCCTGCAAAACCCACAGA





CTTCTCTCTGCTTCAGCGAATCTATTCCG





ACGCCTTCCAATCGCGAGGAAACTCAG





CAAAAGTCCAATCTGGAACTACTCCGCA





TTTCTCTGCTTCTGATTCAGAGCTGGCT





AGAACCAGTGCAATTTCTGCGTTCCGTC





TTCGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTGAA





AGATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTCCG





CGTACTGGTCAGATCTTCAAGCAGACTT





ACTCTAAATTTGATACTAACAGCCACAA





TGACGATGCGCTTCTAAAAAACTATGGT





CTGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATTGT





TCAGTGTCGTTCCGTTGAGGGCAGCTGT





GGTTTCTAAGGTggcggcctgggcccggtgagcggc





gtgccgGGTGGTACCTCTGAAAGCGCAACT





CCTGAGTCTGGCCCAGGTAGCGAACCTG





CTACCTCCGGCTCTGAGACTCCAGGTAC





CTCTGAAAGCGCAACCCCGGAATCTGGT





CCAGGTAGCGAACCTGCAACCTCTGGCT





CTGAAACCCCAGGTACCTCTGAAAGCG





CTACTCCTGAATCTGGCCCAGGTACTTC





TACTGAACCGTCCGAGGGCAGCGCACC





AGGTAGCCCTGCTGGCTCTCCAACCTCC





ACCGAAGAAGGTACCTCTGAAAGCGCA





ACCCCTGAATCCGGCCCAGGTAGCGAA





CCGGCAACCTCCGGTTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGTC





CGGCCCAGGTAGCCCGGCTGGCTCTCCG





ACTTCCACCGAGGAAGGTAGCCCGGCT





GGCTCTCCAACTTCTACTGAAGAAGGTA





CTTCTACCGAACCTTCCGAGGGCAGCGC





ACCAGGTACTTCTGAAAGCGCTACCCCT





GAGTCCGGCCCAGGTACTTCTGAAAGC





GCTACTCCTGAATCCGGTCCAGGTACTT





CTGAAAGCGCTACCCCGGAATCTGGCCC





AGGTAGCGAACCGGCTACTTCTGGTTCT





GAAACCCCAGGTAGCGAACCGGCTACC





TCCGGTTCTGAAACTCCAGGTAGCCCAG





CAGGCTCTCCGACTTCCACTGAGGAAGG





TACTTCTACTGAACCTTCCGAAGGCAGC





GCACCAGGTACCTCTACTGAACCTTCTG





AGGGCAGCGCTCCAGGTAGCGAACCTG





CAACCTCTGGCTCTGAAACCCCAGGTAC





CTCTGAAAGCGCTACTCCTGAATCTGGC





CCAGGTACTTCTACTGAACCGTCCGAGG





GCAGCGCACCA





AM923-
MAEPAGSPTSTEEGA
827
ATGGCTGAACCTGCTGGCTCTCCAACCT
828


hGH-
SPGTSSTGSPGSSTPS

CCACTGAGGAAGGTGCATCCCCGGGCA


MMP-17-
GATGSPGSSTPSGAT

CCAGCTCTACCGGTTCTCCAGGTAGCTC


AE288
GSPGTSTEPSEGSAP

TACCCCGTCTGGTGCTACCGGCTCTCCA



GSEPATSGSETPGSP

GGTAGCTCTACCCCGTCTGGTGCTACTG



AGSPTSTEEGSTSST

GCTCTCCAGGTACTTCTACTGAACCGTC



AESPGPGTSTPESGS

TGAAGGCAGCGCACCAGGTAGCGAACC



ASPGSTSESPSGTAP

GGCTACTTCCGGTTCTGAAACCCCAGGT



GSTSESPSGTAPGTS

AGCCCAGCAGGTTCTCCAACTTCTACTG



TPESGSASPGTSTPES

AAGAAGGTTCTACCAGCTCTACCGCAG



GSASPGSEPATSGSE

AATCTCCTGGTCCAGGTACCTCTACTCC



TPGTSESATPESGPG

GGAAAGCGGCTCTGCATCTCCAGGTTCT



SPAGSPTSTEEGTSTE

ACTAGCGAATCTCCTTCTGGCACTGCAC



PSEGSAPGTSESATP

CAGGTTCTACTAGCGAATCCCCGTCTGG



ESGPGTSTEPSEGSA

TACTGCTCCAGGTACTTCTACTCCTGAA



PGTSTEPSEGSAPGSP

AGCGGTTCCGCTTCTCCAGGTACCTCTA



AGSPTSTEEGTSTEPS

CTCCGGAAAGCGGTTCTGCATCTCCAGG



EGSAPGTSTEPSEGS

TAGCGAACCGGCAACCTCCGGCTCTGA



APGTSESATPESGPG

AACCCCAGGTACCTCTGAAAGCGCTACT



TSESATPESGPGTSTE

CCTGAATCCGGCCCAGGTAGCCCGGCA



PSEGSAPGTSTEPSE

GGTTCTCCGACTTCCACTGAGGAAGGTA



GSAPGTSESATPESG

CCTCTACTGAACCTTCTGAGGGCAGCGC



PGTSTEPSEGSAPGS

TCCAGGTACTTCTGAAAGCGCTACCCCG



EPATSGSETPGSPAG

GAGTCCGGTCCAGGTACTTCTACTGAAC



SPTSTEEGSSTPSGAT

CGTCCGAAGGTAGCGCACCAGGTACTTC



GSPGTPGSGTASSSP

TACCGAACCGTCCGAGGGTAGCGCACC



GSSTPSGATGSPGTS

AGGTAGCCCAGCAGGTTCTCCTACCTCC



TEPSEGSAPGTSTEPS

ACCGAGGAAGGTACTTCTACCGAACCG



EGSAPGSEPATSGSE

TCCGAGGGTAGCGCACCAGGTACTTCTA



TPGSPAGSPTSTEEG

CCGAACCTTCCGAGGGCAGCGCACCAG



SPAGSPTSTEEGTSTE

GTACTTCTGAAAGCGCTACCCCTGAGTC



PSEGSAPGASASGAP

CGGCCCAGGTACTTCTGAAAGCGCTACT



STGGTSESATPESGP

CCTGAATCCGGTCCAGGTACCTCTACTG



GSPAGSPTSTEEGSP

AACCTTCCGAAGGCAGCGCTCCAGGTA



AGSPTSTEEGSTSST

CCTCTACCGAACCGTCCGAGGGCAGCG



AESPGPGSTSESPSGT

CACCAGGTACTTCTGAAAGCGCAACCCC



APGTSPSGESSTAPG

TGAATCCGGTCCAGGTACTTCTACTGAA



TPGSGTASSSPGSSTP

CCTTCCGAAGGTAGCGCTCCAGGTAGCG



SGATGSPGSSPSAST

AACCTGCTACTTCTGGTTCTGAAACCCC



GTGPGSEPATSGSET

AGGTAGCCCGGCTGGCTCTCCGACCTCC



PGTSESATPESGPGS

ACCGAGGAAGGTAGCTCTACCCCGTCTG



EPATSGSETPGSTSST

GTGCTACTGGTTCTCCAGGTACTCCGGG



AESPGPGSTSSTAESP

CAGCGGTACTGCTTCTTCCTCTCCAGGT



GPGTSPSGESSTAPG

AGCTCTACCCCTTCTGGTGCTACTGGCT



SEPATSGSETPGSEP

CTCCAGGTACCTCTACCGAACCGTCCGA



ATSGSETPGTSTEPSE

GGGTAGCGCACCAGGTACCTCTACTGA



GSAPGSTSSTAESPG

ACCGTCTGAGGGTAGCGCTCCAGGTAG



PGTSTPESGSASPGST

CGAACCGGCAACCTCCGGTTCTGAAACT



SESPSGTAPGTSTEPS

CCAGGTAGCCCTGCTGGCTCTCCGACTT



EGSAPGTSTEPSEGS

CTACTGAGGAAGGTAGCCCGGCTGGTTC



APGTSTEPSEGSAPG

TCCGACTTCTACTGAGGAAGGTACTTCT



SSTPSGATGSPGSSPS

ACCGAACCTTCCGAAGGTAGCGCTCCA



ASTGTGPGASPGTSS

GGTGCAAGCGCAAGCGGCGCGCCAAGC



TGSPGSEPATSGSET

ACGGGAGGTACTTCTGAAAGCGCTACTC



PGTSESATPESGPGSP

CTGAGTCCGGCCCAGGTAGCCCGGCTG



AGSPTSTEEGSSTPS

GCTCTCCGACTTCCACCGAGGAAGGTAG



GATGSPGSSPSASTG

CCCGGCTGGCTCTCCAACTTCTACTGAA



TGPGASPGTSSTGSP

GAAGGTTCTACCAGCTCTACCGCTGAAT



GTSESATPESGPGTS

CTCCTGGCCCAGGTTCTACTAGCGAATC



TEPSEGSAPGTSTEPS

TCCGTCTGGCACCGCACCAGGTACTTCC



EGSAPGFPTIPLSRLF

CCTAGCGGTGAATCTTCTACTGCACCAG



DNAMLRAHRLHQL

GTACCCCTGGCAGCGGTACCGCTTCTTC



AFDTYQEFEEAYIPK

CTCTCCAGGTAGCTCTACCCCGTCTGGT



EQKYSFLQNPQTSLC

GCTACTGGCTCTCCAGGTTCTAGCCCGT



FSESIPTPSNREETQQ

CTGCATCTACCGGTACCGGCCCAGGTAG



KSNLELLRISLLLIQS

CGAACCGGCAACCTCCGGCTCTGAAACT



WLEPVQFLRSVFAN

CCAGGTACTTCTGAAAGCGCTACTCCGG



SLVYGASDSNVYDL

AATCCGGCCCAGGTAGCGAACCGGCTA



LKDLEEGIQTLMGRL

CTTCCGGCTCTGAAACCCCAGGTTCCAC



EDGSPRTGQIFKQTY

CAGCTCTACTGCAGAATCTCCGGGCCCA



SKFDTNSHNDDALL

GGTTCTACTAGCTCTACTGCAGAATCTC



KNYGLLYCFRKDMD

CGGGTCCAGGTACTTCTCCTAGCGGCGA



KVETFLRIVQCRSVE

ATCTTCTACCGCTCCAGGTAGCGAACCG



GSCGFGAPLGLRLR

GCAACCTCTGGCTCTGAAACTCCAGGTA



GGGGTSESATPESGP

GCGAACCTGCAACCTCCGGCTCTGAAAC



GSEPATSGSETPGTS

CCCAGGTACTTCTACTGAACCTTCTGAG



ESATPESGPGSEPAT

GGCAGCGCACCAGGTTCTACCAGCTCTA



SGSETPGTSESATPES

CCGCAGAATCTCCTGGTCCAGGTACCTC



GPGTSTEPSEGSAPG

TACTCCGGAAAGCGGCTCTGCATCTCCA



SPAGSPTSTEEGTSES

GGTTCTACTAGCGAATCTCCTTCTGGCA



ATPESGPGSEPATSG

CTGCACCAGGTACTTCTACCGAACCGTC



SETPGTSESATPESGP

CGAAGGCAGCGCTCCAGGTACCTCTACT



GSPAGSPTSTEEGSP

GAACCTTCCGAGGGCAGCGCTCCAGGT



AGSPTSTEEGTSTEPS

ACCTCTACCGAACCTTCTGAAGGTAGCG



EGSAPGTSESATPES

CACCAGGTAGCTCTACTCCGTCTGGTGC



GPGTSESATPESGPG

AACCGGCTCCCCAGGTTCTAGCCCGTCT



TSESATPESGPGSEP

GCTTCCACTGGTACTGGCCCAGGTGCTT



ATSGSETPGSEPATS

CCCCGGGCACCAGCTCTACTGGTTCTCC



GSETPGSPAGSPTST

AGGTAGCGAACCTGCTACCTCCGGTTCT



EEGTSTEPSEGSAPG

GAAACCCCAGGTACCTCTGAAAGCGCA



TSTEPSEGSAPGSEP

ACTCCGGAGTCTGGTCCAGGTAGCCCTG



ATSGSETPGTSESAT

CAGGTTCTCCTACCTCCACTGAGGAAGG



PESGPGTSTEPSEGS

TAGCTCTACTCCGTCTGGTGCAACCGGC



AP

TCCCCAGGTTCTAGCCCGTCTGCTTCCA





CTGGTACTGGCCCAGGTGCTTCCCCGGG





CACCAGCTCTACTGGTTCTCCAGGTACC





TCTGAAAGCGCTACTCCGGAGTCTGGCC





CAGGTACCTCTACTGAACCGTCTGAGGG





TAGCGCTCCAGGTACTTCTACTGAACCG





TCCGAAGGTAGCGCACCAGGTTTTCCGA





CTATTCCGCTGTCTCGTCTGTTTGATAAT





GCTATGCTGCGTGCGCACCGTCTGCACC





AGCTGGCCTTTGATACTTACCAGGAATT





TGAAGAAGCcTACATTCCTAAAGAGCAG





AAGTACTCTTTCCTGCAAAACCCACAGA





CTTCTCTCTGCTTCAGCGAATCTATTCCG





ACGCCTTCCAATCGCGAGGAAACTCAG





CAAAAGTCCAATCTGGAACTACTCCGCA





TTTCTCTGCTTCTGATTCAGAGCTGGCT





AGAACCAGTGCAATTTCTGCGTTCCGTC





TTCGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTGAA





AGATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTCCG





CGTACTGGTCAGATCTTCAAGCAGACTT





ACTCTAAATTTGATACTAACAGCCACAA





TGACGATGCGCTTCTAAAAAACTATGGT





CTGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATTGT





TCAGTGTCGTTCCGTTGAGGGCAGCTGT





GGTTTCTAAGGTgcgccgctgggcctgcgcctgcgc





ggcggcGGTGGTACCTCTGAAAGCGCAAC





TCCTGAGTCTGGCCCAGGTAGCGAACCT





GCTACCTCCGGCTCTGAGACTCCAGGTA





CCTCTGAAAGCGCAACCCCGGAATCTG





GTCCAGGTAGCGAACCTGCAACCTCTGG





CTCTGAAACCCCAGGTACCTCTGAAAGC





GCTACTCCTGAATCTGGCCCAGGTACTT





CTACTGAACCGTCCGAGGGCAGCGCAC





CAGGTAGCCCTGCTGGCTCTCCAACCTC





CACCGAAGAAGGTACCTCTGAAAGCGC





AACCCCTGAATCCGGCCCAGGTAGCGA





ACCGGCAACCTCCGGTTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGAGT





CCGGCCCAGGTAGCCCGGCTGGCTCTCC





GACTTCCACCGAGGAAGGTAGCCCGGC





TGGCTCTCCAACTTCTACTGAAGAAGGT





ACTTCTACCGAACCTTCCGAGGGCAGCG





CACCAGGTACTTCTGAAAGCGCTACCCC





TGAGTCCGGCCCAGGTACTTCTGAAAGC





GCTACTCCTGAATCCGGTCCAGGTACTT





CTGAAAGCGCTACCCCGGAATCTGGCCC





AGGTAGCGAACCGGCTACTTCTGGTTCT





GAAACCCCAGGTAGCGAACCGGCTACC





TCCGGTTCTGAAACTCCAGGTAGCCCAG





CAGGCTCTCCGACTTCCACTGAGGAAGG





TACTTCTACTGAACCTTCCGAAGGCAGC





GCACCAGGTACCTCTACTGAACCTTCTG





AGGGCAGCGCTCCAGGTAGCGAACCTG





CAACCTCTGGCTCTGAAACCCCAGGTAC





CTCTGAAAGCGCTACTCCTGAATCTGGC





CCAGGTACTTCTACTGAACCGTCCGAGG





GCAGCGCACCA





AE624-
MAEPAGSPTSTEEGT
829
ATGGCTGAACCTGCTGGCTCTCCAACCT
830


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG


Thrombin-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT


AE144
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG



GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG



TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT



PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA



APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC



TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT



ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT



GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC



EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT



TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG



PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC



STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT



GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG



ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA



EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA



GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC



TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA



PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC



ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA



PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT



SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC



TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT



SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC



GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG



EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG



APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG



SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA



PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC



ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG



PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA



EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG



ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC



GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG



PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC



AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC



PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT



GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG



FPTIPLSRLFDNAML

CTACTCCGGAGTCTGGCCCAGGTACCTC



RAHRLHQLAFDTYQ

TACTGAACCGTCTGAGGGTAGCGCTCCA



EFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTA



LQNPQTSLCFSESIPT

GCGCACCAGGTACTTCTACCGAACCGTC



PSNREETQQKSNLEL

CGAAGGCAGCGCTCCAGGTACCTCTACT



LRISLLLIQSWLEPVQ

GAACCTTCCGAGGGCAGCGCTCCAGGT



FLRSVFANSLVYGAS

ACCTCTACCGAACCTTCTGAAGGTAGCG



DSNVYDLLKDLEEGI

CACCAGGTACTTCTACCGAACCGTCCGA



QTLMGRLEDGSPRT

GGGTAGCGCACCAGGTAGCCCAGCAGG



GQIFKQTYSKFDTNS

TTCTCCTACCTCCACCGAGGAAGGTACT



HNDDALLKNYGLLY

TCTACCGAACCGTCCGAGGGTAGCGCA



CFRKDMDKVETFLRI

CCAGGTACCTCTGAAAGCGCAACTCCTG



VQCRSVEGSCGFGL

AGTCTGGCCCAGGTAGCGAACCTGCTAC



TPRSLLVGGGGSEPA

CTCCGGCTCTGAGACTCCAGGTACCTCT



TSGSETPGTSESATPE

GAAAGCGCAACCCCGGAATCTGGTCCA



SGPGSEPATSGSETP

GGTAGCGAACCTGCAACCTCTGGCTCTG



GSPAGSPTSTEEGTS

AAACCCCAGGTACCTCTGAAAGCGCTA



TEPSEGSAPGSEPAT

CTCCTGAATCTGGCCCAGGTACTTCTAC



SGSETPGSEPATSGS

TGAACCGTCCGAGGGCAGCGCACCAGG



ETPGSEPATSGSETP

TACTTCTGAAAGCGCTACTCCTGAGTCC



GTSTEPSEGSAPGTS

GGCCCAGGTAGCCCGGCTGGCTCTCCGA



ESATPESGPGSEPAT

CTTCCACCGAGGAAGGTAGCCCGGCTG



SGSETPGTSTEPSEGS

GCTCTCCAACTTCTACTGAAGAAGGTAG



AP

CCCGGCAGGCTCTCCGACCTCTACTGAG





GAAGGTACTTCTGAAAGCGCAACCCCG





GAGTCCGGCCCAGGTACCTCTACCGAAC





CGTCTGAGGGCAGCGCACCAGGTTTTCC





GACTATTCCGCTGTCTCGTCTGTTTGAT





AATGCTATGCTGCGTGCGCACCGTCTGC





ACCAGCTGGCCTTTGATACTTACCAGGA





ATTTGAAGAAGCcTACATTCCTAAAGAG





CAGAAGTACTCTTTCCTGCAAAACCCAC





AGACTTCTCTCTGCTTCAGCGAATCTAT





TCCGACGCCTTCCAATCGCGAGGAAACT





CAGCAAAAGTCCAATCTGGAACTACTCC





GCATTTCTCTGCTTCTGATTCAGAGCTG





GCTAGAACCAGTGCAATTTCTGCGTTCC





GTCTTCGCCAATAGCCTAGTTTATGGCG





CATCCGACAGCAACGTATACGATCTCCT





GAAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCTCT





CCGCGTACTGGTCAGATCTTCAAGCAGA





CTTACTCTAAATTTGATACTAACAGCCA





CAATGACGATGCGCTTCTAAAAAACTAT





GGTCTGCTGTATTGTTTTCGTAAAGATA





TGGACAAAGTTGAAACCTTCCTGCGTAT





TGTTCAGTGTCGTTCCGTTGAGGGCAGC





TGTGGTTTCTAAGGTctgaccccgcgcagcctgctg





gtgggcggcGGTGGTAGCGAACCGGCAACT





TCCGGCTCTGAAACCCCAGGTACTTCTG





AAAGCGCTACTCCTGAGTCTGGCCCAGG





TAGCGAACCTGCTACCTCTGGCTCTGAA





ACCCCAGGTAGCCCGGCAGGCTCTCCG





ACTTCCACCGAGGAAGGTACCTCTACTG





AACCTTCTGAGGGTAGCGCTCCAGGTAG





CGAACCGGCAACCTCTGGCTCTGAAACC





CCAGGTAGCGAACCTGCTACCTCCGGCT





CTGAAACTCCAGGTAGCGAACCGGCTA





CTTCCGGTTCTGAAACTCCAGGTACCTC





TACCGAACCTTCCGAAGGCAGCGCACC





AGGTACTTCTGAAAGCGCAACCCCTGA





ATCCGGTCCAGGTAGCGAACCGGCTACT





TCTGGCTCTGAGACTCCAGGTACTTCTA





CCGAACCGTCCGAAGGTAGCGCACCA





AE624-
MAEPAGSPTSTEEGT
831
ATGGCTGAACCTGCTGGCTCTCCAACCT
832


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG


FXIa-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT


AE144
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG



GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG



TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT



PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA



APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC



TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT



ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT



GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC



EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT



TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG



PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC



STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT



GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG



ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA



EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA



GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC



TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA



PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC



ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA



PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT



SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC



TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT



SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC



GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG



EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG



APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG



SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA



PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC



ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG



PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA



EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG



ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC



GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG



PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC



AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC



PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT



GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG



FPTIPLSRLFDNAML

CTACTCCGGAGTCTGGCCCAGGTACCTC



RAHRLHQLAFDTYQ

TACTGAACCGTCTGAGGGTAGCGCTCCA



EFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTA



LQNPQTSLCFSESIPT

GCGCACCAGGTACTTCTACCGAACCGTC



PSNREETQQKSNLEL

CGAAGGCAGCGCTCCAGGTACCTCTACT



LRISLLLIQSWLEPVQ

GAACCTTCCGAGGGCAGCGCTCCAGGT



FLRSVFANSLVYGAS

ACCTCTACCGAACCTTCTGAAGGTAGCG



DSNVYDLLKDLEEGI

CACCAGGTACTTCTACCGAACCGTCCGA



QTLMGRLEDGSPRT

GGGTAGCGCACCAGGTAGCCCAGCAGG



GQIFKQTYSKFDTNS

TTCTCCTACCTCCACCGAGGAAGGTACT



HNDDALLKNYGLLY

TCTACCGAACCGTCCGAGGGTAGCGCA



CFRKDMDKVETFLRI

CCAGGTACCTCTGAAAGCGCAACTCCTG



VQCRSVEGSCGFGG

AGTCTGGCCCAGGTAGCGAACCTGCTAC



GKLTRVVGGGGSEP

CTCCGGCTCTGAGACTCCAGGTACCTCT



ATSGSETPGTSESAT

GAAAGCGCAACCCCGGAATCTGGTCCA



PESGPGSEPATSGSE

GGTAGCGAACCTGCAACCTCTGGCTCTG



TPGSPAGSPTSTEEG

AAACCCCAGGTACCTCTGAAAGCGCTA



TSTEPSEGSAPGSEP

CTCCTGAATCTGGCCCAGGTACTTCTAC



ATSGSETPGSEPATS

TGAACCGTCCGAGGGCAGCGCACCAGG



GSETPGSEPATSGSE

TACTTCTGAAAGCGCTACTCCTGAGTCC



TPGTSTEPSEGSAPG

GGCCCAGGTAGCCCGGCTGGCTCTCCGA



TSESATPESGPGSEP

CTTCCACCGAGGAAGGTAGCCCGGCTG



ATSGSETPGTSTEPSE

GCTCTCCAACTTCTACTGAAGAAGGTAG



GSAP

CCCGGCAGGCTCTCCGACCTCTACTGAG





GAAGGTACTTCTGAAAGCGCAACCCCG





GAGTCCGGCCCAGGTACCTCTACCGAAC





CGTCTGAGGGCAGCGCACCAGGTTTTCC





GACTATTCCGCTGTCTCGTCTGTTTGAT





AATGCTATGCTGCGTGCGCACCGTCTGC





ACCAGCTGGCCTTTGATACTTACCAGGA





ATTTGAAGAAGCcTACATTCCTAAAGAG





CAGAAGTACTCTTTCCTGCAAAACCCAC





AGACTTCTCTCTGCTTCAGCGAATCTAT





TCCGACGCCTTCCAATCGCGAGGAAACT





CAGCAAAAGTCCAATCTGGAACTACTCC





GCATTTCTCTGCTTCTGATTCAGAGCTG





GCTAGAACCAGTGCAATTTCTGCGTTCC





GTCTTCGCCAATAGCCTAGTTTATGGCG





CATCCGACAGCAACGTATACGATCTCCT





GAAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCTCT





CCGCGTACTGGTCAGATCTTCAAGCAGA





CTTACTCTAAATTTGATACTAACAGCCA





CAATGACGATGCGCTTCTAAAAAACTAT





GGTCTGCTGTATTGTTTTCGTAAAGATA





TGGACAAAGTTGAAACCTTCCTGCGTAT





TGTTCAGTGTCGTTCCGTTGAGGGCAGC





TGTGGTTTCTAAGGTggcggcaaactgacccgcgt





ggtgggcggcGGTGGTAGCGAACCGGCAAC





TTCCGGCTCTGAAACCCCAGGTACTTCT





GAAAGCGCTACTCCTGAGTCTGGCCCAG





GTAGCGAACCTGCTACCTCTGGCTCTGA





AACCCCAGGTAGCCCGGCAGGCTCTCC





GACTTCCACCGAGGAAGGTACCTCTACT





GAACCTTCTGAGGGTAGCGCTCCAGGTA





GCGAACCGGCAACCTCTGGCTCTGAAA





CCCCAGGTAGCGAACCTGCTACCTCCGG





CTCTGAAACTCCAGGTAGCGAACCGGCT





ACTTCCGGTTCTGAAACTCCAGGTACCT





CTACCGAACCTTCCGAAGGCAGCGCAC





CAGGTACTTCTGAAAGCGCAACCCCTGA





ATCCGGTCCAGGTAGCGAACCGGCTACT





TCTGGCTCTGAGACTCCAGGTACTTCTA





CCGAACCGTCCGAAGGTAGCGCACCA





AE624-
MAEPAGSPTSTEEGT
833
ATGGCTGAACCTGCTGGCTCTCCAACCT
834


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG


Elastase-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT


AE144
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG



GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG



TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT



PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA



APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC



TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT



ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT



GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC



EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT



TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG



PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC



STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT



GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG



ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA



EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA



GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC



TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA



PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC



ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA



PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT



SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC



TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT



SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC



GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG



EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG



APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG



SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA



PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC



ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG



PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA



EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG



ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC



GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG



PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC



AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC



PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT



GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG



FPTIPLSRLFDNAML

CTACTCCGGAGTCTGGCCCAGGTACCTC



RAHRLHQLAFDTYQ

TACTGAACCGTCTGAGGGTAGCGCTCCA



EFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTA



LQNPQTSLCFSESIPT

GCGCACCAGGTACTTCTACCGAACCGTC



PSNREETQQKSNLEL

CGAAGGCAGCGCTCCAGGTACCTCTACT



LRISLLLIQSWLEPVQ

GAACCTTCCGAGGGCAGCGCTCCAGGT



FLRSVFANSLVYGAS

ACCTCTACCGAACCTTCTGAAGGTAGCG



DSNVYDLLKDLEEGI

CACCAGGTACTTCTACCGAACCGTCCGA



QTLMGRLEDGSPRT

GGGTAGCGCACCAGGTAGCCCAGCAGG



GQIFKQTYSKFDTNS

TTCTCCTACCTCCACCGAGGAAGGTACT



HNDDALLKNYGLLY

TCTACCGAACCGTCCGAGGGTAGCGCA



CFRKDMDKVETFLRI

CCAGGTACCTCTGAAAGCGCAACTCCTG



VQCRSVEGSCGFGG

AGTCTGGCCCAGGTAGCGAACCTGCTAC



GLGPVSGVPGGSEPA

CTCCGGCTCTGAGACTCCAGGTACCTCT



TSGSETPGTSESATPE

GAAAGCGCAACCCCGGAATCTGGTCCA



SGPGSEPATSGSETP

GGTAGCGAACCTGCAACCTCTGGCTCTG



GSPAGSPTSTEEGTS

AAACCCCAGGTACCTCTGAAAGCGCTA



TEPSEGSAPGSEPAT

CTCCTGAATCTGGCCCAGGTACTTCTAC



SGSETPGSEPATSGS

TGAACCGTCCGAGGGCAGCGCACCAGG



ETPGSEPATSGSETP

TACTTCTGAAAGCGCTACTCCTGAGTCC



GTSTEPSEGSAPGTS

GGCCCAGGTAGCCCGGCTGGCTCTCCGA



ESATPESGPGSEPAT

CTTCCACCGAGGAAGGTAGCCCGGCTG



SGSETPGTSTEPSEGS

GCTCTCCAACTTCTACTGAAGAAGGTAG



AP

CCCGGCAGGCTCTCCGACCTCTACTGAG





GAAGGTACTTCTGAAAGCGCAACCCCG





GAGTCCGGCCCAGGTACCTCTACCGAAC





CGTCTGAGGGCAGCGCACCAGGTTTTCC





GACTATTCCGCTGTCTCGTCTGTTTGAT





AATGCTATGCTGCGTGCGCACCGTCTGC





ACCAGCTGGCCTTTGATACTTACCAGGA





ATTTGAAGAAGCcTACATTCCTAAAGAG





CAGAAGTACTCTTTCCTGCAAAACCCAC





AGACTTCTCTCTGCTTCAGCGAATCTAT





TCCGACGCCTTCCAATCGCGAGGAAACT





CAGCAAAAGTCCAATCTGGAACTACTCC





GCATTTCTCTGCTTCTGATTCAGAGCTG





GCTAGAACCAGTGCAATTTCTGCGTTCC





GTCTTCGCCAATAGCCTAGTTTATGGCG





CATCCGACAGCAACGTATACGATCTCCT





GAAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCTCT





CCGCGTACTGGTCAGATCTTCAAGCAGA





CTTACTCTAAATTTGATACTAACAGCCA





CAATGACGATGCGCTTCTAAAAAACTAT





GGTCTGCTGTATTGTTTTCGTAAAGATA





TGGACAAAGTTGAAACCTTCCTGCGTAT





TGTTCAGTGTCGTTCCGTTGAGGGCAGC





TGTGGTTTCTAAGGTggcggcctgggcccggtgag





cggcgtgccgGGTGGTAGCGAACCGGCAACT





TCCGGCTCTGAAACCCCAGGTACTTCTG





AAAGCGCTACTCCTGAGTCTGGCCCAGG





TAGCGAACCTGCTACCTCTGGCTCTGAA





ACCCCAGGTAGCCCGGCAGGCTCTCCG





ACTTCCACCGAGGAAGGTACCTCTACTG





AACCTTCTGAGGGTAGCGCTCCAGGTAG





CGAACCGGCAACCTCTGGCTCTGAAACC





CCAGGTAGCGAACCTGCTACCTCCGGCT





CTGAAACTCCAGGTAGCGAACCGGCTA





CTTCCGGTTCTGAAACTCCAGGTACCTC





TACCGAACCTTCCGAAGGCAGCGCACC





AGGTACTTCTGAAAGCGCAACCCCTGA





ATCCGGTCCAGGTAGCGAACCGGCTACT





TCTGGCTCTGAGACTCCAGGTACTTCTA





CCGAACCGTCCGAAGGTAGCGCACCA





AE624-
MAEPAGSPTSTEEGT
835
ATGGCTGAACCTGCTGGCTCTCCAACCT
836


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG


MMP-17-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT


AE144
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG



GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG



TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT



PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA



APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC



TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT



ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT



GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC



EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT



TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG



PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC



STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT



GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG



ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA



EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA



GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC



TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA



PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC



ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA



PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT



SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC



TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT



SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC



GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG



EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG



APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG



SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA



PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC



ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG



PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA



EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG



ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC



GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG



PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC



AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC



PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT



GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG



FPTIPLSRLFDNAML

CTACTCCGGAGTCTGGCCCAGGTACCTC



RAHRLHQLAFDTYQ

TACTGAACCGTCTGAGGGTAGCGCTCCA



EFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTA



LQNPQTSLCFSESIPT

GCGCACCAGGTACTTCTACCGAACCGTC



PSNREETQQKSNLEL

CGAAGGCAGCGCTCCAGGTACCTCTACT



LRISLLLIQSWLEPVQ

GAACCTTCCGAGGGCAGCGCTCCAGGT



FLRSVFANSLVYGAS

ACCTCTACCGAACCTTCTGAAGGTAGCG



DSNVYDLLKDLEEGI

CACCAGGTACTTCTACCGAACCGTCCGA



QTLMGRLEDGSPRT

GGGTAGCGCACCAGGTAGCCCAGCAGG



GQIFKQTYSKFDTNS

TTCTCCTACCTCCACCGAGGAAGGTACT



HNDDALLKNYGLLY

TCTACCGAACCGTCCGAGGGTAGCGCA



CFRKDMDKVETFLRI

CCAGGTACCTCTGAAAGCGCAACTCCTG



VQCRSVEGSCGFGA

AGTCTGGCCCAGGTAGCGAACCTGCTAC



PLGLRLRGGGGSEPA

CTCCGGCTCTGAGACTCCAGGTACCTCT



TSGSETPGTSESATPE

GAAAGCGCAACCCCGGAATCTGGTCCA



SGPGSEPATSGSETP

GGTAGCGAACCTGCAACCTCTGGCTCTG



GSPAGSPTSTEEGTS

AAACCCCAGGTACCTCTGAAAGCGCTA



TEPSEGSAPGSEPAT

CTCCTGAATCTGGCCCAGGTACTTCTAC



SGSETPGSEPATSGS

TGAACCGTCCGAGGGCAGCGCACCAGG



ETPGSEPATSGSETP

TACTTCTGAAAGCGCTACTCCTGAGTCC



GTSTEPSEGSAPGTS

GGCCCAGGTAGCCCGGCTGGCTCTCCGA



ESATPESGPGSEPAT

CTTCCACCGAGGAAGGTAGCCCGGCTG



SGSETPGTSTEPSEGS

GCTCTCCAACTTCTACTGAAGAAGGTAG



AP

CCCGGCAGGCTCTCCGACCTCTACTGAG





GAAGGTACTTCTGAAAGCGCAACCCCG





GAGTCCGGCCCAGGTACCTCTACCGAAC





CGTCTGAGGGCAGCGCACCAGGTTTTCC





GACTATTCCGCTGTCTCGTCTGTTTGAT





AATGCTATGCTGCGTGCGCACCGTCTGC





ACCAGCTGGCCTTTGATACTTACCAGGA





ATTTGAAGAAGCcTACATTCCTAAAGAG





CAGAAGTACTCTTTCCTGCAAAACCCAC





AGACTTCTCTCTGCTTCAGCGAATCTAT





TCCGACGCCTTCCAATCGCGAGGAAACT





CAGCAAAAGTCCAATCTGGAACTACTCC





GCATTTCTCTGCTTCTGATTCAGAGCTG





GCTAGAACCAGTGCAATTTCTGCGTTCC





GTCTTCGCCAATAGCCTAGTTTATGGCG





CATCCGACAGCAACGTATACGATCTCCT





GAAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCTCT





CCGCGTACTGGTCAGATCTTCAAGCAGA





CTTACTCTAAATTTGATACTAACAGCCA





CAATGACGATGCGCTTCTAAAAAACTAT





GGTCTGCTGTATTGTTTTCGTAAAGATA





TGGACAAAGTTGAAACCTTCCTGCGTAT





TGTTCAGTGTCGTTCCGTTGAGGGCAGC





TGTGGTTTCTAAGGTgcgccgctgggcctgcgcct





gcgcggcggcGGTGGTAGCGAACCGGCAAC





TTCCGGCTCTGAAACCCCAGGTACTTCT





GAAAGCGCTACTCCTGAGTCTGGCCCAG





GTAGCGAACCTGCTACCTCTGGCTCTGA





AACCCCAGGTAGCCCGGCAGGCTCTCC





GACTTCCACCGAGGAAGGTACCTCTACT





GAACCTTCTGAGGGTAGCGCTCCAGGTA





GCGAACCGGCAACCTCTGGCTCTGAAA





CCCCAGGTAGCGAACCTGCTACCTCCGG





CTCTGAAACTCCAGGTAGCGAACCGGCT





ACTTCCGGTTCTGAAACTCCAGGTACCT





CTACCGAACCTTCCGAAGGCAGCGCAC





CAGGTACTTCTGAAAGCGCAACCCCTGA





ATCCGGTCCAGGTAGCGAACCGGCTACT





TCTGGCTCTGAGACTCCAGGTACTTCTA





CCGAACCGTCCGAAGGTAGCGCACCA





AE624-
MAEPAGSPTSTEEGT
837
ATGGCTGAACCTGCTGGCTCTCCAACCT
838


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG


Thrombin-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT


AE288
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG



GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG



TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT



PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA



APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC



TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT



ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT



GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC



EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT



TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG



PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC



STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT



GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG



ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA



EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA



GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC



TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA



PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC



ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA



PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT



SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC



TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT



SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC



GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG



EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG



APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG



SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA



PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC



ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG



PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA



EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG



ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC



GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG



PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC



AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC



PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT



GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG



FPTIPLSRLFDNAML

CTACTCCGGAGTCTGGCCCAGGTACCTC



RAHRLHQLAFDTYQ

TACTGAACCGTCTGAGGGTAGCGCTCCA



EFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTA



LQNPQTSLCFSESIPT

GCGCACCAGGTACTTCTACCGAACCGTC



PSNREETQQKSNLEL

CGAAGGCAGCGCTCCAGGTACCTCTACT



LRISLLLIQSWLEPVQ

GAACCTTCCGAGGGCAGCGCTCCAGGT



FLRSVFANSLVYGAS

ACCTCTACCGAACCTTCTGAAGGTAGCG



DSNVYDLLKDLEEGI

CACCAGGTACTTCTACCGAACCGTCCGA



QTLMGRLEDGSPRT

GGGTAGCGCACCAGGTAGCCCAGCAGG



GQIFKQTYSKFDTNS

TTCTCCTACCTCCACCGAGGAAGGTACT



HNDDALLKNYGLLY

TCTACCGAACCGTCCGAGGGTAGCGCA



CFRKDMDKVETFLRI

CCAGGTACCTCTGAAAGCGCAACTCCTG



VQCRSVEGSCGFGL

AGTCTGGCCCAGGTAGCGAACCTGCTAC



TPRSLLVGGGGTSES

CTCCGGCTCTGAGACTCCAGGTACCTCT



ATPESGPGSEPATSG

GAAAGCGCAACCCCGGAATCTGGTCCA



SETPGTSESATPESGP

GGTAGCGAACCTGCAACCTCTGGCTCTG



GSEPATSGSETPGTS

AAACCCCAGGTACCTCTGAAAGCGCTA



ESATPESGPGTSTEPS

CTCCTGAATCTGGCCCAGGTACTTCTAC



EGSAPGSPAGSPTST

TGAACCGTCCGAGGGCAGCGCACCAGG



EEGTSESATPESGPG

TACTTCTGAAAGCGCTACTCCTGAGTCC



SEPATSGSETPGTSES

GGCCCAGGTAGCCCGGCTGGCTCTCCGA



ATPESGPGSPAGSPT

CTTCCACCGAGGAAGGTAGCCCGGCTG



STEEGSPAGSPTSTEE

GCTCTCCAACTTCTACTGAAGAAGGTAG



GTSTEPSEGSAPGTS

CCCGGCAGGCTCTCCGACCTCTACTGAG



ESATPESGPGTSESA

GAAGGTACTTCTGAAAGCGCAACCCCG



TPESGPGTSESATPES

GAGTCCGGCCCAGGTACCTCTACCGAAC



GPGSEPATSGSETPG

CGTCTGAGGGCAGCGCACCAGGTTTTCC



SEPATSGSETPGSPA

GACTATTCCGCTGTCTCGTCTGTTTGAT



GSPTSTEEGTSTEPSE

AATGCTATGCTGCGTGCGCACCGTCTGC



GSAPGTSTEPSEGSA

ACCAGCTGGCCTTTGATACTTACCAGGA



PGSEPATSGSETPGT

ATTTGAAGAAGCcTACATTCCTAAAGAG



SESATPESGPGTSTEP

CAGAAGTACTCTTTCCTGCAAAACCCAC



SEGSAP

AGACTTCTCTCTGCTTCAGCGAATCTAT





TCCGACGCCTTCCAATCGCGAGGAAACT





CAGCAAAAGTCCAATCTGGAACTACTCC





GCATTTCTCTGCTTCTGATTCAGAGCTG





GCTAGAACCAGTGCAATTTCTGCGTTCC





GTCTTCGCCAATAGCCTAGTTTATGGCG





CATCCGACAGCAACGTATACGATCTCCT





GAAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCTCT





CCGCGTACTGGTCAGATCTTCAAGCAGA





CTTACTCTAAATTTGATACTAACAGCCA





CAATGACGATGCGCTTCTAAAAAACTAT





GGTCTGCTGTATTGTTTTCGTAAAGATA





TGGACAAAGTTGAAACCTTCCTGCGTAT





TGTTCAGTGTCGTTCCGTTGAGGGCAGC





TGTGGTTTCTAAGGTctgaccccgcgcagcctgctg





gtgggcggcGGTGGTACCTCTGAAAGCGCA





ACTCCTGAGTCTGGCCCAGGTAGCGAAC





CTGCTACCTCCGGCTCTGAGACTCCAGG





TACCTCTGAAAGCGCAACCCCGGAATCT





GGTCCAGGTAGCGAACCTGCAACCTCTG





GCTCTGAAACCCCAGGTACCTCTGAAAG





CGCTACTCCTGAATCTGGCCCAGGTACT





TCTACTGAACCGTCCGAGGGCAGCGCA





CCAGGTAGCCCTGCTGGCTCTCCAACCT





CCACCGAAGAAGGTACCTCTGAAAGCG





CAACCCCTGAATCCGGCCCAGGTAGCG





AACCGGCAACCTCCGGTTCTGAAACCCC





AGGTACTTCTGAAAGCGCTACTCCTGAG





TCCGGCCCAGGTAGCCCGGCTGGCTCTC





CGACTTCCACCGAGGAAGGTAGCCCGG





CTGGCTCTCCAACTTCTACTGAAGAAGG





TACTTCTACCGAACCTTCCGAGGGCAGC





GCACCAGGTACTTCTGAAAGCGCTACCC





CTGAGTCCGGCCCAGGTACTTCTGAAAG





CGCTACTCCTGAATCCGGTCCAGGTACT





TCTGAAAGCGCTACCCCGGAATCTGGCC





CAGGTAGCGAACCGGCTACTTCTGGTTC





TGAAACCCCAGGTAGCGAACCGGCTAC





CTCCGGTTCTGAAACTCCAGGTAGCCCA





GCAGGCTCTCCGACTTCCACTGAGGAAG





GTACTTCTACTGAACCTTCCGAAGGCAG





CGCACCAGGTACCTCTACTGAACCTTCT





GAGGGCAGCGCTCCAGGTAGCGAACCT





GCAACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTGG





CCCAGGTACTTCTACTGAACCGTCCGAG





GGCAGCGCACCA





AE624-
MAEPAGSPTSTEEGT
839
ATGGCTGAACCTGCTGGCTCTCCAACCT
840


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG


FXIa-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT


AE288
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG



GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG



TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT



PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA



APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC



TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT



ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT



GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC



EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT



TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG



PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC



STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT



GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG



ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA



EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA



GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC



TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA



PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC



ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA



PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT



SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC



TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT



SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC



GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG



EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG



APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG



SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA



PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC



ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG



PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA



EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG



ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC



GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG



PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC



AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC



PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT



GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG



FPTIPLSRLFDNAML

CTACTCCGGAGTCTGGCCCAGGTACCTC



RAHRLHQLAFDTYQ

TACTGAACCGTCTGAGGGTAGCGCTCCA



EFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTA



LQNPQTSLCFSESIPT

GCGCACCAGGTACTTCTACCGAACCGTC



PSNREETQQKSNLEL

CGAAGGCAGCGCTCCAGGTACCTCTACT



LRISLLLIQSWLEPVQ

GAACCTTCCGAGGGCAGCGCTCCAGGT



FLRSVFANSLVYGAS

ACCTCTACCGAACCTTCTGAAGGTAGCG



DSNVYDLLKDLEEGI

CACCAGGTACTTCTACCGAACCGTCCGA



QTLMGRLEDGSPRT

GGGTAGCGCACCAGGTAGCCCAGCAGG



GQIFKQTYSKFDTNS

TTCTCCTACCTCCACCGAGGAAGGTACT



HNDDALLKNYGLLY

TCTACCGAACCGTCCGAGGGTAGCGCA



CFRKDMDKVETFLRI

CCAGGTACCTCTGAAAGCGCAACTCCTG



VQCRSVEGSCGFGG

AGTCTGGCCCAGGTAGCGAACCTGCTAC



GKLTRVVGGGGTSE

CTCCGGCTCTGAGACTCCAGGTACCTCT



SATPESGPGSEPATS

GAAAGCGCAACCCCGGAATCTGGTCCA



GSETPGTSESATPES

GGTAGCGAACCTGCAACCTCTGGCTCTG



GPGSEPATSGSETPG

AAACCCCAGGTACCTCTGAAAGCGCTA



TSESATPESGPGTSTE

CTCCTGAATCTGGCCCAGGTACTTCTAC



PSEGSAPGSPAGSPT

TGAACCGTCCGAGGGCAGCGCACCAGG



STEEGTSESATPESGP

TACTTCTGAAAGCGCTACTCCTGAGTCC



GSEPATSGSETPGTS

GGCCCAGGTAGCCCGGCTGGCTCTCCGA



ESATPESGPGSPAGS

CTTCCACCGAGGAAGGTAGCCCGGCTG



PTSTEEGSPAGSPTST

GCTCTCCAACTTCTACTGAAGAAGGTAG



EEGTSTEPSEGSAPG

CCCGGCAGGCTCTCCGACCTCTACTGAG



TSESATPESGPGTSES

GAAGGTACTTCTGAAAGCGCAACCCCG



ATPESGPGTSESATP

GAGTCCGGCCCAGGTACCTCTACCGAAC



ESGPGSEPATSGSET

CGTCTGAGGGCAGCGCACCAGGTTTTCC



PGSEPATSGSETPGSP

GACTATTCCGCTGTCTCGTCTGTTTGAT



AGSPTSTEEGTSTEPS

AATGCTATGCTGCGTGCGCACCGTCTGC



EGSAPGTSTEPSEGS

ACCAGCTGGCCTTTGATACTTACCAGGA



APGSEPATSGSETPG

ATTTGAAGAAGCcTACATTCCTAAAGAG



TSESATPESGPGTSTE

CAGAAGTACTCTTTCCTGCAAAACCCAC



PSEGSAP

AGACTTCTCTCTGCTTCAGCGAATCTAT





TCCGACGCCTTCCAATCGCGAGGAAACT





CAGCAAAAGTCCAATCTGGAACTACTCC





GCATTTCTCTGCTTCTGATTCAGAGCTG





GCTAGAACCAGTGCAATTTCTGCGTTCC





GTCTTCGCCAATAGCCTAGTTTATGGCG





CATCCGACAGCAACGTATACGATCTCCT





GAAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCTCT





CCGCGTACTGGTCAGATCTTCAAGCAGA





CTTACTCTAAATTTGATACTAACAGCCA





CAATGACGATGCGCTTCTAAAAAACTAT





GGTCTGCTGTATTGTTTTCGTAAAGATA





TGGACAAAGTTGAAACCTTCCTGCGTAT





TGTTCAGTGTCGTTCCGTTGAGGGCAGC





TGTGGTTTCTAAGGTggcggcaaactgacccgcgt





ggtgggcggcGGTGGTACCTCTGAAAGCGCA





ACTCCTGAGTCTGGCCCAGGTAGCGAAC





CTGCTACCTCCGGCTCTGAGACTCCAGG





TACCTCTGAAAGCGCAACCCCGGAATCT





GGTCCAGGTAGCGAACCTGCAACCTCTG





GCTCTGAAACCCCAGGTACCTCTGAAAG





CGCTACTCCTGAATCTGGCCCAGGTACT





TCTACTGAACCGTCCGAGGGCAGCGCA





CCAGGTAGCCCTGCTGGCTCTCCAACCT





CCACCGAAGAAGGTACCTCTGAAAGCG





CAACCCCTGAATCCGGCCCAGGTAGCG





AACCGGCAACCTCCGGTTCTGAAACCCC





AGGTACTTCTGAAAGCGCTACTCCTGAG





TCCGGCCCAGGTAGCCCGGCTGGCTCTC





CGACTTCCACCGAGGAAGGTAGCCCGG





CTGGCTCTCCAACTTCTACTGAAGAAGG





TACTTCTACCGAACCTTCCGAGGGCAGC





GCACCAGGTACTTCTGAAAGCGCTACCC





CTGAGTCCGGCCCAGGTACTTCTGAAAG





CGCTACTCCTGAATCCGGTCCAGGTACT





TCTGAAAGCGCTACCCCGGAATCTGGCC





CAGGTAGCGAACCGGCTACTTCTGGTTC





TGAAACCCCAGGTAGCGAACCGGCTAC





CTCCGGTTCTGAAACTCCAGGTAGCCCA





GCAGGCTCTCCGACTTCCACTGAGGAAG





GTACTTCTACTGAACCTTCCGAAGGCAG





CGCACCAGGTACCTCTACTGAACCTTCT





GAGGGCAGCGCTCCAGGTAGCGAACCT





GCAACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTGG





CCCAGGTACTTCTACTGAACCGTCCGAG





GGCAGCGCACCA





AE624-
MAEPAGSPTSTEEGT
841
ATGGCTGAACCTGCTGGCTCTCCAACCT
842


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG


Elastase-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT


AE288
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG



GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG



TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT



PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA



APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC



TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT



ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT



GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC



EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT



TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG



PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC



STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT



GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG



ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA



EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA



GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC



TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA



PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC



ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA



PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT



SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC



TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT



SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC



GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG



EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG



APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG



SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA



PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC



ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG



PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA



EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG



ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC



GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG



PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC



AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC



PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT



GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG



FPTIPLSRLFDNAML

CTACTCCGGAGTCTGGCCCAGGTACCTC



RAHRLHQLAFDTYQ

TACTGAACCGTCTGAGGGTAGCGCTCCA



EFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTA



LQNPQTSLCFSESIPT

GCGCACCAGGTACTTCTACCGAACCGTC



PSNREETQQKSNLEL

CGAAGGCAGCGCTCCAGGTACCTCTACT



LRISLLLIQSWLEPVQ

GAACCTTCCGAGGGCAGCGCTCCAGGT



FLRSVFANSLVYGAS

ACCTCTACCGAACCTTCTGAAGGTAGCG



DSNVYDLLKDLEEGI

CACCAGGTACTTCTACCGAACCGTCCGA



QTLMGRLEDGSPRT

GGGTAGCGCACCAGGTAGCCCAGCAGG



GQIFKQTYSKFDTNS

TTCTCCTACCTCCACCGAGGAAGGTACT



HNDDALLKNYGLLY

TCTACCGAACCGTCCGAGGGTAGCGCA



CFRKDMDKVETFLRI

CCAGGTACCTCTGAAAGCGCAACTCCTG



VQCRSVEGSCGFGG

AGTCTGGCCCAGGTAGCGAACCTGCTAC



GLGPVSGVPGGTSES

CTCCGGCTCTGAGACTCCAGGTACCTCT



ATPESGPGSEPATSG

GAAAGCGCAACCCCGGAATCTGGTCCA



SETPGTSESATPESGP

GGTAGCGAACCTGCAACCTCTGGCTCTG



GSEPATSGSETPGTS

AAACCCCAGGTACCTCTGAAAGCGCTA



ESATPESGPGTSTEPS

CTCCTGAATCTGGCCCAGGTACTTCTAC



EGSAPGSPAGSPTST

TGAACCGTCCGAGGGCAGCGCACCAGG



EEGTSESATPESGPG

TACTTCTGAAAGCGCTACTCCTGAGTCC



SEPATSGSETPGTSES

GGCCCAGGTAGCCCGGCTGGCTCTCCGA



ATPESGPGSPAGSPT

CTTCCACCGAGGAAGGTAGCCCGGCTG



STEEGSPAGSPTSTEE

GCTCTCCAACTTCTACTGAAGAAGGTAG



GTSTEPSEGSAPGTS

CCCGGCAGGCTCTCCGACCTCTACTGAG



ESATPESGPGTSESA

GAAGGTACTTCTGAAAGCGCAACCCCG



TPESGPGTSESATPES

GAGTCCGGCCCAGGTACCTCTACCGAAC



GPGSEPATSGSETPG

CGTCTGAGGGCAGCGCACCAGGTTTTCC



SEPATSGSETPGSPA

GACTATTCCGCTGTCTCGTCTGTTTGAT



GSPTSTEEGTSTEPSE

AATGCTATGCTGCGTGCGCACCGTCTGC



GSAPGTSTEPSEGSA

ACCAGCTGGCCTTTGATACTTACCAGGA



PGSEPATSGSETPGT

ATTTGAAGAAGCcTACATTCCTAAAGAG



SESATPESGPGTSTEP

CAGAAGTACTCTTTCCTGCAAAACCCAC



SEGSAP

AGACTTCTCTCTGCTTCAGCGAATCTAT





TCCGACGCCTTCCAATCGCGAGGAAACT





CAGCAAAAGTCCAATCTGGAACTACTCC





GCATTTCTCTGCTTCTGATTCAGAGCTG





GCTAGAACCAGTGCAATTTCTGCGTTCC





GTCTTCGCCAATAGCCTAGTTTATGGCG





CATCCGACAGCAACGTATACGATCTCCT





GAAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCTCT





CCGCGTACTGGTCAGATCTTCAAGCAGA





CTTACTCTAAATTTGATACTAACAGCCA





CAATGACGATGCGCTTCTAAAAAACTAT





GGTCTGCTGTATTGTTTTCGTAAAGATA





TGGACAAAGTTGAAACCTTCCTGCGTAT





TGTTCAGTGTCGTTCCGTTGAGGGCAGC





TGTGGTTTCTAAGGTggcggcctgggcccggtgag





cggcgtgccgGGTGGTACCTCTGAAAGCGCA





ACTCCTGAGTCTGGCCCAGGTAGCGAAC





CTGCTACCTCCGGCTCTGAGACTCCAGG





TACCTCTGAAAGCGCAACCCCGGAATCT





GGTCCAGGTAGCGAACCTGCAACCTCTG





GCTCTGAAACCCCAGGTACCTCTGAAAG





CGCTACTCCTGAATCTGGCCCAGGTACT





TCTACTGAACCGTCCGAGGGCAGCGCA





CCAGGTAGCCCTGCTGGCTCTCCAACCT





CCACCGAAGAAGGTACCTCTGAAAGCG





CAACCCCTGAATCCGGCCCAGGTAGCG





AACCGGCAACCTCCGGTTCTGAAACCCC





AGGTACTTCTGAAAGCGCTACTCCTGAG





TCCGGCCCAGGTAGCCCGGCTGGCTCTC





CGACTTCCACCGAGGAAGGTAGCCCGG





CTGGCTCTCCAACTTCTACTGAAGAAGG





TACTTCTACCGAACCTTCCGAGGGCAGC





GCACCAGGTACTTCTGAAAGCGCTACCC





CTGAGTCCGGCCCAGGTACTTCTGAAAG





CGCTACTCCTGAATCCGGTCCAGGTACT





TCTGAAAGCGCTACCCCGGAATCTGGCC





CAGGTAGCGAACCGGCTACTTCTGGTTC





TGAAACCCCAGGTAGCGAACCGGCTAC





CTCCGGTTCTGAAACTCCAGGTAGCCCA





GCAGGCTCTCCGACTTCCACTGAGGAAG





GTACTTCTACTGAACCTTCCGAAGGCAG





CGCACCAGGTACCTCTACTGAACCTTCT





GAGGGCAGCGCTCCAGGTAGCGAACCT





GCAACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTGG





CCCAGGTACTTCTACTGAACCGTCCGAG





GGCAGCGCACCA





AE624-
MAEPAGSPTSTEEGT
843
ATGGCTGAACCTGCTGGCTCTCCAACCT
844


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG


MMP-17-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT


AE288
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG



GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG



TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT



PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA



APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC



TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT



ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT



GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC



EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT



TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG



PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC



STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT



GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG



ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA



EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA



GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC



TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA



PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC



ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA



PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT



SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC



TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT



SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC



GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG



EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG



APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG



SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA



PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC



ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG



PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA



EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG



ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC



GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG



PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC



AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC



PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT



GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG



FPTIPLSRLFDNAML

CTACTCCGGAGTCTGGCCCAGGTACCTC



RAHRLHQLAFDTYQ

TACTGAACCGTCTGAGGGTAGCGCTCCA



EFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTA



LQNPQTSLCFSESIPT

GCGCACCAGGTACTTCTACCGAACCGTC



PSNREETQQKSNLEL

CGAAGGCAGCGCTCCAGGTACCTCTACT



LRISLLLIQSWLEPVQ

GAACCTTCCGAGGGCAGCGCTCCAGGT



FLRSVFANSLVYGAS

ACCTCTACCGAACCTTCTGAAGGTAGCG



DSNVYDLLKDLEEGI

CACCAGGTACTTCTACCGAACCGTCCGA



QTLMGRLEDGSPRT

GGGTAGCGCACCAGGTAGCCCAGCAGG



GQIFKQTYSKFDTNS

TTCTCCTACCTCCACCGAGGAAGGTACT



HNDDALLKNYGLLY

TCTACCGAACCGTCCGAGGGTAGCGCA



CFRKDMDKVETFLRI

CCAGGTACCTCTGAAAGCGCAACTCCTG



VQCRSVEGSCGFGA

AGTCTGGCCCAGGTAGCGAACCTGCTAC



PLGLRLRGGGGTSES

CTCCGGCTCTGAGACTCCAGGTACCTCT



ATPESGPGSEPATSG

GAAAGCGCAACCCCGGAATCTGGTCCA



SETPGTSESATPESGP

GGTAGCGAACCTGCAACCTCTGGCTCTG



GSEPATSGSETPGTS

AAACCCCAGGTACCTCTGAAAGCGCTA



ESATPESGPGTSTEPS

CTCCTGAATCTGGCCCAGGTACTTCTAC



EGSAPGSPAGSPTST

TGAACCGTCCGAGGGCAGCGCACCAGG



EEGTSESATPESGPG

TACTTCTGAAAGCGCTACTCCTGAGTCC



SEPATSGSETPGTSES

GGCCCAGGTAGCCCGGCTGGCTCTCCGA



ATPESGPGSPAGSPT

CTTCCACCGAGGAAGGTAGCCCGGCTG



STEEGSPAGSPTSTEE

GCTCTCCAACTTCTACTGAAGAAGGTAG



GTSTEPSEGSAPGTS

CCCGGCAGGCTCTCCGACCTCTACTGAG



ESATPESGPGTSESA

GAAGGTACTTCTGAAAGCGCAACCCCG



TPESGPGTSESATPES

GAGTCCGGCCCAGGTACCTCTACCGAAC



GPGSEPATSGSETPG

CGTCTGAGGGCAGCGCACCAGGTTTTCC



SEPATSGSETPGSPA

GACTATTCCGCTGTCTCGTCTGTTTGAT



GSPTSTEEGTSTEPSE

AATGCTATGCTGCGTGCGCACCGTCTGC



GSAPGTSTEPSEGSA

ACCAGCTGGCCTTTGATACTTACCAGGA



PGSEPATSGSETPGT

ATTTGAAGAAGCcTACATTCCTAAAGAG



SESATPESGPGTSTEP

CAGAAGTACTCTTTCCTGCAAAACCCAC



SEGSAP

AGACTTCTCTCTGCTTCAGCGAATCTAT





TCCGACGCCTTCCAATCGCGAGGAAACT





CAGCAAAAGTCCAATCTGGAACTACTCC





GCATTTCTCTGCTTCTGATTCAGAGCTG





GCTAGAACCAGTGCAATTTCTGCGTTCC





GTCTTCGCCAATAGCCTAGTTTATGGCG





CATCCGACAGCAACGTATACGATCTCCT





GAAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCTCT





CCGCGTACTGGTCAGATCTTCAAGCAGA





CTTACTCTAAATTTGATACTAACAGCCA





CAATGACGATGCGCTTCTAAAAAACTAT





GGTCTGCTGTATTGTTTTCGTAAAGATA





TGGACAAAGTTGAAACCTTCCTGCGTAT





TGTTCAGTGTCGTTCCGTTGAGGGCAGC





TGTGGTTTCTAAGGTgcgccgctgggcctgcgcct





gcgcggcggcGGTGGTACCTCTGAAAGCGC





AACTCCTGAGTCTGGCCCAGGTAGCGA





ACCTGCTACCTCCGGCTCTGAGACTCCA





GGTACCTCTGAAAGCGCAACCCCGGAA





TCTGGTCCAGGTAGCGAACCTGCAACCT





CTGGCTCTGAAACCCCAGGTACCTCTGA





AAGCGCTACTCCTGAATCTGGCCCAGGT





ACTTCTACTGAACCGTCCGAGGGCAGCG





CACCAGGTAGCCCTGCTGGCTCTCCAAC





CTCCACCGAAGAAGGTACCTCTGAAAG





CGCAACCCCTGAATCCGGCCCAGGTAG





CGAACCGGCAACCTCCGGTTCTGAAACC





CCAGGTACTTCTGAAAGCGCTACTCCTG





AGTCCGGCCCAGGTAGCCCGGCTGGCTC





TCCGACTTCCACCGAGGAAGGTAGCCC





GGCTGGCTCTCCAACTTCTACTGAAGAA





GGTACTTCTACCGAACCTTCCGAGGGCA





GCGCACCAGGTACTTCTGAAAGCGCTAC





CCCTGAGTCCGGCCCAGGTACTTCTGAA





AGCGCTACTCCTGAATCCGGTCCAGGTA





CTTCTGAAAGCGCTACCCCGGAATCTGG





CCCAGGTAGCGAACCGGCTACTTCTGGT





TCTGAAACCCCAGGTAGCGAACCGGCT





ACCTCCGGTTCTGAAACTCCAGGTAGCC





CAGCAGGCTCTCCGACTTCCACTGAGGA





AGGTACTTCTACTGAACCTTCCGAAGGC





AGCGCACCAGGTACCTCTACTGAACCTT





CTGAGGGCAGCGCTCCAGGTAGCGAAC





CTGCAACCTCTGGCTCTGAAACCCCAGG





TACCTCTGAAAGCGCTACTCCTGAATCT





GGCCCAGGTACTTCTACTGAACCGTCCG





AGGGCAGCGCACCA





*Sequence name reflects N- to C-terminus configuration of the growth factor, cleavage sequence and XTEN components





Claims
  • 1-27. (canceled)
  • 28. An isolated fusion protein comprising a growth hormone, wherein the growth hormone is linked to an extended recombinant polypeptide (“XTEN”), wherein at least about 80% of the XTEN sequence consists of non-overlapping sequence motifs,wherein the sequence motifs are selected from one or more sequences of Table 2, andwherein no three contiguous amino acids of the XTEN sequence are identical unless the amino acid is serine, in which case no more than three contiguous amino acids are serine residues.
  • 29. A fusion protein comprising: (i) an XTEN polypeptide with an unstructured conformation, the XTEN polypeptide having a non-repetitive sequence comprising 4 to 6 types of amino acids selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E), and proline (P), wherein the sum of glycine (G), alanine (A), serine (S), threonine (T), glutamate (E), and proline (P) residues constitutes more than 90% of the total amino acid residues of the XTEN sequence; and(ii) a growth hormone linked to the XTEN polypeptide.
  • 30. The fusion protein of claim 28, wherein the XTEN sequence is from about 400 to about 1000 amino acid residues in length.
  • 31. The fusion protein of claim 28, wherein the XTEN sequence is from about 100 to about 200 amino acid residues in length.
  • 32. The fusion protein of claim 28, wherein the XTEN sequence has at least about 90% random coil, as determined by Garnier-Osguthorpe-Robson algorithm.
  • 33. The fusion protein of claim 29, wherein the XTEN sequence is from about 100 to about 3000 amino acid residues, wherein at least about 80% of the XTEN sequence is formed from non-overlapping sequence motifs of 9 to 14 amino acid residues wherein the motifs consist of 4 to 6 types of amino acids selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E), and proline (P), and wherein the sequence of any two contiguous amino acid residues in any one motif is not repeated more than twice in the sequence motif.
  • 34. The fusion protein of claim 33, wherein at least about 95% of the XTEN sequence consists of multiple units of two or more non-overlapping sequence motifs selected from the amino acid sequences of Table 2.
  • 35. The fusion protein of claim 33, wherein no three contiguous amino acids of the XTEN sequence are identical unless the amino acid is serine, in which case no more than three contiguous amino acids are serine residues.
  • 36. The fusion protein of claim 28, further comprising a second XTEN sequence that is linked to the growth hormone, wherein the XTEN sequence exhibits at least about 95% sequence identity to a first XTEN selected from Table 3, and the second XTEN sequence exhibits at least about 95% sequence identity to the first XTEN or a second XTEN selected from Table 3.
  • 37. The fusion protein of claim 28, wherein the XTEN polypeptide is linked at the growth hormone N-terminal, wherein the XTEN polypeptide comprises a sequence that exhibits at least about 80% sequence identity to the amino acid sequence selected from the group consisting of AEPAGSPTSTEEGTPGSGTASSSPGSSTPSGATGSPGASPGTSSTGS and AEPAGSPTSTEEGASPGTSSTGSPGSSTPSGATGSPGSSTPSGATGS.
  • 38. The fusion protein of claim 28 or claim 29, wherein the growth hormone is a human growth hormone.
  • 39. The fusion protein of claim 28 or claim 29, wherein at least about 90% of the XTEN sequence consists of non-overlapping sequence motifs, and wherein the content of any one amino acid type in the full-length XTEN does not exceed 30%.
  • 40. A pharmaceutical composition comprising the fusion protein of claim 28.
  • 41. A method of treating a growth hormone-related condition in a subject, the method comprising administering to the subject a therapeutically effective amount of the fusion protein of claims 28, wherein the growth hormone-related condition is selected from growth-hormone deficiency, Turner's Syndrome, Prader-Willi Syndrome, chronic renal failure, intrauterine growth retardation, idiopathic short stature, AIDS wasting, obesity, multiple sclerosis, fibromyalgia, Crohn's disease, ulcerative colitis, muscular dystrophy, low muscle mass, or low bone density.
  • 42. A method of producing a fusion protein comprising growth hormone fused to one or more extended recombinant polypeptides (XTEN), the method comprising: (a) providing a host cell that comprises a recombinant polynucleotide molecule that encodes the fusion protein;(b) culturing the host cell such that the host cell expresses the fusion protein, wherein the fusion protein is the fusion protein of 28; and(c) recovering the fusion protein.
  • 43. An isolated nucleic acid comprising a polynucleotide sequence encoding the fusion protein of claim 28.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation Application, which claims the priority benefit to U.S. patent application Ser. No. 14/843,143, filed on Sep. 2, 2015, which claims the priority benefit of U.S. application Ser. No. 14/152,692, filed Jan. 10, 2014, now U.S. Pat. No. 9,168,312, which is a Continuation Application which claims the priority benefit of U.S. application Ser. No. 12/796,640, filed Jun. 8, 2010, now U.S. Pat. No. 8,703,717; which claim the benefit of U.S. Provisional Application Ser. No. 61/185,112, filed Jun. 8, 2009; 61/236,836, filed Aug. 25, 2009; and 61/280,955, filed Nov. 10, 2009, and U.S. application Ser. No. 12/699,761, filed Feb. 3, 2010, now U.S. Pat. No. 8,673,860, and PCT Application Serial No. PCT/US10/23106, both filed Feb. 3, 2010 which are hereby incorporated herein by reference in their entirety. The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Dec. 22, 2017 is named 32808-716.304.SeqList.txt and is 1,801,534 bytes in size.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under SBIR grant 2R44GM079873-02 awarded by the National Institutes of Health. The government has certain rights in the invention.

Provisional Applications (3)
Number Date Country
61185112 Jun 2009 US
61236836 Aug 2009 US
61280955 Nov 2009 US
Continuations (5)
Number Date Country
Parent 14843143 Sep 2015 US
Child 15807291 US
Parent 14152692 Jan 2014 US
Child 14843143 US
Parent 12796640 Jun 2010 US
Child 14152692 US
Parent 12699761 Feb 2010 US
Child 12796640 US
Parent PCT/US10/23106 Feb 2010 US
Child 12699761 US