Growth hormone polypeptides and methods of making and using same

Abstract
The present invention relates to compositions comprising growth hormone linked to extended recombinant polypeptide (XTEN), isolated nucleic acids encoding the compositions and vectors and host cells containing the same, and methods of making and using such compositions in treatment of growth hormone-related diseases, disorders, and conditions.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Mar. 18, 2013, is named VRS-0001US-25773002 SL.txt, and is 1,813,891 bytes in size.


BACKGROUND OF THE INVENTION

Human growth hormone (hGH) is a hormone that participates in the regulation of human growth and development. Growth Hormone (herein after “GH”), also known as somatotrophin, represents a class of proteinaceous hormones produced and secreted by the somatotropic cells of the anterior pituitary. Secretion of GH is stimulated by the growth hormone releasing hormone (GHRH) from the hypothalamus and suppressed by somatostatin. This pituitary hormone exhibits a number of biological effects including somatogenesis, lactation, activation of macrophages, insulin-like and diabetogenic effects among others (Chawla, R, K. (1983) Ann. Rev. Med. 34, 519; Edwards, C. K. et al. (1988) Science 239, 769; Thorner, M. O., et al. (1988) J. Clin. Invest. 81, 745). Human growth hormone is a member of a family of homologous hormones that include placental lactogens, prolactins, and other genetic and species variants of GH. GH regulates the secretion of Insulin-like growth factor (IGF-1, formerly known as somatomedin C), among other peptide hormones known collectively as somatomedins, which accounts for most of its biological activity.


A number of diseases and disorders are associated with the deficiency of GH. A deficiency can be congenital, acquired in childhood or in adult life, and can be partial or complete. In some cases, the deficiency is transient, but more commonly is permanent, and may occur in association with deficiencies of other pituitary hormones. Growth hormone deficiency in children leads to dwarfism, growth failure or short stature. Deficiency in adults is rare, but symptoms can include diminished body mass and poor bone density, and a number of psychological symptoms. Other hormonal or glandular disorders frequently coincide with deficiency of growth hormone.


Stimulating the increase in height in childhood is the most widely known effect of GH, and appears to function by at least two mechanisms: GH directly stimulates division and multiplication of chondrocytes of cartilage, and GH also stimulates production of IGF-1. IGF-1 has growth-stimulating effects on a wide variety of tissues. Additional IGF-1 is generated within target tissues, making it apparently both an endocrine and an autocrine/paracrine hormone. IGF-1 also has stimulatory effects on osteoblast and chondrocyte activity to promote bone growth.


Human growth hormone (hGH) plays a key role in somatic growth through its effects on the metabolism of proteins, carbohydrates and lipids. In addition to its effects on somatic growth, hGH has been shown to stimulate blood cells in vitro (Derfalvi et al., 1998; Merchav et al; 1988), to increase erythrocytes and hemoglobin counts (Valerio et al., 1997; Vihervuori et al., 1996), to enhance both proliferation and Ig production in plasma cell lines (Kimata and Yoshida, 1994) and to stimulate CD8+ cell counts and, to a lesser extent CD4+ cell counts (Geffner, 1997).


Injectable forms of GH have been marketed for GH deficiency in children and adults, Turner Syndrome, Prader-Willi Syndrome, and children small for gestational age. In addition, it has seen use in the battle against aging and for weight management, as well as the mobilization of cells capable of regenerating hematopoiesis in the peripheral blood.


The 22 kDA molecular weight of hGH is well below the threshold value for kidney filtration of about 70 kDa (Caliceti (2003) Adv Drug Deliv Rev 55:1261-1277), which contributes to the serum half-life of native hGH being less than 20 minutes in humans. Thus, commercial preparations of hGH must be dosed daily to achieve clinical benefit. A sustained-release form of GH, Nutropin Depot (Genentech and Alkermes) was approved by the FDA in 1999, allowing for fewer injections (every 2 or 4 weeks instead of daily); however, the product was discontinued in 2004.


Chemical modifications to a therapeutic protein can modify its in vivo clearance rate and subsequent serum half-life. One example of a common modification is the addition of a polyethylene glycol (PEG) moiety, typically coupled to the protein via an aldehyde or N-hydroxysuccinimide (NHS) group on the PEG reacting with an amine group (e.g. lysine side chain or the N-terminus). However, the conjugation step can result in the formation of heterogeneous product mixtures that need to be separated, leading to significant product loss and complexity of manufacturing and does not result in a completely chemically-uniform product. Also, the pharmacologic function of GH may be hampered if amino acid side chains in the vicinity of its binding site become modified by the PEGylation process. Other approaches include the genetic fusion of an Fc domain to the therapeutic GH protein. Conjugation of the Fc domain increases the size of the therapeutic protein, hence reducing the rate of clearance through the kidney. Additionally, the Fc domain confers the ability to bind to, and be recycled from lysosomes by, the FcRn receptor, which results in increased pharmacokinetic half-life. Unfortunately, the Fc domain does not fold efficiently during recombinant expression, and tends to form insoluble precipitates known as inclusion bodies. These inclusion bodies must be solubilized and functional protein must be renatured from the misfolded aggregate, a time-consuming, inefficient, and expensive process. Accordingly, there remains a need for growth hormone compositions that can increase the half-life and can be administered less frequently, but are safer and less complicated and costly to produce.


SUMMARY OF THE INVENTION

The present disclosure is directed to compositions and methods that can be useful for or the treatment of any disease, disorder or condition that is improved, ameliorated, or inhibited by the administration of growth hormone. In particular, the present invention provides compositions of fusion proteins comprising one or more extended recombinant polypeptides with a non-repetitive sequence and/or unstructured conformation (XTEN) linked to growth hormone (GH). In part, the present disclosure is directed to pharmaceutical compositions comprising the fusion proteins and the uses thereof for treating growth hormone-related diseases, disorders or conditions.


In one embodiment, the invention provides an isolated fusion protein, comprising a growth hormone that is at least about 90%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% identical to an amino acid sequence selected from Table 1, wherein said growth hormone is linked to an extended recombinant polypeptide (XTEN) of at least about 100, or at least about 200, or at least about 400, or at least about 800, or at least about 900, or at least about 1000, or at least about 2000, up to about 3000 amino acids residues, wherein the XTEN is characterized in that (a) the XTEN comprises at least about 200 contiguous amino acids that exhibits at least about 90%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% identical to a comparable length of an amino acid sequence selected from a sequence shown in Table 3; (b) the XTEN sequence lacks a predicted T-cell epitope when analyzed by TEPITOPE algorithm, wherein the TEPITOPE algorithm prediction for epitopes within the XTEN sequence is based on a score of −5, or −6, or −7, or −8, or −9 or greater; (c) the XTEN has a subsequence score of less than 10, or less than 9, or less than 8, or less than 7, or less than 6, or less than 5, or even less; and (d) the sum of glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) residues constitutes more than about 90%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% of the total amino acid residues of the XTEN. In one embodiment, the growth hormone of the isolated fusion protein is human growth hormone. In another embodiment, the isolated fusion protein comprises at least a second XTEN, wherein the fusion protein adopts a multiple-XTEN configuration shown in Table 5, or a variant thereof.


In another embodiment, the XTEN sequence of the GHXTEN fusion proteins is characterized in that is has greater than 90% random coil formation, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% random coil formation as determined by GOR algorithm; and the XTEN sequence has less than 2% alpha helices and 2% beta-sheets as determined by the Chou-Fasman algorithm.


In another embodiment, the invention provides GHXTEN fusion proteins, wherein the XTEN is characterized in that the sum of asparagine and glutamine residues is less than 10% of the total amino acid sequence of the XTEN, the sum of methionine and tryptophan residues is less than 2% of the total amino acid sequence of the XTEN, the XTEN sequence has less than 5% amino acid residues with a positive charge, the XTEN sequence has greater than 90% random coil formation, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% random coil formation as determined by GOR algorithm; and the XTEN sequence has less than 2% alpha helices and 2% beta-sheets as determined by the Chou-Fasman algorithm.


In another embodiment, the invention provides GHXTEN fusion proteins, wherein the XTEN is characterized in that at least about 80%, or at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least about 99% of the XTEN sequence consists of non-overlapping sequence motifs wherein each of the sequence motifs has about 9 to about 14 amino acid residues and wherein the sequence of any two contiguous amino acid residues does not occur more than twice in each of the sequence motifs the sequence motifs consist of four to six types of amino acids selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P).


In some embodiments, no one type of amino acid constitutes more than 30% of the XTEN sequence of the GHXTEN. In other embodiments, the XTEN has a sequence in which no three contiguous amino acids are identical unless the amino acid is serine, in which case no more than three contiguous amino acids are serine residues. In still other embodiments, at least about 80%, or about 90%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%, or 100% of the XTEN sequence consists of non-overlapping sequence motifs, wherein each of the sequence motifs has 12 amino acid residues. In one embodiment, the XTEN sequence consists of non-overlapping sequence motifs, wherein the sequence motifs are from one or more sequences of Table 2.


In some embodiments, GHXTEN fusion proteins exhibits enhanced pharmacokinetic properties compared to GH not linked to XTEN, wherein the enhanced properties include but are not limited to longer terminal half-life, larger area under the curve, increased time in which the blood concentration remains within the therapeutic window, increased time between consecutive doses, and decreased dose in moles over time. In some embodiments, the terminal half-life of the GHXTEN fusion protein administered to a subject is increased at least about two fold, or at least about three-fold, or at least about four-fold, or at least about five-fold, or at least about six-fold, or at least about eight-fold, or at least about ten-fold, or at least about 20-fold, or at least about 40-fold, or at least about 60-fold, or at least about 100-fold, or even higher as compared to GH not linked to XTEN and administered to a subject at a comparable dose. In other embodiments, the enhanced pharmacokinetic property is reflected by the fact that the blood concentrations that remain within the therapeutic window for the GHXTEN fusion protein for a given period are at least about two fold, or at least about three-fold, or at least about four-fold, or at least about five-fold, or at least about six-fold, or at least about eight-fold, or at least about ten-fold longer, or at least about 20-fold, or at least about 40-fold, or at least about 60-fold, or at least about 100-fold compared to GH not linked to XTEN and administered to a subject at a comparable dose. The increase in half-life and time spent within the therapeutic window permits less frequent dosing and decreased amounts of the fusion protein (in moles equivalent) that are administered to a subject, compared to the corresponding GH not linked to XTEN. In one embodiment, the therapeutically effective dose regimen results in a gain in time of at least two-fold, or at least three-fold, or at least four-fold, or at least five-fold, or at least six-fold, or at least eight-fold, or at least 10-fold, or at least about 20-fold, or at least about 40-fold, or at least about 60-fold, or at least about 100-fold between at least two consecutive Cmax peaks and/or Cmin troughs for blood levels of the fusion protein compared to the corresponding GH not linked to the fusion protein and administered using a comparable dose regimen to a subject.


In some embodiments, the XTEN enhances thermostability of a biologically active protein when linked to the biologically active protein wherein the thermostability is ascertained by measuring the retention of biological activity after exposure to a temperature of about 37° C. for at least about 7 days of the biologically active protein in comparison to the XTEN linked to the biologically active protein. In one embodiment of the foregoing, the retention of biological activity in increased by at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, or about 150%, at least about 200%, at least about 300%, or about 500% longer compared to the GH not linked to the XTEN comprises of the XTEN.


In some embodiments, the isolated fusion protein with at least a first XTEN comprises a GH wherein the GH is human growth hormone. In some embodiments, the isolated fusion protein further comprises a second XTEN, which can be identical or can be different from the first XTEN, and wherein the fusion protein adopts a multiple-XTEN configuration shown in Table 5. In one embodiment of the foregoing, the first and the second XTEN can each be a sequence selected from Table 3, or can exhibit at least at least about 80%, or at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least about 99% or 100% sequence identity to a sequence selected from Table 3. In another embodiment, the isolated fusion protein comprising a second XTEN sequence adopts a multiple-XTEN configuration shown in Table 5.


In one embodiment, the isolated fusion protein is less immunogenic compared to the GH not linked to the XTEN, wherein immunogenicity is ascertained by, e.g., measuring production of IgG antibodies selectively binding to the biologically active protein after administration of comparable doses to a subject.


In some embodiments, the growth hormone peptide and the XTEN of the fusion protein is linked via a spacer, wherein the spacer sequence comprises between about 1 to about 50 amino acid residues that optionally comprises a cleavage sequence. In one embodiment, the cleavage sequence is susceptible to cleavage by a protease. Non-limiting examples of such protease include FXIa, FXIIa, kallikrein, FVIIa, FIXa, FXa, thrombin, elastase-2, granzyme B, MMP-12, MMP-13, MMP-17 or MMP-20, TEV, enterokinase, rhinovirus 3C protease, and sortase A.


In some embodiments, the isolated fusion protein is configured to have reduced binding affinity for a target receptor of the corresponding GH, as compared to the corresponding GH not linked to the fusion protein. In one embodiment, the GHXTEN fusion protein exhibits binding affinity for a target receptor of the GH in the range of about 0.01%-30%, or about 0.1% to about 20%, or about 1% to about 15%, or about 2% to about 10% of the binding affinity of the corresponding GH that lacks the XTEN. In another embodiment, the GHXTEN fusion protein exhibits binding affinity for a target receptor of the GH that is reduced at least about 3-fold, or at least about 5-fold, or at least about 6-fold, or at least about 7-fold, or at least about 8-fold, or at least about 9-fold, or at least about 10-fold, or at least about 12-fold, or at least about 15-fold, or at least about 17-fold, or at least about 20-fold, or at least about 30-fold, or at least about 50-fold, or at least about 100-fold less binding affinity compared to GH not linked to XTEN. In a related embodiment, a fusion protein with reduced affinity can have reduced receptor-mediated clearance and a corresponding increase in half-life of at least about 3-fold, or at least about 5-fold, or at least about 6-fold, or at least about 7-fold, or at least about 8-fold, or at least about 9-fold, or at least about 10-fold, or at least about 12-fold, or at least about 15-fold, or at least about 17-fold, or at least about 20-fold, or at least about 30-fold, or at least about 50-fold, or at least about 100-fold longer compared to the corresponding GH that is not linked to the fusion protein.


In one embodiment, the invention provides an isolated GHXTEN fusion protein comprising an amino acids sequence that has at least about 80%, or at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least about 99%, or 100% sequence identity to a sequence selected from Table 35, Table 36, and Table 37.


In some embodiments, the invention provides GHXTEN fusion proteins wherein the GHXTEN exhibits increased solubility of at least three-fold, or at least about four-fold, or at least about five-fold, or at least about six-fold, or at least about seven-fold, or at least about eight-fold, or at least about nine-fold, or at least about ten-fold, or at least about 15-fold, or at least a 20-fold, or at least 40-fold, or at least 60-fold at physiologic conditions compared to the GH not linked to the fusion protein.


In some embodiments, GHXTEN fusion proteins exhibit an increased apparent molecular weight as determined by size exclusion chromatography, compared to the actual molecular weight, wherein the apparent molecular weight is at least about 100 kD, or at least about 150 kD, or at least about 200 kD, or at least about 300 kD, or at least about 400 kD, or at least about 500 kD, or at least about 600 kD, or at least about 700 kD, while the actual molecular weight of each GH component of the fusion protein is less than about 25 kD. Accordingly, the GHXTEN fusion proteins can have an Apparent Molecular Weight that is about 4-fold greater, or about 5-fold greater, or about 6-fold greater, or about 7-fold greater, or about 8-fold greater than the actual molecular weight of the fusion protein. In some cases, the isolated GHXTEN fusion protein of the foregoing embodiments exhibits an apparent molecular weight factor under physiologic conditions that is greater than about 4, or about 5, or about 6, or about 7, or about 8.


The invention contemplates GHXTEN fusion proteins compositions comprising, but not limited to GH selected from Table 1 (or fragments or sequence variants thereof), XTEN selected from Table 3 (or sequence variants thereof) that are in a configuration selected from Table 5. Generally, the resulting GHXTEN will retain at least a portion of the biological activity of the corresponding GH not linked to the XTEN. In other cases, the GH component either becomes biologically active or has an increase in activity upon its release from the XTEN by cleavage of an optional cleavage sequence incorporated within spacer sequences into the GHXTEN.


In one embodiment of the GHXTEN composition, the invention provides a fusion protein of formula I:

(XTEN)x-GH-(XTEN)y  I


wherein independently for each occurrence, GH is a is a growth hormone; x is either 0 or 1 and y is either 0 or 1 wherein x+y≧1; and XTEN is an extended recombinant polypeptide.


In some embodiments, the XTEN is fused to the growth hormone on an N- or C-terminus of the growth hormone. In some embodiments, the isolated fusion protein comprises a human growth hormone and a first and a second XTEN selected from AE912, AM923, AE144, and AE288.


In another embodiment of the GHXTEN composition, the invention provides a fusion protein of formula II:

(XTEN)x-(GH)-(S)y-(XTEN)y  II

wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1 and y is either 0 or 1 wherein x+y≧1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula III:

(GH)-(S)x-(XTEN)-(S)y-(GH)-(S)z-(XTEN)z  III

wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; z is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula IV:

(XTEN)x-(S)y-(GH)-(S)z-(XTEN)-(GH)  IV

wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; z is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion growth hormone, wherein the fusion protein is of formula V:

(GH)x-(S)x-(GH)-(S)y-(XTEN)  V

wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula VI:

(XTEN)-(S)x-(GH)-(S)y-(GH)  VI

wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula VII:

(XTEN)-(S)x-(GH)-(S)y-(GH)-(XTEN)  VII

wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula VIII:

((S)m-(GH)x-(S)n-(XTEN)y-(S)o)t  VIII

wherein t is an integer that is greater than 0 (1, 2, 3, etc.); independently each of m, n, o, x, and y is an integer (0, 1, 2, 3, etc.), GH is a is a growth hormone; S is an spacer, optionally comprises a cleavage site; and XTEN is an extended recombinant polypeptide, with the proviso that: (1) x+y>1, (2) when t=1, x>0 and y>0, (3) when there is more than one GH, S, or XTEN, each GH, XTEN, or S are the same or are independently different; and (4) when t>1, each m, n, o, x, or y within each subunit are the same or are independently different.


In some embodiments, administration of a therapeutically effective dose of a fusion protein of an embodiment of formulas I-VIII to a subject in need thereof can result in a gain in time of at least two-fold, or at least three-fold, or at least four-fold, or at least five-fold or more spent within a therapeutic window for the fusion protein compared to the corresponding GH not linked to the XTEN of and administered at a comparable dose to a subject. In other cases, administration of a therapeutically effective dose of a fusion protein of an embodiment of formulas I-VIII to a subject in need thereof can result in a gain in time between consecutive doses necessary to maintain a therapeutically effective dose regimen of at least 48 h, or at least 72 h, or at least about 96 h, or at least about 120 h, or at least about 7 days, or at least about 14 days, or at least about 21 days between consecutive doses compared to a GH not linked to XTEN and administered at a comparable dose.


The fusion proteins can be designed to have different configurations, N- to C-terminus, of a GH, XTEN, and optional spacer sequences, including but not limited to XTEN-GH, GH-XTEN, XTEN-S-GH, GH-S-XTEN, XTEN-GH-XTEN, GH-GH-XTEN, XTEN-GH-GH, GH-S-GH-XTEN, XTEN-GH-S-GH, and multimers thereof. The choice of configuration can, as disclosed herein, confer particular pharmacokinetic, physico/chemical, or pharmacologic properties.


In some embodiments, the isolated fusion protein is characterized in that: (i) it has a longer half-life compared to the corresponding growth hormone that lacks the XTEN; (ii) when a smaller molar amount of the fusion protein is administered to a subject in comparison to the corresponding growth hormone that lacks the XTEN administered to a subject under an otherwise equivalent dose regimen, the fusion protein achieves a comparable area under the curve (AUC) as the corresponding growth hormone that lacks the XTEN; (iii) when a smaller molar amount of the fusion protein is administered to a subject in comparison to the corresponding growth hormone that lacks the XTEN administered to a subject under an otherwise equivalent dose regimen, the fusion protein achieves a comparable therapeutic effect as the corresponding growth hormone that lacks the XTEN; (iv) when the fusion protein is administered to a subject less frequently in comparison to the corresponding growth hormone that lacks the XTEN administered to a subject using an otherwise equivalent molar amount, the fusion protein achieves a comparable area under the curve (AUC) as the corresponding growth hormone that lacks the XTEN; (v) when the fusion protein is administered to a subject less frequently in comparison to the corresponding growth hormone that lacks the XTEN administered to a subject using an otherwise equivalent molar amount, the fusion protein achieves a comparable therapeutic effect as the corresponding growth hormone that lacks the XTEN; (vi) when an accumulatively smaller molar amount of the fusion protein is administered to a subject in comparison to the corresponding growth hormone that lacks the XTEN administered to a subject under an otherwise equivalent dose period, the fusion protein achieves comparable area under the curve (AUC) as the corresponding growth hormone that lacks the XTEN; or (vii) when an accumulatively smaller molar amount of the fusion protein is administered to a subject in comparison to the corresponding growth hormone that lacks the XTEN administered to a subject under an otherwise equivalent dose period, the fusion protein achieves comparable therapeutic effect as the corresponding growth hormone that lacks the XTEN.


In one embodiment, the GHXTEN fusion proteins of formulas I-VIII described above exhibit a biological activity of at least about 0.1%, or at least about 0.1%, or at least about 1%, or at least about 2%, or at least about 3%, or at least about 4%, or at least about 5%, or at least about 10%, or at least about 20%, or at least about 30%, or at least 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90%, or at least about 95% of the biological activity compared to the GH not linked to the fusion protein. In another embodiment, the GHXTEN fusion proteins of formulas I-VIII bind the same receptors or ligands as the corresponding parental biologically active protein that is not covalently linked to the fusion protein.


The invention provides a method of producing a fusion protein comprising a growth hormone fused to one or more extended recombinant polypeptides (XTEN), comprising: (a) providing host cell comprising a recombinant polynucleotide molecule encoding the fusion protein (b) culturing the host cell under conditions permitting the expression of the fusion protein; and (c) recovering the fusion protein. In one embodiment of the method, the growth hormone of the fusion protein has at least 90% sequence identity to human growth hormone or a sequence selected from Table 1. In another embodiment of the method, the one or more XTEN of the expressed fusion protein has at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% to about 100% sequence identity to a sequence selected from Table 3. In another embodiment of the method, the polynucleotide encoding the XTEN is codon optimized for enhanced expression of said fusion protein in the host cell. In another embodiment of the method, the host cell is a prokaryotic cell. In another embodiment of the method, the host cell is E. coli. In another embodiment of the method the isolated fusion protein is recovered from the host cell cytoplasm in substantially soluble form.


The invention provides isolated nucleic acids comprising a polynucleotide sequence selected from (a) a polynucleotide encoding the fusion protein of any of the foregoing embodiments, or (b) the complement of the polynucleotide of (a). In one embodiment, the invention provides an isolated nucleic acid comprising a polynucleotide sequence that has at least 80% sequence identity, or about 85%, or at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% to about 100% sequence identity to (a) a polynucleotide sequence of comparable length selected from Table 35, Table 36, and Table 37; or (b) the complement of the polynucleotide of (a). The invention provides expression vectors comprising the nucleic acid of any of the embodiments hereinabove described in this paragraph. In one embodiment, the expression vector of the foregoing further comprises a recombinant regulatory sequence operably linked to the polynucleotide sequence. In another embodiment, the polynucleotide sequence of the expression vectors of the foregoing is fused in frame to a polynucleotide encoding a secretion signal sequence, which can be a prokaryotic signal sequence. In one embodiment, the secretion signal sequence is selected from OmpA, DsbA, and PhoA signal sequences.


The invention provides a host cell, which can comprise an expression vector disclosed in the foregoing paragraph. In one embodiment, the host cell is a prokaryotic cell. In another embodiment, the host cell is E. coli. In another embodiment, the host cell is a eukaryotic cell.


In one embodiment, the invention provides pharmaceutical compositions comprising the fusion protein of any of the foregoing embodiments and a pharmaceutically acceptable carrier. In another embodiment, the invention provides kits, comprising packaging material and at least a first container comprising the pharmaceutical composition of the foregoing embodiment and a label identifying the pharmaceutical composition and storage and handling conditions, and a sheet of instructions for the reconstitution and/or administration of the pharmaceutical compositions to a subject.


The invention provides a method of treating a growth-hormone related condition in a subject, comprising administering to the subject a therapeutically effective amount of the fusion protein of any of the foregoing embodiments. In one embodiment of the method, the growth-hormone related condition is selected from growth-hormone deficiency, Turner's Syndrome, Prader-Willi Syndrome, idiopathic short stature, AIDS wasting, multiple sclerosis, Crohn's disease, ulcerative colitis, and muscular dystrophy.


In some embodiments, the composition can be administered subcutaneously, intramuscularly, or intravenously. In one embodiment, the composition is administered at a therapeutically effective amount. In one embodiment, the therapeutically effective amount results in a gain in time spent within a therapeutic window for the fusion protein compared to the corresponding GH of the fusion protein not linked to the fusion protein and administered at a comparable dose to a subject. The gain in time spent within the therapeutic window can at least three-fold longer than the corresponding GH not linked to the fusion protein, or alternatively, at least four-fold, or five-fold, or six-fold, or seven-fold, or eight-fold, or nine-fold, or at least 10-fold, or at least 20-fold, or at least about 30-fold, or at least about 50-fold, or at least about 100-fold longer than the corresponding GH not linked to the fusion protein. In some embodiments of the method of treatment, (i) a smaller molar amount of (e.g. of about two-fold less, or about three-fold less, or about four-fold less, or about five-fold less, or about six-fold less, or about eight-fold less, or about 100 fold-less or greater) the fusion protein is administered in comparison to the corresponding growth hormone that lacks the XTEN under an otherwise same dose regimen, and the fusion protein achieves a comparable area under the curve and/or a comparable therapeutic effect as the corresponding growth hormone that lacks the XTEN; (ii) the fusion protein is administered less frequently (e.g., every two days, about every seven days, about every 14 days, about every 21 days, or about, monthly) in comparison to the corresponding growth hormone that lacks the XTEN under an otherwise same dose amount, and the fusion protein achieves a comparable area under the curve and/or a comparable therapeutic effect as the corresponding growth hormone that lacks the XTEN; or (iii) an accumulative smaller molar amount (e.g. about 5%, or about 10%, or about 20%, or about 40%, or about 50%, or about 60%, or about 70%, or about 80%, or about 90% less) of the fusion protein is administered in comparison to the corresponding growth hormone that lacks the XTEN under the otherwise same dose regimen the fusion protein achieves a comparable area under the curve and/or a comparable therapeutic effect as the corresponding growth hormone that lacks the XTEN. The accumulative smaller molar amount is measure for a period of at least about one week, or about 14 days, or about 21 days, or about one month. In some embodiments of the method, the therapeutic effect is a measured parameter selected from IGF-1 concentrations, IGFBP3 concentration, height velocity, lean body mass, total body fat, trunk fat, response to insulin challenge, rate of division of chondrocytes, chondrocyte numbers, bone density, bone growth, and increase in epiphyseal plate width.


In another embodiment, invention provides a method of treating a disease, disorder or condition, comprising administering the pharmaceutical composition described above to a subject using multiple consecutive doses of the pharmaceutical composition administered using a therapeutically effective dose regimen. In one embodiment of the foregoing, the therapeutically effective dose regimen can result in a gain in time of at least three-fold, or alternatively, at least four-fold, or five-fold, or six-fold, or seven-fold, or eight-fold, or nine-fold, or at least 10-fold, or at least 20-fold, or at least about 30-fold, or at least about 50-fold, or at least about 100-fold longer time between at least two consecutive Cmax peaks and/or Cmin troughs for blood levels of the fusion protein compared to the corresponding GH of the fusion protein not linked to the fusion protein and administered at a comparable dose regimen to a subject. In another embodiment of the foregoing, the administration of the fusion protein results in improvement in at least one measured parameter of a growth hormone-related disease using less frequent dosing or a lower total dosage in moles of the fusion protein of the pharmaceutical composition compared to the corresponding biologically active protein component(s) not linked to the fusion protein and administered to a subject d using a therapeutically effective regimen to a subject.


The invention further provides use of the compositions comprising the fusion protein of any of the foregoing embodiments in the preparation of a medicament for treating a disease, disorder or condition in a subject in need thereof. In one embodiment of the foregoing, the disease, disorder or condition is selected from group consisting of Turner's Syndrome, Prader-Willi Syndrome, idiopathic short stature, AIDS wasting, multiple sclerosis, Crohn's disease, ulcerative colitis, and muscular dystrophy. Any of the disclosed embodiments can be practiced alone or in combination depending on the interested application.


Incorporation By Reference

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the invention may be further explained by reference to the following detailed description and accompanying drawings that sets forth illustrative embodiments.



FIG. 1 shows schematic representations of exemplary GHXTEN fusion proteins (FIGS. 1A-H), all depicted in an N- to C-terminus orientation. FIG. 1A shows two different configurations of GHXTEN fusion proteins (100), each comprising a single growth hormone (GH) and an XTEN, the first of which has an XTEN molecule (102) attached to the C-terminus of a GH (103), and the second of which has an XTEN molecule attached to the N-terminus of a GH (103). FIG. 1B shows two different configurations of GHXTEN fusion proteins (100), each comprising a single GH, a spacer sequence and an XTEN, the first of which has an XTEN molecule (102) attached to the C-terminus of a spacer sequence (104) and the spacer sequence attached to the C-terminus of a GH (103) and the second of which has an XTEN molecule attached to the N-terminus of a spacer sequence (104) and the spacer sequence attached to the N-terminus of a GH (103). FIG. 1C shows two different configurations of GHXTEN fusion proteins (101), each comprising two molecules of a single GH and one molecule of an XTEN, the first of which has an XTEN linked to the C-terminus of a first GH and that GH is linked to the C-terminus of a second GH, and the second of which is in the opposite orientation in which the XTEN is linked to the N-terminus of a first GH and that GH is linked to the N-terminus of a second GH. FIG. 1D shows two different configurations of GHXTEN fusion proteins (101), each comprising two molecules of a single GH, a spacer sequence and one molecule of an XTEN, the first of which has an XTEN linked to the C-terminus of a spacer sequence and the spacer sequence linked to the C-terminus of a first GH which is linked to the C-terminus of a second GH, and the second of which is in the opposite orientation in which the XTEN is linked to the N-terminus of a spacer sequence and the spacer sequence is linked to the N-terminus of a first GH that that GH is linked to the N-terminus of a second GH. FIG. 1 shows two different configurations of GHXTEN fusion proteins (101), each comprising two molecules of a single GH, a spacer sequence and one molecule of an XTEN, the first of which has an XTEN linked to the C-terminus of a first GH and the first GH linked to the C-terminus of a spacer sequence which is linked to the C-terminus of a second GH molecule, and the second of which is in the opposite configuration of XTEN linked to the N-terminus of a first GH which is linked to the N-terminus of a spacer sequence which in turn is linked to the N-terminus of a second molecule of GH. FIG. 1F shows a configuration of GHXTEN fusion protein (105), each comprising one molecule of GH and two molecules of an XTEN linked to the N-terminus and the C-terminus of the GH. FIG. 1G shows a configuration (106) of a single GH linked to two XTEN, with the second XTEN separated from the GH by a spacer sequence. FIG. 1H is a configuration (106) of a two GH linked to two XTEN, with the second XTEN linked to the C-terminus of the first GH nad the N-terminus of the second GH, which is at the C-terminus of the GHXTEN.



FIG. 2 is a schematic illustration of exemplary polynucleotide constructs (FIGS. 2A-H) of GHXTEN genes that encode the corresponding GHXTEN polypeptides of FIG. 1; all depicted in a 5′ to 3′ orientation. In these illustrative examples the genes encode GHXTEN fusion proteins with one GH and XTEN (200); or one GH, one spacer sequence and one XTEN (200); two GH and one XTEN (201); or two GH, a spacer sequence and one XTEN (201); one GH and two XTEN (205); or two GH and two XTEN (206). In these depictions, the polynucleotides encode the following components: XTEN (202), GH (203), and spacer amino acids that can include a cleavage sequence (204), with all sequences linked in frame.



FIG. 3 is a schematic illustration of two exemplary monomeric GHXTEN and the ability of the monomeric fusion proteins to bind to a target receptor on a cell surface, with subsequent cell signaling. FIG. 3A shows a GHXTEN fusion protein (100) consisting of a GH (103) and an XTEN (102) and a second GHXTEN fusion protein (105) consisting of a GH linked to two XTEN (105). FIG. 3B shows the interaction of the GHXTEN with the GH on the C-terminus (100) and the GHXTEN with an XTEN on the C-terminus (105) with target receptors (108) to GH on a cell surface (107). In this case, binding to the receptor with high affinity is exhibited when GH has a free C-terminus, while the GHXTEN with a C-terminal XTEN does not bind tightly to the receptor, and disassociates, as seen in FIG. 3C. FIG. 3D shows that the bound GHXTEN (100) with high binding affinity remains bound to the receptor (106) and has been internalized into an endosome (110) within the cell, illustrating receptor-mediated clearance of the bound GH and triggering cell signaling (109), portrayed as stippled cytoplasm.



FIG. 4 is a schematic flowchart of representative steps in the assembly, production and the evaluation of a XTEN.



FIG. 5 is a schematic flowchart of representative steps in the assembly of a GHXTEN polynucleotide construct encoding a fusion protein. Individual oligonucleotides 501 are annealed into sequence motifs 502 such as a 12 amino acid motif (“12-mer”), which is subsequently ligated with an oligo containing BbsI, and KpnI restriction sites 503. Additional sequence motifs from a library are annealed to the 12-mer until the desired length of the XTEN gene 504 is achieved. The XTEN gene is cloned into a stuffer vector. The vector encodes a Flag sequence 506 followed by a stopper sequence that is flanked by BsaI, BbsI, and KpnI sites 507 and an exendin-4 gene 508, resulting in the gene 500 encoding an XTEN-GH fusion protein.



FIG. 6 is a schematic flowchart of representative steps in the assembly of a gene encoding fusion protein comprising a growth homroe (GH) and XTEN, its expression and recovery as a fusion protein, and its evaluation as a candidate GHXTEN product.



FIG. 7 is a schematic representation of the design of GHXTEN expression vectors with different processing strategies. FIG. 7A shows an exemplary expression vector encoding XTEN fused to the 3′ end of the sequence encoding GH. Note that no additional leader sequences are required in this vector. FIG. 7B depicts an expression vector encoding XTEN fused to the 5′ end of the sequence encoding GH with a CBD leader sequence and a TEV protease site. FIG. 7C depicts an expression vector as in FIG. 7B where the CBD and TEV processing site have been replaced with an optimized N-terminal leader sequence (NTS). FIG. 7D depicts an expression vector encoding an NTS sequence, an XTEN, a sequence encoding GH, and than a second sequence encoding an XTEN.



FIG. 8 is a schematic representation of the step-wise construction of GHXTEN genes that contain N-terminal XTEN encoding sequences linked to hGH and the subsequent linkage of sequences encoding either 144 or 288 XTEN linked to the C-terminus of XTEN, as described in Example 22.



FIG. 9 shows results of expression assays for the indicated constructs comprising GFP and XTEN sequences. The expression cultures were assayed using a fluorescence plate reader (excitation 395 nm, emission 510 nm) to determine the amount of GFP reporter present. The results, graphed as box and whisker plots, indicate that while median expression levels were approximately half of the expression levels compared to the “benchmark” CBD N-terminal helper domain, the best clones from the libraries were much closer to the benchmarks, indicating that further optimization around those sequences was warranted. The results also show that the libraries starting with amino acids MA had better expression levels than those beginning with ME (see Example 14).



FIG. 10 shows three randomized libraries used for the third and fourth codons in the N-terminal sequences of clones from LCW546, LCW547 and LCW552. The libraries were designed with the third and fourth residues modified such that all combinations of allowable XTEN codons were present at these positions, as shown. In order to include all the allowable XTEN codons for each library, nine pairs of oligonucleotides encoding 12 amino acids with codon diversities of third and fourth residues were designed, annealed and ligated into the NdeI/BsaI restriction enzyme digested stuffer vector pCW0551 (Stuffer-XTEN_AM875-GFP), and transformed into E. coli BL21Gold(DE3) competent cells to obtain colonies of the three libraries LCW0569 (SEQ ID NOS 845-846, respectively, in order of appearance), LCW0570 (SEQ ID NOS 847-848, respectively, in order of appearance), and LCW0571 (SEQ ID NOS 849-850, respectively, in order of appearance).



FIG. 11 shows a histogram of a retest of the top 75 clones after the optimization step, as described in Example 15, for GFP fluorescence signal, relative to the benchmark CBD_AM875 construct. The results indicated that several clones were now superior to the benchmark clones.



FIG. 12 is a schematic of a combinatorial approach undertaken for the union of codon optimization preferences for two regions of the N-terminus 48 amino acids. The approach created novel 48mers at the N-terminus of the XTEN protein for evaluation of the optimization of expression that resulted in leader sequences that may be a solution for expression of XTEN proteins where the XTEN is N-terminal to the GH.



FIG. 13 shows an SDS-PAGE gel confirming expression of preferred clones obtained from the XTEN N-terminal codon optimization experiments, in comparison to benchmark XTEN clones comprising CBD leader sequences at the N-terminus of the construct sequences, as described in Example 17.



FIG. 14 shows an SDS-PAGE gel of samples from a stability study of the fusion protein of XTEN_AE864 fused to the N-terminus of GFP (see Example 39). The GFP-XTEN was incubated in cynomolgus plasma and rat kidney lysate for up to 7 days at 37° C. In addition, GFP-XTEN administered to cynomolgus monkeys was also assessed. Samples were withdrawn at 0, 1 and 7 days and analyzed by SDS PAGE followed by detection using Western analysis and detection with antibodies against GFP.



FIG. 15 shows the results of a receptor binding assay for hGH in which the binding activity of hGH fused to K288 polypeptide is compared to free hGH, as described in Example 25.



FIG. 16 shows the results of in vitro binding affinity assay of hGH-AM864 (circles) and AM864-hGH (inverted triangles) to hGHR-Fc, as described in Example 25. Unmodified recombinant hGH (squares) is shown for comparison.



FIG. 17 shows the effects of heat treatment on stability of hGH and AM864-hGH, as described in Example 26. FIG. 17A is an SDS-PAGE gel of the two preparations treated at 25° C. and 80° C. for 15 minutes, while FIG. 17B shows the corresponding percentage of receptor binding activity of the 80° C. sample relative to the 25° C. treatment, indicating that the XTEN conferred heat stability and retention of activity to the hGH and the GHXTEN fusion protein.



FIG. 18 shows results of an ELISA-based assay to determine the ability of addition of a C-terminus XTEN to reduce binding affinity of GHXTEN to bind to GH receptor, as described in Example 25.



FIG. 19 shows SDS-PAGE analysis of hGH fused to K288, with samples from throughout the purification process, as described in Example 19.



FIG. 20 shows SDS-PAGE analysis of 5 μg of final purified protein of hGH fused to Y576 in the configurations of hGH-Y576 and Y576-hGH subjected to both non-reducing and reducing SDS-PAGE, as described in Example 24, using NuPAGE 4-12% Bis-Tris gel from Invitrogen according to manufacturer's specifications.



FIG. 21 shows size exclusion chromatography profiles of two GHXTEN constructs Y576-GH and hGH-Y576 (N- to C-terminus), shown as an overlay, as described in Example 24.



FIG. 22 shows the pharmacokinetic profile of two GHXTEN constructs Y576-GH and hGH-Y576 (N- to C-terminus) following intravenous administration to cynomolgus monkeys, as described in Example 30. The results show that the orientation (N-versus C-terminal) of hGH relative to the XTEN did not affect the clearance of the fusion proteins.



FIG. 23 shows the pharmacokinetic profile after a single dose of 5 mg/kg AM864-hGH administered subcutaneously to cynomolgus monkeys, with the derived equivalent hGH concentration shown (dashed line), as described in Example 30. Terminal half-life was calculated as 33 hours by WinNonLin using a single compartment fit.



FIG. 24 shows the results of IGF-1 secretion in cynomolgus monkeys in response to administration of hGH or the GHXTEN AM864-hGH at the doses indicated, as described in Example 27.



FIG. 25 shows the effects of administration of hGH or AM864-hGH at the indicated doses on body weight in a hypox rat model, as described in Example 28. The results show retention of biologic activity by the GHXTEN constructs that is equivalent in potency to hGH, yet with less frequent dosing.



FIG. 26 shows the comparative effects of administration of placebo, hGH, and AM864-hGH on growth of cartilage in the tibial epiphyseal plate in hypox rats, shown in histologic cross-sections of the tibia after 9 days of treatment, as described in Example 29.



FIG. 27 shows the pharmacokinetic results of four hGH GHTXEN fusion proteins administered to rats by the subcutaneous route, compared to unmodified recombinant hGH, as described in Example 31.



FIG. 28 shows the concentration profiles of three hGH XTEN constructs after subcutaneous administration to cynomolgus monkeys, as described in Example 32.



FIG. 29 shows the results of a pharmacokinetic study of three doses levels of the GHXTEN AE912-hGH-AE144 administered to male and female cynos SC at 0.3 (open circles), 1.5 (squares), and 7.5 mg/kg (triangles), as described in Example 33.



FIG. 30. Shows the results of IGF-1 levels in cynos in response to the administration of AE912-hGH-AE144, as described in Example 33 (same groups as per FIG. 29).



FIG. 31 shows the results of an experiment to compare bioavailability of the GHXTEN AE912-hGH-AE144 administered by three different routes, as described in Example 34. AE912-hGH-AE144 was administered to male and female cynos SC at 1.5 mg/kg via intravenous (trangle), subcutaneous (open circles), and intramuscular (squares) routes, with plasma concentrations of the GHXTEN shown in the figure.



FIG. 32 shows the effects of administration of vehicle (open circles), recombinant hGH dosed at 5 nmol/kg/day (closed circles), the GHXTEN AE912-hGH-AE144 at varying doses and dose frequency (closed triangles=0.5 nmol/kg/day; open triangles=1.5 nmol/day; squares=3 nmol/kg/Q2D) on body weight in hypox rats, as described in Example 35.



FIG. 33 shows results of a modeled projection of the ability of hGH or the GHXTEN to maintain blood levels within a therapeutic window in the hypox rat model, based on results derived from the data portrayed in FIG. 32, using the same dosing groups.



FIG. 34 shows results of a of a size exclusion chromatography analysis of glucagon-XTEN construct samples measured against protein standards of known molecular weight, with the graph output as absorbance versus retention volume, as described in Example 37. The glucagon-XTEN constructs are 1) glucagon-Y288; 2) glucagonY-144; 3) glucagon-Y72; and 4) glucagon-Y36. The results indicate an increase in apparent molecular weight with increasing length of XTEN moiety.



FIG. 35 shows the pharmacokinetic profile (plasma concentrations) in cynomolgus monkeys after single doses of different compositions of GFP linked to unstructured polypeptides of varying length, administered either subcutaneously or intravenously, as described in Example 38. The compositions were GFP-L288, GFP-L576, GFP-XTEN_AF576, GFP-Y576 and XTEN_AD836-GFP. Blood samples were analyzed at various times after injection and the concentration of GFP in plasma was measured by ELISA using a polyclonal antibody against GFP for capture and a biotinylated preparation of the same polyclonal antibody for detection. Results are presented as the plasma concentration versus time (h) after dosing and show, in particular, a considerable increase in half-life for the XTEN_AD836-GFP, the composition with the longest sequence length of XTEN. The construct with the shortest sequence length, the GFP-L288 had the shortest half-life.



FIG. 36 illustrates allometric scaling results for predicted human response to Ex4-XTEN_AE864 based on measured results from four animal species; i.e., mice, rats, cynomolgus monkeys and dogs. FIG. 36A shows measured terminal half-life versus body mass, with a predicted T½ in humans of 139 h. FIG. 36B shows measured drug clearance versus body mass, with a predicted clearance rate value of 30 ml/h in humans. FIG. 36C shows measured volume of distribution versus body mass, with a predicted value of 5970 ml in humans.



FIG. 37 shows the near UV circular dichroism spectrum of Ex4-XTEN_AE864, performed as described in Example 42.





DETAILED DESCRIPTION OF THE INVENTION

Before the embodiments of the invention are described, it is to be understood that such embodiments are provided by way of example only, and that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention.


Definitions


As used herein, the following terms have the meanings ascribed to them unless specified otherwise.


As used in the specification and claims, the singular forms “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a cell” includes a plurality of cells, including mixtures thereof.


The terms “polypeptide”, “peptide”, and “protein” are used interchangeably herein to refer to polymers of amino acids of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids. The terms also encompass an amino acid polymer that has been modified, for example, by disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component.


As used herein the term “amino acid” refers to either natural and/or unnatural or synthetic amino acids, including but not limited to glycine and both the D or L optical isomers, and amino acid analogs and peptidomimetics. Standard single or three letter codes are used to designate amino acids.


The term “natural L-amino acid” means the L optical isomer forms of glycine (G), proline (P), alanine (A), valine (V), leucine (L), isoleucine (I), methionine (M), cysteine (C), phenylalanine (F), tyrosine (Y), tryptophan (W), histidine (H), lysine (K), arginine (R), glutamine (Q), asparagine (N), glutamic acid (E), aspartic acid (D), serine (S), and threonine (T).


The term “non-naturally occurring,” as applied to sequences and as used herein, means polypeptide or polynucleotide sequences that do not have a counterpart to, are not complementary to, or do not have a high degree of homology with a wild-type or naturally-occurring sequence found in a mammal. For example, a non-naturally occurring polypeptide or fragment may share no more than 99%, 98%, 95%, 90%, 80%, 70%, 60%, 50% or even less amino acid sequence identity as compared to a natural sequence when suitably aligned.


The terms “hydrophilic” and “hydrophobic” refer to the degree of affinity that a substance has with water. A hydrophilic substance has a strong affinity for water, tending to dissolve in, mix with, or be wetted by water, while a hydrophobic substance substantially lacks affinity for water, tending to repel and not absorb water and tending not to dissolve in or mix with or be wetted by water. Amino acids can be characterized based on their hydrophobicity. A number of scales have been developed. An example is a scale developed by Levitt, M, et al., J Mol Biol (1976) 104:59, which is listed in Hopp, T P, et al., Proc Natl Acad Sci USA (1981) 78:3824. Examples of “hydrophilic amino acids” are arginine, lysine, threonine, alanine, asparagine, and glutamine. Of particular interest are the hydrophilic amino acids aspartate, glutamate, and serine, and glycine. Examples of “hydrophobic amino acids” are tryptophan, tyrosine, phenylalanine, methionine, leucine, isoleucine, and valine.


A “fragment” is a truncated form of a native biologically active protein that retains at least a portion of the therapeutic and/or biological activity. A “variant” is a protein with sequence homology to the native biologically active protein that retains at least a portion of the therapeutic and/or biological activity of the biologically active protein. For example, a variant protein may share at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% amino acid sequence identity with the reference biologically active protein. As used herein, the term “biologically active protein moiety” includes proteins modified deliberately, as for example, by site directed mutagenesis, insertions, or accidentally through mutations.


A “host cell” includes an individual cell or cell culture which can be or has been a recipient for the subject vectors. Host cells include progeny of a single host cell. The progeny may not necessarily be completely identical (in morphology or in genomic of total DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation. A host cell includes cells transfected in vivo with a vector of this invention.


“Isolated,” when used to describe the various polypeptides disclosed herein, means polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. As is apparent to those of skill in the art, a non-naturally occurring polynucleotide, peptide, polypeptide, protein, antibody, or fragments thereof, does not require “isolation” to distinguish it from its naturally occurring counterpart. In addition, a “concentrated”, “separated” or “diluted” polynucleotide, peptide, polypeptide, protein, antibody, or fragments thereof, is distinguishable from its naturally occurring counterpart in that the concentration or number of molecules per volume is generally greater than that of its naturally occurring counterpart. In general, a polypeptide made by recombinant means and expressed in a host cell is considered to be “isolated.”


An “isolated” polynucleotide or polypeptide-encoding nucleic acid or other polypeptide-encoding nucleic acid is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the polypeptide-encoding nucleic acid. An isolated polypeptide-encoding nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated polypeptide-encoding nucleic acid molecules therefore are distinguished from the specific polypeptide-encoding nucleic acid molecule as it exists in natural cells. However, an isolated polypeptide-encoding nucleic acid molecule includes polypeptide-encoding nucleic acid molecules contained in cells that ordinarily express the polypeptide where, for example, the nucleic acid molecule is in a chromosomal or extra-chromosomal location different from that of natural cells.


A “chimeric” protein contains at least one fusion polypeptide comprising regions in a different position in the sequence than that which occurs in nature. The regions may normally exist in separate proteins and are brought together in the fusion polypeptide; or they may normally exist in the same protein but are placed in a new arrangement in the fusion polypeptide. A chimeric protein may be created, for example, by chemical synthesis, or by creating and translating a polynucleotide in which the peptide regions are encoded in the desired relationship.


“Conjugated”, “linked,” “fused,” and “fusion” are used interchangeably herein. These terms refer to the joining together of two or more chemical elements or components, by whatever means including chemical conjugation or recombinant means. For example, a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and in reading phase or in-frame. An “in-frame fusion” refers to the joining of two or more open reading frames (ORFs) to form a continuous longer ORF, in a manner that maintains the correct reading frame of the original ORFs. Thus, the resulting recombinant fusion protein is a single protein containing two or more segments that correspond to polypeptides encoded by the original ORFs (which segments are not normally so joined in nature).


In the context of polypeptides, a “linear sequence” or a “sequence” is an order of amino acids in a polypeptide in an amino to carboxyl terminus direction in which residues that neighbor each other in the sequence are contiguous in the primary structure of the polypeptide. A “partial sequence” is a linear sequence of part of a polypeptide that is known to comprise additional residues in one or both directions.


“Heterologous” means derived from a genotypically distinct entity from the rest of the entity to which it is being compared. For example, a glycine rich sequence removed from its native coding sequence and operatively linked to a coding sequence other than the native sequence is a heterologous glycine rich sequence. The term “heterologous” as applied to a polynucleotide, a polypeptide, means that the polynucleotide or polypeptide is derived from a genotypically distinct entity from that of the rest of the entity to which it is being compared.


The terms “polynucleotides”, “nucleic acids”, “nucleotides” and “oligonucleotides” are used interchangeably. They refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof. Polynucleotides may have any three-dimensional structure, and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component.


The term “complement of a polynucleotide” denotes a polynucleotide molecule having a complementary base sequence and reverse orientation as compared to a reference sequence, such that it could hybridize with a reference sequence with complete fidelity.


“Recombinant” as applied to a polynucleotide means that the polynucleotide is the product of various combinations of in vitro cloning, restriction and/or ligation steps, and other procedures that result in a construct that can potentially be expressed in a host cell.


The terms “gene” or “gene fragment” are used interchangeably herein. They refer to a polynucleotide containing at least one open reading frame that is capable of encoding a particular protein after being transcribed and translated. A gene or gene fragment may be genomic or cDNA, as long as the polynucleotide contains at least one open reading frame, which may cover the entire coding region or a segment thereof. A “fusion gene” is a gene composed of at least two heterologous polynucleotides that are linked together.


“Homology” or “homologous” refers to sequence similarity or interchangeability between two or more polynucleotide sequences or two or more polypeptide sequences. When using a program such as BestFit to determine sequence identity, similarity or homology between two different amino acid sequences, the default settings may be used, or an appropriate scoring matrix, such as blosum45 or blosum80, may be selected to optimize identity, similarity or homology scores. Preferably, polynucleotides that are homologous are those which hybridize under stringent conditions as defined herein and have at least 70%, preferably at least 80%, more preferably at least 90%, more preferably 95%, more preferably 97%, more preferably 98%, and even more preferably 99% sequence identity to those sequences.


“Ligation” refers to the process of forming phosphodiester bonds between two nucleic acid fragments or genes, linking them together. To ligate the DNA fragments or genes together, the ends of the DNA must be compatible with each other. In some cases, the ends will be directly compatible after endonuclease digestion. However, it may be necessary to first convert the staggered ends commonly produced after endonuclease digestion to blunt ends to make them compatible for ligation.


The terms “stringent conditions” or “stringent hybridization conditions” includes reference to conditions under which a polynucleotide will hybridize to its target sequence, to a detectably greater degree than other sequences (e.g., at least 2-fold over background). Generally, stringency of hybridization is expressed, in part, with reference to the temperature and salt concentration under which the wash step is carried out. Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short polynucleotides (e.g., 10 to 50 nucleotides) and at least about 60° C. for long polynucleotides (e.g., greater than 50 nucleotides)—for example, “stringent conditions” can include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37° C., and three washes for 15 min each in 0.1×SSC/1% SDS at 60° C. to 65° C. Alternatively, temperatures of about 65° C., 60° C., 55° C., or 42° C. may be used. SSC concentration may be varied from about 0.1 to 2×SSC, with SDS being present at about 0.1%. Such wash temperatures are typically selected to be about 5° C. to 20° C. lower than the thermal melting point for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating Tm and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2″ ed., vol. 1-3, Cold Spring Harbor Press, Plainview N.Y.; specifically see volume 2 and chapter 9. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 μg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art.


The terms “percent identity” and “% identity,” as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences. Percent identity may be measured over the length of an entire defined polynucleotide sequence, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polynucleotide sequence, for instance, a fragment of at least 45, at least 60, at least 90, at least 120, at least 150, at least 210 or at least 450 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.


“Percent (%) amino acid sequence identity,” with respect to the polypeptide sequences identified herein, is defined as the percentage of amino acid residues in a query sequence that are identical with the amino acid residues of a second, reference polypeptide sequence or a portion thereof, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. Percent identity may be measured over the length of an entire defined polypeptide sequence, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.


The term “non-repetitiveness” as used herein in the context of a polypeptide refers to a lack or limited degree of internal homology in a peptide or polypeptide sequence. The term “substantially non-repetitive” can mean, for example, that there are few or no instances of four contiguous amino acids in the sequence that are identical amino acid types or that the polypeptide has a subsequence score (defined infra) of 10 or less or that there isn't a pattern in the order, from N- to C-terminus, of the sequence motifs that constitute the polypeptide sequence. The term “repetitiveness” as used herein in the context of a polypeptide refers to the degree of internal homology in a peptide or polypeptide sequence. In contrast, a “repetitive” sequence may contain multiple identical copies of short amino acid sequences. For instance, a polypeptide sequence of interest may be divided into n-mer sequences and the number of identical sequences can be counted. Highly repetitive sequences contain a large fraction of identical sequences while non-repetitive sequences contain few identical sequences. In the context of a polypeptide, a sequence can contain multiple copies of shorter sequences of defined or variable length, or motifs, in which the motifs themselves have non-repetitive sequences, rendering the full-length polypeptide substantially non-repetitive. The length of polypeptide within which the non-repetitiveness is measured can vary from 3 amino acids to about 200 amino acids, about from 6 to about 50 amino acids, or from about 9 to about 14 amino acids. “Repetitiveness” used in the context of polynucleotide sequences refers to the degree of internal homology in the sequence such as, for example, the frequency of identical nucleotide sequences of a given length. Repetitiveness can, for example, be measured by analyzing the frequency of identical sequences.


A “vector” is a nucleic acid molecule, preferably self-replicating in an appropriate host, which transfers an inserted nucleic acid molecule into and/or between host cells. The term includes vectors that function primarily for insertion of DNA or RNA into a cell, replication of vectors that function primarily for the replication of DNA or RNA, and expression vectors that function for transcription and/or translation of the DNA or RNA. Also included are vectors that provide more than one of the above functions. An “expression vector” is a polynucleotide which, when introduced into an appropriate host cell, can be transcribed and translated into a polypeptide(s). An “expression system” usually connotes a suitable host cell comprised of an expression vector that can function to yield a desired expression product.


“Serum degradation resistance,” as applied to a polypeptide, refers to the ability of the polypeptides to withstand degradation in blood or components thereof, which typically involves proteases in the serum or plasma. The serum degradation resistance can be measured by combining the protein with human (or mouse, rat, monkey, as appropriate) serum or plasma, typically for a range of days (e.g. 0.25, 0.5, 1, 2, 4, 8, 16 days), typically at about 37° C. The samples for these time points can be run on a Western blot assay and the protein is detected with an antibody. The antibody can be to a tag in the protein. If the protein shows a single band on the western, where the protein's size is identical to that of the injected protein, then no degradation has occurred. In this exemplary method, the time point where 50% of the protein is degraded, as judged by Western blots or equivalent techniques, is the serum degradation half-life or “serum half-life” of the protein.


The term “t1/2” as used herein means the terminal half-life calculated as ln(2)/Kel. Kel is the terminal elimination rate constant calculated by linear regression of the terminal linear portion of the log concentration vs. time curve. Half-life typically refers to the time required for half the quantity of an administered substance deposited in a living organism to be metabolized or eliminated by normal biological processes. The terms “t1/2”, “terminal half-life”, “elimination half-life” and “circulating half-life” are used interchangeably herein.


“Apparent Molecular Weight Factor” or “Apparent Molecular Weight” are related terms referring to a measure of the relative increase or decrease in apparent molecular weight exhibited by a particular amino acid sequence. The Apparent Molecular Weight is determined using size exclusion chromatography (SEC) and similar methods compared to globular protein standards and is measured in “apparent 10” units. The Apparent Molecular Weight Factor is the ratio between the Apparent Molecular Weight and the actual molecular weight; the latter predicted by adding, based on amino acid composition, the calculated molecular weight of each type of amino acid in the composition.


The “hydrodynamic radius” or “Stokes radius” is the effective radius (Rh in nm) of a molecule in a solution measured by assuming that it is a body moving through the solution and resisted by the solution's viscosity. In the embodiments of the invention, the hydrodynamic radius measurements of the XTEN fusion proteins correlate with the ‘Apparent Molecular Weight Factor’, which is a more intuitive measure. The “hydrodynamic radius” of a protein affects its rate of diffusion in aqueous solution as well as its ability to migrate in gels of macromolecules. The hydrodynamic radius of a protein is determined by its molecular weight as well as by its structure, including shape and compactness. Methods for determining the hydrodynamic radius are well known in the art, such as by the use of size exclusion chromatography (SEC), as described in U.S. Pat. Nos. 6,406,632 and 7,294,513. Most proteins have globular structure, which is the most compact three-dimensional structure a protein can have with the smallest hydrodynamic radius. Some proteins adopt a random and open, unstructured, or ‘linear’ conformation and as a result have a much larger hydrodynamic radius compared to typical globular proteins of similar molecular weight.


“Physiological conditions” refer to a set of conditions in a living host as well as in vitro conditions, including temperature, salt concentration, pH, that mimic those conditions of a living subject. A host of physiologically relevant conditions for use in in vitro assays have been established. Generally, a physiological buffer contains a physiological concentration of salt and is adjusted to a neutral pH ranging from about 6.5 to about 7.8, and preferably from about 7.0 to about 7.5. A variety of physiological buffers is listed in Sambrook et al. (1989). Physiologically relevant temperature ranges from about 25° C. to about 38° C., and preferably from about 35° C. to about 37° C.


A “reactive group” is a chemical structure that can be coupled to a second reactive group. Examples for reactive groups are amino groups, carboxyl groups, sulfhydryl groups, hydroxyl groups, aldehyde groups, azide groups. Some reactive groups can be activated to facilitate coupling with a second reactive group. Non-limiting examples for activation are the reaction of a carboxyl group with carbodiimide, the conversion of a carboxyl group into an activated ester, or the conversion of a carboxyl group into an azide function.


“Controlled release agent”, “slow release agent”, “depot formulation” or “sustained release agent” are used interchangeably to refer to an agent capable of extending the duration of release of a polypeptide of the invention relative to the duration of release when the polypeptide is administered in the absence of agent. Different embodiments of the present invention may have different release rates, resulting in different therapeutic amounts.


The terms “antigen”, “target antigen” or “immunogen” are used interchangeably herein to refer to the structure or binding determinant that an antibody fragment or an antibody fragment-based therapeutic binds to or has specificity against.


The term “payload” as used herein refers to a protein or peptide sequence that has biological or therapeutic activity; the counterpart to the pharmacophore of small molecules. Examples of payloads include, but are not limited to, cytokines, enzymes, hormones and blood and growth factors. Payloads can further comprise genetically fused or chemically conjugated moieties such as chemotherapeutic agents, antiviral compounds, toxins, or contrast agents. These conjugated moieties can be joined to the rest of the polypeptide via a linker that may be cleavable or non-cleavable.


The term “antagonist”, as used herein, includes any molecule that partially or fully blocks, inhibits, or neutralizes a biological activity of a native polypeptide disclosed herein. Methods for identifying antagonists of a polypeptide may comprise contacting a native polypeptide with a candidate antagonist molecule and measuring a detectable change in one or more biological activities normally associated with the native polypeptide. In the context of the present invention, antagonists may include proteins, nucleic acids, carbohydrates, antibodies or any other molecules that decrease the effect of a biologically active protein.


The term “agonist” is used in the broadest sense and includes any molecule that mimics a biological activity of a native polypeptide disclosed herein. Suitable agonist molecules specifically include agonist antibodies or antibody fragments, fragments or amino acid sequence variants of native polypeptides, peptides, small organic molecules, etc. Methods for identifying agonists of a native polypeptide may comprise contacting a native polypeptide with a candidate agonist molecule and measuring a detectable change in one or more biological activities normally associated with the native polypeptide.


“Activity” for the purposes herein refers to an action or effect of a component of a fusion protein consistent with that of the corresponding native biologically active protein, wherein “biological activity” refers to an in vitro or in vivo biological function or effect, including but not limited to receptor binding, antagonist activity, agonist activity, or a cellular or physiologic response.


As used herein, “treatment” or “treating,” or “palliating” or “ameliorating” is used interchangeably herein. These terms refer to an approach for obtaining beneficial or desired results including but not limited to a therapeutic benefit and/or a prophylactic benefit. By therapeutic benefit is meant eradication or amelioration of the underlying disorder being treated. Also, a therapeutic benefit is achieved with the eradication or amelioration of one or more of the physiological symptoms associated with the underlying disorder such that an improvement is observed in the subject, notwithstanding that the subject may still be afflicted with the underlying disorder. For prophylactic benefit, the compositions may be administered to a subject at risk of developing a particular disease, or to a subject reporting one or more of the physiological symptoms of a disease, even though a diagnosis of this disease may not have been made.


A “therapeutic effect”, as used herein, refers to a physiologic effect, including but not limited to the cure, mitigation, amelioration, or prevention of disease in humans or other animals, or to otherwise enhance physical or mental wellbeing of humans or animals, caused by a fusion polypeptide of the invention other than the ability to induce the production of an antibody against an antigenic epitope possessed by the biologically active protein. Determination of a therapeutically effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.


The terms “therapeutically effective amount” and “therapeutically effective dose”, as used herein, refers to an amount of a biologically active protein, either alone or as a part of a fusion protein composition, that is capable of having any detectable, beneficial effect on any symptom, aspect, measured parameter or characteristics of a disease state or condition when administered in one or repeated doses to a subject. Such effect need not be absolute to be beneficial.


The term “therapeutically effective dose regimen”, as used herein, refers to a schedule for consecutively administered doses of a biologically active protein, either alone or as a part of a fusion protein composition, wherein the doses are given in therapeutically effective amounts to result in sustained beneficial effect on any symptom, aspect, measured parameter or characteristics of a disease state or condition.


I). General Techniques


The practice of the present invention employs, unless otherwise indicated, conventional techniques of immunology, biochemistry, chemistry, molecular biology, microbiology, cell biology, genomics and recombinant DNA, which are within the skill of the art. See Sambrook, J. et al., “Molecular Cloning: A Laboratory Manual,” 3rd edition, Cold Spring Harbor Laboratory Press, 2001; “Current protocols in molecular biology”, F. M. Ausubel, et al. eds., 1987; the series “Methods in Enzymology,” Academic Press, San Diego, Calif.; “PCR 2: a practical approach”, M. J. MacPherson, B. D. Hames and G. R. Taylor eds., Oxford University Press, 1995; “Antibodies, a laboratory manual” Harlow, E. and Lane, D. eds., Cold Spring Harbor Laboratory, 1988; “Goodman & Gilman's The Pharmacological Basis of Therapeutics,” 11th Edition, McGraw-Hill, 2005; and Freshney, R. I., “Culture of Animal Cells: A Manual of Basic Technique,” 4th edition, John Wiley & Sons, Somerset, N.J., 2000, the contents of which are incorporated in their entirety herein by reference.


II). Growth Hormone


The present invention relates in part to fusion protein compositions of growth hormone (GH), including human growth hormone (hGH).


(a) Growth Hormone Proteins


“Growth Hormone” or “GH” means a growth hormone protein and species and sequence variants thereof, and includes, but is not limited to, the 191 single-chain amino acid sequence of human GH. The GH can be the native, full-length protein or can be a truncated fragment or a sequence variant that retains at least a portion of the biological activity of the native protein. There are two known types of human GH (hereinafter “hGH”) derived from the pituitary gland: one having a molecular weight of about 22,000 daltons (22 kD hGH) and the other having a molecular weight of about 20,000 daltons (20 kD hGH). The 20 kD HGH has an amino acid sequence that corresponds to that of 22 kD hGH consisting of 191 amino acids except that 15 amino acid residues from the 32nd to the 46th of 22 kD hGH are missing. Some reports have shown that the 20 kD hGH has been found to exhibit lower risks and higher activity than 22 kD hGH. The invention contemplates use of the 22 kD, the 2010 hGH, as well as species and sequence variants and truncated fragments thereof as being appropriate for use as a fusion partner with XTEN disclosed herein for GHXTEN compositions. The cloned gene for hGH has been expressed in a secreted form in Eschericha coli (U.S. Pat. No. 4,898,830; Chang, C. N., et al., Gene 55:189 [1987]) and its DNA and amino acid sequence has been reported (Goeddel, et al. Nature, 281:544 [1979); Gray, et al., Gene 39: 247[1985]).


The invention contemplates inclusion in the GHXTEN compositions sequences with homology to GH sequences, sequence fragments that are natural, such as from humans, non-human primates, mammals (including domestic animals), and non-natural sequence variants which retain at least a portion of the biologic activity or biological function of GH and/or that are useful for preventing, treating, mediating, or ameliorating a GH-related disease, deficiency, disorder or condition. Non-mammalian GH sequences are well-described in the literature. For example, a sequence alignment of fish GHs can be found in Genetics and Molecular Biology 2003 26 p. 295-300. An analysis of the evolution of avian GH sequences is presented in Journal of Evolutionary Biology 2006 19 p. 844-854. In addition, native sequences homologous to human GH may be found by standard homology searching techniques, such as NCBI BLAST.


Effects of GH on the tissues of the body can generally be described as anabolic. Like most other protein hormones, native GH acts by interacting with a specific plasma membrane receptor, referred to as growth hormone receptor. GH acts on the liver and other tissues to stimulate production of IGF-1, which is responsible for the growth promoting effects of GH and also reflects the amount produced. IGF-1, in turn, has stimulatory effects on osteoblast and chondrocyte activity to promote bone growth. In one embodiment, the invention provides a GHXTEN that exhibits at least one of the properties of native GH hereinabove described herein.


In one embodiment, the GH incorporated into the subject compositions is a recombinant polypeptide with a sequence corresponding to a protein found in nature. In another embodiment, the GH is a sequence variant, fragment, homolog, or a mimetics of a natural sequence that retains at least a portion of the biological activity of the corresponding native GH. Table 1 provides a non-limiting list of sequences of GHs from a wide variety of mammalian species that are encompassed by the GHXTEN fusion proteins of the invention. Any of these GH sequences or homologous derivatives constructed by shuffling individual mutations between species or families that retain at least a portion of the biological activity of the native GH may be useful for the fusion proteins of this invention. GH that can be incorporated into a GHXTEN fusion protein can include a protein that exhibits at least about 80% sequence identity, or alternatively 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to a sequence selected from Table 1.









TABLE 1







Growth hormone amino acid sequences from


animal species










SEQ




ID



Species GH
NO:
Amino Acid Sequence





Human
 1
FPTIPLSRLFDNAMLRAHRLHQLAFDTYQEFEE




AYIPKEQKYSFLQNPQTSLCFSESIPTPSNREE




TQQKSNLELLRISLLLIQSWLEPVQFLRSVFAN




SLVYGASDSNVYDLLKDLEEGIQTLMGRLEDGS




PRTGQIFKQTYSKFDTNSHNDDALLKNYGLLYC




FRKDMDKVETFLRIVQCRSVEGSCGF





Pig
 2
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFER




AYIPEGQRYSIQNAQAAFCFSETIPAPTGKDEA




QQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNS




LVFGTSDRVYEKLKDLEEGIQALMRELEDGSPR




AGQILKQTYDKFDTNLRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





Alpaca
 3
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFER




TYIPEGQRYSIQNAQAAFCFSETIPAPTGKDEA




QQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNS




LVFGTSDRVYEKLKDLEEGIQALMRELEDGSPR




AGQILRQTYDKFDTNLRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





Camel
 4
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFER




TYIPEGQRYSIQNAQAAFCFSETIPAPTGKDEA




QQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNS




LVFGTSDRVYEKLKDLEEGIQALMRELEDGSPR




AGQILRQTYDKFDTNLRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





Horse
 5
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFER




AYIPEGQRYSIQNAQAAFCFSETIPAPTGKDEA




QQRSDMELLRFSLLLIQSWLGPVQLLSRVFTNS




LVFGTSDRVYEKLRDLEEGIQALMRELEDGSPR




AGQILKQTYDKFDTNLRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





Elephant
 6
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFER




AYIPEGQRYSIQNAQAAFCFSETIPAPTGKDEA




QQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNS




LVFGTSDRVYEKLKDLEEGIQALMRELEDGSPR




PGQVLKQTYDKFDTNMRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





Red fox
 7
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFER




AYIPEGQRYSIQNAQAAFCFSETIPAPTGKDEA




QQRSDVELLRFSLVLIQSWLGPLQFLSRVFTNS




LVFGTSDRVYEKLKDLEEGIQALMRELEDGSPR




AGQILKQTYDKFDTNLRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





Dog
 8
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFER




AYIPEGQRYSIQNAQAAFCFSETIPAPTGKDEA




QQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNS




LVFGTSDRVYEKLKDLEEGIQALMRELEDGSPR




AGQILKQTYDKFDTNLRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





Cat
 9
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFER




AYIPEGQRYSIQNAQAAFCFSETIPAPTGKDEA




QQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNS




LVFGTSDRVYEKLKDLEEGIQALMRELEDGSPR




GGQILKQTYDKFDTNLRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





American
10
FPAMPLSSLFANAVLRAQHLHQLAADTYKDFER


mink

AYIPEGQRYSIQNAQAAFCFSETIPAPTGKDEA




QQRSDMELLRFSLLLIQSWLGPVQFLSRVFTNS




LVFGTSDRVYEKLKDLEEGIQALMRELEDGSPR




AGPILKQTYDKFDTNLRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





Finback
11
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFER


whale

AYIPEGQRYSIQNAQAAFCFSETIPAPTGKDEA




QQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNS




LVFGTSDRVYEKLKDLEEGIQALMRELEDGSPR




AGQILKQTYDKFDTNMRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





Dolphin
12
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFER




AYIPEGQRYSIQNTQAAFCFSETIPAPTGKDEA




QQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNS




LVFGTSDRVYEKLKDLEEGIQALMRELEDGSPR




AGQILKQTYDKFDTNMRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





Hippo
13
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFER




AYIPEGQRYSIQNTQAAFCFSETIPAPTGKDEA




QQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNS




LVFGTSDRVYEKLKDLEEGIQALMRELEDGSPR




AGQILKQTYDKFDTNMRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





Rabbit
14
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFER




AYIPEGQRYSIQNAQAAFCFSETIPAPTGKDEA




QQRSDMELLRFSLLLIQSWLGPVQFLSRAFTNT




LVFGTSDRVYEKLKDLEEGIQALMRELEDGSPR




VGQLLKQTYDKFDTNLRGDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCVF





Rat
15
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFER




AYIPEGQRYSIQNAQAAFCFSETIPAPTGKEEA




QQRTDMELLRFSLLLIQSWLGPVQFLSRIFTNS




LMFGTSDRVYEKLKDLEEGIQALMQELEDGSPR




IGQILKQTYDKFDANMRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFAESSCAF





Mouse
16
FPAMPLSSLFSNAVLRAQHLHQLAADTYKEFER




AYIPEGQRYSIQNAQAAFCFSETIPAPTGKEEA




QQRTDMELLRFSLLLIQSWLGPVQFLSRIFTNS




LMFGTSDRVYEKLKDLEEGIQALMQELEDGSPR




VGQILKQTYDKFDANMRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





Hamster
17
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFER




AYIPEGQRYSIQNAQTAFCFSETIPAPTGKEEA




QQRSDMELLRFSLLLIQSWLGPVQFLSRIFTNS




LMFGTSDRVYEKLKDLEEGIQALMQELEDGSPR




VGQILKQTYDKFDTNMRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





Mole rat
18
FPAMPLSNLFANAVLRAQHLHQLAADTYKEFER




AYIPEGQRYSIQNAQAAFCFSETIPAPTGKEEA




QQRSDMELLRFSLLLIQSWLGPVQFLSRVFTNS




LVFGTSDRVFEKLKDLEEGIQALMRELEDGSLR




AGQLLKQTYDKFDTNMRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





Guinea pig
19
FPAMPLSSLFGNAVLRAQHLHQLAADTYKEFER




TYIPEGQRYSIHNTQTAFCFSETIPAPTDKEEA




QQRSDVELLHFSLLLIQSWLGPVQFLSRVFTNS




LVFGTSDRVYEKLKDLEEGIQALMRELEDGTPR




AGQILKQTYDKFDTNLRSNDALLKNYGLLSCFR




KDLHRTETYLRV MKCRRFVESSCAF





Ox
20
AFPAMSLSGLFANAVLRAQHLHQLAADTFKEFE




RTYIPEGQRYSIQNTQVAFCFSETIPAPTGKNE




AQQKSDLELLRISLLLIQSWLGPLQFLSRVFIN




SLVFGTSDRVYEKLKDLEEGILALMRELEDGTP




RAGQILKQTYDKFDTNMRSDDALLKNYGLLSCF




RKDLHKTETYLRV MKCRRFGEASCAF





Sheep/Goat
21
AFPAMSLSGLFANAVLRAQHLHQLAADTFKEFE




RTYIPEGQRYSIQNTQVAFCFSETIPAPTGKNE




AQQKSDLELLRISLLLIQSWLGPLQFLSRVFTN




SLVFGTSDRVYEKLKDLEEGILALMRELEDVTP




RAGQILKQTYDKFDTNMRSDDALLKNYGLLSCF




RKDLHKTETYLRV MKCRRFGEASCAF





Red deer
22
FPAMSLSGLFANAVLRAQHLHQLAADTFKEFER




TYIPEGQRYSIQNTQVAFCFSETIPAPTGKNEA




QQKSDLELLRISLLLIQSWLGPLQFLSRVFTNS




LVFGTSDRVYEKLKDLEEGILALMRELEDGTPR




AGQILKQTYDKFDTNMRSDDALLKNYGLLSCFR




KDLHKTETYLRV MKCRRFGEASCAF





Giraffe
23
AFPAMSLSGLFANAVLRAQHLHQLAADTFKEFE




RTYIPEGQRYSIQNTQVAFCFSETIPAPTGKNE




AQQKSDLELLRISLLLIQSWLGPLQFLSRVFSN




SLVFGTSDRVYEKLKDLEEGILALMRELEDGTP




RAGQILKQTYDKFDTNMRSDDALLKNYGLLSCF




RKDLHKTETYLRV MKCRRFGEASCAF





Chevrotain-1
24
FPAMSLSGLFANAVLRVQHLHQLAADTFKEFER




TYIPEGQRYSIQNTQVAFCFSETIPAPTGKNEA




QQKSDLELLRISLLLIQSWLGPLQFLSRVFTNS




LVFGTSDRVYEKLKDLEEGILALMRELEDGPPR




AGQILKQTYDKFDTNMRSDDALLKNYGLLSCFR




KDLHKTETYLRV MKCRRFGEASCAF





Slow loris
25
FPAMPLSSLFANAVLRAQHLHQLAADTYKEFER




AYIPEGQRYSIQNAQAAFCFSETIPAPTGKDEA




QQRSDMELLRFSLLLIQSWLGPVQLLSRVFTNS




LVLGTSDRVYEKLKDLEEGIQALMRELEDGSPR




VGQILKQTYDKFDTNLRSDDALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





Marmoset
26
FPTIPLSRLLDNAMLRAHRLHQLAFDTYQEFEE




AYIPKEQKYSFLQNPQTSLCFSESIPTPASKKE




TQQKSNLELLRMSLLLIQSWFEPVQFLRSVFAN




SLLYGVSDSDVYEYLKDLEEGIQTLMGRLEDGS




PRTGEIFMQTYRKFDVNSQNNDALLKNYGLLYC




FRKDMDKVETFLRI VQCR-SVEGSCGF





BrTailed
27
FPAMPLSSLFANAVLRAQHLHQLVADTYKEFER


Possum

TYIPEAQRHSIQSTQTAFCFSETIPAPTGKDEA




QQRSDVELLRFSLLLIQSWLSPVQFLSRVFTNS




LVFGTSDRVYEKLRDLEEGIQALMQELEDGSSR




GGLVLKTTYDKFDTNLRSDEALLKNYGLLSCFK




KDLHKAETYLRV MKCRRFVESSCAF





Monkey
28
FPTIPLSRLFDNAMLRAHRLHQLAFDTYQEFEE


(rhesus)

AYIPKEQKYSFLQNPQTSLCFSESIPTPSNREE




TQQKSNLELLRISLLLIQSWLEPVQFLRSVFAN




SLVYGTSYSDVYDLLKDLEEGIQTLMGRLEDGS




SRTGQIFKQTYSKFDTNSHNNDALLKNYGLLYC




FRKDMDKIETFLRI VQCR-SVEGSCGF










III). Growth Hormone Fusion Protein Compositions


The present invention relates in part to fusion protein compositions of growth hormone (GH). In one aspect, the invention provides isolated monomeric fusion proteins of GH comprising the full-length sequence or sequence variants of GH covalently linked to extended recombinant polypeptides (“XTEN” or “XTENs”). As described more fully below, the fusion proteins optionally include spacer sequences that further comprise cleavage sequences to release the GH from the fusion protein when acted on by a protease, releasing GH from the XTEN sequence(s).


In one aspect, the invention provides an isolated fusion protein comprising at least a first biologically active growth hormone protein covalently linked to one or more extended recombinant polypeptides (“XTEN”), resulting in a growth hormone-XTEN fusion protein composition (hereinafter “GHXTEN”). In one embodiment, the growth hormone is human growth hormone or a sequence variant of hGH. As described more fully below, the fusion proteins optionally include spacer sequences that further comprise cleavage sequences to release the GH from the fusion protein when acted on by a protease.


The term “GHXTEN”, as used herein, is meant to encompass fusion polypeptides that comprise one or more payload regions each comprising a biologically active GH that mediates one or more biological or therapeutic activities associated with growth hormone and at least one other region comprising at least a first XTEN polypeptide that serves as a carrier.


The GH of the subject compositions, particularly those disclosed in Table 1, together with their corresponding nucleic acid and amino acid sequences, are well known in the art and descriptions and sequences are available in public databases such as Chemical Abstracts Services Databases (e.g., the CAS Registry), GenBank, The Universal Protein Resource (UniProt) and subscription provided databases such as GenSeq (e.g., Derwent). Polynucleotide sequences may be a wild type polynucleotide sequence encoding a given GH (e.g., either full length or mature), or in some instances the sequence may be a variant of the wild type polynucleotide sequence (e.g., a polynucleotide which encodes the wild type biologically active protein, wherein the DNA sequence of the polynucleotide has been optimized, for example, for expression in a particular species; or a polynucleotide encoding a variant of the wild type protein, such as a site directed mutant or an allelic variant. It is well within the ability of the skilled artisan to use a wild-type or consensus cDNA sequence or a codon-optimized variant of a GH to create GHXTEN constructs contemplated by the invention using methods known in the art and/or in conjunction with the guidance and methods provided herein, and described more fully in the Examples.


The GH for inclusion in the GHXTEN of the invention include any growth hormone or sequence variant of biologic, therapeutic, prophylactic, or diagnostic interest or function, or that is useful for mediating or preventing or ameliorating a disease, disorder or condition associated with growth, growth hormone deficiency or defect when administered to a subject. Of particular interest are GHXTEN fusion protein compositions for which an increase in a pharmacokinetic parameter, increased solubility, increased stability, or some other enhanced pharmaceutical property compared to native GH is sought, or for which increasing the terminal half-life would improve efficacy, safety, or result in reduce dosing frequency and/or improve patient compliance. Thus, the GHXTEN fusion protein compositions are prepared with various objectives in mind, including improving the therapeutic efficacy of the bioactive GH by, for example, increasing the in vivo exposure or the length that the GHXTEN remains within the therapeutic window when administered to a subject, compared to a GH not linked to XTEN.


In one embodiment, the GH incorporated into the subject compositions can be a recombinant polypeptide with a sequence corresponding to a protein found in nature. In another embodiment, the GH is a sequence variant, fragment, homolog, or mimetic of a natural sequence that retain at least a portion of the biological activity of the native GH. In non-limiting examples, a GH is a sequence that exhibits at least about 80% sequence identity, or alternatively 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least about 99%, or 100% sequence identity to a protein sequence selected from Table 1. In one embodiment, a GHXTEN fusion protein comprises a single GH molecule linked to an XTEN (as described more fully below). In another embodiment, the GHXTEN comprises a first GH and a second molecule of the same GH, resulting in a fusion protein comprising the two GH linked to one or more XTEN (for example, or two molecules of hGH). In some cases of the foregoing embodiments, the GH and XTEN components are of an N- to C-terminus configuration selected from Table 5. In another embodiment, the GHXTEN fusion protein comprises a single GH molecule linked to a first and a second XTEN, with an N- to C-terminus configuration of XTEN-GH-XTEN, in which the GH is a sequence that exhibits at least about 80% sequence identity, or alternatively 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least about 99%, or 100% sequence identity to a protein sequence selected from Table 1, and the first and/or the second XTEN are sequences that exhibits at least about 80% sequence identity, or alternatively 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least about 99%, or 100% sequence identity to a sequence selected from Table 3.


In general, the GH fusion partner component of the GHXTEN exhibits a binding specificity to a given target or another desired biological characteristic when used in vivo or when utilized in an in vitro assay. For example, the GHXTEN is an agonist, having the ability to bind to a transmembrane receptor for growth hormone. In one embodiment, the binding of GHXTEN to growth receptor leads to receptor dimerization and lead to at least a portion of the activation of intercellular signal transduction pathway compared to native growth hormone. In one embodiment, the GHXTEN bound to a transmembrane receptor for growth hormone would exhibit at least about 1%, or about 5%, or about 10%, or about 15%, or about 20%, or about 25%, or about 30%, or about 40%, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or at least about 95% of the activation of intercellular signal transduction pathway compared to native growth hormone not linked to XTEN.


The subject GHXTEN of the present invention exhibits an enhancement of one or more pharmacokinetic parameters, which optionally is enhanced by release of GH from the fusion protein by cleavage of a spacer sequence. The GHXTEN with enhanced pharmacokinetic parameters permits less frequent dosing or an enhanced pharmacologic effect, such as but not limited to maintaining the biologically active GHXTEN within the therapeutic window between the minimum effective dose or blood concentration (Cmin) and the maximum tolerated dose or blood concentration (Cmax). In such cases, the linking of the GH to a fusion protein comprising a select XTEN sequence(s) can result in an improvement in these properties, making them more useful as therapeutic or preventive agents compared to GH not linked to XTEN.


IV). Xtended Recombinant Polypeptides


In one aspect, the invention provides XTEN polypeptide compositions that are useful as a fusion protein partner to which GH is linked, resulting in a GHXTEN fusion protein. XTEN are generally extended length polypeptides with non-naturally occurring, substantially non-repetitive sequences that are composed mainly of small hydrophilic amino acids, with the sequence having a low degree or no secondary or tertiary structure under physiologic conditions.


XTENs have utility as a fusion protein partners partner in that they serve as a “carrier”, conferring certain desirable pharmacokinetic, physicochemical and pharmaceutical properties when linked to a GH protein to a create a fusion protein. Such desirable properties include but are not limited to enhanced pharmacokinetic parameters and solubility characteristicsthe compositions, amongst other properties described herein. Such fusion protein compositions have utility to treat certain growth hormone-related diseases, disorders or conditions, as described herein. As used herein, “XTEN” specifically excludes antibodies or antibody fragments such as single-chain antibodies or Fc fragments of a light chain or a heavy chain.


In some embodiments, XTEN are long polypeptides having greater than about 100 to about 3000 amino acid residues, preferably greater than 400 to about 3000 residues when used as a carrier or cumulatively when more than one XTEN unit is used in a single fusion protein. In other embodiments, when used as a linker between fusion protein components or where an increase in half-life of the fusion protein is not needed but where an increase in solubility or other physico/chemical property for the GH fusion partner component is desired, an XTEN sequence shorter than 100 amino acid residues, such as about 96, or about 84, or about 72, or about 60, or about 48, or about 36 amino acid residues are incorporated into a fusion protein composition with the GH to effect the property.


The selection criteria for the XTEN to be linked to the biologically active proteins used to create the inventive fusion proteins compositions generally relate to attributes of physical/chemical properties and conformational structure of the XTEN that is, in turn, used to confer enhanced pharmaceutical and pharmacokinetic properties to the fusion proteins.compositions. The XTEN of the present invention exhibit one or more of the following advantageous properties: conformational flexibility, enhanced aqueous solubility, high degree of protease resistance, low immunogenicity, low binding to mammalian receptors, and increased hydrodynamic (or Stokes) radii; properties that make them particularly useful as fusion protein partners. Non-limiting examples of the properties of the fusion proteins comprising GH that is enhanced by XTEN include increases in the overall solubility and/or metabolic stability, reduced susceptibility to proteolysis, reduced immunogenicity, reduced rate of absorption when administered subcutaneously or intramuscularly, and enhanced pharmacokinetic properties such as longer terminal half-life and increased area under the curve (AUC), slower absorption after subcutaneous or intramuscular injection (compared to GH not linked to XTEN and administered by a similar route) such that the Cmax is lower, which, in turn, results in reductions in adverse effects of the GH that, collectively, results in an increased period of time that a fusion protein of a GHXTEN composition administered to a subject retains therapeutic activity.


A variety of methods and assays are known in the art for determining the physical/chemical properties of proteins such as the compositions comprising the inventive XTEN; properties such as secondary or tertiary structure, solubility, protein aggregation, melting properties, contamination and water content. Such methods include analytical centrifugation, EPR, HPLC-ion exchange, HPLC-size exclusion, HPLC-reverse phase, light scattering, capillary electrophoresis, circular dichroism, differential scanning calorimetry, fluorescence, HPLC-ion exchange, HPLC-size exclusion, IR, NMR, Raman spectroscopy, refractometry, and UV/Visible spectroscopy. Additional methods are disclosed in Amau et al, Prot Expr and Purif (2006) 48, 1-13. Application of these methods to the invention would be within the grasp of a person skilled in the art.


Typically, XTEN are designed to behave like denatured peptide sequences under physiological conditions, despite the extended length of the polymer. Denatured describes the state of a peptide in solution that is characterized by a large conformational freedom of the peptide backbone. Most peptides and proteins adopt a denatured conformation in the presence of high concentrations of denaturants or at elevated temperature. Peptides in denatured conformation have, for example, characteristic circular dichroism (CD) spectra and are characterized by a lack of long-range interactions as determined by NMR. “Denatured conformation” and “unstructured conformation” are used synonymously herein. In some embodiments, the invention provides XTEN sequences that, under physiologic conditions, resemble denatured sequences largely devoid in secondary structure. In other cases, the XTEN sequences are substantially devoid of secondary structure under physiologic conditions. “Largely devoid,” as used in this context, means that less than 50% of the XTEN amino acid residues of the XTEN sequence contribute to secondary structure as measured or determined by the means described herein. “Substantially devoid,” as used in this context, means that at least about 60%, or about 70%, or about 80%, or about 90%, or about 95%, or at least about 99% of the XTEN amino acid residues of the XTEN sequence do not contribute to secondary structure, as measured or determined by the methods described herein.


A variety of methods have been established in the art to discern the presence or absence of secondary and tertiary structures in a given polypeptide. In particular, secondary structure can be measured spectrophotometrically, e.g., by circular dichroism spectroscopy in the “far-UV” spectral region (190-250 nm). Secondary structure elements, such as alpha-helix and beta-sheet, each give rise to a characteristic shape and magnitude of CD spectra. Secondary structure can also be predicted for a polypeptide sequence via certain computer programs or algorithms, such as the well-known Chou-Fasman algorithm (Chou, P. Y., et al. (1974) Biochemistry, 13: 222-45) and the Garnier-Osguthorpe-Robson (“GOR”) algorithm (Garnier J, Gibrat J F, Robson B. (1996), GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266:540-553), as described in US Patent Application Publication No. 20030228309A1. For a given sequence, the algorithms can predict whether there exists some or no secondary structure at all, expressed as the total and/or percentage of residues of the sequence that form, for example, alpha-helices or beta-sheets or the percentage of residues of the sequence predicted to result in random coil formation (which lacks secondary structure).


In some embodiments, the XTEN sequences used in the inventive fusion protein compositions can have an alpha-helix percentage ranging from 0% to less than about 5% as determined by the Chou-Fasman algorithm. In other cases, the XTEN sequences of the fusion protein compositions have a beta-sheet percentage ranging from 0% to less than about 5% as determined by the Chou-Fasman algorithm. In some embodiments, the XTEN sequences of the fusion protein compositions have an alpha-helix percentage ranging from 0% to less than about 5% and a beta-sheet percentage ranging from 0% to less than about 5% as determined by the Chou-Fasman algorithm. In some embodiments, the XTEN sequences of the fusion protein compositions have an alpha-helix percentage less than about 2% and a beta-sheet percentage less than about 2%. In other cases, the XTEN sequences of the fusion protein compositions have a high degree of random coil percentage, as determined by the GOR algorithm. In some embodiments, an XTEN sequence have at least about 80%, more preferably at least about 90%, more preferably at least about 91%, more preferably at least about 92%, more preferably at least about 93%, more preferably at least about 94%, more preferably at least about 95%, more preferably at least about 96%, more preferably at least about 97%, more preferably at least about 98%, and most preferably at least about 99% random coil, as determined by the GOR algorithm.


1. Non-repetitive Sequences


In some embodiments, XTEN sequences of the compositions are substantially non-repetitive. In general, repetitive amino acid sequences have a tendency to aggregate or form higher order structures, as exemplified by natural repetitive sequences such as collagens and leucine zippers, or form contacts resulting in crystalline or pseudocrystalline structures. In contrast, the low tendency of non-repetitive sequences to aggregate enables the design of long-sequence XTENs with a relatively low frequency of charged amino acids that would be likely to aggregate if the sequences were otherwise repetitive. Typically, the GHXTEN fusion proteins comprise XTEN sequences of greater than about 100 to about 3000 amino acid residues, preferably greater than 400 to about 3000 cumulative residues, wherein the sequences are substantially non-repetitive. In one embodiment, the XTEN sequences have greater than about 100 to about 3000 amino acid residues, preferably greater than 400 to about 3000 amino acid residues, in which no three contiguous amino acids in the sequence are identical amino acid types unless the amino acid is serine, in which case no more than three contiguous amino acids are serine residues. In the foregoing embodiment, the XTEN sequence would be substantially non-repetitive.


The degree of repetitiveness of a polypeptide or a gene are measured by computer programs or algorithms or by other means known in the art. Repetitiveness in a polypeptide sequence can, for example, be assessed by determining the number of times shorter sequences of a given length occur within the polypeptide. For example, a polypeptide of 200 amino acid residues has 192 overlapping 9-amino acid sequences (or 9-mer “frames”) and 198 3-mer frames, but the number of unique 9-mer or 3-mer sequences will depend on the amount of repetitiveness within the sequence. A score is generated (hereinafter “subsequence score”) that is reflective of the degree of repetitiveness of the subsequences in the overall polypeptide sequence. In the context of the present invention, “subsequence score” means the sum of occurrences of each unique 3-mer frame across a 200 consecutive amino acid sequence of the polypeptide divided by the absolute number of unique 3-mer subsequences within the 200 amino acid sequence. Examples of such subsequence scores derived from the first 200 amino acids of repetitive and non-repetitive polypeptides are presented in Example 44. In some embodiments, the present invention provides GHXTEN each comprising one or more XTEN in which the XTEN have a subsequence score less than 12, more preferably less than 10, more preferably less than 9, more preferably less than 8, more preferably less than 7, more preferably less than 6, and most preferably less than 5. In the embodiments hereinabove described in this paragraph, an XTEN with a subsequence score less than about 10 (i.e., 9, 8, 7, etc.) is “substantially non-repetitive.”


The non-repetitive characteristic of XTEN impart to fusion proteins with GH a greater degree of solubility and less tendency to aggregate compared to polypeptides having repetitive sequences. These properties facilitate the formulation of XTEN-comprising pharmaceutical preparations containing extremely high drug concentrations, in some cases exceeding 100 mg/ml.


Furthermore, the XTEN polypeptide sequences of the embodiments are designed to have a low degree of internal repetitiveness in order to reduce or substantially eliminate immunogenicity when administered to a mammal. Polypeptide sequences composed of short, repeated motifs largely limited to three amino acids, such as glycine, serine and glutamate, may result in relatively high antibody titers when administered to a mammal despite the absence of predicted T-cell epitopes in these sequences. This may be caused by the repetitive nature of polypeptides, as it has been shown that immunogens with repeated epitopes, including protein aggregates, cross-linked immunogens, and repetitive carbohydrates are highly immunogenic and can, for example, result in the cross-linking of B-cell receptors causing B-cell activation. (Johansson, J., et al. (2007) Vaccine, 25:1676-82; Yankai, Z., et al. (2006) Biochem Biophys Res Commun, 345:1365-71; Hsu, C. T., et al., (2000) Cancer Res, 60:3701-5); Bachmann M F, et al. Eur J. Immunol. (1995) 25(12):3445-3451).


2. Exemplary Sequence Motifs


The present invention encompasses XTEN that comprise multiple units of shorter sequences, or motifs, in which the amino acid sequences of the motifs are non-repetitive. In designing XTEN sequences, it was discovered that the non-repetitive criterion may be met despite the use of a “building block” approach using a library of sequence motifs that are multimerized to create the XTEN sequences. Thus, while an XTEN sequence may consist of multiple units of as few as four different types of sequence motifs, because the motifs themselves generally consist of non-repetitive amino acid sequences, the overall XTEN sequence is rendered substantially non-repetitive.


In one embodiment, XTEN have a non-repetitive sequence of greater than about 100 to about 3000 amino acid residues, preferably greater than 400 to about 3000 residues, wherein at least about 80%, or at least about 85%, or at least about 90%, or at least about 95%, or at least about 97%, or about 100% of the XTEN sequence consists of non-overlapping sequence motifs, wherein each of the motifs has about 9 to 36 amino acid residues. In other embodiments, at least about 80%, or at least about 85%, or at least about 90%, or at least about 95%, or at least about 97%, or about 100% of the XTEN sequence consists of non-overlapping sequence motifs wherein each of the motifs has 9 to 14 amino acid residues. In still other embodiments, at least about 80%, or at least about 85%, or at least about 90%, or at least about 95%, or at least about 97%, or about 100% of the XTEN sequence component consists of non-overlapping sequence motifs wherein each of the motifs has 12 amino acid residues. In these embodiments, it is preferred that the sequence motifs be composed mainly of small hydrophilic amino acids, such that the overall sequence has an unstructured, flexible characteristic. Examples of amino acids that are included in XTEN, are, e.g., arginine, lysine, threonine, alanine, asparagine, glutamine, aspartate, glutamate, serine, and glycine. As a result of testing variables such as codon optimization, assembly polynucleotides encoding sequence motifs, expression of protein, charge distribution and solubility of expressed protein, and secondary and tertiary structure, it was discovered that XTEN compositions with enhanced characteristics mainly include glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) residues wherein the sequences are designed to be substantially non-repetitive. In one embodiment, XTEN sequences have predominately four to six types of amino acids selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) or proline (P) that are arranged in a substantially non-repetitive sequence that is greater than about 100 to about 3000 amino acid residues, preferably greater than 400 to about 3000 residues in length. In some embodiments, XTEN have sequences of greater than about 100 to about 3000 amino acid residues, preferably greater than 400 to about 3000 residues, wherein at least about 80% of the sequence consists of non-overlapping sequence motifs wherein each of the motifs has 9 to 36 amino acid residues wherein each of the motifs consists of 4 to 6 types of amino acids selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), and wherein the content of any one amino acid type in the full-length XTEN does not exceed 30%. In other embodiments, at least about 90% of the XTEN sequence consists of non-overlapping sequence motifs wherein each of the motifs has 9 to 36 amino acid residues wherein the motifs consist of 4 to 6 types of amino acids selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), and wherein the content of any one amino acid type in the full-length XTEN does not exceed 30%. In other embodiments, at least about 90% of the XTEN sequence consists of non-overlapping sequence motifs wherein each of the motifs has 12 amino acid residues consisting of 4 to 6 types of amino acids selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), and wherein the content of any one amino acid type in the full-length XTEN does not exceed 30%. In yet other embodiments, at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%, to about 100% of the XTEN sequence consists of non-overlapping sequence motifs wherein each of the motifs has 12 amino acid residues consisting of glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), and wherein the content of any one amino acid type in the full-length XTEN does not exceed 30%.


In still other embodiments, XTENs comprise non-repetitive sequences of greater than about 100 to about 3000 amino acid residues, preferably greater than 400 to about 3000 amino acid residues wherein at least about 80%, or at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% of the sequence consists of non-overlapping sequence motifs of 9 to 14 amino acid residues wherein the motifs consist of 4 to 6 types of amino acids selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), and wherein the sequence of any two contiguous amino acid residues in any one motif is not repeated more than twice in the sequence motif. In other embodiments, at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% of an XTEN sequence consists of non-overlapping sequence motifs of 12 amino acid residues wherein the motifs consist of 4 to 6 types of amino acids selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), and wherein the sequence of any two contiguous amino acid residues in any one sequence motif is not repeated more than twice in the sequence motif. In other embodiments, at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% of an XTEN sequence consists of non-overlapping sequence motifs of 12 amino acid residues wherein the motifs consist of glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), and wherein the sequence of any two contiguous amino acid residues in any one sequence motif is not repeated more than twice in the sequence motif. In yet other embodiments, XTENs consist of 12 amino acid sequence motifs wherein the amino acids are selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), and wherein the sequence of any two contiguous amino acid residues in any one sequence motif is not repeated more than twice in the sequence motif, and wherein the content of any one amino acid type in the full-length XTEN does not exceed 30%. In the foregoing embodiments hereinabove described in this paragraph, the XTEN sequences would be substantially non-repetitive.


In some embodiments, the invention provides compositions comprising non-repetitive XTEN sequence(s) of greater than about 100 to about 3000 amino acid residues, of cumulatively greater than 400 to about 3000 residues, wherein at least about 80%, or at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% to about 100% of the sequence consists of multiple units of two or more non-overlapping sequence motifs selected from the amino acid sequences of Table 2. In some embodiments, the XTEN comprises non-overlapping sequence motifs in which about 80%, or at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% to about 100% of the sequence consists of two or more non-overlapping sequences selected from a single motif family of Table 2, resulting in a “family” sequence in which the overall sequence remains substantially non-repetitive. Accordingly, in these embodiments, an XTEN sequence comprises multiple units of non-overlapping sequence motifs of the AD motif family, or the AE motif family, or the AF motif family, or the AG motif family, or the AM motif family, or the AQ motif family, or the BC family, or the BD family of sequences of Table 2. In other embodiments, the XTEN comprises motif sequences from two or more of the motif families of Table 2.









TABLE 2







XTEN Sequence Motifs of 12 Amino


Acids and Motif Families











Motif Family*
SEQ ID NO:
MOTIF SEQUENCE






AD
29
GESPGGSSGSES






AD
30
GSEGSSGPGESS






AD
31
GSSESGSSEGGP






AD
32
GSGGEPSESGSS






AE, AM
33
GSPAGSPTSTEE






AE, AM, AQ
34
GSEPATSGSETP






AE, AM, AQ
35
GTSESATPESGP






AE, AM, AQ
36
GTSTEPSEGSAP






AF, AM
37
GSTSESPSGTAP






AF, AM
38
GTSTPESGSASP






AF, AM
39
GTSPSGESSTAP






AF, AM
40
GSTSSTAESPGP






AG, AM
41
GTPGSGTASSSP






AG, AM
42
GSSTPSGATGSP






AG, AM
43
GSSPSASTGTGP






AG, AM
44
GASPGTSSTGSP






AQ
45
GEPAGSPTSTSE






AQ
46
GTGEPSSTPASE






AQ
47
GSGPSTESAPTE






AQ
48
GSETPSGPSETA






AQ
49
GPSETSTSEPGA






AQ
50
GSPSEPTEGTSA






BC
51
GSGASEPTSTEP






BC
52
GSEPATSGTEPS






BC
53
GTSEPSTSEPGA






BC
54
GTSTEPSEPGSA






BD
55
GSTAGSETSTEA






BD
56
GSETATSGSETA






BD
57
GTSESATSESGA






BD
58
GTSTEASEGSAS





*Denotes individual motif sequences that, when used together in various permutations, results in a “family sequence”






In other embodiments, the GHXTEN composition comprises a non-repetitive XTEN sequence of greater than about 100 to about 3000 amino acid residues, preferably greater than 400 to about 3000 residues, wherein at least about 80%, or at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% to about 100% of the sequence consists of non-overlapping 36 amino acid sequence motifs selected from one or more of the polypeptide sequences of Tables 8-11.


In those embodiments wherein the XTEN component of the GHXTEN fusion protein has less than 100% of its amino acids consisting of four to six amino acid selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), or less than 100% of the sequence consisting of the sequence motifs of Table 2, or less than 100% sequence identity with an XTEN from Table 3, the other amino acid residues are selected from any other of the 14 natural L-amino acids, but are preferentially selected from hydrophilic amino acids such that the XTEN sequence contains at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least about 99% hydrophilic amino acids. The XTEN amino acids that are not glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) are interspersed throughout the XTEN sequence, are located within or between the sequence motifs, or are concentrated in one or more short stretches of the XTEN sequence. In such cases where the XTEN component of the GHXTEN comprises amino acids other than glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), it is preferred that the amino acids not be hydrophobic residues and should not substantially confer secondary structure of the XTEN component. Hydrophobic residues that are less favored in construction of XTEN include tryptophan, phenylalanine, tyrosine, leucine, isoleucine, valine, and methionine. Additionally, one can design the XTEN sequences to contain few (e.g. less than 5%) or none of the following amino acids: cysteine (to avoid disulfide formation and oxidation), methionine (to avoid oxidation), asparagine and glutamine (to avoid desamidation). Thus, in some embodiments, the XTEN component of the GHXTEN fusion protein comprising other amino acids in addition to glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) would have a sequence with less than 5% of the residues contributing to alpha-helices and beta-sheets as measured by the Chou-Fasman algorithm and have at least 90%, or at least about 95% or more random coil formation as measured by the GOR algorithm.


3. Length of Sequence


In another aspect of the present invention, the invention encompasses GHXTEN compositions comprising carriers of XTEN polypeptides with extended length sequences. The present invention makes use of the discovery that increasing the length of non-repetitive, unstructured polypeptides enhances the unstructured nature of the XTENs and correspoindingly enhances the biological and pharmacokinetic properties of fusion proteins comprising the XTEN carrier. As described more fully in the Examples, proportional increases in the length of the XTEN, even if created by a fixed repeat order of single family sequence motifs (e.g., the four AE motifs of Table 2), result in a sequence with a higher percentage of random coil formation, as determined by GOR algorithm, compared to shorter XTEN lengths. In general, increasing the length of the unstructured polypeptide fusion partner, as described in the Examples, results in a fusion protein with a disproportional increase in terminal half-life compared to fusion proteins with unstructured polypeptide partners with shorter sequence lengths.


Non-limiting examples of XTEN contemplated for inclusion in the GHXTEN of the invention are presented in Table 3. In one embodiment, the invention provides GHXTEN compositions wherein the XTEN sequence length of the fusion protein(s) is greater than about 100 to about 3000 amino acid residues, and in some cases is greater than 400 to about 3000 amino acid residues, wherein the XTEN confers enhanced pharmacokinetic properties on the GHXTEN in comparison to GH not linked to XTEN. In some embodiments, the XTEN sequences of the GHXTEN compositions of the present invention can be about 100, or about 144, or about 288, or about 401, or about 500, or about 600, or about 700, or about 800, or about 900, or about 1000, or about 1500, or about 2000, or about 2500 or up to about 3000 amino acid residues in length. In other cases, the XTEN sequences can be about 100 to 150, about 150 to 250, about 250 to 400, 401 to about 500, about 500 to 900, about 900 to 1500, about 1500 to 2000, or about 2000 to about 3000 amino acid residues in length. In one embodiment, the GHXTEN can comprise an XTEN sequence wherein the sequence exhibits at least about 80% sequence identity, or alternatively 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to a XTEN selected from Table 3. In some embodiments, the XTEN sequence is designed for optimized expression as the N-terminal component of the GHXTEN by inclusion of encoding nucleotides for an optimized N-terminal leader sequence (NTS) in the XTEN portion of the gene encoding the fusion protein. In one embodiment, the N-terminal XTEN sequence of the expressed GHXTEN has at least 90% sequence identity to the sequence of AE48 or AM48, AE624, or AE912 or AM923. In another embodiment, the XTEN has the N-terminal residues described in Examples 14-17.


In other embodiments, the GHXTEN fusion protein comprises a first and a second XTEN sequence, wherein the cumulative total of the residues in the XTEN sequences is greater than about 400 to about 3000 amino acid residues. In embodiments of the foregoing, the GHXTEN fusion protein comprises a first and a second XTEN sequence wherein the sequences each exhibit at least about 80% sequence identity, or alternatively 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to at least a first or additionally a second XTEN selected from Table 3. Examples where more than one XTEN is used in a GHXTEN composition include, but are not limited to constructs with an XTEN linked to both the N- and C-termini of at least one GH.


As described more fully below, the invention provides methods in which the GHXTEN is designed by selecting the length of the XTEN to confer a target half-life on a fusion protein administered to a subject. In general, XTEN lengths longer that about cumulative 400 residues incorporated into the GHXTEN compositions result in longer half-life compared to shorter cumulative lengths; e.g., shorter than about 280 residues. However, in another embodiment, GHXTEN fusion proteins are designed to comprise XTEN with a longer sequence length that is selected to additionally confer slower rates of systemic absorption after subcutaneous or intramuscular administration to a subject. In such embodiments, the Cmax is reduced in comparison to a comparable dose of a GH not linked to XTEN, thereby contributing to the ability to keep the GHXTEN within the therapeutic window for the composition. Thus, the XTEN confers the property of a depot to the administered GHXTEN, in addition to the other physical/chemical properties described herein.









TABLE 3







XTEN Polypeptides










SEQ



XTEN
ID



Name
NO:
Amino Acid Sequence





AE48
59
MAEPAGSPTSTEEGTPGSGTASSSPGSSTPSGATGSPG




ASPGTSSTGS





AM48
60
MAEPAGSPTSTEEGASPGTSSTGSPGSSTPSGATGSPG




SSTPSGATGS





AE144
61
GSEPATSGSETPGTSESATPESGPGSEPATSGSETPGS




PAGSPTSTEEGTSTEPSEGSAPGSEPATSGSETPGSEP




ATSGSETPGSEPATSGSETPGTSTEPSEGSAPGTSESA




TPESGPGSEPATSGSETPGTSTEPSEGSAP





AF144
62
GTSTPESGSASPGTSPSGESSTAPGTSPSGESSTAPGS




TSSTAESPGPGSTSESPSGTAPGSTSSTAESPGPGTSP




SGESSTAPGTSTPESGSASPGSTSSTAESPGPGTSPSG




ESSTAPGTSPSGESSTAPGTSPSGESSTAP





AE288
63
GTSESATPESGPGSEPATSGSETPGTSESATPESGPGS




EPATSGSETPGTSESATPESGPGTSTEPSEGSAPGSPA




GSPTSTEEGTSESATPESGPGSEPATSGSETPGTSESA




TPESGPGSPAGSPTSTEEGSPAGSPTSTEEGTSTEPSE




GSAPGTSESATPESGPGTSESATPESGPGTSESATPES




GPGSEPATSGSETPGSEPATSGSETPGSPAGSPTSTEE




GTSTEPSEGSAPGTSTEPSEGSAPGSEPATSGSETPGT




SESATPESGPGTSTEPSEGSAP





AF504
64
GASPGTSSTGSPGSSPSASTGTGPGSSPSASTGTGPGT




PGSGTASSSPGSSTPSGATGSPGSXPSASTGTGPGASP




GTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGTPGSG




TASSSPGASPGTSSTGSPGASPGTSSTGSPGTPGSGTA




SSSPGSSTPSGATGSPGASPGTSSTGSPGTPGSGTASS




SPGSSTPSGATGSPGSXPSASTGTGPGSSPSASTGTGP




GSSTPSGATGSPGSSTPSGATGSPGASPGTSSTGSPGA




SPGTSSTGSPGASPGTSSTGSPGTPGSGTASSSPGASP




GTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGSSPSA




STGTGPGTPGSGTASSSPGASPGTSSTGSPGASPGTSS




TGSPGASPGTSSTGSPGSSTPSGATGSPGSSTPSGATG




SPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSP




GSSTPSGATGSPGSSTPSGATGSPGSSPSASTGTGPGA




SPGTSSTGSP





AF540
65
GSTSSTAESPGPGSTSSTAESPGPGSTSESPSGTAPGS




TSSTAESPGPGSTSSTAESPGPGTSTPESGSASPGSTS




ESPSGTAPGTSPSGESSTAPGSTSESPSGTAPGSTSES




PSGTAPGTSPSGESSTAPGSTSESPSGTAPGSTSESPS




GTAPGTSPSGESSTAPGSTSESPSGTAPGSTSESPSGT




APGSTSESPSGTAPGTSTPESGSASPGSTSESPSGTAP




GTSTPESGSASPGSTSSTAESPGPGSTSSTAESPGPGT




STPESGSASPGTSTPESGSASPGSTSESPSGTAPGTST




PESGSASPGTSTPESGSASPGSTSESPSGTAPGSTSES




PSGTAPGSTSESPSGTAPGSTSSTAESPGPGTSTPESG




SASPGTSTPESGSASPGSTSESPSGTAPGSTSESPSGT




APGTSTPESGSASPGSTSESPSGTAPGSTSESPSGTAP




GTSTPESGSASPGTSPSGESSTAPGSTSSTAESPGPGT




SPSGESSTAPGSTSSTAESPGPGTSTPESGSASPGSTS




ESPSGTAP





AD576
66
GSSESGSSEGGPGSGGEPSESGSSGSSESGSSEGGPGS




SESGSSEGGPGSSESGSSEGGPGSSESGSSEGGPGSSE




SGSSEGGPGESPGGSSGSESGSEGSSGPGESSGSSESG




SSEGGPGSSESGSSEGGPGSSESGSSEGGPGSGGEPSE




SGSSGESPGGSSGSESGESPGGSSGSESGSGGEPSESG




SSGSSESGSSEGGPGSGGEPSESGSSGSGGEPSESGSS




GSEGSSGPGESSGESPGGSSGSESGSGGEPSESGSSGS




GGEPSESGSSGSGGEPSESGSSGSSESGSSEGGPGESP




GGSSGSESGESPGGSSGSESGESPGGSSGSESGESPGG




SSGSESGESPGGSSGSESGSSESGSSEGGPGSGGEPSE




SGSSGSEGSSGPGESSGSSESGSSEGGPGSGGEPSESG




SSGSSESGSSEGGPGSGGEPSESGSSGESPGGSSGSES




GESPGGSSGSESGSSESGSSEGGPGSGGEPSESGSSGS




SESGSSEGGPGSGGEPSESGSSGSGGEPSESGSSGESP




GGSSGSESGSEGSSGPGESSGSSESGSSEGGPGSEGSS




GPGESS





AE576
67
GSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGS




PAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAPGTSE




SATPESGPGSEPATSGSETPGSEPATSGSETPGSPAGS




PTSTEEGTSESATPESGPGTSTEPSEGSAPGTSTEPSE




GSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGS




APGTSESATPESGPGTSTEPSEGSAPGTSESATPESGP




GSEPATSGSETPGTSTEPSEGSAPGTSTEPSEGSAPGT




SESATPESGPGTSESATPESGPGSPAGSPTSTEEGTSE




SATPESGPGSEPATSGSETPGTSESATPESGPGTSTEP




SEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSE




GSAPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTST




EEGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETP




GTSESATPESGPGSEPATSGSETPGTSESATPESGPGT




STEPSEGSAPGTSESATPESGPGSPAGSPTSTEEGSPA




GSPTSTEEGSPAGSPTSTEEGTSESATPESGPGTSTEP




SEGSAP





AF576
68
GSTSSTAESPGPGSTSSTAESPGPGSTSESPSGTAPGS




TSSTAESPGPGSTSSTAESPGPGTSTPESGSASPGSTS




ESPSGTAPGTSPSGESSTAPGSTSESPSGTAPGSTSES




PSGTAPGTSPSGESSTAPGSTSESPSGTAPGSTSESPS




GTAPGTSPSGESSTAPGSTSESPSGTAPGSTSESPSGT




APGSTSESPSGTAPGTSTPESGSASPGSTSESPSGTAP




GTSTPESGSASPGSTSSTAESPGPGSTSSTAESPGPGT




STPESGSASPGTSTPESGSASPGSTSESPSGTAPGTST




PESGSASPGTSTPESGSASPGSTSESPSGTAPGSTSES




PSGTAPGSTSESPSGTAPGSTSSTAESPGPGTSTPESG




SASPGTSTPESGSASPGSTSESPSGTAPGSTSESPSGT




APGTSTPESGSASPGSTSESPSGTAPGSTSESPSGTAP




GTSTPESGSASPGTSPSGESSTAPGSTSSTAESPGPGT




SPSGESSTAPGSTSSTAESPGPGTSTPESGSASPGSTS




ESPSGTAPGSTSSTAESPGPGTSTPESGSASPGTSTPE




SGSASP





AE624
69
MAEPAGSPTSTEEGTPGSGTASSSPGSSTPSGATGSPG




ASPGTSSTGSPGSPAGSPTSTEEGTSESATPESGPGTS




TEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTE




PSEGSAPGTSESATPESGPGSEPATSGSETPGSEPATS




GSETPGSPAGSPTSTEEGTSESATPESGPGTSTEPSEG




SAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSA




PGTSTEPSEGSAPGTSESATPESGPGTSTEPSEGSAPG




TSESATPESGPGSEPATSGSETPGTSTEPSEGSAPGTS




TEPSEGSAPGTSESATPESGPGTSESATPESGPGSPAG




SPTSTEEGTSESATPESGPGSEPATSGSETPGTSESAT




PESGPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEG




SAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSA




PGSPAGSPTSTEEGTSTEPSEGSAPGTSESATPESGPG




SEPATSGSETPGTSESATPESGPGSEPATSGSETPGTS




ESATPESGPGTSTEPSEGSAPGTSESATPESGPGSPAG




SPTSTEEGSPAGSPTSTEEGSPAGSPTSTEEGTSESAT




PESGPGTSTEPSEGSAP





AD836
70
GSSESGSSEGGPGSSESGSSEGGPGESPGGSSGSESGS




GGEPSESGSSGESPGGSSGSESGESPGGSSGSESGSSE




SGSSEGGPGSSESGSSEGGPGSSESGSSEGGPGESPGG




SSGSESGESPGGSSGSESGESPGGSSGSESGSSESGSS




EGGPGSSESGSSEGGPGSSESGSSEGGPGSSESGSSEG




GPGSSESGSSEGGPGSSESGSSEGGPGSGGEPSESGSS




GESPGGSSGSESGESPGGSSGSESGSGGEPSESGSSGS




EGSSGPGESSGSSESGSSEGGPGSGGEPSESGSSGSEG




SSGPGESSGSSESGSSEGGPGSGGEPSESGSSGESPGG




SSGSESGSGGEPSESGSSGSGGEPSESGSSGSSESGSS




EGGPGSGGEPSESGSSGSGGEPSESGSSGSEGSSGPGE




SSGESPGGSSGSESGSEGSSGPGESSGSEGSSGPGESS




GSGGEPSESGSSGSSESGSSEGGPGSSESGSSEGGPGE




SPGGSSGSESGSGGEPSESGSSGSEGSSGPGESSGESP




GGSSGSESGSEGSSGPGSSESGSSEGGPGSGGEPSESG




SSGSEGSSGPGESSGSEGSSGPGESSGSEGSSGPGESS




GSGGEPSESGSSGSGGEPSESGSSGESPGGSSGSESGE




SPGGSSGSESGSGGEPSESGSSGSEGSSGPGESSGESP




GGSSGSESGSSESGSSEGGPGSSESGSSEGGPGSSESG




SSEGGPGSGGEPSESGSSGSSESGSSEGGPGESPGGSS




GSESGSGGEPSESGSSGSSESGSSEGGPGESPGGSSGS




ESGSGGEPSESGSSGESPGGSSGSESGSGGEPSESGSS





AE864
71
GSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGS




PAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAPGTSE




SATPESGPGSEPATSGSETPGSEPATSGSETPGSPAGS




PTSTEEGTSESATPESGPGTSTEPSEGSAPGTSTEPSE




GSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGS




APGTSESATPESGPGTSTEPSEGSAPGTSESATPESGP




GSEPATSGSETPGTSTEPSEGSAPGTSTEPSEGSAPGT




SESATPESGPGTSESATPESGPGSPAGSPTSTEEGTSE




SATPESGPGSEPATSGSETPGTSESATPESGPGTSTEP




SEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSE




GSAPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTST




EEGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETP




GTSESATPESGPGSEPATSGSETPGTSESATPESGPGT




STEPSEGSAPGTSESATPESGPGSPAGSPTSTEEGSPA




GSPTSTEEGSPAGSPTSTEEGTSESATPESGPGTSTEP




SEGSAPGTSESATPESGPGSEPATSGSETPGTSESATP




ESGPGSEPATSGSETPGTSESATPESGPGTSTEPSEGS




APGSPAGSPTSTEEGTSESATPESGPGSEPATSGSETP




GTSESATPESGPGSPAGSPTSTEEGSPAGSPTSTEEGT




STEPSEGSAPGTSESATPESGPGTSESATPESGPGTSE




SATPESGPGSEPATSGSETPGSEPATSGSETPGSPAGS




PTSTEEGTSTEPSEGSAPGTSTEPSEGSAPGSEPATSG




SETPGTSESATPESGPGTSTEPSEGSAP





AF864
72
GSTSESPSGTAPGTSPSGESSTAPGSTSESPSGTAPGS




TSESPSGTAPGTSTPESGSASPGTSTPESGSASPGSTS




ESPSGTAPGSTSESPSGTAPGTSPSGESSTAPGSTSES




PSGTAPGTSPSGESSTAPGTSPSGESSTAPGSTSSTAE




SPGPGTSPSGESSTAPGTSPSGESSTAPGSTSSTAESP




GPGTSTPESGSASPGTSTPESGSASPGSTSESPSGTAP




GSTSESPSGTAPGTSTPESGSASPGSTSSTAESPGPGT




STPESGSASPGSTSESPSGTAPGTSPSGESSTAPGSTS




STAESPGPGTSPSGESSTAPGTSTPESGSASPGSTSST




AESPGPGSTSSTAESPGPGSTSSTAESPGPGSTSSTAE




SPGPGTSPSGESSTAPGSTSESPSGTAPGSTSESPSGT




APGTSTPESGPXXXGASASGAPSTXXXXSESPSGTAPG




STSESPSGTAPGSTSESPSGTAPGSTSESPSGTAPGST




SESPSGTAPGSTSESPSGTAPGTSTPESGSASPGTSPS




GESSTAPGTSPSGESSTAPGSTSSTAESPGPGTSPSGE




SSTAPGTSTPESGSASPGSTSESPSGTAPGSTSESPSG




TAPGTSPSGESSTAPGSTSESPSGTAPGTSTPESGSAS




PGTSTPESGSASPGSTSESPSGTAPGTSTPESGSASPG




STSSTAESPGPGSTSESPSGTAPGSTSESPSGTAPGTS




PSGESSTAPGSTSSTAESPGPGTSPSGESSTAPGTSTP




ESGSASPGTSPSGESSTAPGTSPSGESSTAPGTSPSGE




SSTAPGSTSSTAESPGPGSTSSTAESPGPGTSPSGESS




TAPGSSPSASTGTGPGSSTPSGATGSPGSSTPSGATGS




P





AG864
73
GASPGTSSTGSPGSSPSASTGTGPGSSPSASTGTGPGT




PGSGTASSSPGSSTPSGATGSPGSSPSASTGTGPGASP




GTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGTPGSG




TASSSPGASPGTSSTGSPGASPGTSSTGSPGTPGSGTA




SSSPGSSTPSGATGSPGASPGTSSTGSPGTPGSGTASS




SPGSSTPSGATGSPGSSPSASTGTGPGSSPSASTGTGP




GSSTPSGATGSPGSSTPSGATGSPGASPGTSSTGSPGA




SPGTSSTGSPGASPGTSSTGSPGTPGSGTASSSPGASP




GTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGSSPSA




STGTGPGTPGSGTASSSPGASPGTSSTGSPGASPGTSS




TGSPGASPGTSSTGSPGSSTPSGATGSPGSSTPSGATG




SPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSP




GSSTPSGATGSPGSSTPSGATGSPGSSPSASTGTGPGA




SPGTSSTGSPGASPGTSSTGSPGTPGSGTASSSPGASP




GTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGASPGT




SSTGSPGTPGSGTASSSPGSSTPSGATGSPGTPGSGTA




SSSPGSSTPSGATGSPGTPGSGTASSSPGSSTPSGATG




SPGSSTPSGATGSPGSSPSASTGTGPGSSPSASTGTGP




GASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGS




SPSASTGTGPGSSPSASTGTGPGASPGTSSIGSPGASP




GTSSIGSPGSSTPSGATGSPGSSPSASTGTGPGASPGT




SSTGSPGSSPSASTGTGPGTPGSGTASSSPGSSTPSGA




TGSPGSSTPSGATGSPGASPGTSSTGSP





AM875
74
GTSTEPSEGSAPGSEPATSGSETPGSPAGSPTSTEEGS




TSSTAESPGPGTSTPESGSASPGSTSESPSGTAPGSTS




ESPSGTAPGTSTPESGSASPGTSTPESGSASPGSEPAT




SGSETPGTSESATPESGPGSPAGSPTSTEEGTSTEPSE




GSAPGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGS




APGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAP




GTSESATPESGPGTSESATPESGPGTSTEPSEGSAPGT




STEPSEGSAPGTSESATPESGPGTSTEPSEGSAPGSEP




PTSTEEGSSTPSGATGSPGTPGSGTASSSPGSSTPSGA




TATSGSETPGSPAGSGSPGTSTEPSEGSAPGTSTEPSE




GSAPGSEPATSGSETPGSPAGSPTSTEEGSPAGSPTST




EEGTSTEPSEGSAPGASASGAPSTGGTSESATPESGPG




SPAGSPTSTEEGSPAGSPTSTEEGSTSSTAESPGPGST




SESPSGTAPGTSPSGESSTAPGTPGSGTASSSPGSSTP




SGATGSPGSSPSASTGTGPGSEPATSGSETPGTSESAT




PESGPGSEPATSGSETPGSTSSTAESPGPGSTSSTAES




PGPGTSPSGESSTAPGSEPATSGSETPGSEPATSGSET




PGTSTEPSEGSAPGSTSSTAESPGPGTSTPESGSASPG




STSESPSGTAPGTSTEPSEGSAPGTSTEPSEGSAPGTS




TEPSEGSAPGSSTPSGATGSPGSSPSASTGTGPGASPG




TSSTGSPGSEPATSGSETPGTSESATPESGPGSPAGSP




TSTEEGSSTPSGATGSPGSSPSASTGTGPGASPGTSST




GSPGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSA




P





AE912
75
MAEPAGSPTSTEEGTPGSGTASSSPGSSTPSGATGSPG




ASPGTSSTGSPGSPAGSPTSTEEGTSESATPESGPGTS




TEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTE




PSEGSAPGTSESATPESGPGSEPATSGSETPGSEPATS




GSETPGSPAGSPTSTEEGTSESATPESGPGTSTEPSEG




SAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSA




PGTSTEPSEGSAPGTSESATPESGPGTSTEPSEGSAPG




TSESATPESGPGSEPATSGSETPGTSTEPSEGSAPGTS




TEPSEGSAPGTSESATPESGPGTSESATPESGPGSPAG




SPTSTEEGTSESATPESGPGSEPATSGSETPGTSESAT




PESGPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEG




SAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSA




PGSPAGSPTSTEEGTSTEPSEGSAPGTSESATPESGPG




SEPATSGSETPGTSESATPESGPGSEPATSGSETPGTS




ESATPESGPGTSTEPSEGSAPGTSESATPESGPGSPAG




SPTSTEEGSPAGSPTSTEEGSPAGSPTSTEEGTSESAT




PESGPGTSTEPSEGSAPGTSESATPESGPGSEPATSGS




ETPGTSESATPESGPGSEPATSGSETPGTSESATPESG




PGTSTEPSEGSAPGSPAGSPTSTEEGTSESATPESGPG




SEPATSGSETPGTSESATPESGPGSPAGSPTSTEEGSP




AGSPTSTEEGTSTEPSEGSAPGTSESATPESGPGTSES




ATPESGPGTSESATPESGPGSEPATSGSETPGSEPATS




GSETPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEG




SAPGSEPATSGSETPGTSESATPESGPGTSTEPSEGSA




P





AM923
76
MAEPAGSPTSTEEGASPGTSSTGSPGSSTPSGATGSPG




SSTPSGATGSPGTSTEPSEGSAPGSEPATSGSETPGSP




AGSPTSTEEGSTSSTAESPGPGTSTPESGSASPGSTSE




SPSGTAPGSTSESPSGTAPGTSTPESGSASPGTSTPES




GSASPGSEPATSGSETPGTSESATPESGPGSPAGSPTS




TEEGTSTEPSEGSAPGTSESATPESGPGTSTEPSEGSA




PGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPG




TSTEPSEGSAPGTSESATPESGPGTSESATPESGPGTS




TEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSTE




PSEGSAPGSEPATSGSETPGSPAGSPTSTEEGSSTPSG




ATGSPGTPGSGTASSSPGSSTPSGATGSPGTSTEPSEG




SAPGTSTEPSEGSAPGSEPATSGSETPGSPAGSPTSTE




EGSPAGSPTSTEEGTSTEPSEGSAPGASASGAPSTGGT




SESATPESGPGSPAGSPTSTEEGSPAGSPTSTEEGSTS




STAESPGPGSTSESPSGTAPGTSPSGESSTAPGTPGSG




TASSSPGSSTPSGATGSPGSSPSASTGTGPGSEPATSG




SETPGTSESATPESGPGSEPATSGSETPGSTSSTAESP




GPGSTSSTAESPGPGTSPSGESSTAPGSEPATSGSETP




GSEPATSGSETPGTSTEPSEGSAPGSTSSTAESPGPGT




STPESGSASPGSTSESPSGTAPGTSTEPSEGSAPGTST




EPSEGSAPGTSTEPSEGSAPGSSTPSGATGSPGSSPSA




STGTGPGASPGTSSTGSPGSEPATSGSETPGTSESATP




ESGPGSPAGSPTSTEEGSSTPSGATGSPGSSPSASTGT




GPGASPGTSSTGSPGTSESATPESGPGTSTEPSEGSAP




GTSTEPSEGSAP





AM1318
77
GTSTEPSEGSAPGSEPATSGSETPGSPAGSPTSTEEGS




TSSTAESPGPGTSTPESGSASPGSTSESPSGTAPGSTS




ESPSGTAPGTSTPESGSASPGTSTPESGSASPGSEPAT




SGSETPGTSESATPESGPGSPAGSPTSTEEGTSTEPSE




GSAPGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGS




APGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAP




GTSESATPESGPGTSESATPESGPGTSTEPSEGSAPGT




STEPSEGSAPGTSESATPESGPGTSTEPSEGSAPGSEP




ATSGSETPGSPAGSPTSTEEGSSTPSGATGSPGTPGSG




TASSSPGSSTPSGATGSPGTSTEPSEGSAPGTSTEPSE




GSAPGSEPATSGSETPGSPAGSPTSTEEGSPAGSPTST




EEGTSTEPSEGSAPGPEPTGPAPSGGSEPATSGSETPG




TSESATPESGPGSPAGSPTSTEEGTSESATPESGPGSP




AGSPTSTEEGSPAGSPTSTEEGTSESATPESGPGSPAG




SPTSTEEGSPAGSPTSTEEGSTSSTAESPGPGSTSESP




SGTAPGTSPSGESSTAPGSTSESPSGTAPGSTSESPSG




TAPGTSPSGESSTAPGTSTEPSEGSAPGTSESATPESG




PGTSESATPESGPGSEPATSGSETPGTSESATPESGPG




TSESATPESGPGTSTEPSEGSAPGTSESATPESGPGTS




TEPSEGSAPGTSPSGESSTAPGTSPSGESSTAPGTSPS




GESSTAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPS




EGSAPGSSPSASTGTGPGSSTPSGATGSPGSSTPSGAT




GSPGSSTPSGATGSPGSSTPSGATGSPGASPGTSSTGS




PGASASGAPSTGGTSPSGESSTAPGSTSSTAESPGPGT




SPSGESSTAPGTSESATPESGPGTSTEPSEGSAPGTST




EPSEGSAPGSSPSASTGTGPGSSTPSGATGSPGASPGT




SSTGSPGTSTPESGSASPGTSPSGESSTAPGTSPSGES




STAPGTSESATPESGPGSEPATSGSETPGTSTEPSEGS




APGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSASP




GSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGS




PAGSPTSTEEGTSESATPESGPGSEPATSGSETPGSST




PSGATGSPGASPGTSSTGSPGSSTPSGATGSPGSTSES




PSGTAPGTSPSGESSTAPGSTSSTAESPGPGSSTPSGA




TGSPGASPGTSSTGSPGTPGSGTASSSPGSPAGSPTST




EEGSPAGSPTSTEEGTSTEPSEGSAP





BC 864
78
GTSTEPSEPGSAGTSTEPSEPGSAGSEPATSGTEPSGS




GASEPTSTEPGSEPATSGTEPSGSEPATSGTEPSGSEP




ATSGTEPSGSGASEPTSTEPGTSTEPSEPGSAGSEPAT




SGTEPSGTSTEPSEPGSAGSEPATSGTEPSGSEPATSG




TEPSGTSTEPSEPGSAGTSTEPSEPGSAGSEPATSGTE




PSGSEPATSGTEPSGTSEPSTSEPGAGSGASEPTSTEP




GTSEPSTSEPGAGSEPATSGTEPSGSEPATSGTEPSGT




STEPSEPGSAGTSTEPSEPGSAGSGASEPTSTEPGSEP




ATSGTEPSGSEPATSGTEPSGSEPATSGTEPSGSEPAT




SGTEPSGTSTEPSEPGSAGSEPATSGTEPSGSGASEPT




STEPGTSTEPSEPGSAGSEPATSGTEPSGSGASEPTST




EPGTSTEPSEPGSAGSGASEPTSTEPGSEPATSGTEPS




GSGASEPTSTEPGSEPATSGTEPSGSGASEPTSTEPGT




STEPSEPGSAGSEPATSGTEPSGSGASEPTSTEPGTST




EPSEPGSAGSEPATSGTEPSGTSTEPSEPGSAGSEPAT




SGTEPSGTSTEPSEPGSAGTSTEPSEPGSAGTSTEPSE




PGSAGTSTEPSEPGSAGTSTEPSEPGSAGTSTEPSEPG




SAGTSEPSTSEPGAGSGASEPTSTEPGTSTEPSEPGSA




GTSTEPSEPGSAGTSTEPSEPGSAGSEPATSGTEPSGS




GASEPTSTEPGSEPATSGTEPSGSEPATSGTEPSGSEP




ATSGTEPSGSEPATSGTEPSGTSEPSTSEPGAGSEPAT




SGTEPSGSGASEPTSTEPGTSTEPSEPGSAGSEPATSG




TEPSGSGASEPTSTEPGTSTEPSEPGSA





BD864
79
GSETATSGSETAGTSESATSESGAGSTAGSETSTEAGT




SESATSESGAGSETATSGSETAGSETATSGSETAGTST




EASEGSASGTSTEASEGSASGTSESATSESGAGSETAT




SGSETAGTSTEASEGSASGSTAGSETSTEAGTSESATS




ESGAGTSESATSESGAGSETATSGSETAGTSESATSES




GAGTSTEASEGSASGSETATSGSETAGSETATSGSETA




GTSTEASEGSASGSTAGSETSTEAGTSESATSESGAGT




STEASEGSASGSETATSGSETAGSTAGSETSTEAGSTA




GSETSTEAGSETATSGSETAGTSESATSESGAGTSESA




TSESGAGSETATSGSETAGTSESATSESGAGTSESATS




ESGAGSETATSGSETAGSETATSGSETAGTSTEASEGS




ASGSTAGSETSTEAGSETATSGSETAGTSESATSESGA




GSTAGSETSTEAGSTAGSETSTEAGSTAGSETSTEAGT




STEASEGSASGSTAGSETSTEAGSTAGSETSTEAGTST




EASEGSASGSTAGSETSTEAGSETATSGSETAGTSTEA




SEGSASGTSESATSESGAGSETATSGSETAGTSESATS




ESGAGTSESATSESGAGSETATSGSETAGTSESATSES




GAGSETATSGSETAGTSTEASEGSASGTSTEASEGSAS




GSTAGSETSTEAGSTAGSETSTEAGSETATSGSETAGT




SESATSESGAGTSESATSESGAGSETATSGSETAGSET




ATSGSETAGSETATSGSETAGTSTEASEGSASGTSESA




TSESGAGSETATSGSETAGSETATSGSETAGTSESATS




ESGAGTSESATSESGAGSETATSGSETA









4. XTEN Segments


In one embodiment, the invention provides an isolated GHXTEN fusion protein wherein the cumulative length of the XTEN component is greater than about 100 to about 3000 amino acid residues containing at least one polypeptide sequence segment selected from Tables 3, 8, 9, 10, 11, and 12 and wherein at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98% or more of the remainder of the XTEN sequence by and large contains hydrophilic amino acids and less than about 2% of the remainder of the XTEN consists of hydrophobic or aromatic amino acids, or cysteine. In some embodiments, the XTEN contains multiple segments wherein the segments are identical or different. In another embodiment, the invention provides an isolated GHXTEN fusion protein wherein the cumulative length of the XTEN component is greater than about 100 to about 3000 amino acid residues and comprises at least one sequence segment of at least about 100 to about 923, or at least about 100 to about 875, or at least about 100 to about 576, or at least about 100 to about 288, or at least about 100 to about 144 amino acid residues wherein the sequence segment(s) consists of at least three different types of amino acids and the sum of glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) residues in the sequence segment(s) constitutes at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least about 99% of the total amino acid sequence of the sequence segment and at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98% of the remainder of the XTEN sequence(s) consist of hydrophilic amino acids and less than about 2% of the remainder of the XTEN sequence(s) consists of hydrophobic or aromatic amino acids, or cysteine. In another embodiment, the invention provides an isolated GHXTEN fusion protein wherein the cumulative length of the XTEN component is greater than about 100 to about 3000 amino acid residues and comprises at least one sequence segment of at least about 200 to about 923, or at least about 200 to about 875, or at least about 200 to about 576, or at least about 200 to about 288 amino acid residues wherein the sequence segment(s) the sum of glycine (G), alanine (A), serine (S), threonine (1″), glutamate (E) and proline (P) residues in the sequence segment(s) constitutes at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least about 99% of the total amino acid sequence of the sequence segment and wherein the subsequence score of the segment is less than 12, more preferably less than 10, more preferably less than 9, more preferably less than 8, more preferably less than 7, more preferably less than 6, and most preferably less than 5, and at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98% of the remainder of the XTEN sequence(s) consist of hydrophilic amino acids and less than about 2% of the remainder of the XTEN sequence(s) consists of hydrophobic, aromatic or cysteine amino acids.


5. N-terminal XTEN Expression-Enhancing Sequences


In some embodiments, the invention provides a short-length XTEN sequence incorporated as the N-terminal portion of the GHXTEN fusion protein. The expression of the fusion protein is enhanced in a host cell transformed with a suitable expression vector comprising an optimized N-terminal leader polynucleotide sequence (that encodes the N-terminal XTEN) incorporated into the polynucleotide encoding the binding fusion protein. It has been discovered, as described in Examples 14-17, that a host cell transformed with such an expression vector comprising an optimized N-terminal leader sequence (NTS) in the binding fusion protein gene results in greatly-enhanced expression of the fusion protein compared to the expression of a corresponding fusion protein from a polynucleotide not comprising the NTS, and obviates the need for incorporation of a non-XTEN leader sequence used to enhance expression. In one embodiment, the invention provides GHXTEN fusion proteins comprising an NTS wherein the expression of the binding fusion protein from the encoding gene in a host cell is enhanced about 50%, or about 75%, or about 100%, or about 150%, or about 200%, or about 400% compared to expression of a GHXTEN fusion protein not comprising the N-terminal XTEN sequence (where the encoding gene lacks the NTS).


In one embodiment, the N-terminal XTEN polypeptide of the GHXTEN comprises a sequence that exhibits at least about 80%, more preferably at least about 90%, more preferably at least about 91%, more preferably at least about 92%, more preferably at least about 93%, more preferably at least about 94%, more preferably at least about 95%, more preferably at least about 96%, more preferably at least about 97%, more preferably at least about 98%, more preferably at least 99%, or exhibits 100% sequence identity to the amino acid sequence of AE48 or AM48, the respective amino acid sequences of which are as follows:









AE48:


(SEQ ID NO: 80)


MAEPAGSPTSTEEGTPGSGTASSSPGSSTPSGATGSPGASPGTSSTGS





AM48:


(SEQ ID NO: 81)


MAEPAGSPTSTEEGASPGTSSTGSPGSSTPSGATGSPGSSTPSGATGS






In another embodiment, the short-length N-terminal XTEN is linked to an XTEN of longer length to form the N-terminal region of the GHXTEN fusion protein, wherein the polynucleotide sequence encoding the short-length N-terminal XTEN confers the property of enhanced expression in the host cell, and wherein the long length of the expressed XTEN contributes to the enhanced properties of the XTEN carrier in the fusion protein, as described above. In the foregoing, the short-length XTEN is linked to any of the XTEN disclosed herein (e.g., an XTEN of Table 3) and the resulting XTEN, in turn, is linked to the N-terminal of any of the GH disclosed herein (e.g., a GH of Table 1) as a component of the fusion protein. Alternatively, polynucleotides encoding the short-length XTEN (or its complement) is linked to polynucleotides encoding any of the XTEN (or its complement) disclosed herein and the resulting gene encoding the N-terminal XTEN, in turn, is linked to the 5′ end of polynucleotides encoding any of the GH (or to the 3′ end of its complement) disclosed herein. In some embodiments, the N-terminal XTEN polypeptide with long length exhibits at least about 80%, or at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least 99%, or exhibits 100% sequence identity to an amino acid sequence selected from the group consisting of the sequences AE624, AE912, and AM923.


In any of the foregoing N-terminal XTEN embodiments described above, the N-terminal XTEN can have from about one to about six additional amino acid residues, preferably selected from GESTPA, to accommodate the restriction endonuclease restriction sites that would be employed to join the nucleotides encoding the N-terminal XTEN to the gene encoding the targeting moiety of the fusion protein. The methods for the generation of the N-terminal sequences and incorporation into the fusion proteins of the invention are described more fully in the Examples.


6. Net Charge


In other embodiments, the XTEN polypeptides have an unstructured characteristic imparted by incorporation of amino acid residues with a net charge and/or reducing the proportion of hydrophobic amino acids in the XTEN sequence. The overall net charge and net charge density is controlled by modifying the content of charged amino acids in the XTEN sequences. In some embodiments, the net charge density of the XTEN of the compositions may be above +0.1 or below −0.1 charges/residue. In other embodiments, the net charge of a XTEN can be about 0%, about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10% about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, or about 20% or more.


Since most tissues and surfaces in a human or animal have a net negative charge, in some embodiments, the XTEN sequences are designed to have a net negative charge to minimize non-specific interactions between the XTEN containing compositions and various surfaces such as blood vessels, healthy tissues, or various receptors. Not to be bound by a particular theory, the XTEN can adopt open conformations due to electrostatic repulsion between individual amino acids of the XTEN polypeptide that individually carry a net negative charge and that are distributed across the sequence of the XTEN polypeptide. Such a distribution of net negative charge in the extended sequence lengths of XTEN can lead to an unstructured conformation that, in turn, can result in an effective increase in hydrodynamic radius. In preferred embodiments, the negative charge is conferred by incorporation of glutamic acid residues. Accordingly, in one embodiment the invention provides XTEN in which the XTEN sequences contain about 8, 10, 15, 20, 25, or even about 30% glutamic acid. Generally, the glutamic residues would be spaced uniformly across the XTEN sequence. In some cases, the XTEN can contain about 10-80, or about 15-60, or about 20-50 glutamic residues residues per 20 kD of XTEN that can result in an XTEN with charged residues that would have very similar pKa, which can increase the charge homogeneity of the product and sharpen its isoelectric point, enhancing the physicochemical properties of the resulting GHXTEN fusion protein for, example, simplifying purification procedures.


The XTEN of the compositions of the present invention generally have no or a low content of positively charged amino acids. In some embodiments the XTEN may have less than about 10% amino acid residues with a positive charge, or less than about 7%, or less than about 5%, or less than about 2%, or less than about 1% amino acid residues with a positive charge. However, the invention contemplates constructs where a limited number of amino acids with a positive charge, such as lysine, are incorporated into XTEN to permit conjugation between the epsilon amine of the lysine and a reactive group on a peptide, a linker bridge, or a reactive group on a drug or small molecule to be conjugated to the XTEN backbone. In one embodiment of the foregoing, the XTEN has between about 1 to about 100 lysine residues, or about 1 to about 70 lysine residues, or about 1 to about 50 lysine residues, or about 1 to about 30 lysine residues, or about 1 to about 20 lysine residues, or about 1 to about 10 lysine residues, or about 1 to about 5 lysine residues, or alternatively only a single lysine residue. Using the foregoing lysine-containing XTEN, fusion proteins are constructed that comprises XTEN, a growth hormone, plus a chemotherapeutic agent useful in the treatment of growth-related diseases or disorders, wherein the maximum number of molecules of the agent incorporated into the XTEN component is determined by the numbers of lysines or other amino acids with reactive side chains (e.g., cysteine) incorporated into the XTEN.


In some embodiments, the XTEN sequence comprises charged residues separated by other residues such as serine or glycine, which leads to better expression or purification behavior. Based on the net charge, some XTENs have an isoelectric point (pI) of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, or even 6.5. In preferred embodiments, the XTEN will have an isoelectric point between 1.5 and 4.5. In these embodiments, the XTEN incorporated into the GHXTEN fusion protein compositions of the present invention carry a net negative charge under physiologic conditions that contribute to the unstructured conformation and reduced binding of the XTEN component to mammalian proteins and tissues.


As hydrophobic amino acids impart structure to a polypeptide, the invention provides that the content of hydrophobic amino acids in the XTEN will typically be less than 5%, or less than 2%, or less than 1% hydrophobic amino acid content. In one embodiment, the amino acid content of methionine and tryptophan in the XTEN component of a GHXTEN fusion protein is typically less than 5%, or less than 2%, and most preferably less than 1%. In another embodiment, the XTEN will have a sequence that has less than 10% amino acid residues with a positive charge, or less than about 7%, or less that about 5%, or less than about 2% amino acid residues with a positive charge, the sum of methionine and tryptophan residues will be less than 2%, and the sum of asparagine and glutamine residues will be less than 10% of the total XTEN sequence.


7. Low Immunogenicity


In another aspect, the invention provides compositions in which the XTEN sequences have a low degree of immunogenicity or are substantially non-immunogenic. Several factors can contribute to the low immunogenicity of XTEN, e.g., the non-repetitive sequence, the unstructured conformation, the high degree of solubility, the low degree or lack of self-aggregation, the low degree or lack of proteolytic sites within the sequence, and the low degree or lack of epitopes in the XTEN sequence.


Conformational epitopes are formed by regions of the protein surface that are composed of multiple discontinuous amino acid sequences of the protein antigen. The precise folding of the protein brings these sequences into a well-defined, stable spatial configurations, or epitopes, that can be recognized as “foreign” by the host humoral immune system, resulting in the production of antibodies to the protein or the activation of a cell-mediated immune response. In the latter case, the immune response to a protein in an individual is heavily influenced by T-cell epitope recognition that is a function of the peptide binding specificity of that individual's HLA-DR allotype. Engagement of a MHC Class II peptide complex by a cognate T-cell receptor on the surface of the T-cell, together with the cross-binding of certain other co-receptors such as the CD4 molecule, can induce an activated state within the T-cell. Activation leads to the release of cytokines further activating other lymphocytes such as B cells to produce antibodies or activating T killer cells as a full cellular immune response.


The ability of a peptide to bind a given MHC Class II molecule for presentation on the surface of an APC (antigen presenting cell) is dependent on a number of factors; most notably its primary sequence. In one embodiment, a lower degree of immunogenicity is achieved by designing XTEN sequences that resist antigen processing in antigen presenting cells, and/or choosing sequences that do not bind MHC receptors well. The invention provides GHXTEN fusion proteins with substantially non-repetitive XTEN polypeptides designed to reduce binding with MHC II receptors, as well as avoiding formation of epitopes for T-cell receptor or antibody binding, resulting in a low degree of immunogenicity. Avoidance of immunogenicity is, in part, a direct result of the conformational flexibility of XTEN sequences; i.e., the lack of secondary structure due to the selection and order of amino acid residues. For example, of particular interest are sequences having a low tendency to adapt compactly folded conformations in aqueous solution or under physiologic conditions that could result in conformational epitopes. The administration of fusion proteins comprising XTEN, using conventional therapeutic practices and dosing, would generally not result in the formation of neutralizing antibodies to the XTEN sequence, and also reduce the immunogenicity of the GH fusion partner in the GHXTEN compositions.


In one embodiment, the XTEN sequences utilized in the subject fusion proteins can be substantially free of epitopes recognized by human T cells. The elimination of such epitopes for the purpose of generating less immunogenic proteins has been disclosed previously; see for example WO 98/52976, WO 02/079232, and WO 00/3317 which are incorporated by reference herein. Assays for human T cell epitopes have been described (Stickler, M., et al. (2003) J Immunol Methods, 281: 95-108). Of particular interest are peptide sequences that can be oligomerized without generating T cell epitopes or non-human sequences. This is achieved by testing direct repeats of these sequences for the presence of T-cell epitopes and for the occurrence of 6 to 15-mer and, in particular, 9-mer sequences that are not human, and then altering the design of the XTEN sequence to eliminate or disrupt the epitope sequence. In some embodiments, the XTEN sequences are substantially non-immunogenic by the restriction of the numbers of epitopes of the XTEN predicted to bind MHC receptors. With a reduction in the numbers of epitopes capable of binding to MHC receptors, there is a concomitant reduction in the potential for T cell activation as well as T cell helper function, reduced B cell activation or upregulation and reduced antibody production. The low degree of predicted T-cell epitopes can be determined by epitope prediction algorithms such as, e.g., TEPITOPE (Sturniolo, T., et al. (1999) Nat Biotechnol, 17: 555-61), as shown in Example 45. The TEPITOPE score of a given peptide frame within a protein is the log of the Kd (dissociation constant, affinity, off-rate) of the binding of that peptide frame to multiple of the most common human MHC alleles, as disclosed in Sturniolo, T. et al. (1999) Nature Biotechnology 17:555). The score ranges over at least 20 logs, from about 10 to about −10 (corresponding to binding constraints of 10e−10 Kd to 10e−10 Kd), and can be reduced by avoiding hydrophobic amino acids that serve as anchor residues during peptide display on MHC, such as M, I, L, V, F. In some embodiments, an XTEN component incorporated into a GHXTEN does not have a predicted T-cell epitope at a TEPITOPE score of about −5 or greater, or −6 or greater, or −7 or greater, or −8 or greater, or at a TEPITOPE score of −9 or greater. As used herein, a score of “−9 or greater” would encompass TEPITOPE scores of 10 to −9, inclusive, but would not encompass a score of −10, as −10 is less than −9.


In another embodiment, the inventive XTEN sequences, including those incorporated into the subject GHXTEN fusion proteins, are rendered substantially non-immunogenic by the restriction of known proteolytic sites from the sequence of the XTEN, reducing the processing of XTEN into small peptides that can bind to MHC II receptors. In another embodiment, the XTEN sequence is rendered substantially non-immunogenic by the use a sequence that is substantially devoid of secondary structure, conferring resistance to many proteases due to the high entropy of the structure. Accordingly, the reduced TEPITOPE score and elimination of known proteolytic sites from the XTEN render the XTEN compositions, including the XTEN of the GHXTEN fusion protein compositions, substantially unable to be bound by mammalian receptors, including those of the immune system. In one embodiment, an XTEN of a GHXTEN fusion protein can have >100 nM Kd binding to a mammalian receptor, or greater than 500 nM IQ, or greater than 1 nM Kd towards a mammalian cell surface or circulating polypeptide receptor.


Additionally, the non-repetitive sequence and corresponding lack of epitopes of XTEN limit the ability of B cells to bind to or be activated by XTEN. A repetitive sequence is recognized and can form multivalent contacts with even a few B cells and, as a consequence of the cross-linking of multiple T-cell independent receptors, can stimulate B cell proliferation and antibody production. In contrast, while a XTEN can make contacts with many different B cells over its extended sequence, each individual B cell may only make one or a small number of contacts with an individual XTEN due to the lack of repetitiveness of the sequence. Not being to be bound by any theory, XTENs typically have a much lower tendency to stimulate proliferation of B cells and thus an immune response. In one embodiment, the GHXTEN have reduced immunogenicity as compared to the corresponding GH that is not fused. In one embodiment, the administration of up to three parenteral doses of a GHXTEN to a mammal result in detectable anti-GHXTEN IgG at a serum dilution of 1:100 but not at a dilution of 1:1000. In another embodiment, the administration of up to three parenteral doses of a GHXTEN to a mammal result in detectable anti-GH IgG at a serum dilution of 1:100 but not at a dilution of 1:1000. In another embodiment, the administration of up to three parenteral doses of a GHXTEN to a mammal result in detectable anti-XTEN IgG at a serum dilution of 1:100 but not at a dilution of 1:1000. In the foregoing embodiments, the mammal can be a mouse, a rat, a rabbit, or a cynomolgus monkey.


An additional feature of XTENs with non-repetitive sequences relative to sequences with a high degree of repetitiveness is non-repetitive XTENs form weaker contacts with antibodies. Antibodies are multivalent molecules. For instance, IgGs have two identical binding sites and IgMs contain 10 identical binding sites. Thus antibodies against repetitive sequences can form multivalent contacts with such repetitive sequences with high avidity, which can affect the potency and/or elimination of such repetitive sequences. In contrast, antibodies against non-repetitive XTENs may yield monovalent interactions, resulting in less likelihood of immune clearance such that the GHXTEN compositions can remain in circulation for an increased period of time.


8. Increased Hydrodynamic Radius


In another aspect, the present invention provides XTEN in which the XTEN polypeptides have a high hydrodynamic radius that confers a corresponding increased Apparent Molecular Weight to the GHXTEN fusion protein incorporating the XTEN. As detailed in Example 37, the linking of XTEN to GH sequences results in GHXTEN compositions that can have increased hydrodynamic radii, increased Apparent Molecular Weight, and increased Apparent Molecular Weight Factor compared to a GH not linked to an XTEN. For example, in therapeutic applications in which prolonged half-life is desired, compositions in which a XTEN with a high hydrodynamic radius is incorporated into a fusion protein comprising one or more GH can effectively enlarge the hydrodynamic radius of the composition beyond the glomerular pore size of approximately 3-5 nm (corresponding to an apparent molecular weight of about 70 kDA) (Caliceti. 2003. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 55:1261-1277), resulting in reduced renal clearance of circulating proteins. The hydrodynamic radius of a protein is determined by its molecular weight as well as by its structure, including' shape or compactness. Not to be bound by a particular theory, the XTEN can adopt open conformations due to electrostatic repulsion between individual charges of the peptide or the inherent flexibility imparted by the particular amino acids in the sequence that lack potential to confer secondary structure. The open, extended and unstructured conformation of the XTEN polypeptide can have a greater proportional hydrodynamic radius compared to polypeptides of a comparable sequence length and/or molecular weight that have secondary and/or tertiary structure, such as typical globular proteins. Methods for determining the hydrodynamic radius are well known in the art, such as by the use of size exclusion chromatography (SEC), as described in U.S. Pat. Nos. 6,406,632 and 7,294,513. As the results of Example 37 demonstrate, the addition of increasing lengths of XTEN results in proportional increases in the parameters of hydrodynamic radius, Apparent Molecular Weight, and Apparent Molecular Weight Factor, permitting the tailoring of GHXTEN to desired characteristic cut-off Apparent Molecular Weights or hydrodynamic radii. Accordingly, in certain embodiments, the GHXTEN fusion protein can be configured with an XTEN such that the fusion protein can have a hydrodynamic radius of at least about 5 nm, or at least about 8 nm, or at least about 10 nm, or 12 nm, or at least about 15 nm. In the foregoing embodiments, the large hydrodynamic radius conferred by the XTEN in an GHXTEN fusion protein can lead to reduced renal clearance of the resulting fusion protein, leading to a corresponding increase in terminal half-life, an increase in mean residence time, and/or a decrease in renal clearance rate.


In another embodiment, an XTEN of a chosen length and sequence can be selectively incorporated into a GHXTEN to create a fusion protein that have, under physiologic conditions, an Apparent Molecular Weight of at least about 150 kDa, or at least about 300 kDa, or at least about 400 kDa, or at least about 500 kDA, or at least about 600 kDa, or at least about 700 kDA, or at least about 800 kDa, or at least about 900 kDa, or at least about 1000 kDa, or at least about 1200 kDa, or at least about 1500 kDa, or at least about 1800 kDa, or at least about 2000 kDa, or at least about 2300 kDa or more. In another embodiment, an XTEN of a chosen length and sequence can be selectively linked to a GH to result in a GHXTEN fusion protein that has, under physiologic conditions, an Apparent Molecular Weight Factor of at least three, alternatively of at least four, alternatively of at least five, alternatively of at least six, alternatively of at least eight, alternatively of at least 10, alternatively of at least 15, or an Apparent Molecular Weight Factor of at least 20 or greater. In another embodiment, the GHXTEN fusion protein has, under physiologic conditions, an Apparent Molecular Weight Factor that is about 4 to about 20, or is about 6 to about 15, or is about 8 to about 12, or is about 9 to about 10 relative to the actual molecular weight of the fusion protein.


V). GHXTEN Structural Configurations and Properties


The GH of the subject compositions are not limited to native, full-length polypeptides, but also include recombinant versions as well as biologically and/or pharmacologically active variants or fragments thereof. For example, it will be appreciated that various amino acid deletions, insertions and substitutions can be made in the GH to create variants without departing from the spirit of the invention with respect to the biological activity or pharmacologic properties of the GH. Examples of conservative substitutions for amino acids in polypeptide sequences are shown in Table 4. However, in embodiments of the GHXTEN in which the sequence identity of the GH is less than 100% compared to a specific sequence disclosed herein, the invention contemplates substitution of any of the other 19 natural L-amino acids for a given amino acid residue of the given GH, which may be at any position within the sequence of the GH, including adjacent amino acid residues. If any one substitution results in an undesirable change in biological activity, then one of the alternative amino acids can be employed and the construct evaluated by the methods described herein, or using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Pat. No. 5,364,934, the contents of which is incorporated by reference in its entirety, or using methods generally known in the art. In addition, variants can include, for instance, polypeptides wherein one or more amino acid residues are added or deleted at the N- or C-terminus of the full-length native amino acid sequence of a GH that retains some if not all of the biological activity of the native peptide.









TABLE 4







Exemplary conservative amino acid substitutions










Original Residue
Exemplary Substitutions







Ala (A)
val; leu; ile



Arg (R)
lys; gin; asn



Asn (N)
gin; his; Iys; arg



Asp (D)
glu



Cys (C)
ser



Gln (Q)
asn



Glu (E)
asp



Gly (G)
pro



His (H)
asn: gin: Iys: arg



xIle (I)
leu; val; met; ala; phe: norleucine



Leu (L)
norleucine: ile: val; met; ala: phe



Lys (K)
arg: gin: asn



Met (M)
leu; phe; ile



Phe (F)
leu: val: ile; ala



Pro (P)
gly



Ser (S)
thr



Thr (T)
ser



Trp (W)
tyr



Tyr(Y)
trp: phe: thr: ser



Val (V)
ile; leu; met; phe; ala; norleucine










(a) GHXTEN Fusion Protein Configurations


The invention provides GHXTEN fusion protein compositions with the GH and XTEN components linked in specific N- to C-terminus configurations. In some embodiments, one or more GHs are linked to one or more XTENs, either at the N-terminus or at the C-terminus, with or without a spacer, to form a block copolymer, and the sequential arrangement of the GHs and the XTENs in the GHXTEN fusion protein are the same as the configuration known in the block copolymer chemistry. When there is more than one GH, XTEN, or spacer, each of the GH, the XTEN, or the spacer have the same or different sequences, and the GHs and/or XTENs are linked either continously or alternately (regular or irregular). Thus, in all of the fomulae provided herein, when there is more than one GH, XTEN, or spacer, each of the GH, XTEN, and spacer are the same or different. In some embodiments, the GHXTEN is a monomeric fusion protein with a GH linked to one XTEN polypeptide. In other embodiments, the GHXTEN is a monomeric fusion protein with a GH linked to two or more XTEN polypeptides. In still other embodiments, the GHXTEN is a monomeric fusion protein with two or more GH linked to one XTEN polypeptide. In still other embodiments, the GHXTEN is a monomeric fusion protein with two or more GH linked to two or more XTEN polypeptide. Table 5 provides non-limiting examples of configurations that are encompassed by the GHXTEN fusion proteins of the invention; numerous other variations will be apparent to the ordinarily skilled artisan, including the incorporation the spacer and cleavage sequences disclosed herein or known in the art.









TABLE 5







GHXTEN configurations








Components*
Configuration**





Single GH; Single XTEN
GH-XTEN



XTEN-GH





Single GH; Multiple XTEN
XTEN-GH-XTEN



GH-XTEN-XTEN



XTEN-XTEN-GH



XTEN-GH-XTEN-XTEN



XTEN-XTEN-GH-XTEN



XTEN-XTEN-GH-XTEN





Multiple GH, Single XTEN
GH-XTEN-GH



XTEN-GH-GH



GH-GH-XTEN



GH-XTEN-GH-GH





Multiple GH; Multiple XTEN
GH-XTEN-GH-XTEN



XTEN-GH-XTEN-GH



XTEN-XTEN-GH-XTEN-GH



XTEN-XTEN-GH-GH



GH-XTEN-XTEN-GH



GH-GH-XTEN-XTEN



GH-GH-XTEN-XTEN-GH



GH-XTEN-GH-XTEN-GH





*Characterized as single for 1 component or multiple for 2 or more of that component


**Reflects N- to C-terminus configuration of the growth factor and XTEN components






The invention contemplates GHXTEN fusion proteins compositions comprising, but not limited to single or multiple GH selected from Table 1 (or fragments or sequence variants thereof), single or multiple XTEN selected from Table 3 (or sequence variants thereof) that are in a configuration shown in Table 5. Generally, the resulting GHXTEN retains at least a portion of the biological activity of the corresponding GH not linked to the XTEN. In other embodiments, the GH component either becomes biologically active or has an increase in activity upon its release from the XTEN by cleavage of an optional cleavage sequence incorporated within spacer sequences into the GHXTEN, described more fully below.


In one embodiment of the GHXTEN composition, the invention provides a fusion protein of formula I:

(XTEN)x-GH-(XTEN)y  I

wherein independently for each occurrence, GH is a is a growth hormone; x is either 0 or 1 and y is either 0 or I wherein x+y≧1; and XTEN is an extended recombinant polypeptide.


In another embodiment of the GHXTEN composition, the invention provides a fusion protein of formula II:

(XTEN)x-(GH)-(S)y-(XTEN)y  II

wherein independently for each occurrence, GH is a is a growth hormone a; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1 and y is either 0 or 1 wherein x+y≧1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula III:

(GH)-(S)x-(XTEN)-(S)y-(GH)-(S)z-(XTEN)z  III

wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; z is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula IV:

(XTEN)x-(S)y-(GH)-(S)z-(XTEN)-(GH)  IV

wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; z is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion growth hormone, wherein the fusion protein is of formula V:

(GH)x-(S)x-(GH)-(S)y-(XTEN)  V

wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or I; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula VI:

(XTEN)-(S)x-(GH)-(S)y-(GH)  VI

wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula VII:

(XTEN)-(S)x-(GH)-(S)y-(GH)-(XTEN)  VII

wherein independently for each occurrence, GH is a is a growth hormone; S is a spacer sequence having between 1 to about 50 amino acid residues that can optionally include a cleavage sequence; x is either 0 or 1; y is either 0 or 1; and XTEN is an extended recombinant polypeptide.


In another embodiment, the invention provides an isolated fusion protein, wherein the fusion protein is of formula VIII:

((S)m-(GH)x-(S)n-(XTEN)y-(S)o)t  VIII

wherein t is an integer that is greater than 0 (1, 2, 3, etc.); independently each of m, n, o, x, and y is an integer (0, 1, 2, 3, etc.), GH is a is a growth hormone; S is an spacer, optionally comprising a cleavage site; and XTEN is an extended recombinant polypeptide, with the proviso that: (1) x+y>1, (2) when t=1, x>0 and y>0, (3) when there is more than one GH, S, or XTEN, each GH, XTEN, or are the same or are independently different; and (4) when t>1, each m, n, o, x, or y within each subunit are the same or are independently different.


In some embodiments, administration of a therapeutically effective amount of a fusion protein of an embodiment of formulas I-VIII to a subject in need thereof results in a gain in time of at least two-fold, or at least three-fold, or at least four-fold, or at least five-fold, or at least 10-fold, or at least 20-fold, or at least 40-fold, or at least 100-fold or more spent within a therapeutic window for the fusion protein compared to the corresponding GH not linked to the XTEN of and administered at a comparable amount administered to a subject. In other embodiments, administration of a therapeutically effective dose of a fusion protein of an embodiment of formulas I-VIII to a subject in need thereof can result in a gain in time between consecutive doses necessary to maintain a therapeutically effective dose regimen of at least 48 h, or at least 72 h, or at least about 96 h, or at least about 120 h, or at least about 7 days, or at least about 14 days, or at least about 21 days between consecutive doses compared to a GH not linked to XTEN and administered at a comparable dose.


Any spacer sequence group is optional in the fusion proteins encompassed by the invention. The spacer is provided to enhance expression of the fusion protein from a host cell or to decrease steric hindrance such that the GH component may assume its desired tertiary structure and/or interact appropriately with its target receptor. For spacers and methods of identifying desirable spacers, see, for example, George, et al. (2003) Protein Engineering 15:871-879, specifically incorporated by reference herein. In one embodiment, the spacer comprises one or more peptide sequences that are between 1-50 amino acid residues in length, or about 1-25 residues, or about 1-10 residues in length. Spacer sequences, exclusive of cleavage sites, can comprise any of the 20 natural L amino acids, and will preferably comprise hydrophilic amino acids that are sterically unhindered that can include, but not be limited to, glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P). In some cases, the spacer can be polyglycines or polyalanines, or is predominately a mixture of combinations of glycine and alanine residues. The spacer polypeptide exclusive of a cleavage sequence is largely to substantially devoid of secondary structure; e.g., less than about 10%, or less than about 5% as determined by the Chou-Fasman and/or GOR algorithms. In one embodiment, one or both spacer sequences in a GHXTEN fusion protein composition each further contains a cleavage sequence, which are identical or different, wherein the cleavage sequence may be acted on by a protease to release the GH from the fusion protein.


In some embodiments, the incorporation of the cleavage sequence into the GHXTEN is designed to permit release of a GH that becomes active or more active upon its release from the XTEN. The cleavage sequences are located sufficiently close to the GH sequences, generally within 18, or within 12, or within 6, or within 2 amino acids of the GH sequence terminus, such that any remaining residues attached to the GH after cleavage do not appreciably interfere with the activity (e.g., such as binding to a receptor) of the GH, yet provide sufficient access to the protease to be able to effect cleavage of the cleavage sequence. In some embodiments, the cleavage site is a sequence that can be cleaved by a protease endogenous to the mammalian subject such that the GHXTEN can be cleaved after administration to a subject. In such cases, the GHXTEN can serve as a prodrug or a circulating depot for the GH. Examples of cleavage sites contemplated by the invention include, but are not limited to, a polypeptide sequence cleavable by a mammalian endogenous protease selected from FXIa, FXIIa, kallikrein, FVIIa, FIXa, FXa, FIIa (thrombin), Elastase-2, granzyme B, MMP-12, MMP-13, MMP-17 or MMP-20, or by non-mammalian proteases such as TEV, enterokinase, PreScission™ protease (rhinovirus 3C protease), and sortase A. Sequences known to be cleaved by the foregoing proteases and others are known in the art. Exemplary cleavage sequences and cut sites within the sequences are presented in Table 6, as well as sequence variants thereof. For example, thrombin (activated clotting factor II) acts on the sequence LTPRSLLV (SEQ ID NO: 82) [Rawlings N. D., et al. (2008)Nucleic Acids Res., 36: D320], which would be cut after the arginine at position 4 in the sequence. Active FIIa is produced by cleavage of FII by FXa in the presence of phospholipids and calcium and is down stream from factor IX in the coagulation pathway. Once activated its natural role in coagulation is to cleave fibrinogen, which then in turn, begins clot formation. FM activity is tightly controlled and only occurs when coagulation is necessary for proper hemostasis. However, as coagulation is an on-going process in mammals, by incorporation of the LTPRSLLV sequence (SEQ ID NO: 83) into the GHXTEN between the GH and the XTEN, the XTEN domain would be removed from the adjoining GH concurrent with activation of either the extrinsic or intrinsic coagulation pathways when coagulation is required physiologically, thereby releasing GH over time. Similarly, incorporation of other sequences into GHXTEN that are acted upon by endogenous proteases would provide for sustained release of GH that, in certain embodiments, provide a higher degree of activity for the GH from the “prodrug” form of the GHXTEN.


In some embodiments, only the two or three amino acids flanking both sides of the cut site (four to six amino acids total) are incorporated into the cleavage sequence. In other embodiments, the known cleavage sequence have one or more deletions or insertions or one or two or three amino acid substitutions for any one or two or three amino acids in the known sequence, wherein the deletions, insertions or substitutions result in reduced or enhanced susceptibility but not an absence of susceptibility to the protease, resulting in an ability to tailor the rate of release of the GH from the XTEN. Exemplary substitutions are shown in Table 6.









TABLE 6







Protease Cleavage Sequences












Exemplary
SEQ




Protease Acting
Cleavage
ID




Upon Sequence
Sequence
NO:
Minimal Cut Site*















FXIa
KLTR↓VVGG
84
KD/FL/T/R↓VA/VE/GT/GV






FXIIa
TMTR↓IVGG
85
NA






Kallikrein
SPFR↓STGG
86
-/-/FL/RY↓SR/RT/-/-






FVIIa
LQVR↓IVGG
87
NA






FIXa
PLGR↓IVGG
88
-/-/G/R↓-/-/-/-






FXa
IEGR↓TVGG
89
IA/E/GFP/R↓STI/VFS/-/G






FIIa (thrombin)
LTPR↓SLLV
90
-/-/PLA/R↓SAG/-/-/-






Elastase-2
LGPV↓SGVP
91
-/-/-/VIAT↓-/-/-/-






Granzyme-B
VAGD↓SLEE
92
V/-/-/D↓-/-/-/-






MMP-12
GPAG↓LGGA
93
G/PA/-/G↓L/-/G/-
94





MMP-13
GPAG↓LRGA
95
G/P/-/G↓L/-/GA/-
96





MMP-17
APLG↓LRLR
97
-/PS/-/-↓LQ/-/LT/-






MMP-20
PALP↓LVAQ
98
NA






TEV
ENLYFQ↓G
99
ENLYFQ↓G/S
101





Enterokinase
DDDK↓IVGG
101
DDDK↓IVGG
102





Protease 3C
LEVLFQ↓GP
103
LEVLFQ↓GP
104


(PreScission ™ )









Sortase A
LPKT↓GSES
105
L/P/KEAD/T↓G/-/EKS/S
106





↓indicates cleavage site


NA: not applicable


*the listing of multiple amino acids before, between, or after a slash indicate alternative amino acids that can be substituted at the position;


“—” indicates that any amino acid may be substituted for the corresponding amino acid indicated in the middle column






In one embodiment, a GH incorporated into a GIIXTEN fusion protein have a sequence that exhibits at least about 80% sequence identity to a sequence from Table 1, alternatively at least about 81%, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%, or about 100% sequence identity as compared with a sequence from Table 1. The GH of the foregoing embodiment can be evaluated for activity using assays or measured or determined parameters as described herein, and those sequences that retain at least about 40%, or about 50%, or about 55%, or about 60%, or about 70%, or about 80%, or about 90%, or about 95% or more activity compared to the corresponding native GH sequence would be considered suitable for inclusion in the subject GHXTEN. The GH found to retain a suitable level of activity can be linked to one or more XTEN polypeptides described hereinabove. In one embodiment, a GH found to retain a suitable level of activity can be linked to one or more XTEN polypeptides having at least about 80% sequence identity to a sequence from Table 3, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or about 100% sequence identity as compared with a sequence of Table 3, resulting in a chimeric fusion protein.


Non-limiting examples of sequences of fusion proteins containing a single GH linked to a single XTEN are presented in Table 35. In one embodiment, a GHXTEN composition would comprise a fusion protein having at least about 80% sequence identity to a GHXTEN from Table 35, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or about 100% sequence identity as compared with a GHXTEN from Table 35. Non-limiting examples of sequences of fusion proteins containing two molecules of XTEN linked to one or more GH are presented in Table 36, but the invention also contemplates substitution of other GH with sequences exhibiting at least about 90% sequence identity to a sequence selected from Table 1 linked to one or two XTEN, which may be the same or different, exhibiting at least about 90% sequence identity selected from Table 3. In the foregoing fusion proteins hereinabove described in this paragraph, the GHXTEN fusion protein can further comprise a cleavage sequence from Table 6; the cleavage sequence being located between the GH and the XTEN or between adjacent GH (if more than one GH is included in the GHXTEN). In some cases, the GHXTEN comprising the cleavage sequences will also have one or more spacer sequence amino acids between the GH and the cleavage sequence or the XTEN and the cleavage sequence to facilitate access of the protease; the spacer amino acids comprising any natural amino acid, including glycine and alanine as preferred amino acids. Non-limiting examples of GHXTEN comprising GH, XTEN, cleavage sequence(s) and spacer amino acids are presented in Table 37. However, the invention also contemplates substitution of any of the GH sequences of Table 1 for a GH sequence of Table 37, substitution of any XTEN sequence of Table 3 for an XTEN sequence of Table 37, and substitution of any cleavage sequence of Table 6 for a cleavage sequence of Table 37.


(b) Pharmacokinetic Properties of GHXTEN


The invention provides GHXTEN fusion proteins with enhanced pharmacokinetics compared to the GH not linked to XTEN that, when used at the dose determined for the composition by the methods described herein, can achieve a circulating concentration resulting in a pharmacologic effect, yet stay within the safety range for biologically active component of the composition for an extended period of time compared to a comparable dose of the GH not linked to XTEN. In such cases, the GHXTEN remains within the therapeutic window for the fusion protein composition for the extended period of time. As used herein, a “comparable dose” means a dose with an equivalent moles/kg for the active GH pharmacophore that is administered to a subject in a comparable fashion. It will be understood in the art that a “comparable dosage” of GHXTEN fusion protein would represent a greater weight of agent but would have essentially the same mole-equivalents of GH in the dose of the fusion protein and/or would have the same approximate molar concentration relative to the GH.


The pharmacokinetic properties of a GH that can be enhanced by linking a given XTEN to the GH include terminal half-life, area under the curve (AUC), Cmax volume of distribution, and bioavailability providing enhanced utility in the treatment of growth hormone-related disorders, diseases and related conditions. The GH of the GHXTEN compositions can be a sequence that exhibits at least about 80% sequence identity, or alternatively 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to a protein sequence selected from Table 1, linked to one or more XTEN that exhibit at least about 80% sequence identity, or alternatively 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to a protein sequence selected from Table 3.


As described more fully in the Examples pertaining to pharmacokinetic characteristics of fusion proteins comprising XTEN, it was surprisingly discovered that increasing the length of the XTEN sequence confers a disproportionate increase in the terminal half-life of a fusion protein comprising the XTEN. Accordingly, the invention provides GHXTEN fusion proteins comprising XTEN wherein the XTEN is selected to provide a targeted half-life for the GHXTEN composition administered to a subject. In some embodiments, the invention provides monomeric fusion proteins comprising XTEN wherein the XTEN is selected to confer an increase in the terminal half-life for the GHXTEN administered to a subject, compared to the corresponding GH not linked to the fusion protein and administered at a comparable dose, of at least about two-fold longer, or at least about three-fold, or at least about four-fold, or at least about five-fold, or at least about six-fold, or at least about seven-fold, or at least about eight-fold, or at least about nine-fold, or at least about ten-fold, or at least about 15-fold, or at least a 20-fold, or at least a 40-fold, or at least a 80-fold, or at least a 100-fold or greater an increase in terminal half-life compared to the GH not linked to the fusion protein. Exogenously administered human growth hormone has been reported to have a terminal half-life in humans of less than 15 minutes (Hindmarch, P. C., et al., Clinical Endocrinology (2008) 30(4): 443-450), whereas various GHXTEN compositions disclosed herein that have been experimentally administered to various animals species, as described in the Examples, have resulted in terminal half-life values of several hours. Similarly, the GHXTEN fusion proteins can have an increase in AUC of at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90%, or at least about a 100%, or at least about 150%, or at least about 200%, or at least about 300%, or at least about 500%, or at least about 1000%, or at least about a 2000% increase in AUC compared to the corresponding GH not linked to the fusion protein and administered to a subject at a comparable dose. The pharmacokinetic parameters of a GHXTEN can be determined by standard methods involving dosing, the taking of blood samples at times intervals, and the assaying of the protein using ELISA, HPLC, radioassay, or other methods known in the art or as described herein, followed by standard calculations of the data to derive the half-life and other PK parameters.


The invention further provides GHXTEN comprising a first and a second GH molecule, optionally separated by a spacer sequence that may further comprise a cleavage sequence, or separated by a second XTEN sequence. In one embodiment, the GH has less activity when linked to the fusion protein compared to a corresponding GH not linked to the fusion protein. In such case, as illustrated in FIG. 38, the GHXTEN is designed such that upon administration to a subject, the GH component is gradually released by cleavage of the cleavage sequence(s), whereupon it regains activity or the ability to bind to its target receptor or ligand. Accordingly, the GHXTEN of the foregoing serves as a prodrug or a circulating depot, resulting in a longer terminal half-life compared to GH not linked to the fusion protein.


(c) Pharmacology and Pharmaceutical Properties of GHXTEN


The present invention provides GHXTEN compositions comprising GH covalently linked to XTEN that can have enhanced properties compared to GH not linked to XTEN, as well as methods to enhance the therapeutic and/or biologic activity or effect of the respective two GH components of the compositions. In addition, the invention provides GHXTEN compositions with enhanced properties compared to those art-known fusion proteins containing immunoglobulin polypeptide partners, polypeptides of shorter length and/or polypeptide partners with repetitive sequences. In addition, GHXTEN fusion proteins provide significant advantages over chemical conjugates, such as pegylated constructs, notably the fact that recombinant GHXTEN fusion proteins can be made in bacterial cell expression systems, which can reduce time and cost at both the research and development and manufacturing stages of a product, as well as result in a more homogeneous, defined product with less toxicity for both the product and metabolites of the GHXTEN compared to pegylated conjugates.


As therapeutic agents, the GHXTEN possesses a number of advantages over therapeutics not comprising XTEN including one or more of the following non-limiting exemplary enhance properties; increased solubility, increased thermal stability, reduced immunogenicity, increased apparent molecular weight, reduced renal clearance, reduced proteolysis, reduced metabolism, enhanced therapeutic efficiency, a lower effective therapeutic dose, increased bioavailability, increased time between dosages capable of maintain blood levels within the therapeutic window for the GH, a “tailored” rate of absorption, enhanced lyophilization stability, enhanced serum/plasma stability, increased terminal half-life, increased solubility in blood stream, decreased binding by neutralizing antibodies, decreased receptor-mediated clearance, reduced side effects, retention of receptor/ligand binding affinity or receptor/ligand activation, stability to degradation, stability to freeze-thaw, stability to proteases, stability to ubiquitination, ease of administration, compatibility with other pharmaceutical excipients or carriers, persistence in the subject, increased stability in storage (e.g., increased shelf-life), reduced toxicity in an organism or environment and the like. The net effect of the enhanced properties is that the GHXTEN results in enhanced therapeutic and/or biologic effect or improved patient compliance when administered to a subject with a growth hormone-related disease or disorder.


Specific assays and methods for measuring the physical and structural properties of expressed proteins are known in the art, including methods for determining properties such as protein aggregation, solubility, secondary and tertiary structure, melting properties, contamination and water content, etc. Such methods include analytical centrifugation, EPR, HPLC-ion exchange, HPLC-size exclusion, HPLC-reverse phase, light scattering, capillary electrophoresis, circular dichroism, differential scanning calorimetry, fluorescence, HPLC-ion exchange, HPLC-size exclusion, IR, NMR, Raman spectroscopy, refractometry, and UV/Visible spectroscopy. Additional methods are disclosed in Arnau et al, Prot Expr and Purif (2006) 48, 1-13. Application of these methods to the invention would be within the grasp of a person skilled in the art.


In a particular feature of the invention, XTEN as a fusion partner increases the solubility of the GH payload, particularly in the expression of GH, which is typically expressed as insoluble inclusion bodies in transformed host cells, such as E. coli (see, e.g., Singh, S. M., et al. (2005) J Biosci Bioeng, 99: 303; Patra, A. K., et al. (2000) Protein Expr Purif, 18: 182). Accordingly, where enhancement of the pharmaceutical or physicochemical properties of the GH is desirable, such as the degree of aqueous solubility or stability, the length and/or the motif family composition of the first and the second XTEN sequences of the first and the second fusion protein may each be selected to confer a different degree of solubility and/or stability on the respective fusion proteins such that the overall pharmaceutical properties of the GHXTEN composition are enhanced. The GHXTEN fusion proteins can be constructed and assayed, using methods described herein, to confirm the physicochemical properties and the XTEN adjusted, as needed, to result in the desired properties. In one embodiment, the XTEN sequence of the GHXTEN is selected such that the fusion protein has an aqueous solubility that is within at least about 25% greater compared to a GH not linked to the fusion protein, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 75%, or at least about 100%, or at least about 200%, or at least about 300%, or at least about 400%, or at least about 500%, or at least about 1000% greater than the corresponding GH not linked to the fusion protein.


The invention provides methods to produce and recover expressed GHXTEN from a host cell with enhanced solubility and ease of recovery compared to GH not linked to XTEN. In some embodiments, the method includes the steps of transforming a prokaryotic host cell (e.g, E. coli) with a polynucleotide encoding a GHXTEN with one or more XTEN components of cumulative sequence length greater than about 800, or greater than about 900, or greater than about 1000, or greater than about 1100 amino acid residues, expressing the GHXTEN fusion protein in the host cell, lysing the host cell to recover cytoplasmic contents, and acidifying the host cell cytoplasmic contents wherein the GH can remain in soluble form while the majority of host cell proteins are precipitated to insoluble form. In one embodiment of the foregoing, the post-expression crude host cell lysates can be acidified to a pH of less than about 5.0, or to a pH of less than about 4.7, or to a pH of less than about 4.5, or to a pH of less than about 4.2 and greater than about 50%, or about 60%, or about 70%, or about 80% or more of the expressed GH can be recovered in soluble form. In a feature of the foregoing embodiment, enriched GHXTEN can be separated from precipitated from host cell protein contaminants by centrifugation of the acidified lysate, a reflection of the increased solubility imparted to the GH by fusion to the XTEN carrier. In the embodiments hereinabove described in this paragraph, the XTEN of the GHXTEN fusion proteins can have at least about 80% sequence identity, or about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%, to about 100% sequence identity to one or more XTEN selected from Table 3 and the GH can have at least about 80% sequence identity, or about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%, or 100% sequence identity to a GH selected from Table 1 and the GHXTEN components can be in an N- to C-terminus configuration selected from Table 5.


In one embodiment, the invention provides GHXTEN compositions and methods to produce the compositions that can maintain the GH component within a therapeutic window for a greater period of time compared to comparable dosages of the corresponding GH not linked to XTEN. It will be understood in the art that a “comparable dosage” of GHXTEN fusion protein would represent a greater weight of agent but would have the same approximate mole-equivalents of GH in the dose of the fusion protein and/or would have the same approximate molar concentration relative to the GH. The method to produce the compositions that can maintain the GH component within a therapeutic window includes the steps of selecting the XTEN appropriate for conjugation to a GH to provide the desired pharmacokinetic properties in view of a given dose and dose regiment, followed by assays to verify the pharmacokinetic properties, the activity of the GHXTEN fusion protein, and the safety of the administered composition. By the methods, GHXTEN can be produced that enables increased efficacy of the administered composition by maintaining the circulating concentrations of the GH within the therapeutic window for an enhanced period of time. As used herein, “therapeutic window” means that the amount of drug or biologic as a blood or plasma concentration range, which provides efficacy or a desired pharmacologic effect over time for the disease or condition without unacceptable toxicity, i.e. the range of the circulating blood concentrations between the minimal amount to achieve any positive therapeutic effect and the maximum amount which results in a response that is the response immediately before toxicity to the subject (at a higher dose or concentration). Additionally, therapeutic window generally encompasses an aspect of time; the maximum and minimum concentration that results in a desired pharmacologic effect over time that does not result in unacceptable toxicity or adverse events. A dosed composition that stays within the therapeutic window for the subject could also be said to be within the “safety range.”


The characteristics of GHXTEN compositions of the invention, including functional characteristics or biologic and pharmacologic activity and parameters that result, are determined by any suitable screening assay known in the art for measuring the desired characteristic. The invention provides methods to assay the GHXTEN fusion proteins of differing composition or configuration in order to provide GHXTEN with the desired degree of biologic and/or therapeutic activity, as well as safety profile. Specific in vivo and ex vivo biological assays are used to assess the activity of each configured GHXTEN and/or GH component to be incorporated into GHXTEN, including but not limited to the assays of the Examples, those assays of Table 34, as well as the following assays or other such assays known in the art for assaying the properties and effects of GH. Assays can be conducted that allow determination of binding characteristics of the GHXTEN for GH receptors or a ligand, including binding constant (Kd), EC50 values, as well as their half-life of dissociation of the ligand-receptor complex (T1/2). Binding affinity can be measured, for example, by a competition-type binding assay that detects changes in the ability to specifically bind to a receptor or ligand (see, e.g., Examples). Additionally, techniques such as flow cytometry or surface plasmon resonance can be used to detect binding events. The assays may comprise soluble receptor molecules, or may determine the binding to cell-expressed receptors. Such assays may include cell-based assays, including assays for proliferation, cell death, apoptosis and cell migration. Other possible assays may determine receptor binding of expressed polypeptides, wherein the assay may comprise soluble receptor molecules, or may determine the binding to cell-expressed receptors. The binding affinity of a GHXTEN for the target receptors or ligands of the corresponding GH can be assayed using binding or competitive binding assays, such as Biacore assays with chip-bound receptors or binding proteins or ELISA assays, as described in U.S. Pat. No. 5,534,617, assays described in the Examples herein, radio-receptor assays, or other assays known in the art. In addition, GH sequence variants (assayed as single components or as GHXTEN fusion proteins) can be compared to the native GH using a competitive ELISA binding assay to determine whether they have the same binding specificity and affinity as the native GH, or some fraction thereof such that they are suitable for inclusion in GHXTEN. Functional assays can include the increase of IGF-1 secretion and/or generation within target cells as a result of exposure to GHXTEN, and/or the resulting stimulatory effects of IGF-1 on osteoblast and chondrocyte activity to promote bone growth; all are suitable parameters to assess the activity of GH for inclusion in the GHXTEN fusion protein or the resulting GHXTEN. In addition, human growth hormone (hGH) is known to play a role in somatic growth through its effects on the metabolism of proteins, carbohydrates and lipids, as well as the stimulation of the production of blood cells in vitro (Derfalvi et al., 1998; Merchav et al; 1988), to increase numbers of erythrocytes and hemoglobin content in blood (Valerio et al., 1997; Vihervuori et al., 1996), as wells as the enhancement of proliferation of and Ig production in plasma cell lines (Kimata and Yoshida, 1994), the stimulation of CDC cell counts and, to a lesser extent CD4+ cell counts (Geffner, 1997). Parameters that can be measured chronically include velocity of growth, physical maturation, and comparative bone rate of growth. All of the foregoing can be used to assess the activity of GH components to be incorporated into GHXTEN and the resulting GHXTEN.


Dose optimization is important for all drugs, especially for those with a narrow therapeutic window. For example, a standardized single dose of GH for all patients presenting with a diverse symptoms or anbnormal clinical parameters may not always be effective. A consideration of these factors is well within the purview of the ordinarily skilled clinician for the purpose of determining the therapeutically or pharmacologically effective amount of the GHXTEN, versus that amount that would result in unacceptable toxicity and place it outside of the safety range, or insufficient potency such that clinical improvement is not achieved.


In many cases, the therapeutic window for GH in subjects of different ages or degree of disease have been established and are available in published literature or are stated on the drug label for approved products containing the GH. In other cases, the therapeutic window can be established for new compositions, including those GHXTEN of the disclosure. The methods for establishing the therapeutic window for a given composition are known to those of skill in the art (see, e.g., Goodman & Gilman's The Pharmacological Basis of Therapeutics, 11th Edition, McGraw-Hill (2005)). For example, by using dose-escalation studies in subjects with the target disease or disorder to determine efficacy or a desirable pharmacologic effect, appearance of adverse events, and determination of circulating blood levels, the therapeutic window for a given subject or population of subjects can be determined for a given drug or biologic, or combinations of biologics or drugs. The dose escalation studies can evaluate the activity of a GHXTEN through metabolic studies in a subject or group of subjects that monitor physiological or biochemical parameters, as known in the art or as described herein for one or more parameters associated with the metabolic disease or disorder, or clinical parameters associated with a beneficial outcome for the particular indication, together with observations and/or measured parameters to determine the no effect dose, adverse events, maximum tolerated dose and the like, together with measurement of pharmacokinetic parameters that establish the determined or derived circulating blood levels. The results can then be correlated with the dose administered and the blood concentrations of the therapeutic that are coincident with the foregoing determined parameters or effect levels. By these methods, a range of doses and blood concentrations can be correlated to the minimum effective dose as well as the maximum dose and blood concentration at which a desired effect occurs and above which toxicity occurs, thereby establishing the therapeutic window for the dosed therapeutic. Blood concentrations of the fusion protein (or as measured by the GH component) above the maximum would be considered outside the therapeutic window or safety range. Thus, by the foregoing methods, a Cmin blood level would be established, below which the GHXTEN fusion protein would not have the desired pharmacologic effect, and a Cmax blood level would be established that would represent the highest circulating concentration before reaching a concentration that would elicit unacceptable side effects, toxicity or adverse events, placing it outside the safety range for the GHXTEN. With such concentrations established, the frequency of dosing and the dosage can be further refined by measurement of the Cmax and Cmin to provide the appropriate dose and dose frequency to keep the fusion protein(s) within the therapeutic window. One of skill in the art can, by the means disclosed herein or by other methods known in the art, confirm that the administered GHXTEN remains in the therapeutic window for the desired interval or requires adjustment in dose or length or sequence of XTEN. Further, the determination of the appropriate dose and dose frequency to keep the GHXTEN within the therapeutic window establishes the therapeutically effective dose regimen; the schedule for administration of multiple consecutive doses using a therapeutically effective dose of the fusion protein to a subject in need thereof resulting in consecutive Cmax peaks and/or Cmin troughs that remain within the therapeutic window and results in an improvement in at least one measured parameter relevant for the target disease, disorder or condition. In some cases, the GHXTEN administered at an appropriate dose to a subject results in blood concentrations of the GHXTEN fusion protein that remains within the therapeutic window for a period at least about two-fold longer compared to the corresponding GH not linked to XTEN and administered at a comparable dose; alternatively at least about three-fold longer; alternatively at least about four-fold longer; alternatively at least about five-fold longer; alternatively at least about six-fold longer; alternatively at least about seven-fold longer; alternatively at least about eight-fold longer; alternatively at least about nine-fold longer or at least about ten-fold longer or greater compared to the corresponding GH not linked to XTEN and administered at a comparable dose. As used herein, an “appropriate dose” means a dose of a drug or biologic that, when administered to a subject, would result in a desirable therapeutic or pharmacologic effect and a blood concentration within the therapeutic window.


In one embodiment, the GHXTEN administered at a therapeutically effective dose regimen results in a gain in time of at least about three-fold longer; alternatively at least about four-fold longer; alternatively at least about five-fold longer; alternatively at least about six-fold longer; alternatively at least about seven-fold longer; alternatively at least about eight-fold longer; alternatively at least about nine-fold longer or at least about ten-fold longer between at least two consecutive Cmax peaks and/or Cmin troughs for blood levels of the fusion protein compared to the corresponding biologically active protein of the fusion protein not linked to the fusion protein and administered at a comparable dose regimen to a subject. In another embodiment, the GHXTEN administered at a therapeutically effective dose regimen results in a comparable improvement in one, or two, or three or more measured parameter using less frequent dosing or a lower total dosage in moles of the fusion protein of the pharmaceutical composition compared to the corresponding biologically active protein component(s) not linked to the fusion protein and administered to a subject using a therapeutically effective dose regimen for the GH. The measured parameters include any of the clinical, biochemical, or physiological parameters disclosed herein, or others known in the art for assessing subjects with growth hormone-related disorders.


The invention provides isolated GHXTEN in which the binding affinity for GH target receptors or ligands by the GHXTEN can be at least about 10%, or at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90%, or at least about 95%, or at least about 99%, or at least about 100% or more of the affinity of a native GH not bound to XTEN for the target receptor or ligand. In some cases, the binding affinity IQ between the subject GHXTEN and a native receptor or ligand of the GHXTEN is at least about 10−4M, alternatively at least about 10−5M, alternatively at least about 10−6M, or at least about 10−7M, or at least about 10−8 M, or at least about 10−9 M of the affinity between the GHXTEN and a native receptor or ligand.


In other embodiments, the invention provides isolated GHXTEN fusion proteins specifically designed to have reduced binding affinity to the GH receptor. In one embodiments, such as fusion proteins comprising an XTEN fused to the C-terminus of the GH 1 about 97% sequence identity, or at least about 99% sequence identity to GH fusion proteins selected from AE912-hGH-AE144, AE912-hGH-AF144, AE912-hGH-AE288, AM923-hGH-AE144, AM923-hGH-AF144, AM923-hGH-AE288, and the sequences of Tables 36-37.


In some embodiments, the GHXTEN fusion proteins of the invention retain at least about 0.05%, or about 0.1%, or about 1%, or about 10%, or about 20%, or about 30%, or about 40%, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or about 95%, or about 98%, or about 99% percent of the biological activity of the corresponding GH not linked to the fusion protein with regard to an in vitro biologic activity or pharmacologic effect known or associated with the use of the native GH in the treatment and prevention of growth hormone-related diseases, disortder and conditions. Non-limiting examples of activities or pharmacologic effects that can be assayed to assess the retained activity of the GHXTEN fusion proteins include signal transduction markers in cells with GH receptors, elicited IGF-1 concentrations, elicited IGFBP3 concentrations, changes in height velocity, lean body mass, total body fat, trunk fat, parameters associated with insulin resistance syndrome, measurement of division and multiplication rates of chondrocytes, changes in bone density, and bone growth (e.g. increase in epiphyseal plate width). In some embodiments, the activity of the GH component is manifest by the intact GHXTEN fusion protein, while in other cases the activity of the GH component would be primarily manifested upon cleavage and release of the GH from the fusion protein by action of a protease that acts on a cleavage sequence incorporated into the GHXTEN fusion protein. In the foregoing, the GHXTEN is designed to reduce the binding affinity of the GH component for the receptor or ligand when linked to the XTEN but have restored or increased affinity when released from XTEN through the cleavage of cleavage sequence(s) incorporated into the GHXTEN sequence, as described more fully above.


In other cases, the GHXTEN can be designed to reduce the binding affinity of the GH component to the GH receptor to increase the terminal half-life of GHXTEN administered to a subject by reducing receptor-mediated clearance; e.g., by adding an XTEN to the C-terminus of the GH component of the fusion protein. In other cases, the GHXTEN are designed to reduce the binding affinity of the GH component to the GH receptor to reduce toxicity or side effects due to the administered composition.


Accordingly, the invention provides a method for increasing the terminal half-life of a GHXTEN by producing a single-chain fusion protein construct with a specific N- to C-terminus configuration of the components comprising at least a first GH and a first and a second XTEN, wherein the fusion protein in a first N- to C-terminus configuration of the GH and XTEN components has reduced receptor-mediated clearance (RMC) and a corresponding increase in terminal half-life compared to a GHXTEN in a second N- to C-terminus configuration. In one embodiment of the foregoing, the GHXTEN is configured, N- to C-terminus as XTEN-GH-XTEN, which has reduced receptor binding compared to a GHXTEN configures, N- to C-terminus XTEN-GH. In another embodiment of the foregoing, the GHXTEN is configured GH-XTEN. In the foregoing embodiments, the two XTEN molecules can be identical or they can be of a different sequence composition or length. Non-limiting examples of the foregoing embodiment with two XTEN linked to a single GH include the constructs AE912-hGH-AE144, AE912-hGH-AE288, AE864-hGH-AE144, AM923-hGH-AE144, and AM923-hGH-AE288. The invention contemplates other such constructs in which a GH from Table 1 and XTEN from Table 3 are substituted for the respective components of the foregoing examples, and are produced, for example, in a configuration from Table 5 such that the construct has reduced receptor mediated clearance compared to an alternative configuration of the respective components. In some embodiments, the foregoing method for increasing the terminal half-life provides configured GHXTEN that can result in an increase in the terminal half-life of at least about 30%, or about 50%, or about 75%, or about 100%, or about 150%, or about 200%, or about 300%, or about 400% or more compared to the half-life of a GHXTEN in a second configuration where receptor binding is not reduced. The invention takes advantage of the fact that certain ligands wherein reduced binding affinity to a receptor, either as a result of a decreased on-rate or an increased off-rate, may be effected by the obstruction of either the N- or C-terminus (as shown in FIG. 3), and using that terminus as the linkage to another polypeptide of the composition, whether another molecule of a GH, an XTEN, or a spacer sequence results in the reduced binding affinity. The choice of the particular configuration of the GHXTEN fusion protein reduces the degree of binding affinity to the receptor such that a reduced rate of receptor-mediated clearance is achieved. Generally, activation of the receptor is coupled to RMC such that binding of a polypeptide to its receptor without activation does not lead to RMC, while activation of the receptor leads to RMC. However, in some cases, particularly where the ligand has an increased off rate, the ligand may nevertheless be able to bind sufficiently to initiate cell signaling without triggering receptor mediated clearance, with the net result that the GHXTEN remains bioavailable. In such cases, the configured GHXTEN has an increased half-life compared to those configurations that lead to a higher degree of RMC.


In cases where a reduction in binding affinity to the growth hormone receptor is desired in order to reduce receptor-mediated clearance but retention of at least a portion of the biological activity is also desired, sufficient binding affinity to obtain the desired receptor activation must nevertheless be maintained e.g., by initiation of signal transduction. Thus, in one embodiment, the invention provides a GHXTEN configured such that the binding affinity of the GHXTEN for a target receptor is in the range of about 0.01%-40%, or about 0.01%-30%, or about 0.01%-20% of the binding affinity compared to a corresponding GHXTEN in a configuration wherein the binding affinity is not reduced. The binding affinity of the configured BXTEN is thus preferably reduced by at least about 60%, or at least about 70%, or at least about 80%, or at least about 90%, or at least about 95%, or at least about 99%, or at least about 99.99% as compared to the binding affinity of a corresponding GHXTEN in a configuration wherein the binding affinity of the GH component to the target receptor is not reduced or compared to the GH not linked to the fusion protein, determined under comparable conditions. Expressed differently, the GH component of the configured GHXTEN has a binding affinity that is as small as about 0.01%, or at least about 0.1%, or at least about 1%, or at least about 2%, or at least about 3%, or at least about 4%, or at least about 5%, or at least about 10%, or at least about 20%, or at least about 30%, or at least 40% of that of the corresponding GH component of a GHXTEN in a configuration wherein the binding affinity of the GH component is not reduced. In the foregoing embodiments, the binding affinity of the configured GHXTEN for the target receptor are “substantially reduced” compared to a corresponding native GH or a GHXTEN with a configuration in which the binding affinity of the corresponding GH component is not reduced. Accordingly, the present invention provides compositions and methods to produce compositions with reduced RMC by configuring the GHXTEN, examples of which areprovided above, so as to be able to bind and activate a sufficient number of receptors to obtain a desired in vivo biological response yet avoid activation of more receptors than is required for obtaining such response. The increased half-life permits higher dosages and reduced frequency of dosing compared to GH not linked to XTEN or compared to GHXTEN configurations wherein the GH component retains sufficient biological or pharmacological activity to result in a composition with clinical efficacy maintained despite reduced dosing frequency.


VI). Uses of the Compositions of the Present Invention


In another aspect, the invention provides a method for achieving a beneficial effect in a disease, disorder or condition mediated by GH. The present invention addresses disadvantages and/or limitations of GH that have a relatively short terminal half-life and/or a narrow therapeutic window.


Most processes involved in growth of the body are regulated by multiple peptides and hormones, and such peptides and hormones, as well as analogues thereof, have found utility in the treatment of growth hormone-related diseases, disorders and conditions. However, the use of commercially-avaiable growth hormones, has met with less than optimal success in the management of subjects afflicted with such diseases, disorders and conditions. In particular, dose optimization and frequency of dosing is important for peptide and hormone biologics used in the treatment of growth hormone-related diseases and disorders. The fact that growth hormone has a short half-life, necessitates frequent dosing in order to achieve clinical benefit, which results in difficulties in the management of such patients.


In one embodiment, the invention provides a method for achieving a beneficial affect in a subject with a growth hormone-related disease, disorder or condition comprising the step of administering to the subject a therapeutically- or prophylactically-effective amount of a GHXTEN wherein said administration results in the improvement of one or more biochemical or physiological parameters or clinical endpoints associated with a growth hormone-related disease, disorder or condition. The effective amount produces a beneficial effect in helping to treat (e.g., cure or reduce the severity) or prevent (e.g., reduce the likelihood of onset or severity) a growth hormone-related disease, disorder or condition. In some cases, the method for achieving a beneficial effect includes administering a therapeutically effective amount of a GHXTEN fusion protein composition to treat a subject with a growth hormone-related disease, disorder, or condition, including, but not limited to, congenital or acquired GH deficiency in adults and children, Turner's Syndrome, Prader-Willi Syndrome, chronic renal failure, intrauterine growth retardation, idiopathic short stature, AIDS wasting, obesity, multiple sclerosis, aging, fibromyalgia, Crohn's disease, ulcerative colitis, muscular dystrophy, low muscle mass (e.g. bodybuilding), low bone density, or any other indication for which GH can be utilized (but for which endogenous growth hormone levels in a subject are not necessarily deficient).


In another embodiment, the invention provides a method of stimulating IGF-1 production in individuals with GH deficiency. The method comprises the step of administering therapeutically effective amount of GHXTEN to a subject that results in the increased blood levels and/or duration in increased blood levels of IGF-1 compared to a subject receiving a GH not linked to an XTEN and administered at a comparable dose. In some cases, the increase in IGF-1 is at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 75%, or at least about 100%, or at least about 200%, or at least about 300%. In another embodiment, the invention provides a method of stimulating the division and numbers of chrondrocytes. The method comprises the step of administering therapeutically effective amount of GHXTEN that results in the increased production of chrondrocytes by at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 75%, or at least about 100%, or at least about 200%, or at least about 300% compared to a subject receiving a GH not linked to an XTEN and administered at a comparable dose. In another embodiment, the invention provides a method comprising the step of administering therapeutically effective amount of GHXTEN that results in increased bone growth as measured by increase in epiphyseal plate width by at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 75%, or at least about 100%, or at least about 200%, or at least about 300% compared to a subject receiving a GH not linked to an XTEN and administered at a comparable dose.


As a result of the enhanced PK parameters of GHXTEN, as described herein, the GH is administered using longer intervals between doses compared to the corresponding GH not linked to XTEN to prevent, treat, alleviate, reverse or ameliorate symptoms or clinical abnormalities of the growth hormone-related disease, disorder or condition or prolong the survival of the subject being treated.


The methods of the invention includes administration of consecutive doses of a therapeutically effective amount of the GHXTEN for a period of time sufficient to achieve and/or maintain the desired parameter or clinical effect, and such consecutive doses of a therapeutically effective amount establishes the therapeutically effective dose regimen for the GHXTEN; i.e., the schedule for consecutively administered doses of the fusion protein composition, wherein the doses are given in therapeutically effective amounts to result in a sustained beneficial effect on any clinical sign or symptom, aspect, measured parameter or characteristic of a metabolic disease state or condition, including, but not limited to, those described herein. In one embodiment, the method comprises administering a therapeutically-effective amount of a pharmaceutical composition comprising a GHXTEN fusion protein composition comprising a GH linked to an XTEN sequence(s) and at least one pharmaceutically acceptable carrier to a subject in need thereof that results in greater improvement in at least one parameter, physiologic condition, or clinical outcome mediated by the GH component(s) (non-limiting examples of which are described above) compared to the effect mediated by administration of a pharmaceutical composition comprising a GH not linked to XTEN and administered at a comparable dose. In one embodiment, the pharmaceutical composition is administered at a therapeutically effective dose. In another embodiment, the pharmaceutical composition is administered using multiple consecutive doses using a therapeutically effective dose regimen (as defined herein) for the length of the dosing period.


A therapeutically effective amount of the GHXTEN varies according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the antibody or antibody portion to elicit a desired response in the individual. A therapeutically effective amount is also one in which any toxic or detrimental effects of the GHXTEN are outweighed by the therapeutically beneficial effects. A prophylactically effective amount refers to an amount of GHXTEN required for the period of time necessary to achieve the desired prophylactic result.


For the inventive methods, longer acting GHXTEN compositions are preferred, so as to improve patient convenience, to increase the interval between doses and to reduce the amount of drug required to achieve a sustained effect. In one embodiment, a method of treatment comprises administration of a therapeutically effective dose of a GHXTEN to a subject in need thereof that results in a gain in time spent within a therapeutic window established for the fusion protein of the composition compared to the corresponding GH component(s) not linked to the fusion protein and administered at a comparable dose to a subject. In some cases, the gain in time spent within the therapeutic window is at least about three-fold, or at least about four-fold, or at least about five-fold, or at least about six-fold, or at least about eight-fold, or at least about 10-fold, or at least about 20-fold, or at least about 40-fold, or at least about 80-fold, or at least about 100-fold longer, compared to the corresponding GH component not linked to the fusion protein and administered at a comparable dose to a subject. The methods further provide that administration of multiple consecutive doses of a GHXTEN administered using a therapeutically effective dose regimen to a subject in need thereof results in a gain in time between consecutive Cmax peaks and/or Cmin troughs for blood levels of the fusion protein compared to the corresponding GH not linked to the fusion protein and administered using a dose regimen established for that GH. In the foregoing embodiment, the gain in time spent between consecutive Cmax peaks and/or Cmin troughs is at least about three-fold, or at least about four-fold, or at least about five-fold, or at least about six-fold, or at least about eight-fold, or at least about 10-fold, or at least about 20-fold, or at least about 40-fold or at least about 80-fold, or at least about 100-fold longer, compared to the corresponding GH component not linked to the fusion protein and administered using a dose regimen established for that GH. In the embodiments hereinabove described in this paragraph the administration of the fusion protein results in an improvement in at least one of the parameters (disclosed herein as being useful for assessing the subject diseases, conditions or disorders) using a lower unit dose in moles of fusion protein compared to the corresponding GH component not linked to the fusion protein and administered at a comparable unit dose or dose regimen to a subject.


The method of treatment comprises administration of a GHXTEN using a therapeutically effective dose regimen to effect improvements in one or more parameters associated with growth hormone diseases, disorders or conditions. In some embodiments, administration of the GHXTEN to a subject results in an improvement in one or more of the biochemical, physiologic, or clinical parameters that is of greater magnitude than that of the corresponding GH component not linked to XTEN, determined using the same assay or based on a measured clinical parameter. In other embodiments, administration of the GHXTEN to a subject using a therapeutically effective dose regimen results in activity in one or more of the biochemical, physiologic, or clinical parameters that is of longer duration than the activity of one of the single GH components not linked to XTEN, determined using that same assay or based on a measured clinical parameter. In one embodiment of the foregoing, the administration of the GHXTEN to a subject using a therapeutically effective dose regimen results in an improvement in peak concentrations and area under the curve of blood IGF-1 levels of at least about 10%, or about 20%, or about 30%, or about 40%, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or about 100% or more in the subject compared to a comparable dose of GH not linked to XTEN administered to a subject. In another embodiment of the foregoing, the administration of the GHXTEN to a subject using a therapeutically effective dose regimen results in increased weight gain in the subject of at least about 10%, or about 20%, or about 30%, or about 40%, or about 50% or more compared to a comparable dose regimen of GH not linked to XTEN administered to a subject.


The invention further contemplates that GHXTEN used in accordance with the methods provided herein is administered in conjunction with other treatment methods and pharmaceutical compositions useful for treating growth hormone-related diseases, disorders, and conditions, or conditions for which growth hormone is adjunctive therapy; e.g., insulin resistance and poor glycemic control. Such compositions, include for example, DPP-IV inhibitors, insulin, insulin analogues, PPAR gamma agonists, dual-acting PPAR agonists, GLP-1 agonists or analogues, PTP1B inhibitors, SGLT inhibitors, insulin secretagogues, RXR agonists, glycogen synthase kinase-3 inhibitors, insulin sensitizers, immune modulators, beta-3 adrenergic receptor agonists, Pan-PPAR agonists, 11beta-HSD1 inhibitors, biguanides, alpha-glucosidase inhibitors, meglitinides, thiazolidinediones, sulfonylureas and other diabetes medicants known in the art, or anti-hypertensive drugs, calcium channel blockers, and related products. In some embodiments, the administration of a GHXTEN permits use of lower dosages of the co-administered pharmaceutical composition to achieve a comparable clinical effect or measured parameter for the disease, disorder or condition in the subject.


In another aspect, the invention provides a method of designing the GHXTEN compositions with desired pharmacologic or pharmaceutical properties. The GHXTEN fusion proteins are designed and prepared with various objectives in mind (compared to the GH components not linked to the fusion protein), including improving the therapeutic efficacy for the treatment of growth hormone-related diseases, disorders, and conditions, enhancing the pharmacokinetic characteristics of the fusion proteins compared to the GH, lowering the dose or frequency of dosing required to achieve a pharmacologic effect, enhancing the pharmaceutical properties, and to enhance the ability of the GH components to remain within the therapeutic window for an extended period of time.


In general, the steps in the design and production of the fusion proteins and the inventive compositions, as illustrated in FIGS. 4-6, include: (1) the selection of GHs (e.g., native proteins, analogs or derivatives with activity) to treat the particular disease, disorder or condition; (2) selecting the XTEN that will confer the desired PK and physicochemical characteristics on the resulting GHXTEN (e.g., the administration of the composition to a subject results in the fusion protein being maintained within the therapeutic window for a greater period compared to GH not linked to XTEN); (3) establishing a desired N- to C-terminus configuration of the GHXTEN to achieve the desired efficacy or PK parameters; (4) establishing the design of the expression vector encoding the configured GHXTEN; (5) transforming a suitable host with the expression vector; and (6) expression and recovery of the resultant fusion protein. For those GHXTEN for which an increase in half-life (greater than 24 h) or an increased period of time spent within a therapeutic window is desired, the XTEN chosen for incorporation generally has at least about 500, or about 576, or about 864, or about 875, or about 912, or about 923 amino acid residues where a single XTEN is to be incorporated into the GHXTEN. In another embodiment, the GHXTEN comprises a first XTEN of the foregoing lengths, and a second XTEN of about 144, or about 288, or about 576, or about 864, or about 875, or about 912, or about 923 amino acid residues.


In other embodiments, where an increase in half-life is not required, but an increase in a pharmaceutical property (e.g., solubility) is desired, a GHXTEN is designed to include XTEN of shorter lengths. In some embodiments of the foregoing, the GHXTEN comprises a GH linked to an XTEN having at least about 24, or about 36, or about 48, or about 60, or about 72, or about 84, or about 96 amino acid residues, in which the solubility of the fusion protein under physiologic conditions is at least three-fold greater than the corresponding GH not linked to XTEN, or alternatively, at least four-fold, or five-fold, or six-fold, or seven-fold, or eight-fold, or nine-fold, or at least 10-fold, or at least 20-fold, or at least 30-fold, or at least 50-fold, or at least 60-fold or greater than GH not linked to XTEN. In one embodiment of the foregoing, the GH is human growth hormone.


In another aspect, the invention provides methods of making GHXTEN compositions to improve ease of manufacture, result in increased stability, increased water solubility, and/or ease of formulation, as compared to the native GH. In one embodiment, the invention includes a method of increasing the water solubility of a GH comprising the step of linking the GH to one or more XTEN such that a higher concentration in soluble form of the resulting GHXTEN can be achieved, under physiologic conditions, compared to the GH in an un-fused state. Factors that contribute to the property of XTEN to confer increased water solubility of GHs when incorporated into a fusion protein include the high solubility of the XTEN fusion partner and the low degree of self-aggregation between molecules of XTEN in solution. In some embodiments, the method results in a GHXTEN fusion protein wherein the water solubility is at least about 20%, or at least about 30% greater, or at least about 50% greater, or at least about 75% greater, or at least about 90% greater, or at least about 100% greater, or at least about 150% greater, or at least about 200% greater, or at least about 400% greater, or at least about 600% greater, or at least about 800% greater, or at least about 1000% greater, or at least about 2000% greater, or at least about 4000% greater, or at least about 6000% greater under physiologic conditions, compared to the un-fused GH.


In another embodiment, the invention includes a method of increasing the shelf-life of a GH comprising the step of linking the GH with one or more XTEN selected such that the shelf-life of the resulting GHXTEN is extended compared to the GH in an un-fused state. As used herein, shelf-life refers to the period of time over which the functional activity of a GH or GHXTEN that is in solution or in some other storage formulation remains stable without undue loss of activity. As used herein, “functional activity” refers to a pharmacologic effect or biological activity, such as the ability to bind a receptor or ligand, or an enzymatic activity, or to display one or more known functional activities associated with a GH, as known in the art. A GH that degrades or aggregates generally has reduced functional activity or reduced bioavailability compared to one that remains in solution. Factors that contribute to the ability of the method to extend the shelf life of GHs when incorporated into a fusion protein include increased water solubility, reduced self-aggregation in solution, and increased heat stability of the XTEN fusion partner. In particular, the low tendency of XTEN to aggregate facilitates methods of formulating pharmaceutical preparations containing higher drug concentrations of GHs, and the heat-stability of XTEN contributes to the property of GHXTEN fusion proteins to remain soluble and functionally active for extended periods. In one embodiment, the method results in GHXTEN fusion proteins with “prolonged” or “extended” shelf-life that exhibit greater activity relative to a standard that has been subjected to the same storage and handling conditions. The standard may be the un-fused full-length GH. In one embodiment, the method includes the step of formulating the isolated GHXTEN with one or more pharmaceutically acceptable excipients that enhance the ability of the XTEN to retain its unstructured conformation and for the GHXTEN to remain soluble in the formulation for a time that is greater than that of the corresponding un-fused GH. In one embodiment, the method comprises linking a GH to one or more XTEN to create a GHXTEN fusion protein results in a solution that retains greater than about 100% of the functional activity, or greater than about 105%, 110%, 120%, 130%, 150% or 200% of the functional activity of a standard when compared at a given time point and when subjected to the same storage and handling conditions as the standard, thereby increasing its shelf-life.


Shelf-life may also be assessed in terms of functional activity remaining after storage, normalized to functional activity when storage began. GHXTEN fusion proteins of the invention with prolonged or extended shelf-life as exhibited by prolonged or extended functional activity retains about 50% more functional activity, or about 60%, 70%, 80%, or 90% more of the functional activity of the equivalent GH not linked to XTEN when subjected to the same conditions for the same period of time. For example, a GHXTEN fusion protein of the invention comprising human growth hormone fused to one or more XTEN sequences retains about 80% or more of its original activity in solution for periods of up to 2 weeks, or 4 weeks, or 6 weeks or longer under various temperature conditions. In some embodiments, the GHXTEN retains at least about 50%, or about 60%, or at least about 70%, or at least about 80%, and most preferably at least about 90% or more of its original activity in solution when heated at 80° C. for 10 min. In other embodiments, the GHXTEN retains at least about 50%, preferably at least about 60%, or at least about 70%, or at least about 80%, or alternatively at least about 90% or more of its original activity in solution when heated or maintained at 37° C. for about 7 days. In another embodiment, GHXTEN fusion protein retains at least about 80% or more of its functional activity after exposure to a temperature of about 30° C. to about 70° C. over a period of time of about one hour to about 18 hours. In the foregoing embodiments hereinabove described in this paragraph, the retained activity of the GHXTEN is at least about two-fold, or at least about three-fold, or at least about four-fold, or at least about five-fold, or at least about six-fold greater at a given time point than that of the corresponding GH not linked to the fusion protein.


VII). The Nucleic Acids Sequences of the Invention


The present invention provides isolated polynucleic acids encoding GHXTEN chimeric fusion proteins and sequences complementary to polynucleic acid molecules encoding GHXTEN chimeric fusion proteins, including homologous variants thereof. In another aspect, the invention encompasses methods to produce polynucleic acids encoding GHXTEN chimeric fusion proteins and sequences complementary to polynucleic acid molecules encoding GHXTEN chimeric fusion protein, including homologous variants thereof. In general, and as illustrated in FIGS. 4-6, the methods of producing a polynucleotide sequence coding for a GHXTEN fusion protein and expressing the resulting gene product include assembling nucleotides encoding GH and XTEN, ligating the components in frame, incorporating the encoding gene into an expression vector appropriate for a host cell, transforming the appropriate host cell with the expression vector, and culturing the host cell under conditions causing or permitting the fusion protein to be expressed in the transformed host cell, thereby producing the biologically-active GHXTEN polypeptide, which is recovered as an isolated fusion protein by standard protein purification methods known in the art. Standard recombinant techniques in molecular biology is used to make the polynucleotides and expression vectors of the present invention.


In accordance with the invention, nucleic acid sequences that encode GHXTEN (or its complement) is used to generate recombinant DNA molecules that direct the expression of GHXTEN fusion proteins in appropriate host cells. Several cloning strategies are suitable for performing the present invention, many of which is used to generate a construct that comprises a gene coding for a fusion protein of the GHXTEN composition of the present invention, or its complement. In some embodiments, the cloning strategy is used to create a gene that encodes a monomeric GHXTEN that comprises at least a first GH and at least a first XTEN polypeptide, or their complement. In one embodiment of the foregoing, the gene comprises a sequence encoding a hGH or sequence variant. In other embodiments, the cloning strategy is used to create a gene that encodes a monomeric GHXTEN that comprises nucleotides encoding at least a first molecule of GH or its complement and a first and at least a second XTEN or their complement that is used to transform a host cell for expression of the fusion protein of the GHXTEN composition. In the foregoing embodiments hereinabove described in this paragraph, the genes can further comprise nucleotides encoding spacer sequences that also encodes cleavage sequence(s).


In designing a desired XTEN sequences, it was discovered that the non-repetitive nature of the XTEN of the inventive compositions is achieved despite use of a “building block” molecular approach in the creation of the XTEN-encoding sequences. This was achieved by the use of a library of polynucleotides encoding peptide sequence motifs, described above, that are then ligated and/or multimerized to create the genes encoding the XTEN sequences (see FIGS. 4 and 5 and Examples). Thus, while the XTEN(s) of the expressed fusion protein may consist of multiple units of as few as four different sequence motifs, because the motifs themselves consist of non-repetitive amino acid sequences, the overall XTEN sequence is rendered non-repetitive. Accordingly, in one embodiment, the XTEN-encoding polynucleotides comprise multiple polynucleotides that encode non-repetitive sequences, or motifs, operably linked in frame and in which the resulting expressed XTEN amino acid sequences are non-repetitive.


In one approach, a construct is first prepared containing the DNA sequence corresponding to GHXTEN fusion protein. DNA encoding the GH of the compositions is obtained from a cDNA library prepared using standard methods from tissue or isolated cells believed to possess GH mRNA and to express it at a detectable level. Libraries is screened with probes containing, for example, about 20 to 100 bases designed to identify the GH gene of interest by hybridization using conventional molecular biology techniques. The best candidates for probes are those that represent sequences that are highly homologous for human growth hormone, and should be of sufficient length and sufficiently unambiguous that false positives are minimized, but may be degenerate at one or more positions. If necessary, the coding sequence can be obtained using conventional primer extension procedures as described in Sambrook, et al., supra, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA. One can then use polymerase chain reaction (PCR) methodology to amplify the target DNA or RNA coding sequence to obtain sufficient material for the preparatin of the GHXTEN constructs containing the GH gene(s). Assays can then be conducted to confirm that hybridizing full-length genes are the desired GH gene(s). By these conventional methods, DNA can be conveniently obtained from a cDNA library prepared from such sources. The GH encoding gene(s) is also be obtained from a genomic library or created by standard synthetic procedures known in the art (e.g., automated nucleic acid synthesis using, for example one of the methods described in Engels et al. (Agnew. Chem. Int. Ed. Engl., 28:716-734 1989)), using DNA sequences obtained from publicly available databases, patents, or literature references. Such procedures are well known in the art and well described in the scientific and patent literature. For example, sequences can be obtained from Chemical Abstracts Services (CAS) Registry Numbers (published by the American Chemical Society) and/or GenBank Accession Numbers (e.g., Locus ID, NP_XXXXX, and XP_XXXXX) Model Protein identifiers available through the National Center for Biotechnology Information (NCBI) webpage, available on the world wide web at ncbi.nlm.nih.gov that correspond to entries in the CAS Registry or GenBank database that contain an amino acid sequence of the protein of interest or of a fragment or variant of the protein. For such sequence identifiers provided herein, the summary pages associated with each of these CAS and GenBank and GenSeq Accession Numbers as well as the cited journal publications (e.g., PubMed ID number (PMID)) are each incorporated by reference in their entireties, particularly with respect to the amino acid sequences described therein. In one embodiment, the GH encoding gene encodes a protein from any one of Table 1, or a fragment or variant thereof.


A gene or polynucleotide encoding the GH portion of the subject GHXTEN protein, in the case of an expressed fusion protein that comprises a single GH is then be cloned into a construct, which is a plasmid or other vector under control of appropriate transcription and translation sequences for high level protein expression in a biological system. In a later step, a second gene or polynucleotide coding for the XTEN is genetically fused to the nucleotides encoding the N- and/or C-terminus of the GH gene by cloning it into the construct adjacent and in frame with the gene(s) coding for the GH. This second step occurs through a ligation or multimerization step. In the foregoing embodiments hereinabove described in this paragraph, it is to be understood that the gene constructs that are created can alternatively be the complement of the respective genes that encode the respective fusion proteins.


The gene encoding for the XTEN can be made in one or more steps, either fully synthetically or by synthesis combined with enzymatic processes, such as restriction enzyme-mediated cloning, PCR and overlap extension, including methods more fully described in the Examples. The methods disclosed herein can be used, for example, to ligate short sequences of polynucleotides encoding XTEN into longer XTEN genes of a desired length and sequence. In one embodiment, the method ligates two or more codon-optimized oligonucleotides encoding XTEN motif or segment sequences of about 9 to 14 amino acids, or about 12 to 20 amino acids, or about 18 to 36 amino acids, or about 48 to about 144 amino acids, or about 144 to about 288 or longer, or any combination of the foregoing ranges of motif or segment lengths.


Alternatively, the disclosed method is used to multimerize XTEN-encoding sequences into longer sequences of a desired length; e.g., a gene encoding 36 amino acids of XTEN can be dimerized into a gene encoding 72 amino acids, then 144, then 288, etc. Even with multimerization, XTEN polypeptides can be constructed such that the XTEN-encoding gene has low or virtually no repetitiveness through design of the codons selected for the motifs of the shortest unit used, which can reduce recombination and increase stability of the encoding gene in the transformed host. Genes encoding XTEN with non-repetitive sequences is assembled from oligonucleotides using standard techniques of gene synthesis. The gene design can be performed using algorithms that optimize codon usage and amino acid composition. In one method of the invention, a library of relatively short XTEN-encoding polynucleotide constructs is created and then assembled, as illustrated in FIGS. 4 and 5. This can be a pure codon library such that each library member has the same amino acid sequence but many different coding sequences are possible. Such libraries can be assembled from partially randomized oligonucleotides and used to generate large libraries of XTEN segments comprising the sequence motifs. The randomization scheme can be optimized to control amino acid choices for each position as well as codon usage. Exemplary methods to achieve the foregoing are disclosed in the Examples.


Polynucleotide Libraries


In another aspect, the invention provides libraries of polynucleotides that encode XTEN sequences that is used to assemble genes that encode XTEN of a desired length and sequence.


In certain embodiments, the XTEN-encoding library constructs comprise polynucleotides that encode polypeptide segments of a fixed length. As an initial step, a library of oligonucleotides that encode motifs of 9-14 amino acid residues can be assembled. In a preferred embodiment, libraries of oligonucleotides that encode motifs of 12 amino acids are assembled.


The XTEN-encoding sequence segments can be dimerized or multimerized into longer encoding sequences. Dimerization or multimerization can be performed by ligation, overlap extension, PCR assembly or similar cloning techniques known in the art. This process of can be repeated multiple times until the resulting XTEN-encoding sequences have reached the organization of sequence and desired length, providing the XTEN-encoding genes. As will be appreciated, a library of polynucleotides that encodes, e.g., 12 amino acid motifs can be dimerized and/or ligated into a library of polynucleotides that encode 36 amino acids. Libraries encoding motifs of different lengths; e.g., 9-14 amino acid motifs leading to libraries encoding 27 to 42 amino acids are contemplated by the invention. In turn, the library of polynucleotides that encode 27 to 42 amino acids, and preferably 36 amino acids (as described in the Examples) can be serially dimerized into a library containing successively longer lengths of polynucleotides that encode XTEN sequences of a desired length for incorporation into the gene encoding the GHXTEN fusionprotein, as disclosed herein. In some embodiments, libraries are assembled of polynucleotides that encode amino acids that are limited to specific sequence XTEN families; e.g., AD, AE, AF, AG, AM, or AQ sequences of Table 2. In other embodiments, libraries comprise sequences that encode two or more of the motif family sequences from Table 2. The names and sequences of representative, non-limiting polynucleotide sequences of libraries that encode 36mers are presented in Tables 8-11, and the methods used to create them are described more fully in the Examples. In other embodiments, libraries that encode XTEN are constructed from segments of polynucleotide codons linked in a randomized sequence that encode amino acids wherein at least about 80%, or at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 97%, or at least about 98%, or at least about 99% of the codons are selected from the group consisting of condons for glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) amino acids. The libraries can be used, in turn, for serial dimerization or ligation to achieve polynucleotide sequence libraries that encode XTEN sequences, for example, of 48, 72, 144, 288, 576, 864, 875, 912, 923, 1318 amino acids, or up to a total length of about 3000 amino acids, as well as intermediate lengths, in which the encoded XTEN can have one or more of the properties disclosed herein, when expressed as a component of a GHXTEN fusion protein. In some cases, the polynucleotide library sequences may also include additional bases used as “sequencing islands,” described more fully below.



FIG. 5 is a schematic flowchart of representative, non-limiting steps in the assembly of a XTEN polynucleotide construct and a GHXTEN polynucleotide construct in the embodiments of the invention. Individual oligonucleotides 501 are annealed into sequence motifs 502 such as a 12 amino acid motif (“12-mer”), which is subsequently ligated with an oligo containing Bbsl, and KpnI restriction sites 503. Additional sequence motifs from a library are annealed to the 12-mer until the desired length of the XTEN gene 504 is achieved. The XTEN gene is cloned into a stuffer vector. The vector optionally encodes a Flag sequence 506 followed by a stuffer sequence that is flanked by BsaI, BbsI, and KpnI sites 507 and, in this case, a single GH gene (encoding hGH in this example) 508, resulting in the gene encoding a GHXTEN comprising a single GH 500. A non-exhaustive list of the XTEN names for polynucleotides encoding XTEN and precursor sequences is provided in Table 7.









TABLE 7







DNA sequences of XTEN and precursor sequences









XTEN
SEQ



Name
ID NO:
DNA Nucleotide Sequence





AE48
107
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAG




GAAGGTACCCCGGGTAGCGGTACTGCTTCTTCCTCT




CCAGGTAGCTCTACCCCTTCTGGTGCAACCGGCTCT




CCAGGTGCTTCTCCGGGCACCAGCTCTACCGGTTCT





AM48
108
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAG




GAAGGTGCATCCCCGGGCACCAGCTCTACCGGTTCT




CCAGGTAGCTCTACCCCGTCTGGTGCTACCGGCTCT




CCAGGTAGCTCTACCCCGTCTGGTGCTACTGGCTCT





AE144
109
GGTAGCGAACCGGCAACTTCCGGCTCTGAAACCCCA




GGTACTTCTGAAAGCGCTACTCCTGAGTCTGGCCCA




GGTAGCGAACCTGCTACCTCTGGCTCTGAAACCCCA




GGTAGCCCGGCAGGCTCTCCGACTTCCACCGAGGAA




GGTACCTCTACTGAACCTTCTGAGGGTAGCGCTCCA




GGTAGCGAACCGGCAACCTCTGGCTCTGAAACCCCA




GGTAGCGAACCTGCTACCTCCGGCTCTGAAACTCCA




GGTAGCGAACCGGCTACTTCCGGTTCTGAAACTCCA




GGTACCTCTACCGAACCTTCCGAAGGCAGCGCACCA




GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCA




GGTAGCGAACCGGCTACTTCTGGCTCTGAGACTCCA




GGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCA





AF144
110
GGTACTTCTACTCCGGAAAGCGGTTCCGCATCTCCA




GGTACTTCTCCTAGCGGTGAATCTTCTACTGCTCCA




GGTACCTCTCCTAGCGGCGAATCTTCTACTGCTCCA




GGTTCTACCAGCTCTACCGCTGAATCTCCTGGCCCA




GGTTCTACCAGCGAATCCCCGTCTGGCACCGCACCA




GGTTCTACTAGCTCTACCGCAGAATCTCCGGGTCCA




GGTACTTCCCCTAGCGGTGAATCTTCTACTGCTCCA




GGTACCTCTACTCCGGAAAGCGGCTCCGCATCTCCA




GGTTCTACTAGCTCTACTGCTGAATCTCCTGGTCCA




GGTACCTCCCCTAGCGGCGAATCTTCTACTGCTCCA




GGTACCTCTCCTAGCGGCGAATCTTCTACCGCTCCA




GGTACCTCCCCTAGCGGTGAATCTTCTACCGCACCA





AE288
111
GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA




GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA




GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA




GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA




GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA




GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA




GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA




GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA




GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA




GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA




GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA




GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA




GGTACTTCTACCGAACCTTCCGAGGGCAGCGCACCA




GGTACTTCTGAAAGCGCTACCCCTGAGTCCGGCCCA




GGTACTTCTGAAAGCGCTACTCCTGAATCCGGTCCA




GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA




GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA




GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA




GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA




GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA




GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA




GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA




GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA





AE576
112
GGTAGCCCGGCTGGCTCTCCTACCTCTACTGAGGAA




GGTACTTCTGAAAGCGCTACTCCTGAGTCTGGTCCA




GGTACCTCTACTGAACCGTCCGAAGGTAGCGCTCCA




GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA




GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA




GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA




GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA




GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA




GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA




GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA




GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA




GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA




GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




GGTACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCA




GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA




GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCA




GGTAGCGAACCGGCTACTTCTGGCTCTGAGACTCCA




GGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCA




GGTACTTCTACTGAACCGTCTGAAGGTAGCGCACCA




GGTACTTCTGAAAGCGCAACCCCGGAATCCGGCCCA




GGTACCTCTGAAAGCGCAACCCCGGAGTCCGGCCCA




GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA




GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA




GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA




GGTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCA




GGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCA




GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA




GGTACTTCTACCGAACCGTCCGAAGGCAGCGCTCCA




GGTACCTCTACTGAACCTTCCGAGGGCAGCGCTCCA




GGTACCTCTACCGAACCTTCTGAAGGTAGCGCACCA




GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA




GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA




GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA




GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA




GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA




GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA




GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA




GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA




GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA




GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA




GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA




GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA




GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA





AF576
113
GGTTCTACTAGCTCTACCGCTGAATCTCCTGGCCCA




GGTTCCACTAGCTCTACCGCAGAATCTCCGGGCCCA




GGTTCTACTAGCGAATCCCCTTCTGGTACCGCTCCA




GGTTCTACTAGCTCTACCGCTGAATCTCCGGGTCCA




GGTTCTACCAGCTCTACTGCAGAATCTCCTGGCCCA




GGTACTTCTACTCCGGAAAGCGGTTCCGCTTCTCCA




GGTTCTACCAGCGAATCTCCTTCTGGCACCGCTCCA




GGTACCTCTCCTAGCGGCGAATCTTCTACCGCTCCA




GGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCA




GGTTCTACCAGCGAATCTCCTTCTGGCACCGCTCCA




GGTACCTCTCCTAGCGGCGAATCTTCTACCGCTCCA




GGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCA




GGTTCTACCAGCGAATCTCCTTCTGGCACCGCTCCA




GGTACCTCTCCTAGCGGCGAATCTTCTACCGCTCCA




GGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCA




GGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCA




GGTTCTACCAGCGAATCTCCGTCTGGCACTGCACCA




GGTACCTCTACCCCTGAAAGCGGTTCCGCTTCTCCA




GGTTCTACTAGCGAATCTCCTTCTGGTACCGCTCCA




GGTACTTCTACCCCTGAAAGCGGCTCCGCTTCTCCA




GGTTCCACTAGCTCTACCGCTGAATCTCCGGGTCCA




GGTTCTACTAGCTCTACTGCAGAATCTCCTGGCCCA




GGTACCTCTACTCCGGAAAGCGGCTCTGCATCTCCA




GGTACTTCTACCCCTGAAAGCGGTTCTGCATCTCCA




GGTTCTACTAGCGAATCCCCGTCTGGTACCGCACCA




GGTACTTCTACCCCGGAAAGCGGCTCTGCTTCTCCA




GGTACTTCTACCCCGGAAAGCGGCTCCGCATCTCCA




GGTTCTACTAGCGAATCTCCTTCTGGTACCGCTCCA




GGTTCTACCAGCGAATCCCCGTCTGGTACTGCTCCA




GGTTCTACCAGCGAATCTCCTTCTGGTACTGCACCA




GGTTCTACTAGCTCTACTGCAGAATCTCCTGGCCCA




GGTACCTCTACTCCGGAAAGCGGCTCTGCATCTCCA




GGTACTTCTACCCCTGAAAGCGGTTCTGCATCTCCA




GGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCA




GGTTCTACCAGCGAATCTCCGTCTGGCACTGCACCA




GGTACCTCTACCCCTGAAAGCGGTTCCGCTTCTCCA




GGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCA




GGTTCTACCAGCGAATCTCCGTCTGGCACTGCACCA




GGTACCTCTACCCCTGAAAGCGGTTCCGCTTCTCCA




GGTACTTCTCCGAGCGGTGAATCTTCTACCGCACCA




GGTTCTACTAGCTCTACCGCTGAATCTCCGGGCCCA




GGTACTTCTCCGAGCGGTGAATCTTCTACTGCTCCA




GGTTCCACTAGCTCTACTGCTGAATCTCCTGGCCCA




GGTACTTCTACTCCGGAAAGCGGTTCCGCTTCTCCA




GGTTCTACTAGCGAATCTCCGTCTGGCACCGCACCA




GGTTCTACTAGCTCTACTGCAGAATCTCCTGGCCCA




GGTACCTCTACTCCGGAAAGCGGCTCTGCATCTCCA




GGTACTTCTACCCCTGAAAGCGGTTCTGCATCTCCA





AE624
114
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAG




GAAGGTACCCCGGGTAGCGGTACTGCTTCTTCCTCT




CCAGGTAGCTCTACCCCTTCTGGTGCAACCGGCTCT




CCAGGTGCTTCTCCGGGCACCAGCTCTACCGGTTCT




CCAGGTAGCCCGGCTGGCTCTCCTACCTCTACTGAG




GAAGGTACTTCTGAAAGCGCTACTCCTGAGTCTGGT




CCAGGTACCTCTACTGAACCGTCCGAAGGTAGCGCT




CCAGGTAGCCCAGCAGGCTCTCCGACTTCCACTGAG




GAAGGTACTTCTACTGAACCTTCCGAAGGCAGCGCA




CCAGGTACCTCTACTGAACCTTCTGAGGGCAGCGCT




CCAGGTACTTCTGAAAGCGCTACCCCGGAATCTGGC




CCAGGTAGCGAACCGGCTACTTCTGGTTCTGAAACC




CCAGGTAGCGAACCGGCTACCTCCGGTTCTGAAACT




CCAGGTAGCCCGGCAGGCTCTCCGACCTCTACTGAG




GAAGGTACTTCTGAAAGCGCAACCCCGGAGTCCGGC




CCAGGTACCTCTACCGAACCGTCTGAGGGCAGCGCA




CCAGGTACTTCTACCGAACCGTCCGAGGGTAGCGCA




CCAGGTAGCCCAGCAGGTTCTCCTACCTCCACCGAG




GAAGGTACTTCTACCGAACCGTCCGAGGGTAGCGCA




CCAGGTACCTCTACTGAACCTTCTGAGGGCAGCGCT




CCAGGTACTTCTGAAAGCGCTACCCCGGAGTCCGGT




CCAGGTACTTCTACTGAACCGTCCGAAGGTAGCGCA




CCAGGTACTTCTGAAAGCGCAACCCCTGAATCCGGT




CCAGGTAGCGAACCGGCTACTTCTGGCTCTGAGACT




CCAGGTACTTCTACCGAACCGTCCGAAGGTAGCGCA




CCAGGTACTTCTACTGAACCGTCTGAAGGTAGCGCA




CCAGGTACTTCTGAAAGCGCAACCCCGGAATCCGGC




CCAGGTACCTCTGAAAGCGCAACCCCGGAGTCCGGC




CCAGGTAGCCCTGCTGGCTCTCCAACCTCCACCGAA




GAAGGTACCTCTGAAAGCGCAACCCCTGAATCCGGC




CCAGGTAGCGAACCGGCAACCTCCGGTTCTGAAACC




CCAGGTACCTCTGAAAGCGCTACTCCGGAGTCTGGC




CCAGGTACCTCTACTGAACCGTCTGAGGGTAGCGCT




CCAGGTACTTCTACTGAACCGTCCGAAGGTAGCGCA




CCAGGTACTTCTACCGAACCGTCCGAAGGCAGCGCT




CCAGGTACCTCTACTGAACCTTCCGAGGGCAGCGCT




CCAGGTACCTCTACCGAACCTTCTGAAGGTAGCGCA




CCAGGTACTTCTACCGAACCGTCCGAGGGTAGCGCA




CCAGGTAGCCCAGCAGGTTCTCCTACCTCCACCGAG




GAAGGTACTTCTACCGAACCGTCCGAGGGTAGCGCA




CCAGGTACCTCTGAAAGCGCAACTCCTGAGTCTGGC




CCAGGTAGCGAACCTGCTACCTCCGGCTCTGAGACT




CCAGGTACCTCTGAAAGCGCAACCCCGGAATCTGGT




CCAGGTAGCGAACCTGCAACCTCTGGCTCTGAAACC




CCAGGTACCTCTGAAAGCGCTACTCCTGAATCTGGC




CCAGGTACTTCTACTGAACCGTCCGAGGGCAGCGCA




CCAGGTACTICTGAAAGCGCTACTCCTGAGTCCGGC




CCAGGTAGCCCGGCTGGCTCTCCGACTTCCACCGAG




GAAGGTAGCCCGGCTGGCTCTCCAACTTCTACTGAA




GAAGGTAGCCCGGCAGGCTCTCCGACCTCTACTGAG




GAAGGTACTTCTGAAAGCGCAACCCCGGAGTCCGGC




CCAGGTACCTCTACCGAACCGTCTGAGGGCAGCGCA




CCA





AM875
115
GGTACTTCTACTGAACCGTCTGAAGGCAGCGCACCA




GGTAGCGAACCGGCTACTTCCGGTTCTGAAACCCCA




GGTAGCCCAGCAGGTTCTCCAACTTCTACTGAAGAA




GGTTCTACCAGCTCTACCGCAGAATCTCCTGGTCCA




GGTACCTCTACTCCGGAAAGCGGCTCTGCATCTCCA




GGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCA




GGTTCTACTAGCGAATCCCCGTCTGGTACTGCTCCA




GGTACTTCTACTCCTGAAAGCGGTTCCGCTTCTCCA




GGTACCTCTACTCCGGAAAGCGGTTCTGCATCTCCA




GGTAGCGAACCGGCAACCTCCGGCTCTGAAACCCCA




GGTACCTCTGAAAGCGCTACTCCTGAATCCGGCCCA




GGTAGCCCGGCAGGTTCTCCGACTTCCACTGAGGAA




GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




GGTACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCA




GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA




GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA




GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




GGTACTTCTACCGAACCTTCCGAGGGCAGCGCACCA




GGTACTTCTGAAAGCGCTACCCCTGAGTCCGGCCCA




GGTACTTCTGAAAGCGCTACTCCTGAATCCGGTCCA




GGTACCTCTACTGAACCTTCCGAAGGCAGCGCTCCA




GGTACCTCTACCGAACCGTCCGAGGGCAGCGCACCA




GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCA




GGTACTTCTACTGAACCTTCCGAAGGTAGCGCTCCA




GGTAGCGAACCTGCTACTTCTGGTTCTGAAACCCCA




GGTAGCCCGGCTGGCTCTCCGACCTCCACCGAGGAA




GGTAGCTCTACCCCGTCTGGTGCTACTGGTTCTCCA




GGTACTCCGGGCAGCGGTACTGCTTCTTCCTCTCCA




GGTAGCTCTACCCCTTCTGGTGCTACTGGCTCTCCA




GGTACCTCTACCGAACCGTCCGAGGGTAGCGCACCA




GGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCA




GGTAGCGAACCGGCAACCTCCGGTTCTGAAACTCCA




GGTAGCCCTGCTGGCTCTCCGACTTCTACTGAGGAA




GGTAGCCCGGCTGGTTCTCCGACTTCTACTGAGGAA




GGTACTTCTACCGAACCTTCCGAAGGTAGCGCTCCA




GGTGCAAGCGCAAGCGGCGCGCCAAGCACGGGAGGT




ACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCAGGT




AGCCCGGCTGGCTCTCCGACTTCCACCGAGGAAGGT




AGCCCGGCTGGCTCTCCAACTTCTACTGAAGAAGGT




TCTACCAGCTCTACCGCTGAATCTCCTGGCCCAGGT




TCTACTAGCGAATCTCCGTCTGGCACCGCACCAGGT




ACTTCCCCTAGCGGTGAATCTTCTACTGCACCAGGT




ACCCCTGGCAGCGGTACCGCTTCTTCCTCTCCAGGT




AGCTCTACCCCGTCTGGTGCTACTGGCTCTCCAGGT




TCTAGCCCGTCTGCATCTACCGGTACCGGCCCAGGT




AGCGAACCGGCAACCTCCGGCTCTGAAACTCCAGGT




ACTTCTGAAAGCGCTACTCCGGAATCCGGCCCAGGT




AGCGAACCGGCTACTTCCGGCTCTGAAACCCCAGGT




TCCACCAGCTCTACTGCAGAATCTCCGGGCCCAGGT




TCTACTAGCTCTACTGCAGAATCTCCGGGTCCAGGT




ACTTCTCCTAGCGGCGAATCTTCTACCGCTCCAGGT




AGCGAACCGGCAACCTCTGGCTCTGAAACTCCAGGT




AGCGAACCTGCAACCTCCGGCTCTGAAACCCCAGGT




ACTTCTACTGAACCTTCTGAGGGCAGCGCACCAGGT




TCTACCAGCTCTACCGCAGAATCTCCTGGTCCAGGT




ACCTCTACTCCGGAAAGCGGCTCTGCATCTCCAGGT




TCTACTAGCGAATCTCCTTCTGGCACTGCACCAGGT




ACTTCTACCGAACCGTCCGAAGGCAGCGCTCCAGGT




ACCTCTACTGAACCTTCCGAGGGCAGCGCTCCAGGT




ACCTCTACCGAACCTTCTGAAGGTAGCGCACCAGGT




AGCTCTACTCCGTCTGGTGCAACCGGCTCCCCAGGT




TCTAGCCCGTCTGCTTCCACTGGTACTGGCCCAGGT




GCTTCCCCGGGCACCAGCTCTACTGGTTCTCCAGGT




AGCGAACCTGCTACCTCCGGTTCTGAAACCCCAGGT




ACCTCTGAAAGCGCAACTCCGGAGTCTGGTCCAGGT




AGCCCTGCAGGTTCTCCTACCTCCACTGAGGAAGGT




AGCTCTACTCCGTCTGGTGCAACCGGCTCCCCAGGT




TCTAGCCCGTCTGCTTCCACTGGTACTGGCCCAGGT




GCTTCCCCGGGCACCAGCTCTACTGGTTCTCCAGGT




ACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCAGGT




ACCTCTACTGAACCGTCTGAGGGTAGCGCTCCAGGT




ACTTCTACTGAACCGTCCGAAGGTAGCGCACCA





AE864
116
GGTAGCCCGGCTGGCTCTCCTACCTCTACTGAGGAA




GGTACTTCTGAAAGCGCTACTCCTGAGTCTGGTCCA




GGTACCTCTACTGAACCGTCCGAAGGTAGCGCTCCA




GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA




GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA




GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA




GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA




GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA




GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA




GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA




GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA




GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA




GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




GGTACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCA




GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA




GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCA




GGTAGCGAACCGGCTACTTCTGGCTCTGAGACTCCA




GGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCA




GGTACTTCTACTGAACCGTCTGAAGGTAGCGCACCA




GGTACTTCTGAAAGCGCAACCCCGGAATCCGGCCCA




GGTACCTCTGAAAGCGCAACCCCGGAGTCCGGCCCA




GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA




GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA




GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA




GGTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCA




GGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCA




GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA




GGTACTTCTACCGAACCGTCCGAAGGCAGCGCTCCA




GGTACCTCTACTGAACCTTCCGAGGGCAGCGCTCCA




GGTACCTCTACCGAACCTTCTGAAGGTAGCGCACCA




GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA




GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA




GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA




GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA




GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA




GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA




GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA




GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA




GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA




GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA




GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA




GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA




GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA




GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA




GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA




GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA




GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA




GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA




GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA




GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA




GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA




GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA




GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA




GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA




GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA




GGTACTTCTACCGAACCTTCCGAGGGCAGCGCACCA




GGTACTTCTGAAAGCGCTACCCCTGAGTCCGGCCCA




GGTACTTCTGAAAGCGCTACTCCTGAATCCGGTCCA




GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA




GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA




GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA




GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA




GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA




GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA




GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA




GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA





AF864
117
GGTTCTACCAGCGAATCTCCTTCTGGCACCGCTCCA




GGTACCTCTCCTAGCGGCGAATCTTCTACCGCTCCA




GGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCA




GGTTCTACTAGCGAATCCCCGTCTGGTACTGCTCCA




GGTACTTCTACTCCTGAAAGCGGTTCCGCTTCTCCA




GGTACCTCTACTCCGGAAAGCGGTTCTGCATCTCCA




GGTTCTACCAGCGAATCTCCTTCTGGCACCGCTCCA




GGTTCTACTAGCGAATCCCCGTCTGGTACCGCACCA




GGTACTTCTCCTAGCGGCGAATCTTCTACCGCACCA




GGTTCTACTAGCGAATCTCCGTCTGGCACTGCTCCA




GGTACTTCTCCTAGCGGTGAATCTTCTACCGCTCCA




GGTACTTCCCCTAGCGGCGAATCTTCTACCGCTCCA




GGTTCTACTAGCTCTACTGCAGAATCTCCGGGCCCA




GGTACCTCTCCTAGCGGTGAATCTTCTACCGCTCCA




GGTACTTCTCCGAGCGGTGAATCTTCTACCGCTCCA




GGTTCTACTAGCTCTACTGCAGAATCTCCTGGCCCA




GGTACCTCTACTCCGGAAAGCGGCTCTGCATCTCCA




GGTACTTCTACCCCTGAAAGCGGTTCTGCATCTCCA




GGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCA




GGTTCTACCAGCGAATCTCCGTCTGGCACTGCACCA




GGTACCTCTACCCCTGAAAGCGGTTCCGCTTCTCCA




GGTTCTACCAGCTCTACCGCAGAATCTCCTGGTCCA




GGTACCTCTACTCCGGAAAGCGGCTCTGCATCTCCA




GGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCA




GGTACTTCTCCGAGCGGTGAATCTTCTACCGCACCA




GGTTCTACTAGCTCTACCGCTGAATCTCCGGGCCCA




GGTACTTCTCCGAGCGGTGAATCTTCTACTGCTCCA




GGTACCTCTACTCCTGAAAGCGGTTCTGCATCTCCA




GGTTCCACTAGCTCTACCGCAGAATCTCCGGGCCCA




GGTTCTACTAGCTCTACTGCTGAATCTCCTGGCCCA




GGTTCTACTAGCTCTACTGCTGAATCTCCGGGTCCA




GGTTCTACCAGCTCTACTGCTGAATCTCCTGGTCCA




GGTACCTCCCCGAGCGGTGAATCTTCTACTGCACCA




GGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCA




GGTTCTACCAGCGAATCTCCGTCTGGCACTGCACCA




GGTACCTCTACCCCTGAAAGCGGTCCXXXXXXXXXX




XXTGCAAGCGCAAGCGGCGCGCCAAGCACGGGAXXX




XXXXXTAGCGAATCTCCTTCTGGTACCGCTCCAGGT




TCTACCAGCGAATCCCCGTCTGGTACTGCTCCAGGT




TCTACCAGCGAATCTCCTTCTGGTACTGCACCAGGT




TCTACTAGCGAATCTCCTTCTGGTACCGCTCCAGGT




TCTACCAGCGAATCCCCGTCTGGTACTGCTCCAGGT




TCTACCAGCGAATCTCCTTCTGGTACTGCACCAGGT




ACTTCTACTCCGGAAAGCGGTTCCGCATCTCCAGGT




ACTTCTCCTAGCGGTGAATCTTCTACTGCTCCAGGT




ACCTCTCCTAGCGGCGAATCTTCTACTGCTCCAGGT




TCTACCAGCTCTACTGCTGAATCTCCGGGTCCAGGT




ACTTCCCCGAGCGGTGAATCTTCTACTGCACCAGGT




ACTTCTACTCCGGAAAGCGGTTCCGCTTCTCCAGGT




TCTACCAGCGAATCTCCTTCTGGCACCGCTCCAGGT




TCTACTAGCGAATCCCCGTCTGGTACCGCACCAGGT




ACTTCTCCTAGCGGCGAATCTTCTACCGCACCAGGT




TCTACTAGCGAATCCCCGTCTGGTACCGCACCAGGT




ACTTCTACCCCGGAAAGCGGCTCTGCTTCTCCAGGT




ACTTCTACCCCGGAAAGCGGCTCCGCATCTCCAGGT




TCTACTAGCGAATCTCCTTCTGGTACCGCTCCAGGT




ACTTCTACCCCTGAAAGCGGCTCCGCTTCTCCAGGT




TCCACTAGCTCTACCGCTGAATCTCCGGGTCCAGGT




TCTACCAGCGAATCTCCTTCTGGCACCGCTCCAGGT




TCTACTAGCGAATCCCCGTCTGGTACCGCACCAGGT




ACTTCTCCTAGCGGCGAATCTTCTACCGCACCAGGT




TCTACCAGCTCTACTGCTGAATCTCCGGGTCCAGGT




ACTTCCCCGAGCGGTGAATCTTCTACTGCACCAGGT




ACTTCTACTCCGGAAAGCGGTTCCGCTTCTCCAGGT




ACCTCCCCTAGCGGCGAATCTTCTACTGCTCCAGGT




ACCTCTCCTAGCGGCGAATCTTCTACCGCTCCAGGT




ACCTCCCCTAGCGGTGAATCTTCTACCGCACCAGGT




TCTACTAGCTCTACTGCTGAATCTCCGGGTCCAGGT




TCTACCAGCTCTACTGCTGAATCTCCTGGTCCAGGT




ACCTCCCCGAGCGGTGAATCTTCTACTGCACCAGGT




TCTAGCCCTTCTGCTTCCACCGGTACCGGCCCAGGT




AGCTCTACTCCGTCTGGTGCAACTGGCTCTCCAGGT




AGCTCTACTCCGTCTGGTGCAACCGGCTCCCCAXXX




X was inserted in two areas where no




sequence information is available.





AG864
118
GGTGCTTCCCCGGGCACCAGCTCTACTGGTTCTCCA




GGTTCTAGCCCGTCTGCTTCTACTGGTACTGGTCCA




GGTTCTAGCCCTTCTGCTTCCACTGGTACTGGTCCA




GGTACCCCGGGTAGCGGTACCGCTTCTTCTTCTCCA




GGTAGCTCTACTCCGTCTGGTGCTACCGGCTCTCCA




GGTTCTAACCCTTCTGCATCCACCGGTACCGGCCCA




GGTGCTTCTCCGGGCACCAGCTCTACTGGTTCTCCA




GGTACCCCGGGCAGCGGTACCGCATCTTCTTCTCCA




GGTAGCTCTACTCCTTCTGGTGCAACTGGTTCTCCA




GGTACTCCTGGCAGCGGTACCGCTTCTTCTTCTCCA




GGTGCTTCTCCTGGTACTAGCTCTACTGGTTCTCCA




GGTGCTTCTCCGGGCACTAGCTCTACTGGTTCTCCA




GGTACCCCGGGTAGCGGTACTGCTTCTTCCTCTCCA




GGTAGCTCTACCCCTTCTGGTGCAACCGGCTCTCCA




GGTGCTTCTCCGGGCACCAGCTCTACCGGTTCTCCA




GGTACCCCGGGTAGCGGTACCGCTTCTTCTTCTCCA




GGTAGCTCTACTCCGTCTGGTGCTACCGGCTCTCCA




GGTTCTAACCCTTCTGCATCCACCGGTACCGGCCCA




GGTTCTAGCCCTTCTGCTTCCACCGGTACTGGCCCA




GGTAGCTCTACCCCTTCTGGTGCTACCGGCTCCCCA




GGTAGCTCTACTCCTTCTGGTGCAACTGGCTCTCCA




GGTGCATCTCCGGGCACTAGCTCTACTGGTTCTCCA




GGTGCATCCCCTGGCACTAGCTCTACTGGTTCTCCA




GGTGCTTCTCCTGGTACCAGCTCTACTGGTTCTCCA




GGTACTCCTGGCAGCGGTACCGCTTCTTCTTCTCCA




GGTGCTTCTCCTGGTACTAGCTCTACTGGTTCTCCA




GGTGCTTCTCCGGGCACTAGCTCTACTGGTTCTCCA




GGTGCTTCCCCGGGCACTAGCTCTACCGGTTCTCCA




GGTTCTAGCCCTTCTGCATCTACTGGTACTGGCCCA




GGTACTCCGGGCAGCGGTACTGCTTCTTCCTCTCCA




GGTGCATCTCCGGGCACTAGCTCTACTGGTTCTCCA




GGTGCATCCCCTGGCACTAGCTCTACTGGTTCTCCA




GGTGCTTCTCCTGGTACCAGCTCTACTGGTTCTCCA




GGTAGCTCTACTCCGTCTGGTGCAACCGGTTCCCCA




GGTAGCTCTACTCCTTCTGGTGCTACTGGCTCCCCA




GGTGCATCCCCTGGCACCAGCTCTACCGGTTCTCCA




GGTACCCCGGGCAGCGGTACCGCATCTTCCTCTCCA




GGTAGCTCTACCCCGTCTGGTGCTACCGGTTCCCCA




GGTAGCTCTACCCCGTCTGGTGCAACCGGCTCCCCA




GGTAGCTCTACTCCGTCTGGTGCAACCGGCTCCCCA




GGTTCTAGCCCGTCTGCTTCCACTGGTACTGGCCCA




GGTGCTTCCCCGGGCACCAGCTCTACTGGTTCTCCA




GGTGCATCCCCGGGTACCAGCTCTACCGGTTCTCCA




GGTACTCCTGGCAGCGGTACTGCATCTTCCTCTCCA




GGTGCTTCTCCGGGCACCAGCTCTACTGGTTCTCCA




GGTGCATCTCCGGGCACTAGCTCTACTGGTTCTCCA




GGTGCATCCCCTGGCACTAGCTCTACTGGTTCTCCA




GGTGCTTCTCCTGGTACCAGCTCTACTGGTTCTCCA




GGTACCCCTGGTAGCGGTACTGCTTCTTCCTCTCCA




GGTAGCTCTACTCCGTCTGGTGCTACCGGTTCTCCA




GGTACCCCGGGTAGCGGTACCGCATCTTCTTCTCCA




GGTAGCTCTACCCCGTCTGGTGCTACTGGTTCTCCA




GGTACTCCGGGCAGCGGTACTGCTTCTTCCTCTCCA




GGTAGCTCTACCCCTTCTGGTGCTACTGGCTCTCCA




GGTAGCTCTACCCCGTCTGGTGCTACTGGCTCCCCA




GGTTCTAGCCCTTCTGCATCCACCGGTACCGGTCCA




GGTTCTAGCCCGTCTGCATCTACTGGTACTGGTCCA




GGTGCATCCCCGGGCACTAGCTCTACCGGTTCTCCA




GGTACTCCTGGTAGCGGTACTGCTTCTTCTTCTCCA




GGTAGCTCTACTCCTTCTGGTGCTACTGGTTCTCCA




GGTTCTAGCCCTTCTGCATCCACCGGTACCGGCCCA




GGTTCTAGCCCGTCTGCTTCTACCGGTACTGGTCCA




GGTGCTTCTCCGGGTACTAGCTCTACTGGTTCTCCA




GGTGCATCTCCTGGTACTAGCTCTACTGGTTCTCCA




GGTAGCTCTACTCCGTCTGGTGCAACCGGCTCTCCA




GGTTCTAGCCCTTCTGCATCTACCGGTACTGGTCCA




GGTGCATCCCCTGGTACCAGCTCTACCGGTTCTCCA




GGTTCTAGCCCTTCTGCTTCTACCGGTACCGGTCCA




GGTACCCCTGGCAGCGGTACCGCATCTTCCTCTCCA




GGTAGCTCTACTCCGTCTGGTGCAACCGGTTCCCCA




GGTAGCTCTACTCCTTCTGGTGCTACTGGCTCCCCA




GGTGCATCCCCTGGCACCAGCTCTACCGGTTCTCCA





AM923
119
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAG




GAAGGTGCATCCCCGGGCACCAGCTCTACCGGTTCT




CCAGGTAGCTCTACCCCGTCTGGTGCTACCGGCTCT




CCAGGTAGCTCTACCCCGTCTGGTGCTACTGGCTCT




CCAGGTACTTCTACTGAACCGTCTGAAGGCAGCGCA




CCAGGTAGCGAACCGGCTACTTCCGGTTCTGAAACC




CCAGGTAGCCCAGCAGGTTCTCCAACTTCTACTGAA




GAAGGTTCTACCAGCTCTACCGCAGAATCTCCTGGT




CCAGGTACCTCTACTCCGGAAAGCGGCTCTGCATCT




CCAGGTTCTACTAGCGAATCTCCTTCTGGCACTGCA




CCAGGTTCTACTAGCGAATCCCCGTCTGGTACTGCT




CCAGGTACTTCTACTCCTGAAAGCGGTTCCGCTTCT




CCAGGTACCTCTACTCCGGAAAGCGGTTCTGCATCT




CCAGGTAGCGAACCGGCAACCTCCGGCTCTGAAACC




CCAGGTACCTCTGAAAGCGCTACTCCTGAATCCGGC




CCAGGTAGCCCGGCAGGTTCTCCGACTTCCACTGAG




GAAGGTACCTCTACTGAACCTTCTGAGGGCAGCGCT




CCAGGTACTTCTGAAAGCGCTACCCCGGAGTCCGGT




CCAGGTACTTCTACTGAACCGTCCGAAGGTAGCGCA




CCAGGTACTTCTACCGAACCGTCCGAGGGTAGCGCA




CCAGGTAGCCCAGCAGGTTCTCCTACCTCCACCGAG




GAAGGTACTTCTACCGAACCGTCCGAGGGTAGCGCA




CCAGGTACTTCTACCGAACCTTCCGAGGGCAGCGCA




CCAGGTACTTCTGAAAGCGCTACCCCTGAGTCCGGC




CCAGGTACTTCTGAAAGCGCTACTCCTGAATCCGGT




CCAGGTACCTCTACTGAACCTTCCGAAGGCAGCGCT




CCAGGTACCTCTACCGAACCGTCCGAGGGCAGCGCA




CCAGGTACTTCTGAAAGCGCAACCCCTGAATCCGGT




CCAGGTACTTCTACTGAACCTTCCGAAGGTAGCGCT




CCAGGTAGCGAACCTGCTACTTCTGGTTCTGAAACC




CCAGGTAGCCCGGCTGGCTCTCCGACCTCCACCGAG




GAAGGTAGCTCTACCCCGTCTGGTGCTACTGGTTCT




CCAGGTACTCCGGGCAGCGGTACTGCTTCTTCCTCT




CCAGGTAGCTCTACCCCTTCTGGTGCTACTGGCTCT




CCAGGTACCTCTACCGAACCGTCCGAGGGTAGCGCA




CCAGGTACCTCTACTGAACCGTCTGAGGGTAGCGCT




CCAGGTAGCGAACCGGCAACCTCCGGTTCTGAAACT




CCAGGTAGCCCTGCTGGCTCTCCGACTTCTACTGAG




GAAGGTAGCCCGGCTGGTTCTCCGACTTCTACTGAG




GAAGGTACTTCTACCGAACCTTCCGAAGGTAGCGCT




CCAGGTGCAAGCGCAAGCGGCGCGCCAAGCACGGGA




GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA




GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA




GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA




GGTTCTACCAGCTCTACCGCTGAATCTCCTGGCCCA




GGTTCTACTAGCGAATCTCCGTCTGGCACCGCACCA




GGTACTTCCCCTAGCGGTGAATCTTCTACTGCACCA




GGTACCCCTGGCAGCGGTACCGCTTCTTCCTCTCCA




GGTAGCTCTACCCCGTCTGGTGCTACTGGCTCTCCA




GGTTCTAGCCCGTCTGCATCTACCGGTACCGGCCCA




GGTAGCGAACCGGCAACCTCCGGCTCTGAAACTCCA




GGTACTTCTGAAAGCGCTACTCCGGAATCCGGCCCA




GGTAGCGAACCGGCTACTTCCGGCTCTGAAACCCCA




GGTTCCACCAGCTCTACTGCAGAATCTCCGGGCCCA




GGTTCTACTAGCTCTACTGCAGAATCTCCGGGTCCA




GGTACTTCTCCTAGCGGCGAATCTTCTACCGCTCCA




GGTAGCGAACCGGCAACCTCTGGCTCTGAAACTCCA




GGTAGCGAACCTGCAACCTCCGGCTCTGAAACCCCA




GGTACTTCTACTGAACCTTCTGAGGGCAGCGCACCA




GGTTCTACCAGCTCTACCGCAGAATCTCCTGGTCCA




GGTACCTCTACTCCGGAAAGCGGCTCTGCATCTCCA




GGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCA




GGTACTTCTACCGAACCGTCCGAAGGCAGCGCTCCA




GGTACCTCTACTGAACCTTCCGAGGGCAGCGCTCCA




GGTACCTCTACCGAACCTTCTGAAGGTAGCGCACCA




GGTAGCTCTACTCCGTCTGGTGCAACCGGCTCCCCA




GGTTCTAGCCCGTCTGCTTCCACTGGTACTGGCCCA




GGTGCTTCCCCGGGCACCAGCTCTACTGGTTCTCCA




GGTAGCGAACCTGCTACCTCCGGTTCTGAAACCCCA




GGTACCTCTGAAAGCGCAACTCCGGAGTCTGGTCCA




GGTAGCCCTGCAGGTTCTCCTACCTCCACTGAGGAA




GGTAGCTCTACTCCGTCTGGTGCAACCGGCTCCCCA




GGTTCTAGCCCGTCTGCTTCCACTGGTACTGGCCCA




GGTGCTTCCCCGGGCACCAGCTCTACTGGTTCTCCA




GGTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCA




GGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCA




GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA





AE912
120
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAG




GAAGGTACCCCGGGTAGCGGTACTGCTTCTTCCTCT




CCAGGTAGCTCTACCCCTTCTGGTGCAACCGGCTCT




CCAGGTGCTTCTCCGGGCACCAGCTCTACCGGTTCT




CCAGGTAGCCCGGCTGGCTCTCCTACCTCTACTGAG




GAAGGTACTTCTGAAAGCGCTACTCCTGAGTCTGGT




CCAGGTACCTCTACTGAACCGTCCGAAGGTAGCGCT




CCAGGTAGCCCAGCAGGCTCTCCGACTTCCACTGAG




GAAGGTACTTCTACTGAACCTTCCGAAGGCAGCGCA




CCAGGTACCTCTACTGAACCTTCTGAGGGCAGCGCT




CCAGGTACTTCTGAAAGCGCTACCCCGGAATCTGGC




CCAGGTAGCGAACCGGCTACTTCTGGTTCTGAAACC




CCAGGTAGCGAACCGGCTACCTCCGGTTCTGAAACT




CCAGGTAGCCCGGCAGGCTCTCCGACCTCTACTGAG




GAAGGTACTTCTGAAAGCGCAACCCCGGAGTCCGGC




CCAGGTACCTCTACCGAACCGTCTGAGGGCAGCGCA




CCAGGTACTTCTACCGAACCGTCCGAGGGTAGCGCA




CCAGGTAGCCCAGCAGGTTCTCCTACCTCCACCGAG




GAAGGTACTTCTACCGAACCGTCCGAGGGTAGCGCA




CCAGGTACCTCTACTGAACCTTCTGAGGGCAGCGCT




CCAGGTACTTCTGAAAGCGCTACCCCGGAGTCCGGT




CCAGGTACTTCTACTGAACCGTCCGAAGGTAGCGCA




CCAGGTACTTCTGAAAGCGCAACCCCTGAATCCGGT




CCAGGTAGCGAACCGGCTACTTCTGGCTCTGAGACT




CCAGGTACTTCTACCGAACCGTCCGAAGGTAGCGCA




CCAGGTACTTCTACTGAACCGTCTGAAGGTAGCGCA




CCAGGTACTTCTGAAAGCGCAACCCCGGAATCCGGC




CCAGGTACCTCTGAAAGCGCAACCCCGGAGTCCGGC




CCAGGTAGCCCTGCTGGCTCTCCAACCTCCACCGAA




GAAGGTACCTCTGAAAGCGCAACCCCTGAATCCGGC




CCAGGTAGCGAACCGGCAACCTCCGGTTCTGAAACC




CCAGGTACCTCTGAAAGCGCTACTCCGGAGTCTGGC




CCAGGTACCTCTACTGAACCGTCTGAGGGTAGCGCT




CCAGGTACTTCTACTGAACCGTCCGAAGGTAGCGCA




CCAGGTACTTCTACCGAACCGTCCGAAGGCAGCGCT




CCAGGTACCTCTACTGAACCTTCCGAGGGCAGCGCT




CCAGGTACCTCTACCGAACCTTCTGAAGGTAGCGCA




CCAGGTACTTCTACCGAACCGTCCGAGGGTAGCGCA




CCAGGTAGCCCAGCAGGTTCTCCTACCTCCACCGAG




GAAGGTACTTCTACCGAACCGTCCGAGGGTAGCGCA




CCAGGTACCTCTGAAAGCGCAACTCCTGAGTCTGGC




CCAGGTAGCGAACCTGCTACCTCCGGCTCTGAGACT




CCAGGTACCTCTGAAAGCGCAACCCCGGAATCTGGT




CCAGGTAGCGAACCTGCAACCTCTGGCTCTGAAACC




CCAGGTACCTCTGAAAGCGCTACTCCTGAATCTGGC




CCAGGTACTTCTACTGAACCGTCCGAGGGCAGCGCA




CCAGGTACTTCTGAAAGCGCTACTCCTGAGTCCGGC




CCAGGTAGCCCGGCTGGCTCTCCGACTTCCACCGAG




GAAGGTAGCCCGGCTGGCTCTCCAACTTCTACTGAA




GAAGGTAGCCCGGCAGGCTCTCCGACCTCTACTGAG




GAAGGTACTTCTGAAAGCGCAACCCCGGAGTCCGGC




CCAGGTACCTCTACCGAACCGTCTGAGGGCAGCGCA




CCAGGTACCTCTGAAAGCGCAACTCCTGAGTCTGGC




CCAGGTAGCGAACCTGCTACCTCCGGCTCTGAGACT




CCAGGTACCTCTGAAAGCGCAACCCCGGAATCTGGT




CCAGGTAGCGAACCTGCAACCTCTGGCTCTGAAACC




CCAGGTACCTCTGAAAGCGCTACTCCTGAATCTGGC




CCAGGTACTTCTACTGAACCGTCCGAGGGCAGCGCA




CCAGGTAGCCCTGCTGGCTCTCCAACCTCCACCGAA




GAAGGTACCTCTGAAAGCGCAACCCCTGAATCCGGC




CCAGGTAGCGAACCGGCAACCTCCGGTTCTGAAACC




CCAGGTACTTCTGAAAGCGCTACTCCTGAGTCCGGC




CCAGGTAGCCCGGCTGGCTCTCCGACTTCCACCGAG




GAAGGTAGCCCGGCTGGCTCTCCAACTTCTACTGAA




GAAGGTACTTCTACCGAACCTTCCGAGGGCAGCGCA




CCAGGTACTTCTGAAAGCGCTACCCCTGAGTCCGGC




CCAGGTACTTCTGAAAGCGCTACTCCTGAATCCGGT




CCAGGTACTTCTGAAAGCGCTACCCCGGAATCTGGC




CCAGGTAGCGAACCGGCTACTTCTGGITCTGAAACC




CCAGGTAGCGAACCGGCTACCTCCGGTTCTGAAACT




CCAGGTAGCCCAGCAGGCTCTCCGACTTCCACTGAG




GAAGGTACTTCTACTGAACCTTCCGAAGGCAGCGCA




CCAGGTACCTCTACTGAACCTTCTGAGGGCAGCGCT




CCAGGTAGCGAACCTGCAACCTCTGGCTCTGAAACC




CCAGGTACCTCTGAAAGCGCTACTCCTGAATCTGGC




CCAGGTACTTCTACTGAACCGTCCGAGGGCAGCGCA




CCA





AM1318
121
GGTACTTCTACTGAACCGTCTGAAGGCAGCGCACCA




GGTAGCGAACCGGCTACTTCCGGTTCTGAAACCCCA




GGTAGCCCAGCAGGTTCTCCAACTTCTACTGAAGAA




GGTTCTACCAGCTCTACCGCAGAATCTCCTGGTCCA




GGTACCTCTACTCCGGAAAGCGGCTCTGCATCTCCA




GGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCA




GGTTCTACTAGCGAATCCCCGTCTGGTACTGCTCCA




GGTACTTCTACTCCTGAAAGCGGTTCCGCTTCTCCA




GGTACCTCTACTCCGGAAAGCGGTTCTGCATCTCCA




GGTAGCGAACCGGCAACCTCCGGCTCTGAAACCCCA




GGTACCTCTGAAAGCGCTACTCCTGAATCCGGCCCA




GGTAGCCCGGCAGGTTCTCCGACTTCCACTGAGGAA




GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




GGTACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCA




GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA




GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA




GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




GGTACTTCTACCGAACCTTCCGAGGGCAGCGCACCA




GGTACTTCTGAAAGCGCTACCCCTGAGTCCGGCCCA




GGTACTTCTGAAAGCGCTACTCCTGAATCCGGTCCA




GGTACCTCTACTGAACCTTCCGAAGGCAGCGCTCCA




GGTACCTCTACCGAACCGTCCGAGGGCAGCGCACCA




GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCA




GGTACTTCTACTGAACCTTCCGAAGGTAGCGCTCCA




GGTAGCGAACCTGCTACTTCTGGTTCTGAAACCCCA




GGTAGCCCGGCTGGCTCTCCGACCTCCACCGAGGAA




GGTAGCTCTACCCCGTCTGGTGCTACTGGTTCTCCA




GGTACTCCGGGCAGCGGTACTGCTTCTTCCTCTCCA




GGTAGCTCTACCCCTTCTGGTGCTACTGGCTCTCCA




GGTACCTCTACCGAACCGTCCGAGGGTAGCGCACCA




GGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCA




GGTAGCGAACCGGCAACCTCCGGTTCTGAAACTCCA




GGTAGCCCTGCTGGCTCTCCGACTTCTACTGAGGAA




GGTAGCCCGGCTGGTTCTCCGACTTCTACTGAGGAA




GGTACTTCTACCGAACCTTCCGAAGGTAGCGCTCCA




GGTCCAGAACCAACGGGGCCGGCCCCAAGCGGAGGT




AGCGAACCGGCAACCTCCGGCTCTGAAACCCCAGGT




ACCTCTGAAAGCGCTACTCCTGAATCCGGCCCAGGT




AGCCCGGCAGGTTCTCCGACTTCCACTGAGGAAGGT




ACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCAGGT




AGCCCGGCTGGCTCTCCGACTTCCACCGAGGAAGGT




AGCCCGGCTGGCTCTCCAACTTCTACTGAAGAAGGT




ACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCAGGT




AGCCCGGCTGGCTCTCCGACTTCCACCGAGGAAGGT




AGCCCGGCTGGCTCTCCAACTTCTACTGAAGAAGGT




TCTACCAGCTCTACCGCTGAATCTCCTGGCCCAGGT




TCTACTAGCGAATCTCCGTCTGGCACCGCACCAGGT




ACTTCCCCTAGCGGTGAATCTTCTACTGCACCAGGT




TCTACCAGCGAATCTCCTTCTGGCACCGCTCCAGGT




TCTACTAGCGAATCCCCGTCTGGTACCGCACCAGGT




ACTTCTCCTAGCGGCGAATCTTCTACCGCACCAGGT




ACTTCTACCGAACCITCCGAGGGCAGCGCACCAGGT




ACTTCTGAAAGCGCTACCCCTGAGTCCGGCCCAGGT




ACTTCTGAAAGCGCTACTCCTGAATCCGGTCCAGGT




AGCGAACCGGCAACCTCTGGCTCTGAAACCCCAGGT




ACCTCTGAAAGCGCTACTCCGGAATCTGGTCCAGGT




ACTTCTGAAAGCGCTACTCCGGAATCCGGTCCAGGT




ACCTCTACTGAACCITCTGAGGGCAGCGCTCCAGGT




ACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCAGGT




ACTTCTACTGAACCGTCCGAAGGTAGCGCACCAGGT




ACCTCCCCTAGCGGCGAATCTTCTACTGCTCCAGGT




ACCTCTCCTAGCGGCGAATCTTCTACCGCTCCAGGT




ACCTCCCCTAGCGGTGAATCTTCTACCGCACCAGGT




ACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGT




AGCCCAGCAGGTTCTCCTACCTCCACCGAGGAAGGT




ACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGT




TCTAGCCCTTCTGCTTCCACCGGTACCGGCCCAGGT




AGCTCTACTCCGTCTGGTGCAACTGGCTCTCCAGGT




AGCTCTACTCCGTCTGGTGCAACCGGCTCCCCAGGT




AGCTCTACCCCGTCTGGTGCTACCGGCTCTCCAGGT




AGCTCTACCCCGTCTGGTGCAACCGGCTCCCCAGGT




GCATCCCCGGGTACTAGCTCTACCGGTTCTCCAGGT




GCAAGCGCAAGCGGCGCGCCAAGCACGGGAGGTACT




TCTCCGAGCGGTGAATCTTCTACCGCACCAGGTTCT




ACTAGCTCTACCGCTGAATCTCCGGGCCCAGGTACT




TCTCCGAGCGGTGAATCTTCTACTGCTCCAGGTACC




TCTGAAAGCGCTACTCCGGAGTCTGGCCCAGGTACC




TCTACTGAACCGTCTGAGGGTAGCGCTCCAGGTACT




TCTACTGAACCGTCCGAAGGTAGCGCACCAGGTTCT




AGCCCTTCTGCATCTACTGGTACTGGCCCAGGTAGC




TCTACTCCTTCTGGTGCTACCGGCTCTCCAGGTGCT




TCTCCGGGTACTAGCTCTACCGGTTCTCCAGGTACT




TCTACTCCGGAAAGCGGTTCCGCATCTCCAGGTACT




TCTCCTAGCGGTGAATCTTCTACTGCTCCAGGTACC




TCTCCTAGCGGCGAATCTTCTACTGCTCCAGGTACT




TCTGAAAGCGCAACCCCTGAATCCGGTCCAGGTAGC




GAACCGGCTACTTCTGGCTCTGAGACTCCAGGTACT




TCTACCGAACCGTCCGAAGGTAGCGCACCAGGTTCT




ACCAGCGAATCCCCTTCTGGTACTGCTCCAGGTTCT




ACCAGCGAATCCCCTTCTGGCACCGCACCAGGTACT




TCTACCCCTGAAAGCGGCTCCGCTTCTCCAGGTAGC




CCGGCAGGCTCTCCGACCTCTACTGAGGAAGGTACT




TCTGAAAGCGCAACCCCGGAGTCCGGCCCAGGTACC




TCTACCGAACCGTCTGAGGGCAGCGCACCAGGTAGC




CCTGCTGGCTCTCCAACCTCCACCGAAGAAGGTACC




TCTGAAAGCGCAACCCCTGAATCCGGCCCAGGTAGC




GAACCGGCAACCTCCGGTTCTGAAACCCCAGGTAGC




TCTACCCCGTCTGGTGCTACCGGTTCCCCAGGTGCT




TCTCCTGGTACTAGCTCTACCGGTTCTCCAGGTAGC




TCTACCCCGTCTGGTGCTACTGGCTCTCCAGGTTCT




ACTAGCGAATCCCCGTCTGGTACTGCTCCAGGTACT




TCCCCTAGCGGTGAATCTTCTACTGCTCCAGGTTCT




ACCAGCTCTACCGCAGAATCTCCGGGTCCAGGTAGC




TCTACCCCTTCTGGTGCAACCGGCTCTCCAGGTGCA




TCCCCGGGTACCAGCTCTACCGGTTCTCCAGGTACT




CCGGGTAGCGGTACCGCTTCTTCCTCTCCAGGTAGC




CCTGCTGGCTCTCCGACTTCTACTGAGGAAGGTAGC




CCGGCTGGTTCTCCGACTTCTACTGAGGAAGGTACT




TCTACCGAACCTTCCGAAGGTAGCGCTCCA





BC864
122
GGTACTTCCACCGAACCATCCGAACCAGGTAGCGCA




GGTACTTCCACCGAACCATCCGAACCTGGCAGCGCA




GGTAGCGAACCGGCAACCTCTGGTACTGAACCATCA




GGTAGCGGCGCATCCGAGCCTACCTCTACTGAACCA




GGTAGCGAACCGGCTACCTCCGGTACTGAGCCATCA




GGTAGCGAACCGGCAACTTCCGGTACTGAACCATCA




GGTAGCGAACCGGCAACTTCCGGCACTGAACCATCA




GGTAGCGGTGCATCTGAGCCGACCTCTACTGAACCA




GGTACTTCTACTGAACCATCTGAGCCGGGCAGCGCA




GGTAGCGAACCAGCTACTTCTGGCACTGAACCATCA




GGTACTTCTACTGAACCATCCGAACCAGGTAGCGCA




GGTAGCGAACCTGCTACCTCTGGTACTGAGCCATCA




GGTAGCGAACCGGCTACCTCTGGTACTGAACCATCA




GGTACTTCTACCGAACCATCCGAGCCTGGTAGCGCA




GGTACTTCTACCGAACCATCCGAGCCAGGCAGCGCA




GGTAGCGAACCGGCAACCTCTGGCACTGAGCCATCA




GGTAGCGAACCAGCAACTTCTGGTACTGAACCATCA




GGTACTAGCGAGCCATCTACTTCCGAACCAGGTGCA




GGTAGCGGCGCATCCGAACCTACTTCCACTGAACCA




GGTACTAGCGAGCCATCCACCTCTGAACCAGGTGCA




GGTAGCGAACCGGCAACTTCCGGCACTGAACCATCA




GGTAGCGAACCGGCTACCTCTGGTACTGAACCATCA




GGTACTTCTACCGAACCATCCGAGCCTGGTAGCGCA




GGTACTTCTACCGAACCATCCGAGCCAGGCAGCGCA




GGTAGCGGTGCATCCGAGCCGACCTCTACTGAACCA




GGTAGCGAACCAGCAACTTCTGGCACTGAGCCATCA




GGTAGCGAACCAGCTACCTCTGGTACTGAACCATCA




GGTAGCGAACCGGCTACTTCCGGCACTGAACCATCA




GGTAGCGAACCAGCAACCTCCGGTACTGAACCATCA




GGTACTTCCACTGAACCATCCGAACCGGGTAGCGCA




GGTAGCGAACCGGCAACTTCCGGCACTGAACCATCA




GGTAGCGGTGCATCTGAGCCGACCTCTACTGAACCA




GGTACTTCTACTGAACCATCTGAGCCGGGCAGCGCA




GGTAGCGAACCTGCAACCTCCGGCACTGAGCCATCA




GGTAGCGGCGCATCTGAACCAACCTCTACTGAACCA




GGTACTTCCACCGAACCATCTGAGCCAGGCAGCGCA




GGTAGCGGCGCATCTGAACCAACCTCTACTGAACCA




GGTAGCGAACCAGCAACTTCTGGTACTGAACCATCA




GGTAGCGGCGCATCTGAGCCTACTTCCACTGAACCA




GGTAGCGAACCGGCAACTTCCGGCACTGAACCATCA




GGTAGCGGTGCATCTGAGCCGACCTCTACTGAACCA




GGTACTTCTACTGAACCATCTGAGCCGGGCAGCGCA




GGTAGCGAACCGGCAACTTCCGGCACTGAACCATCA




GGTAGCGGTGCATCTGAGCCGACCTCTACTGAACCA




GGTACTTCTACTGAACCATCTGAGCCGGGCAGCGCA




GGTAGCGAACCAGCTACTTCTGGCACTGAACCATCA




GGTACTTCTACTGAACCATCCGAACCAGGTAGCGCA




GGTAGCGAACCTGCTACCTCTGGTACTGAGCCATCA




GGTACTTCTACTGAACCATCCGAGCCGGGTAGCGCA




GGTACTTCCACTGAACCATCTGAACCTGGTAGCGCA




GGTACTTCCACTGAACCATCCGAACCAGGTAGCGCA




GGTACTTCTACTGAACCATCCGAGCCGGGTAGCGCA




GGTACTTCCACTGAACCATCTGAACCTGGTAGCGCA




GGTACTTCCACTGAACCATCCGAACCAGGTAGCGCA




GGTACTAGCGAACCATCCACCTCCGAACCAGGCGCA




GGTAGCGGTGCATCTGAACCGACTTCTACTGAACCA




GGTACTTCCACTGAACCATCTGAGCCAGGTAGCGCA




GGTACTTCCACCGAACCATCCGAACCAGGTAGCGCA




GGTACTTCCACCGAACCATCCGAACCTGGCAGCGCA




GGTAGCGAACCGGCAACCTCTGGTACTGAACCATCA




GGTAGCGGTGCATCCGAGCCGACCTCTACTGAACCA




GGTAGCGAACCAGCAACTTCTGGCACTGAGCCATCA




GGTAGCGAACCAGCTACCTCTGGTACTGAACCATCA




GGTAGCGAACCGGCAACCTCTGGCACTGAGCCATCA




GGTAGCGAACCAGCAACTTCTGGTACTGAACCATCA




GGTACTAGCGAGCCATCTACTTCCGAACCAGGTGCA




GGTAGCGAACCTGCAACCTCCGGCACTGAGCCATCA




GGTAGCGGCGCATCTGAACCAACCTCTACTGAACCA




GGTACTTCCACCGAACCATCTGAGCCAGGCAGCGCA




GGTAGCGAACCTGCAACCTCCGGCACTGAGCCATCA




GGTAGCGGCGCATCTGAACCAACCTCTACTGAACCA




GGTACTTCCACCGAACCATCTGAGCCAGGCAGCGCA





BD864
123
GGTAGCGAAACTGCTACTTCCGGCTCTGAGACTGCA




GGTACTAGTGAATCCGCAACTAGCGAATCTGGCGCA




GGTAGCACTGCAGGCTCTGAGACTTCCACTGAAGCA




GGTACTAGCGAGTCCGCAACCAGCGAATCCGGCGCA




GGTAGCGAAACTGCTACCTCTGGCTCCGAGACTGCA




GGTAGCGAAACTGCAACCTCTGGCTCTGAAACTGCA




GGTACTTCCACTGAAGCAAGTGAAGGCTCCGCATCA




GGTACTTCCACCGAAGCAAGCGAAGGCTCCGCATCA




GGTACTAGTGAGTCCGCAACTAGCGAATCCGGTGCA




GGTAGCGAAACCGCTACCTCTGGTTCCGAAACTGCA




GGTACTTCTACCGAGGCTAGCGAAGGTTCTGCATCA




GGTAGCACTGCTGGTTCCGAGACTTCTACTGAAGCA




GGTACTAGCGAATCTGCTACTAGCGAATCCGGCGCA




GGTACTAGCGAATCCGCTACCAGCGAATCCGGCGCA




GGTAGCGAAACTGCAACCTCTGGTTCCGAGACTGCA




GGTACTAGCGAGTCCGCTACTAGCGAATCTGGCGCA




GGTACTTCCACTGAAGCTAGTGAAGGTTCTGCATCA




GGTAGCGAAACTGCTACTTCTGGTTCCGAAACTGCA




GGTAGCGAAACCGCTACCTCTGGTTCCGAAACTGCA




GGTACTTCTACCGAGGCTAGCGAAGGTTCTGCATCA




GGTAGCACTGCTGGTTCCGAGACTTCTACTGAAGCA




GGTACTAGCGAGTCCGCTACTAGCGAATCTGGCGCA




GGTACTTCCACTGAAGCTAGTGAAGGTTCTGCATCA




GGTAGCGAAACTGCTACTTCTGGTTCCGAAACTGCA




GGTAGCACTGCTGGCTCCGAGACTTCTACCGAAGCA




GGTAGCACTGCAGGTTCCGAAACTTCCACTGAAGCA




GGTAGCGAAACTGCTACCTCTGGCTCTGAGACTGCA




GGTACTAGCGAATCTGCTACTAGCGAATCCGGCGCA




GGTACTAGCGAATCCGCTACCAGCGAATCCGGCGCA




GGTAGCGAAACTGCAACCTCTGGTTCCGAGACTGCA




GGTACTAGCGAATCTGCTACTAGCGAATCCGGCGCA




GGTACTAGCGAATCCGCTACCAGCGAATCCGGCGCA




GGTAGCGAAACTGCAACCTCTGGTTCCGAGACTGCA




GGTAGCGAAACCGCTACCTCTGGTTCCGAAACTGCA




GGTACTTCTACCGAGGCTAGCGAAGGTTCTGCATCA




GGTAGCACTGCTGGTTCCGAGACTTCTACTGAAGCA




GGTAGCGAAACTGCTACTTCCGGCTCTGAGACTGCA




GGTACTAGTGAATCCGCAACTAGCGAATCTGGCGCA




GGTAGCACTGCAGGCTCTGAGACTTCCACTGAAGCA




GGTAGCACTGCTGGITCCGAAACCTCTACCGAAGCA




GGTAGCACTGCAGGTTCTGAAACCTCCACTGAAGCA




GGTACTTCCACTGAGGCTAGTGAAGGCTCTGCATCA




GGTAGCACTGCTGGTTCCGAAACCTCTACCGAAGCA




GGTAGCACTGCAGGTTCTGAAACCTCCACTGAAGCA




GGTACTTCCACTGAGGCTAGTGAAGGCTCTGCATCA




GGTAGCACTGCAGGTTCTGAGACTTCCACCGAAGCA




GGTAGCGAAACTGCTACTTCTGGTTCCGAAACTGCA




GGTACTTCCACTGAAGCTAGTGAAGGTTCCGCATCA




GGTACTAGTGAGTCCGCAACCAGCGAATCCGGCGCA




GGTAGCGAAACCGCAACCTCCGGTTCTGAAACTGCA




GGTACTAGCGAATCCGCAACCAGCGAATCTGGCGCA




GGTACTAGTGAGTCCGCAACCAGCGAATCCGGCGCA




GGTAGCGAAACCGCAACCTCCGGTTCTGAAACTGCA




GGTACTAGCGAATCCGCAACCAGCGAATCTGGCGCA




GGTAGCGAAACTGCTACTTCCGGCTCTGAGACTGCA




GGTACTTCCACCGAAGCAAGCGAAGGTTCCGCATCA




GGTACTTCCACCGAGGCTAGTGAAGGCTCTGCATCA




GGTAGCACTGCTGGCTCCGAGACTTCTACCGAAGCA




GGTAGCACTGCAGGTTCCGAAACTTCCACTGAAGCA




GGTAGCGAAACTGCTACCTCTGGCTCTGAGACTGCA




GGTACTAGCGAATCTGCTACTAGCGAATCCGGCGCA




GGTACTAGCGAATCCGCTACCAGCGAATCCGGCGCA




GGTAGCGAAACTGCAACCTCTGGTTCCGAGACTGCA




GGTAGCGAAACTGCTACTTCCGGCTCCGAGACTGCA




GGTAGCGAAACTGCTACTTCTGGCTCCGAAACTGCA




GGTACTTCTACTGAGGCTAGTGAAGGTTCCGCATCA




GGTACTAGCGAGTCCGCAACCAGCGAATCCGGCGCA




GGTAGCGAAACTGCTACCTCTGGCTCCGAGACTGCA




GGTAGCGAAACTGCAACCTCTGGCTCTGAAACTGCA




GGTACTAGCGAATCTGCTACTAGCGAATCCGGCGCA




GGTACTAGCGAATCCGCTACCAGCGAATCCGGCGCA




GGTAGCGAAACTGCAACCTCTGGTTCCGAGACTGCA









One may clone the library of XTEN-encoding genes into one or more expression vectors known in the art. To facilitate the identification of well-expressing library members, one can construct the library as fusion to a reporter protein. Non-limiting examples of suitable reporter genes are green fluorescent protein, luciferace, alkaline phosphatase, and beta-galactosidase. By screening, one can identify short XTEN sequences that can be expressed in high concentration in the host organism of choice. Subsequently, one can generate a library of random XTEN dimers and repeat the screen for high level of expression. Subsequently, one can screen the resulting constructs for a number of properties such as level of expression, protease stability, or binding to antiserum.


One aspect of the invention is to provide polynucleotide sequences encoding the components of the fusion protein wherein the creation of the sequence has undergone codon optimization. Of particular interest is codon optimization with the goal of improving expression of the polypeptide compositions and to improve the genetic stability of the encoding gene in the production hosts. For example, codon optimization is of particular importance for XTEN sequences that are rich in glycine or that have very repetitive amino acid sequences. Codon optimization is performed using computer programs (Gustafsson, C., et al. (2004) Trends Biotechnol, 22: 346-53), some of which minimize ribosomal pausing (Coda Genomics Inc.). In one embodiment, one can perform codon optimization by constructing codon libraries where all members of the library encode the same amino acid sequence but where codon usage is varied. Such libraries can be screened for highly expressing and genetically stable members that are particularly suitable for the large-scale production of XTEN-containing products. When designing XTEN sequences one can consider a number of properties. One can minimize the repetitiveness in the encoding DNA sequences. In addition, one can avoid or minimize the use of codons that are rarely used by the production host (e.g. the AGG and AGA arginine codons and one leucine codon in E. coli). In the case of E. coli, two glycine codons, GGA and GGG, are rarely used in highly expressed proteins. Thus codon optimization of the gene encoding XTEN sequences can be very desirable. DNA sequences that have a high level of glycine tend to have a high GC content that can lead to instability or low expression levels. Thus, when possible, it is preferred to choose codons such that the GC-content of XTEN-encoding sequence is suitable for the production organism that will be used to manufacture the XTEN.


Optionally, the full-length XTEN-encoding gene comprises one or more sequencing islands. In this context, sequencing islands are short-stretch sequences that are distinct from the XTEN library construct sequences and that include a restriction site not present or expected to be present in the full-length XTEN-encoding gene. In one embodiment, a sequencing island is the sequence 5′-AGGTGCAAGCGCAAGCGGCGCGCCAAGCACGGGAGGT-3′ (SEQ ID NO: 124). In another embodiment, a sequencing island is the sequence 5′-AGGTCCAGAACCAACGGGGCCGGCCCCAAGCGGAGGT-3′ (SEQ ID NO: 125).


As an alternative, one can construct codon libraries where all members of the library encode the same amino acid sequence but where codon usage for the respective amino acids in the sequence is varied. Such libraries can be screened for highly expressing and genetically stable members that are particularly suitable for the large-scale production of XTEN-containing products.


Optionally, one can sequence clones in the library to eliminate isolates that contain undesirable sequences. The initial library of short XTEN sequences allows some variation in amino acid sequence. For instance one can randomize some codons such that a number of hydrophilic amino acids can occur in a particular position. During the process of iterative multimerization one can screen the resulting library members for other characteristics like solubility or protease resistance in addition to a screen for high-level expression.


Once the gene that encodes the XTEN of desired length and properties is selected, it is genetically fused to the nucleotides encoding the N- and/or the C-terminus of the GH gene(s) by cloning it into the construct adjacent and in frame with the gene coding for GH or, optionally, adjacent to a spacer sequence. The invention provides various permutations of the foregoing, depending on the GHXTEN to be encoded. For example, a gene encoding a GHXTEN fusion protein comprising a GH and two XTEN, such as embodied by formula VI, as depicted above, the gene would have polynucleotides encoding GH, encoding two XTEN, which can be identical or different in composition and sequence length. In one non-limiting embodiment of the foregoing, the GH polynucleotides would encode human growth hormone and the polynucleotides encoding the N-terminus XTEN would encode AE912 and the polynucleotides encoding the C-terminus XTEN would encode AE144. The step of cloning the GH genes into the XTEN construct can occur through a ligation or multimerization step. As shown in FIG. 2, the constructs encoding GHXTEN fusion proteins can be designed in different configurations of the components XTEN 202, GH 203, and spacer sequences 204. In one embodiment, as illustrated in FIG. 2A, the construct comprises polynucleotide sequences complementary to, or those that encode a monomeric polypeptide of components in the following order (5′ to 3′) GH 203 and XTEN 202, or the reverse order. In another embodiment, as illustrated in FIG. 2B, the construct comprises polynucleotide sequences complementary to, or those that encode a monomeric polypeptide of components in the following order (5′ to 3′) GH 203, spacer sequence 204, and XTEN 202, or the reverse order. In another embodiment, as illustrated in FIG. 2C, the construct 201 encodes a monomeric GHXTEN comprising polynucleotide sequences complementary to, or those that encode components in the following order (5′ to 3′): two molecules of GH 203 and XTEN 202, or the reverse order. In another embodiment, as illustrated in FIG. 2D, the construct comprises polynucleotide sequences complementary to, or those that encode a monomeric polypeptide of components in the following order (5′ to 3′): two molecules of GH 203, spacer sequence 204, and XTEN 202, or the reverse order. In another embodiment, as illustrated in FIG. 2E, the construct comprises polynucleotide sequences complementary to, or those that encode a monomeric polypeptide of components in the following order (5′ to 3′): GH 203, spacer sequence 204, a second molecule of GH 203, and XTEN 202, or the reverse order. In another embodiment, as illustrated in FIG. 2F, the construct comprises polynucleotide sequences complementary to, or those that encode a monomeric polypeptide of components in the following order (5′ to 3′): GH 203, XTEN 202, GH 203, and a second XTEN 202, or the reverse sequence. The spacer polynucleotides can optionally comprise sequences encoding cleavage sequences. As will be apparent to those of skill in the art, other permutations of the foregoing are possible.


The invention also encompasses polynucleotides comprising XTEN-encoding polynucleotide variants that have a high percentage of sequence identity to (a) a polynucleotide sequence from Table 7, or (b) sequences that are complementary to the polynucleotides of (a). A polynucleotide with a high percentage of sequence identity is one that has at least about an 80% nucleic acid sequence identity, alternatively at least about 81%, alternatively at least about 82%, alternatively at least about 83%, alternatively at least about 84%, alternatively at least about 85%, alternatively at least about 86%, alternatively at least about 87%, alternatively at least about 88%, alternatively at least about 89%, alternatively at least about 90%, alternatively at least about 91%, alternatively at least about 92%, alternatively at least about 93%, alternatively at least about 94%, alternatively at least about 95%, alternatively at least about 96%, alternatively at least about 97%, alternatively at least about 98%, and alternatively at least about 99% nucleic acid sequence identity to (a) or (b) of the foregoing, or that can hybridize with the target polynucleotide or its complement under stringent conditions.


Homology, sequence similarity or sequence identity of nucleotide or amino acid sequences may also be determined conventionally by using known software or computer programs such as the BestFit or Gap pairwise comparison programs (GCG Wisconsin Package, Genetics Computer Group, 575 Science Drive, Madison, Wis. 53711). BestFit uses the local homology algorithm of Smith and Waterman (Advances in Applied Mathematics. 1981. 2: 482-489), to find the best segment of identity or similarity between two sequences. Gap performs global alignments: all of one sequence with all of another similar sequence using the method of Needleman and Wunsch, (Journal of Molecular Biology. 1970. 48:443-453). When using a sequence alignment program such as BestFit, to determine the degree of sequence homology, similarity or identity, the default setting may be used, or an appropriate scoring matrix may be selected to optimize identity, similarity or homology scores.


Nucleic acid sequences that are “complementary” are those that are capable of base-pairing according to the standard Watson-Crick complementarity rules. As used herein, the term “complementary sequences” means nucleic acid sequences that are substantially complementary, as may be assessed by the same nucleotide comparison set forth above, or as defined as being capable of hybridizing to the polynucleotides that encode the GHXTEN sequences under stringent conditions, such as those described herein.


The resulting polynucleotides encoding the GHXTEN chimeric fusion proteins can then be individually cloned into an expression vector. The nucleic acid sequence is inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art. Vector components generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques which are known to the skilled artisan. Such techniques are well known in the art and well described in the scientific and patent literature.


Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. The invention provides for the use of plasmid vectors containing replication and control sequences that are compatible with and recognized by the host cell, and are operably linked to the GHXTEN gene for controlled expression of the GHXTEN fusion proteins. The vector ordinarily carries a replication site, as well as sequences that encode proteins that are capable of providing phenotypic selection in transformed cells. Such vector sequences are well known for a variety of bacteria, yeast, and viruses. Useful expression vectors that can be used include, for example, segments of chromosomal, non-chromosomal and synthetic DNA sequences. “Expression vector” refers to a DNA construct containing a DNA sequence that is operably linked to a suitable control sequence capable of effecting the expression of the DNA encoding the fusion protein in a suitable host. Such control sequences include a promoter to effect transcription, an optional operator sequence to control such transcription, a sequence encoding suitable mRNA ribosome binding sites, and sequences that control termination of transcription and translation. Other suitable vectors include, but are not limited to, derivatives of SV40 and pcDNA and known bacterial plasmids such as col EI, pCR1, pBR322, pMal-C2, pET, pGEX as described by Smith, et al., Gene 57:31-40 (1988), pMB9 and derivatives thereof, plasmids such as RP4, phage DNAs such as the numerous derivatives of phage I such as NM98 9, as well as other phage DNA such as M13 and filamentous single stranded phage DNA; yeast plasmids such as the 2 micron plasmid or derivatives of the 2m plasmid, as well as centomeric and integrative yeast shuttle vectors; vectors useful in eukaryotic cells such as vectors useful in insect or mammalian cells; vectors derived from combinations of plasmids and phage DNAs, such as plasmids that have been modified to employ phage DNA or the expression control sequences; and the like. The requirements are that the vectors are replicable and viable in the host cell of choice. Low- or high-copy number vectors may be used as desired.


Promoters suitable for use in expression vectors with prokaryotic hosts include the β-lactamase and lactose promoter systems [Chang et al., Nature, 275:615 (1978); Goeddel et al., Nature, 281:544 (1979)], alkaline phosphatase, a tryptophan (trp) promoter system [Goeddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., Proc. Natl. Acad. Sci. USA, 80:21-25 (1983)], all would be operably linked to the DNA encoding GHXTEN polypeptides. Promoters for use in bacterial systems can also contain a Shine-Dalgarno (S.D.) sequence, operably linked to the DNA encoding GHXTEN polypeptides.


The invention contemplates use of other expression systems including, for example, a baculovirus expression system with both non-fusion transfer vectors, such as, but not limited to pVL941 Summers, et al., Virology 84:390-402 (1978)), pVL1393 (Invitrogen), pVL1392 (Summers, et al., Virology 84:390-402 (1978) and Invitrogen) and pBlueBacIII (Invitrogen), and fusion transfer vectors such as, but not limited to, pAc7 00 (Summers, et al., Virology 84:390-402 (1978)), pAc701 and pAc70-2 (same as pAc700, with different reading frames), pAc360 Invitrogen) and pBlueBacHisA, B, C (; Invitrogen) can be used.


Mammalian expression vectors can comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5′ flanking nontranscribed sequences. DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Mammalian expression vectors contemplated for use in the invention include vectors with inducible promoters, such as the dihydrofolate reductase promoters, any expression vector with a DHFR expression cassette or a DHFR/methotrexate co-amplification vector such as pED (Randal J. Kaufman, 1991, Randal J. Kaufman, Current Protocols in Molecular Biology, 16, 12 (1991)). Alternatively a glutamine synthetase/methionine sulfoximine co-amplification vector, such as pEE14 (Celltech). A vector that directs episomal expression under the control of the Epstein Barr Virus (EBV) or nuclear antigen (EBNA) can be used such as pREP4 (Invitrogen), pCEP4 (Invitrogen), pMEP4 (Invitrogen), pREP8 (Invitrogen), pREP9 (Invitrogen), and pEBVHis (Invitrogen).


Selectable mammalian expression vectors for use in the invention include, but are not limited to, pRc/CMV (Invitrogen), pRc/RSV (Invitrogen) and the like. Vaccinia virus mammalian expression vectors (see, for example, Randall J. Kaufman, Current Protocols in Molecular Biology 16.12 (Frederick M. Ausubel, et al., eds. Wiley 1991) that can be used in the present invention include, but are not limited to, pSC 11, pMJ601 pTKgptFlSand the like.


Yeast expression systems that can also be used in the present invention include, but are not limited to, the non-fusion pYES2 vector (Invitrogen), the fusion pYESHisA, B, C (Invitrogen), pRS vectors and the like.


In addition, the expression vector containing the chimeric GHXTEN fusion protein-encoding polynucleotide molecule may include drug selection markers. Such markers aid in cloning and in the selection or identification of vectors containing chimeric DNA molecules. For example, genes that confer resistance to neomycin, puromycin, hygromycin, dihydrofolate reductase (DHFR) inhibitor, guanine phosphoribosyl transferase (GPT), zeocin, and histidinol are useful selectable markers. Alternatively, enzymes such as herpes simplex virus thymidine kinase (tk) or chloramphenicol acetyltransferase (CAT) may be employed. Immunologic markers also can be employed. Any known selectable marker may be employed so long as it is capable of being expressed simultaneously with the nucleic acid encoding a gene product. Further examples of selectable markers are well known to one of skill in the art and include reporters such as enhanced green fluorescent protein (EGFP), beta-galactosidase (β-gal) or chloramphenicol acetyltransferase (CAT).


In one embodiment, the polynucleotide encoding a GHXTEN fusion protein composition is fused C-terminally to an N-terminal signal sequence appropriate for the expression host system. Signal sequences are typically proteolytically removed from the protein during the translocation and secretion process, generating a defined N-terminus. A wide variety of signal sequences have been described for most expression systems, including bacterial, yeast, insect, and mammalian systems. A non-limiting list of preferred examples for each expression system follows herein. Preferred signal sequences are OmpA, PhoA, and DsbA for E. coli expression. Signal peptides preferred for yeast expression are ppL-alpha, DEX4, invertase signal peptide, acid phosphatase signal peptide, CPY, or INU1. For insect cell expression the preferred signal sequences are sexta adipokinetic hormone precursor, CP1, CP2, CP3, CP4, TPA, PAP, or gp67. For mammalian expression the preferred signal sequences are IL2L, SV40, IgG kappa and IgG lambda.


In another embodiment, a leader sequence, potentially comprising a well-expressed, independent protein domain, can be fused to the N-terminus of the GHXTEN sequence, separated by a protease cleavage site. While any leader peptide sequence which does not inhibit cleavage at the designed proteolytic site can be used, sequences in preferred embodiments will comprise stable, well-expressed sequences such that expression and folding of the overall composition is not significantly adversely affected, and preferably expression, solubility, and/or folding efficiency are significantly improved. A wide variety of suitable leader sequences have been described in the literature. A non-limiting list of suitable sequences includes maltose binding protein, cellulose binding domain, glutathione S-transferase, 6×His tag (SEQ ID NO: 126), FLAG tag, hemaglutinin tag, and green fluorescent protein. The leader sequence can also be further improved by codon optimization, especially in the second codon position following the ATG start codon, by methods well described in the literature and hereinabove.


Various in vitro enzymatic methods for cleaving proteins at specific sites are known. Such methods include use of enterokinase (DDDK (SEQ ID NO: 127)), Factor Xa (IDGR (SEQ ID NO: 128)), thrombin (LVPRGS (SEQ ID NO: 129)), PreScission™ (LEVLFQGP (SEQ ID NO: 130)), TEV protease (EQLYFQG (SEQ ID NO: 131)), 3C protease (ETLFQGP (SEQ ID NO: 132)), Sortase A (LPETG (SEQ ID NO: 133)), Granzyme B (D/X, N/X, M/N or S/X), inteins, SUMO, DAPase (TAGZyme™), Aeromonas aminopeptidase, Aminopeptidase M, and carboxypeptidases A and B. Additional methods are disclosed in Arnau, et al., Protein Expression and Purification 48: 1-13 (2006).


In other cases, the invention provides constructs and methods of making constructs comprising an polynucleotide sequence optimized for expression that encodes at least about 20 to about 60 amino acids with XTEN characteristics that can be included at the N-terminus of an XTEN carrier encoding sequence (in other words, the polynucleotides encoding the 20-60 encoded optimized amino acids are linked in frame to polynucleotides encoding an XTEN component that is N-terminal to GH) to promote the initiation of translation to allow for expression of XTEN fusions at the N-terminus of proteins without the presence of a helper domain. In an advantage of the foregoing, the sequence does not require subsequent cleavage, thereby reducing the number of steps to manufacture XTEN-containing compositions. As described in more detail in the Examples, the optimized N-terminal sequence has attributes of an unstructured protein, but may include nucleotide bases encoding amino acids selected for their ability to promote initiation of translation and enhanced expression. In one embodiment of the foregoing, the optimized polynucleotide encodes an XTEN sequence with at least about 90% sequence identity to AE912. In another embodiment of the foregoing, the optimized polynucleotide encodes an XTEN sequence with at least about 90% sequence identity to AM923. In another embodiment of the foregoing, the optimized polynucleotide encodes an XTEN sequence with at least about 90% sequence identity to AE48. In another embodiment of the foregoing, the optimized polynucleotide encodes an XTEN sequence with at least about 90% sequence identity to AM48. In one embodiment, the optimized polynucleotide NTS comprises a sequence that exhibits at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%, sequence identity to a sequence or its complement selected from









AE 48:


(SEQ ID NO: 134)


5′-ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAGGAAGGTACCCC





GGGTAGCGGTACTGCTTCTTCCTCTCCAGGTAGCTCTACCCCTTCTGGTG





CAACCGGCTCTCCAGGTGCTTCTCCGGGCACCAGCTCTACCGGTTCTCC





A-3′


and





AM 48:


(SEQ ID NO: 135)


5′-ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAGGAAGGTGCATC





CCCGGGCACCAGCTCTACCGGTTCTCCAGGTAGCTCTACCCCGTCTGGTG





CTACCGGCTCTCCAGGTAGCTCTACCCCGTCTGGTGCTACTGGCTCTCC





A-3′






In another embodiment, the protease site of the leader sequence construct is chosen such that it is recognized by an in vivo protease. In this embodiment, the protein is purified from the expression system while retaining the leader by avoiding contact with an appropriate protease. The full-length construct is then injected into a patient. Upon injection, the construct comes into contact with the protease specific for the cleavage site and is cleaved by the protease. In the case where the uncleaved protein is substantially less active than the cleaved form, this method has the beneficial effect of allowing higher initial doses while avoiding toxicity, as the active form is generated slowly in vivo. Some non-limiting examples of in vivo proteases which are useful for this application include tissue kallikrein, plasma kallikrein, trypsin, pepsin, chymotrypsin, thrombin, and matrix metalloproteinases, or the proteases of Table 6.


In this manner, a chimeric DNA molecule coding for a monomeric GHXTEN fusion protein is generated within the construct. Optionally, this chimeric DNA molecule may be transferred or cloned into another construct that is a more appropriate expression vector. At this point, a host cell capable of expressing the chimeric DNA molecule can be transformed with the chimeric DNA molecule. The vectors containing the DNA segments of interest can be transferred into the host cell by well-known methods, depending on the type of cellular host. For example, calcium chloride transfection is commonly utilized for prokaryotic cells, whereas calcium phosphate treatment, lipofection, or electroporation may be used for other cellular hosts. Other methods used to transform mammalian cells include the use of polybrene, protoplast fusion, liposomes, electroporation, and microinjection. See, generally, Sambrook, et al., supra.


The transformation may occur with or without the utilization of a carrier, such as an expression vector. Then, the transformed host cell is cultured under conditions suitable for expression of the chimeric DNA molecule encoding of GHXTEN.


The present invention also provides a host cell for expressing the monomeric fusion protein compositions disclosed herein. Examples of suitable eukaryotic host cells include, but are not limited to mammalian cells, such as VERO cells, HELA cells such as ATCC No. CCL2, CHO cell lines, COS cells, W138 cells, BHK cells, HepG2 cells, 3T3 cells, A549 cells, PC12 cells, K562 cells, 293 cells, Sf9 cells and CvI cells. Examples of suitable non-mammalian eukaryotic cells include eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for encoding vectors. Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism. Others include Schizosaccharomyces pombe (Beach and Nurse, Nature, 290: 140 [1981]; EP 139,383 published 2 May 1985); Kluyveromyces hosts (U.S. Pat. No. 4,943,529; Fleer et al., Bio/Technology, 9:968-975 (1991)) such as, e.g., K. lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacteriol., 737 [1983]), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K drosophilarum (ATCC 36,906; Van den Berg et al., Bio/Technology, 8:135 (1990)), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol., 28:265-278 [1988]); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76:5259-5263 [1979]); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published 31 Oct. 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 Jan. 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun., 112:284-289 [1983]; Tilburn et al., Gene, 26:205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci. USA, 81: 1470-1474 [1984]) and A. niger (Kelly and Hynes, EMBO J., 4:475-479 [1985]). Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis, and Rhodotorula. A list of specific species that are exemplary of this class of yeasts may be found in C. Anthony, The Biochemistry of Methylotrophs, 269 (1982).


Other suitable cells that can be used in the present invention include, but are not limited to, prokaryotic host cells strains such as Escherichia coli, (e.g., strain DH5-a), Bacillus subtilis, Salmonella typhimurium, or strains of the genera of Pseudomonas, Streptomyces and Staphylococcus. Non-limiting examples of suitable prokaryotes include those from the genera: Actinoplanes; Archaeoglobus; Bdellovibrio; Borrelia; Chloroflexus; Enterococcus; Escherichia; Lactobacillus; Listeria; Oceanobacillus; Paracoccus; Pseudomonas; Staphylococcus; Streptococcus; Streptomyces; Thermoplasma; and Vibrio. Non-limiting examples of specific strains include: Archaeoglobus fulgidus; Bdellovibrio bacteriovorus; Borrelia burgdorferi; Chloroflexus aurantiacus; Enterococcus faecalis; Enterococcus faecium; Lactobacillus johnsonii; Lactobacillus plantarum; Lactococcus lactis; Listeria innocua; Listeria monocytogenes; Oceanobacillus iheyensis; Paracoccus zeaxanthinifaciens; Pseudomonas mevalonii; Staphylococcus aureus; Staphylococcus epidermidis; Staphylococcus haemolyticus; Streptococcus agalactiae; Streptomyces griseolosporeus; Streptococcus mutans; Streptococcus pneumoniae; Streptococcus pyogenes; Thermoplasma acidophilum; Thermoplasma volcanium; Vibrio cholerae; Vibrio parahaemolyticus; and Vibrio vulnificus.


Host cells containing the polynucleotides of interest can be cultured in conventional nutrient media (e.g., Ham's nutrient mixture) modified as appropriate for activating promoters, selecting transformants or amplifying genes. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification. For compositions secreted by the host cells, supernatant from centrifugation is separated and retained for further purification. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, all of which are well known to those skilled in the art. Embodiments that involve cell lysis may entail use of a buffer that contains protease inhibitors that limit degradation after expression of the chimeric DNA molecule. Suitable protease inhibitors include, but are not limited to leupeptin, pepstatin or aprotinin. The supernatant then may be precipitated in successively increasing concentrations of saturated ammonium sulfate.


Gene expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas, Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.


Gene expression, alternatively, may be measured by immunological of fluorescent methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids or the detection of selectable markers, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native sequence GH polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to GH and encoding a specific antibody epitope. Examples of selectable markers are well known to one of skill in the art and include reporters such as enhanced green fluorescent protein (EGFP), beta-galactosidase (β-gal) or chloramphenicol acetyltransferase (CAT). Expressed GHXTEN polypeptide product(s) may be purified via methods known in the art or by methods disclosed herein. Procedures such as gel filtration, affinity purification, salt fractionation, ion exchange chromatography, size exclusion chromatography, hydroxyapatite adsorption chromatography, hydrophobic interaction chromatography and gel electrophoresis may be used; each tailored to recover and purify the fusion protein produced by the respective host cells. Some expressed GHXTEN may require refolding during isolation and purification. Methods of purification are described in Robert K. Scopes, Protein Purification Principles and Practice, Charles R. Castor (ed.), Springer-Verlag 1994, and Sambrook, et al., supra. Multi-step purification separations are also described in Baron, et al., Crit. Rev. Biotechnol. 10:179-90 (1990) and Below, et al., J. Chromatogr. A. 679:67-83 (1994).


VIII). Pharmaceutical Compositions


The present invention provides pharmaceutical compositions comprising GHXTEN. In one embodiment, the pharmaceutical composition comprises the GHXTEN fusion protein and at least one pharmaceutically acceptable carrier. GHXTEN polypeptides of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby the polypeptide is combined in admixture with a pharmaceutically acceptable carrier vehicle, such as aqueous solutions or buffers, pharmaceutically acceptable suspensions and emulsions. Examples of non-aqueous solvents include propyl ethylene glycol, polyethylene glycol and vegetable oils. Therapeutic formulations are prepared for storage by mixing the active ingredient having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers, as described in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980), in the form of lyophilized formulations or aqueous solutions.


The pharmaceutical compositions can be administered orally, intranasally, parenterally or by inhalation therapy, and may take the form of tablets, lozenges, granules, capsules, pills, ampoules, suppositories or aerosol form. They may also take the form of suspensions, solutions and emulsions of the active ingredient in aqueous or nonaqueous diluents, syrups, granulates or powders. In addition, the pharmaceutical compositions can also contain other pharmaceutically active compounds or a plurality of compounds of the invention.


More particularly, the present pharmaceutical compositions may be administered for therapy by any suitable route including oral, rectal, nasal, topical (including transdermal, aerosol, buccal and sublingual), vaginal, parenteral (including subcutaneous, subcutaneous by infusion pump, intramuscular, intravenous and intradermal), intravitreal, and pulmonary. It will also be appreciated that the preferred route will vary with the condition and age of the recipient, and the disease being treated.


In one embodiment, the pharmaceutical composition is administered subcutaneously. In this embodiment, the composition may be supplied as a lyophilized powder to be reconstituted prior to administration. The composition may also be supplied in a liquid form, which can be administered directly to a patient. In one embodiment, the composition is supplied as a liquid in a pre-filled syringe such that a patient can easily self-administer the composition.


Extended release formulations useful in the present invention may be oral formulations comprising a matrix and a coating composition. Suitable matrix materials may include waxes (e.g., carnauba, bees wax, paraffin wax, ceresine, shellac wax, fatty acids, and fatty alcohols), oils, hardened oils or fats (e.g., hardened rapeseed oil, castor oil, beef tallow, palm oil, and soya bean oil), and polymers (e.g., hydroxypropyl cellulose, polyvinylpyrrolidone, hydroxypropyl methyl cellulose, and polyethylene glycol). Other suitable matrix tabletting materials are microcrystalline cellulose, powdered cellulose, hydroxypropyl cellulose, ethyl cellulose, with other carriers, and fillers. Tablets may also contain granulates, coated powders, or pellets. Tablets may also be multi-layered. Multi-layered tablets are especially preferred when the active ingredients have markedly different pharmacokinetic profiles. Optionally, the finished tablet may be coated or uncoated.


The coating composition may comprise an insoluble matrix polymer and/or a water soluble material. Water soluble materials can be polymers such as polyethylene glycol, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol, or monomeric materials such as sugars (e.g., lactose, sucrose, fructose, mannitol and the like), salts (e.g., sodium chloride, potassium chloride and the like), organic acids (e.g., fumaric acid, succinic acid, lactic acid, and tartaric acid), and mixtures thereof. Optionally, an enteric polymer may be incorporated into the coating composition. Suitable enteric polymers include hydroxypropyl methyl cellulose, acetate succinate, hydroxypropyl methyl cellulose, phthalate, polyvinyl acetate phthalate, cellulose acetate phthalate, cellulose acetate trimellitate, shellac, zein, and polymethacrylates containing carboxyl groups. The coating composition may be plasticised by adding suitable plasticisers such as, for example, diethyl phthalate, citrate esters, polyethylene glycol, glycerol, acetylated glycerides, acetylated citrate esters, dibutylsebacate, and castor oil. The coating composition may also include a filler, which can be an insoluble material such as silicon dioxide, titanium dioxide, talc, kaolin, alumina, starch, powdered cellulose, MCC, or polacrilin potassium. The coating composition may be applied as a solution or latex in organic solvents or aqueous solvents or mixtures thereof. Solvents such as water, lower alcohol, lower chlorinated hydrocarbons, ketones, or mixtures thereof may be used.


The compositions of the invention may be formulated using a variety of excipients. Suitable excipients include microcrystalline cellulose (e.g. Avicel PH102, Avicel PH101), polymethacrylate, poly(ethyl acrylate, methyl methacrylate, trimethylammonioethyl methacrylate chloride) (such as Eudragit RS-30D), hydroxypropyl methylcellulose (Methocel K100M, Premium CR Methocel K100M, Methocel E5, Opadry®), magnesium stearate, talc, triethyl citrate, aqueous ethylcellulose dispersion (Surelease®), and protamine sulfate. The slow release agent may also comprise a carrier, which can comprise, for example, solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents. Pharmaceutically acceptable salts can also be used in these slow release agents, for example, mineral salts such as hydrochlorides, hydrobromides, phosphates, or sulfates, as well as the salts of organic acids such as acetates, proprionates, malonates, or benzoates. The composition may also contain liquids, such as water, saline, glycerol, and ethanol, as well as substances such as wetting agents, emulsifying agents, or pH buffering agents. Liposomes may also be used as a carrier.


In another embodiment, the compositions of the present invention are encapsulated in liposomes, which have demonstrated utility in delivering beneficial active agents in a controlled manner over prolonged periods of time. Liposomes are closed bilayer membranes containing an entrapped aqueous volume. Liposomes may also be unilamellar vesicles possessing a single membrane bilayer or multilamellar vesicles with multiple membrane bilayers, each separated from the next by an aqueous layer. The structure of the resulting membrane bilayer is such that the hydrophobic (non-polar) tails of the lipid are oriented toward the center of the bilayer while the hydrophilic (polar) heads orient towards the aqueous phase. In one embodiment, the liposome may be coated with a flexible water soluble polymer that avoids uptake by the organs of the mononuclear phagocyte system, primarily the liver and spleen. Suitable hydrophilic polymers for surrounding the liposomes include, without limitation, PEG, polyvinylpyrrolidone, polyvinylmethylether, polymethyloxazoline, polyethyloxazoline, polyhydroxypropyloxazoline, polyhydroxypropylmethacrylamide, polymethacrylamide, polydimethylacrylamide, polyhydroxypropylmethacrylate, polyhydroxethylacrylate, hydroxymethylcellulose hydroxyethylcellulose, polyethyleneglycol, polyaspartamide and hydrophilic peptide sequences as described in U.S. Pat. Nos. 6,316,024; 6,126,966; 6,056,973; 6,043,094, the contents of which are incorporated by reference in their entirety.


Liposomes may be comprised of any lipid or lipid combination known in the art. For example, the vesicle-forming lipids may be naturally-occurring or synthetic lipids, including phospholipids, such as phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid, phosphatidylserine, phasphatidylglycerol, phosphatidylinositol, and sphingomyelin as disclosed in U.S. Pat. Nos. 6,056,973 and 5,874,104. The vesicle-forming lipids may also be glycolipids, cerebrosides, or cationic lipids, such as 1,2-dioleyloxy-3-(trimethylamino) propane (DOTAP); N-[1-(2,3,-ditetradecyloxy)propyl]-N,N-dimethyl-N-hydroxyethylammonium bromide (DMRIE); N-[1-(2,3,-dioleyloxy)propyl]-N,N-dimethyl-N-hydroxy ethylammonium bromide (DORIE); N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA); 3 [N—(N′,N′-dimethylaminoethane) carbamoly] cholesterol (DC-Chol); or dimethyldioctadecylammonium (DDAB) also as disclosed in U.S. Pat. No. 6,056,973. Cholesterol may also be present in the proper range to impart stability to the vesicle as disclosed in U.S. Pat. Nos. 5,916,588 and 5,874,104.


Additional liposomal technologies are described in U.S. Pat. Nos. 6,759,057; 6,406,713; 6,352,716; 6,316,024; 6,294,191; 6,126,966; 6,056,973; 6,043,094; 5,965,156; 5,916,588; 5,874,104; 5,215,680; and 4,684,479, the contents of which are incorporated herein by reference. These describe liposomes and lipid-coated microbubbles, and methods for their manufacture. Thus, one skilled in the art, considering both the disclosure of this invention and the disclosures of these other patents could produce a liposome for the extended release of the polypeptides of the present invention.


For liquid formulations, a desired property is that the formulation be supplied in a form that can pass through a 25, 28, 30, 31, 32 gauge needle for intravenous, intramuscular, intraarticular, or subcutaneous administration.


Administration via transdermal formulations can be performed using methods also known in the art, including those described generally in, e.g., U.S. Pat. Nos. 5,186,938 and 6,183,770, 4,861,800, 6,743,211, 6,945,952, 4,284,444, and WO 89/09051, incorporated herein by reference in their entireties. A transdermal patch is a particularly useful embodiment with polypeptides having absorption problems. Patches can be made to control the release of skin-permeable active ingredients over a 12 hour, 24 hour, 3 day, and 7 day period. In one example, a 2-fold daily excess of a polypeptide of the present invention is placed in a non-volatile fluid. The compositions of the invention are provided in the form of a viscous, non-volatile liquid. The penetration through skin of specific formulations may be measures by standard methods in the art (for example, Franz et al., J. Invest. Derm. 64:194-195 (1975)). Examples of suitable patches are passive transfer skin patches, iontophoretic skin patches, or patches with microneedles such as Nicoderm.


In other embodiments, the composition may be delivered via intranasal, buccal, or sublingual routes to the brain to enable transfer of the active agents through the olfactory passages into the CNS and reducing the systemic administration. Devices commonly used for this route of administration are included in U.S. Pat. No. 6,715,485. Compositions delivered via this route may enable increased CNS dosing or reduced total body burden reducing systemic toxicity risks associated with certain drugs. Preparation of a pharmaceutical composition for delivery in a subdermally implantable device can be performed using methods known in the art, such as those described in, e.g., U.S. Pat. Nos. 3,992,518; 5,660,848; and 5,756,115.


Osmotic pumps may be used as slow release agents in the form of tablets, pills, capsules or implantable devices. Osmotic pumps are well known in the art and readily available to one of ordinary skill in the art from companies experienced in providing osmotic pumps for extended release drug delivery. Examples are ALZA's DUROS™; ALZA's OROS™; Osmotica Pharmaceutical's Osmodex™ system; Shire Laboratories' EnSoTrol™ system; and Alzet™. Patents that describe osmotic pump technology are U.S. Pat. Nos. 6,890,918; 6,838,093; 6,814,979; 6,713,086; 6,534,090; 6,514,532; 6,361,796; 6,352,721; 6,294,201; 6,284,276; 6,110,498; 5,573,776; 4,200,0984; and 4,088,864, the contents of which are incorporated herein by reference. One skilled in the art, considering both the disclosure of this invention and the disclosures of these other patents could produce an osmotic pump for the extended release of the polypeptides of the present invention.


Syringe pumps may also be used as slow release agents. Such devices are described in U.S. Pat. Nos. 4,976,696; 4,933,185; 5,017,378; 6,309,370; 6,254,573; 4,435,173; 4,398,908; 6,572,585; 5,298,022; 5,176,502; 5,492,534; 5,318,540; and 4,988,337, the contents of which are incorporated herein by reference. One skilled in the art, considering both the disclosure of this invention and the disclosures of these other patents could produce a syringe pump for the extended release of the compositions of the present invention. A.


IX). Pharmaceutical Kits


In another aspect, the invention provides a kit to facilitate the use of the GHXTEN polypeptides. The kit comprises the pharmaceutical composition provided herein, a label identifying the pharmaceutical composition, and an instruction for storage, reconstitution and/or administration of the pharmaceutical compositions to a subject In some embodiment, the kit comprises, preferably: (a) an amount of a GHXTEN fusion protein composition sufficient to treat a disease, condition or disorder upon administration to a subject in need thereof; and (b) an amount of a pharmaceutically acceptable carrier; together in a formulation ready for injection or for reconstitution with sterile water, buffer, or dextrose; together with a label identifying the GHXTEN drug and storage and handling conditions, and a sheet of the approved indications for the drug, instructions for the reconstitution and/or administration of the GHXTEN drug for the use for the prevention and/or treatment of a approved indication, appropriate dosage and safety information, and information identifying the lot and expiration of the drug. In another embodiment of the foregoing, the kit can comprise a second container that can carry a suitable diluent for the GHXTEN composition, which will provide the user with the appropriate concentration of GHXTEN to be delivered to the subject.


EXAMPLES
Example 1
Construction of XTEN_AD36 Motif Segments

The following example describes the construction of a collection of codon-optimized genes encoding motif sequences of 36 amino acids. As a first step, a stuffer vector pCW0359 was constructed based on a pET vector and that includes a T7 promoter. pCW0359 encodes a cellulose binding domain (CBD) and a TEV protease recognition site followed by a stuffer sequence that is flanked by BsaI, BbsI, and KpnI sites. The BsaI and BbsI sites were inserted such that they generate compatible overhangs after digestion. The stuffer sequence is followed by a truncated version of the GFP gene and a His tag. The stuffer sequence contains stop codons and thus E. coli cells carrying the stuffer plasmid pCW0359 form non-fluorescent colonies. The stuffer vector pCW0359 was digested with BsaI and KpnI to remove the stuffer segment and the resulting vector fragment was isolated by agarose gel purification. The sequences were designated XTEN_AD36, reflecting the AD family of motifs. Its segments have the amino acid sequence [X]3 where X is a 12mer peptide with the sequences: GESPGGSSGSES (SEQ ID NO: 136), GSEGSSGPGESS (SEQ ID NO: 137), GSSESGSSEGGP (SEQ ID NO: 138), or GSGGEPSESGSS (SEQ ID NO: 139). The insert was obtained by annealing the following pairs of phosphorylated synthetic oligonucleotide pairs:









(SEQ ID NO: 140)








AD1for:
AGGTGAATCTCCDGGTGGYTCYAGCGGTTCYGARTC










(SEQ ID NO: 141)








AD1rev:
ACCTGAYTCRGAACCGCTRGARCCACCHGGAGATTC










(SEQ ID NO: 142)








AD2for:
AGGTAGCGAAGGTTCTTCYGGTCCDGGYGARTCYTC










(SEQ ID NO: 143)








AD2rev:
ACCTGARGAYTCRCCHGGACCRGAAGAACCTTCGCT










(SEQ ID NO: 144)








AD3for:
AGGTTCYTCYGAAAGCGGTTCTTCYGARGGYGGTCC










(SEQ ID NO: 145)








AD3rev:
ACCTGGACCRCCYTCRGAAGAACCGCTTTCRGARGA










(SEQ ID NO: 146)








AD4for:
AGGTTCYGGTGGYGAACCDTCYGARTCTGGTAGCTC






We also annealed the phosphorylated oligonucleotide 3 KpnIstopperFor: AGGTTCGTCTTCACTCGAGGGTAC (SEQ ID NO: 147) and the non-phosphorylated oligonucleotide pr3 KpnIstopperRev: CCTCGAGTGAAGACGA (SEQ ID NO: 148). The annealed oligonucleotide pairs were ligated, which resulted in a mixture of products with varying length that represents the varying number of 12mer repeats ligated to one BbsI/KpnI segment. The products corresponding to the length of 36 amino acids were isolated from the mixture by preparative agarose gel electrophoresis and ligated into the BsaI/KpnI digested stuffer vector pCW0359. Most of the clones in the resulting library designated LCW0401 showed green fluorescence after induction, which shows that the sequence of XTEN_AD36 had been ligated in frame with the GFP gene and that most sequences of XTEN_AD36 had good expression levels.


We screened 96 isolates from library LCW0401 for high level of fluorescence by stamping them onto agar plate containing IPTG. The same isolates were evaluated by PCR and 48 isolates were identified that contained segments with 36 amino acids as well as strong fluorescence. These isolates were sequenced and 39 clones were identified that contained correct XTEN_AD36 segments. The file names of the nucleotide and amino acid constructs for these segments are listed in Table 8.









TABLE 8







DNA and Amino Acid Sequences for 36-mer motifs












Amino acid
SEQ

SEQ


File name
sequence
ID NO:
Nucleotide sequence
ID NO:





LCW0401_001_
GSGGEPSESGSSGESPGG
149
GGTTCTGGTGGCGAACCGTCCGAG
150


GFP-N_A01.ab1
SSGSESGESPGGSSGSES

TCTGGTAGCTCAGGTGAATCTCCG






GGTGGCTCTAGCGGTTCCGAGTCA






GGTGAATCTCCTGGTGGTTCCAGC






GGTTCCGAGTCA






LCW0401_002_
GSEGSSGPGESSGESPGG
151
GGTAGCGAAGGTTCTTCTGGTCCT
152


GFP-N_B01.ab1
SSGSESGSSESGSSEGGP

GGCGAGTCTTCAGGTGAATCTCCT






GGTGGTTCCAGCGGTTCTGAATCA






GGTTCCTCCGAAAGCGGTTCTTCC






GAGGGCGGTCCA






LCW0401_003_
GSSESGSSEGGPGSSESG
153
GGTTCCTCTGAAAGCGGTTCTTCC
154


GFP-N_C01.ab1
SSEGGPGESPGGSSGSES

GAAGGTGGTCCAGGTTCCTCTGAA






AGCGGTTCTTCTGAGGGTGGTCCA






GGTGAATCTCCGGGTGGCTCCAGC






GGTTCCGAGTCA






LCW0401_004_
GSGGEPSESGSSGSSESG
155
GGTTCCGGTGGCGAACCGTCTGAA
156


GFP-N_D01.ab1
SSEGGPGSGGEPSESGSS

TCTGGTAGCTCAGGTTCTTCTGAA






AGCGGTTCTTCCGAGGGTGGTCCA






GGTTCTGGTGGTGAACCTTCCGAG






TCTGGTAGCTCA






LCW0401_007_
GSSESGSSEGGPGSEGSS
157
GGTTCTTCCGAAAGCGGTTCTTCT
158


GFP-N_F01.ab1
GPGESSGSEGSSGPGESS

GAGGGTGGTCCAGGTAGCGAAGGT






TCTTCCGGTCCAGGTGAGTCTTCA






GGTAGCGAAGGTTCTTCTGGTCCT






GGTGAATCTTCA






LCW0401_008_
GSSESGSSEGGPGESPGG
159
GGTTCCTCTGAAAGCGGTTCTTCC
160


GFP-N_G01.ab1
SSGSESGSEGSSGPGESS

GAGGGTGGTCCAGGTGAATCTCCA






GGTGGTTCCAGCGGTTCTGAGTCA






GGTAGCGAAGGTTCTTCTGGTCCA






GGTGAATCCTCA






LCW0401_012_
GSGGEPSESGSSGSGGEP
161
GGTTCTGGTGGTGAACCGTCTGAG
162


GFP-N_H01.ab1
SESGSSGSEGSSGPGESS

TCTGGTAGCTCAGGTTCCGGTGGC






GAACCATCCGAATCTGGTAGCTCA






GGTAGCGAAGGTTCTTCCGGTCCA






GGTGAGTCTTCA






LCW0401_015_
GSSESGSSEGGPGSEGSS
163
GGTTCTTCCGAAAGCGGTTCTTCC
164


GFP-N_A02.ab1
GPGESSGESPGGSSGSES

GAAGGCGGTCCAGGTAGCGAAGGT






TCTTCTGGTCCAGGCGAATCTTCA






GGTGAATCTCCTGGTGGCTCCAGC






GGTTCTGAGTCA






LCW0401_016_
GSSESGSSEGGPGSSESG
165
GGTTCCTCCGAAAGCGGTTCTTCT
166


GFP-N_B02.ab1
SSEGGPGSSESGSSEGGP

GAGGGCGGTCCAGGTTCCTCCGAA






AGCGGTTCTTCCGAGGGCGGTCCA






GGTTCTTCTGAAAGCGUTTCTTCC






GAGGGCGGTCCA






LCW0401_020_
GSGGEPSESGSSGSEGSS
167
GGTTCCGGTGGCGAACCGTCCGAA
168


GFP-N_E02.ab1
GPGESSGSSESGSSEGGP

TCTGGTAGCTCAGGTAGCGAAGGT






TCTTCTGGTCCAGGCGAATCTTCA






GGTTCCTCTGAAAGCGGTTCTTCT






GAGGGCGGTCCA






LCW0401_022_
GSGGEPSESGSSGSSESG
169
GGTTCTGGIGGTGAACCGTCCGAA
170


GFP-N_F02.ab1
SSEGGPGSGGEPSESGSS

TCTGGTAGCTCAGGTTCTTCCGAA






AGCGGTTCTTCTGAAGGTGGTCCA






GGTTCCGGTGGCGAACCTTCTGAA






TCTGGTAGCTCA






LCW0401_024_
GSGGEPSESGSSGSSESG
171
GGTTCTGGTGGCGAACCGTCCGAA
172


GFP-N_G02.ab1
SSEGGPGESPGGSSGSES

TCTGGTAGCTCAGGTTCCTCCGAA






AGCGGTTCTTCTGAAGGTGGTCCA






GGTGAATCTCCAGGTGGTTCTAGC






GGTTCTGAATCA






LCW0401_026_
GSGGEPSESGSSGESPGG
173
GGTTCTGGTGGCGAACCGTCTGAG
174


GFP-N_H02.ab1
SSGSESGSEGSSGPGESS

TCTGGTAGCTCAGGTGAATCTCCT






GGTGGCTCCAGCGGTTCTGAATCA






GGTAGCGAAGGTTCTTCTGGTCCT






GGTGAATCTTCA






LCW0401_027_
GSGGEPSESGSSGESPGG
175
GGTTCCGGTGGCGAACCTTCCGAA
176


GFP-N_A03.ab1
SSGSESGSGGEPSESGSS

TCTGGTAGCTCAGGTGAATCTCCG






GGTGGTTCTAGCGGTTCTGAGTCA






GGTTCTGGTGGTGAACCTTCCGAG






TCTGGTAGCTCA






LCW0401_028_
GSSESGSSEGGPGSSESG
177
GGTTCCTCTGAAAGCGGTTCTTCT
178


GFP-N_B03.ab1
SSEGGPGSSESGSSEGGP

GAGGGCGGTCCAGGTTCTTCCGAA






AGCGGTTCTTCCGAGGGCGGTCCA






GGTTCTTCCGAAAGCGGTTCTTCT






GAAGGCGGTCCA






LCW0401_030_
GESPGGSSGSESGSEGSS
179
GGTGAATCTCCGGGTGGCTCCAGC
180


GFP-N_C03.ab1
GPGESSGSEGSSGPGESS

GGTTCTGAGTCAGGTAGCGAAGGT






TCTTCCGGTCCGGGTGAGTCCTCA






GGTAGCGAAGGTTCTTCCGGTCCT






GGTGAGTCTTCA






LCW0401_031_
GSGGEPSESGSSGSGGEP
181
GGTTCTGGTGGCGAACCTTCCGAA
182


GFP-N_D03.ab1
SESGSSGSSESGSSEGGP

TCTGGTAGCTCAGGTTCCGGTGGT






GAACCTTCTGAATCTGGTAGCTCA






GGTTCTTCTGAAAGCGGTTCTTCC






GAGGGCGGTCCA






LCW0401_033_
GSGGEPSESGSSGSGGEP
183
GGTTCCGGTGGTGAACCTTCTGAA
184


GFP-N_E03.ab1
SESGSSGSGGEPSESGSS

TCTGGTAGCTCAGGTTCCGGTGGC






GAACCATCCGAGTCTGGTAGCTCA






GGTTCCGGTGGTGAACCATCCGAG






TCTGGTAGCTCA






LCW0401_037_
GSGGEPSESGSSGSSESG
185
GGTTCCGGTGGCGAACCTTCTGAA
186


GFP-N_F03.ab1
SSEGGPGSEGSSGPGESS

TCTGGTAGCTCAGGTTCCTCCGAA






AGCGGTTCTTCTGAGGGCGGTCCA






GGTAGCGAAGGTTCTTCTGGTCCG






GGCGAGTCTTCA






LCW0401_038_
GSGGEPSESGSSGSEGSS
187
GGTTCCGGTGGTGAACCGTCCGAG
188


GFP-N_G03.ab1
GPGESSGSGGEPSESGSS

TCTGGTAGCTCAGGTAGCGAAGGT






TCTTCTGGTCCGGGTGAGTCTTCA






GGTTCTGGTGGCGAACCGTCCGAA






TCTGGTAGCTCA






LCW0401_039_
GSGGEPSESGSSGESPGG
189
GGTTCTGGTGGCGAACCGTCCGAA
190


GFP-N_H03.ab1
SSGSESGSGGEPSESGSS

TCTGGTAGCTCAGGTGAATCTCCT






GGTGGTTCCAGCGGTTCCGAGTCA






GGTTCTGGTGGCGAACCTTCCGAA






TCTGGTAGCTCA






LCW0401_040_
GSSESGSSEGGPGSGGEP
191
GGTTCTTCCGAAAGCGGTTCTTCC
192


GFP-N_A04.ab1
SESGSSGSSESGSSEGGP

GAGGGCGGTCCAGGTTCCGGTGGT






GAACCATCTGAATCTGGTAGCTCA






GGTTCTTCTGAAAGCGGTTCTTCT






GAAGGTGGTCCA






LCW0401_042_
GSEGSSGPGESSGESPGG
193
GGTAGCGAAGGTTCTTCCGGTCCT
194


GFP-N_C04.ab1
SSGSESGSEGSSGPGESS

GGTGAGTCTTCAGGTGAATCTCCA






GGTGGCTCTAGCGGTTCCGAGTCA






GGTAGCGAAGGTTCTTCTGGTCCT






GGCGAGTCCTCA






LCW0401_046_
GSSESGSSEGGPGSSESG
195
GGTTCCTCTGAAAGCGGTTCTTCC
196


GFP-N_D04.ab1
SSEGGPGSSESGSSEGGP

GAAGGCGGTCCAGGTTCTTCCGAA






AGCGGTTCTTCTGAGGGCGGTCCA






GGTTCCTCCGAAAGCGGTTCTTCT






GAGGGTGGTCCA






LCW0401_047_
GSGGEPSESGSSGESPGG
197
GGTTCTGGTGGCGAACCTTCCGAG
198


GFP-N_E04.ab1
SSGSESGESPGGSSGSES

TCTGGTAGCTCAGGTGAATCTCCG






GGTGGTTCTAGCGGTTCCGAGTCA






GGTGAATCTCCGGGTGGTTCCAGC






GGTTCTGAGTCA






LCW0401_051_
GSGGEPSESGSSGSEGSS
199
GGTTCTGGTGGCGAACCATCTGAG
200


GFP-N_F04.ab1
GPGESSGESPGGSSGSES

TCTGGTAGCTCAGGTAGCGAAGGT






TCTTCCGGTCCAGGCGAGTCTTCA






GGTGAATCTCCTGGTGGCTCCAGC






GGTTCTGAGTCA






LCW0401_053_
GESPGGSSGSESGESPGG
201
GGTGAATCTCCTGGTGGTTCCAGC
202


GFP-N_H04.ab1
SSGSESGESPGGSSGSES

GGTTCCGAGTCAGGTGAATCTCCA






GGTGGCTCTAGCGGTTCCGAGTCA






GGTGAATCTCCTGGTGGTTCTAGC






GGTTCTGAATCA






LCW0401_054_
GSEGSSGPGESSGSEGSS
203
GGTAGCGAAGGTTCTTCCGGTCCA
204


GFP-N_A05.ab1
GPGESSGSGGEPSESGSS

GGTGAATCTTCAGGTAGCGAAGGT






TCTTCTGGTCCTGGTGAATCCTCA






GGTTCCGGTGGCGAACCATCTGAA






TCTGGTAGCTCA






LCW0401_059_
GSGGEPSESGSSGSEGSS
205
GGTTCTGGTGGCGAACCATCCGAA
206


GFP-N_D65.ab1
GPGESSGESPGGSSGSES

TCTGGTAGCTCAGGTAGCGAAGGT






TCTTCTGGTCCTGGCGAATCTTCA






GGTGAATCTCCAGGTGGCTCTAGC






GGTTCCGAATCA






LCW0401_060_
GSGGEPSESGSSGSSESG
207
GGTTCCGGTGGTGAACCGTCCGAA
208


GFP-N_E05.ab1
SSEGGPGSGGEPSESGSS

TCTGGTAGCTCAGGTTCCTCTGAA






AGCGGTTCTTCCGAGGGTGGTCCA






GGTTCCGGTGGTGAACCTTCTGAG






TCTGGTAGCTCA






LCW0401_061_
GSSESGSSEGGPGSGGEP
209
GGTTCCTCTGAAAGCGGTTCTTCT
210


GFP-N_F05.ab1
SESGSSGSEGSSGPGESS

GAGGGCGGTCCAGGTTCTGGTGGC






GAACCATCTGAATCTGGTAGCTCA






GGTAGCGAAGGTTCTTCCGGTCCG






GGTGAATCTTCA






LCW0401_063_
GSGGEPSESGSSGSEGSS
211
GGTTCTGGTGGTGAACCGTCCGAA
212


GFP-N_H05.ab1
GPGESSGSEGSSGPGESS

TCTGGTAGCTCAGGTAGCGAAGGT






TCTTCTGGTCCTGGCGAGTCTTCA






GGTAGCGAAGGTTCTTCTGGTCCT






GGTGAATCTTCA






LCW0401_066_
GSGGEPSESGSSGSSESG
213
GGTTCTGGTGGCGAACCATCCGAG
214


GFP-N_B06.ab1
SSEGGPGSGGEPSESGSS

TCTGGTAGCTCAGGTTCTTCCGAA






AGCGGTTCTTCCGAAGGCGGTCCA






GGTTCTGGTGGTGAACCGTCCGAA






TCTGGTAGCTCA






LCW0401_067_
GSGGEPSESGSSGESPGG
215
GGTTCCGGTGGCGAACCTTCCGAA
216


GFP-N_C06.ab1
SSGSESGESPGGSSGSES

TCTGGTAGCTCAGGTGAATCTCCG






GGTGGTTCTAGCGGTTCCGAATCA






GGTGAATCTCCAGGTGGTTCTAGC






GGTTCCGAATCA






LCW0401_069_
GSGGEPSESGSSGSGGEP
217
GGTTCCGGTGGTGAACCATCTGAG
218


GFP-N_D06.ab1
SESGSSGESPGGSSGSES

TCTGGTAGCTCAGGTTCCGGTGGC






GAACCGTCCGAGTCTGGTAGCTCA






GGTGAATCTCCGGGTGGTTCCAGC






GGTTCCGAATCA






LCW0401_070_
GSEGSSGPGESSGSSESG
219
GGTAGCGAAGGTTCTTCTGGTCCG
220


GFP-N_E06.ab1
SSEGGPGSEGSSGPGESS

GGCGAATCCTCAGGTTCCTCCGAA






AGCGGTTCTTCCGAAGGTGGTCCA






GGTAGCGAAGGTTCTTCCGGTCCT






GGTGAATCTTCA






LCW0401_078_
GSSESGSSEGGPGESPGG
221
GGITCCTCTGAAAGCGGTTCTTCT
222


GFP-N_F06.ab1
SSGSESGESPGGSSGSES

GAAGGCGGTCCAGGTGAATCTCCG






GGTGGCTCCAGCGGTTCTGAATCA






GGTGAATCTCCTGGTGGCTCCAGC






GGTTCCGAGTCA






LCW0401_079_
GSEGSSGPGESSGSEGSS
223
GGTAGCGAAGGTTCTTCTGGTCCA
224


GFP-N_G06.ab1
GPGESSGSGGEPSESGSS

GGCGAGTCTTCAGGTAGCGAAGGT






TCTTCCGGTCCTGGCGAGTCTTCA






GGTTCCGGTGGCGAACCGTCCGAA






TCTGGTAGCTCA










Example 2
Construction of XTEN_AE36 Segments

A codon library encoding XTEN sequences of 36 amino acid length was constructed. The XTEN sequence was designated XTEN_AE36. Its segments have the amino acid sequence [X]3 where X is a 12mer peptide with the sequence: GSPAGSPTSTEE (SEQ ID NO: 225), GSEPATSGSE TP (SEQ ID NO: 226), GTSESA TPESGP (SEQ ID NO: 227), or GTSTEPSEGSAP (SEQ ID NO: 228). The insert was obtained by annealing the following pairs of phosphorylated synthetic oligonucleotide pairs:









(SEQ ID NO: 229)








AE1for:
AGGTAGCCCDGCWGGYTCTCCDACYTCYACYGARGA










(SEQ ID NO: 230)








AE1rev:
ACCTTCYTCRGTRGARGTHGGAGARCCWGCHGGGCT










(SEQ ID NO: 231)








AE2for:
AGGTAGCGAACCKGCWACYTCYGGYTCTGARACYCC










(SEQ ID NO: 232)








AE2rev:
ACCTGGRGTYTCAGARCCRGARGTWGCMGGTTCGCT










(SEQ ID NO: 233)








AE3for:
AGGTACYTCTGAAAGCGCWACYCCKGARTCYGGYCC










(SEQ ID NO: 234)








AE3rev:
ACCTGGRCCRGAYTCMGGRGTWGCGCTTTCAGARGT










(SEQ ID NO: 235)








AE4for:
AGGTACYTCTACYGAACCKTCYGARGGYAGCGCWCC










(SEQ ID NO: 236)








AE4rev:
ACCTGGWGCGCTRCCYTCRGAMGGTTCRGTAGARGT






We also annealed the phosphorylated oligonucleotide 3 KpnIstopperFor: AGGTTCGTCTTCACTCGAGGGTAC (SEQ ID NO: 237) and the non-phosphorylated oligonucleotide pr3 KpnIstopperRev: CCTCGAGTGAAGACGA (SEQ ID NO: 238). The annealed oligonucleotide pairs were ligated, which resulted in a mixture of products with varying length that represents the varying number of 12mer repeats ligated to one BbsI/KpnI segment. The products corresponding to the length of 36 amino acids were isolated from the mixture by preparative agarose gel electrophoresis and ligated into the BsaI/KpnI digested stuffer vector pCW0359. Most of the clones in the resulting library designated LCW0402 showed green fluorescence after induction which shows that the sequence of XTEN_AE36 had been ligated in frame with the GFP gene and most sequences of XTEN_AE36 show good expression.


We screened 96 isolates from library LCW0402 for high level of fluorescence by stamping them onto agar plate containing IPTG. The same isolates were evaluated by PCR and 48 isolates were identified that contained segments with 36 amino acids as well as strong fluorescence. These isolates were sequenced and 37 clones were identified that contained correct XTEN_AE36 segments. The file names of the nucleotide and amino acid constructs for these segments are listed in Table 9.









TABLE 9







DNA and Amino Acid Sequences for 36-mer motifs












Amino acid
SEQ

SEQ


File name
sequence
ID NO:
Nucleotide sequence
ID NO:





LCW0402_002_
GSPAGSPTSTEEGTSE
239
GGTAGCCCGGCAGGCTCTCCGACCT
240


GFP-N_A07.ab1
SATPESGPGTSTEPSE

CTACTGAGGAAGGTACTTCTGAAAG




GSAP

CGCAACCCCGGAGTCCGGCCCAGGT






ACCTCTACCGAACCGTCTGAGGGCA






GCGCACCA






LCW0402_003_
GTSTEPSEGSAPGTST
241
GGTACTTCTACCGAACCGTCCGAAG
242


GFP-N_B07.ab1
EPSEGSAPGTSTEPSE

GCAGCGCTCCAGGTACCTCTACTGA




GSAP

ACCTTCCGAGGGCAGCGCTCCAGGT






ACCTCTACCGAACCTTCTGAAGGTA






GCGCACCA






LCW0402 004
GTSTEPSEGSAPGTSE
243
GGTACCTCTACCGAACCGTCTGAAG
244


GFP-N_C07.ab1
SATPESGPGTSESATP

GTAGCGCACCAGGTACCTCTGAAAG




ESGP

CGCAACTCCTGAGTCCGGTCCAGGT






ACTTCTGAAAGCGCAACCCCGGAGT






CTGGCCCA






LCW0402_005_
GTSTEPSEGSAPGTSE
245
GGTACTTCTACTGAACCGTCTGAAG
246


GFP-N_D07.ab1
SATPESGPGTSESATP

GTAGCGCACCAGGTACTTCTGAAAG




ESGP

CGCAACCCCGGAATCCGGCCCAGGT






ACCTCTGAAAGCGCAACCCCGGAGT






CCGGCCCA






LCW0402_006_
GSEPATSGSETPGTSE
247
GGTAGCGAACCGGCAACCTCCGGCT
248


GFP-N_E07.ab1
SATPESGPGSPAGSPT

CTGAAACCCCAGGTACCTCTGAAAG




STEE

CGCTACTCCTGAATCCGGCCCAGGT






AGCCCGGCAGGTTCTCCGACTTCCA






CTGAGGAA






LCW0402_008_
GTSESATPESGPGSEP
249
GGTACTTCTGAAAGCGCAACCCCTG
250


GFP-N_F07.ab1
ATSGSETPGTSTEPSE

AATCCGGTCCAGGTAGCGAACCGGC




GSAP

TACTTCTGGCTCTGAGACTCCAGGT






ACTTCTACCGAACCGTCCGAAGGTA






GCGCACCA






LCW0402_009_
GSPAGSPTSTEEGSPA
251
GGTAGCCCGGCTGGCTCTCCAACCT
252


GFP-N_G07.ab1
GSPTSTEEGSEPATSG

CCACTGAGGAAGGTAGCCCGGCTGG




SETP

CTCTCCAACCTCCACTGAAGAAGGT






AGCGAACCGGCTACCTCCGGCTCTG






AAACTCCA






LCW0402_011_
GSPAGSPTSTEEGTSE
253
GGTAGCCCGGCTGGCTCTCCTACCT
254


GFP-N_A08.ab1
SATPESGPGTSTEPSE

CTACTGAGGAAGGTACTTCTGAAAG




GSAP

CGCTACTCCTGAGTCTGGTCCAGGT






ACCTCTACTGAACCGTCCGAAGGTA






GCGCTCCA






LCW0402_012_
GSPAGSPTSTEEGSPA
255
GGTAGCCCTGCTGGCTCTCCGACTT
256


GFP-N_B08.ab1
GSPTSTEEGTSTEPSE

CTACTGAGGAAGGTAGCCCGGCTGG




GSAP

TTCTCCGACTTCTACTGAGGAAGGT






ACTTCTACCGAACCTTCCGAAGGTA






GCGCTCCA






LCW0402_013_
GTSESATPESGPGTST
257
GGTACTTCTGAAAGCGCTACTCCGG
258


GFP-N_C08.ab1
EPSEGSAPGTSTEPSE

AGTCCGGTCCAGGTACCTCTACCGA




GSAP

ACCGTCCGAAGGCAGCGCTCCAGGT






ACTTCTACTGAACCTTCTGAGGGTA






GCGCTCCA






LCW0402_014_
GTSTEPSEGSAPGSPA
259
GGTACCTCTACCGAACCTTCCGAAG
260


GFP-N_D08.ab1
GSPTSTEEGTSTEPSE

GTAGCGCTCCAGGTAGCCCGGCAGG




GSAP

TTCTCCTACTTCCACTGAGGAAGGT






ACTTCTACCGAACCTTCTGAGGGTA






GCGCACCA






LCW0402_015_
GSEPATSGSETPGSPA
261
GGTAGCGAACCGGCTACTTCCGGCT
262


GFP-N_E08.ab1
GSPTSTEEGTSESATP

CTGAGACTCCAGGTAGCCCTGCTGG




ESGP

CTCTCCGACCTCTACCGAAGAAGGT






ACCTCTGAAAGCGCTACCCCTGAGT






CTGGCCCA






LCW0402_016_
GTSTEPSEGSAPGTSE
263
GGTACTTCTACCGAACCTTCCGAGG
264


GFP-N_F08.ab1
SATPESGPGTSESATP

GCAGCGCACCAGGTACTTCTGAAAG




ESGP

CGCTACCCCTGAGTCCGGCCCAGGT






ACTTCTGAAAGCGCTACTCCTGAAT






CCGGTCCA






LCW0402_020_
GTSTEPSEGSAPGSEP
265
GGTACTTCTACTGAACCGTCTGAAG
266


GFP-N_G08.ab1
ATSGSETPGSPAGSPT

GCAGCGCACCAGGTAGCGAACCGGC




STEE

TACTTCCGGTTCTGAAACCCCAGGT






AGCCCAGCAGGTTCTCCAACTTCTA






CTGAAGAA






LCW0402_023_
GSPAGSPTSTEEGTSE
267
GGTAGCCCTGCTGGCTCTCCAACCT
268


GFP-N_A09.ab1
SATPESGPGSEPATSG

CCACCGAAGAAGGTACCTCTGAAAG




SETP

CGCAACCCCTGAATCCGGCCCAGGT






AGCGAACCGGCAACCTCCGGTTCTG






AAACCCCA






LCW0402_024_
GTSESATPESGPGSPA
269
GGTACTTCTGAAAGCGCTACTCCTG
270


GFP-N_B09.ab1
GSPTSTEEGSPAGSPT

AGTCCGGCCCAGGTAGCCCGGCTGG




STEE

CTCTCCGACTTCCACCGAGGAAGGT






AGCCCGGCTGGCTCTCCAACTTCTA






CTGAAGAA






LCW0402_025_
GTSTEPSEGSAPGTSE
271
GGTACCTCTACTGAACCTTCTGAGG
272


GFP-N_C09.ab1
SATPESGPGTSTEPSE

GCAGCGCTCCAGGTACTTCTGAAAG




GSAP

CGCTACCCCGGAGTCCGGTCCAGGT






ACTTCTACTGAACCGTCCGAAGGTA






GCGCACCA






LCW0402_026_
GSPAGSPTSTEEGTST
273
GGTAGCCCGGCAGGCTCTCCGACTT
274


GFP-N_D09.ab1
EPSEGSAPGSEPATSG

CCACCGAGGAAGGTACCTCTACTGA




SETP

ACCTTCTGAGGGTAGCGCTCCAGGT






AGCGAACCGGCAACCTCTGGCTCTG






AAACCCCA






LCW0402_027_
GSPAGSPTSTEEGTST
275
GGTAGCCCAGCAGGCTCTCCGACTT
276


GFP-N_E09.ab1
EPSEGSAPGTSTEPSE

CCACTGAGGAAGGTACTTCTACTGA




GSAP

ACCTTCCGAAGGCAGCGCACCAGGT






ACCTCTACTGAACCTTCTGAGGGCA






GCGCTCCA






LCW0402_032_
GSEPATSGSETPGTSE
277
GGTAGCGAACCTGCTACCTCCGGTT
278


GFP-N_H09.ab1
SATPESGPGSPAGSPT

CTGAAACCCCAGGTACCTCTGAAAG




STEE

CGCAACTCCGGAGTCTGGTCCAGGT






AGCCCTGCAGGTTCTCCTACCTCCA






CTGAGGAA






LCW0402_034_
GTSESATPESGPGTST
279
GGTACCTCTGAAAGCGCTACTCCGG
280


GFP-N_A10.ab1
EPSEGSAPGTSTEPSE

AGTCTGGCCCAGGTACCTCTACTGA




GSAP

ACCGTCTGAGGGTAGCGCTCCAGGT






ACTTCTACTGAACCGTCCGAAGGTA






GCGCACCA






LCW0402_036_
GSPAGSPTSTEEGTST
281
GGTAGCCCGGCTGGTTCTCCGACTT
282


GFP-N_C10.ab1
EPSEGSAPGTSTEPSE

CCACCGAGGAAGGTACCTCTACTGA




GSAP

ACCTTCTGAGGGTAGCGCTCCAGGT






ACCTCTACTGAACCTTCCGAAGGCA






GCGCTCCA






LCW0402_039_
GTSTEPSEGSAPGTST
283
GGTACTTCTACCGAACCGTCCGAGG
284


GFP-N_E10.ab1
EPSEGSAPGTSTEPSE

GCAGCGCTCCAGGTACTTCTACTGA




GSAP

ACCTTCTGAAGGCAGCGCTCCAGGT






ACTTCTACTGAACCTTCCGAAGGTA






GCGCACCA






LCW0402_040_
GSEPATSGSETPGTSE
285
GGTAGCGAACCTGCAACCTCTGGCT
286


GFP-N_F10.ab1
SATPESGPGTSTEPSE

CTGAAACCCCAGGTACCTCTGAAAG




GSAP

CGCTACTCCTGAATCTGGCCCAGGT






ACTTCTACTGAACCGTCCGAGGGCA






GCGCACCA






LCW0402_041_
GTSTEPSEGSAPGSPA
287
GGTACTTCTACCGAACCGTCCGAGG
288


GFP-N_G10.ab1
GSPTSTEEGTSTEPSE

GTAGCGCACCAGGTAGCCCAGCAGG




GSAP

TTCTCCTACCTCCACCGAGGAAGGT






ACTTCTACCGAACCGTCCGAGGGTA






GCGCACCA






LCW0402_050_
GSEPATSGSETPGTSE
289
GGTAGCGAACCGGCAACCTCCGGCT
290


GFP-N_A11.ab1
SATPESGPGSEPATSG

CTGAAACTCCAGGTACTTCTGAAAG




SETP

CGCTACTCCGGAATCCGGCCCAGGT






AGCGAACCGGCTACTTCCGGCTCTG






AAACCCCA






LCW0402_051_
GSEPATSGSETPGTSE
291
GGTAGCGAACCGGCAACTTCCGGCT
292


GFP-N_B11.ab1
SATPESGPGSEPATSG

CTGAAACCCCAGGTACTTCTGAAAG




SETP

CGCTACTCCTGAGTCTGGCCCAGGT






AGCGAACCTGCTACCTCTGGCTCTG






AAACCCCA






LCW0402_059_
GSEPATSGSETPGSEP
293
GGTAGCGAACCGGCAACCTCTGGCT
294


GFP-N_E11.ab1
ATSGSETPGTSTEPSE

CTGAAACTCCAGGTAGCGAACCTGC




GSAP

AACCTCCGGCTCTGAAACCCCAGGT






ACTTCTACTGAACCTTCTGAGGGCA






GCGCACCA






LCW0402_060_
GTSESATPESGPGSEP
295
GGTACTTCTGAAAGCGCTACCCCGG
296


GFP-N_F11.ab1
ATSGSETPGSEPATSG

AATCTGGCCCAGGTAGCGAACCGGC




SETP

TACTTCTGGTTCTGAAACCCCAGGT






AGCGAACCGGCTACCTCCGGTTCTG






AAACTCCA






LCW0402_061_
GTSTEPSEGSAPGTST
297
GGTACCTCTACTGAACCTTCCGAAG
298


GFP-N_G11.ab1
EPSEGSAPGTSESATP

GCAGCGCTCCAGGTACCTCTACCGA




ESGP

ACCGTCCGAGGGCAGCGCACCAGGT






ACTTCTGAAAGCGCAACCCCTGAAT






CCGGTCCA






LCW0402_065_
GSEPATSGSETPGTSE
299
GGTAGCGAACCGGCAACCTCTGGCT
300


GFP-N_A12.ab1
SATPESGPGTSESATP

CTGAAACCCCAGGTACCTCTGAAAG




ESGP

CGCTACTCCGGAATCTGGTCCAGGT






ACTTCTGAAAGCGCTACTCCGGAAT






CCGGTCCA






LCW0402_066_
GSEPATSGSETPGSEP
301
GGTAGCGAACCTGCTACCTCCGGCT
302


GFP-N_B12.ab1
ATSGSETPGTSTEPSE

CTGAAACTCCAGGTAGCGAACCGGC




GSAP

TACTTCCGGTTCTGAAACTCCAGGT






ACCTCTACCGAACCTTCCGAAGGCA






GCGCACCA






LCW0402_067_
GSEPATSGSETPGTST
303
GGTAGCGAACCTGCTACTTCTGGTT
304


GFP-N_C12.ab1
EPSEGSAPGSEPATSG

CTGAAACTCCAGGTACTTCTACCGA




SETP

ACCGTCCGAGGGTAGCGCTCCAGGT






AGCGAACCTGCTACTTCTGGTTCTG






AAACTCCA






LCW0402_069_
GTSTEPSEGSAPGTST
305
GGTACCTCTACCGAACCGTCCGAGG
306


GFP-N_D12.ab1
EPSEGSAPGSEPATSG

GTAGCGCACCAGGTACCTCTACTGA




SETP

ACCGTCTGAGGGTAGCGCTCCAGGT






AGCGAACCGGCAACCTCCGGTTCTG






AAACTCCA






LCW0402_073_
GTSTEPSEGSAPGSEP
307
GGTACTTCTACTGAACCTTCCGAAG
308


GFP-N_F12.ab1
ATSGSETPGSPAGSPT

GTAGCGCTCCAGGTAGCGAACCTGC




STEE

TACTTCTGGTTCTGAAACCCCAGGT






AGCCCGGCTGGCTCTCCGACCTCCA






CCGAGGAA






LCW0402_074_
GSEPATSGSETPGSPA
309
GGTAGCGAACCGGCTACTTCCGGCT
310


GFP-N_G12.ab1
GSPTSTEEGTSESATP

CTGAGACTCCAGGTAGCCCAGCTGG




ESGP

TTCTCCAACCTCTACTGAGGAAGGT






ACTTCTGAAAGCGCTACCCCTGAAT






CTGGTCCA






LCW0402_075_
GTSESATPESGPGSEP
311
GGTACCTCTGAAAGCGCAACTCCTG
312


GFP-N_H12.ab1
ATSGSETPGTSESATP

AGTCTGGCCCAGGTAGCGAACCTGC




ESGP

TACCTCCGGCTCTGAGACTCCAGGT






ACCTCTGAAAGCGCAACCCCGGAAT






CTGGTCCA









Example 3
Construction of XTEN_AF36 segments

A codon library encoding sequences of 36 amino acid length was constructed. The sequences were designated XTEN_AF36. Its segments have the amino acid sequence [X]3 where X is a 12mer peptide with the sequence: GSTSESPSGTAP (SEQ ID NO: 313), GTSTPESGSASP (SEQ ID NO: 314), GTSPSGESSTAP (SEQ ID NO: 315), or GSTSSTAESPGP (SEQ ID NO: 316). The insert was obtained by annealing the following pairs of phosphorylated synthetic oligonucleotide pairs:









(SEQ ID NO: 317)








AF1for:
AGGTTCTACYAGCGAATCYCCKTCTGGYACYGCWCC










(SEQ ID NO: 318)








AF1rev:
ACCTGGWGCRGTRCCAGAMGGRGATTCGCTRGTAGA










(SEQ ID NO: 319)








AF2for:
AGGTACYTCTACYCCKGAAAGCGGYTCYGCWTCTCC










(SEQ ID NO: 320)








AF2rev:
ACCTGGAGAWGCRGARCCGCTTTCMGGRGTAGARGT










(SEQ ID NO: 321)








AF3for:
AGGTACYTCYCCKAGCGGYGAATCTTCTACYGCWCC










(SEQ ID NO: 322)








AF3rev:
ACCTGGWGCRGTAGAAGATTCRCCGCTMGGRGARGT










(SEQ ID NO: 323)








AF4for:
AGGTTCYACYAGCTCTACYGCWGAATCTCCKGGYCC










(SEQ ID NO: 324)








AF4rev:
ACCTGGRCCMGGAGATTCWGCRGTAGAGCTRGTRGA






We also annealed the phosphorylated oligonucleotide 3 KpnIstopperFor: AGGTTCGTCTTCACTCGAGGGTAC (SEQ ID NO: 325) and the non-phosphorylated oligonucleotide pr3 KpnIstopperRev: CCTCGAGTGAAGACGA (SEQ ID NO: 326). The annealed oligonucleotide pairs were ligated, which resulted in a mixture of products with varying length that represents the varying number of 12mer repeats ligated to one BbsI/KpnI segment The products corresponding to the length of 36 amino acids were isolated from the mixture by preparative agarose gel electrophoresis and ligated into the BsaUKpnI digested stuffer vector pCW0359. Most of the clones in the resulting library designated LCW0403 showed green fluorescence after induction which shows that the sequence of XTEN_AF36 had been ligated in frame with the GFP gene and most sequences of XTEN_AF36 show good expression.


We screened 96 isolates from library LCW0403 for high level of fluorescence by stamping them onto agar plate containing IPTG. The same isolates were evaluated by PCR and 48 isolates were identified that contained segments with 36 amino acids as well as strong fluorescence. These isolates were sequenced and 44 clones were identified that contained correct XTEN_AF36 segments. The file names of the nucleotide and amino acid constructs for these segments are listed in Table 10.









TABLE 10







DNA and Amino Acid Sequences for 36-mer motifs












Amino acid
SEQ
Nucleotide sequence
SEQ


File name
sequence
ID NO:

ID NO:





LCW0403_004_
GTSTPESGSASPGTSP
327
GGTACTTCTACTCCGGAAAGCGGTTC
328


GFP-N_A01.ab1
SGESSTAPGTSPSGES

CGCATCTCCAGGTACTTCTCCTAGCG




STAP

GTGAATCTTCTACTGCTCCAGGTACC






TCTCCTAGCGGCGAATCTTCTACTGC






TCCA






LCW0403_005_
GTSPSGESSTAPGSTS
329
GGTACTTCTCCGAGCGGTGAATCTTC
330


GFP-N_B01.ab1
STAESPGPGTSPSGES

TACCGCACCAGGTTCTACTAGCTCTA




STAP

CCGCTGAATCTCCGGGCCCAGGTACT






TCTCCGAGCGGTGAATCTTCTACTGC






TCCA






LCW0403_006_
GSTSSTAESPGPGTSP
331
GGTTCCACCAGCTCTACTGCTGAATC
332


GFP-N_C01.ab1
SGESSTAPGTSTPESG

TCCTGGTCCAGGTACCTCTCCTAGCG




SASP

GTGAATCTTCTACTGCTCCAGGTACT






TCTACTCCTGAAAGCGGCTCTGCTTC






TCCA






LCW0403_007_
GSTSSTAESPGPGSTS
333
GGTTCTACCAGCTCTACTGCAGAATC
334


GFP-N_D01.ab1
STAESPGPGTSPSGES

TCCTGGCCCAGGTTCCACCAGCTCTA




STAP

CCGCAGAATCTCCGGGTCCAGGTACT






TCCCCTAGCGGTGAATCTTCTACCGC






ACCA






LCW0403_008_
GSTSSTAESPGPGTSP
335
GGTTCTACTAGCTCTACTGCTGAATC
336


GFP-N_E01.ab1
SGESSTAPGTSTPESG

TCCTGGCCCAGGTACTTCTCCTAGCG




SASP

GTGAATCTTCTACCGCTCCAGGTACC






TCTACTCCGGAAAGCGGTTCTGCATC






TCCA






LCW0403_010_
GSTSSTAESPGPGTST
337
GGTTCTACCAGCTCTACCGCAGAATC
338


GFP-N_F01.ab1
PESGSASPGSTSESPS

TCCTGGTCCAGGTACCTCTACTCCGG




GTAP

AAAGCGGCTCTGCATCTCCAGGTTCT






ACTAGCGAATCTCCTTCTGGCACTGC






ACCA






LCW0403_011_
GSTSSTAESPGPGTST
339
GGTTCTACTAGCTCTACTGCAGAATC
340


GFP-N_G01.ab1
PESGSASPGTSTPESG

TCCTGGCCCAGGTACCTCTACTCCGG




SASP

AAAGCGGCTCTGCATCTCCAGGTACT






TCTACCCCTGAAAGCGGTTCTGCATC






TCCA






LCW0403_012_
GSTSESPSGTAPGTSP
341
GGTTCTACCAGCGAATCTCCTTCTGG
342


GFP-N_H01.ab1
SGESSTAPGSTSESPS

CACCGCTCCAGGTACCTCTCCTAGCG




GTAP

GCGAATCTTCTACCGCTCCAGGTTCT






ACTAGCGAATCTCCTTCTGGCACTGC






ACCA






LCW0403_013_
GSTSSTAESPGPGSTS
343
GGTTCCACCAGCTCTACTGCAGAATC
344


GFP-N_A02.ab1
STAESPGPGTSPSGES

TCCGGGCCCAGGTTCTACTAGCTCTA




STAP

CTGCAGAATCTCCGGGTCCAGGTACT






TCTCCTAGCGGCGAATCTTCTACCGC






TCCA






LCW0403_014_
GSTSSTAESPGPGTST
345
GGTTCCACTAGCTCTACTGCAGAATC
346


GFP-N_B02.ab1
PESGSASPGSTSESPS

TCCTGGCCCAGGTACCTCTACCCCTG




GTAP

AAAGCGGCTCTGCATCTCCAGGTTCT






ACCAGCGAATCCCCGTCTGGCACCGC






ACCA






LCW0403_015_
GSTSSTAESPGPGSTS
347
GGTTCTACTAGCTCTACTGCTGAATC
348


GFP-N_C02.ab1
STAESPGPGTSPSGES

TCCGGGTCCAGGTTCTACCAGCTCTA




STAP

CTGCTGAATCTCCTGGTCCAGGTACC






TCCCCGAGCGGTGAATCTTCTACTGC






ACCA






LCW0403_017_
GSTSSTAESPGPGSTS
349
GGTTCTACCAGCTCTACCGCTGAATC
350


GFP-N_D02.ab1
ESPSGTAPGSTSSTAE

TCCTGGCCCAGGTTCTACCAGCGAAT




SPGP

CCCCGTCTGGCACCGCACCAGGTTCT






ACTAGCTCTACCGCTGAATCTCCGGG






TCCA






LCW0403_018_
GSTSSTAESPGPGSTS
351
GGTTCTACCAGCTCTACCGCAGAATC
352


GFP-N_E02.ab1
STAESPGPGSTSSTAE

TCCTGGCCCAGGTTCCACTAGCTCTA




SPGP

CCGCTGAATCTCCTGGTCCAGGTTCT






ACTAGCTCTACCGCTGAATCTCCTGG






TCCA






LCW0403_019_
GSTSESPSGTAPGSTS
353
GGTTCTACTAGCGAATCCCCTTCTGG
354


GFP-N_F02.ab1
STAESPGPGSTSSTAE

TACTGCTCCAGGTTCCACTAGCTCTA



SPGP


CCGCTGAATCTCCTGGCCCAGGTTCC






ACTAGCTCTACTGCAGAATCTCCTGG






TCCA






LCW0403_023_
GSTSESPSGTAPGSTS
355
GGTTCTACTAGCGAATCTCCTTCTGG
356


GFP-N_H02.ab1
ESPSGTAPGSTSESPS

TACCGCTCCAGGTTCTACCAGCGAAT




GTAP

CCCCGTCTGGTACTGCTCCAGGTTCT






ACCAGCGAATCTCCTTCTGGTACTGC






ACCA






LCW0403_024_
GSTSSTAESPGPGSTS
357
GGTTCCACCAGCTCTACTGCTGAATC
358


GFP-N_A03.ab1
STAESPGPGSTSSTAE

TCCTGGCCCAGGTTCTACCAGCTCTA




SPGP

CTGCTGAATCTCCGGGCCCAGGTTCC






ACCAGCTCTACCGCTGAATCTCCGGG






TCCA






LCW0403_025_
GSTSSTAESPGPGSTS
359
GGTTCCACTAGCTCTACCGCAGAATC
360


GFP-N_B03.ab1
STAESPGPGTSPSGES

TCCTGGTCCAGGTTCTACTAGCTCTA




STAP

CTGCTGAATCTCCGGGTCCAGGTACC






TCCCCTAGCGGCGAATCTTCTACCGC






TCCA






LCW0403_028_
GSSPSASTGTGPGSST
361
GGTTCTAGCCCTTCTGCTTCCACCGG
362


GFP-N_D03.ab1
PSGATGSPGSSTPSGA

TACCGGCCCAGGTAGCTCTACTCCGT




TGSP

CTGGTGCAACTGGCTCTCCAGGTAGC






TCTACTCCGTCTGGTGCAACCGGCTC






CCCA






LCW0403_029_
GTSPSGESSTAPGTST
363
GGTACTTCCCCTAGCGGTGAATCTTC
364


GFP-N_E03.ab1
PESGSASPGSTSSTAE

TACTGCTCCAGGTACCTCTACTCCGG




SPGP

AAAGCGGCTCCGCATCTCCAGGTTCT






ACTAGCTCTACTGCTGAATCTCCTGG






TCCA






LCW0403_030_
GSTSSTAESPGPGSTS
365
GGTTCTACTAGCTCTACCGCTGAATC
366


GFP-N_F03.ab1
STAESPGPGTSTPESG

TCCGGGTCCAGGTTCTACCAGCTCTA




SASP

CTGCAGAATCTCCTGGCCCAGGTACT






TCTACTCCGGAAAGCGGTTCCGCTTC






TCCA






LCW0403_031_
GTSPSGESSTAPGSTS
367
GGTACTTCTCCTAGCGGTGAATCTTC
368


GFP-N_G03.ab1
STAESPGPGTSTPESG

TACCGCTCCAGGTTCTACCAGCTCTA




SASP

CTGCTGAATCTCCTGGCCCAGGTACT






TCTACCCCGGAAAGCGGCTCCGCTTC






TCCA






LCW0403_033_
GSTSESPSGTAPGSTS
369
GGTTCTACTAGCGAATCCCCTTCTGG
370


GFP-N_H03.ab1
STAESPGPGSTSSTAE

TACTGCACCAGGTTCTACCAGCTCTA




SPGP

CTGCTGAATCTCCGGGCCCAGGTTCC






ACCAGCTCTACCGCAGAATCTCCTGG






TCCA






LCW0403_035_
GSTSSTAESPGPGSTS
371
GGTTCCACCAGCTCTACCGCTGAATC
372


GFP-N_A04.ab1
ESPSGTAPGSTSSTAE

TCCGGGCCCAGGTTCTACCAGCGAAT




SPGP

CCCCTTCTGGCACTGCACCAGGTTCT






ACTAGCTCTACCGCAGAATCTCCGGG






CCCA






LCW0403_036_
GSTSSTAESPGPGTSP
373
GGTTCTACCAGCTCTACTGCTGAATC
374


GFP-N_B04.ab1
SGESSTAPGTSTPESG

TCCGGGTCCAGGTACTTCCCCGAGCG




SASP

GTGAATCTTCTACTGCACCAGGTACT






TCTACTCCGGAAAGCGGTTCCGCTTC






TCCA






LCW0403_039_
GSTSESPSGTAPGSTS
375
GGTTCTACCAGCGAATCTCCTTCTGG
376


GFP-N_C04.ab1
ESPSGTAPGTSPSGES

CACCGCTCCAGGTTCTACTAGCGAAT




STAP

CCCCGTCTGGTACCGCACCAGGTACT






TCTCCTAGCGGCGAATCTTCTACCGC






ACCA






LCW0403_041_
GSTSESPSGTAPGSTS
377
GGTTCTACCAGCGAATCCCCTTCTGG
378


GFP-N_D04.ab1
ESPSGTAPGTSTPESG

TACTGCTCCAGGTTCTACCAGCGAAT




SASP

CCCCTTCTGGCACCGCACCAGGTACT






TCTACCCCTGAAAGCGGCTCCGCTTC






TCCA






LCW0403_044_
GTSTPESGSASPGSTS
379
GGTACCTCTACTCCTGAAAGCGGTTC
380


GFP-N_E04.ab1
STAESPGPGSTSSTAE

TGCATCTCCAGGTTCCACTAGCTCTA




SPGP

CCGCAGAATCTCCGGGCCCAGGTTCT






ACTAGCTCTACTGCTGAATCTCCTGG






CCCA






LCW0403_046_
GSTSESPSGTAPGSTS
381
GGTTCTACCAGCGAATCCCCTTCTGG
382


GFP-N_F04.ab1
ESPSGTAPGTSPSGES

CACTGCACCAGGTTCTACTAGCGAAT




STAP

CCCCTTCTGGTACCGCACCAGGTACT






TCTCCGAGCGGCGAATCTTCTACTGC






TCCA






LCW0403_047_
GSTSSTAESPGPGSTS
383
GGTTCTACTAGCTCTACCGCTGAATC
384


GFP-N_G04.ab1
STAESPGPGSTSESPS

TCCTGGCCCAGGTTCCACTAGCTCTA




GTAP

CCGCAGAATCTCCGGGCCCAGGTTCT






ACTAGCGAATCCCCTTCTGGTACCGC






TCCA






LCW0403_049_
GSTSSTAESPGPGSTS
385
GGTTCCACCAGCTCTACTGCAGAATC
386


GFP-N_H04.ab1
STAESPGPGTSTPESG

TCCTGGCCCAGGTTCTACTAGCTCTA




SASP

CCGCAGAATCTCCTGGTCCAGGTACC






TCTACTCCTGAAAGCGGTTCCGCATC






TCCA






LCW0403_051_
GSTSSTAESPGPGSTS
387
GGTTCTACTAGCTCTACTGCTGAATC
388


GFP-N_A05.ab1
STAESPGPGSTSESPS

TCCGGGCCCAGGTTCTACTAGCTCTA




GTAP

CCGCTGAATCTCCGGGTCCAGGTTCT






ACTAGCGAATCTCCTTCTGGTACCGC






TCCA






LCW0403_053_
GTSPSGESSTAPGSTS
389
GGTACCTCCCCGAGCGGTGAATCTTC
390


GFP-N_B05.ab1
ESPSGTAPGSTSSTAE

TACTGCACCAGGTTCTACTAGCGAAT




SPGP

CCCCTTCTGGTACTGCTCCAGGTTCC






ACCAGCTCTACTGCAGAATCTCCGGG






TCCA






LCW0403_054_
GSTSESPSGTAPGTSP
391
GGTTCTACTAGCGAATCCCCGTCTGG
392


GFP-N_C05.ab1
SGESSTAPGSTSSTAE

TACTGCTCCAGGTACTTCCCCTAGCG




SPGP

GTGAATCTTCTACTGCTCCAGGTTCT






ACCAGCTCTACCGCAGAATCTCCGGG






TCCA






LCW0403_057_
GSTSSTAESPGPGSTS
393
GGTTCTACCAGCTCTACCGCTGAATC
394


GFP-N_D05.ab1
ESPSGTAPGTSPSGES

TCCTGGCCCAGGTTCTACTAGCGAAT




STAP

CTCCGTCTGGCACCGCACCAGGTACT






TCCCCTAGCGGTGAATCTTCTACTGC






ACCA






LCW0403_058_
GSTSESPSGTAPGSTS
395
GGTTCTACTAGCGAATCTCCTTCTGG
396


GFP-N_E05.ab1
ESPSGTAPGTSTPESG

CACTGCACCAGGTTCTACCAGCGAAT




SASP

CTCCGTCTGGCACTGCACCAGGTACC






TCTACCCCTGAAAGCGGTTCCGCTTC






TCCA






LCW0403_060_
GTSTPESGSASPGSTS
397
GGTACCTCTACTCCGGAAAGCGGTTC
398


GFP-N_F05.ab1
ESPSGTAPGSTSSTAE

CGCATCTCCAGGTTCTACCAGCGAAT




SPGP

CCCCGTCTGGCACCGCACCAGGTTCT






ACTAGCTCTACTGCTGAATCTCCGGG






CCCA






LCW0403_063_
GSTSSTAESPGPGTSP
399
GGTTCTACTAGCTCTACTGCAGAATC
400


GFP-N_G05.ab1
SGESSTAPGTSPSGES

TCCGGGCCCAGGTACCTCTCCTAGCG




STAP

GTGAATCTTCTACCGCTCCAGGTACT






TCTCCGAGCGGTGAATCTTCTACCGC






TCCA






LCW0403_064_
GTSPSGESSTAPGTSP
401
GGTACCTCCCCTAGCGGCGAATCTTC
402


GFP-N_H05.ab1
SGESSTAPGTSPSGES

TACTGCTCCAGGTACCTCTCCTAGCG




STAP

GCGAATCTTCTACCGCTCCAGGTACC






TCCCCTAGCGGTGAATCTTCTACCGC






ACCA






LCW0403_065_
GSTSSTAESPGPGTST
403
GGTTCCACTAGCTCTACTGCTGAATC
404


GFP-N_A06.ab1
PESGSASPGSTSESPS

TCCTGGCCCAGGTACTTCTACTCCGG




GTAP

AAAGCGGTTCCGCTTCTCCAGGTTCT






ACTAGCGAATCTCCGTCTGGCACCGC






ACCA






LCW0403_066_
GSTSESPSGTAPGTSP
405
GGTTCTACTAGCGAATCTCCGTCTGG
406


GFP-N_B06.ab1
SGESSTAPGTSPSGES

CACTGCTCCAGGTACTTCTCCTAGCG




STAP

GTGAATCTTCTACCGCTCCAGGTACT






TCCCCTAGCGGCGAATCTTCTACCGC






TCCA






LCW0403_067_
GSTSESPSGTAPGTST
407
GGTTCTACTAGCGAATCTCCTTCTGG
408


GFP-N_C06.ab1
PESGSASPGSTSSTAE

TACCGCTCCAGGTACTTCTACCCCTG




SPGP

AAAGCGGCTCCGCTTCTCCAGGTTCC






ACTAGCTCTACCGCTGAATCTCCGGG






TCCA






LCW0403_068_
GSTSSTAESPGPGSTS
409
GGTTCCACTAGCTCTACTGCTGAATC
410


GFP-N_D06.ab1
STAESPGPGSTSESPS

TCCTGGCCCAGGTTCTACCAGCTCTA




GTAP

CCGCTGAATCTCCTGGCCCAGGTTCT






ACCAGCGAATCTCCGTCTGGCACCGC






ACCA






LCW0403_069_
GSTSESPSGTAPGTST
411
GGTTCTACTAGCGAATCCCCGTCTGG
412


GFP-N_E06.ab1
PESGSASPGTSTPESG

TACCGCACCAGGTACTTCTACCCCGG




SASP

AAAGCGGCTCTGCTTCTCCAGGTACT






TCTACCCCGGAAAGCGGCTCCGCATC






TCCA






LCW0403_070_
GSTSESPSGTAPGTST
413
GGTTCTACTAGCGAATCCCCGTCTGG
414


GFP-N_F06.ab1
PESGSASPGTSTPESG

TACTGCTCCAGGTACTTCTACTCCTG




SASP

AAAGCGGTTCCGCTTCTCCAGGTACC






TCTACTCCGGAAAGCGGTTCTGCATC






TCCA










Example 4
Construction of XTEN_AG36 Segments

A codon library encoding sequences of 36 amino acid length was constructed. The sequences were designated XTEN_AG36. Its segments have the amino acid sequence [X]3 where X is a 12mer peptide with the sequence: GTPGSGTASSSP (SEQ ID NO: 415), GSSTPSGATGSP (SEQ ID NO: 416), GSSPSASTGTGP (SEQ ID NO: 417), or GASPGTSSTGSP (SEQ ID NO: 418). The insert was obtained by annealing the following pairs of phosphorylated synthetic oligonucleotide pairs:











(SEQ ID NO: 419)



AG1for: AGGTACYCCKGGYAGCGGTACYGCWTCTTCYTCTCC






(SEQ ID NO: 420)



AG1rev: ACCTGGAGARGAAGAWGCRGTACCGCTRCCMGGRGT






(SEQ ID NO: 421)



AG2for: AGGTAGCTCTACYCCKTCTGGTGCWACYGGYTCYCC






(SEQ ID NO: 422)



AG2rev: ACCTGGRGARCCRGTWGCACCAGAMGGRGTAGAGCT






(SEQ ID NO: 423)



AG3for: AGGTTCTAGCCCKTCTGCWTCYACYGGTACYGGYCC






(SEQ ID NO: 424)



AG3rev: ACCTGGRCCRGTACCRGTRGAWGCAGAMGGGCTAGA






(SEQ ID NO: 425)



AG4for: AGGTGCWTCYCCKGGYACYAGCTCTACYGGTTCTCC






(SEQ ID NO: 426)



AG4rev: ACCTGGAGAACCRGTAGAGCTRGTRCCMGGRGAWGC






We also annealed the phosphorylated oligonucleotide 3 KpnIstopperFor: AGGTTCGTCTTCACTCGAGGGTAC (SEQ ID NO: 427) and the non-phosphorylated oligonucleotide pr3 KpnIstopperRev: CCTCGAGTGAAGACGA (SEQ ID NO: 428). The annealed oligonucleotide pairs were ligated, which resulted in a mixture of products with varying length that represents the varying number of 12mer repeats ligated to one BbsI/KpnI segment. The products corresponding to the length of 36 amino acids were isolated from the mixture by preparative agarose gel electrophoresis and ligated into the BsaI/KpnI digested stuffer vector pCW0359. Most of the clones in the resulting library designated LCW0404 showed green fluorescence after induction which shows that the sequence of XTEN_AG36 had been ligated in frame with the GFP gene and most sequences of XTEN_AG36 show good expression.


We screened 96 isolates from library LCW0404 for high level of fluorescence by stamping them onto agar plate containing IPTG. The same isolates were evaluated by PCR and 48 isolates were identified that contained segments with 36 amino acids as well as strong fluorescence. These isolates were sequenced and 44 clones were identified that contained correct XTEN_AG36 segments. The file names of the nucleotide and amino acid constructs for these segments are listed in Table 11.









TABLE 11







DNA and Amino Acid Sequences for 36-mer motifs












Amino acid 
SEQ ID

SEQ ID


File name
sequence
NO:
Nucleotide sequence
NO:





LCW0404_001_
GASPGTSSTGSPGTPG
429
GGTGCATCCCCGGGCACTAGCTCTACC
430


GFP-N_A07.ab1
SGTASSSPGSSTPSGA

GGTTCTCCAGGTACTCCTGGTAGCGGT




TGSP

ACTGCTTCTTCTTCTCCAGGTAGCTCT






ACTCCTTCTGGTGCTACTGGTTCTCCA






LCW0404_003_
GSSTPSGATGSPGSSP
431
GGTAGCTCTACCCCTTCTGGTGCTACC
432


GFP-N_B07.ab1
SASTGTGPGSSTPSGA

GGCTCTCCAGGTTCTAGCCCGTCTGCT




TGSP

TCTACCGGTACCGGTCCAGGTAGCTCT






ACCCCTTCTGGTGCTACTGGTTCTCCA






LCW0404_006_
GASPGTSSTGSPGSSP
433
GGTGCATCTCCGGGTACTAGCTCTACC
434


GFP-N_C07.ab1
SASTGTGPGSSTPSGA

GGTTCTCCAGGTTCTAGCCCTTCTGCT




TGSP

TCCACTGGTACCGGCCCAGGTAGCTCT






ACCCCGTCTGGTGCTACTGGTTCCCCA






LCW0404_007_
GTPGSGTASSSPGSST
435
GGTACTCCGGGCAGCGGTACTGCTTCT
436


GFP-N_D07.ab1
PSGATGSPGASPGTSS

TCCTCTCCAGGTAGCTCTACCCCTTCT




TGSP

GGTGCAACTGGTTCCCCAGGTGCATCC






CCTGGTACTAGCTCTACCGGTTCTCCA






LCW0404_009_
GTPGSGTASSSPGASP
437
GGTACCCCTGGCAGCGGTACTGCTTCT
438


GFP-N_E07.ab1
GTSSTGSPGSRPSAST

TCTTCTCCAGGTGCTTCCCCTGGTACC




GTGP

AGCTCTACCGGTTCTCCAGGTTCTAGA






CCTTCTGCATCCACCGGTACTGGTCCA






LCW0404_011_
GASPGTSSTGSPGSST
439
GGTGCATCTCCTGGTACCAGCTCTACC
440


GFP-N_F07.ab1
PSGATGSPGASPGTSS

GGTTCTCCAGGTAGCTCTACTCCTTCT




TGSP

GGTGCTACTGGCTCTCCAGGTGCTTCC






CCGGGTACCAGCTCTACCGGTTCTCCA






LCW0404_012_
GTPGSGTASSSPGSST
441
GGTACCCCGGGCAGCGGTACCGCATCT
442


GFP-N_G07.ab1
PSGATGSPGSSTPSGA

TCCTCTCCAGGTAGCTCTACCCCGTCT




TGSP

GGTGCTACCGGTTCCCCAGGTAGCTCT






ACCCCGTCTGGTGCAACCGGCTCCCCA






LCW0404_014_
GASPGTSSTGSPGASP
443
GGTGCATCTCCGGGCACTAGCTCTACT
444


GFP-N_H07.ab1
GTSSTGSPGASPGTSS

GGTTCTCCAGGTGCATCCCCTGGCACT




TGSP

AGCTCTACTGGTTCTCCAGGTGCTTCT






CCTGGTACCAGCTCTACTGGTTCTCCA






LCW0404_015_
GSSTPSGATGSPGSSP
445
GGTAGCTCTACTCCGTCTGGTGCAACC
446


GFP-N_A08.ab1
SASTGTGPGASPGTSS

GGCTCCCCAGGTTCTAGCCCGTCTGCT




TGSP

TCCACTGGTACTGGCCCAGGTGCTTCC






CCGGGCACCAGCTCTACTGGTTCTCCA






LCW0404_016_
GSSTPSGATGSPGSST
447
GGTAGCTCTACTCCTTCTGGTGCTACC
448


GFP-N_B08.ab1
PSGATGSPGTPGSGT

GGTTCCCCAGGTAGCTCTACTCCTTCT




ASSSP

GGTGCTACTGGTTCCCCAGGTACTCCG






GGCAGCGGTACTGCTTCTTCCTCTCCA






LCW0404_017_
GSSTPSGATGSPGSST
449
GGTAGCTCTACTCCGTCTGGTGCAACC
450


GFP-N_C08.ab1
PSGATGSPGASPGTSS

GGTTCCCCAGGTAGCTCTACTCCTTCT




TGSP

GGTGCTACTGGCTCCCCAGGTGCATCC






CCTGGCACCAGCTCTACCGGTTCTCCA






LCW0404_18_
GTPGSGTASSSPGSSP
451
GGTACTCCTGGTAGCGGTACCGCATCT
452


GFP-N_D08.ab1
SASTGTGPGSSTPSGA

TCCTCTCCAGGTTCTAGCCCTTCTGCA




TGSP

TCTACCGGTACCGGTCCAGGTAGCTCT






ACTCCTTCTGGTGCTACTGGCTCTCCA






LCW0404_023_
GASPGTSSTGSPGSSP
453
GGTGCTTCCCCGGGCACTAGCTCTACC
454


GFP-N_F08.ab1
TSASTGTGPGTPGSGT

GGTTCTCCAGGTTCTAGCCCTTCTGCA




ASSSP

TCTACTGGTACTGGCCCAGGTACTCCG






GGCAGCGGTACTGCTTCTTCCTCTCCA






LCW0404_025_
GSSTPSGATGSPGSST
455
GGTAGCTCTACTCCGTCTGGTGCTACC
456


GFP-N_G08.ab1
PSGATGSPGASPGTSS

GGCTCTCCAGGTAGCTCTACCCCTTCT




TGSP

GGTGCAACCGGCTCCCCAGGTGCTTCT






CCGGGTACCAGCTCTACTGGTTCTCCA






LCW0404_029_
GTPGSGTASSSPGSST
457
GGTACCCCTGGCAGCGGTACCGCTTCT
458


GFP-N_A09.ab1
PSGATGSPGSSPSAST

TCCTCTCCAGGTAGCTCTACCCCGTCT




GTGP

GGTGCTACTGGCTCTCCAGGTTCTAGC






CCGTCTGCATCTACCGGTACCGGCCCA






LCW0404_030_
GSSTPSGATGSPGTPG
459
GGTAGCTCTACTCCTTCTGGTGCAACC
460


GFP-N_B09.ab1
SGTASSSPGTPGSGTA

GGCTCCCCAGGTACCCCGGGCAGCGGT




SSSP

ACCGCATCTTCCTCTCCAGGTACTCCG






GGTAGCGGTACTGCTTCTTCTTCTCCA






LCW0404_031_
GTPGSGTASSSPGSST
461
GGTACCCCGGGTAGCGGTACTGCTTCT
462


GFP-N_C09.ab1
PSGATGSPGASPGTSS

TCCTCTCCAGGTAGCTCTACCCCTTCT




TGSP

GGTGCAACCGGCTCTCCAGGTGCTTCT






CCGGGCACCAGCTCTACCGGTTCTCCA






LCW0404_034_
GSSTPSGATGSPGSST
463
GGTAGCTCTACCCCGTCTGGTGCTACC
464


GFP-N_D09.ab1
PSGATGSPGASPGTSS

GGCTCTCCAGGTAGCTCTACCCCGTCT




TGSP

GGTGCAACCGGCTCCCCAGGTGCATCC






CCGGGTACTAGCTCTACCGGTTCTCCA






LCW0404_035_
GASPGTSSTGSPGTPG
465
GGTGCTTCTCCGGGCACCAGCTCTACT
466


GFP-N_E09.ab1
SGTASSSPGSSTPSGA

GGTTCTCCAGGTACCCCGGGCAGCGGT




TGSP

ACCGCATCTTCTTCTCCAGGTAGCTCT






ACTCCTTCTGGTGCAACTGGTTCTCCA






LCW0404_036_
GSSPSASTGTGPGSST
467
GGTTCTAGCCCGTCTGCTTCCACCGGT
468


GFP-N_F09.ab1
PSGATGSPGTPGSGT

ACTGGCCCAGGTAGCTCTACCCCGTCT




ASSSP

GGTGCAACTGGTTCCCCAGGTACCCCT






GGTAGCGGTACCGCTTCTTCTTCTCCA






LCW0404_037_
GASPGTSSTGSPGSSP
469
GGTGCTTCTCCGGGCACCAGCTCTACT
470


GFP-N_G09.ab1
SASTGTGPGSSTPSGA

GGTTCTCCAGGTTCTAGCCCTTCTGCA




TGSP

TCCACCGGTACCGGTCCAGGTAGCTCT






ACCCCTTCTGGTGCAACCGGCTCTCCA






LCW0404_040_
GASPGTSSTGSPGSST
471
GGTGCATCCCCGGGCACCAGCTCTACC
472


GFP-N_H09.ab1
PSGATGSPGSSTPSGA

GGTTCTCCAGGTAGCTCTACCCCGTCT




TGSP

GGTGCTACCGGCTCTCCAGGTAGCTCT






ACCCCGTCTGGTGCTACTGGCTCTCCA






LCW0404_041_
GTPGSGTASSSPGSST
473
GGTACCCCTGGTAGCGGTACTGCTTCT
474


GFP-N_A10.ab1
PSGATGSPGTPGSGT

TCCTCTCCAGGTAGCTCTACTCCGTCT




ASSSP

GGTGCTACCGGTTCTCCAGGTACCCCG






GGTAGCGGTACCGCATCTTCTTCTCCA






LCW0404_043_
GSSPSASTGTGPGSST
475
GGTTCTAGCCCTTCTGCTTCCACCGGT
476


GFP-N_C10.ab1
PSGATGSPGSSTPSGA

ACTGGCCCAGGTAGCTCTACCCCTTCT




TGSP

GGTGCTACCGGCTCCCCAGGTAGCTCT






ACTCCTTCTGGTGCAACTGGCTCTCCA






LCW0404_045_
GASPGTSSTGSPGSSP
477
GGTGCTTCTCCTGGCACCAGCTCTACT
478


GFP-N_D10.ab1
SASTGTGPGSSPSAST

GGTTCTCCAGGTTCTAGCCCTTCTGCT




GTGP

TCTACCGGTACTGGTCCAGGTTCTAGC






CCTTCTGCATCCACTGGTACTGGTCCA






LCW0404_047_
GTPGSGTASSSPGASP
479
GGTACTCCTGGCAGCGGTACCGCTTCT
480


GFP-N_F10.ab1
GTSSTGSPGASPGTSS

TCTTCTCCAGGTGCTTCTCCTGGTACT




TGSP

AGCTCTACTGGTTCTCCAGGTGCTTCT






CCGGGCACTAGCTCTACTGGTTCTCCA






LCW0404_048_
GSSTPSGATGSPGASP
481
GGTAGCTCTACCCCGTCTGGTGCTACC
482


GFP-N_G10.ab
GTSSTGSPGSSTPSGA

GGTTCCCCAGGTGCTTCTCCTGGTACT




TGSP

AGCTCTACCGGTTCTCCAGGTAGCTCT






ACCCCGTCTGGTGCTACTGGCTCTCCA






LCW0404_049_
GSSTPSGATGSPGTPG
483
GGTAGCTCTACCCCGTCTGGTGCTACT
484


GFP-N_H10.ab1
SGTASSSPGSSTPSGA

GGTTCTCCAGGTACTCCGGGCAGCGGT




TGSP

ACTGCTTCTTCCTCTCCAGGTAGCTCT






ACCCCTTCTGGTGCTACTGGCTCTCCA






LCW0404_050_
GASPGTSSTGSPGSSP
485
GGTGCATCTCCTGGTACCAGCTCTACT
486


GFP-N_A11.ab1
SASTGTGPGSSTPSGA

GGTTCTCCAGGTTCTAGCCCTTCTGCT




TGSP

TCTACCGGTACCGGTCCAGGTAGCTCT






ACTCCTTCTGGTGCTACCGGTTCTCCA






LCW0404_051_
GSSTPSGATGSPGSST
487
GGTAGCTCTACCCCGTCTGGTGCTACT
488


GFP-N_B11.ab1
PSGATGSPGSSTPSGA

GGCTCTCCAGGTAGCTCTACTCCTTCT




TGSP

GGTGCTACTGGTTCCCCAGGTAGCTCT






ACCCCGTCTGGTGCAACTGGCTCTCCA






LCW0404_052_
GASPGTSSTGSPGTPG
489
GGTGCATCCCCGGGTACCAGCTCTACC
490


GFP-N_C11.ab1
SGTASSSPGASPGTSS

GGTTCTCCAGGTACTCCTGGCAGCGGT




TGSP

ACTGCATCTTCCTCTCCAGGTGCTTCT






CCGGGCACCAGCTCTACTGGTTCTCCA






LCW0404_053_
GSSTPSGATGSPGSSP
491
GGTAGCTCTACTCCTTCTGGTGCAACT
492


GFP-N_D11.ab1
SASTGTGPGASPGTSS

GGTTCTCCAGGTTCTAGCCCGTCTGCA




TGSP

TCCACTGGTACCGGTCCAGGTGCTTCC






CCTGGCACCAGCTCTACCGGTTCTCCA






LCW0404_057_
GASPGTSSTGSPGSST
493
GGTGCATCTCCTGGTACTAGCTCTACT
494


GFP-N_E11.ab1
PSGATGSPGSSPSAST

GGTTCTCCAGGTAGCTCTACTCCGTCT




GTGP

GGTGCAACCGGCTCTCCAGGTTCTAGC






CCTTCTGCATCTACCGGTACTGGTCCA






LCW0404_060_
GTPGSGTASSSPGSST
495
GGTACTCCTGGCAGCGGTACCGCATCT
496


GFP-N_F11.ab1
PSGATGSPGASPGTSS

TCCTCTCCAGGTAGCTCTACTCCGTCT




TGSP

GGTGCAACTGGTTCCCCAGGTGCTTCT






CCGGGTACCAGCTCTACCGGTTCTCCA






LCW0404_062_
GSSTPSGATGSPGTPG
497
GGTAGCTCTACCCCGTCTGGTGCAACC
498


GFP-N_G11.ab1
SGTASSSPGSSTPSGA

GGCTCCCCAGGTACTCCTGGTAGCGGT




TGSP

ACCGCTTCTTCTTCTCCAGGTAGCTCT






ACTCCGTCTGGTGCTACCGGCTCCCCA






LCW0404_066_
GSSPSASTGTGPGSSP
499
GGTTCTAGCCCTTCTGCATCCACCGGT
500


GFP-N_H11.ab1
SASTGTGPGASPGTSS

ACCGGCCCAGGTTCTAGCCCGTCTGCT




TGSP

TCTACCGGTACTGGTCCAGGTGCTTCT






CCGGGTACTAGCTCTACTGGTTCTCCA






LCW0404_067_
GTPGSGTASSSPGSST
501
GGTACCCCGGGTAGCGGTACCGCTTCT
502


GFP-N_A12.ab1
PSGATGSPGSNPSAST

TCTTCTCCAGGTAGCTCTACTCCGTCT




GTGP

GGTGCTACCGGCTCTCCAGGTTCTAAC






CCTTCTGCATCCACCGGTACCGGCCCA






LCW0404_068_
GSSPSASTGTGPGSST
503
GGTTCTAGCCCTTCTGCATCTACTGGT
504


GFP-N_B12.ab1
PSGATGSPGASPGTSS

ACTGGCCCAGGTAGCTCTACTCCTTCT




TGSP

GGTGCTACCGGCTCTCCAGGTGCTTCT






CCGGGTACTAGCTCTACCGGTTCTCCA






LCW0404_069_
GSSTPSGATGSPGASP
505
GGTAGCTCTACCCCTTCTGGTGCAACC
506


GFP-N_C12.ab1
GTSSTGSPGTPGSGTA

GGCTCTCCAGGTGCATCCCCGGGTACC




SSSP

AGCTCTACCGGTTCTCCAGGTACTCCG






GGTAGCGGTACCGCTTCTTCCTCTCCA






LCW0404_070_
GSSTPSGATGSPGSST
507
GGTAGCTCTACTCCGTCTGGTGCAACC
508


GFP-N_D12.ab1
PSGATGSPGSSTPSGA

GGTTCCCCAGGTAGCTCTACCCCTTCT




TGSP

GGTGCAACCGGCTCCCCAGGTAGCTCT






ACCCCTTCTGGTGCAACTGGCTCTCCA






LCW0404_073_
GASPGTSSTGSPGTPG
509
GGTGCTTCTCCTGGCACTAGCTCTACC
510


GFP-N_E12.ab1
SGTASSSPGSSTPSGA

GGTTCTCCAGGTACCCCTGGTAGCGGT




TGSP

ACCGCATCTTCCTCTCCAGGTAGCTCT






ACTCCTTCTGGTGCTACTGGTTCCCCA






LCW0404_075_
GSSTPSGATGSPGSSP
511
GGTAGCTCTACCCCGTCTGGTGCTACT
512


GFP-N_F12.ab1
SASTGTGPGSSPSAST

GGCTCCCCAGGTTCTAGCCCTTCTGCA




GTGP

TCCACCGGTACCGGTCCAGGTTCTAGC






CCGTCTGCATCTACTGGTACTGGTCCA






LCW0404_080_
GASPGTSSTGSPGSSP
513
GGTGCTTCCCCGGGCACCAGCTCTACT
514


GFP-N_G12.ab1
SASTGTGPGSSPSAST

GGTTCTCCAGGTTCTAGCCCGTCTGCT




GTGP

TCTACTGGTACTGGTCCAGGTTCTAGC






CCTTCTGCTTCCACTGGTACTGGTCCA






LCW0404_081_
GASPGTSSTGSPGSSP
515
GGTGCTTCCCCGGGTACCAGCTCTACC
516


GFP-N_H12.ab1
SASTGTGPGTPGSGT

GGTTCTCCAGGTTCTAGCCCTTCTGCT




ASSSP

TCTACCGGTACCGGTCCAGGTACCCCT






GGCAGCGGTACCGCATCTTCCTCTCCA









Example 5
Construction of XTEN_AE864

XTEN_AE864 was constructed from serial dimerization of XTEN_AE36 to AE72, 144, 288, 576 and 864. A collection of XTEN_AE72 segments was constructed from 37 different segments of XTEN_AE36. Cultures of E. coli harboring all 37 different 36-amino acid segments were mixed and plasmid was isolated. This plasmid pool was digested with BsaI/NcoI to generate the small fragment as the insert. The same plasmid pool was digested with BbsI/NcoI to generate the large fragment as the vector. The insert and vector fragments were ligated resulting in a doubling of the length and the ligation mixture was transformed into BL21Gold(DE3) cells to obtain colonies of XTEN_AE72.


This library of XTEN_AE72 segments was designated LCW0406. All clones from LCW0406 were combined and dimerized again using the same process as described above yielding library LCW0410 of XTEN_AE144. All clones from LCW0410 were combined and dimerized again using the same process as described above yielding library LCW0414 of XTEN_AE288. Two isolates LCW0414.001 and LCW0414.002 were randomly picked from the library and sequenced to verify the identities. All clones from LCW0414 were combined and dimerized again using the same process as described above yielding library LCW0418 of XTEN_AE576. We screened 96 isolates from library LCW0418 for high level of GFP fluorescence. 8 isolates with right sizes of inserts by PCR and strong fluorescence were sequenced and 2 isolates (LCW0418.018 and LCW0418.052) were chosen for future use based on sequencing and expression data.


The specific clone pCW0432 of XTEN_AE864 was constructed by combining LCW0418.018 of XTEN_AE576 and LCW0414.002 of XTEN_AE288 using the same dimerization process as described above.


Example 6
Construction of XTEN_AM144

A collection of XTEN_AM144 segments was constructed starting from 37 different segments of XTEN_AE36, 44 segments of XTEN_AF36, and 44 segments of XTEN_AG36.


Cultures of E. coli harboring all 125 different 36-amino acid segments were mixed and plasmid was isolated. This plasmid pool was digested with BsaI/NcoI to generate the small fragment as the insert. The same plasmid pool was digested with BbsI/NcoI to generate the large fragment as the vector. The insert and vector fragments were ligated resulting in a doubling of the length and the ligation mixture was transformed into BL21Gold(DE3) cells to obtain colonies of XTEN_AM72.


This library of XTEN_AM72 segments was designated LCW0461. All clones from LCW0461 were combined and dimerized again using the same process as described above yielding library LCW0462. 1512 Isolates from library LCW0462 were screened for protein expression. Individual colonies were transferred into 96 well plates and cultured overnight as starter cultures. These starter cultures were diluted into fresh autoinduction medium and cultured for 20-30 h. Expression was measured using a fluorescence plate reader with excitation at 395 nm and emission at 510 nm. 192 isolates showed high level expression and were submitted to DNA sequencing. Most clones in library LCW0462 showed good expression and similar physicochemical properties suggesting that most combinations of XTEN_AM36 segments yield useful XTEN sequences. 30 isolates from LCW0462 were chosen as a preferred collection of XTEN_AM144 segments for the construction of multifunctional proteins that contain multiple XTEN segments. The file names of the nucleotide and amino acid constructs for these segments are listed in Table 12.









TAB1E 12







DNA and amino acid sequences for AM144 segments













SEQ ID

SEQ ID


Clone
Sequence Trimmed
NO:
Protein Sequence
NO:





LCW462_r1
GGTACCCCGGGCAGCGGTACCGCATCTTC
517
GTPGSGTASSSPGSSTP
518



CTCTCCAGGTAGCTCTACCCCGTCTGGTG

SGATGSPGSSTPSGATG




CTACCGGTTCCCCAGGTAGCTCTACCCCG

SPGSPAGSPTSTEEGTS




TCTGGTGCAACCGGCTCCCCAGGTAGCCC

ESATPESGPGTSTEPSE




GGCTGGCTCTCCTACCTCTACTGAGGAAG

GSAPGSSPSASTGTGPG




GTACTTCTGAAAGCGCTACTCCTGAGTCT

SSPSASTGTGPGASPGT




GGTCCAGGTACCTCTACTGAACCGTCCGA

SSTGSPGTSTEPSEGSA




AGGTAGCGCTCCAGGTTCTAGCCCTTCTG

PGTSTEPSEGSAPGSEP




CATCCACCGGTACCGGCCCAGGTTCTAGC

ATSGSETP




CCGTCTGCTTCTACCGGTACTGGTCCAGG






TGCTTCTCCGGGTACTAGCTCTACTGGTT






CTCCAGGTACCTCTACCGAACCGTCCGAG






GGTAGCGCACCAGGTACCTCTACTGAACC






GTCTGAGGGTAGCGCTCCAGGTAGCGAAC






CGGCAACCTCCGGTTCTGAAACTCCA








LCW462_r5
GGTTCTACCAGCGAATCCCCTTCTGGCAC
519
GSTSESPSGTAPGSTSE
520



TGCACCAGGTTCTACTAGCGAATCCCCTT

SPSGTAPGTSPSGESST




CTGGTACCGCACCAGGTACTTCTCCGAGC

APGTSTEPSEGSAPGTS




GGCGAATCTTCTACTGCTCCAGGTACCTC

TEPSEGSAPGTSESATP




TACTGAACCTTCCGAAGGCAGCGCTCCAG

ESGPGASPGTSSTGSPG




GTACCTCTACCGAACCGTCCGAGGGCAGC

SSTPSGATGSPGASPGT




GCACCAGGTACTTCTGAAAGCGCAACCCC

SSTGSPGSTSESPSGTA




TGAATCCGGTCCAGGTGCATCTCCTGGTA

PGSTSESPSGTAPGTST




CCAGCTCTACCGGTTCTCCAGGTAGCTCT

PESGSASP




ACTCCTTCTGGTGCTACTGGCTCTCCAGG






TGCTTCCCCGGGTACCAGCTCTACCGGTT






CTCCAGGTTCTACTAGCGAATCTCCTTCT






GGCACTGCACCAGGTTCTACCAGCGAATC






TCCGTCTGGCACTGCACCAGGTACCTCTA






CCCCTGAAAGCGGTTCCGCTTCTCCA








LCW462_r9
GGTACTTCTACCGAACCTTCCGAGGGCAG
521
GTSTEPSEGSAPGTSES
522



CGCACCAGGTACTTCTGAAAGCGCTACCC

ATPESGPGTSESATPES




CTGAGTCCGGCCCAGGTACTTCTGAAAGC

GPGTSTEPSEGSAPGTS




GCTACTCCTGAATCCGGTCCAGGTACCTC

ESATPESGPGTSTEPSE




TACTGAACCTTCTGAGGGCAGCGCTCCAG

GSAPGTSTEPSEGSAPG




GTACTTCTGAAAGCGCTACCCCGGAGTCC

SEPATSGSETPGSPAGS




GGTCCAGGTACTTCTACTGAACCGTCCGA

PTSTEEGASPGTSSTGS




AGGTAGCGCACCAGGTACTTCTACTGAAC

PGSSPSASTGTGPGSSP




CTTCCGAAGGTAGCGCTCCAGGTAGCGAA

SASTGTGP




CCTGCTACTTCTGGTTCTGAAACCCCAGG






TAGCCCGGCTGGCTCTCCGACCTCCACCG






AGGAAGGTGCTTCTCCTGGCACCAGCTCT






ACTGGTTCTCCAGGTTCTAGCCCTTCTGC






TTCTACCGGTACTGGTCCAGGTTCTAGCC






CTTCTGCATCCACTGGTACTGGTCCA








LCW462_r10
GGTAGCGAACCGGCAACCTCTGGCTCTGA
523
GSEPATSGSETPGTSES
524



AACCCCAGGTACCTCTGAAAGCGCTACTC

ATPESGPGTSESATPES




CGGAATCTGGTCCAGGTACTTCTGAAAGC

GPGSTSESPSGTAPGST




GCTACTCCGGAATCCGGTCCAGGTTCTAC

SESPSGTAPGTSPSGES




CAGCGAATCTCCTTCTGGCACCGCTCCAG

STAPGASPGTSSTGSPG




GTTCTACTAGCGAATCCCCGTCTGGTACC

SSPSASTGTGPGSSTPS




GCACCAGGTACTTCTCCTAGCGGCGAATC

GATGSPGSSTPSGATGS




TTCTACCGCACCAGGTGCATCTCCGGGTA

PGSSTPSGATGSPGASP




CTGCTCTACCGGTTCTCCAGGTTCTAGAC

GTSSTGSP




CCTTCTGCTTCCACTGGTACCGGCCCAGG






TAGCTCTACCCCGTCTGGTGCTACTGGTT






CCCCAGGTAGCTCTACTCCGTCTGGTGCA






ACCGGTTCCCCAGGTAGCTCTACTCCTTC






TGGTGCTACTGGCTCCCCAGGTGCATCCC






CTGGCACCAGCTCTACCGGTTCTCCA








LCW462_r15
GGTGCTTCTCCGGGCACCAGCTCTACTGG
525
GASPGTSSTGSPGSSPS
526



TTCTCCAGGTTCTAGCCCTTCTGCATCCA

ASTGTGPGSSTPSGATG




CCGGTACCGGTCCAGGTAGCTCTACCCCT

SPGTSESATPESGPGSE




TCTGGTGCAACCGGCTCTCCAGGTACTTC

PATSGSETPGSEPATSG




TGAAAGCGCTACCCCGGAATCTGGCCCAG

SETPGTSESATPESGPG




GTAGCGAACCGGCTACTTCTGGTTCTGAA

TSTEPSEGSAPGTSTEP




ACCCCAGGTAGCGAACCGGCTACCTCCGG

SEGSAPGTSTEPSEGSA




TTCTGAAACTCCAGGTACTTCTGAAAGCG

PGTSTEPSEGSAPGSEP




CTACTCCGGAGTCCGGTCCAGGTACCTCT

ATSGSETP




ACCGAACCGTCCGAAGGCAGCGCTCCAGG






TACTTCTACTGAACCTTCTGAGGGTAGCG






CTCCAGGTACCTCTACCGAACCGTCCGAG






GGTAGCGCACCAGGTACCTCTACTGAACC






GTCTGAGGGTAGCGCTCCAGGTAGCGAAC






CGGCAACCTCCGGTTCTGAAACTCCA








LCW462_r16
GGTACCTCTACCGAACCTTCCGAAGGTAG
527
GTSTEPSEGSAPGSPAG
528



CGCTCCAGGTAGCCCGGCAGGTTCTCCTA

SPTSTEEGTSTEPSEGS




CTTCCACTGAGGAAGGTACTTCTACCGAA

APGTSESATPESGPGSE




CCTTCTGAGGGTAGCGCACCAGGTACCTC

PATSGSETPGTSESATP




TGAAAGCGCAACTCCTGAGTCTGGCCCAG

ESGPGSPAGSPTSTEEG




GTAGCGAACCTGCTACCTCCGGCTCTGAG

TSESATPESGPGTSTEP




ACTCCAGGTACCTCTGAAAGCGCAACCCC

SEGSAPGSEPATSGSET




GGAATCTGGTCCAGGTAGCCCGGCTGGCT

PGTSTEPSEGSAPGSEP




CTCCTACCTCTACTGAGGAAGGTACTTCT

ATSGSETP




GAAAGCGCTACTCCTGAGTCTGGTCCAGG






TACCTCTACTGAACCGTCCGAAGGTAGCG






CTCCAGGTAGCGAACCTGCTACTTCTGGT






TCTGAAACTCCAGGTACTTCTACCGAACC






GTCCGAGGGTAGCGCTCCAGGTAGCGAAC






CTGCTACTTCTGGTTCTGAAACTCCA








LCW462_r20
GGTACTTCTACCGAACCGTCCGAAGGCAG
529
GTSTEPSEGSAPGTSTE
530



CGCTCCAGGTACCTCTACTGAACCTTCCG

PSEGSAPGTSTEPSEGS




AGGGCAGCGCTCCAGGTACCTCTACCGAA

APGTSTEPSEGSAPGTS




CCTTCTGAAGGTAGCGCACCAGGTACTTC

TEPSEGSAPGTSTEPSE




TACCGAACCGTCCGAAGGCAGCGCTCCAG

GSAPGTSTEPSEGSAPG




GTACCTCTACTGAACCTTCCGAGGGCAGC

TSESATPESGPGTSESA




GCTCCAGGTACCTCTACCGAACCTTCTGA

TPESGPGTSTEPSEGSA




AGGTAGCGCACCAGGTACTTCTACCGAAC

PGSEPATSGSETPGSPA




CTTCCGAGGGCAGCGCACCAGGTACTTCT

GSPTSTEE




GAAAGCGCTACCCCTGAGTCCGGCCCAGG






TACTTCTGAAAGCGCTACTCCTGAATCCG






GTCCAGGTACTTCTACTGAACCTTCCGAA






GGTAGCGCTCCAGGTAGCGAACCTGCTAC






TTCTGGTTCTGAAACCCCAGGTAGCCCGG






CTGGCTCTCCGACCTCCACCGAGGAA








LCW462_r23
GGTACTTCTACCGAACCGTCCGAGGGCAG
531
GTSTEPSEGSAPGTSTE
532



CGCTCCAGGTACTTCTACTGAACCTTCTG

PSEGSAPGTSTEPSEGS




AAGGCAGCGCTCCAGGTACTTCTACTGAA

APGSTSESPSGTAPGST




CCTTCCGAAGGTAGCGCACCAGGTTCTAC

SESPSGTAPGTSTPESG




CAGCGAATCCCCTTCTGGTACTGCTCCAG

SASPGSEPATSGSETPG




GTTCTACCAGCGAATCCCCTTCTGGCACC

TSESATPESGPGTSTEP




GCACCAGGTACTTCTACCCCTGAAAGCGG

SEGSAPGTSTEPSEGSA




CTCCGCTTCTCCAGGTAGCGAACCTGCAA

PGTSESATPESGPGTSE




CCTCTGGCTCTGAAACCCCAGGTACCTCT

SATPESGP




GAAAGCGCTACTCCTGAATCTGGCCCAGG






TACTTCTACTGAACCGTCCGAGGGCAGCG






CACCAGGTACTTCTACTGAACCGTCTGAA






GGTAGCGCACCAGGTACTTCTGAAAGCGC






AACCCCGGAATCCGGCCCAGGTACCTCTG






AAAGCGCAACCCCGGAGTCCGGCCCA








LCW462_r24
GGTAGCTCTACCCCTTCTGGTGCTACCGG
533
GSSTPSGATGSPGSSPS
534



CTCTCCAGGTTCTAGCCCGTCTGCTTCTA

ASTGTGPGSSTPSGATG




CCGGTACCGGTCCAGGTAGCTCTACCCCT

SPGSPAGSPTSTEEGSP




TCTGGTGCTACTGGTTCTCCAGGTAGCCC

AGSPTSTEEGTSTEPSE




TGCTGGCTCTCCGACTTCTACTGAGGAAG

GSAPGASPGTSSTGSPG




GTAGCCCGGCTGGTTCTCCGACTTCTACT

SSPSASTGTGPGTPGSG




GAGGAAGGTACTTCTACCGAACCTTCCGA

TASSSPGSTSSTAESPG




AGGTAGCGCTCCAGGTGCTTCCCCGGGCA

PGTSPSGESSTAPGTST




CTAGCTCTACCGGTTCTCCAGGTTCTAGC

PESGSASP




CCTTCTGCATCTACTGGTACTGGCCCAGG






TACTCCGGGCAGCGGTACTGCTTCTTCCT






CTCCAGGTTCTACTAGCTCTACTGCTGAA






TCTCCTGGCCCAGGTACTTCTCCTAGCGG






TGAATCTTCTACCGCTCCAGGTACCTCTA






CTCCGGAAAGCGGTTCTGCATCTCCA








LCW462_r27
GTACCTCTACTGAACCTTCTGAGGGCAGC
535
GTSTEPSEGSAPGTSES
536



GCTCCAGGTACTTCTGAAAGCGCTACCCC

ATPESGPGTSTEPSEGS




GGAGTCCGGTCCAGGTACTTCTACTGAAC

APGTSTEPSEGSAPGTS




CGTCCGAAGGTAGCGCACCAGGTACTTCT

ESATPESGPGTSESATP




ACTGAACCGTCTGAAGGTAGCGCACCAGG

ESGPGTPGSGTASSSPG




TACTTCTGAAAGCGCAACCCCGGAATCCG

ASPGTSSTGSPGASPGT




GCCCAGGTACCTCTGAAAGCGCAACCCCG

SSTGSPGSPAGSPTSTE




GAGTCCGGCCCAGGTACTCCTGGCAGCGG

EGSPAGSPTSTEEGTST




TACCGCTTCTTCTTCTCCAGGTGCTTCTC

EPSEGSAP




CTGGTACTAGCTCTACTGGTTCTCCAGGT






GCTTCTCCGGGCACTAGCTCTACTGGTTC






TCCAGGTAGCCCTGCTGGCTCTCCGACTT






CTACTGAGGAAGGTAGCCCGGCTGGTTCT






CCGACTTCTACTGAGGAAGGTACTTCTAC






CGAACCTTCCGAAGGTAGCGCTCCA








LCW462_r28
GGTAGCCCAGCAGGCTCTCCGACTTCCAC
537
GSPAGSPTSTEEGTSTE
538



TGAGGAAGGTACTTCTACTGAACCTTCCG

PSEGSAPGTSTEPSEGS




AAGGCAGCGCACCAGGTACCTCTACTGAA

APGTSTEPSEGSAPGTS




CCTTCTGAGGGCAGCGCTCCAGGTACCTC

ESATPESGPGTSESATP




TACCGAACCGTCTGAAGGTAGCGCACCAG

ESGPGTPGSGTASSSPG




GTACCTCTGAAAGCGCAACTCCTGAGTCC

SSTPSGATGSPGASPGT




GGTCCAGGTACTTCTGAAAGCGCAACCCC

SSTGSPGTSTEPSEGSA




GGAGTCTGGCCCAGGTACCCCGGGTAGCG

PGTSESATPESGPGTST




GTACTGCTTCTTCCTCTCCAGGTAGCTCT

EPSEGSAP




ACCCCTTCTGGTGCAACCGGCTCTCCAGG






TGCTTCTCCGGGCACCAGCTCTACCGGTT






CTCCAGGTACCTCTACTGAACCTTCTGAG






GGCAGCGCTCCAGGTACTTCTGAAAGCGC






TACCCCGGAGTCCGGTCCAGGTACTTCTA






CTGAACCGTCCGAAGGTAGCGCACCA








LCW462_r38
GGTAGCGAACCGGCAACCTCCGGCTCTGA
539
GSEPATSGSETPGTSES
540



AACTCCAGGTACTTCTGAAAGCGCTACTC

ATPESGPGSEPATSGSE




CGGAATCCGGCCCAGGTAGCGAACCGGCT

TPGSSTPSGATGSPGTP




ACTTCCGGCTCTGAAACCCCAGGTAGCTC

GSGTASSSPGSSTPSGA




TACCCCGTCTGGTGCAACCGGCTCCCCAG

TGSPGASPGTSSTGSPG




GTACTCCTGGTAGCGGTACCGCTTCTTCT

SSTPSGATGSPGASPGT




TCTCCAGGTAGCTCTACTCCGTCTGGTGC

SSTGSPGSEPATSGSET




TACCGGCTCCCCAGGTGCATCTCCTGGTA

PGTSTEPSEGSAPGSEP




CCAGCTCTACCGGTTCTCCAGGTAGCTCT

ATSGSETP




ACTCCTTCTGGTGCTACTGGCTCTCCAGG






TGCTTCCCCGGGTACCAGCTCTACCGGTT






CTCCAGGTAGCGAACCTGCTACTTCTGGT






TCTGAAACTCCAGGTACTTCTACCGAACC






GTCCGAGGGTAGCGCTCCAGGTAGCGAAC






CTGCTACTTCTGGTTCTGAAACTCCA








LCW462_r39
GGTACCTCTACTGAACCTTCCGAAGGCAG
541
GTSTEPSEGSAPGTSTE
542



CGCTCCAGGTACCTCTACCGAACCGTCCG

PSEGSAPGTSESATPES




AGGGCAGCGCACCAGGTACTTCTGAAAGC

GPGSPAGSPTSTEEGSP




GCAACCCCTGAATCCGGTCCAGGTAGCCC

AGSPTSTEEGTSTEPSE




TGCTGGCTCTCCGACTTCTACTGAGGAAG

GSAPGSPAGSPTSTEEG




GTAGCCCGGCTGGTTCTCCGACTTCTACT

TSTEPSEGSAPGTSTEP




GAGGAAGGTACTTCTACCGAACCTTCCGA

SEGSAPGASPGTSSTGS




AGGTAGCGCTCCAGGTAGCCCGGCTGGTT

PGSSPSASTGTGPGSSP




CTCCGACTTCCACCGAGGAAGGTACCTCT

SASTGTGP




ACTGAACCTTCTGAGGGTAGCGCTCCAGG






TACCTCTACTGAACCTTCCGAAGGCAGCG






CTCCAGGTGCTTCCCCGGGCACCAGCTCT






ACTGGTTCTCCAGGTTCTAGCCCGTCTGC






TTCTACTGGTACTGGTCCAGGTTCTAGCC






CTTCTGCTTCCACTGGTACTGGTCCA








LCW462_r41
GGTAGCTCTACCCCGTCTGGTGCTACCGG
543
GSSTPSGATGSPGASPG
544



TTCCCCAGGTGCTTCTCCTGGTACTAGCT

TSSTGSPGSSTPSGATG




CTACCGGTTCTCCAGGTAGCTCTACCCCG

SPGSPAGSPTSTEEGTS




TCTGGTGCTACTGGCTCTCCAGGTAGCCC

ESATPESGPGSEPATSG




TGCTGGCTCTCCAACCTCCACCGAAGAAG

SETPGASPGTSSTGSPG




GTACCTCTGAAAGCGCAACCCCTGAATCC

SSTPSGATGSPGSSPSA




GGCCCAGGTAGCGAACCGGCAACCTCCGG

STGTGPGSTSESPSGTA




TTCTGAAACCCCAGGTGCATCTCCTGGTA

PGSTSESPSGTAPGTST




CTAGCTCTACTGGTTCTCCAGGTAGCTCT

PESGSASP




ACTCCGTCTGGTGCAACCGGCTCTCCAGG






TTCTAGCCCTTCTGCATCTACCGGTACTG






GTCCAGGTTCTACCAGCGAATCCCCTTCT






GGTACTGCTCCAGGTTCTACCAGCGAATC






CCCTTCTGGCACCGCACCAGGTACTTCTA






CCCCTGAAAGCGGCTCCGCTTCTCCA








LCW462_r42
GGTTCTACCAGCGAATCTCCTTCTGGCAC
545
GSTSESPSGTAPGSTSE
546



CGCTCCAGGTTCTACTAGCGAATCCCCGT

SPSGTAPGTSPSGESST




CTGGTACCGCACCAGGTACTTCTCCTAGC

APGTSESATPESGPGTS




GGCGAATCTTCTACCGCACCAGGTACCTC

TEPSEGSAPGTSTEPSE




TGAAAGCGCTACTCCGGAGTCTGGCCCAG

GSAPGTSTEPSEGSAPG




GTACCTCTACTGAACCGTCTGAGGGTAGC

TSESATPESGPGTSTEP




GCTCCAGGTACTTCTACTGAACCGTCCGA

SEGSAPGSSTPSGATGS




AGGTAGCGCACCAGGTACCTCTACTGAAC

PGASPGTSSTGSPGSST




CTTCTGAGGGCAGCGCTCCAGGTACTTCT

PSGATGSP




GAAAGCGCTACCCCGGAGTCCGGTCCAGG






TACTTCTACTGAACCGTCCGAAGGTAGCG






CACCAGGTAGCTCTACCCCGTCTGGTGCT






ACCGGTTCCCCAGGTGCTTCTCCTGGTAC






TAGCTCTACCGGTTCTCCAGGTAGCTCTA






CCCCGTCTGGTGCTACTGGCTCTCCA








LCW462_r43
GGTTCTACTAGCTCTACTGCAGAATCTCC
547
GSTSSTAESPGPGTSPS
548



GGGCCCAGGTACCTCTCCTAGCGGTGAAT

GESSTAPGTSPSGESST




CTTCTACCGCTCCAGGTACTTCTCCGAGC

APGSTSSTAESPGPGST




GGTGAATCTTCTACCGCTCCAGGTTCTAC

SSTAESPGPGTSTPESG




TAGCTCTACCGCTGAATCTCCGGGTCCAG

SASPGTSPSGESSTAPG




GTTCTACCAGCTCTACTGCAGAATCTCCT

STSSTAESPGPGTSTPE




GGCCCAGGTACTTCTACTCCGGAAAGCGG

SGSASPGSTSSTAESPG




TTCCGCTTCTCCAGGTACTTCTCCTAGCG

PGSTSESPSGTAPGTSP




GTGAATCTTCTACCGCTCCAGGTTCTACC

SGESSTAP




AGCTCTACTGCTGAATCTCCTGGCCCAGG






TACTTCTACCCCGGAAAGCGGCTCCGCTT






CTCCAGGTTCTACCAGCTCTACCGCTGAA






TCTCCTGGCCCAGGTTCTACTAGCGAATC






TCCGTCTGGCACCGCACCAGGTACTTCCC






CTAGCGGTGAATCTTCTACTGCACCA








LCW462_r45
GGTACCTCTACTCCGGAAAGCGGTTCCGC
549
GTSTPESGSASPGSTSE
550



ATCTCCAGGTTCTACCAGCGAATCCCCGT

SPSGTAPGSTSSTAESP




CTGGCACCGCACCAGGTTCTACTAGCTCT

GTSTEPSEGSAPGTSTE




ACTGCTGAATCTCCGGGCCCAGGTACCTC

PSEGSAPGTSESATPES




TACTGAACCTTCCGAAGGCAGCGCTCCAG

GPGTSESATPESGPGTS




GTACCTCTACCGAACCGTCCGAGGGCAGC

TEPSEGSAPGTSTEPSE




GCACCAGGTACTTCTGAAAGCGCAACCCC

GSAPGTSESATPESGPG




TGAATCCGGTCCAGGTACCTCTGAAAGCG

TSTEPSEGSAPGTSTEP




CTACTCCGGAGTCTGGCCCAGGTACCTCT

SEGSAP




ACTGAACCGTCTGAGGGTAGCGCTCCAGG






TACTTCTACTGAACCGTCCGAAGGTAGCG






CACCAGGTACTTCTGAAAGCGCTACTCCG






GAGTCCGGTCCAGGTACCTCTACCGAACC






GTCCGAAGGCAGCGCTCCAGGTACTTCTA






CTGAACCTTCTGAGGGTAGCGCTCCC








LCW462_r47
GGTACCTCTACCGAACCGTCCGAGGGTAG
551
GTSTEPSEGSAPGTSTE
552



CGCACCAGGTACCTCTACTGAACCGTCTG

PSEGSAPGSEPATSGSE




AGGGTAGCGCTCCAGGTAGCGAACCGGCA

TPGTSTEPSEGSAPGTS




ACCTCCGGTTCTGAAACTCCAGGTACTTC

ESATPESGPGTSESATP




TACTGAACCGTCTGAAGGTAGCGCACCAG

ESGPGASPGTSSTGSPG




GTACTTCTGAAAGCGCAACCCCGGAATCC

SSPSASTGTGPGSSTPS




GGCCCAGGTACCTCTGAAAGCGCAACCCC

GATGSPGSSTPSGATGS




GGAGTCCGGCCCAGGTGCATCTCCGGGTA

PGSSTPSGATGSPGASP




CTAGCTCTACCGGTTCTCCAGGTTCTAGC

GTSSTGSP




CCTTCTGCTTCCACTGGTACCGGCCCAGG






TAGCTCTACCCCGTCTGGTGCTACTGGTT






CCCCAGGTAGCTCTACTCCGTCTGGTGCA






ACCGGTTCCCCAGGTAGCTCTACTCCTTC






TGGTGCTACTGGCTCCCCAGGTGCATCCC






CTGGCACCAGCTCTACCGGTTCTCCA








LCW462_r54
GGTAGCGAACCGGCAACCTCTGGCTCTGA
553
GSEPATSGSETPGSEPA
554



AACTCCAGGTAGCGAACCTGCAACCTCCG

TSGSETPGTSTEPSEGS




GCTCTGAAACCCCAGGTACTTCTACTGAA

APGSEPATSGSETPGTS




CCTTCTGAGGGCAGCGCACCAGGTAGCGA

ESATPESGPGTSTEPSE




ACCTGCAACCTCTGGCTCTGAAACCCCAG

GSAPGSSTPSGATGSPG




GTACCTCTGAAAGCGCTACTCCTGAATCT

SSTPSGATGSPGASPGT




GGCCCAGGTACTTCTACTGAACCGTCCGA

SSTGSPGSSTPSGATGS




GGGCAGCGCACCAGGTAGCTCTACTCCGT

PGASPGTSSTGSPGSST




CTGGTGCTACCGGCTCTCCAGGTAGCTCT

PSGATGSP




ACCCCTTCTGGTGCAACCGGCTCCCCAGG






TGCTTCTCCGGGTACCAGCTCTACTGGTT






CTCCAGGTAGCTCTACCCCGTCTGGTGCT






ACCGGTTCCCCAGGTGCTTCTCCTGGTAC






TAGCTCTACCGGTTCTCCAGGTAGCTCTA






CCCCGTCTGGTGCTACTGGCTCTCCA








LCW462_r55
GGTACTTCTACCGAACCGTCCGAGGGCAG
555
GTSTEPSEGSAPGTSTE
556



CGCTCCAGGTACTTCTACTGAACCTTCTG

PSEGSAPGTSTEPSEGS




AAGGCAGCGCTCCAGGTACTTCTACTGAA

APGTSESATPESGPGTS




CCTTCCGAAGGTAGCGCACCAGGTACTTC

TEPSEGSAPGTSTEPSE




TGAAAGCGCTACTCCGGAGTCCGGTCCAG

GSAPGSTSESPSGTAPG




GTACCTCTACCGAACCGTCCGAAGGCAGC

TSPSGESSTAPGTSPSG




GCTCCAGGTACTTCTACTGAACCTTCTGA

ESSTAPGSPAGSPTSTE




GGGTAGCGCTCCAGGTTCTACTAGCGAAT

EGTSESATPESGPGTST




CTCCGTCTGGCACTGCTCCAGGTACTTCT

EPSEGSAP




CCTAGCGGTGAATCTTCTACCGCTCCAGG






TACTTCCCCTAGCGGCGAATCTTCTACCG






CTCCAGGTAGCCCGGCTGGCTCTCCTACC






TCTACTGAGGAAGGTACTTCTGAAAGCGC






TACTCCTGAGTCTGGTCCAGGTACCTCTA






CTGAACCGTCCGAAGGTAGCGCTCCA








LCW462_r57
GGTACTTCTACTGAACCTTCCGAAGGTAG
557
GTSTEPSEGSAPGSEPA
558



CGCTCCAGGTAGCGAACCTGCTACTTCTG

TSGSETPGSPAGSPTST




GTTCTGAAACCCCAGGTAGCCCGGCTGGC

EEGSPAGSPTSTEEGTS




TCTCCGACCTCCACCGAGGAAGGTAGCCC

ESATPESGPGTSTEPSE




GGCAGGCTCTCCGACCTCTACTGAGGAAG

GSAPGTSTEPSEGSAPG




GTACTTCTGAAAGCGCAACCCCGGAGTCC

TSTEPSEGSAPGTSESA




GGCCCAGGTACCTCTACCGAACCGTCTGA

TPESGPGSSTPSGATGS




GGGCAGCGCACCAGGTACCTCTACTGAAC

PGSSPSASTGTGPGASP




CTTCCGAAGGCAGCGCTCCAGGTACCTCT

GTSSTGSP




ACCGAACCGTCCGAGGGCAGCGCACCAGG






TACTTCTGAAAGCGCAACCCCTGAATCCG






GTCCAGGTAGCTCTACTCCGTCTGGTGCA






ACCGGCTCCCCAGGTTCTAGCCCGTCTGC






TTCCACTGGTACTGGCCCAGGTGCTTCCC






CGGGCACCAGCTCTACTGGTTCTCCA








LCW462_r61
GGTAGCGAACCGGCTACTTCCGGCTCTGA
559
GSEPATSGSETPGSPAG
560



GACTCCAGGTAGCCCTGCTGGCTCTCCGA

SPTSTEEGTSESATPES




CCTCTACCGAAGAAGGTACCTCTGAAAGC

GPGTSTEPSEGSAPGTS




GCTACCCCTGAGTCTGGCCCAGGTACCTC

TEPSEGSAPGTSESATP




TACTGAACCTTCCGAAGGCAGCGCTCCAG

ESGPGTSTPESGSASPG




GTACCTCTACCGAACCGTCCGAGGGCAGC

STSESPSGTAPGSTSST




GCACCAGGTACTTCTGAAAGCGCAACCCC

AESPGPGTSESATPESG




TGAATCCGGTCCAGGTACCTCTACTCCGG

PGTSTEPSEGSAPGTST




AAAGCGGTTCCGCATCTCCAGGTTCTACC

EPSEGSAP




AGCGAATCCCCGTCTGGCACCGCACCAGG






TTCTACTAGCTCTACTGCTGAATCTCCGG






GCCCAGGTACTTCTGAAAGCGCTACTCCG






GAGTCCGGTCCAGGTACCTCTACCGAACC






GTCCGAAGGCAGCGCTCCAGGTACTTCTA






CTGAACCTTCTGAGGGTAGCGCTCCA








LCW462_r64
GGTACTTCTACCGAACCGTCCGAGGGCAG
561
GTSTEPSEGSAPGTSTE
562



CGCTCCAGGTACTTCTACTGAACCTTCTG

PSEGSAPGTSTEPSEGS




AAGGCAGCGCTCCAGGTACTTCTACTGAA

APGTSTEPSEGSAPGTS




CCTTCCGAAGGTAGCGCACCAGGTACCTC

ESATPESGPGTSESATP




TACCGAACCGTCTGAAGGTAGCGCACCAG

ESGPGTPGSGTASSSPG




GTACCTCTGAAAGCGCAACTCCTGAGTCC

SSTPSGATGSPGASPGT




GGTCCAGGTACTTCTGAAAGCGCAACCCC

SSTGSPGSTSSTAESPG




GGAGTCTGGCCCAGGTACTCCTGGCAGCG

PGTSPSGESSTAPGTST




GTACCGCATCTTCCTCTCCAGGTAGCTCT

PESGSASP




ACTCCGTCTGGTGCAACTGGTTCCCCAGG






TGCTTCTCCGGGTACCAGCTCTACCGGTT






CTCCAGGTTCCACCAGCTCTACTGCTGAA






TCTCCTGGTCCAGGTACCTCTCCTAGCGG






TGAATCTTCTACTGCTCCAGGTACTTCTA






CTCCTGAAAGCGGCTCTGCTTCTCCA








LCW462_r67
GGTAGCCCGGCAGGCTCTCCGACCTCTAC
563
GSPAGSPTSTEEGTSES
564



TGAGGAAGGTACTTCTGAAAGCGCAACCC

ATPESGPGTSTEPSEGS




CGGAGTCCGGCCCAGGTACCTCTACCGAA

APGTSESATPESGPGSE




CCGTCTGAGGGCAGCGCACCAGGTACTTC

PATSGSETPGTSTEPSE




TGAAAGCGCAACCCCTGAATCCGGTCCAG

GSAPGSPAGSPTSTEEG




GTAGCGAACCGGCTACTTCTGGCTCTGAG

TSTEPSEGSAPGTSTEP




ACTCCAGGTACTTCTACCGAACCGTCCGA

SEGSAPGTSTEPSEGSA




AGGTAGCGCACCAGGTAGCCCGGCTGGTT

PGTSTEPSEGSAPGTST




CTCCGACTTCCACCGAGGAAGGTACCTCT

EPSEGSAP




ACTGAACCTTCTGAGGGTAGCGCTCCAGG






TACCTCTACTGAACCTTCCGAAGGCAGCG






CTCCAGGTACTTCTACCGAACCGTCCGAG






GGCAGCGCTCCAGGTACTTCTACTGAACC






TTCTGAAGGCAGCGCTCCAGGTACTTCTA






CTGAACCTTCCGAAGGTAGCGCACCA








LCW462_r69
GGTACTTCTCCGAGCGGTGAATCTTCTAC
565
GTSPSGESSTAPGSTSS
566



CGCACCAGGTTCTACTAGCTCTACCGCTG

TAESPGPGTSPSGESST




AATCTCCGGGCCCAGGTACTTCTCCGAGC

APGTSESATPESGPGTS




GGTGAATCTTCTACTGCTCCAGGTACCTC

TEPSEGSAPGTSTEPSE




TGAAAGCGCTACTCCGGAGTCTGGCCCAG

GSAPGSSPSASTGTGPG




GTACCTCTACTGAACCGTCTGAGGGTAGC

SSTPSGATGSPGASPGT




GCTCCAGGTACTTCTACTGAACCGTCCGA

SSTGSPGTSTPESGSAS




AGGTAGCGCACCAGGTTCTAGCCCTTCTG

PGTSPSGESSTAPGTSP




CATCTACTGGTACTGGCCCAGGTAGCTCT

SGESSTAP




ACTCCTTCTGGTGCTACCGGCTCTCCAGG






TGCTTCTCCGGGTACTAGCTCTACCGGTT






CTCCAGGTACTTCTACTCCGGAAAGCGGT






TCCGCATCTCCAGGTACTTCTCCTAGCGG






TGAATCTTCTACTGCTCCAGGTACCTCTC






CTAGCGGCGAATCTTCTACTGCTCCA








LCW462_r70
GGTACCTCTGAAAGCGCTACTCCGGAGTC
567
GTSESATPESGPGTSTE
568



TGGCCCAGGTACCTCTACTGAACCGTCTG

PSEGSAPGTSTEPSEGS




AGGGTAGCGCTCCAGGTACTTCTACTGAA

APGSPAGSPTSTEEGSP




CCGTCCGAAGGTAGCGCACCAGGTAGCCC

AGSPTSTEEGTSTEPSE




TGCTGGCTCTCCGACTTCTACTGAGGAAG

GSAPGSSPSASTGTGPG




GTAGCCCGGCTGGTTCTCCGACTTCTACT

SSTPSGATGSPGSSTPS




GAGGAAGGTACTTCTACCGAACCTTCCGA

GATGSPGSEPATSGSET




AGGTAGCGCTCCAGGTTCTAGCCCTTCTG

PGTSESATPESGPGSEP




CTTCCACCGGTACTGGCCCAGGTAGCTCT

ATSGSETP




ACCCCTTCTGGTGCTACCGGCTCCCCAGG






TAGCTCTACTCCTTCTGGTGCAACTGGCT






CTCCAGGTAGCGAACCGGCAACTTCCGGC






TCTGAAACCCCAGGTACTTCTGAAAGCGC






TACTCCTGAGTCTGGCCCAGGTAGCGAAC






CTGCTACCTCTGGCTCTGAAACCCCA








LCW462_r72
GGTACTTCTACCGAACCGTCCGAAGGCAG
569
GTSTEPSEGSAPGTSTE
570



CGCTCCAGGTACCTCTACTGAACCTTCCG

PSEGSAPGTSTEPSEGS




AGGGCAGCGCTCCAGGTACCTCTACCGAA

APGSSTPSGATGSPGAS




CCTTCTGAAGGTAGCGCACCAGGTAGCTC

PGTSSTGSPGSSTPSGA




TACCCCGTCTGGTGCTACCGGTTCCCCAG

TGSPGTSESATPESGPG




GTGCTTCTCCTGGTACTAGCTCTACCGGT

SEPATSGSETPGTSTEP




TCTCCAGGTAGCTCTACCCCGTCTGGTGC

SEGSAPGSTSESPSGTA




TACTGGCTCTCCAGGTACTTCTGAAAGCG

PGSTSESPSGTAPGTST




CAACCCCTGAATCCGGTCCAGGTAGCGAA

PESGSASP




CCGGCTACTTCTGGCTCTGAGACTCCAGG






TACTTCTACCGAACCGTCCGAAGGTAGCG






CACCAGGTTCTACTAGCGAATCTCCTTCT






GGCACTGCACCAGGTTCTACCAGCGAATC






TCCGTCTGGCACTGCACCAGGTACCTCTA






CCCCTGAAAGCGGTTCCGCTTCTCCA








LCW462_r73
GGTACCTCTACTCCTGAAAGCGGTTCTGC
571
GTSTPESGSASPGSTSS
572



ATCTCCAGGTTCCACTAGCTCTACCGCAG

TAESPGPGSTSSTAESP




AATCTCCGGGCCCAGGTTCTACTAGCTCT

GPGSSPSASTGTGPGSS




ACTGCGTAATCTCCTGGCCCAGGTTCTAG

TPSGATGSPGASPGTSS




CCCTTCTGCATCTACTGGTACTGGCCCAG

TGSPGSEPATSGSETPG




GTAGCTCTACTCCTTCTGGTGCTACCGGC

TSESATPESGPGSPAGS




TCTCCAGGTGCTTCTCCGGGTACTAGCTC

PTSTEEGSTSESPSGTA




TACCGGTTCTCCAGGTAGCGAACCGGCAA

PGSTSESPSGTAPGTST




CCTCCGGCTCTGAAACCCCAGGTACCTCT

PESGSASP




GAAAGCGCTACTCCTGAATCCGGCCCAGG






TAGCCCGGCAGGTTCTCCGACTTCCACTG






AGGAAGGTTCTACTAGCGAATCTCCTTCT






GGCACTGCACCAGGTTCTACCAGCGAATC






TCCGTCTGGCACTGCACCAGGTACCTCTA






CCCCTGAAAGCGGTTCCGCTTCTCCC








LCW462_r78
GGTAGCCCGGCTGGCTCTCCTACCTCTAC
573
GSPAGSPTSTEEGTSES
574



TGAGGAAGGTACTTCTGAAAGCGCTACTC

ATPESGPGTSTEPSEGS




CTGAGTCTGGTCCAGGTACCTCTACTGAA

APGSTSESPSGTAPGST




CCGTCCGAAGGTAGCGCTCCAGGTTCTAC

SESPSGTAPGTSPSGES




CAGCGAATCTCCTTCTGGCACCGCTCCAG

STAPGTSTEPSEGSAPG




GTTCTACTAGCGAATCCCCGTCTGGTACC

SPAGSPTSTEEGTSTEP




GCACCAGGTACTTCTCCTAGCGGCGAATC

SEGSAPGSEPATSGSET




TTCTACCGCACCAGGTACCTCTACCGAAC

PGTSESATPESGPGTST




CTTCCGAAGGTAGCGCTCCAGGTAGCCCG

EPSEGSAP




GCAGGTTCTCCTACTTCCACTGAGGAAGG






TACTTCTACCGAACCTTCTGAGGGTAGCG






CACCAGGTAGCGAACCTGCAACCTCTGGC






TCTGAAACCCCAGGTACCTCTGAAAGCGC






TACTCCTGAATCTGGCCCAGGTACTTCTA






CTGAACCGTCCGAGGGCAGCGCACCA








LCW462_r79
GGTACCTCTACCGAACCTTCCGAAGGTAG
575
GTSTEPSEGSAPGSPAG
576



CGCTCCAGGTAGCCCGGCAGGTTCTCCTA

SPTSTEEGTSTEPSEGS




CTTCCACTGAGGAAGGTACTTCTACCGAA

APGTSPSGESSTAPGTS




CCTTCTGAGGGTAGCGCACCAGGTACCTC

PSGESSTAPGTSPSGES




CCCTAGCGGCGAATCTTCTACTGCTCCAG

STAPGSTSESPSGTAPG




GTACCTCTCCTAGCGGCGAATCTTCTACC

STSESPSGTAPGTSTPE




GCTCCAGGTACCTCCCCTAGCGGTGAATC

SGSASPGSEPATSGSET




TTCTACCGCACCAGGTTCTACCAGCGAAT

PGTSESATPESGPGTST




CCCCTTCTGGTACTGCTCCAGGTTCTACC

EPSEGSAP




AGCGAATCCCCTTCTGGCACCGCACCAGG






TACTTCTACCCCTGAAAGCGGCTCCGCTT






CTCCAGGTAGCGAACCTGCAACCTCTGGC






TCTGAAACCCCAGGTACCTCTGAAAGCGC






TACTCCTGAATCTGGCCCAGGTACTTCTA






CTGAACCGTCCGAGGGCAGCGCACCA








LCW462_r87
GGTAGCGAACCGGCAACCTCTGGCTCTGA
577
GSEPATSGSETPGTSES
578



AACCCCAGGTACCTCTGAAAGCGCTACTC

ATPESGPGTSESATPES




CGGAATCTGGTCCAGGTACTTCTGAAAGC

GPGTSPSGESSTAPGST




GCTACTCCGGAATCCGGTCCAGGTACTTC

SSTAESPGPGTSPSGES




TCCGAGCGGTGAATCTTCTACCGCACCAG

STAPGSTSESPSGTAPG




GTTCTACTAGCTCTACCGCTGAATCTCCG

TSPSGESSTAPGSTSST




GGCCCAGGTACTTCTCCGAGCGGTGAATC

AESPGPGSSTPSGATGS




TTCTACTGCTCCAGGTTCTACTAGCGAAT

PGSSTPSGATGSPGSST




CCCCGTCTGGTACTGCTCCAGGTACTTCC

PSGANWLS




CCTAGCGGTGAATCTTCTACTGCTCCAGG






TTCTACCAGCTCTACCGCAGAATCTCCGG






GTCCAGGTAGCTCTACTCCGTCTGGTGCA






ACCGGTTCCCCAGGTAGCTCTACCCCTTC






TGGTGCAACCGGCTCCCCAGGTAGCTCTA






CCCCTTCTGGTGCAAACTGGCTCTCC








LCW462_r88
GGTAGCCCTGCTGGCTCTCCGACTTCTAC
579
GSPAGSPTSTEEGSPAG
580



TGAGGAAGGTAGCCCGGCTGGTTCTCCGA

SPTSTEEGTSTEPSEGS




CTTCTACTGAGGAAGGTACTTCTACCGAA

APGTSTEPSEGSAPGTS




CCTTCCGAAGGTAGCGCTCCAGGTACCTC

TEPSEGSAPGTSESATP




TACTGAACCTTCCGAAGGCAGCGCTCCAG

ESGPGASPGTSSTGSPG




GTACCTCTACCGAACCGTCCGAGGGCAGC

SSTPSGATGSPGASPGT




GCACCAGGTACTTCTGAAAGCGCAACCCC

SSTGSPGSSTPSGATGS




TGAATCCGGTCCAGGTGCATCTCCTGGTA

PGTPGSGTASSSPGSST




CCAGCTCTACCGGTTCTCCAGGTAGCTCT

PSGATGSP




ACTCCTTCTGGTGCTACTGGCTCTCCAGG






TGCTTCCCCGGGTACCAGCTCTACCGGTT






CTCCAGGTAGCTCTACCCCGTCTGGTGCT






ACTGGTTCTCCAGGTACTCCGGGCAGCGG






TACTGCTTCTTCCTCTCCAGGTAGCTCTA






CCCCTTCTGGTGCTACTGGCTCTCCA








LCW462_r89
GGTAGCTCTACCCCGTCTGGTGCTACTGG
581
GSSTPSGATGSPGTPGS
582



TTCTCCAGGTACTCCGGGCAGCGGTACTG

GTASSSPGSSTPSGATG




CTTCTTCCTCTCCAGGTAGCTCTACCCCT

SPGSPAGSPTSTEEGTS




TCTGGTGCTACTGGCTCTCCAGGTAGCCC

ESATPESGPGTSTEPSE




GGCTGGCTCTCCTACCTCTACTGAGGAAG

GSAPGTSESATPESGPG




GTACTTCTGAAAGCGCTACTCCTGAGTCT

SEPATSGSETPGTSESA




GGTCCAGGTACCTCTACTGAACCGTCCGA

TPESGPGTSTEPSEGSA




AGGTAGCGCTCCAGGTACCTCTGAAAGCG

PGTSESATPESGPGTSE




CAACTCCTGAGTCTGGCCCAGGTAGCGAA

SATPESGP




CCTGCTACCTCCGGCTCTGAGACTCCAGG






TACCTCTGAAAGCGCAACCCCGGAATCTG






GTCCAGGTACTTCTACTGAACCGTCTGAA






GGTAGCGCACCAGGTACTTCTGAAAGCGC






AACCCCGGAATCCGGCCCAGGTACCTCTG






AAAGCGCAACCCCGGAGTCCGGCCCA









Example 7
Construction of XTEN_AM288

The entire library LCW0462 was dimerized as described in Example 6 resulting in a library of XTEN_AM288 clones designated LCW0463. 1512 isolates from library LCW0463 were screened using the protocol described in Example 6. 176 highly expressing clones were sequenced and 40 preferred XTEN_AM288 segments were chosen for the construction of multifunctional proteins that contain multiple XTEN segments with 288 amino acid residues.


Example 8
Construction of XTEN_AM432

We generated a library of XTEN_AM432 segments by recombining segments from library LCW0462 of XTEN_AM144 segments and segments from library LCW0463 of XTEN_AM288 segments. This new library of XTEN_AM432 segment was designated LCW0464. Plasmid was isolated from cultures of E. coli harboring LCW0462 and LCW0463, respectively. 1512 isolates from library LCW0464 were screened using the protocol described in Example 6. 176 highly expressing clones were sequenced and 39 preferred XTEN_AM432 segment were chosen for the construction of longer XTENs and for the construction of multifunctional proteins that contain multiple XTEN segments with 432 amino acid residues.


In parallel constructed library LMS0100 of XTEN_AM432 segments using preferred segments of XTEN_AM 144 and XTEN_AM288. Screening of this library yielded 4 isolates that were selected for further construction


Example 9
Construction of XTEN_AM875

The stuffer vector pCW0359 was digested with BsaI and KpnI to remove the stuffer segment and the resulting vector fragment was isolated by agarose gel purification.


We annealed the phosphorylated oligonucleotide BsaI-AscI-KpnIforP: AGGTGCAAGCGCAAGCGGCGCGCCAAGCACGGGAGGTTCGTCTTCACTCGAGGGTAC (SEQ ID NO: 583) and the non-phosphorylated oligonucleotide BsaI-AscI-Kpnlrev: CCTCGAGTGAAGACGAACCTCCCGTGCTTGGCGCGCCGCTTGCGCTTGC (SEQ ID NO: 584) for introducing the sequencing island A (SI-A) which encodes amino acids GASASGAPSTG (SEQ ID NO: 585) and has the restriction enzyme AscI recognition nucleotide sequence GGCGCGCC inside. The annealed oligonucleotide pairs were ligated with BsaI and KpnI digested stuffer vector pCW0359 prepared above to yield pCW0466 containing SI-A. We then generated a library of XTEN_AM443 segments by recombining 43 preferred XTEN_AM432 segments from Example 8 and SI-A segments from pCW0466 at C-terminus using the same dimerization process described in Example 5. This new library of XTEN_AM443 segments was designated LCW0479.


We generated a library of XTEN_AM875 segments by recombining segments from library LCW0479 of XTEN_AM443 segments and 43 preferred XTEN_AM432 segments from Example 8 using the same dimerization process described in Example 5. This new library of XTEN_AM875 segment was designated LCW0481.


Example 10
Construction of XTEN_AM1318

We annealed the phosphorylated oligonucleotide BsaI-FseI-KpnIforP: AGGTCCAGAACCAACGGGGCCGGCCCCAAGCGGAGGTTCGTCTTCACTCGAGGGTAC (SEQ ID NO: 586) and the non-phosphorylated oligonucleotide BsaI-FseI-Kpnlrev: CCTCGAGTGAAGACGAACCTCCGCTTGGGGCCGGCCCCGTTGGTTCTGG (SEQ ID NO: 587) for introducing the sequencing island B (SI-B) which encodes amino acids GPEPTGPAPSG (SEQ ID NO: 588) and has the restriction enzyme FseI recognition nucleotide sequence GGCCGGCC inside. The annealed oligonucleotide pairs were ligated with BsaI and KpnI digested stuffer vector pCW0359 as used in Example 9 to yield pCW0467 containing SI-B. We then generated a library of XTEN_AM443 segments by recombining 43 preferred XTEN_AM432 segments from Example 8 and SI-B segments from pCW0467 at C-terminus using the same dimerization process described in Example 5. This new library of XTEN_AM443 segments was designated LCW0480.


We generated a library of XTEN_AM1318 segments by recombining segments from library LCW0480 of XTEN_AM443 segments and segments from library LCW0481 of XTEN_AM875 segments using the same dimerization process as in Example 5. This new library of XTEN_AM1318 segment was designated LCW0487.


Example 11
Construction of XTEN_AD864

Using the several consecutive rounds of dimerization, we assembled a collection of XTEN_AD864 sequences starting from segments of XTEN_AD36 listed in Example 1. These sequences were assembled as described in Example 5. Several isolates from XTEN_AD864 were evaluated and found to show good expression and excellent solubility under physiological conditions. One intermediate construct of XTEN_AD576 was sequenced. This clone was evaluated in a PK experiment in cynomolgus monkeys and a half-life of about 20 h was measured.


Example 12
Construction of XTEN_AF864

Using the several consecutive rounds of dimerization, we assembled a collection of XTEN_AF864 sequences starting from segments of XTEN_AF36 listed in Example 3. These sequences were assembled as described in Example 5. Several isolates from XTEN_AF864 were evaluated and found to show good expression and excellent solubility under physiological conditions. One intermediate construct of XTEN_AF540 was sequenced. This clone was evaluated in a PK experiment in cynomolgus monkeys and a half-life of about 20 h was measured. A full length clone of XTEN_AF864 had excellent solubility and showed half-life exceeding 60 h in cynomolgus monkeys. A second set of XTEN_AF sequences was assembled including a sequencing island as described in Example 9.


Example 13
Construction of XTEN_AG864

Using the several consecutive rounds of dimerization, we assembled a collection of XTEN_AG864 sequences starting from segments of XTEN_AD36 listed in Example 1. These sequences were assembled as described in Example 5. Several isolates from XTEN_AG864 were evaluated and found to show good expression and excellent solubility under physiological conditions. A full-length clone of XTEN_AG864 had excellent solubility and showed half-life exceeding 60 h in cynomolgus monkeys.


Example 14
Construction of N-Terminal Extensions of XTEN-Construction and Screening of 12mer Addition Libraries

This example details a step in the optimization of the N-terminus of the XTEN protein to promote the initiation of translation to allow for expression of XTEN fusions at the N-terminus of fusion proteins without the presence of a helper domain. Historically expression of proteins with XTEN at the N-terminus was poor, yielding values that would essentially undetectable in the GFP fluorescence assay (<25% of the expression with the N-terminal CBD helper domain). To create diversity at the codon level, seven amino acid sequences were selected and prepared with a diversity of codons. Seven pairs of oligonucleotides encoding 12 amino acids with codon diversities were designed, annealed and ligated into the NdeI/BsaI restriction enzyme digested stuffer vector pCW0551 (Stuffer-XTEN_AM875-GFP), and transformed into E. coli BL21Gold(DE3) competent cells to obtain colonies of seven libraries. The resulting clones have N-terminal XTEN 12mers fused in-frame to XTEN_AM875-GFP to allow use of GFP fluorescence for screening the expression. Individual colonies from the seven created libraries were picked and grown overnight to saturation in 500 μl of super broth media in a 96 deep well plate. The number of colonies picked ranged from approximately half to a third of the theoretical diversity of the library (see Table 13).









TABLE 13







Theoretical Diversity and Sampling Numbers for 12mer Addition Libraries.


The amino acid residues with randomized codons are underlined.














Amino Acid
SEQ ID
Theoretical
Number


Library
Motif Family
Sequence
NO:
Diversity
screened















LCW546
AE12
MASPAGSPTSTEE
589
572
2 plates (168)





LCW547
AE12
MATSESATPESGP
590
1536
5 plates (420)





LCW548
AF12
MATSPSGESSTAP
591
192
2 plates (168)





LCW549
AF12
MESTSSTAESPGP
592
384
2 plates (168)





LCW552
AG12
MASSTPSGATGSP
593
384
2 plates (168)





LCW553
AG12
MEASPGTSSTGSP
594
384
2 plates (168)





LCW554
(CBD-like)
MASTPESGSSG
595
32
1 plate (84)









The saturated overnight cultures were used to inoculate fresh 500 μl cultures in auto-induction media in which they were grown overnight at 26° C. These expression cultures were then assayed using a fluorescence plate reader (excitation 395 nm, emission 510 nm) to determine the amount of GFP reporter present (see FIG. 9 for results of expression assays). The results, graphed as box and whisker plots, indicate that while median expression levels were approximately half of the expression levels compared to the “benchmark” CBD N-terminal helper domain, the best clones from the libraries were much closer to the benchmarks, indicating that further optimization around those sequences was warranted. This is in contrast to previous XTEN versions that were <25% of the expression levels of the CBD N-terminal benchmark. The results also show that the libraries starting with amino acids MA had better expression levels than those beginning with ME. This was most apparent when looking at the best clones, which were closer to the benchmarks as they mostly start with MA. Of the 176 clones within 33% of the CBD-AM875 benchmark, 87% begin with MA, where as only 75% of the sequences in the libraries beginning with MA, a clear over representation of the clones beginning with MA at the highest level of expression. 96 of the best clones were sequenced to confirm identity and twelve sequences (see Table 14), 4 from LCW546, 4 from LCW547 and 4 from LCW552 were selected for further optimization.









TABLE 14







Advanced 12mer DNA Nucleotide Sequences











SEQ ID


Clone
DNA Nucleotide Sequence
NO:





LCW546_02
ATGGCTAGTCCGGCTGGCTCTCCGACCTCCACTGAGGAAGGTACTTCTACT
596





LCW546_06
ATGGCTAGTCCTGCTGGCTCTCCAACCTCCACTGAGGAAGGTACTTCTACT
597





LCW546_07
ATGGCTAGTCCAGCAGGCTCTCCTACCTCCACCGAGGAAGGTACTTCTACT
598





LCW546_09
ATGGCTAGTCCTGCTGGCTCTCCGACCTCTACTGAGGAAGGTACTTCTACT
599





LCW547_03
ATGGCTACATCCGAAAGCGCAACCCCTGAGTCCGGTCCAGGTACTTCTACT
600





LCW547_06
ATGGCTACATCCGAAAGCGCAACCCCTGAATCTGGTCCAGGTACTTCTACT
601





LCW547_10 
ATGGCTACGTCTGAAAGCGCTACTCCGGAATCTGGTCCAGGTACTTCTACT
602





LCW547_17
ATGGCTACGTCCGAAAGCGCTACCCCTGAATCCGGTCCAGGTACTTCTACT
603





LCW552_03
ATGGCTAGTTCTACCCCGTCTGGTGCAACCGGTTCCCCAGGTACTTCTACT
604





LCW552_05
ATGGCTAGCTCCACTCCGTCTGGTGCTACCGGTTCCCCAGGTACTTCTACT
605





LCW552_10
ATGGCTAGCTCTACTCCGTCTGGTGCTACTGGTTCCCCAGGTACTTCTACT
606





LCW552_11
ATGGCTAGTTCTACCCCTTCTGGTGCTACTGGTTCTCCAGGTACTTCTACT
607









Example 15
Construction of N-Terminal Extensions of XTEN-Construction and Screening of Libraries Optimizing Codons 3 and 4

This example details a step in the optimization of the N-terminus of the XTEN protein to promote the initiation of translation to allow for expression of XTEN fusions at the N-terminus of proteins without the presence of a helper domain. With preferences for the first two codons established (see Example supra), the third and fourth codons were randomized to determine preferences. Three libraries, based upon best clones from LCW546, LCW547 and LCW552, were designed with the third and fourth residues modified such that all combinations of allowable XTEN codons were present at these positions (see FIG. 10). In order to include all the allowable XTEN codons for each library, nine pairs of oligonucleotides encoding 12 amino acids with codon diversities of third and fourth residues were designed, annealed and ligated into the NdeI/BsaI restriction enzyme digested stuffer vector pCW0551 (Stuffer-XTEN_AM875-GFP), and transformed into E. coli BL21Gold(DE3) competent cells to obtain colonies of three libraries LCW0569-571. With 24 XTEN codons the theoretical diversity of each library is 576 unique clones. A total of 504 individual colonies from the three created libraries were picked and grown overnight to saturation in 500 μl of super broth media in a 96 deep well plate. This provided sufficient coverage to understand relative library performance and sequence preferences. The saturated overnight cultures were used to inoculate new 500 μl cultures in auto-induction media in which were grown overnight at 26° C. These expression cultures were then assayed using a fluorescence plate reader (excitation 395 nm, emission 510 nm) to determine the amount of GFP reporter present. The top 75 clones from the screen were sequenced and retested for GFP reporter expression versus the benchmark samples (see FIG. 11). 52 clones yielded usable sequencing data and were used for subsequent analysis. The results were broken down by library and indicate that LCW546 was the superior library. The results are presented in Table 15. Surprisingly, it was discovered that base-lined fluorescence readings for the best clones were ˜900 AU, whereas the CBD N-terminal benchmark was only ˜600 AU. This indicates that this library had instituted an approximately 33% improvement over the best clones from the previous library which were approximately equal in expression to the CBD N-terminal benchmark (Example 14).









TABLE 15







Third and Fourth Codon Optimization Library Comparison











LCW569
LCW570
LCW571





N
 21
 15
 16


Mean Fluorescence (AU)
628
491
537


SD
173
 71
232


CV
   28%
   15%
   43%









Further trends were seen in the data showing preferences for particular codons at the third and fourth position. Within the LCW569 library the glutamate codon GAA at the third position and the threonine codon ACT were associated with higher expression as seen in Table 16.









TABLE 16







Preferred Third and Fourth Codons in LCW569












3 = GAA
Rest
4 = ACT
Rest





N
  8
 13
  4
 17


Mean Fluorescence (AU)
749
554
744
601


SD
234
 47
197
162


CV
   31%
    9%
   26%
   27%









Additionally, the retest of the top 75 clones indicated that several were now superior to the benchmark clones.


Example 16
Construction of N-terminal Extensions of XTEN-Construction and Screening of Combinatorial 12mer and 36mer Libraries

This example details a step in the optimization of the N-terminus of the XTEN protein to promote the initiation of translation to allow for expression of XTEN fusions at the N-terminus of proteins without the presence of a helper domain. With preferences for the first two codons established (see Example supra), the N-terminus was examined in a broader context by combining the 12 selected 12mer sequences (see Example supra) at the very N-terminus followed by 125 previously constructed 36mer segments (see example supra) in a combinatorial manner. This created novel 48mers at the N-terminus of the XTEN protein and enabled the assessment of the impact of longer-range interactions at the N-terminus on expression of the longer sequences (FIG. 12). Similar to the dimerization procedures used to assemble 36mers (see Example infra), the plasmids containing the 125 selected 36mer segments were digested with restriction enzymes BbsI/NcoI and the appropriate fragment was gel-purified. The plasmid from clone AC94 (CBD-XTEN_AM875-GFP) was also digested with BsaI/NcoI and the appropriate fragments were gel-purified. These fragments were ligated together and transformed into E. coli BL21Gold(DE3) competent cells to obtain colonies of the library LCW0579, which also served as the vector for further cloning 12 selected 12mers at the very N-terminus. The plasmids of LCW0579 were digested with NdeI/EcoRI/BsaI and the appropriate fragments were gel-purified. 12 pairs of oligonucleotides encoding 12 selected 12mer sequences were designed, annealed and ligated with the NdeI/EcoRI/BsaI digested LCW0579 vector, and transformed into E. coli BL21Gold(DE3) competent cells to obtain colonies of the library LCW0580. With a theoretical diversity of 1500 unique clones, a total of 1512 individual colonies from the created library were picked and grown overnight to saturation in 500 μl of super broth media in a 96 deep well plate. This provided sufficient coverage to understand relative library performance and sequence preferences. The saturated overnight cultures were used to inoculate new 500 μl cultures in auto-induction media that were grown overnight at 26° C. These expression cultures were then assayed using a fluorescence plate reader (excitation 395 nm, emission 510 nm) to determine the amount of GFP reporter present. The top 90 clones were sequenced and retested for GFP reporter expression. 83 clones yielded usable sequencing data and were used for subsequent analysis. The sequencing data was used to determine the lead 12mer that was present in each clone and the impact of each 12mer on expression was assessed. Clones LCW54606 and LCW54609 stood out as being the superior N-terminus (see Table 17).









TABLE 17







Relative Performance of Clones Starting with


LCW546_06 and LCW459_09













All

All



LCW546_06
Others
LCW546_09
Others





N
  11
 72
  9
 74


Mean Fluorescence
1100
752
988
775


(AU)






SD
 275
154
179
202


CV
    25%
   20%
   18%
   26%









The sequencing and retest also revealed several instances of independent replicates of the same sequence in the data producing similar results, thus increasing confidence in the assay. Additionally, 10 clones with 6 unique sequences were superior to the benchmark clone. They are presented in Table 18. It was noted that these were the only occurrences of these sequences and in no case did one of these sequences occur and fail to beat the bench-mark clone. These six sequences were advanced for further optimization.









TABLE 18







Combinatorial 12mer and 36mer Clones Superior to Benchmark Clone











Clone

SEQ 




Name
First 60 codons
ID NO:
12mer Name
36mer Name





LCW580_51
ATGGCTAGTCCTGCTGGCTCTCCAACCTCCACT
608
LCW546_06
LCW0404_040



GAGGAAGGTGCATCCCCGGGCACCAGCTCTACC






GGTTCTCCAGGTAGCTCTACCCCGTCTGGTGCT






ACCGGCTCTCCAGGTAGCTCTACCCCGTCTGGT






GCTACTGGCTCTCCAGGTACTTCTACTGAACCG






TCTGAAGGCAGCGCA








LCW580_81
ATGGCTAGTCCTGCTGGCTCTCCAACCTCCACT
609
LCW546_06
LCW0404_040



GAGGAAGGTGCATCCCCGGGCACCAGCTCTACC






GGTTCTCCAGGTAGCTCTACCCCGTCTGGTGCT






ACCGGCTCTCCAGGTAGCTCTACCCCGTCTGGT






GCTACTGGCTCTCCAGGTACTTCTACTGAACCG






TCTGAAGGCAGCGCA








LCW580_38
ATGGCTAGTCCTGCTGGCTCTCCAACCTCCACT
610
LCW546_06
LCW0402_041



GAGGAAGGTACTTCTACCGAACCGTCCGAGGGT






AGCGCACCAGGTAGCCCAGCAGGTTCTCCTACC






TCCACCGAGGAAGGTACTTCTACCGAACCGTCC






GAGGGTAGCGCACCAGGTACTTCTACTGAACCG






TCTGAAGGCAGCGCA








LCW580_63
ATGGCTAGTCCTGCTGGCTCTCCGACCTCTACT
611
LCW546_09
LCW0402_020



GAGGAAGGTACTTCTACTGAACCGTCTGAAGGC






AGCGCACCAGGTAGCGAACCGGCTACTTCCGGT






TCTGAAACCCCAGGTAGCCCAGCAGGTTCTCCA






ACTTCTACTGAAGAAGGTACTTCTACTGAACCG






TCTGAAGGCAGCGCA








LCW580_06
ATGGCTAGTCCTGCTGGCTCTCCAACCTCCACT
612
LCW546_06
LCW0404_031



GAGGAAGGTACCCCGGGTAGCGGTACTGCTTCT






TCCTCTCCAGGTAGCTCTACCCCTTCTGGTGCA






ACCGGCTCTCCAGGTGCTTCTCCGGGCACCAGC






TCTACCGGTTCTCCAGGTACTTCTACTGAACCG






TCTGAAGGCAGCGCA








LCW580_35
ATGGCTAGTCCTGCTGGCTCTCCGACCTCTACT
613
LCW546_09
LCW0402_020



GAGGAAGGTACTTCTACTGAACCGTCTGAAGGC






AGCGCACCAGGTAGCGAACCGGCTACTTCCGGT






TCTGAAACCCCAGGTAGCCCAGCAGGTTCTCCA






ACTTCTACTGAAGAAGGTACTTCTACTGAACCG






TCTGAAGGCAGCGCA








LCW580_67
ATGGCTAGTCCTGCTGGCTCTCCGACCTCTACT
614
LCW546-09
LCW0403_064



GAGGAAGGTACCTCCCCTAGCGGCGAATCTTCT






ACTGCTCCAGGTACCTCTCCTAGCGGCGAATCT






TCTACCGCTCCAGGTACCTCCCCTAGCGGTGAA






TCTTCTACCGCACCAGGTACTTCTACTGAACCG






TCTGAAGGCAGCGCA








LCW580_13
ATGGCTAGTCCTGCTGGCTCTCCGACCTCTACT
615
LCW546_09
LCW0403_060



GAGGAAGGTACCTCTACTCCGGAAAGCGGTTCC






GCATCTCCAGGTTCTACCAGCGAATCCCCGTCT






GGCACCGCACCAGGTTCTACTAGCTCTACTGCT






GAATCTCCGGGCCCAGGTACTTCTACTGAACCG






TCTGAAGGCAGCGCA








LCW580_88
ATGGCTAGTCCTGCTGGCTCTCCGACCTCTACT
616
LCW546_09
LCW0403_064



GAGGAAGGTACCTCCCCTAGCGGCGAATCTTCT






ACTGCTCCAGGTACCTCTCCTAGCGGCGAATCT






TCTACCGCTCCAGGTACCTCCCCTAGCGGTGAA






TCTTCTACCGCACCAGGTACTTCTACTGAACCG






TCTGAAGGCAGCGCA








LCW580_11
ATGGCTAGTCCTGCTGGCTCTCCGACCTCTACT
617
LCW546_09
LCW0403_060



GAGGAAGGTACCTCTACTCCGGAAAGCGGTTCC






GCATCTCCAGGTTCTACCAGCGAATCCCCGTCT






GGCACCGCACCAGGTTCTACTAGCTCTACTGCT






GAATCTCCGGGCCCAGGTACTTCTACTGAACCG






TCTGAAGGCAGCGCA












Example 17
Construction of N-Terminal Extensions of XTEN-Construction and Screening of Combinatorial 12mer and 36mer Libraries for XTEN-AM875 and XTEN-AE864

This example details a step in the optimization of the N-terminus of the XTEN protein to promote the initiation of translation to allow for expression of XTEN fusions at the N-terminus of proteins without the presence of a helper domain. With preferences for the first four codons (see Examples supra, and for the best pairing of N-terminal 12mers and 36mers (see Example supra) established, a combinatorial approach was undertaken to examine the union of these preferences. This created novel 48mers at the N-terminus of the XTEN protein and enabled the testing of the confluence of previous conclusions. Additionally, the ability of these leader sequences to be a universal solution for all XTEN proteins was assessed by placing the new 48mers in front of both XTEN-AE864 and XTEN-AM875. Instead of using all 125 clones of 36mer segment, the plasmids from 6 selected clones of 36mer segment with best GFP expression in the combinatorial library were digested with NdeI/EcoRI/BsaI and the appropriate fragments were gel-purified. The plasmids from clones AC94 (CBD-XTEN_AM875-GFP) and AC104 (CBD-XTEN_AE864-GFP) were digested with digested with NdeI/EcoRI/BsaI and the appropriate fragments were gel-purified. These fragments were ligated together and transformed into E. coli BL21Gold(DE3) competent cells to obtain colonies of the libraries LCW0585 (-XTEN_AM875-GFP) and LCW0586 (-XTEN_AE864-GFP), which could also serve as the vectors for further cloning 8 selected 12mers at the very N-terminus. The plasmids of LCW0585 and LCW0586 were digested with NdeI/EcoRI/BsaI and the appropriate fragments were gel-purified. 8 pairs of oligonucleotides encoding 8 selected 12mer sequences with best GFP expression in the previous (Generation 2) screening were designed, annealed and ligated with the NdeI/EcoRI/BsaI digested LCW0585 and LCW0586 vectors, and transformed into E. coli BL21Gold(DE3) competent cells to obtain colonies of the final libraries LCW0587 (XTEN_AM923-GFP) and LCW0588 (XTEN_AE912-GFP). With a theoretical diversity of 48 unique clones, a total of 252 individual colonies from the created libraries were picked and grown overnight to saturation in 500 μl of super broth media in a 96 deep well plate. This provided sufficient coverage to understand relative library performance and sequence preferences. The saturated overnight cultures were used to inoculate new 500 μl cultures in auto-induction media in which were grown overnight at 26° C. These expression cultures were then assayed using a fluorescence plate reader (excitation 395 nm, emission 510 nm) to determine the amount of GFP reporter present. The top 36 clones were sequenced and retested for GFP reporter expression. 36 clones yielded usable sequencing data and these 36 were used for the subsequent analysis. The sequencing data determined the 12mer, the third codon, the fourth codon and the 36mer present in the clone and revealed that many of the clones were independent replicates of the same sequence. Additionally, the retest results for these clones are close in value, indicating the screening process was robust. Preferences for certain combinations at the N-terminus were seen and were consistently yielding higher fluorescence values approximately 50% greater than the benchmark controls (see Tables 19 and 20). These date support the conclusion that the inclusion of the sequences encoding the optimized N-terminal XTEN into the fusion protein genes conferred a marked enhancement on the expression of the fusion proteins.









TABLE 19







Preferred N-terminal Combinations for XTEN-AM875













Clone Name
Number of Replicates
12mer
36mer
Mean
SD
CV





CBD-AM875
NA
NA
NA
1715
418
16%


LCW587_08
7
LCW546_06_3 = GAA
LCW404_40
2333
572
18%


LCW587_17
5
LCW546_09_3 = GAA
LCW403_64
2172
293
10%
















TABLE 20







Preferred N-terminal Combinations for XTEN-AE864













Clone Name
Number of Replicates
12mer
36mer
Mean
SD
CV





AC82
NA
NA
NA
1979
679
24%


LCW588_14
8
LCW546_06_opt3
LCW404_31
2801
240
 6%


LCW588_27
2
LCW546_06_opt34
LCW404_40
2839
556
15%









Notably, the preferred combination of the N-terminal for the XTEN-AM875 and the preferred combination for the XTEN-AE864 are not the same (Tables 19 and 20), indicating more complex interactions further than 150 bases from the initiation site influence expression levels. The sequences for the preferred nucleotide sequences are listed in Table 21 and the preferred clones were analyzed by SDS-PAGE to independently confirm expression (see FIG. 13). The complete sequences of XTEN_AM923 and XTEN_AE912 were selected for further analysis.









TABLE 21







Preferred DNA Nucleotide Sequences for


first 48 Amino Acid Residues of


N-terminal XTEN-AM875 and XTEN-AE864










Clone
XTEN

SEQ


Name
Modified
DNA Nucleotide Sequence
ID NO:





LCW587_08
AM875
ATGGCTGAACCTGCTGGCTCTCCAAC
618




CTCCACTGAGGAAGGTGCATCCCCGG





GCACCAGCTCTACCGGTTCTCCAGGT





AGCTCTACCCCGTCTGGTGCTACCGG





CTCTCCAGGTAGCTCTACCCCGTCTG





GTGCTACTGGCTCTCCAGGTACTTCT





ACTGAACCGTCTGAAGGCAGCGCA






LCW587_17
AM875
ATGGCTGAACCTGCTGGCTCTCCGAC
619




CTCTACTGAGGAAGGTACCTCCCCTA





GCGGCGAATCTTCTACTGCTCCAGGT





ACCTCTCCTAGCGGCGAATCTTCTAC





CGCTCCAGGTACCTCCCCTAGCGGTG





AATCTTCTACCGCACCAGGTACTTCT





ACTGAACCGTCTGAAGGCAGCGCA






LCW588_14
AE864
ATGGCTGAACCTGCTGGCTCTCCAAC
620




CTCCACTGAGGAAGGTACCCCGGGTA





GCGGTACTGCTTCTTCCTCTCCAGGT





AGCTCTACCCCTTCTGGTGCAACCGG





CTCTCCAGGTGCTTCTCCGGGCACCA





GCTCTACCGGTTCTCCAGGTAGCCCG





GCTGGCTCTCCTACCTCTACTGAG






LCW588_27
AE864
ATGGCTGAAACTGCTGGCTCTCCAAC
621




CTCCACTGAGGAAGGTGCATCCCCGG





GCACCAGCTCTACCGGTTCTCCAGGT





AGCTCTACCCCGTCTGGTGCTACCGG





CTCTCCAGGTAGCTCTACCCCGTCTG





GTGCTACTGGCTCTCCAGGTAGCCCG





GCTGGCTCTCCTACCTCTACTGAG









Example 18
Methods of Producing and Evaluating GHXTEN; XTEN-HGH as Example

A general schema for producing and evaluating GHXTEN compositions is presented in FIG. 6, and forms the basis for the general description of this Example. Using the disclosed methods and those known to one of ordinary skill in the art, together with guidance provided in the illustrative examples, a skilled artesian can create and evaluate a range of GHXTEN fusion proteins comprising, XTENs, GH and variants of GH known in the art. The Example is, therefore, to be construed as merely illustrative, and not limitative of the methods in any way whatsoever; numerous variations will be apparent to the ordinarily skilled artisan. In this Example, a GHXTEN of human growth hormone linked to an XTEN of the AE family of motifs would be created.


The general scheme for producing polynucleotides encoding XTEN is presented in FIGS. 4 and 5. FIG. 5 is a schematic flowchart of representative steps in the assembly of a XTEN polynucleotide construct in one of the embodiments of the invention. Individual oligonucleotides 501 are annealed into sequence motifs 502 such as a 12 amino acid motif (“12-mer”), which is subsequently ligated with an oligo containing BbsI, and KpnI restriction sites 503. The motif libraries can be limited to specific sequence XTEN families; e.g., AD, AE, AF, AG, AM, or AQ sequences of Table 1. In this case, the motifs of the AE family would be used as the motif library, which are annealed to the 12-mer to create a “building block” length; e.g., a segment that encodes 36 amino acids. The gene encoding the XTEN sequence can be assembled by ligation and multimerization of the “building blocks” until the desired length of the XTEN gene 504 is achieved. As illustrated in FIG. 5, the XTEN length in this case is 48 amino acid residues, but longer lengths can be achieved by this process. For example, multimerization can be performed by ligation, overlap extension, PCR assembly or similar cloning techniques known in the art. The XTEN gene can be cloned into a stuffer vector. In the example illustrated in FIG. 5, the vector can encode a Flag sequence 506 followed by a stuffer sequence that is flanked by BsaI, BbsI, and KpnI sites 507 and a GH gene (e.g., hGH) 508, resulting in the gene encoding the GHXTEN 500, which, in this case encodes the fusion protein in the configuration, N- to C-terminus, XTEN-hGH.


DNA sequences encoding GH can be conveniently obtained by standard procedures known in the art from a cDNA library prepared from an appropriate cellular source, from a genomic library, or may be created synthetically (e.g., automated nucleic acid synthesis) using DNA sequences obtained from publicly available databases, patents, or literature references. A gene or polynucleotide encoding the GH portion of the protein can be then be cloned into a construct, such as those described herein, which can be a plasmid or other vector under control of appropriate transcription and translation sequences for high level protein expression in a biological system. A second gene or polynucleotide coding for the XTEN portion (in the case of FIG. 5 illustrated as an AE with 48 amino acid residues) can be genetically fused to the nucleotides encoding the N-terminus of the hGH gene by cloning it into the construct adjacent and in frame with the gene coding for the hGH, through a ligation or multimerization step. In this manner, a chimeric DNA molecule coding for (or complementary to) the XTEN-hGH GHXTEN fusion protein would be generated within the construct. Optionally, a gene encoding for a second XTEN could be inserted and ligated in-frame to the nucleotides encoding the C-terminus of the XTEN-hGH gene, resulting in a construct encoding an XTEN-hGH-XTEN fusion protein. The construct can be designed in different configurations to encode the various permutations of the fusion partners as a monomeric polypeptide. For example, the gene can be created to encode the fusion protein in the order (N- to C-terminus): hGH-XTEN; XTEN-hGH; hGH-XTEN-hGH; XTEN-hGH-XTEN; as well as multimers of the foregoing. Optionally, this chimeric DNA molecule may be transferred or cloned into another construct that is a more appropriate expression vector. At this point, a host cell capable of expressing the chimeric DNA molecule would be transformed with the chimeric DNA molecule. The vectors containing the DNA segments of interest can be transferred into an appropriate host cell by well-known methods, depending on the type of cellular host, as described supra.


Host cells containing the XTEN-GH expression vector would be cultured in conventional nutrient media modified as appropriate for activating the promoter. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan. After expression of the fusion protein, cells would be harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for purification of the fusion protein, as described below. For GHXTEN compositions secreted by the host cells, supernatant from centrifugation would be separated and retained for further purification.


Gene expression would be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas, Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, gene expression would be measured by immunological of fluorescent methods, such as immunohistochemical staining of cells to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against the hGH sequence polypeptide using a synthetic peptide based on the sequences provided herein or against exogenous sequence fused to hGH and encoding a specific antibody epitope. Examples of selectable markers are well known to one of skill in the art and include reporters such as enhanced green fluorescent protein (EGFP), beta-galactosidase (β-gal) or chloramphenicol acetyltransferase (CAT).


The XTEN-hGH polypeptide product would be purified via methods known in the art. Procedures such as gel filtration, affinity purification, salt fractionation, ion exchange chromatography, size exclusion chromatography, hydroxyapatite adsorption chromatography, hydrophobic interaction chromatography or gel electrophoresis are all techniques that may be used in the purification. Specific methods of purification are described in Robert K. Scopes, Protein Purification: Principles and Practice, Charles R. Castor, ed., Springer-Verlag 1994, and Sambrook, et al., supra. Multi-step purification separations are also described in Baron, et al., Crit. Rev. Biotechnol. 10:179-90 (1990) and Below, et al., J. Chromatogr. A. 679:67-83 (1994).


As illustrated in FIG. 6, the isolated XTEN-hGH fusion proteins would then be characterized for their chemical and activity properties. Isolated fusion protein would be characterized, e.g., for sequence, purity, apparent molecular weight, solubility and stability using standard methods known in the art. The fusion protein meeting expected standards would then be evaluated for activity, which can be measured in vitro or in vivo by measuring one of the growth hormone-associated parameters described herein, using one or more assays disclosed herein, or using the assays of the Examples or Table 34.


In addition, the XTEN-hGH fusion protein would be administered to one or more animal species to determine standard pharmacokinetic parameters, as described in Examples 30-32.


By the iterative process of producing, expressing, and recovering XTEN-hGH constructs, followed by their characterization using methods disclosed herein or others known in the art, the GHXTEN compositions comprising hGH and an XTEN can be produced and evaluated by one of ordinary skill in the art to confirm the expected properties such as enhanced solubility, enhanced stability, improved pharmacokinetics and reduced immunogenicity, leading to an overall enhanced therapeutic activity compared to the corresponding unfused hGH. For those fusion proteins not possessing the desired properties, a different sequence can be constructed, expressed, isolated and evaluated by these methods in order to obtain a composition with such properties.


Example 19
Construction of Genes and Vectors of hGH Linked to K and Y XTEN Sequences

K Series GHXTEN Constructs


A pET-series vector was constructed with T7 promoter, which expresses a protein containing cellulose binding domain (CBD) at the N-terminus, followed by a Tomato Etch Virus (TEV) protease cleavage site, followed by the hGH coding sequence, and by the K288 coding sequence: CBD-K288-hGH. The K288 has the repetitive sequence (GEGGGEGGE)32 (SEQ ID NO: 622). The CBD sequence used is shown in Swissprot file Q06851 and the purification of CBD fusion proteins is described in Ofir, K. et al. (2005) Proteomics 5:1806. The sequence of the TEV cleavage site is ENLYFQ/X (SEQ ID NO: 623); G was used in the X position. This construct was transformed into BL21(DE3)-star E. coli strain and grown under conditions promoting expression. Cells were collected and disrupted. The cellular supernatant was applied on beaded cellulose resin (Perloza 100), washed with buffer A (25 mM Tris pH=8.0) and eluted from the column with 20 mM NaOH. pH was adjusted by titrating the sample with 1M Tris buffer pH=8.0. Protein purity was estimated to be above 90%. The eluted protein was digested with purified TEV protease overnight at 4° C., and the digested sample was applied to a beaded cellulose resin (Perloza 100). The CBD was retained on the column, and the K288-hGH was found in the column flow-through. The pooled flow-through was loaded on the anion-exchange (Q-sepharose, Pharmacia), washed with buffer A (25 mM Tris pH=8.0) and eluted from the column using a shallow linear gradient of same buffer with 1M NaCl. The eluted fusion protein was pooled, dialyzed against buffer A, concentrated, and purified by size-exclusion chromatography (SEC) as the final purification. Protein purity was estimated to be above 98%. The final protein is K288-hGH. SDS PAGE analyses of samples throughout the purification process are shown in FIG. 20.


Y series GHXTEN Constructs


The gene encoding hGH was amplified by polymerase chain reaction (PCR), which introduced BbsI and HindIII restriction sites that are compatible with the BbsI and HindIII sites that flank the stuffer in the XTEN destination vector. The pCBD-XTEN plasmid is a pET30 derivative from Novagen in the format of Cellulose Binding Domain (CBD)-XTEN-Stuffer, where Stuffer is green fluorescent protein (GFP) and XTEN can be any length from 36 to 576 or greater. Constructs were generated by replacing a stuffer sequence in pCBD-XTEN with the hGH-encoding fragment (FIG. 7B). The pCBD-XTEN features a T7 promoter upstream of CBD followed by an XTEN sequence fused in-frame upstream of the stuffer sequence. The XTEN sequences employed belong to family XTEN_Y and encode lengths that include 36, 72, 144, 288, and 576 amino acids. The stuffer fragment was removed by restriction digest using BbsI and HindIII endonucleases. Restriction digested hGH DNA fragment was ligated into the cleaved pCBD-XTEN vector using T4 DNA ligase and electroporated into BL21(DE3) Gold (Stratagene). Transformants were screened by DNA miniprep and the desired construct was confirmed by DNA sequencing. The final vector yields the CBD_XTEN_hGH gene under the control of a T7 promoter. The resulting DNA sequences encoded for GH linked to XTEN of lengths of 36, 72, 144, and 288 amino acids, respectively.


Example 20
Construction of hGH-XTEN Genes and Vectors using AE and AM XTEN Sequences

The gene encoding hGH was amplified by polymerase chain reaction (PCR), which introduced NdeI and BbsI restriction sites that are compatible with the NdeI and BsaI sites that flank the stuffer in the XTEN destination vector. The pXTEN plasmid is a pET30 derivative from Novagen in the format of Stuffer-XTEN, where Stuffer can be either green fluorescent protein (GFP) or CBD and XTEN can be any length from 36 to 1318 amino acids or greater (FIG. 7). Constructs were generated by replacing a stuffer sequence in pXTEN with the hGH-encoding fragment. The pXTEN features a T7 promoter upstream of the stuffer sequence, and an XTEN sequence fused in-frame downstream of the stuffer sequence. The XTEN sequences employed belong to the AE or AM family of XTEN and encode lengths that include 36, 72, 144, 288, 576, 864, 875 and 1318 amino acids. The stuffer fragment was removed by restriction digest using NdeI and BsaI endonucleases. Restriction digested hGH DNA fragment was ligated into the cleaved pXTEN vector using T4 DNA ligase and electroporated into BL21(DE3) Gold (Stratagene). Transformants were screened by DNA miniprep and the desired constructs were confirmed by DNA sequencing. The final vector yields the hGH-XTEN gene under the control of a T7 promoter, and would be used to express a fusion protein with hGH at the N-terminus.


Example 21
Construction of XTEN-hGH and XTEN-hGH Genes and Vectors using AE and AM XTEN Sequences

The gene encoding hGH was amplified by polymerase chain reaction (PCR), which introduced BbsI and Hindu restriction sites that are compatible with the BbsI and HindIII sites that flank the stuffer in the XTEN destination vector. The pCBD-XTEN plasmid is a pET30 derivative from Novagen in the format of Cellulose Binding Domain (CBD)-XTEN-Stuffer, where Stuffer is green fluorescent protein (GFP) and XTEN can be any length from 36 to 1318 or greater (FIG. 7). Constructs were generated by replacing a stuffer sequence in pCBD-XTEN with the hGH-encoding fragment. The pCBD-XTEN features a T7 promoter upstream of CBD followed by an XTEN sequence fused in-frame upstream of the stuffer sequence. The XTEN sequences employed belong to family XTEN_AE and XTEN_AM and encode lengths that include 36, 72, 144, 288, 576, 864, 875 and 1318 amino acids. The stuffer fragment was removed by restriction digest using BbsI and HindIII endonucleases. Restriction digested hGH DNA fragment was ligated into the cleaved pCBD-XTEN vector using T4 DNA ligase and electroporated into BL21(DE3) Gold (Stratagene). Transformants were screened by DNA miniprep and the desired construct was confirmed by DNA sequencing. The final vector yields the CBD_XTEN_hGH gene under the control of a n promoter, and would be used to express a fusion protein with hGH at the C-terminus.


Example 22
Construction of XTEN-AE_hGH_XTEN-AE Genes and Vectors

The gene encoding hGH was amplified by polymerase chain reaction (PCR), which introduced BsaI and HindIII restriction sites that are compatible with the BbsI and HindIII sites that flank the stuffer in the pNTS-XTEN destination vector. The pNTS-XTEN AE plasmid is a pET30 derivative from Novagen in the format of N-terminal XTEN expression sequence of 48 amino acids-XTEN-Stuffer, where Stuffer is green fluorescent protein (GFP) and XTEN can be any length from 36 to 576 or greater. Constructs were generated by replacing a stuffer sequence in pNTS-XTEN with the hGH-encoding fragment. The pNTS-XTEN features a T7 promoter upstream of NTS followed by an XTEN sequence fused in-frame upstream of the stuffer sequence. The XTEN sequences employed belong to family XTEN_AE and encode lengths that can include 36, 72, 144, 288, 576, 864, and 1296 amino acids. The stuffer fragment was removed by restriction digest using BbsI and HindIII endonucleases. Restriction digested hGH DNA fragment was ligated into the cleaved pNTS-XTEN vector using T4 DNA ligase and electroporated into BL21(DE3) Gold (Stratagene). In some cases, a second XTEN_AE sequence of 144 or 288 amino acids was ligated to the C-terminus of the hGH encoding gene, the steps of which are illustrated in FIG. 8. The gene encoding hGH was amplified by polymerase chain reaction (PCR), which introduced BsaI and HindIII (with additional BbsI in front of HindIII) restriction sites that are compatible with the BbsI and HindIII sites that flank the stuffer in the pNTS-XTEN destination vector. After restriction enzyme digestions, ligation and transformation, the resulting intermediate plasmid has the format of pNTS-XTEN-hGH with the BbsI/HindIII restriction sites at the C-terminus of hGH. The intermediate plasmid was further digested with BbsI and HindIII, ligated with the second XTEN_AE sequence of 144 or 288 amino acids flanked by BsaI and HindIII, placing the AE144 or the AE288 encoding sequenes at the C-terminus of the XTEN-hGH gene, and transformed into BL21(DE3)Gold. Transformants were screened by DNA miniprep and the desired construct was confirmed by DNA sequencing. The final vectors, described above, yield the genes in configurations of either NTS_XTEN_hGH or NTS_XTEN_hGH_XTEN, under the control of a T7 promoter, as shown in FIGS. 7C and 7D.


Example 23
Purification of GHXTEN_AE Constructs

Protein Expression


The plasmids described above were transformed into BL21(DE3)-Gold E. coli strain (Novagen) and plated on an LB-agar plate with the appropriate antibiotics and grown overnight at 37° C. A single colony was inoculated into 5 ml of TB125 medium and grown overnight at 37° C. The next day the inoculum was transformed into a 2 L vessel with 500 ml of TB125, and grown until an OD=0.6 was reached, followed by continued growth at 26° C. for 16 hr with 0.1 mM IPTG.


Cells were collected by centrifugation and the cell pellet was resuspended in 50 ml Buffer containing 5 mM Tris pH 8.0, 100 mM NaCl. Cells were disrupted using an APV-2000 homogenizer. The pH of the lysate was then adjusted to pH 4.5 with acetic acid to precipitate contaminating host cell proteins and was subsequently clarified by centrifugation. The clarified, acid-treated lysate was then applied to a DE52 Anion exchange chromatography column and eluted with NaCl. The eluted fraction was then further acidified to pH 4.2 and applied to a MacroCapSP cation exchange chromatography column. Product was eluted using sequential elution with NaCl. An additional chromatography step employing Macrocap Q was implemented to remove product-related aggregates and residual host cell impurities (e.g. endotoxin, DNA, host cell protein).


Protein purity was estimated to be above 98%. The quantity of eluted fusion protein was determined by SDS-PAGE analysis and by measurement of total protein concentration. The high quantity of eluted GHXTEN fusion protein reflects the higher degree of solubility of the fusion protein relative to hGH not linked to XTEN (see, e.g., Singh, S. M., et al. (2005) J Biosci Bioeng, 99: 303; Patra, A. K., et al. (2000) Protein Expr Purif, 18: 182), as well as the ability to remain soluble at acidified conditions that result in the precipitation of host cell protein.


Final Formulation and Storage


The buffer exchanged proteins were then concentrated using 10K MWCO Vivacell 100 centrifugal ultrafiltration unit to not less than 15 mg/ml. The concentrate was sterile filtered using a 0.22 um syringe filter. The final solution was aliquoted and stored at −80° C.


Example 24
Characterization of GHXTEN Constructs

SDS-PAGE Analysis


5 μg of final purified GHXTEN proteins of GH linked to Y576 (either N- or C-terminus of Y576) was subjected to both non-reducing and reducing SDS-PAGE using NuPAGE 4-12% Bis-Tris gel from Invitrogen according to manufacturer's specifications. The resulting gel is shown in FIG. 20.


Analytical Size Exclusion Chromatography


Size exclusion chromatography analysis was performed using a TSKGel-G4000 SWXL (7.8 mm×30 cm) column. 20 ug of the purified protein at a concentration of 1 mg/ml was separated at a flowrate of 0.6 ml/min in 20 mM phosphate pH 6.8, 114 mM NaCl. Chromatogram profiles were monitored using OD214 nm and OD280 nm. Column calibration was performed using a size exclusion calibration standard from BioRad, the markers include thyroglobulin (670 kDa), bovine gamma-globulin (158 kDa), chicken ovalbumin (44 kDa), equine myoglobuin (17 kDa) and vitamin B12 (1.35 kDa). The chromatographic profiles of Y576-GH were generated and demonstrate that the apparent molecular weight of each construct is significantly larger than that expected for a globular protein, in comparison to the standard proteins run in the same assay (data not shown).


Analytical RP-HPLC


Analytical RP-HPLC chromatography analysis was performed using a C4 (7.8 mm×20 cm) column. The column was equilibrated with 100% AcetonNitrile plus 0.1% TFA in the mobile phase at a flowrate of 1 ml/min. Twenty micro gram of the purified protein, with and without denaturing, at a concentration of 0.2 mg/ml was injected separately. The protein was separated and eluted by liner gradient within 15 min from 5% to 60% of buffer containing HPLC grade H2O plus 0.1% TFA. Chromatogram profiles were monitored using OD214 nm and OD280 nm. The chromatographic profiles of native and denatured Y576-GH are shown as an overlay in FIG. 21.


Example 25
ELISA-Based Binding Assays

XTEN fusions to GH were tested in a standard ELISA-based assay to evaluate their ability to bind to GH Receptor. Assays were performed using a sandwich ELISA format in which a recombinant hGH receptor (hGHR-Fc) is coated onto wells of an ELISA plate. The wells were then blocked, washed, and GHXTEN samples are then incubated in the wells at varying dilutions to allow capture of the GHXTEN. Wells were washed extensively, and bound protein was detected using a biotinylated preparation of a polyclonal or monoclonal anti-GH or anti-XTEN antibody and streptavidin HRP. The fraction of bound protein can be calculated by comparing the colorimetric response at each serum dilution to a standard curve of unmodified GH. In a first assay comparing hGH bound to K288 compared to recombinant hGH, the results, show in FIG. 15, demonstrate the ability of GHXTEN to bind to the hGH receptor. In a second assay, two configurations of GHXTEN; AM864-hGH and hGH-AM864; compared to recombinant hGH. The results, shown in FIG. 16, indicate apparent EC50 values for native hGH of 0.0701 nM, AM864-hGH of 0.3905, and hGH-AM864 of 2.733. In a third assay, recombinant hGH was compared to AE912-hGH-AE144 in order to show the ability to reduce binding affinity by the addition of a C-terminal XTEN to the hGH component of an GHXTEN fusion protein, and the results (FIG. 18) demonstrate a decrease in binding affinity of approximately 17-fold compared to hGH.


Example 26
Effect of Heat Treatment on the Stability of hGH and GHXTEN

The ability of XTEN to confer structural stability on the attached therapeutic molecule was investigated. Samples of hGH and AM864-hGH were incubated at 25° C. and 80° C., and then analyzed by gel electrophoresis and Coomassie staining. FIG. 17A is an SDS-PAGE gel of the two preparations treated at 25° C. and 80° C. for 15 minutes, while FIG. 17B shows the corresponding percentage of receptor binding activity of the 80° C. sample relative to the 25° C. treatment. The results indicate that hGH denatures under the treatment conditions while the GHXTEN construct remains largely stable under the experimental conditions, retaining nearly 80% of its receptor binding activity.


Conclusions: The XTEN component of the GHXTEN fusion protein confers enhanced solubility and stability properties to the fusion protein in comparison to hGH not linked to XTEN.


Example 27
Comparative Effects of hGH and AM864-hGH on Secretion of IGF-1

The ability of a GHXTEN to retain pharmacologic potency was assessed using the measured parameter of circulating IGF-1 in response to administered compound. FIG. 24 shows the effects of daily administration of hGH 0.071 mg/kg daily) or a single dose of AM864-hGH (5 mg/kg; equivalent to 1.1 mg/kg) on circulating IGF-1 levels in cynomolgus monkeys (n=4/group), depicted as percentage change compared to baseline. The results show enhanced activity by the GHXTEN construct, despite being dosed only once at the beginning of the experiment.


Example 28
Comparative Effects of hGH and AM864-hGH on Body Weight Gain

The ability of a GHXTEN to retain pharmacologic potency was assessed using the measured parameter of body weight gain in a hypox rat in response to administered compound. FIG. 25 shows the effects of administration of hGH or AM864-hGH at the indicated doses and dose frequency on body weight in hypox rats. The results show retention of biologic activity by the GHXTEN constructs that is equivalent in potency to comparable dosage of hGH, yet with less frequent dosing. Increased dosage of AM864-hGH led to increases in body weight gains showing enhancement of the pharmacodynamic properties of the GHXTEN compared to hGH under these conditions.


Example 29
Comparative Effects of hGH and AM864-hGH on Bone Cartilage

The ability of a GHXTEN to retain pharmacologic potency was assessed using the measured parameter of increase in tibial epiphyseal plate width in hypox rats. FIG. 26 shows the comparative effects of administration of placebo, hGH, and AM864-hGH, shown in histologic cross-sections of the tibia from rats after 9 days of treatment, with the margins denoted with dotted lines. Groups are the same as shown in FIG. 26. FIG. 26A shows that the placebo group had an average cross-section width of 344±38.6 μm of the plate after 9 days. FIG. 26B shows that the hGH group (10 μg daily) had an average cross-section width of 598±8.5 μm after 9 days. FIG. 26C shows that the AM864-hGH (15 mg/kg q3d) had an average cross-section width of 944±8.5 μm after 9 days. The results show enhanced activity by the GHXTEN construct compared to hGH, despite being dosed at less frequent intervals.


Example 30
PK Analysis of GHXTEN Protein Fusions

GH-Y576 and Y576h-GH (in this case indicating the N- to C-terminus order of GH and XTEN) were injected into cynomolgus monkeys in order to determine in vivo pharmacokinetic parameters. The compositions were provided in an aqueous buffer and were administered by intravenous routes into separate animals at 0.15 mg/kg dosing. Serum samples were collected at various time points following administration and analyzed for serum concentrations of the accessory proteins. Analysis was performed using a sandwich ELISA format. Rabbit polyclonal anti-XTEN (to Y-type XTEN) antibodies were coated onto wells of an ELISA plate. Serum samples were then incubated in the wells at varying dilutions to allow capture of the compound by the coated antibodies. Wells were washed extensively, and bound protein was detected using a biotinylated preparation of the polyclonal anti-XTEN antibody and streptavidin HRP. Serum protein concentrations were calculated at each time point by comparing the colorimetric response at each serum dilution to a standard curve. Pharmacokinetic parameters were calculated using the WinNonLin software package.



FIG. 22 shows the concentration profile of the two GH constructs following intravenous administration to cynomolgus monkeys. Following IV administration, the half-life was calculated to be 7 hours for hGH-Y576 and 10.5 hours for Y576-hGH. For reference, the published half-life of unmodified GH is well described in the literature as 10-15 minutes in adult humans (see, e.g., Hindmarch, P. C., et al., Clinical Endocrinology (2008) 30(4): 443-450). The results show that the orientation (N-versus C-terminal) of hGH relative to the XTEN did not affect the clearance of the fusion proteins, and that addition of the Y576 greatly extended the terminal half-life of the fusion protein.


Another pharmacokinetic study in cynomolgus monkeys was performed using the AM864-hGH construct. FIG. 23 shows the pharmacokinetic profile after a single dose of 5 mg/kg AM864-hGH administered subcutaneously to cynomolgus monkeys, with the derived equivalent hGH concentration shown (dashed line).


Conclusions: The XTEN component of the GHXTEN fusion protein confers enhanced pharmacokinetic properties to the fusion protein in comparison to hGH not linked to XTEN, under these conditions.


Example 31
PK Analysis of hGH XTEN Fusion Polypeptides in Rats

The GHXTEN fusion proteins AE912-hGH, AM864-hGH (synonym to AM875-hGH for this and following Examples), AE912-hGH-AE144 and AE912-hGH-AE288 were evaluated in rats in order to determine in vivo pharmacokinetic parameters of the hGHXTEN polypeptides. All compositions were provided in an aqueous buffer and were administered by subcutaneous (SC) route into separate animals using 1.5 mg/kg single doses. Plasma samples were collected at various time points following administration and analyzed for concentrations of the test articles. Analysis was performed using a sandwich ELISA format. Recombinant hGHR-Fc was coated onto wells of an ELISA plate. The wells were blocked, washed and plasma samples were then incubated in the wells at varying dilutions to allow capture of the compound by the coated antibodies. Wells were washed extensively, and bound protein was detected using a biotinylated preparation of the polyclonal anti hGH antibody and streptavidin HRP. Concentrations of test article were calculated at each time point by comparing the colorimetric response at each serum dilution to a standard curve. Pharmacokinetic parameters were calculated using the WinNonLin software package.



FIG. 27 shows the concentration profiles of the four hGH XTEN constructs after subcutaneous administration. The calculated terminal half-life for AE912-hGH was 7.5 h, 6.8 h for AM864-hGH (synonym for AM875-hGH), 12.4 h for AE912-hGH-AE144 and 13.1 h for AE912-hGH-AE288. For comparison, unmodified hGH was run in parallel in the same experiment and showed a dramatically shorter plasma half-life.


Conclusions: The incorporation of different XTEN sequences into fusion proteins comprising hGH results in significant enhancement of pharmacokinetic parameters for all four compositions compared to unmodified hGH, as demonstrated in the rodent model under these conditions. The addition of a second XTEN protein to the C-terminus of the AE-hGH constructs results in a further enhancement of the terminal half-life compared to the constructs with a single XTEN; likely due to reduced receptor mediated clearance.


Example 32
PK Analysis of hGH XTEN Fusion Polypeptides in Cynomolgus Monkeys

GHXTEN fusion proteins containing one or two XTEN molecules (AE912-hGH, AM864-hGH, and AE912-hGH-AE144) were evaluated in cynomolgus monkeys in order to determine the effect of the inclusion of a second XTEN on in vivo pharmacokinetic parameters of the hGHXTEN polypeptides. All compositions were provided in an aqueous buffer and were administered by subcutaneous (SC) route into separate animals using 1.5 mg/kg single doses. Plasma samples were collected at various time points following administration and analyzed for concentrations of the test articles. Analysis was performed using a sandwich ELISA format. Recombinant hGHR-Fc was coated onto wells of an ELISA plate. The wells were blocked, washed and plasma samples were then incubated in the wells at varying dilutions to allow capture of the compound by the coated antibodies. Wells were washed extensively, and bound protein was detected using a biotinylated preparation of the polyclonal anti hGH antibody and streptavidin HRP. Concentrations of test article were calculated at each time point by comparing the colorimetric response at each serum dilution to a standard curve. Pharmacokinetic parameters were calculated using the WinNonLin software package, and FIG. 28 shows the concentration profiles of the three hGH XTEN constructs after subcutaneous administration over the 336 h period. The average terminal half-life for the fusion proteins were 33 h for AM864-hGH, 44 h for AE912-hGH, and 110 h for the AE912-hGH-AE144 (containing two XTEN linked to the N- and C-termini of hGH).


Conclusions: The incorporation of different XTEN sequences into fusion proteins comprising hGH resulted in significant enhancement of pharmacokinetic parameters for all three compositions, as demonstrated in the cyno model under these conditions, with the construct containing a second XTEN linked to the C-terminus of the hGH showing a greater than about two-fold enhancement of the terminal half-life compared to the GHXTEN with a single XTEN at the N-terminus.


Example 33
Assessment of Pharmacodynamic Effects of AE912-hGH-AE144 GHXTEN by Measurement of IGF-1 Response in Cynomolgus Monkeys

AE912-hGH-AE144 was administered to male and female cynos SC at 0.3, 1.5, and 7.5 mg/kg and dose volumes ranging from 0.80 to 1.13 ml. Blood samples (1.0 mL) were collected into prechilled heparinized tubes at predose, 2, 4, 8, 24, 48, 72, 96, 120, 168, 216, 264, 336, 388, 432, 504 hour timepoints (16), and processed into plasma. PK was measured by ELISA assay using the anti-XTEN capture antibody and the biotinylated anti-hGH detection antibody. IGF-1 samples were sent to and analyzed by Millipore. PK parameters were calculated by analysis using the WinNonLin software package and are shown in the table below. Plasma concentration profiles of the three doses of GHXTEN and IGF-1 levels are shown in FIG. 29 and FIG. 30, respectively (open circles=0.3 mg/kg; squares=1.5 mg/kg; triangles=7.5 mg/kg). The results show that administration of AE912-hGH-AE144 results in a sustained increase in IGF-1 levels, consistent with both the biological mode of action of growth hormone and the long plasma half-life of AE912-hGH-AE144.









TABLE 22







PK parameters in cynomolgus monkeys













0.3 mg/kg
1.5 mg/kg
7.5 mg/kg







Route
SC
SC
SC



T ½ (hrs)
84.4
97.5
101.1



Cmax (nM)
41
910
340



AUC (nM * hr)
5,170
162,000
64,100










Example 34
Comparative Bioavailability of AE912-hGH-AE144 Via Subcutaneous and Intramuscular Administration to Cynomolgus Monkeys

AE912-hGH-AE144 was administered to male and female cynos SC at 1.5 mg/kg via intravenous, subcutaneous, and intramuscular routes. Blood samples (1.0 mL) were collected into prechilled heparinized tubes at predose, 2, 4, 8, 24, 48, 72, 96, 120, 168, 216, 264, 336, 388, 432, 504 hour timepoints (16), and processed into plasma. Plasma levels at each time point were measured by ELISA assay using the anti-XTEN capture antibody and the biotinylated anti-hGH detection antibody. PK and bioavailability parameters were calculated by analysis using the WinNonLin software package and are shown in the table below. Plasma concentration profiles are shown in FIG. 31 (open circles=subcutaneous; triangle=IV; squares=intramuscular). For bioavailability calculations, the AUC for intravenous administration was defined to be 100%. The results show that AE912-hGH-AE144 shows a high bioavailability and distributes rapidly from the injection site to the blood compartment following injection.









TABLE 23







PK parameters in cynomolgus monkeys













1.5 mg/kg
1.5 mg/kg
1.5 mg/kg







Route
SC
IV
IM



T ½ (hrs)
97.5
107.7
102.2



Cmax (nM)
910
462
245



AUC (nM * hr)
162,000
60,300
43,200



Bioavailability
~100%
100%
72%










Example 35
Determination of the Therapeutic Window for AE912-hGH-AE144

The specific activity of the GHXTEN AE912-hGH-AE144 was assessed using the measured parameter of body weight gain in a hypophysectomized (hypox) rat in response to administered compound. FIG. 32 shows the effects of administration of vehicle (open circles), recombinant hGH dosed at 5 nmol/kg/day (closed circles), the GHXTEN AE912-hGH-AE144 at varying doses and dose frequency (closed triangles=0.5 nmol/kg/day; open triangles=1.5 nmol/day; squares=3 nmol/kg/Q2D) on body weight in hypox rats. The results show that a dose of the GHXTEN AE912-hGH-AE144 as low as 1.5 nmol/kg/day yields comparable growth to hGH alone. However, a lower dose of 0.5 nmol/kg/day does not promote growth in these animals. Based on the pharmacokinetic profiles determined in the rats, a model for plasma levels following repeat dosing was constructed as shown in FIG. 33 (same groups as per FIG. 32). The model clearly differentiates the efficacious doses from the non-efficacious lower dose. The results show that plasma concentration of AE912-hGH-AE144 generally should remain above about 1 nmol/L concentration in order to maintain optimal growth in the hypophysectomized rat model.


Example 36
Human Clinical Trial Designs for Evaluating GHXTEN

Clinical trials can be designed such that the efficacy and advantages of the GHXTEN compositions, relative to the corresponding growth hormone biologics, can be verified in humans. For example, the GHXTEN fusion constructs comprising growth, as described in the Examples above, can be used in clinical trials for characterizing the efficacy of the compositions. The trials can be conducted in one or more growth hormone-related diseases, disorders, or conditions that are improved, ameliorated, or inhibited by the administration of growth hormone. Such studies in adult patients comprise three phases. First, a Phase I safety and pharmacokinetics study in adult patients is conducted to determine the maximum tolerated dose and pharmacokinetics and pharmacodynamics in humans (either normal subjects or patients with a growth disease or condition), as well as to define potential toxicities and adverse events to be tracked in future studies. The study is conducted in which single rising doses of compositions of fusion proteins of GHXTEN is administered and biochemical, PK, and clinical parameters is measured. This permits the determination of the maximum tolerated dose and establishes the threshold and maximum concentrations in dosage and circulating drug that constitute the therapeutic window for the respective components. Thereafter, clinical trials are conducted in patients with the disease, disorder or condition.


Phase II and III Clinical Trials


A phase II dosing study is conducted in patients where blood growth hormone pharmacodynamics and other physiologic, PK, safety and clinical parameters (such as listed below) appropriate for trials, such as for reversal of short stature due to GH deficiency in pediatric patients, treatment of Turner syndrome, chronic renal failure, Prader-Willi syndrome, intrauterine growth retardation, or improvements in body mass composition (increase in lean body mass, decrease in fat mass) in adult patients (such as HIV+ or acquired pituitary tumor patients). Parameters and clinical endpoints are measured as a function of the dosing of the fusion proteins compositions, yielding dose-ranging information on doses that would be appropriate for a subsequent Phase III trial, in addition to collecting safety data related to adverse events. The PK parameters are correlated to the physiologic, clinical and safety parameter data to establish the therapeutic window and the therapeutic dose regimen for the GHXTEN composition, permitting the clinician to establish the approrpirate dose ranges for a GHXTEN composition. Finally, a phase III efficacy study is conducted wherein patients would be administered the GHXTEN composition at the dose regimen, and a positive control (such as a commercially-available, approved growth hormone), or a placebo is administered daily or using other dosing schedule deemed appropriate given the pharmacokinetic and pharmacodynamic properties of the control composition, with all agents administered for an appropriately extended period of time to achieve the study endpoints. Parameters that are monitored include GH, IGF-1 and IGFBP3 concentrations, changes in height velocity, lean body mass, total body fat, trunk fat, parameters associated with insulin resistance syndrome, measurement of division and multiplication rates of chondrocytes, and/or changes in bone density and/or bone growth; parameters that would be tracked relative to the placebo or positive control groups. Efficacy outcomes would be determined using standard statistical methods. Toxicity and adverse event markers are also be followed in this study to verify that the compound is safe when used in the manner described.


Example 37
Analytical Size Exclusion Chromatography of Xten Fusion Proteins with Diverse Payloads

Size exclusion chromatography analyses were performed on fusion proteins containing various therapeutic proteins and unstructured recombinant proteins of increasing length. An exemplary assay used a TSKGel-G4000 SWXL (7.8 mm×30 cm) column in which 40 μg of purified glucagon fusion protein at a concentration of 1 mg/ml was separated at a flow rate of 0.6 ml/min in 20 mM phosphate pH 6.8, 114 mM NaCl. Chromatogram profiles were monitored using OD214 nm and OD280 nm. Column calibration for all assays were performed using a size exclusion calibration standard from BioRad; the markers include thyroglobulin (670 kDa), bovine gamma-globulin (158 kDa), chicken ovalbumin (44 kDa), equine myoglobuin (17 kDa) and vitamin B12 (1.35 kDa). Representative chromatographic profiles of Glucagon-Y288, Glucagon-Y144, Glucagon-Y72, Glucagon-Y36 are shown as an overlay in FIG. 34. The data show that the apparent molecular weight of each compound is proportional to the length of the attached XTEN sequence. However, the data also show that the apparent molecular weight of each construct is significantly larger than that expected for a globular protein (as shown by comparison to the standard proteins run in the same assay). Based on the SEC analyses for all constructs evaluated, including a GHXTEN composition, the Apparent Molecular Weights, the Apparent Molecular Weight Factor (expressed as the ratio of Apparent Molecular Weight to the calculated molecular weight) and the hydrodynamic radius (RH in nm) are shown in Table 24. The results indicate that incorporation of different XTENs of 576 amino acids or greater confers an apparent molecular weight for the fusion protein of approximately 339 kDa to 760, and that XTEN of 864 amino acids or greater confers an apparent molecular weight greater than approximately 800 kDA. The results of proportional increases in apparent molecular weight to actual molecular weight were consistent for fusion proteins created with XTEN from several different motif families; i.e., AD, AE, AF, AG, and AM, with increases of at least four-fold and ratios as high as about 17-fold. Additionally, the incorporation of XTEN fusion partners with 576 amino acids or more into fusion proteins with the various payloads (and 288 residues in the case of glucagon fused to Y288) resulted with a hydrodynamic radius of 7 nm or greater; well beyond the glomerular pore size of approximately 3-5 nm. Accordingly, it is expected that fusion proteins comprising growth and XTEN have reduced renal clearance, contributing to increased terminal half-life and improving the therapeutic or biologic effect relative to a corresponding un-fused biologic payload protein.









TABLE 24







SEC analysis of various polypeptides

















Ap-
Apparent




XTEN or

Actual
parent
Molecular



Construct
fusion
Therapeutic
MW
MW
Weight
RH


Name
partner
Protein
(kDa)
(kDa)
Factor
(nm)
















AC14
Y288
Glucagon
28.7
370
12.9
7.0


AC28
Y144
Glucagon
16.1
117
7.3
5.0


AC34
Y72
Glucagon
9.9
58.6
5.9
3.8


AC33
Y36
Glucagon
6.8
29.4
4.3
2.6


AC89
AF120
Glucagon
14.1
76.4
5.4
4.3


AC88
AF108
Glucagon
13.1
61.2
4.7
3.9


AC73
AF144
Glucagon
16.3
95.2
5.8
4.7


AC53
AG576
GFP
74.9
339
4.5
7.0


AC39
AD576
GFP
76.4
546
7.1
7.7


AC41
AE576
GFP
80.4
760
9.5
8.3


AC52
AF576
GFP
78.3
526
6.7
7.6


AC85
AE864
Exendin-4
83.6
938
11.2
8.9


AC114
AM875
Exendin-4
82.4
1344
16.3
9.4


AC143
AM875
hGH
100.6
846
8.4
8.7


AC227
AM875
IL-1ra
95.4
1103
11.6
9.2


AC228
AM1318
IL-1ra
134.8
2286
17.0
10.5









Example 38
Pharmacokinetics of Extended Polypeptides Fused to GFP in Cynomolgus monkeys

The pharmacokinetics of GFP-L288, GFP-L576, GFP-XTEN_AF576, GFP-XTEN_Y576 and XTEN_AD836-GFP were tested in cynomolgus monkeys to determine the effect of composition and length of the unstructured polypeptides on PK parameters. Blood samples were analyzed at various times after injection and the concentration of GFP in plasma was measured by ELISA using a polyclonal antibody against GFP for capture and a biotinylated preparation of the same polyclonal antibody for detection. Results are summarized in FIG. 35. They show a surprising increase of half-life with increasing length of the XTEN sequence. For example, a half-life of 10 h was determined for GFP-XTEN_L288 (with 288 amino acid residues in the XTEN). Doubling the length of the unstructured polypeptide fusion partner to 576 amino acids increased the half-life to 20-22 h for multiple fusion protein constructs; i.e., GFP-XTEN L576, GFP-XTEN_AF576, GFP-XTEN_Y576. A further increase of the unstructured polypeptide fusion partner length to 836 residues resulted in a half-life of 72-75 h for XTEN_AD836-GFP. Thus, increasing the polymer length by 288 residues from 288 to 576 residues increased in vivo half-life by about 10 h. However, increasing the polypeptide length by 260 residues from 576 residues to 836 residues increased half-life by more than 50 h. These results show that there is a surprising threshold of unstructured polypeptide length that results in a greater than proportional gain in vivo half-life. Thus, fusion proteins comprising extended, unstructured polypeptides are expected to have the property of enhanced pharmacokinetics compared to polypeptides of shorter lengths.


Example 39
Serum Stability of XTEN

A fusion protein containing XTEN_AE864 fused to the N-terminus of GFP was incubated in monkey plasma and rat kidney lysate for up to 7 days at 37° C. Samples were withdrawn at time 0, Day 1 and Day 7 and analyzed by SDS PAGE followed by detection using Western analysis and detection with antibodies against GFP as shown in FIG. 14. The sequence of XTEN_AE864 showed negligible signs of degradation over 7 days in plasma. However, XTEN_AE864 was rapidly degraded in rat kidney lysate over 3 days. The in vivo stability of the fusion protein was tested in plasma samples wherein the GFP_AE864 was immunoprecipitated and analyzed by SDS PAGE as described above. Samples that were withdrawn up to 7 days after injection showed very few signs of degradation. The results demonstrate the resistance of GHXTEN to degradation due to serum proteases; a factor in the enhancement of pharmacokinetic properties of the GHXTEN fusion proteins.


Example 40
PK Analysis of Ex4-XTEN Fusion Protein in Multiple Species and Predicted Human Half-life

To determine the predicted pharmacokinetic profile in humans of a therapeutic protein fused to XTEN, studies were performed using exendin-4 fused to the AE864 XTEN as a single fusion polypeptide. The Ex4-XTEN construct was administered to four different animal species at 0.5-1.0 mg/kg, subcutaneously and intravenously. Serum samples were collected at intervals following administration, with serum concentrations determined using standard methods. The half-life for each species was determined, and is tabulated in Table 25. The results were used to predict the human half-life using allometric scaling of terminal half-life, volume of distribution, and clearance rates based on average body mass. FIG. 36A shows a plot of measured terminal half-life versus body mass in the animal species, with a predicted T1/2 in a 75 kg human of 140 h, compared to the reported half-life of exenatide of 2.4 h (Bond, A. Proc (Bayl Univ Med Cent) 19(3): 281-284. (2006)). FIG. 36B shows measured drug clearance versus body mass, with a predicted clearance rate value of 30 ml/h in a 75 kg human. FIG. 36C shows measured volume of distribution versus body mass, with a predicted value of 5970 ml in a 75 kg human.


Conclusions: It can be concluded from the results that addition of an XTEN to a glucose-regulating peptide, such as exendin-4, can greatly increase the terminal half-life compared to the peptide not linked to XTEN.









TABLE 25







Half-life of Ex4-XTEN










Species
Half-Life (hr)







Mouse
13.5



Rat
31.7



Monkey
60.7



Dog
72.8



Human
140* 







*Predicted value based on allometric scaling






Example 41
Increasing Solubility and Stability of a Peptide Payload by Linking to XTEN

In order to evaluate the ability of XTEN to enhance the physical/chemical properties of solubility and stability, fusion proteins of glucagon plus shorter-length XTEN were prepared and evaluated. The test articles were prepared in Tris-buffered saline at neutral pH and characterization of the Gcg-XTEN solution was by reverse-phase HPLC and size exclusion chromatography to affirm that the protein was homogeneous and non-aggregated in solution. The data are presented in Table 26. For comparative purposes, the solubility limit of unmodified glucagon in the same buffer was measured at 60 μM (0.2 mg/mL), and the result demonstrate that for all lengths of XTEN added, a substantial increase in solubility was attained. Importantly, in most cases the glucagon-XTEN fusion proteins were prepared to achieve target concentrations and were not evaluated to determine the maximum solubility limits for the given construct. However, in the case of glucagon linked to the AF-144 XTEN, the limit of solubility was determined, with the result that a 60-fold increase in solubility was achieved, compared to glucagon not linked to XTEN. In addition, the glucagon-AF144 GHXTEN was evaluated for stability, and was found to be stable in liquid formulation for at least 6 months under refrigerated conditions and for approximately one month at 37° C. (data not shown).


Conclusions: The data support the conclusion that the linking of short-length XTEN polypeptides to a biologically active protein such as glucagon can markedly enhance the solubility properties of the protein by the resulting fusion protein, as well as confer stability at the higher protein concentrations.









TABLE 26







Solubility of Glucagon-XTEN constructs










Test Article
Solubility







Glucagon
   60 μM



Glucagon-Y36
>370 μM



Glucagon-Y72
>293 μM



Glucagon-AF108
>145 μM



Glucagon-AF120
>160 μM



Glucagon-Y144
>497 μM



Glucagon-AE144
>467 μM



Glucagon-AF144
>3600 μM 



Glucagon-Y288
>163 μM










Example 42
Characterization of XTEN Fusion Protein Secondary Structure

The fusion protein Ex4-AE864 was evaluated for degree of secondary structure by circular dichroism spectroscopy. CD spectroscopy was performed on a Jasco J-715 (Jasco Corporation, Tokyo, Japan) spectropolarimeter equipped with Jasco Peltier temperature controller (TPC-348WI). The concentration of protein was adjusted to 0.2 mg/mL in 20 mM sodium phosphate pH 7.0, 50 mM NaCl. The experiments were carried out using HELLMA quartz cells with an optical path-length of 0.1 cm. The CD spectra were acquired at 5°, 25°, 45°, and 65° C. and processed using the J-700 version 1.08.01 (Build 1) Jasco software for Windows. The samples were equilibrated at each temperature for 5 min before performing CD measurements. All spectra were recorded in duplicate from 300 nm to 185 nm using a bandwidth of 1 nm and a time constant of 2 sec, at a scan speed of 100 nm/min. The CD spectrum shown in FIG. 37 shows no evidence of stable secondary structure and is consistent with an unstructured polypeptide.


Example 43
Analysis of Sequences for Secondary Structure by Prediction Algorithms

Amino acid sequences can be assessed for secondary structure via certain computer programs or algorithms, such as the well-known Chou-Fasman algorithm (Chou, P. Y., et al. (1974) Biochemistry, 13: 222-45) and the Garnier-Osguthorpe-Robson, or “GOR” method (Garnier J, Gibrat J F, Robson B. (1996). GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266:540-553). For a given sequence, the algorithms can predict whether there exists some or no secondary structure at all, expressed as total and/or percentage of residues of the sequence that form, for example, alpha-helices or beta-sheets or the percentage of residues of the sequence predicted to result in random coil formation.


Several representative sequences from XTEN “families” have been assessed using two algorithm tools for the Chou-Fasman and GOR methods to assess the degree of secondary structure in these sequences. The Chou-Fasman tool was provided by William R. Pearson and the University of Virginia, at the “Biosupport” internet site, URL located on the World Wide Web at .fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi?rm=misc1 as it existed on Jun. 19, 2009. The GOR tool was provided by Pole Informatique Lyonnais at the Network Protein Sequence Analysis internet site, URL located on the World Wide Web at .npsa-pbil.ibcp.fr/cgi-bin/secpred_gor4.pl as it existed on Jun. 19, 2008.


As a first step in the analyses, a single XTEN sequence was analyzed by the two algorithms. The AE864 composition is a XTEN with 864 amino acid residues created from multiple copies of four 12 amino acid sequence motifs consisting of the amino acids G, S, T, E, P, and A. The sequence motifs are characterized by the fact that there is limited repetitiveness within the motifs and within the overall sequence in that the sequence of any two consecutive amino acids is not repeated more than twice in any one 12 amino acid motif, and that no three contiguous amino acids of full-length the XTEN are identical. Successively longer portions of the AF 864 sequence from the N-terminus were analyzed by the Chou-Fasman and GOR algorithms (the latter requires a minimum length of 17 amino acids). The sequences were analyzed by entering the FASTA format sequences into the prediction tools and running the analysis. The results from the analyses are presented in Table 27.


The results indicate that, by the Chou-Fasman calculations, the four motifs of the AE family (Table 1) have no alpha-helices or beta sheets. The sequence up to 288 residues was similarly found to have no alpha-helices or beta sheets. The 432 residue sequence is predicted to have a small amount of secondary structure, with only 2 amino acids contributing to an alpha-helix for an overall percentage of 0.5%. The full-length AF864 polypeptide has the same two amino acids contributing to an alpha-helix, for an overall percentage of 0.2%. Calculations for random coil formation revealed that with increasing length, the percentage of random coil formation increased. The first 24 amino acids of the sequence had 91% random coil formation, which increased with increasing length up to the 99.77% value for the full-length sequence.


Numerous XTEN sequences of 500 amino acids or longer from the other motif families were also analyzed and revealed that the majority had greater than 95% random coil formation. The exceptions were those sequences with one or more instances of three contiguous serine residues, which resulted in predicted beta-sheet formation. However, even these sequences still had approximately 99% random coil formation.


In contrast, a polypeptide sequence of 84 residues limited to A, S, and P amino acids was assessed by the Chou-Fasman algorithm, which predicted a high degree of predicted alpha-helices. The sequence, which had multiple repeat “AA” and “AAA” sequences, had an overall predicted percentage of alpha-helix structure of 69%. The GOR algorithm predicted 78.57% random coil formation; far less than any sequence consisting of 12 amino acid sequence motifs consisting of the amino acids G, S, T, E, P, analyzed in the present Example.


Conclusions: The analysis supports the conclusion that: 1) XTEN created from multiple sequence motifs of G, S, T, E, P, and A that have limited repetitiveness as to contiguous amino acids are predicted to have very low amounts of alpha-helices and beta-sheets; 2) that increasing the length of the XTEN does not appreciably increase the probability of alpha-helix or beta-sheet formation; and 3) that progressively increasing the length of the XTEN sequence by addition of non-repetitive 12-mers consisting of the amino acids G, S, T, E, P, and A results in increased percentage of random coil formation. In contrast, polypeptides created from amino acids limited to A, S and P that have a higher degree of internal repetitiveness are predicted to have a high percentage of alpha-helices, as determined by the Chou-Fasman algorithm, as well as random coil formation. Based on the numerous sequences evaluated by these methods, it is concluded that XTEN created from sequence motifs of G, S, T, E, P, and A that have limited repetitiveness (defined as no more than two identical contiguous amino acids in any one motif) greater than about 400 amino acid residues in length are expected to have very limited secondary structure. With the exception of motifs containing three contiguous serines, it is believed that any order or combination of sequence motifs from Table 1 can be used to create an XTEN polypeptide of a length greater than about 400 residues that will result in an XTEN sequence that is substantially devoid of secondary structure. Such sequences are expected to have the characteristics described in the GHX TEN embodiments of the invention disclosed herein.









TABLE 27







CHOU-FASMAN and GOR prediction calculations of polypeptide sequences












SEQ

SEQ ID
No.
Chou-Fasman
GOR


NAME
Sequence
NO:
Residues
Calculation
Calculation
















GSTSESPSGTAP
624
12
Residue totals*: H: 0 E: 0
Not






percent: H: 0.0 E: 0.0
Determined






GTSTPESGSASP
625
12
Residue totals: H: 0 E: 0
Not






percent: H: 0.0 E: 0.0
Determined






GTSPSGESSTAP
626
12
Residue totals: H: 0 E: 0
Not






percent: H: 0.0 E: 0.0
Determined






GSTSSTAESPGP
627
12
Residue totals: H: 0 E: 0
Not






percent: H: 0.0 E: 0.0
Determined






GSPAGSPTSTEEGTSESATPESGP
628
24
Residue totals: H: 0 E: 0
91.67%






percent: H: 0.0 E: 0.0







GSPAGSPTSTEEGTSESATPESGPGTSTEPSE 
629
36
Residue totals: H: 0 E: 0
94.44%



GSAP


percent: H: 0.0 E: 0.0







GSPAGSPTSTEEGTSESATPESGPGTSTEPSE
630
48
Residue totals: H: 0 E: 0
93.75%



GSAPGSPAGSPTSTEE


percent: H: 0.0 E: 0.0







GSPAGSPTSTEEGTSESATPESGPGTSTEPSE
631
60
Residue totals: H: 0 E: 0
96.67%



GSAPGSPAGSPTSTEEGTSTEPSEGSAP


percent: H: 0.0 E: 0.0







GSPAGSPTSTEEGTSESATPESGPGTSTEPSE
632
108
Residue totals: H: 0 E: 0
97.22%



GSAPGSPAGSPTSTEEGTSTEPSEGSAPGTST


percent: H: 0.0 E: 0.0




EPSEGSAPGTSESATPESGPGSEPATSGSETP







GSEPATSGSETP










GSPAGSPTSTEEGTSESATPESGPGTSTEPSE
633
216
Residue totals: H: 0 E: 0
99.07%



GSAPGSPAGSPTSTEEGTSTEPSEGSAPGTST


percent: H: 0.0 E: 0.0




EPSEGSAPGTSESATPESGPGSEPATSGSETP







GSEPATSGSETPGSPAGSPTSTEEGTSESATP







ESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPA







GSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAP







GTSESATPESGPGTSTEPSEGSAP










GSPAGSPTSTEEGTSESATPESGPGTSTEPSE
634
432
Residue totals: H: 2 E: 3
99.54%



GSAPGSPAGSPTSTEEGTSTEPSEGSAPGTST


percent: H: 0.5 E : 0.7




EPSEGSAPGTSESATPESGPGSEPATSGSETP







GSEPATSGSETPGSPAGSPTSTEEGTSESATP







ESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPA







GSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAP







GTSESATPESGPGTSTEPSEGSAPGTSESATP







ESGPGSEPATSGSETPGTSTEPSEGSAPGTST







EPSEGSAPGTSESATPESGPGTSESATPESGP







GSPAGSPTSTEEGTSESATPESGPGSEPATSG







SETPGTSESATPESGPGTSTEPSEGSAPGTST







EPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAP







GTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPT







STEEGTSTEPSEGSAP









AE864
GSPAGSPTSTEEGTSESATPESGPGTSTEPSE
635
864
Residue totals: H: 2 E: 3
99.77%



GSAPGSPAGSPTSTEEGTSTEPSEGSAPGTST


percent:H:0.2 E: 0.3




EPSEGSAPGTSESATPESGPGSEPATSGSETP







GSEPATSGSETPGSPAGSPTSTEEGTSESATP







ESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPA







GSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAP







GTSESATPESGPGTSTEPSEGSAPGTSESATP







ESGPGSEPATSGSETPGTSTEPSEGSAPGTST







EPSEGSAPGTSESATPESGPGTSESATPESGP







GSPAGSPTSTEEGTSESATPESGPGSEPATSG







SETPGTSESATPESGPGTSTEPSEGSAPGTST







EPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAP







GTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPT







STEEGTSTEPSEGSAPGTSESATPESGPGSEP







ATSGSETPGTSESATPESGPGSEPATSGSETP







GTSESATPESGPGTSTEPSEGSAPGTSESATP







ESGPGSPAGSPTSTEEGSPAGSPTSTEEGSPA







GSPTSTEEGTSESATPESGPGTSTEPSEGSAP







GTSESATPESGPGSEPATSGSETPGTSESATP







ESGPGSEPATSGSETPGTSESATPESGPGTST







EPSEGSAPGSPAGSPTSTEEGTSESATPESGP







GSEPATSGSETPGTSESATPESGPGSPAGSPT







STEEGSPAGSPTSTEEGTSTEPSEGSAPGTSE







SATPESGPGTSESATPESGPGTSESATPESGP







GSEPATSGSETPGSEPATSGSETPGSPAGSPT







STEEGTSTEPSEGSAPGTSTEPSEGSAPGSEP







ATSGSETPGTSESATPESGPGTSTEPSEGSAP









AD576
GSSESGSSEGGPGSGGEPSESGSSGSSESGSS
636
576
Residue totals: H: 7 E: 0
99.65%



EGGPGSSESGSSEGGPGSSESGSSEGGPGSSE


percent: H: 1.2 E: 0.0




SGSSEGGPGSSESGSSEGGPGESPGGSSGSES







GSEGSSGPGESSGSSESGSSEGGPGSSESGSS







EGGPGSSESGSSEGGPGSGGEPSESGSSGESP







GGSSGSESGESPGGSSGSESGSGGEPSESGSS







GSSESGSSEGGPGSGGEPSESGSSGSGGEPSE







SGSSGSEGSSGPGESSGESPGGSSGSESGSGG







EEPSSGSSGSGGEPSESGSSGSGGEPSESGSS







GSSESGSSEGGPGESPGGSSGSESGESPGGSS







GSESGESPGGSSGSESGESPGGSSGSESGESP







GGSSGSESGSSESGSSEGGPGSGGEPSESGSS







GSEGSSGPGESSGSSESGSSEGGPGSGGEPSE







SGSSGSSESGSSEGGPGSGGEPSESGSSGESP







GGSSGSESGESPGGSSGSESGSSESGSSEGGP







GSGGEPSESGSSGSSESGSSEGGPGSGGEPSE







SGSSGSGGEPSESGSSGESPGGSSGSESGSEG







SSGPGESSGSSESGSSEGGPGSEGSSGPGESS









AE576
GSPAGSPTSTEEGTSESATPESGPGTSTEPSE
637
576
Residue totals: H: 2 E: 0
99.65%



GSAPGSPAGSPTSTEEGTSTEPSEGSAPGTST


percent: H: 0.4 E: 0.0




EPSEGSAPGTSESATPESGPGSEPATSGSETP







GSEPATSGSETPGSPAGSPTSTEEGTSESATP







ESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPA







GSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAP







GTSESATPESGPGTSTEPSEGSAPGTSESATP







ESGPGSEPATSGSETPGTSTEPSEGSAPGTST







EPSEGSAPGTSESATPESGPGTSESATPESGP







GSPAGSPTSTEEGTSESATPESGPGSEPATSG







SETPGTSESATPESGPGTSTEPSEGSAPGTST







EPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAP







GTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPT







STEEGTSTEPSEGSAPGTSESATPESGPGSEP







ATSGSETPGTSESATPESGPGSEPATSGSETP







GTSESATPESGPGTSTEPSEGSAPGTSESATP







ESGPGSPAGSPTSTEEGSPAGSPTSTEEGSPA







GSPTSTETEGTSESATPESGPGTSTEPSEGSA







P









AF540
GSTSSTAESPGPGSTSSTAESPGPGSTSESPS
638
540
Residue totals: H: 2 E: 0
99.65



GTAPGSTSSTAESPGPGSTSSTAESPGPGTST


percent: H: 0.4 E: 0.0




PESGSASPGSTSESPSGTAPGTSPSGESSTAP







GSTSESPSGTAPGSTSESPSGTAPGTSPSGES







STAPGSTSESPSGTAPGSTSESPSGTAPGTSP







SGESSTAPGSTSESPSGTAPGSTSESPSGTAP







GSTSESPSGTAPGTSTPESGSASPGSTSESPS







GTAPGTSTPESGSASPGSTSSTAESPGPGSTS







STAESPGPGTSTPESGSASPGTSTPESGSASP







GSTSESPSGTAPGTSTPESGSASPGTSTPESG







SASPGSTSESPSGTAPGSTSESPSGTAPGSTS







ESPSGTAPGSTSSTAESPGPGTSTPESGSASP







GTSTPESGSASPGSTSESPSGTAPGSTSESPS







GTAPGTSTPESGSASPGSTSESPSGTAPGSTS







ESPSGTAPGTSTPESGSASPGTSPSGESSTAP







GSTSSTAESPGPGTSPSGESSTAPGSTSSTAE







SPGPGTSTPESGSASPGSTSESPSGTAP









AF504
GASPGTSSTGSPGSSPSASTGTGPGSSPSAST
639
504
Residue totals: H: 0 E: 0
94.44%



GTGPGTPGSGTASSSPGSSTPSGATGSPGSNP


percent: H: 0.0 E: 0.0




SASTGTGPGASPGGTSSTGSPGTPGSGTASSS







PGSSTPSGATGSPGTPGSGTASSSPGASPGTS







STGSPGASPGTSSTGSPGTPGSGTASSSPGSS







TPSGATGSPGASPGTSSTGSPGTPGSGTASSS







PGSSTPSGATGSPGSNPSASTGTGPGSSPSAS







TGTGPGSSTPSGATGSPGSSTPSGATGSPGAS







PGTSSTGSPGASPGTSSTGSPGASPGTSSTGS







PGTPGSGTASSSPGASPGTSSTGSPGASPGTS







STGSPGASPGTSSTGSPGSSPSASTGTGPGTP







GSGTASSSPGASPGTSSTGSPGASPGTSSTGS







PGASPGTSSTGSPGSSTPSGATGSPGSSTPSG







ATGSPGASPGTSSTGSPGTPGSGTASSSPGSS







TPSGATGSPGSSTPSGATGSPGSSTPSGATGS







PGSSPSASTGTGPGASPGTSSTGSP









AE864
GSPAGSPTSTEEGTSESATPESGPGTSTEPSE
640
864
Residue totals: H: 2 E: 3
99.77%



GSAPGSPAGSPTSTEEGTSTEPSEGSAPGTST


percent: H: 0.2 E: 0.4




EPSEGSAPGTSESATPESGPGSEPATSGSETP







GSEPATSGSETPGSPAGSPTSTEEGTSESATP







ESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPA







GSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAP







GTSESATPESGPGTSTEPSEGSAPGTSESATP







ESGPGSEPATSGSETPGTSTEPSEGSAPGTST







EPSEGSAPGTSESATPESGPGTSESATPESGP







GSPAGSPTSTEEGTSESATPESGPGSEPATSG







SETPGTSESATPESGPGTSTEPSEGSAPGTST







EPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAP







GTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPT







STEEGTSTEPSEGSAPGTSESATPESCTPGSE







PATSGSETPGTSESATPESGPGSEPATSGSET







PGTSESATPESGPGTSTEPSEGSAPGTSESAT







PESGPGSPAGSPTSTEEGSPAGSPTSTEEGSP







AGSPTSTEEGTSESATPESGPGTSTEPSEGSA







PGTSESATPESGPGSEPATSGSETPGTSESAT







PESGPGSEPATSGSETPGTSESATPESGPGTS







TEPSEGSAPGSPAGSPTSTEEGTSESATPESG







PGSEPATSGSETPGTSESATPESGPGSPAGSP







TSTEEGSPAGSPTSTEEGTSTEPSEGSAPGTS







ESATPESGPGTSESATPESGPGTSESATPESG







PGSEPATSGSETPGSEPATSGSETPGSPAGSP







TSTEEGTSTEPSEGSAPGTSTEPSEGSAPGSE







PATSGSETPGTSESATPESGPGTSTEPSEGSA







P









AF864
GSTSESPSGTAPGTSPSGESSTAPGSTSESPS
641
875
Residue totals: H: 2 E: 0
95.20%



GTAPGSTSESPSGTAPGTSTPESGSASPGTST


percent: H: 0.2 E: 0.0




PESGSASPGSTSESPSGTAPGSTSESPSGTAP







GTSPSGESSTAPGSTSESPSGTAPGTSPSGES







STAPGTSPSGESSTAPGSTSSTAESPGPGTSP







SGESSTAPGTSPSGESSTAPGSTSSTAESPGP







GTSTPESGSASPGTSTPESGSASPGSTSESPS







GTAPGSTSESPSGTAPGTSTPESGSASPGSTS







STAESPGPGTSTPESGSASPGSTSESPSGTAP







GTSPSGESSTAPGSTSSTAESPGPGTSPSGES







STAPGTSTPESGSASPGSTSSTAESPGPGSTS







STAESPGPGSTSSTAESPGPGSTSSTAESPGP







GTSPSGESSTAPGSTSESPSGTAPGSTSESPS







GTAPGTSTPESGPXXXGASASGAPSTXXXXSE







SPSGTAPGSTSESPSGTAPGSTSESPSGTAPG







STSESPSGTAPGSTSESPSGTAPGSTSESPSG







TAPGTSTPESGSASPGTSPSGESSTAPGTSPS







GESSTAPGSTSSTAESPGPGTSPSGESSTAPG







TSTPESGSASPGSTSESPSGTAPGSTSESPSG







TAPGTSPSGESSTAPGSTSESPSGTAPGTSTP







ESGSASPGTSTPESGSASPGSTSESPSGTAPG







TSTPESGSASPGSTSSTAESPGPGSTSESPSG







TAPGSTSESPSGTAPGTSPSGESSTAPGSTSS







TAESPGPGTSPSGESSTAPGTSTPESGSASPG







TSPSGESSTAPGTSPSGESSTAPGTSPSGESS







TAPGSTSSTAESPGPGSTSSTAESPGPGTSPS







GESSTAPGSSPSASTGTGPGSSTPSGATGSPG







SSTPSGATGSP









AG864
GGSPGASPGTSSTGSPGSSPSASTGTGPGSSP
642
868
Residue totals: H: 0 E: 0
94.70%



SASTGTGPGTPGSGTASSSPGSSTPSGATGSP


percent: H: 0.0 E: 0.0




GSNPSASTGTGPGASPGTSSTGSPGTPGSGTA







SSSPGSSTPSGATGSPGTPGSGTASSSPGASP







GTSSTGSPGASPGTSSTGSPGTPGSGTASSSP







GSSTPSGATGSPGASPGTSSTGSPGTPGSGTA







SSSPGSSTPSGATGSPGSNPSASTGTGPGSSP







SASTGT7GPGSSTPSGATGSPGSSTPSGATGS







PGASPGTSSTGSPGASPGTSSTGSPGASPGTS







STGSPGTPGSGTASSSPGASPGTSSTGSPGAS







PGTSSTGSPGASPGTSSTGSPGSSPSASTGTG







PGTPGSGTASSSPGASPGTSSTGSPGASPGTS







STGSPGASPGTSSTGSPGSSTPSGATGSPGSS







TPSGATGSPGASPGTSSTGSPGTPGSGTASSS







PGSSTPSGATGSPGSSTPSGATGSPGSSTPSG







ATGSPGSSPSASTGTGPGASPGTSSTGSPGAS







PGTSSTGSPGTPGSGTASSSPGASPGTSSTGS







PGASPGTSSTGSPGASPGTSSTGSPGASPGTS







STGSPGTPGSGTASSSPGSSTPSGATGSPGTP







GSGTASSSPGSSTPSGATGSPGTPGSGTASSS







PGSSTPSGATGSPGSSTPSGATGSPGSSPSAS







TGTGPGSSPSASTGTGPGASPGTSSTGSPGTN







GSGTASSSPGSSTPSGATGSPGSSPSASTGTG







PGSSPSASTGTGPGASPGTSSTGSPGASPGTS







STGSPGSSTPSGATGSPGSSPSASTGTGPGAS







PGTSSTGSPGSSPSASTGTGPGTPGSGTASSS







PGSSTPSGATGSPGSSTPSGATGSPGASPGTS







STGSP









AM875
GTSTEPSEGSAPGSEPATSGSETPGSPAGSPT
643
875
Residue totals: H: 7 E: 3
98.63%



STEEGSTSSTAESPGPGTSTPESGSASPGSTS


percent: H: 0.8 E: 0.3




ESPSGTAPGSTSESPSGTAPGTSTPESGSASP







GTSTPESGSASPGSEPATSGSETPGTSESATP







ESGPGSPAGSPTSTEEGTSTEPSEGSAPGTSE







SATPESGPGTSTEPSEGSAPGTSTEPSEGSAP







GSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSE







GSAPGTSESATPESGPGTSESATPESGPGTST







EPSEGSAPGTSTEPSEGSAPGTSESATPESGP







GTSTEPSEGSAPGSEPATSGSETPGSPAGSPT







STEEGSSTPSGATGSPGTPGSGTASSSPGSST







PSGATGSPGTSTEPSEGSAPGTSTEPSEGSAP







GSEPATSGSETPGSPAGSPTSTEEGSPAGSPT







STEEGTSTEPSEGSAPGASASGAPSTGGTSES







ATPESGPGSPAGSPTSTEEGSPAGSPTSTEEG







STSSTAESPGPGSTSESPSGTAPGTSPSGESS







TAPGTPGSGTASSSPGSSTPSGATGSPGSSPS







ASTGTGPGSEPATSGSETPGTSESATPESGPG







SEPATSGSETPGSTSSTAESPGPGSTSSTAES







PGPGTSPSGESSTAPGSEPATSGSETPGSEPA







TSGSETPGTSTEPSEGSAPGSTSSTAESPGPG







TSTPESGSASPGSTSESPSGTAPGTSTEPSEG







SAPGTSTEPSEGSAPGTSTEPSEGSAPGSSTP







SGATGSPGSSPSASTGTGPGASPGTSSTGSPG







SEPATSGSETPGTSESATPESGPGSPAGSPTS







TEEGSSTPSGATGSPGSSPSASTGTGPGASPG







TSSTGSPGTSESATPESGPGTSTEPSEGSAPG







TSTEPSEGSAP









AM1318
GTSTEPSEGSAPGSEPATSGSETPGSPAGSPT
644
1318
Residue totals: H: 7 E: 0
99.17%



STEEGSTSSTAESPGPGTSTPESGSASPGSTS


percent: H: 0.7 E: 0.0




ESPSGTAPGSTSESPSGTAPGTSTPESGSASP







GTSTPESGSASPGSEPATSGSETPGTSESATP







ESGPGSPAGSPTSTEEGTSTEPSEGSAPGTSE







SATPESGPGTSTEPSEGSAPGTSTEPSEGSAP







GSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSE







GSAPGTSESATPESGPGTSESATPESGPGTST







EPSEGSAPGTSTEPSEGSAPGTSESATPESGP







GTSTEPSEGSAPGSEPATSGSETPGSPAGSPT







STEEGSSTPSGATGSPGTPGSGTASSSPGSST







PSGATGSPGTSTEPSEGSAPGTSTEPSEGSAP







GSEPATSGSETPGSPAGSPTSTEEGSPAGSPT







STEEGTSTEPSEGSAPGPEPTGPAPSGGSEPA







TSGSETPGTSESATPESGPGSPAGSPTSTEEG







TSESATPESGPGSPAGSPTSTEEGSPAGSPTS







TEEGTSESATPESGPGSPAGSPTSTEEGSPAG







SPTSTEEGSTSSTAESPGPGSTSESPSGTAPG







TSPSGESSTAPGSTSESPSGTAPGSTSESPSG







TAPGTSPSGESSTAPGTSTEPSEGSAPGTSES







ATPESGPGTSESATPESGPGSEPATSGSETPG







TSESATPESGPGTSESATPESGPGTSTEPSEG







SAPGTSESATPESGPGTSTEPSEGSAPGTSPS







GESSTAPGTSPSGESSTAPGTSPSGESSTAPG







TSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEG







SAPGSSPSASTGTGPGSSTPSGATGSPGSSTP







SGATGSPGSSTPSGATGSPGSSTPSGATGSPG







ASPGTSSTGSPGASASGAPSTGGTSPSGESST







APGSTSSTAESPGPGTSPSGESSTAPGTSESA







TPESGPGTSTEPSEGSAPGTSTEPSEGSAPGS







SPSASTGTGPGSSTPSGATGSPGASPGTSSTG







SPGTSTPESGSASPGTSPSGESSTAPGTSPSG







ESSTAPGTSESATPESGPGSEPATSGSETPGT







STEPSEGSAPGSTSESPSGTAPGSTSESPSGT







APGTSTPESGSASPGSPAGSPTSTEEGTSESA







TPESGPGTSTEPSEGSAPGSPAGSPTSTEEGT







SESATPESGPGSEPATSGSETPGSSTPSGATG







SPGASPGTSSTGSPGSSTPSGATGSPGSTSES







PSGTAPGTSPSGESSTAPGSTSSTAESPGPGS







STPSGATGSPGASPGTSSTGSPGTPGSGTASS







SPGSPAGSPTSTEEGSPAGSPTSTEEGTSTEP







SEGSAP









AM923
MAEPAGSPTSTEEGASPGTSSTGSPGSSTPSG
645
924
Residue totals: H: 4 E: 3
98.70%



ATGSPGSSTPSGATGSPGTSTEPSEGSAPGSE


percent: H: 0.4 E: 0.3




PATSGSETPGSPAGSPTSTEEGSTSSTAESPG







PGTSTPESGSASPGSTSESPSGTAPGSTSESP







SGTAPGTSTPESGSASPGTSTPESGSASPGSE







PATSGSETPGTSESATPESGPGSPAGSPTSTE







EGTSTEPSEGSAPGTSESATPESGPGTSTEPS







EGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTS







TEPSEGSAPGTSTEPSEGSAPGTSESATPESG







PGTSESATPESGPGTSTEPSEGSAPGTSTEPS







EGSAPGTSESATPESGPGTSTEPSEGSAPGSE







PATSGSETPGSPAGSPTSTEEGSSTPSGATGS







PGTPGSGTASSSPGSSTPSGATGSPGTSTEPS







EGSAPGTSTEPSEGSAPGSEPATSGSETPGSP







AGSPTSTEEGSPAGSPTSTEEGTSTEPSEGSA







PGASASGAPSTGGTSESATPESGPGSPAGSPT







STEEGSPAGSPTSTEEGSTSSTAESPGPGSTS







ESPSGTAPGTSPSGESSTAPGTPGSGTASSSP







GSSTPSGATGSPGSSPSASTGTGPGSEPATSG







SETPGTSESATPESGPGSEPATSGSETPGSTS







STAESPGPGSTSSTAESPGPGTSPSGESSTAP







GSEPATSGSETPGSEPATSGSETPGTSTEPSE







GSAPGSTSSTAESPGPGTSTPESGSASPGSTS







ESPSGTAPGTSTEPSEGSAPGTSTEPSEGSAP







GTSTEPSEGSAPGSSTPSGATGSPGSSPSAST







GTGPGASPGTSSTGSPGSEPATSGSETPGTSE







SATPESGPGSPAGSPTSTEEGSSTPSGATGSP







GSSPSASTGTGPGASPGTSSTGSPGTSESATP







SGPGTSTEPSEGSEAPGTSTEPSEGSAP









AE912
MAEPAGSPTSTEEGTPGSGTASSSPGSSTPSG
646
913
Residue totals: H: 8 E: 3
99.45%



ATGSPGASPGTSSTGSPGSPAGSPTSTEEGTS


percent: H: 0.9 E: 0.3




ESATPESGPGTSTEPSEGSAPGSPAGSPTSTE







EGTSTEPSEGSAPGTSTEPSEGSAPGTSESAT







PESGPGSEPATSGSETPGSEPATSGSETPGSP







AGSPTSTEEGTSESATPESGPGTSTEPSEGSA







PGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPS







EGSAPGTSTEPSEGSAPGTSESATPESGPGTS







TEPSEGSAPGTSESATPESGPGSEPATSGSET







PGTSTEPSEGSAPGTSTEPSEGSAPGTSESAT







PESGPGTSESATPESGPGSPAGSPTSTEEGTS







ESATPESGPGSEPATSGSETPGTSESATPESG







PGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPS







EGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTS







TEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSA







PGTSESATPESGPGSEPATSGSETPGTSESAT







PESGPGSEPATSGSETPGTSESATPESGPGTS







TEPSEGSAPGTSESATPESGPGSPAGSPTSTE







EGSPAGSPTSTEEGSPAGSPTSTEEGTSESAT







PESGPGTSTEPSEGSAPGTSESATPESGPGSE







PATSGSETPGTSESATPESGPGSEPATSGSET







PGTSESATPESGPGTSTEPSEGSAPGSPAGSP







TSTEEGTSESATPESGPGSEPATSGSETPGTS







ESATPESGPGSPAGSPTSTEEGSPAGSPTSTE







EGTSTEPSEGSAPGTSESATPESGPGTSESAT







PESGPGTSESATPESGPGSEPATSGSETPGSE







PATSGSETPGSPAGSPTSTEEGTSTEPSEGSA







PGTSTEPSEGSAPGSEPATSGSETPGTSESAT







PESGPGTSTEPSEGSAP









BC864
GTSTEPSEPGSAGTSTEPSEPGSAGSEPATSG
647

Residue totals: H: 0 E: 0
99.77%



TEPSGSGASEPTSTEPGSEPATSGTEPSGSEP


percent: H: 0 E: 0




ATSGTEPSGSEPATSGTEPSGSGASEPTSTEP







GTSTEPSEPGSAGSEPATSGTEPSGTSTEPSE







PGSAGSEPATSGTEPSGSEPATSGTEPSGTST







EPSEPGSAGTSTEPSEPGSAGSEPATSGTEPS







GSEPATSGTEPSGTSEPSTSEPGAGSGASEPT







STEPGTSEPSTSEPGAGSEPATSGTEPSGSEP







ATSGTEPSGTSTEPSEPGSAGTSTEPSEPGSA







GSGASEPTSTEPGSEPATSGTEPSGSEPATSG







TEPSGSEPATSGTEPSGSEPATSGTEPSGTST







EPSEPGSAGSEPATSGTEPSGSGASEPTSTEP







GTSTEPSEPGSAGSEPATSGTEPSGSGASEPT







STEPGTSTEPSEPGSAGSGASEPTSTEPGSEP







ATSGTEPSGSGASEPTSTEPGSEPATSGTEPS







GSGASEPTSTEPGTSTEPSEPGSAGSEPATSG







TEPSGSGASEPTSTEPGTSTEPSEPGSAGSEP







ATSGTEPSGTSTEPSEPGSAGSEPATSGTEPS







GTSTEPSEPGSAGTSTEPSEPGSAGTSTEPSE







PGSAGTSTEPSEPGSAGTSTEPSEPGSAGTST







EPSEPGSAGTSEPSTSEPGAGSGASEPTSTEP







GTSTEPSEPGSAGTSTEPSEPGSAGTSTEPSE







PGSAGSEPATSGTEPSGSGASEPTSTEPGSEP







ATSGTEPSGSEPATSGTEPSGSEPATSGTEPS







GSEPATSGTEPSGTSEPSTSEPGAGSEPATSG







TEPSGSGASEPTSTEPGTSTEPSEPGSAGSEP







ATSGTEPSGSGASEPTSTEPGTSTEPSEPGSA










ASPAAPAPASPAAPAPSAPAAAPASPAPAAPS
648
84
Residue totals: H: 58 E: 0
78.57%



APAPAAPSAASPAAPSAPPAAASPAAPSAPPA


percent: H: 69.0 E: 0.0




ASAAAPAAASAAASAPSAAA









*H: alpha-helix E: beta-sheet






Example 44
Analysis of Polypeptide Sequences for Repetitiveness

Polypeptide amino acid sequences can be assessed for repetitiveness by quantifying the number of times a shorter subsequence appears within the overall polypeptide. For example, a polypeptide of 200 amino acid residues has 192 overlapping 9-amino acid subsequences (or 9-mer “frames”), but the number of unique 9-mer subsequences will depend on the amount of repetitiveness within the sequence. In the present analysis, different sequences were assessed for repetitiveness by summing the occurrence of all unique 3-mer subsequences for each 3-amino acid frame across the first 200 amino acids of the polymer portion divided by the absolute number of unique 3-mer subsequences within the 200 amino acid sequence. The resulting subsequence score is a reflection of the degree of repetitiveness within the polypeptide.


The results, shown in Table 28, indicate that the unstructured polypeptides consisting of 2 or 3 amino acid types have high subsequence scores, while those of consisting of 12 amino acids motifs of the six amino acids G, S, T, E, P, and A with a low degree of internal repetitiveness, have subsequence scores of less than 10, and in some cases, less than 5. For example, the L288 sequence has two amino acid types and has short, highly repetitive sequences, resulting in a subsequence score of 50.0. The polypeptide J288 has three amino acid types but also has short, repetitive sequences, resulting in a subsequence score of 33.3. Y576 also has three amino acid types, but is not made of internal repeats, reflected in the subsequence score of 15.7 over the first 200 amino acids. W576 consists of four types of amino acids, but has a higher degree of internal repetitiveness, e.g., “GGSG” (SEQ ID NO: 649), resulting in a subsequence score of 23.4. The AD576 consists of four types of 12 amino acid motifs, each consisting of four types of amino acids. Because of the low degree of internal repetitiveness of the individual motifs, the overall subsequence score over the first 200 amino acids is 13.6. In contrast, XTEN's consisting of four motifs contains six types of amino acids, each with a low degree of internal repetitiveness have lower subsequence scores; i.e., AE864 (6.1), AF864 (7.5), and AM875 (4.5).


Conclusions: The results indicate that the combination of 12 amino acid subsequence motifs, each consisting of four to six amino acid types that are essentially non-repetitive, into a longer XTEN polypeptide results in an overall sequence that is non-repetitive. This is despite the fact that each subsequence motif may be used multiple times across the sequence. In contrast, polymers created from smaller numbers of amino acid types resulted in higher subsequence scores, although the actual sequence can be tailored to reduce the degree of repetitiveness to result in lower subsequence scores.









TABLE 28







Subsequence score calculations of polypeptide sequences












SEQ



Seq

ID



Name
Amino Acid Sequence
NO:
Score













J288
GSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGE
650
33.3



GGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSG





GEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGS





GGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEG





GSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGEGGSGGE





GGSGGEGGSGGEGGSGGEGGSGGEG







K288
GEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGG
651
46.9



EGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEG





GGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEG





EGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGG





EGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGEGGEGEGGGE





GGEGEGGGEGGEGEGGGEGGEGEGGGEG







L288
SSESSESSSSESSSESSESSSSESSSESSESSSSESSSESSESSSSESSSESSESSSSESSS
652
50.0



ESSESSSSESSSESSESSSSESSSESSESSSSESSSESSESSSSESSSESSESSSSESSSES





SESSSSESSSESSESSSSESSSESSESSSSESSSESSESSSSESSSESSESSSSESSSESSE





SSSSESSSESSESSSSESSSESSESSSSESSSESSESSSSESSSESSESSSSESSSESSESS





SSESSSESSESSSSESSSESSESSSSESSSESSESSSSES







Y288
GEGSGEGSEGEGSEGSGEGEGSEGSGEGEGGSEGSEGEGGSEGSEGEGGSEGSEG
653
26.8



EGSGEGSEGEGGSEGSEGEGSGEGSEGEGSEGGSEGEGGSEGSEGEGSGEGSEGE





GGEGGSEGEGSEGSGEGEGSGEGSEGEGSEGSGEGEGSGEGSEGEGSEGSGEGE





GSEGSGEGEGGSEGSEGEGSEGSGEGEGGEGSGEGEGSGEGSEGEGGGEGSEGE





GSGEGGEGEGSEGGSEGEGGSEGGEGEGSEGSGEGEGSEGGSEGEGSEGGSEGE





GSEGSGEGEGSEGSGE







Q576
GGKPGEGGKPEGGGGKPGGKPEGEGEGKPGGKPEGGGKPGGGEGGKPEGGKPE
654
18.5



GEGKPGGGEGKPGGKPEGGGGKPEGEGKPGGGGGKPGGKPEGEGKPGGGEGG





KPEGKPGEGGEGKPGGKPEGGGEGKPGGGKPGEGGKPGEGKPGGGEGGKPEGG





KPEGEGKPGGGEGKPGGKPGEGGKPEGGGEGKPGGKPGEGGEGKPGGGKPEGE





GKPGGGKPGGGEGGKPEGEGKPGGKPEGGGEGKPGGKPEGGGKPEGGGEGKP





GGGKPGEGGKPGEGEGKPGGKPEGEGKPGGEGGGKPEGKPGGGEGGKPEGGKP





GEGGKPEGGKPGEGGEGKPGGGKPGEGGKPEGGGKPEGEGKPGGGGKPGEGG





KPEGGKPEGGGEGKPGGGKPEGEGKPGGGEGKPGGKPEGGGGKPGEGGKPEGG





KPGGEGGGKPEGEGKPGGKPGEGGGGKPGGKPEGEGKPGEGGEGKPGGKPEGG





GEGKPGGKPEGGGEGKPGGGKPGEGGKPEGGGKPGEGGKPGEGGKPEGEGKPG





GGEGKPGGKPGEGGKPEGGGEGKPGGKPGGEGGGKPEGGKPGEGGKPEG







U576
GEGKPGGKPGSGGGKPGEGGKPGSGEGKPGGKPGSGGSGKPGGKPGEGGKPEG
655
18.1



GSGGKPGGGGKPGGKPGGEGSGKPGGKPEGGGKPEGGSGGKPGGKPEGGSGG





KPGGKPGSGEGGKPGGGKPGGEGKPGSGKPGGEGSGKPGGKPEGGSGGKPGGK





PEGGSGGKPGGSGKPGGKPGEGGKPEGGSGGKPGGSGKPGGKPEGGGSGKPGG





KPGEGGKPGSGEGGKPGGGKPGGEGKPGSGKPGGEGSGKPGGKPGSGGEGKPG





GKPEGGSGGKPGGGKPGGEGKPGSGGKPGEGGKPGSGGGKPGGKPGGEGEGKP





GGKPGEGGKPGGEGSGKPGGGGKPGGKPGGEGGKPEGSGKPGGGSGKPGGKPE





GGGGKPEGSGKPGGGGKPEGSGKPGGGKPEGGSGGKPGGSGKPGGKPGEGGG





KPEGSGKPGGGSGKPGGKPEGGGKPEGGSGGKPGGKPEGGSGGKPGGKPGGEG





SGKPGGKPGSGEGGKPGGKPGEGSGGKPGGKPEGGSGGKPGGSGKPGGKPEGG





GSGKPGGKPGEGGKPGGEGSGKPGGSGKPG







W576
GGSGKPGKPGGSGSGKPGSGKPGGGSGKPGSGKPGGGSGKPGSGKPGGGSGKP
656
23.4



GSGKPGGGGKPGSGSGKPGGGKPGGSGGKPGGGSGKPGKPGSGGSGKPGSGKP





GGGSGGKPGKPGSGGSGGKPGKPGSGGGSGKPGKPGSGGSGGKPGKPGSGGSG





GKPGKPGSGGSGKPGSGKPGGGSGKPGSGKPGSGGSGKPGKPGSGGSGKPGSG





KPGSGSGKPGSGKPGGGSGKPGSGKPGSGGSGKPGKPGSGGGKPGSGSGKPGG





GKPGSGSGKPGGGKPGGSGGKPGGSGGKPGKPGSGGGSGKPGKPGSGGGSGKP





GKPGGSGSGKPGSGKPGGGSGKPGSGKPGSGGSGKPGKPGSGGSGGKPGKPGS





GGGKPGSGSGKPGGGKPGSGSGKPGGGKPGSGSGKPGGGKPGSGSGKPGGSGK





PGSGKPGGGSGGKPGKPGSGGSGKPGSGKPGSGGSGKPGKPGGSGSGKPGSGKP





GGGSGKPGSGKPGGGSGKPGSGKPGGGSGKPGSGKPGGGGKPGSGSGKPGGSG





GKPGKPGSGGSGGKPGKPGSGGSGKPGSGKPGGGSGGKPGKPGSGG







Y576
GEGSGEGSEGEGSEGSGEGEGSEGSGEGEGGSEGSEGEGSEGSGEGEGGEGSGE
657
15.7



GEGSGEGSEGEGGGEGSEGEGSGEGGEGEGSEGGSEGEGGSEGGEGEGSEGSGE





GEGSEGGSEGEGSEGGSEGEGSEGSGEGEGSEGSGEGEGSEGSGEGEGSEGSGEG





EGSEGGSEGEGGSEGSEGEGSGEGSEGEGGSEGSEGEGGGEGSEGEGSGEGSEGE





GGSEGSEGEGGSEGSEGEGGEGSGEGEGSEGSGEGEGSGEGSEGEGSEGSGEGE





GSEGSGEGEGGSEGSEGEGSGEGSEGEGSEGSGEGEGSEGSGEGEGGSEGSEGEG





GSEGSEGEGGSEGSEGEGGEGSGEGEGSEGSGEGEGSGEGSEGEGSEGSGEGEGS





EGSGEGEGGSEGSEGEGSEGSGEGEGGEGSGEGEGSGEGSEGEGGGEGSEGEGS





EGSGEGEGSEGSGEGEGSEGGSEGEGGSEGSEGEGSEGGSEGEGSEGGSEGEGSE





GSGEGEGSEGSGEGEGSGEGSEGEGGSEGGEGEGSEGGSEGEGSEGGSEGEGGE





GSGEGEGGGEGSEGEGSEGSGEGEGSGEGSE







AD576
GSSESGSSEGGPGSGGEPSESGSSGSSESGSSEGGPGSSESGSSEGGPGSSESGSSE
658
13.6



GGPGSSESGSSEGGPGSSESGSSEGGPGESPGGSSGSESGSEGSSGPGESSGSSESG





SSEGGPGSSESGSSEGGPGSSESGSSEGGPGSGGEPSESGSSGESPGGSSGSESGES





PGGSSGSESGSGGEPSESGSSGSSESGSSEGGPGSGGEPSESGSSGSGGEPSESGSS





GSEGSSGPGESSGESPGGSSGSESGSGGEPSESGSSGSGGEPSESGSSGSGGEPSES





GSSGSSESGSSEGGPGESPGGSSGSESGESPGGSSGSESGESPGGSSGSESGESPGG





SSGSESGESPGGSSGSESGSSESGSSEGGPGSGGEPSESGSSGSEGSSGPGESSGSSE





SGSSEGGPGSGGEPSESGSSGSSESGSSEGGPGSGGEPSESGSSGESPGGSSGSESG





ESPGGSSGSESGSSESGSSEGGPGSGGEPSESGSSGSSESGSSEGGPGSGGEPSESG





SSGSGGEPSESGSSGESPGGSSGSESGSEGSSGPGESSGSSESGSSEGGPGSEGSSG





PGESS







AE576
AGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSE
659
6.1



GSAPGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGSEPATSGSETPGSPAG





SPTSTEEGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTS





TEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSTEPSEGSAPGTSESATPESGPG





SEPATSGSETPGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSESATPESG





PGSPAGSPTSTEEGTSESATPESGPGSEPATSGSETPGTSESATPESGPGTSTEPSEG





SAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPS





EGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGTSES





ATPESGPGSEPATSGSETPGTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSP





AGSPTSTEEGSPAGSPTSTEEGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAP







AF540
GSTSSTAESPGPGSTSSTAESPGPGSTSESPSGTAPGSTSSTAESPGPGSTSSTAESP
660
8.8



GPGTSTPESGSASPGSTSESPSGTAPGTSPSGESSTAPGSTSESPSGTAPGSTSESPS





GTAPGTSPSGESSTAPGSTSESPSGTAPGSTSESPSGTAPGTSPSGESSTAPGSTSES





PSGTAPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSASPGSTSESPSGTAPGTST





PESGSASPGSTSSTAESPGPGSTSSTAESPGPGTSTPESGSASPGTSTPESGSASPGS





TSESPSGTAPGTSTPESGSASPGTSTPESGSASPGSTSESPSGTAPGSTSESPSGTAP





GSTSESPSGTAPGSTSSTAESPGPGTSTPESGSASPGTSTPESGSASPGSTSESPSGT





APGSTSESPSGTAPGTSTPESGSASPGSTSESPSGTAPGSTSESPSGTAPGTSTPESG





SASPGTSPSGESSTAPGSTSSTAESPGPGTSPSGESSTAPGSTSSTAESPGPGTSTPE





SGSASPGSTSESPSGTAP







AF504
GASPGTSSTGSPGSSPSASTGTGPGSSPSASTGTGPGTPGSGTASSSPGSSTPSGAT
661
7.0



GSPGSNPSASTGTGPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGTPGSG





TASSSPGASPGTSSTGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGAS





PGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGSNPSASTGTGPGSSPSASTGTGP





GSSTPSGATGSPGSSTPSGATGSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSST





GSPGTPGSGTASSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGSSPSA





STGTGPGTPGSGTASSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGSS





TPSGATGSPGSSTPSGATGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSP





GSSTPSGATGSPGSSTPSGATGSPGSSPSASTGTGPGASPGTSSTGSP







AE864
GSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGS
662
6.1



APGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGSEPATSGSETPGSPAGSP





TSTEEGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTE





PSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSE





PATSGSETPGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSESATPESGPG





SPAGSPTSTEEGTSESATPESGPGSEPATSGSETPGTSESATPESGPGTSTEPSEGSA





PGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEG





SAPGSPAGSPTSTEEGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGTSESAT





PESGPGSEPATSGSETPGTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSPA





GSPTSTEEGSPAGSPTSTEEGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGT





SESATPESGPGSEPATSGSETPGTSESATPESGPGSEPATSGSETPGTSESATPESGP





GTSTEPSEGSAPGSPAGSPTSTEEGTSESATPESGPGSEPATSGSETPGTSESATPES





GPGSPAGSPTSTEEGSPAGSPTSTEEGTSTEPSEGSAPGTSESATPESGPGTSESATP





ESGPGTSESATPESGPGSEPATSGSETPGSEPATSGSETPGSPAGSPTSTEEGTSTEP





SEGSAP







AF864
GSTSESPSGTAPGTSPSGESSTAPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSA
663
7.5



SPGTSTPESGSASPGSTSESPSGTAPGSTSESPSGTAPGTSPSGESSTAPGSTSESPS





GTAPGTSPSGESSTAPGTSPSGESSTAPGSTSSTAESPGPGTSPSGESSTAPGTSPSG





ESSTAPGSTSSTAESPGPGTSTPESGSASPGTSTPESGSASPGSTSESPSGTAPGSTS





ESPSGTAPGTSTPESGSASPGSTSSTAESPGPGTSTPESGSASPGSTSESPSGTAPGT





SPSGESSTAPGSTSSTAESPGPGTSPSGESSTAPGTSTPESGSASPGSTSSTAESPGP





GSTSSTAESPGPGSTSSTAESPGPGSTSSTAESPGPGTSPSGESSTAPGSTSESPSGT





APGSTSESPSGTAPGTSTPESGPXXXGASASGAPSTXXXXSESPSGTAPGSTSESPS





GTAPGSTSESPSGTAPGSTSESPSGTAPGSTSESPSGTAPGSTSESPSGTAPGTSTPE





SGSASPGTSPSGESSTAPGTSPSGESSTAPGSTSSTAESPGPGTSPSGESSTAPGTST





PESGSASPGSTSESPSGTAPGSTSESPSGTAPGTSPSGESSTAPGSTSESPSGTAPGT





STPESGSASPGTSTPESGSASPGSTSESPSGTAPGTSTPESGSASPGSTSSTAESPGP





GSTSESPSGTAPGSTSESPSGTAPGTSPSGESSTAPGSTSSTAESPGPGTSPSGESST





APGTSTPESGSASPGTSPSGESSTAPGTSPSGESSTAPGTSPSGESSTAPGSTSSTAE





SPGPGSTSSTAESPGPGTSPSGESSTAPGSSPSASTGTGPGSSTPSGATGSPGSSTPS





GATGSP







AG868
GGSPGASPGTSSTGSPGSSPSASTGTGPGSSPSASTGTGPGTPGSGTASSSPGSSTP
664
7.5



SGATGSPGSNPSASTGTGPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGT





PGSGTASSSPGASPGTSSTGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGS





PGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGSNPSASTGTGPGSSPSAST





GTGPGSSTPSGATGSPGSSTPSGATGSPGASPGTSSTGSPGASPGTSSTGSPGASPG





TSSTGSPGTPGSGTASSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGSS





PSASTGTGPGTPGSGTASSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSP





GSSTPSGATGSPGSSTPSGATGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGAT





GSPGSSTPSGATGSPGSSTPSGATGSPGSSPSASTGTGPGASPGTSSTGSPGASPGT





SSTGSPGTPGSGTASSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGAS





PGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGTPGSGTASSSPGSSTPSGATGSP





GTPGSGTASSSPGSSTPSGATGSPGSSTPSGATGSPGSSPSASTGTGPGSSPSASTG





TGPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGSSPSASTGTGPGSSPSA





STGTGPGASPGTSSTGSPGASPGTSSTGSPGSSTPSGATGSPGSSPSASTGTGPGAS





PGTSSTGSPGSSPSASTGTGPGTPGSGTASSSPGSSTPSGATGSPGSSTPSGATGSP





GASPGTSSTGSP







AM875
GTSTEPSEGSAPGSEPATSGSETPGSPAGSPTSTEEGSTSSTAESPGPGTSTPESGSA
665
4.5



SPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSASPGTSTPESGSASPGSEPATSG





SETPGTSESATPESGPGSPAGSPTSTEEGTSTEPSEGSAPGTSESATPESGPGTSTEP





SEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAPGTSE





SATPESGPGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGT





STEPSEGSAPGSEPATSGSETPGSPAGSPTSTEEGSSTPSGATGSPGTPGSGTASSSP





GSSTPSGATGSPGTSTEPSEGSAPGTSTEPSEGSAPGSEPATSGSETPGSPAGSPTST





EEGSPAGSPTSTEEGTSTEPSEGSAPGASASGAPSTGGTSESATPESGPGSPAGSPT





STEEGSPAGSPTSTEEGSTSSTAESPGPGSTSESPSGTAPGTSPSGESSTAPGTPGSG





TASSSPGSSTPSGATGSPGSSPSASTGTGPGSEPATSGSETPGTSESATPESGPGSEP





ATSGSETPGSTSSTAESPGPGSTSSTAESPGPGTSPSGESSTAPGSEPATSGSETPGS





EPATSGSETPGTSTEPSEGSAPGSTSSTAESPGPGTSTPESGSASPGSTSESPSGTAP





GTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGSSTPSGATGSPGSSPSASTGT





GPGASPGTSSTGSPGSEPATSGSETPGTSESATPESGPGSPAGSPTSTEEGSSTPSG





ATGSPGSSPSASTGTGPGASPGTSSTGSPGTSESATPESGPGTSTEPSEGSAPGTST





EPSEGSAP







AM1318
GTSTEPSEGSAPGSEPATSGSETPGSPAGSPTSTEEGSTSSTAESPGPGTSTPESGSA
666
4.5



SPGSTSESPSGTAPGSTSESPSGTAPGTSTPESGSASPGTSTPESGSASPGSEPATSG





SETPGTSESATPESGPGSPAGSPTSTEEGTSTEPSEGSAPGTSESATPESGPGTSTEP





SEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAPGTSE





SATPESGPGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGT





STEPSEGSAPGSEPATSGSETPGSPAGSPTSTEEGSSTPSGATGSPGTPGSGTASSSP





GSSTPSGATGSPGTSTEPSEGSAPGTSTEPSEGSAPGSEPATSGSETPGSPAGSPTST





EEGSPAGSPTSTEEGTSTEPSEGSAPGPEPTGPAPSGGSEPATSGSETPGTSESATP





ESGPGSPAGSPTSTEEGTSESATPESGPGSPAGSPTSTEEGSPAGSPTSTEEGTSESA





TPESGPGSPAGSPTSTEEGSPAGSPTSTEEGSTSSTAESPGPGSTSESPSGTAPGTSP





SGESSTAPGSTSESPSGTAPGSTSESPSGTAPGTSPSGESSTAPGTSTEPSEGSAPGT





SESATPESGPGTSESATPESGPGSEPATSGSETPGTSESATPESGPGTSESATPESGP





GTSTEPSEGSAPGTSESATPESGPGTSTEPSEGSAPGTSPSGESSTAPGTSPSGESST





APGTSPSGESSTAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGSSPSAST





GTGPGSSTPSGATGSPGSSTPSGATGSPGSSTPSGATGSPGSSTPSGATGSPGASPG





TSSTGSPGASASGAPSTGGTSPSGESSTAPGSTSSTAESPGPGTSPSGESSTAPGTS





ESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGSSPSASTGTGPGSSTPSGATGSP





GASPGTSSTGSPGTSTPESGSASPGTSPSGESSTAPGTSPSGESSTAPGTSESATPES





GPGSEPATSGSETPGTSTEPSEGSAPGSTSESPSGTAPGSTSESPSGTAPGTSTPESG





SASPGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSESA





TPESGPGSEPATSGSETPGSSTPSGATGSPGASPGTSSTGSPGSSTPSGATGSPGSTS





ESPSGTAPGTSPSGESSTAPGSTSSTAESPGPGSSTPSGATGSPGASPGTSSTGSPGT





PGSGTASSSPGSPAGSPTSTEEGSPAGSPTSTEEGTSTEPSEGSAP









Example 45
Calculation of TEPITOPE Scores

TEPITOPE scores of 9mer peptide sequence can be calculated by adding pocket potentials as described by Stumiolo [Sturniolo, T., et al. (1999) Nat Biotechnol, 17: 555]. In the present Example, separate Tepitope scores were calculated for individual HLA alleles. Table 29 shows as an example the pocket potentials for HLA*0101B, which occurs in high frequency in the Caucasian population. To calculate the TEPITOPE score of a peptide with sequence P1-P2-P3-P4-P5-P6-P7-P8-P9, the corresponding individual pocket potentials in Table 29 were added. The HLA*0101B score of a 9mer peptide with the sequence FDKLPRTSG (SEQ ID NO: 667) would be the sum of 0, −1.3, 0, 0.9, 0, −1.8, 0.09, 0, 0.


To evaluate the TEPITOPE scores for long peptides one can repeat the process for all 9mer subsequences of the sequences. This process can be repeated for the proteins encoded by other HLA alleles. Tables 30-33 give pocket potentials for the protein products of HLA alleles that occur with high frequency in the Caucasian population.


TEPITOPE scores calculated by this method range from approximately −10 to +10. However, 9mer peptides that lack a hydrophobic amino acid (FKLMVWY (SEQ ID NO: 668)) in P1 position have calculated TEPITOPE scores in the range of −1009 to −989. This value is biologically meaningless and reflects the fact that a hydrophobic amino acid serves as an anchor residue for HLA binding and peptides lacking a hydrophobic residue in P1 are considered non binders to HLA. Because most XTEN sequences lack hydrophobic residues, all combinations of 9mer subsequences will have TEPITOPEs in the range in the range of −1009 to −989. This method confirms that XTEN polypeptides may have few or no predicted T-cell epitopes.









TABLE 29







Pocket potential for HLA*0101B allele.
















Amino Acid
P1
P2
P3
P4
P5
P6
P7
P8
P9



















A
−999
0
0
0

0
0

0


C
−999
0
0
0

0
0

0


D
−999
−1.3
−1.3
−2.4

−2.7
−2

−1.9


E
−999
0.1
−1.2
−0.4

−2.4
−0.6

−1.9


F
0
0.8
0.8
0.08

−2.1
0.3

−0.4


G
−999
0.5
0.2
−0.7

−0.3
−1.1

−0.8


H
−999
0.8
0.2
−0.7

−2.2
0.1

−1.1


I
−1
1.1
1.5
0.5

−1.9
0.6

0.7


K
−999
1.1
0
−2.1

−2
−0.2

−1.7


L
−1
1
1
0.9

−2
0.3

0.5


M
−1
1.1
1.4
0.8

−1.8
0.09

0.08


N
−999
0.8
0.5
0.04

−1.1
0.1

−1.2


P
−999
−0.5
0.3
−1.9

−0.2
0.07

−1.1


Q
−999
1.2
0
0.1

−1.8
0.2

−1.6


R
−999
2.2
0.7
−2.1

−1.8
0.09

−1


S
−999
−0.3
0.2
−0.7

−0.6
−0.2

−0.3


T
−999
0
0
−1

−1.2
0.09

−0.2


V
−1
2.1
0.5
−0.1

−1.1
0.7

0.3


W
0
−0.1
0
−1.8

−2.4
−0.1

−1.4


Y
0
0.9
0.8
−1.1

−2
0.5

−0.9
















TABLE 30







Pocket potential for HLA*0301B allele.
















Amino Acid
P1
P2
P3
P4
P5
P6
P7
P8
P9



















A
−999
0
0
0

0
0

0


C
−999
0
0
0

0
0

0


D
−999
−1.3
−1.3
2.3

−2.4
−0.6

−0.6


E
−999
0.1
−1.2
−1

−1.4
−0.2

−0.3


F
−1
0.8
0.8
−1

−1.4
0.5

0.9


G
−999
0.5
0.2
0.5

−0.7
0.1

0.4


H
−999
0.8
0.2
0

−0.1
−0.8

−0.5


I
0
1.1
1.5
0.5

0.7
0.4

0.6


K
−999
1.1
0
−1

1.3
−0.9

−0.2


L
0
1
1
0

0.2
0.2

−0


M
0
1.1
1.4
0

−0.9
1.1

1.1


N
−999
0.8
0.5
0.2

−0.6
−0.1

−0.6


P
−999
−0.5
0.3
−1

0.5
0.7

−0.3


Q
−999
1.2
0
0

−0.3
−0.1

−0.2


R
−999
2.2
0.7
−1

1
−0.9

0.5


S
−999
−0.3
0.2
0.7

−0.1
0.07

1.1


T
−999
0
0
−1

0.8
−0.1

−0.5


V
0
2.1
0.5
0

1.2
0.2

0.3


W
−1
−0.1
0
−1

−1.4
−0.6

−1


Y
−1
0.9
0.8
−1

−1.4
−0.1

0.3
















TABLE 31







Pocket potential for HLA*0401B allele.
















Amino acid
P1
P2
P3
P4
P5
P6
P7
P8
P9



















A
−999
0
0
0

0
0

0


C
−999
0
0
0

0
0

0


D
−999
−1.3
−1.3
1.4

−1.1
−0.3

−1.7


E
−999
0.1
−1.2
1.5

−2.4
0.2

−1.7


F
0
0.8
0.8
−0.9

−1.1
−1

−1


G
−999
0.5
0.2
−1.6

−1.5
−1.3

−1


H
−999
0.8
0.2
1.1

−1.4
0

0.08


I
−1
1.1
1.5
0.8

−0.1
0.08

−0.3


K
−999
1.1
0
−1.7

−2.4
−0.3

−0.3


L
−1
1
1
0.8

−1.1
0.7

−1


M
−1
1.1
1.4
0.9

−1.1
0.8

−0.4


N
−999
0.8
0.5
0.9

1.3
0.6

−1.4


P
−999
−0.5
0.3
−1.6

0
−0.7

−1.3


Q
−999
1.2
0
0.8

−1.5
0

0.5


R
−999
2.2
0.7
−1.9

−2.4
−1.2

−1


S
−999
−0.3
0.2
0.8

1
−0.2

0.7


T
−999
0
0
0.7

1.9
−0.1

−1.2


V
−1
2.1
0.5
−0.9

0.9
0.08

−0.7


W
0
−0.1
0
−1.2

−1
−1.4

−1


Y
0
0.9
0.8
−1.6

−1.5
−1.2

−1
















TABLE 32







Pocket potential for HLA*0701B allele.
















Amino acid
P1
P2
P3
P4
P5
P6
P7
P8
P9



















A
−999
0
0
0

0
0

0


C
−999
0
0
0

0
0

0


D
−999
−1.3
−1.3
−1.6

−2.5
−1.3

−1.2


E
−999
0.1
−1.2
−1.4

−2.5
0.9

−0.3


F
0
0.8
0.8
0.2

−0.8
2.1

2.1


G
−999
0.5
0.2
−1.1

−0.6
0

−0.6


H
−999
0.8
0.2
0.1

−0.8
0.9

−0.2


I
−1
1.1
1.5
1.1

−0.5
2.4

3.4


K
−999
1.1
0
−1.3

−1.1
0.5

−1.1


L
−1
1
1
−0.8

−0.9
2.2

3.4


M
−1
1.1
1.4
−0.4

−0.8
1.8

2


N
−999
0.8
0.5
−1.1

−0.6
1.4

−0.5


P
−999
−0.5
0.3
−1.2

−0.5
−0.2

−0.6


Q
−999
1.2
0
−1.5

−1.1
1.1

−0.9


R
−999
2.2
0.7
−1.1

−1.1
0.7

−0.8


S
−999
−0.3
0.2
1.5

0.6
0.4

−0.3


T
−999
0
0
1.4

−0.1
0.9

0.4


V
−1
2.1
0.5
0.9

0.1
1.6

2


W
0
−0.1
0
−1.1

−0.9
1.4

0.8


Y
0
0.9
0.8
−0.9

−1
1.7

1.1
















TABLE 33







Pocket potential for HLA*1501B allele.
















Amino acid
P1
P2
P3
P4
P5
P6
P7
P8
P9



















A
−999
0
0
0

0
0

0


C
−999
0
0
0

0
0

0


D
−999
−1.3
−1.3
−0.4

−0.4
−0.7

−1.9


E
−999
0.1
−1.2
−0.6

−1
−0.7

−1.9


F
−1
0.8
0.8
2.4

−0.3
1.4

−0.4


G
−999
0.5
0.2
0

0.5
0

−0.8


H
−999
0.8
0.2
1.1

−0.5
0.6

−1.1


I
0
1.1
1.5
0.6

0.05
1.5

0.7


K
−999
1.1
0
−0.7

−0.3
−0.3

−1.7


L
0
1
1
0.5

0.2
1.9

0.5


M
0
1.1
1.4
1

0.1
1.7

0.08


N
−999
0.8
0.5
−0.2

0.7
0.7

−1.2


P
−999
−0.5
0.3
−0.3

−0.2
0.3

−1.1


Q
−999
1.2
0
−0.8

−0.8
−0.3

−1.6


R
−999
2.2
0.7
0.2

1
−0.5

−1


S
−999
−0.3
0.2
−0.3

0.6
0.3

−0.3


T
−999
0
0
−0.3

−0
0.2

−0.2


V
0
2.1
0.5
0.2

−0.3
0.3

0.3


W
−1
−0.1
0
0.4

−0.4
0.6

−1.4


Y
−1
0.9
0.8
2.5

0.4
0.7

−0.9
















TABLE 34







Exemplary Biological Activity, Exemplary Assays and Preferred Indications










Biologically Active

Exemplary Activity



Protein
Biological Activity
Assay
Preferred Indication:





Insulin-like
IGF-1 is a pleiotropic
IGF-1 activity may be
Diabetes mellitus; Growth


growth
polypeptide with a
assayed in vitro using
disorders; Frailty;


factor-1
wide range of actions
an serum withdrawal
Amyotrophic lateral


(Mecasermin;
in both
apoptosis-protection
sclerosis; Osteoarthritis;


Somazon; IGF-1;
central and
assay. (J Endocrinol
Kidney disease &


IGF-1
peripheral
2000 October; 167(1):
neuropathy; Dwarfism; HIV-


complex; CEP
nervous sytems. It is
165-74). Proliferation
1 infections; Myocardial


151;
involved in growth
assay using breast
ischaemia; Osteoporosis;


CGP 35126; FK
and
carcinoma cell
Multiple sclerosis; Nerve


780;
development and
line MCF-7 (Karey
disorders; Burns; diabetes;


Mecar; RHIGF-1;
protects neurons
1988
peripheral


Somatomedin-1;
against cell death via
Cancer Res. 48:



Somatomedin-C;
the activation of
4083)



SOMATOKINE;
intracellular




MYOTROPHIN;
pathways




IGEF;
implicating




DepolGF-1)
phosphatidylinositide





3/Akt kinase.




Human growth
Binds to two GHR
1) Ba/F3-hGHR
Acromegaly; Growth failure;


hormone
molecules and
proliferation assay, a
Growth hormone


(Pegvisamont;
Induces signal
novel specific
replacement; Growth


Somatrem;
transduction through
bioassay for serum
hormone deficiency;


Somatropin;
receptor dimerization
human growth
Pediatric Growth Hormone


TROVERT;

hormone. J Clin
Deficiency; Adult Growth


PROTROPIN;

Endocrinol Metab
Hormone Deficiency;


BIO-TROPIN;

2000 November; 85(11):
Idiopathic Growth Hormone


HUMATROPE;

4274-9 Plasma
Deficiency; Growth


NUTROPIN;

growth hormone (GH)
retardation; Prader-


NUTROPINAQ;

immunoassay and
Willi Syndrome; Prader-Willi


NUTROPHIN;

tibial bioassay, Appl
Syndrome in children 2


NORDITROPIN;

Physiol (2000) 89(6):
years or older; Growth


GENOTROPIN;

2174-8.
deficiencies; Growth failure


SAIZEN;

Growth hormone
associated with chronic


SEROSTIM)

(hGH) receptor
renal insufficiency;




mediated cell
Osteoporosis;




mediated
Postmenopausal




proliferation, Growth
osteoporosis; Osteopenia,




Horm IGF Res 2000
Osteoclastogenesis; burns;




October; 10(5): 248-55
Cachexia; Cancer




International standard
Cachexia; Dwarfism;




for growth hormone,
Metabolic Disorders;




Horm Res 1999; 51
Obesity; Renal failure;




Suppl 1: 7-12
Turner's Syndrome;




2) Detection of human
Fibromyalgia; Fracture




growth hormone
treatment; Frailty, AIDS




detected by direct
wasting; Muscle Wasting;




radioimmunoassay
Short Stature; Diagnostic




performed on serial
Agents; Female Infertility;




dilutions of lysed cell
lipodystrophy.




supernatants using





the Phadebas HGH





PRIST kit (Farmacia).





U.S. Pat. No.





4,898,830
















TABLE 35







Exemplary GHXTEN comprising growth hormones and single XTEN













SEQ

SEQ


GHXTEN

ID

ID


Name*
Amino Acid Sequence
NO:
DNA Nucleotide Sequence
NO:





AE48-
MAEPAGSPTSTEEGTPGSG
669
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAG
670


hGH
TASSSPGSSTPSGATGSPG

GAAGGTACCCCGGGTAGCGGTACTGCTTCTTCCTCTC




ASPGTSSTGSPGFPTIPLSR

CAGGTAGCTCTACCCCTTCTGGTGCAACCGGCTCTCC




LFDNAMLRAHRLHQLAFD

AGGTGCTTCTCCGGGCACCAGCTCTACCGGTTCTCCA




TYQEFEEAYIPKEQKYSFL

GGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGATA




QNPQTSLCFSESIPTPSNRE

ATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTGG




ETQQKSNLELLRISLLLIQS

CCTTTGATACTTACCAGGAATTTGAAGAAGCcTACAT




WLEPVQFLRSVFANSLVY

TCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACCC




GASDSNVYDLLKDLEEGI

ACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGACG




QTLMGRLEDGSPRTGQIFK

CCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAAT




QTYSKFDTNSHNDDALLK

CTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAGA




NYGLLYCFRKDMDKVETF

GCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCTT




LRIVQCRSVEGSCGF

CGCCAATAGCCTAGTTTATGGCGCATCCGACAGCAA






CGTATACGATCTCCTGAAAGATCTCGAGGAAGGCAT






TCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC






GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA






ATTTGATACTAACAGCCACAATGACGATGCGCTTCT






AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT






ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT






GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA






AM48-
MAEPAGSPTSTEEGASPGT
671
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAG
672


hGH
SSTGSPGSSTPSGATGSPGS

GAAGGTGCATCCCCGGGCACCAGCTCTACCGGTTCT




STPSGATGSPGFPTIPLSRL

CCAGGTAGCTCTACCCCGTCTGGTGCTACCGGCTCTC




FDNAMLRAHRLHQLAFDT

CAGGTAGCTCTACCCCGTCTGGTGCTACTGGCTCTCC




YQEFEEAYIPKEQKYSFLQ

AGGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGAT




NPQTSLCFSESIPTPSNREE

AATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTG




TQQKSNLELLRISLLLIQS

GCCTTTGATACTTACCAGGAATTTGAAGAAGCcTACA




WLEPVQFLRSVFANSLVY

TTCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACC




GASDSNVYDLLKDLEEGI

CACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGAC




QTLMGRLEDGSPRTGQIFK

GCCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAA




QTYSKFDTNSHNDDALLK

TCTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAG




NYGLLYCFRKDMDKVETF

AGCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCT




LRIVQCRSVEGSCGF

TCGCCAATAGCCTAGTTTATGGCGCATCCGACAGCA






ACGTATACGATCTCCTGAAAGATCTCGAGGAAGGCA






TTCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC






GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA






ATTTGATACTAACAGCCACAATGACGATGCGCTTCT






AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT






ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT






GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA






AE144-
GSEPATSGSETPGTSESATP
673
GGTAGCGAACCGGCAACTTCCGGCTCTGAAACCCCA
674


hGH
ESGPGSEPATSGSETPGSPA

GGTACTTCTGAAAGCGCTACTCCTGAGTCTGGCCCA




GSPTSTEEGTSTEPSEGSAP

GGTAGCGAACCTGCTACCTCTGGCTCTGAAACCCCA




GSEPATSGSETPGSEPATS

GGTAGCCCGGCAGGCTCTCCGACTTCCACCGAGGAA




GSETPGSEPATSGSETPGTS

GGTACCTCTACTGAACCTTCTGAGGGTAGCGCTCCA




TEPSEGSAPGTSESATPESG

GGTAGCGAACCGGCAACCTCTGGCTCTGAAACCCCA




PGSEPATSGSETPGTSTEPS

GGTAGCGAACCTGCTACCTCCGGCTCTGAAACTCCA




EGSAPGFPTIPLSRLFDNA

GGTAGCGAACCGGCTACTTCCGGTTCTGAAACTCCA




MLRAHRLHQLAFDTYQEF

GGTACCTCTACCGAACCTTCCGAAGGCAGCGCACCA




EEAYIPKEQKYSFLQNPQT

GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCA




SLCFSESIPTPSNREETQQK

GGTAGCGAACCGGCTACTTCTGGCTCTGAGACTCCA




SNLELLRISLLLIQSWLEPV

GGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCA




QFLRSVFANSLVYGASDS

GGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGATA




NVYDLLKDLEEGIQTLMG

ATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTGG




RLEDGSPRTGQIFKQTYSK

CCTTTGATACTTACCAGGAATTTGAAGAAGCcTACAT




FDTNSHNDDALLKNYGLL

TCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACCC




YCFRKDMDKVETFLRIVQ

ACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGACG




CRSVEGSCGF

CCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAAT






CTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAGA






GCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCTT






CGCCAATAGCCTAGTTTATGGCGCATCCGACAGCAA






CGTATACGATCTCCTGAAAGATCTCGAGGAAGGCAT






TCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC






GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA






ATTTGATACTAACAGCCACAATGACGATGCGCTTCT






AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT






ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT






GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA






AE288-
GTSESATPESGPGSEPATS
675
GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA
676


hGH
GSETPGTSESATPESGPGSE

GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA




PATSGSETPGTSESATPESG

GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA




PGTSTEPSEGSAPGSPAGSP

GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA




TSTEEGTSESATPESGPGSE

GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA




PATSGSETPGTSESATPESG

GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA




PGSPAGSPTSTEEGSPAGSP

GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA




TSTEEGTSTEPSEGSAPGTS

GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA




ESATPESGPGTSESATPESG

GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA




PGTSESATPESGPGSEPATS

GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA




GSETPGSEPATSGSETPGSP

GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA




AGSPTSTEEGTSTEPSEGSA

GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA




PGTSTEPSEGSAPGSEPATS

GGTACTTCTACCGAACCTTCCGAGGGCAGCGCACCA




GSETPGTSESATPESGPGTS

GGTACTTCTGAAAGCGCTACCCCTGAGTCCGGCCCA




TEPSEGSAPGFPTIPLSRLF

GGTACTTCTGAAAGCGCTACTCCTGAATCCGGTCCA




DNAMLRAHRLHQLAFDT

GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA




YQEFEEAYIPKEQKYSFLQ

GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA




NPQTSLCFSESIPTPSNREE

GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA




TQQKSNLELLRISLLLIQS

GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA




WLEPVQFLRSVFANSLVY

GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA




GASDSNVYDLLKDLEEGI

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




QTLMGRLEDGSPRTGQIFK

GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA




QTYSKFDTNSHNDDALLK

GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA




NYGLLYCFRKDMDKVETF

GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA




LRIVQCRSVEGSCGF

GGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGATA






ATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTGG






CCTTTGATACTTACCAGGAATTTGAAGAAGCcTACAT






TCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACCC






ACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGACG






CCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAAT






CTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAGA






GCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCTT






CGCCAATAGCCTAGTTTATGGCGCATCCGACAGCAA






CGTATACGATCTCCTGAAAGATCTCGAGGAAGGCAT






TCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC






GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA






ATTTGATACTAACAGCCACAATGACGATGCGCTTCT






AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT






ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT






GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA






AF144-
GTSTPESGSASPGTSPSGES
677
GGTACTTCTACTCCGGAAAGCGGTTCCGCATCTCCA
678


hGH
STAPGTSPSGESSTAPGSTS

GGTACTTCTCCTAGCGGTGAATCTTCTACTGCTCCAG




STAESPGPGSTSESPSGTAP

GTACCTCTCCTAGCGGCGAATCTTCTACTGCTCCAGG




GSTSSTAESPGPGTSPSGES

TTCTACCAGCTCTACCGCTGAATCTCCTGGCCCAGGT




STAPGTSTPESGSASPGSTS

TCTACCAGCGAATCCCCGTCTGGCACCGCACCAGGT




STAESPGPGTSPSGESSTAP

TCTACTAGCTCTACCGCAGAATCTCCGGGTCCAGGT




GTSPSGESSTAPGTSPSGES

ACTTCCCCTAGCGGTGAATCTTCTACTGCTCCAGGTA




STAPGFPTIPLSRLFDNAM

CCTCTACTCCGGAAAGCGGCTCCGCATCTCCAGGTTC




LRAHRLHQLAFDTYQEFE

TACTAGCTCTACTGCTGAATCTCCTGGTCCAGGTACC




EAYIPKEQKYSFLQNPQTS

TCCCCTAGCGGCGAATCTTCTACTGCTCCAGGTACCT




LCFSESIPTPSNREETQQKS

CTCCTAGCGGCGAATCTTCTACCGCTCCAGGTACCTC




NLELLRISLLLIQSWLEPVQ

CCCTAGCGGTGAATCTTCTACCGCACCAGGTTTTCCG




FLRSVFANSLVYGASDSN

ACTATTCCGCTGTCTCGTCTGTTTGATAATGCTATGC




VYDLLKDLEEGIQTLMGR

TGCGTGCGCACCGTCTGCACCAGCTGGCCTTTGATAC




LEDGSPRTGQIFKQTYSKF

TTACCAGGAATTTGAAGAAGCcTACATTCCTAAAGA




DTNSHNDDALLKNYGLLY

GCAGAAGTACTCTTTCCTGCAAAACCCACAGACTTC




CFRKDMDKVETFLRIVQC

TCTCTGCTTCAGCGAATCTATTCCGACGCCTTCCAAT




RSVEGSCGF

CGCGAGGAAACTCAGCAAAAGTCCAATCTGGAACTA






CTCCGCATTTCTCTGCTTCTGATTCAGAGCTGGCTAG






AACCAGTGCAATTTCTGCGTTCCGTCTTCGCCAATAG






CCTAGTTTATGGCGCATCCGACAGCAACGTATACGA






TCTCCTGAAAGATCTCGAGGAAGGCATTCAGACCCT






GATGGGTCGTCTCGAGGATGGCTCTCCGCGTACTGG






TCAGATCTTCAAGCAGACTTACTCTAAATTTGATACT






AACAGCCACAATGACGATGCGCTTCTAAAAAACTAT






GGTCTGCTGTATTGTTTTCGTAAAGATATGGACAAA






GTTGAAACCTTCCTGCGTATTGTTCAGTGTCGTTCCG






TTGAGGGCAGCTGTGGTTTCTAA






AD576-
GSSESGSSEGGPGSGGEPS
679
GGTTCCTCTGAAAGCGGTTCTTCCGAAGGTGGTCCA
680


hGH
ESGSSGSSESGSSEGGPGSS

GGTTCCTCTGAAAGCGGTTCTTCTGAGGGTGGTCCA




ESGSSEGGPGSSESGSSEG

GGTGAATCTCCGGGTGGCTCCAGCGGTTCCGAGTCA




GPGSSESGSSEGGPGSSES

GGTTCTGGTGGCGAACCTTCCGAGTCTGGTAGCTCA




GSSEGGPGESPGGSSGSES

GGTGAATCTCCGGGTGGTTCTAGCGGTTCCGAGTCA




GSEGSSGPGESSGSSESGSS

GGTGAATCTCCGGGTGGTTCCAGCGGTTCTGAGTCA




EGGPGSSESGSSEGGPGSS

GGTTCCTCCGAAAGCGGTTCTTCTGAGGGCGGTCCA




ESGSSEGGPGSGGEPSESG

GGTTCCTCCGAAAGCGGTTCTTCCGAGGGCGGTCCA




SSGESPGGSSGSESGESPG

GGTTCTTCTGAAAGCGGTTCTTCCGAGGGCGGTCCA




GSSGSESGSGGEPSESGSS

GGTGAATCTCCTGGTGGTTCCAGCGGTTCCGAGTCA




GSSESGSSEGGPGSGGEPS

GGTGAATCTCCAGGTGGCTCTAGCGGTTCCGAGTCA




ESGSSGSGGEPSESGSSGSE

GGTGAATCTCCTGGTGGTTCTAGCGGTTCTGAATCAG




GSSGPGESSGESPGGSSGS

GTTCCTCCGAAAGCGGTTCTTCTGAGGGCGGTCCAG




ESGSGGEPSESGSSGSGGE

GTTCCTCCGAAAGCGGTTCTTCCGAGGGCGGTCCAG




PSESGSSGSGGEPSESGSSG

GTTCTTCTGAAAGCGGTTCTTCCGAGGGCGGTCCAG




SSESGSSEGGPGESPGGSS

GTTCCTCTGAAAGCGGTTCTTCTGAGGGCGGTCCAG




GSESGESPGGSSGSESGESP

GTTCTTCCGAAAGCGGTTCTTCCGAGGGCGGTCCAG




GGSSGSESGESPGGSSGSE

GTTCTTCCGAAAGCGGTTCTTCTGAAGGCGGTCCAG




SGESPGGSSGSESGSSESGS

GTTCTGGTGGCGAACCGTCCGAGTCTGGTAGCTCAG




SEGGPGSGGEPSESGSSGS

GTGAATCTCCGGGTGGCTCTAGCGGTTCCGAGTCAG




EGSSGPGESSGSSESGSSEG

GTGAATCTCCTGGTGGTTCCAGCGGTTCCGAGTCAG




GPGSGGEPSESGSSGSSES

GTTCCGGTGGCGAACCGTCCGAATCTGGTAGCTCAG




GSSEGGPGSGGEPSESGSS

GTAGCGAAGGTTCTTCTGGTCCAGGCGAATCTTCAG




GESPGGSSGSESGESPGGS

GTTCCTCTGAAAGCGGTTCTTCTGAGGGCGGTCCAG




SGSESGSSESGSSEGGPGS

GTTCCGGTGGCGAACCGTCCGAATCTGGTAGCTCAG




GGEPSESGSSGSSESGSSEG

GTAGCGAAGGTTCTTCTGGTCCAGGCGAATCTTCAG




GPGSGGEPSESGSSGSGGE

GTTCCTCTGAAAGCGGTTCTTCTGAGGGCGGTCCAG




PSESGSSGESPGGSSGSESG

GTTCCGGTGGCGAACCTTCCGAATCTGGTAGCTCAG




SEGSSGPGESSGSSESGSSE

GTGAATCTCCGGGTGGTTCTAGCGGTTCTGAGTCAG




GGPGSEGSSGPGESSGFPTI

GTTCTGGTGGTGAACCTTCCGAGTCTGGTAGCTCAG




PLSRLFDNAMLRAHRLHQ

GTTCTGGTGGCGAACCATCCGAGTCTGGTAGCTCAG




LAFDTYQEFEEAYIPKEQK

GTTCTTCCGAAAGCGGTTCTTCCGAAGGCGGTCCAG




YSFLQNPQTSLCFSESIPTP

GTTCTGGTGGTGAACCGTCCGAATCTGGTAGCTCAG




SNREETQQKSNLELLRISL

GTTCTGGTGGCGAACCATCCGAATCTGGTAGCTCAG




LLIQSWLEPVQFLRSVFAN

GTAGCGAAGGTTCTTCTGGTCCTGGCGAATCTTCAG




SLVYGASDSNVYDLLKDL

GTGAATCTCCAGGTGGCTCTAGCGGTTCCGAATCAG




EEGIQTLMGRLEDGSPRTG

GTAGCGAAGGTTCTTCCGGTCCAGGTGAATCTTCAG




QIFKQTYSKFDTNSHNDD

GTAGCGAAGGTTCTTCTGGTCCTGGTGAATCCTCAG




ALLKNYGLLYCFRKDMD

GTTCCGGTGGCGAACCATCTGAATCTGGTAGCTCAG




KVETFLRIVQCRSVEGSCG

GTTCCTCTGAAAGCGGTTCTTCCGAAGGTGGTCCAG




F

GTTCCTCTGAAAGCGGTTCTTCTGAGGGTGGTCCAG






GTGAATCTCCGGGTGGCTCCAGCGGTTCCGAGTCAG






GTTCTGGTGGCGAACCATCCGAATCTGGTAGCTCAG






GTAGCGAAGGTTCTTCTGGTCCTGGCGAATCTTCAG






GTGAATCTCCAGGTGGCTCTAGCGGTTCCGAATCAG






GTAGCGAAGGTTCTTCCGGTCCTGGTGAGTCTTCAG






GTGAATCTCCAGGTGGCTCTAGCGGTTCCGAGTCAG






GTAGCGAAGGTTCTTCTGGTCCTGGCGAGTCCTCAG






GTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAA






TGCTATGCTGCGTGCGCACCGTCTGCACCAGCTGGC






CTTTGATACTTACCAGGAATTTGAAGAAGCcTACATT






CCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACCCA






CAGACTTCTCTCTGCTTCAGCGAATCTATTCCGACGC






CTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAATC






TGGAACTACTCCGCATTTCTCTGCTTCTGATTCAGAG






CTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTC






GCCAATAGCCTAGTTTATGGCGCATCCGACAGCAAC






GTATACGATCTCCTGAAAGATCTCGAGGAAGGCATT






CAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCCG






CGTACTGGTCAGATCTTCAAGCAGACTTACTCTAAAT






TTGATACTAACAGCCACAATGACGATGCGCTTCTAA






AAAACTATGGTCTGCTGTATTGTTTTCGTAAAGATAT






GGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGT






CGTTCCGTTGAGGGCAGCTGTGGTTTCTAA






AE576-
GSPAGSPTSTEEGTSESATP
681
GGTAGCCCGGCTGGCTCTCCTACCTCTACTGAGGAA
682


hGH
ESGPGTSTEPSEGSAPGSPA

GGTACTTCTGAAAGCGCTACTCCTGAGTCTGGTCCA




GSPTSTEEGTSTEPSEGSAP

GGTACCTCTACTGAACCGTCCGAAGGTAGCGCTCCA




GTSTEPSEGSAPGTSESATP

GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA




ESGPGSEPATSGSETPGSEP

GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA




ATSGSETPGSPAGSPTSTEE

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




GTSESATPESGPGTSTEPSE

GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA




GSAPGTSTEPSEGSAPGSP

GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA




AGSPTSTEEGTSTEPSEGSA

GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA




PGTSTEPSEGSAPGTSESAT

GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA




PESGPGTSTEPSEGSAPGTS

GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA




ESATPESGPGSEPATSGSET

GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA




PGTSTEPSEGSAPGTSTEPS

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




EGSAPGTSESATPESGPGT

GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA




SESATPESGPGSPAGSPTST

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




EEGTSESATPESGPGSEPAT

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




SGSETPGTSESATPESGPGT

GGTACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCA




STEPSEGSAPGTSTEPSEGS

GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA




APGTSTEPSEGSAPGTSTEP

GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCA




SEGSAPGTSTEPSEGSAPG

GGTAGCGAACCGGCTACTTCTGGCTCTGAGACTCCA




TSTEPSEGSAPGSPAGSPTS

GGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCA




TEEGTSTEPSEGSAPGTSES

GGTACTTCTACTGAACCGTCTGAAGGTAGCGCACCA




ATPESGPGSEPATSGSETP

GGTACTTCTGAAAGCGCAACCCCGGAATCCGGCCCA




GTSESATPESGPGSEPATS

GGTACCTCTGAAAGCGCAACCCCGGAGTCCGGCCCA




GSETPGTSESATPESGPGTS

GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA




TEPSEGSAPGTSESATPESG

GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA




PGSPAGSPTSTEEGSPAGSP

GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA




TSTEEGSPAGSPTSTEEGTS

GGTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCA




ESATPESGPGTSTEPSEGSA

GGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCA




PGFPTIPLSRLFDNAMLRA

GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA




HRLHQLAFDTYQEFEEAYI

GGTACTTCTACCGAACCGTCCGAAGGCAGCGCTCCA




PKEQKYSFLQNPQTSLCFS

GGTACCTCTACTGAACCTTCCGAGGGCAGCGCTCCA




ESIPTPSNREETQQKSNLEL

GGTACCTCTACCGAACCTTCTGAAGGTAGCGCACCA




LRISLLLIQSWLEPVQFLRS

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




VFANSLVYGASDSNVYDL

GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA




LKDLEEGIQTLMGRLEDGS

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




PRTGQIFKQTYSKFDTNSH

GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA




NDDALLKNYGLLYCFRKD

GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA




MDKVETFLRIVQCRSVEGS

GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA




CGF

GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA






GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA






GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA






GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA






GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA






GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA






GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA






GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA






GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA






GGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGATA






ATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTGG






CCTTTGATACTTACCAGGAATTTGAAGAAGCcTACAT






TCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACCC






ACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGACG






CCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAAT






CTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAGA






GCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCTT






CGCCAATAGCCTAGTTTATGGCGCATCCGACAGCAA






CGTATACGATCTCCTGAAAGATCTCGAGGAAGGCAT






TCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC






GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA






ATTTGATACTAACAGCCACAATGACGATGCGCTTCT






AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT






ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT






GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA






AF576-
GSTSSTAESPGPGSTSSTAE
683
GGTTCTACTAGCTCTACCGCTGAATCTCCTGGCCCAG
684


hGH
SPGPGSTSESPSGTAPGSTS

GTTCCACTAGCTCTACCGCAGAATCTCCGGGCCCAG




STAESPGPGSTSSTAESPGP

GTTCTACTAGCGAATCCCCTTCTGGTACCGCTCCAGG




GTSTPESGSASPGSTSESPS

TTCTACTAGCTCTACCGCTGAATCTCCGGGTCCAGGT




GTAPGTSPSGESSTAPGSTS

TCTACCAGCTCTACTGCAGAATCTCCTGGCCCAGGTA




ESPSGTAPGSTSESPSGTAP

CTTCTACTCCGGAAAGCGGTTCCGCTTCTCCAGGTTC




GTSPSGESSTAPGSTSESPS

TACCAGCGAATCTCCTTCTGGCACCGCTCCAGGTACC




GTAPGSTSESPSGTAPGTSP

TCTCCTAGCGGCGAATCTTCTACCGCTCCAGGTTCTA




SGESSTAPGSTSESPSGTAP

CTAGCGAATCTCCTTCTGGCACTGCACCAGGTTCTAC




GSTSESPSGTAPGSTSESPS

CAGCGAATCTCCTTCTGGCACCGCTCCAGGTACCTCT




GTAPGTSTPESGSASPGSTS

CCTAGCGGCGAATCTTCTACCGCTCCAGGTTCTACTA




ESPSGTAPGTSTPESGSASP

GCGAATCTCCTTCTGGCACTGCACCAGGTTCTACCAG




GSTSSTAESPGPGSTSSTAE

CGAATCTCCTTCTGGCACCGCTCCAGGTACCTCTCCT




SPGPGTSTPESGSASPGTST

AGCGGCGAATCTTCTACCGCTCCAGGTTCTACTAGC




PESGSASPGSTSESPSGTAP

GAATCTCCTTCTGGCACTGCACCAGGTTCTACTAGCG




GTSTPESGSASPGTSTPESG

AATCTCCTTCTGGCACTGCACCAGGTTCTACCAGCGA




SASPGSTSESPSGTAPGSTS

ATCTCCGTCTGGCACTGCACCAGGTACCTCTACCCCT




ESPSGTAPGSTSESPSGTAP

GAAAGCGGTTCCGCTTCTCCAGGTTCTACTAGCGAA




GSTSSTAESPGPGTSTPESG

TCTCCTTCTGGTACCGCTCCAGGTACTTCTACCCCTG




SASPGTSTPESGSASPGSTS

AAAGCGGCTCCGCTTCTCCAGGTTCCACTAGCTCTAC




ESPSGTAPGSTSESPSGTAP

CGCTGAATCTCCGGGTCCAGGTTCTACTAGCTCTACT




GTSTPESGSASPGSTSESPS

GCAGAATCTCCTGGCCCAGGTACCTCTACTCCGGAA




GTAPGSTSESPSGTAPGTS

AGCGGCTCTGCATCTCCAGGTACTTCTACCCCTGAAA




TPESGSASPGTSPSGESSTA

GCGGTTCTGCATCTCCAGGTTCTACTAGCGAATCCCC




PGSTSSTAESPGPGTSPSGE

GTCTGGTACCGCACCAGGTACTTCTACCCCGGAAAG




SSTAPGSTSSTAESPGPGTS

CGGCTCTGCTTCTCCAGGTACTTCTACCCCGGAAAGC




TPESGSASPGSTSESPSGTA

GGCTCCGCATCTCCAGGTTCTACTAGCGAATCTCCTT




PGSTSSTAESPGPGTSTPES

CTGGTACCGCTCCAGGTTCTACCAGCGAATCCCCGTC




GSASPGTSTPESGSASPGFP

TGGTACTGCTCCAGGTTCTACCAGCGAATCTCCTTCT




TIPLSRLFDNAMLRAHRLH

GGTACTGCACCAGGTTCTACTAGCTCTACTGCAGAA




QLAFDTYQEFEEAYIPKEQ

TCTCCTGGCCCAGGTACCTCTACTCCGGAAAGCGGC




KYSFLQNPQTSLCFSESIPT

TCTGCATCTCCAGGTACTTCTACCCCTGAAAGCGGTT




PSNREETQQKSNLELLRISL

CTGCATCTCCAGGTTCTACTAGCGAATCTCCTTCTGG




LLIQSWLEPVQFLRSVFAN

CACTGCACCAGGTTCTACCAGCGAATCTCCGTCTGG




SLVYGASDSNVYDLLKDL

CACTGCACCAGGTACCTCTACCCCTGAAAGCGGTTC




EEGIQTLMGRLEDGSPRTG

CGCTTCTCCAGGTTCTACTAGCGAATCTCCTTCTGGC




QIFKQTYSKFDTNSHNDD

ACTGCACCAGGTTCTACCAGCGAATCTCCGTCTGGC




ALLKNYGLLYCFRKDMD

ACTGCACCAGGTACCTCTACCCCTGAAAGCGGTTCC




KVETFLRIVQCRSVEGSCG

GCTTCTCCAGGTACTTCTCCGAGCGGTGAATCTTCTA




F

CCGCACCAGGTTCTACTAGCTCTACCGCTGAATCTCC






GGGCCCAGGTACTTCTCCGAGCGGTGAATCTTCTACT






GCTCCAGGTTCCACTAGCTCTACTGCTGAATCTCCTG






GCCCAGGTACTTCTACTCCGGAAAGCGGTTCCGCTTC






TCCAGGTTCTACTAGCGAATCTCCGTCTGGCACCGCA






CCAGGTTCTACTAGCTCTACTGCAGAATCTCCTGGCC






CAGGTACCTCTACTCCGGAAAGCGGCTCTGCATCTC






CAGGTACTTCTACCCCTGAAAGCGGTTCTGCATCTCC






AGGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGAT






AATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTG






GCCTTTGATACTTACCAGGAATTTGAAGAAGCcTACA






TTCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACC






CACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGAC






GCCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAA






TCTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAG






AGCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCT






TCGCCAATAGCCTAGTTTATGGCGCATCCGACAGCA






ACGTATACGATCTCCTGAAAGATCTCGAGGAAGGCA






TTCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC






GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA






ATTTGATACTAACAGCCACAATGACGATGCGCTTCT






AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT






ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT






GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA






AE624-
MAEPAGSPTSTEEGTPGSG
685
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAG
686


hGH
TASSSPGSSTPSGATGSPG

GAAGGTACCCCGGGTAGCGGTACTGCTTCTTCCTCTC




ASPGTSSTGSPGSPAGSPTS

CAGGTAGCTCTACCCCTTCTGGTGCAACCGGCTCTCC




TEEGTSESATPESGPGTSTE

AGGTGCTTCTCCGGGCACCAGCTCTACCGGTTCTCCA




PSEGSAPGSPAGSPTSTEEG

GGTAGCCCGGCTGGCTCTCCTACCTCTACTGAGGAA




TSTEPSEGSAPGTSTEPSEG

GGTACTTCTGAAAGCGCTACTCCTGAGTCTGGTCCA




SAPGTSESATPESGPGSEPA

GGTACCTCTACTGAACCGTCCGAAGGTAGCGCTCCA




TSGSETPGSEPATSGSETPG

GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA




SPAGSPTSTEEGTSESATPE

GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA




SGPGTSTEPSEGSAPGTSTE

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




PSEGSAPGSPAGSPTSTEEG

GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA




TSTEPSEGSAPGTSTEPSEG

GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA




SAPGTSESATPESGPGTSTE

GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA




PSEGSAPGTSESATPESGPG

GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA




SEPATSGSETPGTSTEPSEG

GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA




SAPGTSTEPSEGSAPGTSES

GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA




ATPESGPGTSESATPESGP

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




GSPAGSPTSTEEGTSESATP

GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA




ESGPGSEPATSGSETPGTSE

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




SATPESGPGTSTEPSEGSAP

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




GTSTEPSEGSAPGTSTEPSE

GGTACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCA




GSAPGTSTEPSEGSAPGTS

GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA




TEPSEGSAPGTSTEPSEGSA

GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCA




PGSPAGSPTSTEEGTSTEPS

GGTAGCGAACCGGCTACTTCTGGCTCTGAGACTCCA




EGSAPGTSESATPESGPGS

GGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCA




EPATSGSETPGTSESATPES

GGTACTTCTACTGAACCGTCTGAAGGTAGCGCACCA




GPGSEPATSGSETPGTSES

GGTACTTCTGAAAGCGCAACCCCGGAATCCGGCCCA




ATPESGPGTSTEPSEGSAP

GGTACCTCTGAAAGCGCAACCCCGGAGTCCGGCCCA




GTSESATPESGPGSPAGSPT

GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA




STEEGSPAGSPTSTEEGSPA

GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA




GSPTSTEEGTSESATPESGP

GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA




GTSTEPSEGSAPGFPTIPLS

GGTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCA




RLFDNAMLRAHRLHQLAF

GGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCA




DTYQEFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA




LQNPQTSLCFSESIPTPSNR

GGTACTTCTACCGAACCGTCCGAAGGCAGCGCTCCA




EETQQKSNLELLRISLLLIQ

GGTACCTCTACTGAACCTTCCGAGGGCAGCGCTCCA




SWLEPVQFLRSVFANSLV

GGTACCTCTACCGAACCTTCTGAAGGTAGCGCACCA




YGASDSNVYDLLKDLEEG

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




IQTLMGRLEDGSPRTGQIF

GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA




KQTYSKFDTNSHNDDALL

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




KNYGLLYCFRKDMDKVE

GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA




TFLRIVQCRSVEGSCGF

GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA






GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA






GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA






GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA






GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA






GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA






GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA






GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA






GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA






GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA






GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA






GGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGATA






ATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTGG






CCTTTGATACTTACCAGGAATTTGAAGAAGCcTACAT






TCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACCC






ACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGACG






CCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAAT






CTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAGA






GCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCTT






CGCCAATAGCCTAGTTTATGGCGCATCCGACAGCAA






CGTATACGATCTCCTGAAAGATCTCGAGGAAGGCAT






TCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC






GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA






ATTTGATACTAACAGCCACAATGACGATGCGCTTCT






AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT






ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT






GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA






AD836-
GSSESGSSEGGPGSSESGSS
687
GGTTCCTCTGAAAGCGGTTCTTCCGAAGGTGGTCCA
688


hGH
EGGPGESPGGSSGSESGSG

GGTTCCTCTGAAAGCGGTTCTTCTGAGGGTGGTCCA




GEPSESGSSGESPGGSSGSE

GGTGAATCTCCGGGTGGCTCCAGCGGTTCCGAGTCA




SGESPGGSSGSESGSSESGS

GGTTCTGGTGGCGAACCTTCCGAGTCTGGTAGCTCA




SEGGPGSSESGSSEGGPGS

GGTGAATCTCCGGGTGGTTCTAGCGGTTCCGAGTCA




SESGSSEGGPGESPGGSSG

GGTGAATCTCCGGGTGGTTCCAGCGGTTCTGAGTCA




SESGESPGGSSGSESGESPG

GGTTCCTCCGAAAGCGGTTCTTCTGAGGGCGGTCCA




GSSGSESGSSESGSSEGGP

GGTTCCTCCGAAAGCGGTTCTTCCGAGGGCGGTCCA




GSSESGSSEGGPGSSESGSS

GGTTCTTCTGAAAGCGGTTCTTCCGAGGGCGGTCCA




EGGPGSSESGSSEGGPGSS

GGTGAATCTCCTGGTGGTTCCAGCGGTTCCGAGTCA




ESGSSEGGPGSSESGSSEG

GGTGAATCTCCAGGTGGCTCTAGCGGTTCCGAGTCA




GPGSGGEPSESGSSGESPG

GGTGAATCTCCTGGTGGTTCTAGCGGTTCTGAATCAG




GSSGSESGESPGGSSGSES

GTTCCTCCGAAAGCGGTTCTTCTGAGGGCGGTCCAG




GSGGEPSESGSSGSEGSSG

GTTCCTCCGAAAGCGGTTCTTCCGAGGGCGGTCCAG




PGESSGSSESGSSEGGPGS

GTTCTTCTGAAAGCGGTTCTTCCGAGGGCGGTCCAG




GGEPSESGSSGSEGSSGPG

GTTCCTCTGAAAGCGGTTCTTCTGAGGGCGGTCCAG




ESSGSSESGSSEGGPGSGG

GTTCTTCCGAAAGCGGTTCTTCCGAGGGCGGTCCAG




EPSESGSSGESPGGSSGSES

GTTCTTCCGAAAGCGGTTCTTCTGAAGGCGGTCCAG




GSGGEPSESGSSGSGGEPS

GTTCTGGTGGCGAACCGTCCGAGTCTGGTAGCTCAG




ESGSSGSSESGSSEGGPGS

GTGAATCTCCGGGTGGCTCTAGCGGTTCCGAGTCAG




GGEPSESGSSGSGGEPSES

GTGAATCTCCTGGTGGTTCCAGCGGTTCCGAGTCAG




GSSGSEGSSGPGESSGESP

GTTCCGGTGGCGAACCGTCCGAATCTGGTAGCTCAG




GGSSGSESGSEGSSGPGES

GTAGCGAAGGTTCTTCTGGTCCAGGCGAATCTTCAG




SGSEGSSGPGESSGSGGEP

GTTCCTCTGAAAGCGGTTCTTCTGAGGGCGGTCCAG




SESGSSGSSESGSSEGGPGS

GTTCCGGTGGCGAACCGTCCGAATCTGGTAGCTCAG




SESGSSEGGPGESPGGSSG

GTAGCGAAGGTTCTTCTGGTCCAGGCGAATCTTCAG




SESGSGGEPSESGSSGSEGS

GTTCCTCTGAAAGCGGTTCTTCTGAGGGCGGTCCAG




SGPGESSGESPGGSSGSES

GTTCCGGTGGCGAACCTTCCGAATCTGGTAGCTCAG




GSEGSSGPGSSESGSSEGG

GTGAATCTCCGGGTGGTTCTAGCGGTTCTGAGTCAG




PGSGGEPSESGSSGSEGSS

GTTCTGGTGGTGAACCTTCCGAGTCTGGTAGCTCAG




GPGESSGSEGSSGPGESSG

GTTCTGGTGGCGAACCATCCGAGTCTGGTAGCTCAG




SEGSSGPGESSGSGGEPSES

GTTCTTCCGAAAGCGGTTCTTCCGAAGGCGGTCCAG




GSSGSGGEPSESGSSGESP

GTTCTGGTGGTGAACCGTCCGAATCTGGTAGCTCAG




GGSSGSESGESPGGSSGSE

GTTCTGGTGGCGAACCATCCGAATCTGGTAGCTCAG




SGSGGEPSESGSSGSEGSS

GTAGCGAAGGTTCTTCTGGTCCTGGCGAATCTTCAG




GPGESSGESPGGSSGSESG

GTGAATCTCCAGGTGGCTCTAGCGGTTCCGAATCAG




SSESGSSEGGPGSSESGSSE

GTAGCGAAGGTTCTTCCGGTCCAGGTGAATCTTCAG




GGPGSSESGSSEGGPGSGG

GTAGCGAAGGTTCTTCTGGTCCTGGTGAATCCTCAG




EPSESGSSGSSESGSSEGGP

GTTCCGGTGGCGAACCATCTGAATCTGGTAGCTCAG




GESPGGSSGSESGSGGEPS

GTTCCTCTGAAAGCGGTTCTTCCGAAGGTGGTCCAG




ESGSSGSSESGSSEGGPGES

GTTCCTCTGAAAGCGGTTCTTCTGAGGGTGGTCCAG




PGGSSGSESGSGGEPSESG

GTGAATCTCCGGGTGGCTCCAGCGGTTCCGAGTCAG




SSGESPGGSSGSESGSGGE

GTTCTGGTGGCGAACCATCCGAATCTGGTAGCTCAG




PSESGSSGFPTIPLSRLFDN

GTAGCGAAGGTTCTTCTGGTCCTGGCGAATCTTCAG




AMLRAHRLHQLAFDTYQE

GTGAATCTCCAGGTGGCTCTAGCGGTTCCGAATCAG




FEEAYIPKEQKYSFLQNPQ

GTAGCGAAGGTTCTTCCGGTCCaGGTTCCTCTGAAAG




TSLCFSESIPTPSNREETQQ

CGGTTCTTCTGAGGGCGGTCCAGGTTCTGGTGGCGA




KSNLELLRISLLLIQSWLEP

ACCATCTGAATCTGGTAGCTCAGGTAGCGAAGGTTC




VQFLRSVFANSLVYGASD

TTCCGGTCCGGGTGAATCTTCAGGTAGCGAAGGTTC




SNVYDLLKDLEEGIQTLM

TTCCGGTCCAGGTGAATCTTCAGGTAGCGAAGGTTC




GRLEDGSPRTGQIFKQTYS

TTCTGGTCCTGGTGAATCCTCAGGTTCCGGTGGCGAA




KFDTNSHNDDALLKNYGL

CCATCTGAATCTGGTAGCTCAGGTTCTGGTGGCGAA




LYCFRKDMDKVETFLRIV

CCATCCGAATCTGGTAGCTCAGGTGAATCTCCGGGT




QCRSVEGSCGF

GGCTCCAGCGGTTCTGAATCAGGTGAATCTCCTGGT






GGCTCCAGCGGTTCTGAGTCAGGTTCTGGTGGCGAA






CCATCCGAATCTGGTAGCTCAGGTAGCGAAGGTTCT






TCTGGTCCTGGCGAATCTTCAGGTGAATCTCCAGGTG






GCTCTAGCGGTTCCGAATCAGGTTCCTCTGAAAGCG






GTTCTTCTGAGGGCGGTCCAGGTTCTTCCGAAAGCG






GTTCTTCCGAGGGCGGTCCAGGTTCTTCCGAAAGCG






GTTCTTCTGAAGGCGGTCCAGGTTCTGGTGGCGAAC






CGTCCGAATCTGGTAGCTCAGGTTCCTCCGAAAGCG






GTTCTTCTGAAGGTGGTCCAGGTGAATCTCCAGGTG






GTTCTAGCGGTTCTGAATCAGGTTCTGGTGGCGAAC






CGTCCGAATCTGGTAGCTCAGGTTCCTCCGAAAGCG






GTTCTTCTGAAGGTGGTCCAGGTGAATCTCCAGGTG






GTTCTAGCGGTTCTGAATCAGGTTCTGGTGGCGAAC






CGTCCGAATCTGGTAGCTCAGGTGAATCTCCTGGTG






GTTCCAGCGGTTCCGAGTCAGGTTCTGGTGGCGAAC






CTTCCGAATCTGGTAGCTCAGGTTTTCCGACTATTCC






GCTGTCTCGTCTGTTTGATAATGCTATGCTGCGTGCG






CACCGTCTGCACCAGCTGGCCTTTGATACTTACCAGG






AATTTGAAGAAGCcTACATTCCTAAAGAGCAGAAGT






ACTCTTTCCTGCAAAACCCACAGACTTCTCTCTGCTT






CAGCGAATCTATTCCGACGCCTTCCAATCGCGAGGA






AACTCAGCAAAAGTCCAATCTGGAACTACTCCGCAT






TTCTCTGCTTCTGATTCAGAGCTGGCTAGAACCAGTG






CAATTTCTGCGTTCCGTCTTCGCCAATAGCCTAGTTT






ATGGCGCATCCGACAGCAACGTATACGATCTCCTGA






AAGATCTCGAGGAAGGCATTCAGACCCTGATGGGTC






GTCTCGAGGATGGCTCTCCGCGTACTGGTCAGATCTT






CAAGCAGACTTACTCTAAATTTGATACTAACAGCCA






CAATGACGATGCGCTTCTAAAAAACTATGGTCTGCT






GTATTGTTTTCGTAAAGATATGGACAAAGTTGAAAC






CTTCCTGCGTATTGTTCAGTGTCGTTCCGTTGAGGGC






AGCTGTGGTTTCTAA






AE864-
GSPAGSPTSTEEGTSESATP
689
GGTAGCCCGGCTGGCTCTCCTACCTCTACTGAGGAA
690


hGH
ESGPGTSTEPSEGSAPGSPA

GGTACTTCTGAAAGCGCTACTCCTGAGTCTGGTCCA




GSPTSTEEGTSTEPSEGSAP

GGTACCTCTACTGAACCGTCCGAAGGTAGCGCTCCA




GTSTEPSEGSAPGTSESATP

GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA




ESGPGSEPATSGSETPGSEP

GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA




ATSGSETPGSPAGSPTSTEE

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




GTSESATPESGPGTSTEPSE

GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA




GSAPGTSTEPSEGSAPGSP

GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA




AGSPTSTEEGTSTEPSEGSA

GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA




PGTSTEPSEGSAPGTSESAT

GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA




PESGPGTSTEPSEGSAPGTS

GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA




ESATPESGPGSEPATSGSET

GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA




PGTSTEPSEGSAPGTSTEPS

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




EGSAPGTSESATPESGPGT

GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA




SESATPESGPGSPAGSPTST

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




EEGTSESATPESGPGSEPAT

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




SGSETPGTSESATPESGPGT

GGTACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCA




STEPSEGSAPGTSTEPSEGS

GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA




APGTSTEPSEGSAPGTSTEP

GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCA




SEGSAPGTSTEPSEGSAPG

GGTAGCGAACCGGCTACTTCTGGCTCTGAGACTCCA




TSTEPSEGSAPGSPAGSPTS

GGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCA




TEEGTSTEPSEGSAPGTSES

GGTACTTCTACTGAACCGTCTGAAGGTAGCGCACCA




ATPESGPGSEPATSGSETP

GGTACTTCTGAAAGCGCAACCCCGGAATCCGGCCCA




GTSESATPESGPGSEPATS

GGTACCTCTGAAAGCGCAACCCCGGAGTCCGGCCCA




GSETPGTSESATPESGPGTS

GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA




TEPSEGSAPGTSESATPESG

GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA




PGSPAGSPTSTEEGSPAGSP

GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA




TSTEEGSPAGSPTSTEEGTS

GGTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCA




ESATPESGPGTSTEPSEGSA

GGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCA




PGTSESATPESGPGSEPATS

GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA




GSETPGTSESATPESGPGSE

GGTACTTCTACCGAACCGTCCGAAGGCAGCGCTCCA




PATSGSETPGTSESATPESG

GGTACCTCTACTGAACCTTCCGAGGGCAGCGCTCCA




PGTSTEPSEGSAPGSPAGSP

GGTACCTCTACCGAACCTTCTGAAGGTAGCGCACCA




TSTEEGTSESATPESGPGSE

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




PATSGSETPGTSESATPESG

GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA




PGSPAGSPTSTEEGSPAGSP

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




TSTEEGTSTEPSEGSAPGTS

GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA




ESATPESGPGTSESATPESG

GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA




PGTSESATPESGPGSEPATS

GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA




GSETPGSEPATSGSETPGSP

GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA




AGSPTSTEEGTSTEPSEGSA

GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA




PGTSTEPSEGSAPGSEPATS

GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA




GSETPGTSESATPESGPGTS

GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA




TEPSEGSAPGFPTIPLSRLF

GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA




DNAMLRAHRLHQLAFDT

GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA




YQEFEEAYIPKEQKYSFLQ

GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA




NPQTSLCFSESIPTPSNREE

GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA




TQQKSNLELLRISLLLIQS

GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA




WLEPVQFLRSVFANSLVY

GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA




GASDSNVYDLLKDLEEGI

GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA




QTLMGRLEDGSPRTGQIFK

GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA




QTYSKFDTNSHNDDALLK

GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA




NYGLLYCFRKDMDKVETF

GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA




LRIVQCRSVEGSCGF

GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA






GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA






GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA






GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA






GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA






GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA






GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA






GGTACTTCTACCGAACCTTCCGAGGGCAGCGCACCA






GGTACTTCTGAAAGCGCTACCCCTGAGTCCGGCCCA






GGTACTTCTGAAAGCGCTACTCCTGAATCCGGTCCA






GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA






GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA






GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA






GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA






GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA






GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA






GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA






GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA






GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA






GGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGATA






ATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTGG






CCTTTGATACTTACCAGGAATTTGAAGAAGCcTACAT






TCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACCC






ACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGACG






CCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAAT






CTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAGA






GCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCTT






CGCCAATAGCCTAGTTTATGGCGCATCCGACAGCAA






CGTATACGATCTCCTGAAAGATCTCGAGGAAGGCAT






TCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC






GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA






ATTTGATACTAACAGCCACAATGACGATGCGCTTCT






AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT






ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT






GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA






AF864-
GSTSESPSGTAPGTSPSGES
691
GGTTCTACCAGCGAATCTCCTTCTGGCACCGCTCCAG
692


hGH
STAPGSTSESPSGTAPGSTS

GTACCTCTCCTAGCGGCGAATCTTCTACCGCTCCAGG




ESPSGTAPGTSTPESGSASP

TTCTACTAGCGAATCTCCTTCTGGCACTGCACCAGGT




GTSTPESGSASPGSTSESPS

TCTACTAGCGAATCCCCGTCTGGTACTGCTCCAGGTA




GTAPGSTSESPSGTAPGTSP

CTTCTACTCCTGAAAGCGGTTCCGCTTCTCCAGGTAC




SGESSTAPGSTSESPSGTAP

CTCTACTCCGGAAAGCGGTTCTGCATCTCCAGGTTCT




GTSPSGESSTAPGTSPSGES

ACCAGCGAATCTCCTTCTGGCACCGCTCCAGGTTCTA




STAPGSTSSTAESPGPGTSP

CTAGCGAATCCCCGTCTGGTACCGCACCAGGTACTT




SGESSTAPGTSPSGESSTAP

CTCCTAGCGGCGAATCTTCTACCGCACCAGGTTCTAC




GSTSSTAESPGPGTSTPESG

TAGCGAATCTCCGTCTGGCACTGCTCCAGGTACTTCT




SASPGTSTPESGSASPGSTS

CCTAGCGGTGAATCTTCTACCGCTCCAGGTACTTCCC




ESPSGTAPGSTSESPSGTAP

CTAGCGGCGAATCTTCTACCGCTCCAGGTTCTACTAG




GTSTPESGSASPGSTSSTAE

CTCTACTGCAGAATCTCCGGGCCCAGGTACCTCTCCT




SPGPGTSTPESGSASPGSTS

AGCGGTGAATCTTCTACCGCTCCAGGTACTTCTCCGA




ESPSGTAPGTSPSGESSTAP

GCGGTGAATCTTCTACCGCTCCAGGTTCTACTAGCTC




GSTSSTAESPGPGTSPSGES

TACTGCAGAATCTCCTGGCCCAGGTACCTCTACTCCG




STAPGTSTPESGSASPGSTS

GAAAGCGGCTCTGCATCTCCAGGTACTTCTACCCCTG




STAESPGPGSTSSTAESPGP

AAAGCGGTTCTGCATCTCCAGGTTCTACTAGCGAAT




GSTSSTAESPGPGSTSSTAE

CTCCTTCTGGCACTGCACCAGGTTCTACCAGCGAATC




SPGPGTSPSGESSTAPGSTS

TCCGTCTGGCACTGCACCAGGTACCTCTACCCCTGAA




ESPSGTAPGSTSESPSGTAP

AGCGGTTCCGCTTCTCCAGGTTCTACCAGCTCTACCG




GTSTPESGPXXXGASASGA

CAGAATCTCCTGGTCCAGGTACCTCTACTCCGGAAA




PSTXXXXSESPSGTAPGST

GCGGCTCTGCATCTCCAGGTTCTACTAGCGAATCTCC




SESPSGTAPGSTSESPSGTA

TTCTGGCACTGCACCAGGTACTTCTCCGAGCGGTGA




PGSTSESPSGTAPGSTSESP

ATCTTCTACCGCACCAGGTTCTACTAGCTCTACCGCT




SGTAPGSTSESPSGTAPGTS

GAATCTCCGGGCCCAGGTACTTCTCCGAGCGGTGAA




TPESGSASPGTSPSGESSTA

TCTTCTACTGCTCCAGGTACCTCTACTCCTGAAAGCG




PGTSPSGESSTAPGSTSSTA

GTTCTGCATCTCCAGGTTCCACTAGCTCTACCGCAGA




ESPGPGTSPSGESSTAPGTS

ATCTCCGGGCCCAGGTTCTACTAGCTCTACTGCTGAA




TPESGSASPGSTSESPSGTA

TCTCCTGGCCCAGGTTCTACTAGCTCTACTGCTGAAT




PGSTSESPSGTAPGTSPSGE

CTCCGGGTCCAGGTTCTACCAGCTCTACTGCTGAATC




SSTAPGSTSESPSGTAPGTS

TCCTGGTCCAGGTACCTCCCCGAGCGGTGAATCTTCT




TPESGSASPGTSTPESGSAS

ACTGCACCAGGTTCTACTAGCGAATCTCCTTCTGGCA




PGSTSESPSGTAPGTSTPES

CTGCACCAGGTTCTACCAGCGAATCTCCGTCTGGCA




GSASPGSTSSTAESPGPGST

CTGCACCAGGTACCTCTACCCCTGAAAGCGGTCCXX




SESPSGTAPGSTSESPSGTA

XXXXXXXXXXTGCAAGCGCAAGCGGCGCGCCAAGC




PGTSPSGESSTAPGSTSSTA

ACGGGAXXXXXXXXTAGCGAATCTCCTTCTGGTACC




ESPGPGTSPSGESSTAPGTS

GCTCCAGGTTCTACCAGCGAATCCCCGTCTGGTACTG




TPESGSASPGTSPSGESSTA

CTCCAGGTTCTACCAGCGAATCTCCTTCTGGTACTGC




PGTSPSGESSTAPGTSPSGE

ACCAGGTTCTACTAGCGAATCTCCTTCTGGTACCGCT




SSTAPGSTSSTAESPGPGST

CCAGGTTCTACCAGCGAATCCCCGTCTGGTACTGCTC




SSTAESPGPGTSPSGESSTA

CAGGTTCTACCAGCGAATCTCCTTCTGGTACTGCACC




PGSSPSASTGTGPGSSTPSG

AGGTACTTCTACTCCGGAAAGCGGTTCCGCATCTCC




ATGSPGSSTPSGATGSPGF

AGGTACTTCTCCTAGCGGTGAATCTTCTACTGCTCCA




PTIPLSRLFDNAMLRAHRL

GGTACCTCTCCTAGCGGCGAATCTTCTACTGCTCCAG




HQLAFDTYQEFEEAYIPKE

GTTCTACCAGCTCTACTGCTGAATCTCCGGGTCCAGG




QKYSFLQNPQTSLCFSESIP

TACTTCCCCGAGCGGTGAATCTTCTACTGCACCAGGT




TPSNREETQQKSNLELLRIS

ACTTCTACTCCGGAAAGCGGTTCCGCTTCTCCAGGTT




LLLIQSWLEPVQFLRSVFA

CTACCAGCGAATCTCCTTCTGGCACCGCTCCAGGTTC




NSLVYGASDSNVYDLLKD

TACTAGCGAATCCCCGTCTGGTACCGCACCAGGTAC




LEEGIQTLMGRLEDGSPRT

TTCTCCTAGCGGCGAATCTTCTACCGCACCAGGTTCT




GQIFKQTYSKFDTNSHND

ACTAGCGAATCCCCGTCTGGTACCGCACCAGGTACT




DALLKNYGLLYCFRKDM

TCTACCCCGGAAAGCGGCTCTGCTTCTCCAGGTACTT




DKVETFLRIVQCRSVEGSC

CTACCCCGGAAAGCGGCTCCGCATCTCCAGGTTCTA




GF

CTAGCGAATCTCCTTCTGGTACCGCTCCAGGTACTTC






TACCCCTGAAAGCGGCTCCGCTTCTCCAGGTTCCACT






AGCTCTACCGCTGAATCTCCGGGTCCAGGTTCTACCA






GCGAATCTCCTTCTGGCACCGCTCCAGGTTCTACTAG






CGAATCCCCGTCTGGTACCGCACCAGGTACTTCTCCT






AGCGGCGAATCTTCTACCGCACCAGGTTCTACCAGC






TCTACTGCTGAATCTCCGGGTCCAGGTACTTCCCCGA






GCGGTGAATCTTCTACTGCACCAGGTACTTCTACTCC






GGAAAGCGGTTCCGCTTCTCCAGGTACCTCCCCTAG






CGGCGAATCTTCTACTGCTCCAGGTACCTCTCCTAGC






GGCGAATCTTCTACCGCTCCAGGTACCTCCCCTAGCG






GTGAATCTTCTACCGCACCAGGTTCTACTAGCTCTAC






TGCTGAATCTCCGGGTCCAGGTTCTACCAGCTCTACT






GCTGAATCTCCTGGTCCAGGTACCTCCCCGAGCGGT






GAATCTTCTACTGCACCAGGTTCTAGCCCTTCTGCTT






CCACCGGTACCGGCCCAGGTAGCTCTACTCCGTCTG






GTGCAACTGGCTCTCCAGGTAGCTCTACTCCGTCTGG






TGCAACCGGCTCCCCAGGTTTTCCGACTATTCCGCTG






TCTCGTCTGTTTGATAATGCTATGCTGCGTGCGCACC






GTCTGCACCAGCTGGCCTTTGATACTTACCAGGAATT






TGAAGAAGCcTACATTCCTAAAGAGCAGAAGTACTC






TTTCCTGCAAAACCCACAGACTTCTCTCTGCTTCAGC






GAATCTATTCCGACGCCTTCCAATCGCGAGGAAACT






CAGCAAAAGTCCAATCTGGAACTACTCCGCATTTCT






CTGCTTCTGATTCAGAGCTGGCTAGAACCAGTGCAA






TTTCTGCGTTCCGTCTTCGCCAATAGCCTAGTTTATG






GCGCATCCGACAGCAACGTATACGATCTCCTGAAAG






ATCTCGAGGAAGGCATTCAGACCCTGATGGGTCGTC






TCGAGGATGGCTCTCCGCGTACTGGTCAGATCTTCA






AGCAGACTTACTCTAAATTTGATACTAACAGCCACA






ATGACGATGCGCTTCTAAAAAACTATGGTCTGCTGT






ATTGTTTTCGTAAAGATATGGACAAAGTTGAAACCT






TCCTGCGTATTGTTCAGTGTCGTTCCGTTGAGGGCAG






CTGTGGTTTCTAA






AG864-
GASPGTSSTGSPGSSPSAST
693
GGTGCTTCCCCGGGCACCAGCTCTACTGGTTCTCCAG
694


hGH
GTGPGSSPSASTGTGPGTP

GTTCTAGCCCGTCTGCTTCTACTGGTACTGGTCCAGG




GSGTASSSPGSSTPSGATG

TTCTAGCCCTTCTGCTTCCACTGGTACTGGTCCAGGT




SPGSNPSASTGTGPGASPG

ACCCCGGGTAGCGGTACCGCTTCTTCTTCTCCAGGTA




TSSTGSPGTPGSGTASSSPG

GCTCTACTCCGTCTGGTGCTACCGGCTCTCCAGGTTC




SSTPSGATGSPGTPGSGTA

TAACCCTTCTGCATCCACCGGTACCGGCCCAGGTGCT




SSSPGASPGTSSTGSPGASP

TCTCCGGGCACCAGCTCTACTGGTTCTCCAGGTACCC




GTSSTGSPGTPGSGTASSSP

CGGGCAGCGGTACCGCATCTTCTTCTCCAGGTAGCTC




GSSTPSGATGSPGASPGTS

TACTCCTTCTGGTGCAACTGGTTCTCCAGGTACTCCT




STGSPGTPGSGTASSSPGSS

GGCAGCGGTACCGCTTCTTCTTCTCCAGGTGCTTCTC




TPSGATGSPGSNPSASTGT

CTGGTACTAGCTCTACTGGTTCTCCAGGTGCTTCTCC




GPGSSPSASTGTGPGSSTPS

GGGCACTAGCTCTACTGGTTCTCCAGGTACCCCGGG




GATGSPGSSTPSGATGSPG

TAGCGGTACTGCTTCTTCCTCTCCAGGTAGCTCTACC




ASPGTSSTGSPGASPGTSST

CCTTCTGGTGCAACCGGCTCTCCAGGTGCTTCTCCGG




GSPGASPGTSSTGSPGTPG

GCACCAGCTCTACCGGTTCTCCAGGTACCCCGGGTA




SGTASSSPGASPGTSSTGSP

GCGGTACCGCTTCTTCTTCTCCAGGTAGCTCTACTCC




GASPGTSSTGSPGASPGTS

GTCTGGTGCTACCGGCTCTCCAGGTTCTAACCCTTCT




STGSPGSSPSASTGTGPGTP

GCATCCACCGGTACCGGCCCAGGTTCTAGCCCTTCTG




GSGTASSSPGASPGTSSTG

CTTCCACCGGTACTGGCCCAGGTAGCTCTACCCCTTC




SPGASPGTSSTGSPGASPG

TGGTGCTACCGGCTCCCCAGGTAGCTCTACTCCTTCT




TSSTGSPGSSTPSGATGSPG

GGTGCAACTGGCTCTCCAGGTGCATCTCCGGGCACT




SSTPSGATGSPGASPGTSST

AGCTCTACTGGTTCTCCAGGTGCATCCCCTGGCACTA




GSPGTPGSGTASSSPGSSTP

GCTCTACTGGTTCTCCAGGTGCTTCTCCTGGTACCAG




SGATGSPGSSTPSGATGSP

CTCTACTGGTTCTCCAGGTACTCCTGGCAGCGGTACC




GSSTPSGATGSPGSSPSAST

GCTTCTTCTTCTCCAGGTGCTTCTCCTGGTACTAGCT




GTGPGASPGTSSTGSPGAS

CTACTGGTTCTCCAGGTGCTTCTCCGGGCACTAGCTC




PGTSSTGSPGTPGSGTASSS

TACTGGTTCTCCAGGTGCTTCCCCGGGCACTAGCTCT




PGASPGTSSTGSPGASPGT

ACCGGTTCTCCAGGTTCTAGCCCTTCTGCATCTACTG




SSTGSPGASPGTSSTGSPG

GTACTGGCCCAGGTACTCCGGGCAGCGGTACTGCTT




ASPGTSSTGSPGTPGSGTA

CTTCCTCTCCAGGTGCATCTCCGGGCACTAGCTCTAC




SSSPGSSTPSGATGSPGTPG

TGGTTCTCCAGGTGCATCCCCTGGCACTAGCTCTACT




SGTASSSPGSSTPSGATGSP

GGTTCTCCAGGTGCTTCTCCTGGTACCAGCTCTACTG




GTPGSGTASSSPGSSTPSG

GTTCTCCAGGTAGCTCTACTCCGTCTGGTGCAACCGG




ATGSPGSSTPSGATGSPGS

TTCCCCAGGTAGCTCTACTCCTTCTGGTGCTACTGGC




SPSASTGTGPGSSPSASTGT

TCCCCAGGTGCATCCCCTGGCACCAGCTCTACCGGTT




GPGASPGTSSTGSPGTPGS

CTCCAGGTACCCCGGGCAGCGGTACCGCATCTTCCT




GTASSSPGSSTPSGATGSP

CTCCAGGTAGCTCTACCCCGTCTGGTGCTACCGGTTC




GSSPSASTGTGPGSSPSAST

CCCAGGTAGCTCTACCCCGTCTGGTGCAACCGGCTC




GTGPGASPGTSSTGSPGAS

CCCAGGTAGCTCTACTCCGTCTGGTGCAACCGGCTCC




PGTSSTGSPGSSTPSGATGS

CCAGGTTCTAGCCCGTCTGCTTCCACTGGTACTGGCC




PGSSPSASTGTGPGASPGT

CAGGTGCTTCCCCGGGCACCAGCTCTACTGGTTCTCC




SSTGSPGSSPSASTGTGPGT

AGGTGCATCCCCGGGTACCAGCTCTACCGGTTCTCC




PGSGTASSSPGSSTPSGAT

AGGTACTCCTGGCAGCGGTACTGCATCTTCCTCTCCA




GSPGSSTPSGATGSPGASP

GGTGCTTCTCCGGGCACCAGCTCTACTGGTTCTCCAG




GTSSTGSPGFPTIPLSRLFD

GTGCATCTCCGGGCACTAGCTCTACTGGTTCTCCAGG




NAMLRAHRLHQLAFDTY

TGCATCCCCTGGCACTAGCTCTACTGGTTCTCCAGGT




QEFEEAYIPKEQKYSFLQN

GCTTCTCCTGGTACCAGCTCTACTGGTTCTCCAGGTA




PQTSLCFSESIPTPSNREET

CCCCTGGTAGCGGTACTGCTTCTTCCTCTCCAGGTAG




QQKSNLELLRISLLLIQSW

CTCTACTCCGTCTGGTGCTACCGGTTCTCCAGGTACC




LEPVQFLRSVFANSLVYGA

CCGGGTAGCGGTACCGCATCTTCTTCTCCAGGTAGCT




SDSNVYDLLKDLEEGIQTL

CTACCCCGTCTGGTGCTACTGGTTCTCCAGGTACTCC




MGRLEDGSPRTGQIFKQT

GGGCAGCGGTACTGCTTCTTCCTCTCCAGGTAGCTCT




YSKFDTNSHNDDALLKNY

ACCCCTTCTGGTGCTACTGGCTCTCCAGGTAGCTCTA




GLLYCFRKDMDKVETFLR

CCCCGTCTGGTGCTACTGGCTCCCCAGGTTCTAGCCC




IVQCRSVEGSCGF

TTCTGCATCCACCGGTACCGGTCCAGGTTCTAGCCCG






TCTGCATCTACTGGTACTGGTCCAGGTGCATCCCCGG






GCACTAGCTCTACCGGTTCTCCAGGTACTCCTGGTAG






CGGTACTGCTTCTTCTTCTCCAGGTAGCTCTACTCCT






TCTGGTGCTACTGGTTCTCCAGGTTCTAGCCCTTCTG






CATCCACCGGTACCGGCCCAGGTTCTAGCCCGTCTG






CTTCTACCGGTACTGGTCCAGGTGCTTCTCCGGGTAC






TAGCTCTACTGGTTCTCCAGGTGCATCTCCTGGTACT






AGCTCTACTGGTTCTCCAGGTAGCTCTACTCCGTCTG






GTGCAACCGGCTCTCCAGGTTCTAGCCCTTCTGCATC






TACCGGTACTGGTCCAGGTGCATCCCCTGGTACCAG






CTCTACCGGTTCTCCAGGTTCTAGCCCTTCTGCTTCT






ACCGGTACCGGTCCAGGTACCCCTGGCAGCGGTACC






GCATCTTCCTCTCCAGGTAGCTCTACTCCGTCTGGTG






CAACCGGTTCCCCAGGTAGCTCTACTCCTTCTGGTGC






TACTGGCTCCCCAGGTGCATCCCCTGGCACCAGCTCT






ACCGGTTCTCCAGGTTTTCCGACTATTCCGCTGTCTC






GTCTGTTTGATAATGCTATGCTGCGTGCGCACCGTCT






GCACCAGCTGGCCTTTGATACTTACCAGGAATTTGA






AGAAGCcTACATTCCTAAAGAGCAGAAGTACTCTTTC






CTGCAAAACCCACAGACTTCTCTCTGCTTCAGCGAAT






CTATTCCGACGCCTTCCAATCGCGAGGAAACTCAGC






AAAAGTCCAATCTGGAACTACTCCGCATTTCTCTGCT






TCTGATTCAGAGCTGGCTAGAACCAGTGCAATTTCT






GCGTTCCGTCTTCGCCAATAGCCTAGTTTATGGCGCA






TCCGACAGCAACGTATACGATCTCCTGAAAGATCTC






GAGGAAGGCATTCAGACCCTGATGGGTCGTCTCGAG






GATGGCTCTCCGCGTACTGGTCAGATCTTCAAGCAG






ACTTACTCTAAATTTGATACTAACAGCCACAATGAC






GATGCGCTTCTAAAAAACTATGGTCTGCTGTATTGTT






TTCGTAAAGATATGGACAAAGTTGAAACCTTCCTGC






GTATTGTTCAGTGTCGTTCCGTTGAGGGCAGCTGTGG






TTTCTAA






AM875-
GTSTEPSEGSAPGSEPATS
695
GGTACTTCTACTGAACCGTCTGAAGGCAGCGCACCA
696


hGH
GSETPGSPAGSPTSTEEGST

GGTAGCGAACCGGCTACTTCCGGTTCTGAAACCCCA




SSTAESPGPGTSTPESGSAS

GGTAGCCCAGCAGGTTCTCCAACTTCTACTGAAGAA




PGSTSESPSGTAPGSTSESP

GGTTCTACCAGCTCTACCGCAGAATCTCCTGGTCCAG




SGTAPGTSTPESGSASPGTS

GTACCTCTACTCCGGAAAGCGGCTCTGCATCTCCAG




TPESGSASPGSEPATSGSET

GTTCTACTAGCGAATCTCCTTCTGGCACTGCACCAGG




PGTSESATPESGPGSPAGSP

TTCTACTAGCGAATCCCCGTCTGGTACTGCTCCAGGT




TSTEEGTSTEPSEGSAPGTS

ACTTCTACTCCTGAAAGCGGTTCCGCTTCTCCAGGTA




ESATPESGPGTSTEPSEGSA

CCTCTACTCCGGAAAGCGGTTCTGCATCTCCAGGTA




PGTSTEPSEGSAPGSPAGSP

GCGAACCGGCAACCTCCGGCTCTGAAACCCCAGGTA




TSTEEGTSTEPSEGSAPGTS

CCTCTGAAAGCGCTACTCCTGAATCCGGCCCAGGTA




TEPSEGSAPGTSESATPESG

GCCCGGCAGGTTCTCCGACTTCCACTGAGGAAGGTA




PGTSESATPESGPGTSTEPS

CCTCTACTGAACCTTCTGAGGGCAGCGCTCCAGGTA




EGSAPGTSTEPSEGSAPGT

CTTCTGAAAGCGCTACCCCGGAGTCCGGTCCAGGTA




SESATPESGPGTSTEPSEGS

CTTCTACTGAACCGTCCGAAGGTAGCGCACCAGGTA




APGSEPATSGSETPGSPAG

CTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTA




SPTSTEEGSSTPSGATGSPG

GCCCAGCAGGTTCTCCTACCTCCACCGAGGAAGGTA




TPGSGTASSSPGSSTPSGAT

CTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTA




GSPGTSTEPSEGSAPGTSTE

CTTCTACCGAACCTTCCGAGGGCAGCGCACCAGGTA




PSEGSAPGSEPATSGSETPG

CTTCTGAAAGCGCTACCCCTGAGTCCGGCCCAGGTA




SPAGSPTSTEEGSPAGSPTS

CTTCTGAAAGCGCTACTCCTGAATCCGGTCCAGGTA




TEEGTSTEPSEGSAPGASA

CCTCTACTGAACCTTCCGAAGGCAGCGCTCCAGGTA




SGAPSTGGTSESATPESGP

CCTCTACCGAACCGTCCGAGGGCAGCGCACCAGGTA




GSPAGSPTSTEEGSPAGSPT

CTTCTGAAAGCGCAACCCCTGAATCCGGTCCAGGTA




STEEGSTSSTAESPGPGSTS

CTTCTACTGAACCTTCCGAAGGTAGCGCTCCAGGTA




ESPSGTAPGTSPSGESSTAP

GCGAACCTGCTACTTCTGGTTCTGAAACCCCAGGTA




GTPGSGTASSSPGSSTPSG

GCCCGGCTGGCTCTCCGACCTCCACCGAGGAAGGTA




ATGSPGSSPSASTGTGPGS

GCTCTACCCCGTCTGGTGCTACTGGTTCTCCAGGTAC




EPATSGSETPGTSESATPES

TCCGGGCAGCGGTACTGCTTCTTCCTCTCCAGGTAGC




GPGSEPATSGSETPGSTSST

TCTACCCCTTCTGGTGCTACTGGCTCTCCAGGTACCT




AESPGPGSTSSTAESPGPGT

CTACCGAACCGTCCGAGGGTAGCGCACCAGGTACCT




SPSGESSTAPGSEPATSGSE

CTACTGAACCGTCTGAGGGTAGCGCTCCAGGTAGCG




TPGSEPATSGSETPGTSTEP

AACCGGCAACCTCCGGTTCTGAAACTCCAGGTAGCC




SEGSAPGSTSSTAESPGPGT

CTGCTGGCTCTCCGACTTCTACTGAGGAAGGTAGCC




STPESGSASPGSTSESPSGT

CGGCTGGTTCTCCGACTTCTACTGAGGAAGGTACTTC




APGTSTEPSEGSAPGTSTEP

TACCGAACCTTCCGAAGGTAGCGCTCCAGGTGCAAG




SEGSAPGTSTEPSEGSAPGS

CGCAAGCGGCGCGCCAAGCACGGGAGGTACTTCTGA




STPSGATGSPGSSPSASTGT

AAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGGC




GPGASPGTSSTGSPGSEPA

TGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGGC




TSGSETPGTSESATPESGPG

TGGCTCTCCAACTTCTACTGAAGAAGGTTCTACCAGC




SPAGSPTSTEEGSSTPSGAT

TCTACCGCTGAATCTCCTGGCCCAGGTTCTACTAGCG




GSPGSSPSASTGTGPGASP

AATCTCCGTCTGGCACCGCACCAGGTACTTCCCCTAG




GTSSTGSPGTSESATPESGP

CGGTGAATCTTCTACTGCACCAGGTACCCCTGGCAG




GTSTEPSEGSAPGTSTEPSE

CGGTACCGCTTCTTCCTCTCCAGGTAGCTCTACCCCG




GSAPGFPTIPLSRLFDNAM

TCTGGTGCTACTGGCTCTCCAGGTTCTAGCCCGTCTG




LRAHRLHQLAFDTYQEFE

CATCTACCGGTACCGGCCCAGGTAGCGAACCGGCAA




EAYIPKEQKYSFLQNPQTS

CCTCCGGCTCTGAAACTCCAGGTACTTCTGAAAGCG




LCFSESIPTPSNREETQQKS

CTACTCCGGAATCCGGCCCAGGTAGCGAACCGGCTA




NLELLRISLLLIQSWLEPVQ

CTTCCGGCTCTGAAACCCCAGGTTCCACCAGCTCTAC




FLRSVFANSLVYGASDSN

TGCAGAATCTCCGGGCCCAGGTTCTACTAGCTCTACT




VYDLLKDLEEGIQTLMGR

GCAGAATCTCCGGGTCCAGGTACTTCTCCTAGCGGC




LEDGSPRTGQIFKQTYSKF

GAATCTTCTACCGCTCCAGGTAGCGAACCGGCAACC




DTNSHNDDALLKNYGLLY

TCTGGCTCTGAAACTCCAGGTAGCGAACCTGCAACC




CFRKDMDKVETFLRIVQC

TCCGGCTCTGAAACCCCAGGTACTTCTACTGAACCTT




RSVEGSCGF

CTGAGGGCAGCGCACCAGGTTCTACCAGCTCTACCG






CAGAATCTCCTGGTCCAGGTACCTCTACTCCGGAAA






GCGGCTCTGCATCTCCAGGTTCTACTAGCGAATCTCC






TTCTGGCACTGCACCAGGTACTTCTACCGAACCGTCC






GAAGGCAGCGCTCCAGGTACCTCTACTGAACCTTCC






GAGGGCAGCGCTCCAGGTACCTCTACCGAACCTTCT






GAAGGTAGCGCACCAGGTAGCTCTACTCCGTCTGGT






GCAACCGGCTCCCCAGGTTCTAGCCCGTCTGCTTCCA






CTGGTACTGGCCCAGGTGCTTCCCCGGGCACCAGCT






CTACTGGTTCTCCAGGTAGCGAACCTGCTACCTCCGG






TTCTGAAACCCCAGGTACCTCTGAAAGCGCAACTCC






GGAGTCTGGTCCAGGTAGCCCTGCAGGTTCTCCTAC






CTCCACTGAGGAAGGTAGCTCTACTCCGTCTGGTGC






AACCGGCTCCCCAGGTTCTAGCCCGTCTGCTTCCACT






GGTACTGGCCCAGGTGCTTCCCCGGGCACCAGCTCT






ACTGGTTCTCCAGGTACCTCTGAAAGCGCTACTCCG






GAGTCTGGCCCAGGTACCTCTACTGAACCGTCTGAG






GGTAGCGCTCCAGGTACTTCTACTGAACCGTCCGAA






GGTAGCGCACCAGGTTTTCCGACTATTCCGCTGTCTC






GTCTGTTTGATAATGCTATGCTGCGTGCGCACCGTCT






GCACCAGCTGGCCTTTGATACTTACCAGGAATTTGA






AGAAGCcTACATTCCTAAAGAGCAGAAGTACTCTTTC






CTGCAAAACCCACAGACTTCTCTCTGCTTCAGCGAAT






CTATTCCGACGCCTTCCAATCGCGAGGAAACTCAGC






AAAAGTCCAATCTGGAACTACTCCGCATTTCTCTGCT






TCTGATTCAGAGCTGGCTAGAACCAGTGCAATTTCT






GCGTTCCGTCTTCGCCAATAGCCTAGTTTATGGCGCA






TCCGACAGCAACGTATACGATCTCCTGAAAGATCTC






GAGGAAGGCATTCAGACCCTGATGGGTCGTCTCGAG






GATGGCTCTCCGCGTACTGGTCAGATCTTCAAGCAG






ACTTACTCTAAATTTGATACTAACAGCCACAATGAC






GATGCGCTTCTAAAAAACTATGGTCTGCTGTATTGTT






TTCGTAAAGATATGGACAAAGTTGAAACCTTCCTGC






GTATTGTTCAGTGTCGTTCCGTTGAGGGCAGCTGTGG






TTTCTAA






AE912-
MAEPAGSPTSTEEGTPGSG
697
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAG
698


hGH
TASSSPGSSTPSGATGSPG

GAAGGTACCCCGGGTAGCGGTACTGCTTCTTCCTCTC




ASPGTSSTGSPGSPAGSPTS

CAGGTAGCTCTACCCCTTCTGGTGCAACCGGCTCTCC




TEEGTSESATPESGPGTSTE

AGGTGCTTCTCCGGGCACCAGCTCTACCGGTTCTCCA




PSEGSAPGSPAGSPTSTEEG

GGTAGCCCGGCTGGCTCTCCTACCTCTACTGAGGAA




TSTEPSEGSAPGTSTEPSEG

GGTACTTCTGAAAGCGCTACTCCTGAGTCTGGTCCA




SAPGTSESATPESGPGSEPA

GGTACCTCTACTGAACCGTCCGAAGGTAGCGCTCCA




TSGSETPGSEPATSGSETPG

GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA




SPAGSPTSTEEGTSESATPE

GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA




SGPGTSTEPSEGSAPGTSTE

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




PSEGSAPGSPAGSPTSTEEG

GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA




TSTEPSEGSAPGTSTEPSEG

GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA




SAPGTSESATPESGPGTSTE

GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA




PSEGSAPGTSESATPESGPG

GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA




SEPATSGSETPGTSTEPSEG

GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA




SAPGTSTEPSEGSAPGTSES

GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA




ATPESGPGTSESATPESGP

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




GSPAGSPTSTEEGTSESATP

GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA




ESGPGSEPATSGSETPGTSE

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




SATPESGPGTSTEPSEGSAP

GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA




GTSTEPSEGSAPGTSTEPSE

GGTACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCA




GSAPGTSTEPSEGSAPGTS

GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA




TEPSEGSAPGTSTEPSEGSA

GGTACTTCTGAAAGCGCAACCCCTGAATCCGGTCCA




PGSPAGSPTSTEEGTSTEPS

GGTAGCGAACCGGCTACTTCTGGCTCTGAGACTCCA




EGSAPGTSESATPESGPGS

GGTACTTCTACCGAACCGTCCGAAGGTAGCGCACCA




EPATSGSETPGTSESATPES

GGTACTTCTACTGAACCGTCTGAAGGTAGCGCACCA




GPGSEPATSGSETPGTSES

GGTACTTCTGAAAGCGCAACCCCGGAATCCGGCCCA




ATPESGPGTSTEPSEGSAP

GGTACCTCTGAAAGCGCAACCCCGGAGTCCGGCCCA




GTSESATPESGPGSPAGSPT

GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA




STEEGSPAGSPTSTEEGSPA

GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA




GSPTSTEEGTSESATPESGP

GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA




GTSTEPSEGSAPGTSESATP

GGTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCA




ESGPGSEPATSGSETPGTSE

GGTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCA




SATPESGPGSEPATSGSETP

GGTACTTCTACTGAACCGTCCGAAGGTAGCGCACCA




GTSESATPESGPGTSTEPSE

GGTACTTCTACCGAACCGTCCGAAGGCAGCGCTCCA




GSAPGSPAGSPTSTEEGTS

GGTACCTCTACTGAACCTTCCGAGGGCAGCGCTCCA




ESATPESGPGSEPATSGSET

GGTACCTCTACCGAACCTTCTGAAGGTAGCGCACCA




PGTSESATPESGPGSPAGSP

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




TSTEEGSPAGSPTSTEEGTS

GGTAGCCCAGCAGGTTCTCCTACCTCCACCGAGGAA




TEPSEGSAPGTSESATPESG

GGTACTTCTACCGAACCGTCCGAGGGTAGCGCACCA




PGTSESATPESGPGTSESAT

GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA




PESGPGSEPATSGSETPGSE

GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA




PATSGSETPGSPAGSPTSTE

GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA




EGTSTEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA




EGSAPGSEPATSGSETPGT

GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA




SESATPESGPGTSTEPSEGS

GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA




APGFPTIPLSRLFDNAMLR

GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA




AHRLHQLAFDTYQEFEEA

GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA




YIPKEQKYSFLQNPQTSLC

GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA




FSESIPTPSNREETQQKSNL

GGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGAA




ELLRISLLLIQSWLEPVQFL

GGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCCA




RSVFANSLVYGASDSNVY

GGTACCTCTACCGAACCGTCTGAGGGCAGCGCACCA




DLLKDLEEGIQTLMGRLE

GGTACCTCTGAAAGCGCAACTCCTGAGTCTGGCCCA




DGSPRTGQIFKQTYSKFDT

GGTAGCGAACCTGCTACCTCCGGCTCTGAGACTCCA




NSHNDDALLKNYGLLYCF

GGTACCTCTGAAAGCGCAACCCCGGAATCTGGTCCA




RKDMDKVETFLRIVQCRS

GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA




VEGSCGF

GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA






GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA






GGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGAA






GGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCCA






GGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCCA






GGTACTTCTGAAAGCGCTACTCCTGAGTCCGGCCCA






GGTAGCCCGGCTGGCTCTCCGACTTCCACCGAGGAA






GGTAGCCCGGCTGGCTCTCCAACTTCTACTGAAGAA






GGTACTTCTACCGAACCTTCCGAGGGCAGCGCACCA






GGTACTTCTGAAAGCGCTACCCCTGAGTCCGGCCCA






GGTACTTCTGAAAGCGCTACTCCTGAATCCGGTCCA






GGTACTTCTGAAAGCGCTACCCCGGAATCTGGCCCA






GGTAGCGAACCGGCTACTTCTGGTTCTGAAACCCCA






GGTAGCGAACCGGCTACCTCCGGTTCTGAAACTCCA






GGTAGCCCAGCAGGCTCTCCGACTTCCACTGAGGAA






GGTACTTCTACTGAACCTTCCGAAGGCAGCGCACCA






GGTACCTCTACTGAACCTTCTGAGGGCAGCGCTCCA






GGTAGCGAACCTGCAACCTCTGGCTCTGAAACCCCA






GGTACCTCTGAAAGCGCTACTCCTGAATCTGGCCCA






GGTACTTCTACTGAACCGTCCGAGGGCAGCGCACCA






GGTTTTCCGACTATTCCGCTGTCTCGTCTGTTTGATA






ATGCTATGCTGCGTGCGCACCGTCTGCACCAGCTGG






CCTTTGATACTTACCAGGAATTTGAAGAAGCcTACAT






TCCTAAAGAGCAGAAGTACTCTTTCCTGCAAAACCC






ACAGACTTCTCTCTGCTTCAGCGAATCTATTCCGACG






CCTTCCAATCGCGAGGAAACTCAGCAAAAGTCCAAT






CTGGAACTACTCCGCATTTCTCTGCTTCTGATTCAGA






GCTGGCTAGAACCAGTGCAATTTCTGCGTTCCGTCTT






CGCCAATAGCCTAGTTTATGGCGCATCCGACAGCAA






CGTATACGATCTCCTGAAAGATCTCGAGGAAGGCAT






TCAGACCCTGATGGGTCGTCTCGAGGATGGCTCTCC






GCGTACTGGTCAGATCTTCAAGCAGACTTACTCTAA






ATTTGATACTAACAGCCACAATGACGATGCGCTTCT






AAAAAACTATGGTCTGCTGTATTGTTTTCGTAAAGAT






ATGGACAAAGTTGAAACCTTCCTGCGTATTGTTCAGT






GTCGTTCCGTTGAGGGCAGCTGTGGTTTCTAA






AM923-
MAEPAGSPTSTEEGASPGT
699
ATGGCTGAACCTGCTGGCTCTCCAACCTCCACTGAG
700


hGH
SSTGSPGSSTPSGATGSPGS

GAAGGTGCATCCCCGGGCACCAGCTCTACCGGTTCT




STPSGATGSPGTSTEPSEGS

CCAGGTAGCTCTACCCCGTCTGGTGCTACCGGCTCTC




APGSEPATSGSETPGSPAG

CAGGTAGCTCTACCCCGTCTGGTGCTACTGGCTCTCC




SPTSTEEGSTSSTAESPGPG

AGGTACTTCTACTGAACCGTCTGAAGGCAGCGCACC




TSTPESGSASPGSTSESPSG

AGGTAGCGAACCGGCTACTTCCGGTTCTGAAACCCC




TAPGSTSESPSGTAPGTSTP

AGGTAGCCCAGCAGGTTCTCCAACTTCTACTGAAGA




ESGSASPGTSTPESGSASPG

AGGTTCTACCAGCTCTACCGCAGAATCTCCTGGTCCA




SEPATSGSETPGTSESATPE

GGTACCTCTACTCCGGAAAGCGGCTCTGCATCTCCA




SGPGSPAGSPTSTEEGTSTE

GGTTCTACTAGCGAATCTCCTTCTGGCACTGCACCAG




PSEGSAPGTSESATPESGPG

GTTCTACTAGCGAATCCCCGTCTGGTACTGCTCCAGG




TSTEPSEGSAPGTSTEPSEG

TACTTCTACTCCTGAAAGCGGTTCCGCTTCTCCAGGT




SAPGSPAGSPTSTEEGTSTE

ACCTCTACTCCGGAAAGCGGTTCTGCATCTCCAGGT




PSEGSAPGTSTEPSEGSAPG

AGCGAACCGGCAACCTCCGGCTCTGAAACCCCAGGT




TSESATPESGPGTSESATPE

ACCTCTGAAAGCGCTACTCCTGAATCCGGCCCAGGT




SGPGTSTEPSEGSAPGTSTE

AGCCCGGCAGGTTCTCCGACTTCCACTGAGGAAGGT




PSEGSAPGTSESATPESGPG

ACCTCTACTGAACCTTCTGAGGGCAGCGCTCCAGGT




TSTEPSEGSAPGSEPATSGS

ACTTCTGAAAGCGCTACCCCGGAGTCCGGTCCAGGT




ETPGSPAGSPTSTEEGSSTP

ACTTCTACTGAACCGTCCGAAGGTAGCGCACCAGGT




SGATGSPGTPGSGTASSSP

ACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGT




GSSTPSGATGSPGTSTEPSE

AGCCCAGCAGGTTCTCCTACCTCCACCGAGGAAGGT




GSAPGTSTEPSEGSAPGSEP

ACTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGT




ATSGSETPGSPAGSPTSTEE

ACTTCTACCGAACCTTCCGAGGGCAGCGCACCAGGT




GSPAGSPTSTEEGTSTEPSE

ACTTCTGAAAGCGCTACCCCTGAGTCCGGCCCAGGT




GSAPGASASGAPSTGGTSE

ACTTCTGAAAGCGCTACTCCTGAATCCGGTCCAGGT




SATPESGPGSPAGSPTSTEE

ACCTCTACTGAACCTTCCGAAGGCAGCGCTCCAGGT




GSPAGSPTSTEEGSTSSTAE

ACCTCTACCGAACCGTCCGAGGGCAGCGCACCAGGT




SPGPGSTSESPSGTAPGTSP

ACTTCTGAAAGCGCAACCCCTGAATCCGGTCCAGGT




SGESSTAPGTPGSGTASSSP

ACTTCTACTGAACCTTCCGAAGGTAGCGCTCCAGGT




GSSTPSGATGSPGSSPSAST

AGCGAACCTGCTACTTCTGGTTCTGAAACCCCAGGT




GTGPGSEPATSGSETPGTS

AGCCCGGCTGGCTCTCCGACCTCCACCGAGGAAGGT




ESATPESGPGSEPATSGSET

AGCTCTACCCCGTCTGGTGCTACTGGTTCTCCAGGTA




PGSTSSTAESPGPGSTSSTA

CTCCGGGCAGCGGTACTGCTTCTTCCTCTCCAGGTAG




ESPGPGTSPSGESSTAPGSE

CTCTACCCCTTCTGGTGCTACTGGCTCTCCAGGTACC




PATSGSETPGSEPATSGSET

TCTACCGAACCGTCCGAGGGTAGCGCACCAGGTACC




PGTSTEPSEGSAPGSTSSTA

TCTACTGAACCGTCTGAGGGTAGCGCTCCAGGTAGC




ESPGPGTSTPESGSASPGST

GAACCGGCAACCTCCGGTTCTGAAACTCCAGGTAGC




SESPSGTAPGTSTEPSEGSA

CCTGCTGGCTCTCCGACTTCTACTGAGGAAGGTAGC




PGTSTEPSEGSAPGTSTEPS

CCGGCTGGTTCTCCGACTTCTACTGAGGAAGGTACTT




EGSAPGSSTPSGATGSPGS

CTACCGAACCTTCCGAAGGTAGCGCTCCAGGTGCAA




SPSASTGTGPGASPGTSST

GCGCAAGCGGCGCGCCAAGCACGGGAGGTACTTCTG




GSPGSEPATSGSETPGTSES

AAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGG




ATPESGPGSPAGSPTSTEE

CTGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGG




GSSTPSGATGSPGSSPSAST

CTGGCTCTCCAACTTCTACTGAAGAAGGTTCTACCAG




GTGPGASPGTSSTGSPGTS

CTCTACCGCTGAATCTCCTGGCCCAGGTTCTACTAGC




ESATPESGPGTSTEPSEGSA

GAATCTCCGTCTGGCACCGCACCAGGTACTTCCCCTA




PGTSTEPSEGSAPGFPTIPL

GCGGTGAATCTTCTACTGCACCAGGTACCCCTGGCA




SRLFDNAMLRAHRLHQLA

GCGGTACCGCTTCTTCCTCTCCAGGTAGCTCTACCCC




FDTYQEFEEAYIPKEQKYS

GTCTGGTGCTACTGGCTCTCCAGGTTCTAGCCCGTCT




FLQNPQTSLCFSESIPTPSN

GCATCTACCGGTACCGGCCCAGGTAGCGAACCGGCA




REETQQKSNLELLRISLLLI

ACCTCCGGCTCTGAAACTCCAGGTACTTCTGAAAGC




QSWLEPVQFLRSVFANSL

GCTACTCCGGAATCCGGCCCAGGTAGCGAACCGGCT




VYGASDSNVYDLLKDLEE

ACTTCCGGCTCTGAAACCCCAGGTTCCACCAGCTCTA




GIQTLMGRLEDGSPRTGQI

CTGCAGAATCTCCGGGCCCAGGTTCTACTAGCTCTAC




FKQTYSKFDTNSHNDDAL

TGCAGAATCTCCGGGTCCAGGTACTTCTCCTAGCGG




LKNYGLLYCFRKDMDKV

CGAATCTTCTACCGCTCCAGGTAGCGAACCGGCAAC




ETFLRIVQCRSVEGSCGF

CTCTGGCTCTGAAACTCCAGGTAGCGAACCTGCAAC






CTCCGGCTCTGAAACCCCAGGTACTTCTACTGAACCT






TCTGAGGGCAGCGCACCAGGTTCTACCAGCTCTACC






GCAGAATCTCCTGGTCCAGGTACCTCTACTCCGGAA






AGCGGCTCTGCATCTCCAGGTTCTACTAGCGAATCTC






CTTCTGGCACTGCACCAGGTACTTCTACCGAACCGTC






CGAAGGCAGCGCTCCAGGTACCTCTACTGAACCTTC






CGAGGGCAGCGCTCCAGGTACCTCTACCGAACCTTC






TGAAGGTAGCGCACCAGGTAGCTCTACTCCGTCTGG






TGCAACCGGCTCCCCAGGTTCTAGCCCGTCTGCTTCC






ACTGGTACTGGCCCAGGTGCTTCCCCGGGCACCAGC






TCTACTGGTTCTCCAGGTAGCGAACCTGCTACCTCCG






GTTCTGAAACCCCAGGTACCTCTGAAAGCGCAACTC






CGGAGTCTGGTCCAGGTAGCCCTGCAGGTTCTCCTA






CCTCCACTGAGGAAGGTAGCTCTACTCCGTCTGGTG






CAACCGGCTCCCCAGGTTCTAGCCCGTCTGCTTCCAC






TGGTACTGGCCCAGGTGCTTCCCCGGGCACCAGCTC






TACTGGTTCTCCAGGTACCTCTGAAAGCGCTACTCCG






GAGTCTGGCCCAGGTACCTCTACTGAACCGTCTGAG






GGTAGCGCTCCAGGTACTTCTACTGAACCGTCCGAA






GGTAGCGCACCAGGTTTTCCGACTATTCCGCTGTCTC






GTCTGTTTGATAATGCTATGCTGCGTGCGCACCGTCT






GCACCAGCTGGCCTTTGATACTTACCAGGAATTTGA






AGAAGCcTACATTCCTAAAGAGCAGAAGTACTCTTTC






CTGCAAAACCCACAGACTTCTCTCTGCTTCAGCGAAT






CTATTCCGACGCCTTCCAATCGCGAGGAAACTCAGC






AAAAGTCCAATCTGGAACTACTCCGCATTTCTCTGCT






TCTGATTCAGAGCTGGCTAGAACCAGTGCAATTTCT






GCGTTCCGTCTTCGCCAATAGCCTAGTTTATGGCGCA






TCCGACAGCAACGTATACGATCTCCTGAAAGATCTC






GAGGAAGGCATTCAGACCCTGATGGGTCGTCTCGAG






GATGGCTCTCCGCGTACTGGTCAGATCTTCAAGCAG






ACTTACTCTAAATTTGATACTAACAGCCACAATGAC






GATGCGCTTCTAAAAAACTATGGTCTGCTGTATTGTT






TTCGTAAAGATATGGACAAAGTTGAAACCTTCCTGC






GTATTGTTCAGTGTCGTTCCGTTGAGGGCAGCTGTGG






TTTCTAA






AM1318-
GTSTEPSEGSAPGSEPATS
701
GGTACTTCTACTGAACCGTCTGAAGGCAGCGCACCA
702


hGH
GSETPGSPAGSPTSTEEGST

GGTAGCGAACCGGCTACTTCCGGTTCTGAAACCCCA




SSTAESPGPGTSTPESGSAS

GGTAGCCCAGCAGGTTCTCCAACTTCTACTGAAGAA




PGSTSESPSGTAPGSTSESP

GGTTCTACCAGCTCTACCGCAGAATCTCCTGGTCCAG




SGTAPGTSTPESGSASPGTS

GTACCTCTACTCCGGAAAGCGGCTCTGCATCTCCAG




TPESGSASPGSEPATSGSET

GTTCTACTAGCGAATCTCCTTCTGGCACTGCACCAGG




PGTSESATPESGPGSPAGSP

TTCTACTAGCGAATCCCCGTCTGGTACTGCTCCAGGT




TSTEEGTSTEPSEGSAPGTS

ACTTCTACTCCTGAAAGCGGTTCCGCTTCTCCAGGTA




ESATPESGPGTSTEPSEGSA

CCTCTACTCCGGAAAGCGGTTCTGCATCTCCAGGTA




PGTSTEPSEGSAPGSPAGSP

GCGAACCGGCAACCTCCGGCTCTGAAACCCCAGGTA




TSTEEGTSTEPSEGSAPGTS

CCTCTGAAAGCGCTACTCCTGAATCCGGCCCAGGTA




TEPSEGSAPGTSESATPESG

GCCCGGCAGGTTCTCCGACTTCCACTGAGGAAGGTA




PGTSESATPESGPGTSTEPS

CCTCTACTGAACCTTCTGAGGGCAGCGCTCCAGGTA




EGSAPGTSTEPSEGSAPGT

CTTCTGAAAGCGCTACCCCGGAGTCCGGTCCAGGTA




SESATPESGPGTSTEPSEGS

CTTCTACTGAACCGTCCGAAGGTAGCGCACCAGGTA




APGSEPATSGSETPGSPAG

CTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTA




SPTSTEEGSSTPSGATGSPG

GCCCAGCAGGTTCTCCTACCTCCACCGAGGAAGGTA




TPGSGTASSSPGSSTPSGAT

CTTCTACCGAACCGTCCGAGGGTAGCGCACCAGGTA




GSPGTSTEPSEGSAPGTSTE

CTTCTACCGAACCTTCCGAGGGCAGCGCACCAGGTA




PSEGSAPGSEPATSGSETPG

CTTCTGAAAGCGCTACCCCTGAGTCCGGCCCAGGTA




SPAGSPTSTEEGSPAGSPTS

CTTCTGAAAGCGCTACTCCTGAATCCGGTCCAGGTA




TEEGTSTEPSEGSAPGPEPT

CCTCTACTGAACCTTCCGAAGGCAGCGCTCCAGGTA




GPAPSGGSEPATSGSETPG

CCTCTACCGAACCGTCCGAGGGCAGCGCACCAGGTA




TSESATPESGPGSPAGSPTS

CTTCTGAAAGCGCAACCCCTGAATCCGGTCCAGGTA




TEEGTSESATPESGPGSPA

CTTCTACTGAACCTTCCGAAGGTAGCGCTCCAGGTA




GSPTSTEEGSPAGSPTSTEE

GCGAACCTGCTACTTCTGGTTCTGAAACCCCAGGTA




GTSESATPESGPGSPAGSPT

GCCCGGCTGGCTCTCCGACCTCCACCGAGGAAGGTA




STEEGSPAGSPTSTEEGSTS

GCTCTACCCCGTCTGGTGCTACTGGTTCTCCAGGTAC




STAESPGPGSTSESPSGTAP

TCCGGGCAGCGGTACTGCTTCTTCCTCTCCAGGTAGC




GTSPSGESSTAPGSTSESPS

TCTACCCCTTCTGGTGCTACTGGCTCTCCAGGTACCT




GTAPGSTSESPSGTAPGTSP

CTACCGAACCGTCCGAGGGTAGCGCACCAGGTACCT




SGESSTAPGTSTEPSEGSAP

CTACTGAACCGTCTGAGGGTAGCGCTCCAGGTAGCG




GTSESATPESGPGTSESATP

AACCGGCAACCTCCGGTTCTGAAACTCCAGGTAGCC




ESGPGSEPATSGSETPGTSE

CTGCTGGCTCTCCGACTTCTACTGAGGAAGGTAGCC




SATPESGPGTSESATPESGP

CGGCTGGTTCTCCGACTTCTACTGAGGAAGGTACTTC




GTSTEPSEGSAPGTSESATP

TACCGAACCTTCCGAAGGTAGCGCTCCAGGTCCAGA




ESGPGTSTEPSEGSAPGTSP

ACCAACGGGGCCGGCCCCAAGCGGAGGTAGCGAAC




SGESSTAPGTSPSGESSTAP

CGGCAACCTCCGGCTCTGAAACCCCAGGTACCTCTG




GTSPSGESSTAPGTSTEPSE

AAAGCGCTACTCCTGAATCCGGCCCAGGTAGCCCGG




GSAPGSPAGSPTSTEEGTS

CAGGTTCTCCGACTTCCACTGAGGAAGGTACTTCTG




TEPSEGSAPGSSPSASTGTG

AAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGG




PGSSTPSGATGSPGSSTPSG

CTGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGG




ATGSPGSSTPSGATGSPGS

CTGGCTCTCCAACTTCTACTGAAGAAGGTACTTCTGA




STPSGATGSPGASPGTSST

AAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGGC




GSPGASASGAPSTGGTSPS

TGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGGC




GESSTAPGSTSSTAESPGPG

TGGCTCTCCAACTTCTACTGAAGAAGGTTCTACCAGC




TSPSGESSTAPGTSESATPE

TCTACCGCTGAATCTCCTGGCCCAGGTTCTACTAGCG




SGPGTSTEPSEGSAPGTSTE

AATCTCCGTCTGGCACCGCACCAGGTACTTCCCCTAG




PSEGSAPGSSPSASTGTGP

CGGTGAATCTTCTACTGCACCAGGTTCTACCAGCGA




GSSTPSGATGSPGASPGTS

ATCTCCTTCTGGCACCGCTCCAGGTTCTACTAGCGAA




STGSPGTSTPESGSASPGTS

TCCCCGTCTGGTACCGCACCAGGTACTTCTCCTAGCG




PSGESSTAPGTSPSGESSTA

GCGAATCTTCTACCGCACCAGGTACTTCTACCGAAC




PGTSESATPESGPGSEPATS

CTTCCGAGGGCAGCGCACCAGGTACTTCTGAAAGCG




GSETPGTSTEPSEGSAPGST

CTACCCCTGAGTCCGGCCCAGGTACTTCTGAAAGCG




SESPSGTAPGSTSESPSGTA

CTACTCCTGAATCCGGTCCAGGTAGCGAACCGGCAA




PGTSTPESGSASPGSPAGSP

CCTCTGGCTCTGAAACCCCAGGTACCTCTGAAAGCG




TSTEEGTSESATPESGPGTS

CTACTCCGGAATCTGGTCCAGGTACTTCTGAAAGCG




TEPSEGSAPGSPAGSPTSTE

CTACTCCGGAATCCGGTCCAGGTACCTCTACTGAAC




EGTSESATPESGPGSEPATS

CTTCTGAGGGCAGCGCTCCAGGTACTTCTGAAAGCG




GSETPGSSTPSGATGSPGA

CTACCCCGGAGTCCGGTCCAGGTACTTCTACTGAAC




SPGTSSTGSPGSSTPSGATG

CGTCCGAAGGTAGCGCACCAGGTACCTCCCCTAGCG




SPGSTSESPSGTAPGTSPSG

GCGAATCTTCTACTGCTCCAGGTACCTCTCCTAGCGG




ESSTAPGSTSSTAESPGPGS

CGAATCTTCTACCGCTCCAGGTACCTCCCCTAGCGGT




STPSGATGSPGASPGTSST

GAATCTTCTACCGCACCAGGTACTTCTACCGAACCGT




GSPGTPGSGTASSSPGSPA

CCGAGGGTAGCGCACCAGGTAGCCCAGCAGGTTCTC




GSPTSTEEGSPAGSPTSTEE

CTACCTCCACCGAGGAAGGTACTTCTACCGAACCGT




GTSTEPSEGSAPGFPTIPLS

CCGAGGGTAGCGCACCAGGTTCTAGCCCTTCTGCTTC




RLFDNAMLRAHRLHQLAF

CACCGGTACCGGCCCAGGTAGCTCTACTCCGTCTGG




DTYQEFEEAYIPKEQKYSF

TGCAACTGGCTCTCCAGGTAGCTCTACTCCGTCTGGT




LQNPQTSLCFSESIPTPSNR

GCAACCGGCTCCCCAGGTAGCTCTACCCCGTCTGGT




EETQQKSNLELLRISLLLIQ

GCTACCGGCTCTCCAGGTAGCTCTACCCCGTCTGGTG




SWLEPVQFLRSVFANSLV

CAACCGGCTCCCCAGGTGCATCCCCGGGTACTAGCT




YGASDSNVYDLLKDLEEG

CTACCGGTTCTCCAGGTGCAAGCGCAAGCGGCGCGC




IQTLMGRLEDGSPRTGQIF

CAAGCACGGGAGGTACTTCTCCGAGCGGTGAATCTT




KQTYSKFDTNSHNDDALL

CTACCGCACCAGGTTCTACTAGCTCTACCGCTGAATC




KNYGLLYCFRKDMDKVE

TCCGGGCCCAGGTACTTCTCCGAGCGGTGAATCTTCT




TFLRIVQCRSVEGSCGF

ACTGCTCCAGGTACCTCTGAAAGCGCTACTCCGGAG






TCTGGCCCAGGTACCTCTACTGAACCGTCTGAGGGT






AGCGCTCCAGGTACTTCTACTGAACCGTCCGAAGGT






AGCGCACCAGGTTCTAGCCCTTCTGCATCTACTGGTA






CTGGCCCAGGTAGCTCTACTCCTTCTGGTGCTACCGG






CTCTCCAGGTGCTTCTCCGGGTACTAGCTCTACCGGT






TCTCCAGGTACTTCTACTCCGGAAAGCGGTTCCGCAT






CTCCAGGTACTTCTCCTAGCGGTGAATCTTCTACTGC






TCCAGGTACCTCTCCTAGCGGCGAATCTTCTACTGCT






CCAGGTACTTCTGAAAGCGCAACCCCTGAATCCGGT






CCAGGTAGCGAACCGGCTACTTCTGGCTCTGAGACT






CCAGGTACTTCTACCGAACCGTCCGAAGGTAGCGCA






CCAGGTTCTACCAGCGAATCCCCTTCTGGTACTGCTC






CAGGTTCTACCAGCGAATCCCCTTCTGGCACCGCAC






CAGGTACTTCTACCCCTGAAAGCGGCTCCGCTTCTCC






AGGTAGCCCGGCAGGCTCTCCGACCTCTACTGAGGA






AGGTACTTCTGAAAGCGCAACCCCGGAGTCCGGCCC






AGGTACCTCTACCGAACCGTCTGAGGGCAGCGCACC






AGGTAGCCCTGCTGGCTCTCCAACCTCCACCGAAGA






AGGTACCTCTGAAAGCGCAACCCCTGAATCCGGCCC






AGGTAGCGAACCGGCAACCTCCGGTTCTGAAACCCC






AGGTAGCTCTACCCCGTCTGGTGCTACCGGTTCCCCA






GGTGCTTCTCCTGGTACTAGCTCTACCGGTTCTCCAG






GTAGCTCTACCCCGTCTGGTGCTACTGGCTCTCCAGG






TTCTACTAGCGAATCCCCGTCTGGTACTGCTCCAGGT






ACTTCCCCTAGCGGTGAATCTTCTACTGCTCCAGGTT






CTACCAGCTCTACCGCAGAATCTCCGGGTCCAGGTA






GCTCTACCCCTTCTGGTGCAACCGGCTCTCCAGGTGC






ATCCCCGGGTACCAGCTCTACCGGTTCTCCAGGTACT






CCGGGTAGCGGTACCGCTTCTTCCTCTCCAGGTAGCC






CTGCTGGCTCTCCGACTTCTACTGAGGAAGGTAGCC






CGGCTGGTTCTCCGACTTCTACTGAGGAAGGTACTTC






TACCGAACCTTCCGAAGGTAGCGCTCCAGGTTTTCC






GACTATTCCGCTGTCTCGTCTGTTTGATAATGCTATG






CTGCGTGCGCACCGTCTGCACCAGCTGGCCTTTGATA






CTTACCAGGAATTTGAAGAAGCcTACATTCCTAAAG






AGCAGAAGTACTCTTTCCTGCAAAACCCACAGACTT






CTCTCTGCTTCAGCGAATCTATTCCGACGCCTTCCAA






TCGCGAGGAAACTCAGCAAAAGTCCAATCTGGAACT






ACTCCGCATTTCTCTGCTTCTGATTCAGAGCTGGCTA






GAACCAGTGCAATTTCTGCGTTCCGTCTTCGCCAATA






GCCTAGTTTATGGCGCATCCGACAGCAACGTATACG






ATCTCCTGAAAGATCTCGAGGAAGGCATTCAGACCC






TGATGGGTCGTCTCGAGGATGGCTCTCCGCGTACTG






GTCAGATCTTCAAGCAGACTTACTCTAAATTTGATAC






TAACAGCCACAATGACGATGCGCTTCTAAAAAACTA






TGGTCTGCTGTATTGTTTTCGTAAAGATATGGACAAA






GTTGAAACCTTCCTGCGTATTGTTCAGTGTCGTTCCG






TTGAGGGCAGCTGTGGTTTCTAA






hGH-
FPTIPLSRLFDNAMLRAHR
703
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
704


AE144
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT




EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT




PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG




SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT




ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG




DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG




TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC




DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA




DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG




GFGGSEPATSGSETPGTSE

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT




SATPESGPGSEPATSGSETP

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG




GSPAGSPTSTEEGTSTEPSE

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA




GSAPGSEPATSGSETPGSEP

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA




ATSGSETPGSEPATSGSETP

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT




GTSTEPSEGSAPGTSESATP

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTAGC




ESGPGSEPATSGSETPGTST

GAACCGGCAACTTCCGGCTCTGAAACCCCAGGTACT




EPSEGSAP

TCTGAAAGCGCTACTCCTGAGTCTGGCCCAGGTAGC






GAACCTGCTACCTCTGGCTCTGAAACCCCAGGTAGC






CCGGCAGGCTCTCCGACTTCCACCGAGGAAGGTACC






TCTACTGAACCTTCTGAGGGTAGCGCTCCAGGTAGC






GAACCGGCAACCTCTGGCTCTGAAACCCCAGGTAGC






GAACCTGCTACCTCCGGCTCTGAAACTCCAGGTAGC






GAACCGGCTACTTCCGGTTCTGAAACTCCAGGTACC






TCTACCGAACCTTCCGAAGGCAGCGCACCAGGTACT






TCTGAAAGCGCAACCCCTGAATCCGGTCCAGGTAGC






GAACCGGCTACTTCTGGCTCTGAGACTCCAGGTACTT






CTACCGAACCGTCCGAAGGTAGCGCACCA






hGH-
FPTIPLSRLFDNAMLRAHR
705
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
706


AE288
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT




EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT




PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG




SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT




ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG




DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG




TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC




DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA




DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG




GFGGTSESATPESGPGSEP

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT




ATSGSETPGTSESATPESGP

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG




GSEPATSGSETPGTSESATP

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA




ESGPGTSTEPSEGSAPGSPA

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA




GSPTSTEEGTSESATPESGP

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT




GSEPATSGSETPGTSESATP

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTACCT




ESGPGSPAGSPTSTEEGSPA

CTGAAAGCGCAACTCCTGAGTCTGGCCCAGGTAGCG




GSPTSTEEGTSTEPSEGSAP

AACCTGCTACCTCCGGCTCTGAGACTCCAGGTACCTC




GTSESATPESGPGTSESATP

TGAAAGCGCAACCCCGGAATCTGGTCCAGGTAGCGA




ESGPGTSESATPESGPGSEP

ACCTGCAACCTCTGGCTCTGAAACCCCAGGTACCTCT




ATSGSETPGSEPATSGSETP

GAAAGCGCTACTCCTGAATCTGGCCCAGGTACTTCT




GSPAGSPTSTEEGTSTEPSE

ACTGAACCGTCCGAGGGCAGCGCACCAGGTAGCCCT




GSAPGTSTEPSEGSAPGSEP

GCTGGCTCTCCAACCTCCACCGAAGAAGGTACCTCT




ATSGSETPGTSESATPESGP

GAAAGCGCAACCCCTGAATCCGGCCCAGGTAGCGAA




GTSTEPSEGSAP

CCGGCAACCTCCGGTTCTGAAACCCCAGGTACTTCT






GAAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCG






GCTGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCG






GCTGGCTCTCCAACTTCTACTGAAGAAGGTACTTCTA






CCGAACCTTCCGAGGGCAGCGCACCAGGTACTTCTG






AAAGCGCTACCCCTGAGTCCGGCCCAGGTACTTCTG






AAAGCGCTACTCCTGAATCCGGTCCAGGTACTTCTG






AAAGCGCTACCCCGGAATCTGGCCCAGGTAGCGAAC






CGGCTACTTCTGGTTCTGAAACCCCAGGTAGCGAAC






CGGCTACCTCCGGTTCTGAAACTCCAGGTAGCCCAG






CAGGCTCTCCGACTTCCACTGAGGAAGGTACTTCTA






CTGAACCTTCCGAAGGCAGCGCACCAGGTACCTCTA






CTGAACCTTCTGAGGGCAGCGCTCCAGGTAGCGAAC






CTGCAACCTCTGGCTCTGAAACCCCAGGTACCTCTG






AAAGCGCTACTCCTGAATCTGGCCCAGGTACTTCTA






CTGAACCGTCCGAGGGCAGCGCACCA






hGH-
FPTIPLSRLFDNAMLRAHR
707
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
708


AF144
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT




EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT




PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG




SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT




ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG




DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG




TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC




DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA




DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG




GFGGTSTPESGSASPGTSPS

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT




GESSTAPGTSPSGESSTAPG

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG




STSSTAESPGPGSTSESPSG

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA




TAPGSTSSTAESPGPGTSPS

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA




GESSTAPGTSTPESGSASPG

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT




STSSTAESPGPGTSPSGESS

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTACTT




TAPGTSPSGESSTAPGTSPS

CTACTCCGGAAAGCGGTTCCGCATCTCCAGGTACTTC




GESSTAP

TCCTAGCGGTGAATCTTCTACTGCTCCAGGTACCTCT






CCTAGCGGCGAATCTTCTACTGCTCCAGGTTCTACCA






GCTCTACCGCTGAATCTCCTGGCCCAGGTTCTACCAG






CGAATCCCCGTCTGGCACCGCACCAGGTTCTACTAG






CTCTACCGCAGAATCTCCGGGTCCAGGTACTTCCCCT






AGCGGTGAATCTTCTACTGCTCCAGGTACCTCTACTC






CGGAAAGCGGCTCCGCATCTCCAGGTTCTACTAGCT






CTACTGCTGAATCTCCTGGTCCAGGTACCTCCCCTAG






CGGCGAATCTTCTACTGCTCCAGGTACCTCTCCTAGC






GGCGAATCTTCTACCGCTCCAGGTACCTCCCCTAGCG






GTGAATCTTCTACCGCACCA






hGH-
FPTIPLSRLFDNAMLRAHR
709
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
710


AD576
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT




EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT




PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG




SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT




ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG




DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG




TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC




DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA




DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG




GFGGSSESGSSEGGPGSGG

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT




EPSESGSSGSSESGSSEGGP

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG




GSSESGSSEGGPGSSESGSS

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA




EGGPGSSESGSSEGGPGSS

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA




ESGSSEGGPGESPGGSSGS

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT




ESGSEGSSGPGESSGSSESG

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTTCCT




SSEGGPGSSESGSSEGGPG

CTGAAAGCGGTTCTTCCGAAGGTGGTCCAGGTTCCT




SSESGSSEGGPGSGGEPSES

CTGAAAGCGGTTCTTCTGAGGGTGGTCCAGGTGAAT




GSSGESPGGSSGSESGESP

CTCCGGGTGGCTCCAGCGGTTCCGAGTCAGGTTCTG




GGSSGSESGSGGEPSESGS

GTGGCGAACCTTCCGAGTCTGGTAGCTCAGGTGAAT




SGSSESGSSEGGPGSGGEP

CTCCGGGTGGTTCTAGCGGTTCCGAGTCAGGTGAAT




SESGSSGSGGEPSESGSSGS

CTCCGGGTGGTTCCAGCGGTTCTGAGTCAGGTTCCTC




EGSSGPGESSGESPGGSSG

CGAAAGCGGTTCTTCTGAGGGCGGTCCAGGTTCCTC




SESGSGGEPSESGSSGSGG

CGAAAGCGGTTCTTCCGAGGGCGGTCCAGGTTCTTC




EPSESGSSGSGGEPSESGSS

TGAAAGCGGTTCTTCCGAGGGCGGTCCAGGTGAATC




GSSESGSSEGGPGESPGGS

TCCTGGTGGTTCCAGCGGTTCCGAGTCAGGTGAATCT




SGSESGESPGGSSGSESGES

CCAGGTGGCTCTAGCGGTTCCGAGTCAGGTGAATCT




PGGSSGSESGESPGGSSGS

CCTGGTGGTTCTAGCGGTTCTGAATCAGGTTCCTCCG




ESGESPGGSSGSESGSSESG

AAAGCGGTTCTTCTGAGGGCGGTCCAGGTTCCTCCG




SSEGGPGSGGEPSESGSSG

AAAGCGGTTCTTCCGAGGGCGGTCCAGGTTCTTCTG




SEGSSGPGESSGSSESGSSE

AAAGCGGTTCTTCCGAGGGCGGTCCAGGTTCCTCTG




GGPGSGGEPSESGSSGSSE

AAAGCGGTTCTTCTGAGGGCGGTCCAGGTTCTTCCG




SGSSEGGPGSGGEPSESGS

AAAGCGGTTCTTCCGAGGGCGGTCCAGGTTCTTCCG




SGESPGGSSGSESGESPGG

AAAGCGGTTCTTCTGAAGGCGGTCCAGGTTCTGGTG




SSGSESGSSESGSSEGGPGS

GCGAACCGTCCGAGTCTGGTAGCTCAGGTGAATCTC




GGEPSESGSSGSSESGSSEG

CGGGTGGCTCTAGCGGTTCCGAGTCAGGTGAATCTC




GPGSGGEPSESGSSGSGGE

CTGGTGGTTCCAGCGGTTCCGAGTCAGGTTCCGGTG




PSESGSSGESPGGSSGSESG

GCGAACCGTCCGAATCTGGTAGCTCAGGTAGCGAAG




SEGSSGPGESSGSSESGSSE

GTTCTTCTGGTCCAGGCGAATCTTCAGGTTCCTCTGA




GGPGSEGSSGPGESS

AAGCGGTTCTTCTGAGGGCGGTCCAGGTTCCGGTGG






CGAACCGTCCGAATCTGGTAGCTCAGGTAGCGAAGG






TTCTTCTGGTCCAGGCGAATCTTCAGGTTCCTCTGAA






AGCGGTTCTTCTGAGGGCGGTCCAGGTTCCGGTGGC






GAACCTTCCGAATCTGGTAGCTCAGGTGAATCTCCG






GGTGGTTCTAGCGGTTCTGAGTCAGGTTCTGGTGGTG






AACCTTCCGAGTCTGGTAGCTCAGGTTCTGGTGGCG






AACCATCCGAGTCTGGTAGCTCAGGTTCTTCCGAAA






GCGGTTCTTCCGAAGGCGGTCCAGGTTCTGGTGGTG






AACCGTCCGAATCTGGTAGCTCAGGTTCTGGTGGCG






AACCATCCGAATCTGGTAGCTCAGGTAGCGAAGGTT






CTTCTGGTCCTGGCGAATCTTCAGGTGAATCTCCAGG






TGGCTCTAGCGGTTCCGAATCAGGTAGCGAAGGTTC






TTCCGGTCCAGGTGAATCTTCAGGTAGCGAAGGTTC






TTCTGGTCCTGGTGAATCCTCAGGTTCCGGTGGCGAA






CCATCTGAATCTGGTAGCTCAGGTTCCTCTGAAAGC






GGTTCTTCCGAAGGTGGTCCAGGTTCCTCTGAAAGC






GGTTCTTCTGAGGGTGGTCCAGGTGAATCTCCGGGT






GGCTCCAGCGGTTCCGAGTCAGGTTCTGGTGGCGAA






CCATCCGAATCTGGTAGCTCAGGTAGCGAAGGTTCT






TCTGGTCCTGGCGAATCTTCAGGTGAATCTCCAGGTG






GCTCTAGCGGTTCCGAATCAGGTAGCGAAGGTTCTT






CCGGTCCTGGTGAGTCTTCAGGTGAATCTCCAGGTG






GCTCTAGCGGTTCCGAGTCAGGTAGCGAAGGTTCTT






CTGGTCCTGGCGAGTCCTCA






hGH-
FPTIPLSRLFDNAMLRAHR
711
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
712


AE576
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT




EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT




PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG




SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT




ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG




DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG




TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC




DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA




DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG




GFGGSPAGSPTSTEEGTSE

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT




SATPESGPGTSTEPSEGSAP

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG




GSPAGSPTSTEEGTSTEPSE

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA




GSAPGTSTEPSEGSAPGTS

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA




ESATPESGPGSEPATSGSET

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT




PGSEPATSGSETPGSPAGSP

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTAGC




TSTEEGTSESATPESGPGTS

CCGGCTGGCTCTCCTACCTCTACTGAGGAAGGTACTT




TEPSEGSAPGTSTEPSEGSA

CTGAAAGCGCTACTCCTGAGTCTGGTCCAGGTACCT




PGSPAGSPTSTEEGTSTEPS

CTACTGAACCGTCCGAAGGTAGCGCTCCAGGTAGCC




EGSAPGTSTEPSEGSAPGT

CAGCAGGCTCTCCGACTTCCACTGAGGAAGGTACTT




SESATPESGPGTSTEPSEGS

CTACTGAACCTTCCGAAGGCAGCGCACCAGGTACCT




APGTSESATPESGPGSEPA

CTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTT




TSGSETPGTSTEPSEGSAPG

CTGAAAGCGCTACCCCGGAATCTGGCCCAGGTAGCG




TSTEPSEGSAPGTSESATPE

AACCGGCTACTTCTGGTTCTGAAACCCCAGGTAGCG




SGPGTSESATPESGPGSPA

AACCGGCTACCTCCGGTTCTGAAACTCCAGGTAGCC




GSPTSTEEGTSESATPESGP

CGGCAGGCTCTCCGACCTCTACTGAGGAAGGTACTT




GSEPATSGSETPGTSESATP

CTGAAAGCGCAACCCCGGAGTCCGGCCCAGGTACCT




ESGPGTSTEPSEGSAPGTST

CTACCGAACCGTCTGAGGGCAGCGCACCAGGTACTT




EPSEGSAPGTSTEPSEGSAP

CTACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCC




GTSTEPSEGSAPGTSTEPSE

CAGCAGGTTCTCCTACCTCCACCGAGGAAGGTACTT




GSAPGTSTEPSEGSAPGSP

CTACCGAACCGTCCGAGGGTAGCGCACCAGGTACCT




AGSPTSTEEGTSTEPSEGSA

CTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTT




PGTSESATPESGPGSEPATS

CTGAAAGCGCTACCCCGGAGTCCGGTCCAGGTACTT




GSETPGTSESATPESGPGSE

CTACTGAACCGTCCGAAGGTAGCGCACCAGGTACTT




PATSGSETPGTSESATPESG

CTGAAAGCGCAACCCCTGAATCCGGTCCAGGTAGCG




PGTSTEPSEGSAPGTSESAT

AACCGGCTACTTCTGGCTCTGAGACTCCAGGTACTTC




PESGPGSPAGSPTSTEEGSP

TACCGAACCGTCCGAAGGTAGCGCACCAGGTACTTC




AGSPTSTEEGSPAGSPTSTE

TACTGAACCGTCTGAAGGTAGCGCACCAGGTACTTC




EGTSESATPESGPGTSTEPS

TGAAAGCGCAACCCCGGAATCCGGCCCAGGTACCTC




EGSAP

TGAAAGCGCAACCCCGGAGTCCGGCCCAGGTAGCCC






TGCTGGCTCTCCAACCTCCACCGAAGAAGGTACCTC






TGAAAGCGCAACCCCTGAATCCGGCCCAGGTAGCGA






ACCGGCAACCTCCGGTTCTGAAACCCCAGGTACCTC






TGAAAGCGCTACTCCGGAGTCTGGCCCAGGTACCTC






TACTGAACCGTCTGAGGGTAGCGCTCCAGGTACTTC






TACTGAACCGTCCGAAGGTAGCGCACCAGGTACTTC






TACCGAACCGTCCGAAGGCAGCGCTCCAGGTACCTC






TACTGAACCTTCCGAGGGCAGCGCTCCAGGTACCTC






TACCGAACCTTCTGAAGGTAGCGCACCAGGTACTTC






TACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCCC






AGCAGGTTCTCCTACCTCCACCGAGGAAGGTACTTC






TACCGAACCGTCCGAGGGTAGCGCACCAGGTACCTC






TGAAAGCGCAACTCCTGAGTCTGGCCCAGGTAGCGA






ACCTGCTACCTCCGGCTCTGAGACTCCAGGTACCTCT






GAAAGCGCAACCCCGGAATCTGGTCCAGGTAGCGAA






CCTGCAACCTCTGGCTCTGAAACCCCAGGTACCTCTG






AAAGCGCTACTCCTGAATCTGGCCCAGGTACTTCTA






CTGAACCGTCCGAGGGCAGCGCACCAGGTACTTCTG






AAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGG






CTGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGG






CTGGCTCTCCAACTTCTACTGAAGAAGGTAGCCCGG






CAGGCTCTCCGACCTCTACTGAGGAAGGTACTTCTG






AAAGCGCAACCCCGGAGTCCGGCCCAGGTACCTCTA






CCGAACCGTCTGAGGGCAGCGCACCA






hGH-
FPTIPLSRLFDNAMLRAHR
713
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
714


AF576
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT




EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT




PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG




SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT




ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG




DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG




TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC




DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA




DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG




GFGGSTSSTAESPGPGSTSS

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT




TAESPGPGSTSESPSGTAPG

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG




STSSTAESPGPGSTSSTAES

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA




PGPGTSTPESGSASPGSTSE

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA




SPSGTAPGTSPSGESSTAPG

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT




STSESPSGTAPGSTSESPSG

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTTCTA




TAPGTSPSGESSTAPGSTSE

CTAGCTCTACCGCTGAATCTCCTGGCCCAGGTTCCAC




SPSGTAPGSTSESPSGTAPG

TAGCTCTACCGCAGAATCTCCGGGCCCAGGTTCTACT




TSPSGESSTAPGSTSESPSG

AGCGAATCCCCTTCTGGTACCGCTCCAGGTTCTACTA




TAPGSTSESPSGTAPGSTSE

GCTCTACCGCTGAATCTCCGGGTCCAGGTTCTACCAG




SPSGTAPGTSTPESGSASPG

CTCTACTGCAGAATCTCCTGGCCCAGGTACTTCTACT




STSESPSGTAPGTSTPESGS

CCGGAAAGCGGTTCCGCTTCTCCAGGTTCTACCAGC




ASPGSTSSTAESPGPGSTSS

GAATCTCCTTCTGGCACCGCTCCAGGTACCTCTCCTA




TAESPGPGTSTPESGSASPG

GCGGCGAATCTTCTACCGCTCCAGGTTCTACTAGCG




TSTPESGSASPGSTSESPSG

AATCTCCTTCTGGCACTGCACCAGGTTCTACCAGCGA




TAPGTSTPESGSASPGTSTP

ATCTCCTTCTGGCACCGCTCCAGGTACCTCTCCTAGC




ESGSASPGSTSESPSGTAPG

GGCGAATCTTCTACCGCTCCAGGTTCTACTAGCGAAT




STSESPSGTAPGSTSESPSG

CTCCTTCTGGCACTGCACCAGGTTCTACCAGCGAATC




TAPGSTSSTAESPGPGTSTP

TCCTTCTGGCACCGCTCCAGGTACCTCTCCTAGCGGC




ESGSASPGTSTPESGSASPG

GAATCTTCTACCGCTCCAGGTTCTACTAGCGAATCTC




STSESPSGTAPGSTSESPSG

CTTCTGGCACTGCACCAGGTTCTACTAGCGAATCTCC




TAPGTSTPESGSASPGSTSE

TTCTGGCACTGCACCAGGTTCTACCAGCGAATCTCCG




SPSGTAPGSTSESPSGTAPG

TCTGGCACTGCACCAGGTACCTCTACCCCTGAAAGC




TSTPESGSASPGTSPSGESS

GGTTCCGCTTCTCCAGGTTCTACTAGCGAATCTCCTT




TAPGSTSSTAESPGPGTSPS

CTGGTACCGCTCCAGGTACTTCTACCCCTGAAAGCG




GESSTAPGSTSSTAESPGPG

GCTCCGCTTCTCCAGGTTCCACTAGCTCTACCGCTGA




TSTPESGSASPGSTSESPSG

ATCTCCGGGTCCAGGTTCTACTAGCTCTACTGCAGAA




TAPGSTSSTAESPGPGTSTP

TCTCCTGGCCCAGGTACCTCTACTCCGGAAAGCGGC




ESGSASPGTSTPESGSASP

TCTGCATCTCCAGGTACTTCTACCCCTGAAAGCGGTT






CTGCATCTCCAGGTTCTACTAGCGAATCCCCGTCTGG






TACCGCACCAGGTACTTCTACCCCGGAAAGCGGCTC






TGCTTCTCCAGGTACTTCTACCCCGGAAAGCGGCTCC






GCATCTCCAGGTTCTACTAGCGAATCTCCTTCTGGTA






CCGCTCCAGGTTCTACCAGCGAATCCCCGTCTGGTAC






TGCTCCAGGTTCTACCAGCGAATCTCCTTCTGGTACT






GCACCAGGTTCTACTAGCTCTACTGCAGAATCTCCTG






GCCCAGGTACCTCTACTCCGGAAAGCGGCTCTGCAT






CTCCAGGTACTTCTACCCCTGAAAGCGGTTCTGCATC






TCCAGGTTCTACTAGCGAATCTCCTTCTGGCACTGCA






CCAGGTTCTACCAGCGAATCTCCGTCTGGCACTGCA






CCAGGTACCTCTACCCCTGAAAGCGGTTCCGCTTCTC






CAGGTTCTACTAGCGAATCTCCTTCTGGCACTGCACC






AGGTTCTACCAGCGAATCTCCGTCTGGCACTGCACC






AGGTACCTCTACCCCTGAAAGCGGTTCCGCTTCTCCA






GGTACTTCTCCGAGCGGTGAATCTTCTACCGCACCA






GGTTCTACTAGCTCTACCGCTGAATCTCCGGGCCCAG






GTACTTCTCCGAGCGGTGAATCTTCTACTGCTCCAGG






TTCCACTAGCTCTACTGCTGAATCTCCTGGCCCAGGT






ACTTCTACTCCGGAAAGCGGTTCCGCTTCTCCAGGTT






CTACTAGCGAATCTCCGTCTGGCACCGCACCAGGTT






CTACTAGCTCTACTGCAGAATCTCCTGGCCCAGGTAC






CTCTACTCCGGAAAGCGGCTCTGCATCTCCAGGTACT






TCTACCCCTGAAAGCGGTTCTGCATCTCCA






hGH-
FPTIPLSRLFDNAMLRAHR
715
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
716


AE624
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT




EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT




PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG




SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT




ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG




DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG




TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC




DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA




DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG




GFGMAEPAGSPTSTEEGTP

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT




GSGTASSSPGSSTPSGATG

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG




SPGASPGTSSTGSPGSPAGS

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA




PTSTEEGTSESATPESGPGT

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA




STEPSEGSAPGSPAGSPTST

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT




EEGTSTEPSEGSAPGTSTEP

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTATGGCT




SEGSAPGTSESATPESGPGS

GAACCTGCTGGCTCTCCAACCTCCACTGAGGAAGGT




EPATSGSETPGSEPATSGSE

ACCCCGGGTAGCGGTACTGCTTCTTCCTCTCCAGGTA




TPGSPAGSPTSTEEGTSESA

GCTCTACCCCTTCTGGTGCAACCGGCTCTCCAGGTGC




TPESGPGTSTEPSEGSAPGT

TTCTCCGGGCACCAGCTCTACCGGTTCTCCAGGTAGC




STEPSEGSAPGSPAGSPTST

CCGGCTGGCTCTCCTACCTCTACTGAGGAAGGTACTT




EEGTSTEPSEGSAPGTSTEP

CTGAAAGCGCTACTCCTGAGTCTGGTCCAGGTACCT




SEGSAPGTSESATPESGPG

CTACTGAACCGTCCGAAGGTAGCGCTCCAGGTAGCC




TSTEPSEGSAPGTSESATPE

CAGCAGGCTCTCCGACTTCCACTGAGGAAGGTACTT




SGPGSEPATSGSETPGTSTE

CTACTGAACCTTCCGAAGGCAGCGCACCAGGTACCT




PSEGSAPGTSTEPSEGSAPG

CTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTT




TSESATPESGPGTSESATPE

CTGAAAGCGCTACCCCGGAATCTGGCCCAGGTAGCG




SGPGSPAGSPTSTEEGTSES

AACCGGCTACTTCTGGTTCTGAAACCCCAGGTAGCG




ATPESGPGSEPATSGSETP

AACCGGCTACCTCCGGTTCTGAAACTCCAGGTAGCC




GTSESATPESGPGTSTEPSE

CGGCAGGCTCTCCGACCTCTACTGAGGAAGGTACTT




GSAPGTSTEPSEGSAPGTS

CTGAAAGCGCAACCCCGGAGTCCGGCCCAGGTACCT




TEPSEGSAPGTSTEPSEGSA

CTACCGAACCGTCTGAGGGCAGCGCACCAGGTACTT




PGTSTEPSEGSAPGTSTEPS

CTACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCC




EGSAPGSPAGSPTSTEEGT

CAGCAGGTTCTCCTACCTCCACCGAGGAAGGTACTT




STEPSEGSAPGTSESATPES

CTACCGAACCGTCCGAGGGTAGCGCACCAGGTACCT




GPGSEPATSGSETPGTSES

CTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTT




ATPESGPGSEPATSGSETP

CTGAAAGCGCTACCCCGGAGTCCGGTCCAGGTACTT




GTSESATPESGPGTSTEPSE

CTACTGAACCGTCCGAAGGTAGCGCACCAGGTACTT




GSAPGTSESATPESGPGSP

CTGAAAGCGCAACCCCTGAATCCGGTCCAGGTAGCG




AGSPTSTEEGSPAGSPTSTE

AACCGGCTACTTCTGGCTCTGAGACTCCAGGTACTTC




EGSPAGSPTSTEEGTSESAT

TACCGAACCGTCCGAAGGTAGCGCACCAGGTACTTC




PESGPGTSTEPSEGSAP

TACTGAACCGTCTGAAGGTAGCGCACCAGGTACTTC






TGAAAGCGCAACCCCGGAATCCGGCCCAGGTACCTC






TGAAAGCGCAACCCCGGAGTCCGGCCCAGGTAGCCC






TGCTGGCTCTCCAACCTCCACCGAAGAAGGTACCTC






TGAAAGCGCAACCCCTGAATCCGGCCCAGGTAGCGA






ACCGGCAACCTCCGGTTCTGAAACCCCAGGTACCTC






TGAAAGCGCTACTCCGGAGTCTGGCCCAGGTACCTC






TACTGAACCGTCTGAGGGTAGCGCTCCAGGTACTTC






TACTGAACCGTCCGAAGGTAGCGCACCAGGTACTTC






TACCGAACCGTCCGAAGGCAGCGCTCCAGGTACCTC






TACTGAACCTTCCGAGGGCAGCGCTCCAGGTACCTC






TACCGAACCTTCTGAAGGTAGCGCACCAGGTACTTC






TACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCCC






AGCAGGTTCTCCTACCTCCACCGAGGAAGGTACTTC






TACCGAACCGTCCGAGGGTAGCGCACCAGGTACCTC






TGAAAGCGCAACTCCTGAGTCTGGCCCAGGTAGCGA






ACCTGCTACCTCCGGCTCTGAGACTCCAGGTACCTCT






GAAAGCGCAACCCCGGAATCTGGTCCAGGTAGCGAA






CCTGCAACCTCTGGCTCTGAAACCCCAGGTACCTCTG






AAAGCGCTACTCCTGAATCTGGCCCAGGTACTTCTA






CTGAACCGTCCGAGGGCAGCGCACCAGGTACTTCTG






AAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGG






CTGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGG






CTGGCTCTCCAACTTCTACTGAAGAAGGTAGCCCGG






CAGGCTCTCCGACCTCTACTGAGGAAGGTACTTCTG






AAAGCGCAACCCCGGAGTCCGGCCCAGGTACCTCTA






CCGAACCGTCTGAGGGCAGCGCACCA






hGH-
FPTIPLSRLFDNAMLRAHR
717
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
718


AD836
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT




EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT




PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG




SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT




ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG




DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG




TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC




DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA




DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG




GFGGSSESGSSEGGPGSSE

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT




SGSSEGGPGESPGGSSGSE

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG




SGSGGEPSESGSSGESPGG

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA




SSGSESGESPGGSSGSESGS

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA




SESGSSEGGPGSSESGSSEG

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT




GPGSSESGSSEGGPGESPG

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTTCCT




GSSGSESGESPGGSSGSES

CTGAAAGCGGTTCTTCCGAAGGTGGTCCAGGTTCCT




GESPGGSSGSESGSSESGSS

CTGAAAGCGGTTCTTCTGAGGGTGGTCCAGGTGAAT




EGGPGSSESGSSEGGPGSS

CTCCGGGTGGCTCCAGCGGTTCCGAGTCAGGTTCTG




ESGSSEGGPGSSESGSSEG

GTGGCGAACCTTCCGAGTCTGGTAGCTCAGGTGAAT




GPGSSESGSSEGGPGSSES

CTCCGGGTGGTTCTAGCGGTTCCGAGTCAGGTGAAT




GSSEGGPGSGGEPSESGSS

CTCCGGGTGGTTCCAGCGGTTCTGAGTCAGGTTCCTC




GESPGGSSGSESGESPGGS

CGAAAGCGGTTCTTCTGAGGGCGGTCCAGGTTCCTC




SGSESGSGGEPSESGSSGSE

CGAAAGCGGTTCTTCCGAGGGCGGTCCAGGTTCTTC




GSSGPGESSGSSESGSSEG

TGAAAGCGGTTCTTCCGAGGGCGGTCCAGGTGAATC




GPGSGGEPSESGSSGSEGS

TCCTGGTGGTTCCAGCGGTTCCGAGTCAGGTGAATCT




SGPGESSGSSESGSSEGGP

CCAGGTGGCTCTAGCGGTTCCGAGTCAGGTGAATCT




GSGGEPSESGSSGESPGGS

CCTGGTGGTTCTAGCGGTTCTGAATCAGGTTCCTCCG




SGSESGSGGEPSESGSSGS

AAAGCGGTTCTTCTGAGGGCGGTCCAGGTTCCTCCG




GGEPSESGSSGSSESGSSEG

AAAGCGGTTCTTCCGAGGGCGGTCCAGGTTCTTCTG




GPGSGGEPSESGSSGSGGE

AAAGCGGTTCTTCCGAGGGCGGTCCAGGTTCCTCTG




PSESGSSGSEGSSGPGESSG

AAAGCGGTTCTTCTGAGGGCGGTCCAGGTTCTTCCG




ESPGGSSGSESGSEGSSGP

AAAGCGGTTCTTCCGAGGGCGGTCCAGGTTCTTCCG




GESSGSEGSSGPGESSGSG

AAAGCGGTTCTTCTGAAGGCGGTCCAGGTTCTGGTG




GEPSESGSSGSSESGSSEGG

GCGAACCGTCCGAGTCTGGTAGCTCAGGTGAATCTC




PGSSESGSSEGGPGESPGG

CGGGTGGCTCTAGCGGTTCCGAGTCAGGTGAATCTC




SSGSESGSGGEPSESGSSGS

CTGGTGGTTCCAGCGGTTCCGAGTCAGGTTCCGGTG




EGSSGPGESSGESPGGSSG

GCGAACCGTCCGAATCTGGTAGCTCAGGTAGCGAAG




SESGSEGSSGPGSSESGSSE

GTTCTTCTGGTCCAGGCGAATCTTCAGGTTCCTCTGA




GGPGSGGEPSESGSSGSEG

AAGCGGTTCTTCTGAGGGCGGTCCAGGTTCCGGTGG




SSGPGESSGSEGSSGPGESS

CGAACCGTCCGAATCTGGTAGCTCAGGTAGCGAAGG




GSEGSSGPGESSGSGGEPS

TTCTTCTGGTCCAGGCGAATCTTCAGGTTCCTCTGAA




ESGSSGSGGEPSESGSSGES

AGCGGTTCTTCTGAGGGCGGTCCAGGTTCCGGTGGC




PGGSSGSESGESPGGSSGS

GAACCTTCCGAATCTGGTAGCTCAGGTGAATCTCCG




ESGSGGEPSESGSSGSEGSS

GGTGGTTCTAGCGGTTCTGAGTCAGGTTCTGGTGGTG




GPGESSGESPGGSSGSESG

AACCTTCCGAGTCTGGTAGCTCAGGTTCTGGTGGCG




SSESGSSEGGPGSSESGSSE

AACCATCCGAGTCTGGTAGCTCAGGTTCTTCCGAAA




GGPGSSESGSSEGGPGSGG

GCGGTTCTTCCGAAGGCGGTCCAGGTTCTGGTGGTG




EPSESGSSGSSESGSSEGGP

AACCGTCCGAATCTGGTAGCTCAGGTTCTGGTGGCG




GESPGGSSGSESGSGGEPS

AACCATCCGAATCTGGTAGCTCAGGTAGCGAAGGTT




ESGSSGSSESGSSEGGPGES

CTTCTGGTCCTGGCGAATCTTCAGGTGAATCTCCAGG




PGGSSGSESGSGGEPSESG

TGGCTCTAGCGGTTCCGAATCAGGTAGCGAAGGTTC




SSGESPGGSSGSESGSGGE

TTCCGGTCCAGGTGAATCTTCAGGTAGCGAAGGTTC




PSESGSS

TTCTGGTCCTGGTGAATCCTCAGGTTCCGGTGGCGAA






CCATCTGAATCTGGTAGCTCAGGTTCCTCTGAAAGC






GGTTCTTCCGAAGGTGGTCCAGGTTCCTCTGAAAGC






GGTTCTTCTGAGGGTGGTCCAGGTGAATCTCCGGGT






GGCTCCAGCGOTTCCGAGTCAGGTTCTGGTGGCGAA






CCATCCGAATCTGGTAGCTCAGGTAGCGAAGGTTCT






TCTGGTCCTGGCGAATCTTCAGGTGAATCTCCAGGTG






GCTCTAGCGGTTCCGAATCAGGTAGCGAAGGTTCTT






CCGGTCCaGGTTCCTCTGAAAGCGGTTCTTCTGAGGG






CGGTCCAGGTTCTGGTGGCGAACCATCTGAATCTGG






TAGCTCAGGTAGCGAAGGTTCTTCCGGTCCGGGTGA






ATCTTCAGGTAGCGAAGGTTCTTCCGGTCCAGGTGA






ATCTTCAGGTAGCGAAGGTTCTTCTGGTCCTGGTGAA






TCCTCAGGTTCCGGTGGCGAACCATCTGAATCTGGT






AGCTCAGGTTCTGGTGGCGAACCATCCGAATCTGGT






AGCTCAGGTGAATCTCCGGGTGGCTCCAGCGGTTCT






GAATCAGGTGAATCTCCTGGTGGCTCCAGCGGTTCT






GAGTCAGGTTCTGGTGGCGAACCATCCGAATCTGGT






AGCTCAGGTAGCGAAGGTTCTTCTGGTCCTGGCGAA






TCTTCAGGTGAATCTCCAGGTGGCTCTAGCGGTTCCG






AATCAGGTTCCTCTGAAAGCGGTTCTTCTGAGGGCG






GTCCAGGTTCTTCCGAAAGCGGTTCTTCCGAGGGCG






GTCCAGGTTCTTCCGAAAGCGGTTCTTCTGAAGGCG






GTCCAGGTTCTGGTGGCGAACCGTCCGAATCTGGTA






GCTCAGGTTCCTCCGAAAGCGGTTCTTCTGAAGGTG






GTCCAGGTGAATCTCCAGGTGGTTCTAGCGGTTCTG






AATCAGGTTCTGGTGGCGAACCGTCCGAATCTGGTA






GCTCAGGTTCCTCCGAAAGCGGTTCTTCTGAAGGTG






GTCCAGGTGAATCTCCAGGTGGTTCTAGCGGTTCTG






AATCAGGTTCTGGTGGCGAACCGTCCGAATCTGGTA






GCTCAGGTGAATCTCCTGGTGGTTCCAGCGGTTCCG






AGTCAGGTTCTGGTGGCGAACCTTCCGAATCTGGTA






GCTCA






hGH-
FPTIPLSRLFDNAMLRAHR
719
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
720


AE864
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT




EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT




PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG




SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT




ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG




DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG




TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC




DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA




DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG




GFGGSPAGSPTSTEEGTSE

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT




SATPESGPGTSTEPSEGSAP

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG




GSPAGSPTSTEEGTSTEPSE

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA




GSAPGTSTEPSEGSAPGTS

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA




ESATPESGPGSEPATSGSET

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT




PGSEPATSGSETPGSPAGSP

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTAGC




TSTEEGTSESATPESGPGTS

CCGGCTGGCTCTCCTACCTCTACTGAGGAAGGTACTT




TEPSEGSAPGTSTEPSEGSA

CTGAAAGCGCTACTCCTGAGTCTGGTCCAGGTACCT




PGSPAGSPTSTEEGTSTEPS

CTACTGAACCGTCCGAAGGTAGCGCTCCAGGTAGCC




EGSAPGTSTEPSEGSAPGT

CAGCAGGCTCTCCGACTTCCACTGAGGAAGGTACTT




SESATPESGPGTSTEPSEGS

CTACTGAACCTTCCGAAGGCAGCGCACCAGGTACCT




APGTSESATPESGPGSEPA

CTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTT




TSGSETPGTSTEPSEGSAPG

CTGAAAGCGCTACCCCGGAATCTGGCCCAGGTAGCG




TSTEPSEGSAPGTSESATPE

AACCGGCTACTTCTGGTTCTGAAACCCCAGGTAGCG




SGPGTSESATPESGPGSPA

AACCGGCTACCTCCGGTTCTGAAACTCCAGGTAGCC




GSPTSTEEGTSESATPESGP

CGGCAGGCTCTCCGACCTCTACTGAGGAAGGTACTT




GSEPATSGSETPGTSESATP

CTGAAAGCGCAACCCCGGAGTCCGGCCCAGGTACCT




ESGPGTSTEPSEGSAPGTST

CTACCGAACCGTCTGAGGGCAGCGCACCAGGTACTT




EPSEGSAPGTSTEPSEGSAP

CTACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCC




GTSTEPSEGSAPGTSTEPSE

CAGCAGGTTCTCCTACCTCCACCGAGGAAGGTACTT




GSAPGTSTEPSEGSAPGSP

CTACCGAACCGTCCGAGGGTAGCGCACCAGGTACCT




AGSPTSTEEGTSTEPSEGSA

CTACTGAACCTTCTGAGGGCAGCGCTCCAGGTACTT




PGTSESATPESGPGSEPATS

CTGAAAGCGCTACCCCGGAGTCCGGTCCAGGTACTT




GSETPGTSESATPESGPGSE

CTACTGAACCGTCCGAAGGTAGCGCACCAGGTACTT




PATSGSETPGTSESATPESG

CTGAAAGCGCAACCCCTGAATCCGGTCCAGGTAGCG




PGTSTEPSEGSAPGTSESAT

AACCGGCTACTTCTGGCTCTGAGACTCCAGGTACTTC




PESGPGSPAGSPTSTEEGSP

TACCGAACCGTCCGAAGGTAGCGCACCAGGTACTTC




AGSPTSTEEGSPAGSPTSTE

TACTGAACCGTCTGAAGGTAGCGCACCAGGTACTTC




EGTSESATPESGPGTSTEPS

TGAAAGCGCAACCCCGGAATCCGGCCCAGGTACCTC




EGSAPGTSESATPESGPGS

TGAAAGCGCAACCCCGGAGTCCGGCCCAGGTAGCCC




EPATSGSETPGTSESATPES

TGCTGGCTCTCCAACCTCCACCGAAGAAGGTACCTC




GPGSEPATSGSETPGTSES

TGAAAGCGCAACCCCTGAATCCGGCCCAGGTAGCGA




ATPESGPGTSTEPSEGSAP

ACCGGCAACCTCCGGTTCTGAAACCCCAGGTACCTC




GSPAGSPTSTEEGTSESATP

TGAAAGCGCTACTCCGGAGTCTGGCCCAGGTACCTC




ESGPGSEPATSGSETPGTSE

TACTGAACCGTCTGAGGGTAGCGCTCCAGGTACTTC




SATPESGPGSPAGSPTSTEE

TACTGAACCGTCCGAAGGTAGCGCACCAGGTACTTC




GSPAGSPTSTEEGTSTEPSE

TACCGAACCGTCCGAAGGCAGCGCTCCAGGTACCTC




GSAPGTSESATPESGPGTS

TACTGAACCTTCCGAGGGCAGCGCTCCAGGTACCTC




ESATPESGPGTSESATPESG

TACCGAACCTTCTGAAGGTAGCGCACCAGGTACTTC




PGSEPATSGSETPGSEPATS

TACCGAACCGTCCGAGGGTAGCGCACCAGGTAGCCC




GSETPGSPAGSPTSTEEGTS

AGCAGGTTCTCCTACCTCCACCGAGGAAGGTACTTC




TEPSEGSAPGTSTEPSEGSA

TACCGAACCGTCCGAGGGTAGCGCACCAGGTACCTC




PGSEPATSGSETPGTSESAT

TGAAAGCGCAACTCCTGAGTCTGGCCCAGGTAGCGA




PESGPGTSTEPSEGSAP

ACCTGCTACCTCCGGCTCTGAGACTCCAGGTACCTCT






GAAAGCGCAACCCCGGAATCTGGTCCAGGTAGCGAA






CCTGCAACCTCTGGCTCTGAAACCCCAGGTACCTCTG






AAAGCGCTACTCCTGAATCTGGCCCAGGTACTTCTA






CTGAACCGTCCGAGGGCAGCGCACCAGGTACTTCTG






AAAGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGG






CTGGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGG






CTGGCTCTCCAACTTCTACTGAAGAAGGTAGCCCGG






CAGGCTCTCCGACCTCTACTGAGGAAGGTACTTCTG






AAAGCGCAACCCCGGAGTCCGGCCCAGGTACCTCTA






CCGAACCGTCTGAGGGCAGCGCACCAGGTACCTCTG






AAAGCGCAACTCCTGAGTCTGGCCCAGGTAGCGAAC






CTGCTACCTCCGGCTCTGAGACTCCAGGTACCTCTGA






AAGCGCAACCCCGGAATCTGGTCCAGGTAGCGAACC






TGCAACCTCTGGCTCTGAAACCCCAGGTACCTCTGA






AAGCGCTACTCCTGAATCTGGCCCAGGTACTTCTACT






GAACCGTCCGAGGGCAGCGCACCAGGTAGCCCTGCT






GGCTCTCCAACCTCCACCGAAGAAGGTACCTCTGAA






AGCGCAACCCCTGAATCCGGCCCAGGTAGCGAACCG






GCAACCTCCGGTTCTGAAACCCCAGGTACTTCTGAA






AGCGCTACTCCTGAGTCCGGCCCAGGTAGCCCGGCT






GGCTCTCCGACTTCCACCGAGGAAGGTAGCCCGGCT






GGCTCTCCAACTTCTACTGAAGAAGGTACTTCTACCG






AACCTTCCGAGGGCAGCGCACCAGGTACTTCTGAAA






GCGCTACCCCTGAGTCCGGCCCAGGTACTTCTGAAA






GCGCTACTCCTGAATCCGGTCCAGGTACTTCTGAAA






GCGCTACCCCGGAATCTGGCCCAGGTAGCGAACCGG






CTACTTCTGGTTCTGAAACCCCAGGTAGCGAACCGG






CTACCTCCGGTTCTGAAACTCCAGGTAGCCCAGCAG






GCTCTCCGACTTCCACTGAGGAAGGTACTTCTACTGA






ACCTTCCGAAGGCAGCGCACCAGGTACCTCTACTGA






ACCTTCTGAGGGCAGCGCTCCAGGTAGCGAACCTGC






AACCTCTGGCTCTGAAACCCCAGGTACCTCTGAAAG






CGCTACTCCTGAATCTGGCCCAGGTACTTCTACTGAA






CCGTCCGAGGGCAGCGCACCA






hGH-
FPTIPLSRLFDNAMLRAHR
721
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
722


AF864
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT




EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT




PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG




SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT




ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG




DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG




TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC




DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA




DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG




GFGGSTSESPSGTAPGTSPS

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT




GESSTAPGSTSESPSGTAPG

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG




STSESPSGTAPGTSTPESGS

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA




ASPGTSTPESGSASPGSTSE

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA




SPSGTAPGSTSESPSGTAPG

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT




TSPSGESSTAPGSTSESPSG

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTTCTA




TAPGTSPSGESSTAPGTSPS

CCAGCGAATCTCCTTCTGGCACCGCTCCAGGTACCTC




GESSTAPGSTSSTAESPGPG

TCCTAGCGGCGAATCTTCTACCGCTCCAGGTTCTACT




TSPSGESSTAPGTSPSGESS

AGCGAATCTCCTTCTGGCACTGCACCAGGTTCTACTA




TAPGSTSSTAESPGPGTSTP

GCGAATCCCCGTCTGGTACTGCTCCAGGTACTTCTAC




ESGSASPGTSTPESGSASPG

TCCTGAAAGCGGTTCCGCTTCTCCAGGTACCTCTACT




STSESPSGTAPGSTSESPSG

CCGGAAAGCGGTTCTGCATCTCCAGGTTCTACCAGC




TAPGTSTPESGSASPGSTSS

GAATCTCCTTCTGGCACCGCTCCAGGTTCTACTAGCG




TAESPGPGTSTPESGSASPG

AATCCCCGTCTGGTACCGCACCAGGTACTTCTCCTAG




STSESPSGTAPGTSPSGESS

CGGCGAATCTTCTACCGCACCAGGTTCTACTAGCGA




TAPGSTSSTAESPGPGTSPS

ATCTCCGTCTGGCACTGCTCCAGGTACTTCTCCTAGC




GESSTAPGTSTPESGSASPG

GGTGAATCTTCTACCGCTCCAGGTACTTCCCCTAGCG




STSSTAESPGPGSTSSTAES

GCGAATCTTCTACCGCTCCAGGTTCTACTAGCTCTAC




PGPGSTSSTAESPGPGSTSS

TGCAGAATCTCCGGGCCCAGGTACCTCTCCTAGCGG




TAESPGPGTSPSGESSTAPG

TGAATCTTCTACCGCTCCAGGTACTTCTCCGAGCGGT




STSESPSGTAPGSTSESPSG

GAATCTTCTACCGCTCCAGGTTCTACTAGCTCTACTG




TAPGTSTPESGPXXXGASA

CAGAATCTCCTGGCCCAGGTACCTCTACTCCGGAAA




SGAPSTXXXXSESPSGTAP

GCGGCTCTGCATCTCCAGGTACTTCTACCCCTGAAAG




GSTSESPSGTAPGSTSESPS

CGGTTCTGCATCTCCAGGTTCTACTAGCGAATCTCCT




GTAPGSTSESPSGTAPGSTS

TCTGGCACTGCACCAGGTTCTACCAGCGAATCTCCGT




ESPSGTAPGSTSESPSGTAP

CTGGCACTGCACCAGGTACCTCTACCCCTGAAAGCG




GTSTPESGSASPGTSPSGES

GTTCCGCTTCTCCAGGTTCTACCAGCTCTACCGCAGA




STAPGTSPSGESSTAPGSTS

ATCTCCTGGTCCAGGTACCTCTACTCCGGAAAGCGG




STAESPGPGTSPSGESSTAP

CTCTGCATCTCCAGGTTCTACTAGCGAATCTCCTTCT




GTSTPESGSASPGSTSESPS

GGCACTGCACCAGGTACTTCTCCGAGCGGTGAATCT




GTAPGSTSESPSGTAPGTSP

TCTACCGCACCAGGTTCTACTAGCTCTACCGCTGAAT




SGESSTAPGSTSESPSGTAP

CTCCGGGCCCAGGTACTTCTCCGAGCGGTGAATCTTC




GTSTPESGSASPGTSTPESG

TACTGCTCCAGGTACCTCTACTCCTGAAAGCGGTTCT




SASPGSTSESPSGTAPGTST

GCATCTCCAGGTTCCACTAGCTCTACCGCAGAATCTC




PESGSASPGSTSSTAESPGP

CGGGCCCAGGTTCTACTAGCTCTACTGCTGAATCTCC




GSTSESPSGTAPGSTSESPS

TGGCCCAGGTTCTACTAGCTCTACTGCTGAATCTCCG




GTAPGTSPSGESSTAPGSTS

GGTCCAGGTTCTACCAGCTCTACTGCTGAATCTCCTG




STAESPGPGTSPSGESSTAP

GTCCAGGTACCTCCCCGAGCGGTGAATCTTCTACTGC




GTSTPESGSASPGTSPSGES

ACCAGGTTCTACTAGCGAATCTCCTTCTGGCACTGCA




STAPGTSPSGESSTAPGTSP

CCAGGTTCTACCAGCGAATCTCCGTCTGGCACTGCA




SGESSTAPGSTSSTAESPGP

CCAGGTACCTCTACCCCTGAAAGCGGTCCXXXXXXX




GSTSSTAESPGPGTSPSGES

XXXXXTGCAAGCGCAAGCGGCGCGCCAAGCACGGG




STAPGSSPSASTGTGPGSST

AXXXXXXXXTAGCGAATCTCCTTCTGGTACCGCTCC




PSGATGSPGSSTPSGATGS

AGGTTCTACCAGCGAATCCCCGTCTGGTACTGCTCCA




P

GGTTCTACCAGCGAATCTCCTTCTGGTACTGCACCAG






GTTCTACTAGCGAATCTCCTTCTGGTACCGCTCCAGG






TTCTACCAGCGAATCCCCGTCTGGTACTGCTCCAGGT






TCTACCAGCGAATCTCCTTCTGGTACTGCACCAGGTA






CTTCTACTCCGGAAAGCGGTTCCGCATCTCCAGGTAC






TTCTCCTAGCGGTGAATCTTCTACTGCTCCAGGTACC






TCTCCTAGCGGCGAATCTTCTACTGCTCCAGGTTCTA






CCAGCTCTACTGCTGAATCTCCGGGTCCAGGTACTTC






CCCGAGCGGTGAATCTTCTACTGCACCAGGTACTTCT






ACTCCGGAAAGCGGTTCCGCTTCTCCAGGTTCTACCA






GCGAATCTCCTTCTGGCACCGCTCCAGGTTCTACTAG






CGAATCCCCGTCTGGTACCGCACCAGGTACTTCTCCT






AGCGGCGAATCTTCTACCGCACCAGGTTCTACTAGC






GAATCCCCGTCTGGTACCGCACCAGGTACTTCTACCC






CGGAAAGCGGCTCTGCTTCTCCAGGTACTTCTACCCC






GGAAAGCGGCTCCGCATCTCCAGGTTCTACTAGCGA






ATCTCCTTCTGGTACCGCTCCAGGTACTTCTACCCCT






GAAAGCGGCTCCGCTTCTCCAGGTTCCACTAGCTCTA






CCGCTGAATCTCCGGGTCCAGGTTCTACCAGCGAAT






CTCCTTCTGGCACCGCTCCAGGTTCTACTAGCGAATC






CCCGTCTGGTACCGCACCAGGTACTTCTCCTAGCGGC






GAATCTTCTACCGCACCAGGTTCTACCAGCTCTACTG






CTGAATCTCCGGGTCCAGGTACTTCCCCGAGCGGTG






AATCTTCTACTGCACCAGGTACTTCTACTCCGGAAAG






CGGTTCCGCTTCTCCAGGTACCTCCCCTAGCGGCGAA






TCTTCTACTGCTCCAGGTACCTCTCCTAGCGGCGAAT






CTTCTACCGCTCCAGGTACCTCCCCTAGCGGTGAATC






TTCTACCGCACCAGGTTCTACTAGCTCTACTGCTGAA






TCTCCGGGTCCAGGTTCTACCAGCTCTACTGCTGAAT






CTCCTGGTCCAGGTACCTCCCCGAGCGGTGAATCTTC






TACTGCACCAGGTTCTAGCCCTTCTGCTTCCACCGGT






ACCGGCCCAGGTAGCTCTACTCCGTCTGGTGCAACT






GGCTCTCCAGGTAGCTCTACTCCGTCTGGTGCAACCG






GCTCCCCA






hGH-
FPTIPLSRLFDNAMLRAHR
723
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
724


AG864
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT




EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT




PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG




SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT




ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG




DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG




TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC




DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA




DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG




GFGGASPGTSSTGSPGSSPS

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT




ASTGTGPGSSPSASTGTGP

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG




GTPGSGTASSSPGSSTPSG

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA




ATGSPGSNPSASTGTGPGA

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA




SPGTSSTGSPGTPGSGTASS

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT




SPGSSTPSGATGSPGTPGS

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTGCTT




GTASSSPGASPGTSSTGSP

CCCCGGGCACCAGCTCTACTGGTTCTCCAGGTTCTAG




GASPGTSSTGSPGTPGSGT

CCCGTCTGCTTCTACTGGTACTGGTCCAGGTTCTAGC




ASSSPGSSTPSGATGSPGAS

CCTTCTGCTTCCACTGGTACTGGTCCAGGTACCCCGG




PGTSSTGSPGTPGSGTASSS

GTAGCGGTACCGCTTCTTCTTCTCCAGGTAGCTCTAC




PGSSTPSGATGSPGSNPSAS

TCCGTCTGGTGCTACCGGCTCTCCAGGTTCTAACCCT




TGTGPGSSPSASTGTGPGS

TCTGCATCCACCGGTACCGGCCCAGGTGCTTCTCCGG




STPSGATGSPGSSTPSGAT

GCACCAGCTCTACTGGTTCTCCAGGTACCCCGGGCA




GSPGASPGTSSTGSPGASP

GCGGTACCGCATCTTCTTCTCCAGGTAGCTCTACTCC




GTSSTGSPGASPGTSSTGSP

TTCTGGTGCAACTGGTTCTCCAGGTACTCCTGGCAGC




GTPGSGTASSSPGASPGTS

GGTACCGCTTCTTCTTCTCCAGGTGCTTCTCCTGGTA




STGSPGASPGTSSTGSPGA

CTAGCTCTACTGGTTCTCCAGGTGCTTCTCCGGGCAC




SPGTSSTGSPGSSPSASTGT

TAGCTCTACTGGTTCTCCAGGTACCCCGGGTAGCGGT




GPGTPGSGTASSSPGASPG

ACTGCTTCTTCCTCTCCAGGTAGCTCTACCCCTTCTG




TSSTGSPGASPGTSSTGSPG

GTGCAACCGGCTCTCCAGGTGCTTCTCCGGGCACCA




ASPGTSSTGSPGSSTPSGAT

GCTCTACCGGTTCTCCAGGTACCCCGGGTAGCGGTA




GSPGSSTPSGATGSPGASP

CCGCTTCTTCTTCTCCAGGTAGCTCTACTCCGTCTGG




GTSSTGSPGTPGSGTASSSP

TGCTACCGGCTCTCCAGGTTCTAACCCTTCTGCATCC




GSSTPSGATGSPGSSTPSG

ACCGGTACCGGCCCAGGTTCTAGCCCTTCTGCTTCCA




ATGSPGSSTPSGATGSPGS

CCGGTACTGGCCCAGGTAGCTCTACCCCTTCTGGTGC




SPSASTGTGPGASPGTSST

TACCGGCTCCCCAGGTAGCTCTACTCCTTCTGGTGCA




GSPGASPGTSSTGSPGTPG

ACTGGCTCTCCAGGTGCATCTCCGGGCACTAGCTCTA




SGTASSSPGASPGTSSTGSP

CTGGTTCTCCAGGTGCATCCCCTGGCACTAGCTCTAC




GASPGTSSTGSPGASPGTS

TGGTTCTCCAGGTGCTTCTCCTGGTACCAGCTCTACT




STGSPGASPGTSSTGSPGTP

GGTTCTCCAGGTACTCCTGGCAGCGGTACCGCTTCTT




GSGTASSSPGSSTPSGATG

CTTCTCCAGGTGCTTCTCCTGGTACTAGCTCTACTGG




SPGTPGSGTASSSPGSSTPS

TTCTCCAGGTGCTTCTCCGGGCACTAGCTCTACTGGT




GATGSPGTPGSGTASSSPG

TCTCCAGGTGCTTCCCCGGGCACTAGCTCTACCGGTT




SSTPSGATGSPGSSTPSGAT

CTCCAGGTTCTAGCCCTTCTGCATCTACTGGTACTGG




GSPGSSPSASTGTGPGSSPS

CCCAGGTACTCCGGGCAGCGGTACTGCTTCTTCCTCT




ASTGTGPGASPGTSSTGSP

CCAGGTGCATCTCCGGGCACTAGCTCTACTGGTTCTC




GTPGSGTASSSPGSSTPSG

CAGGTGCATCCCCTGGCACTAGCTCTACTGGTTCTCC




ATGSPGSSPSASTGTGPGS

AGGTGCTTCTCCTGGTACCAGCTCTACTGGTTCTCCA




SPSASTGTGPGASPGTSST

GGTAGCTCTACTCCGTCTGGTGCAACCGGTTCCCCAG




GSPGASPGTSSTGSPGSSTP

GTAGCTCTACTCCTTCTGGTGCTACTGGCTCCCCAGG




SGATGSPGSSPSASTGTGP

TGCATCCCCTGGCACCAGCTCTACCGGTTCTCCAGGT




GASPGTSSTGSPGSSPSAST

ACCCCGGGCAGCGGTACCGCATCTTCCTCTCCAGGT




GTGPGTPGSGTASSSPGSS

AGCTCTACCCCGTCTGGTGCTACCGGTTCCCCAGGTA




TPSGATGSPGSSTPSGATG

GCTCTACCCCGTCTGGTGCAACCGGCTCCCCAGGTA




SPGASPGTSSTGSP

GCTCTACTCCGTCTGGTGCAACCGGCTCCCCAGGTTC






TAGCCCGTCTGCTTCCACTGGTACTGGCCCAGGTGCT






TCCCCGGGCACCAGCTCTACTGGTTCTCCAGGTGCAT






CCCCGGGTACCAGCTCTACCGGTTCTCCAGGTACTCC






TGGCAGCGGTACTGCATCTTCCTCTCCAGGTGCTTCT






CCGGGCACCAGCTCTACTGGTTCTCCAGGTGCATCTC






CGGGCACTAGCTCTACTGGTTCTCCAGGTGCATCCCC






TGGCACTAGCTCTACTGGTTCTCCAGGTGCTTCTCCT






GGTACCAGCTCTACTGGTTCTCCAGGTACCCCTGGTA






GCGGTACTGCTTCTTCCTCTCCAGGTAGCTCTACTCC






GTCTGGTGCTACCGGTTCTCCAGGTACCCCGGGTAG






CGGTACCGCATCTTCTTCTCCAGGTAGCTCTACCCCG






TCTGGTGCTACTGGTTCTCCAGGTACTCCGGGCAGCG






GTACTGCTTCTTCCTCTCCAGGTAGCTCTACCCCTTC






TGGTGCTACTGGCTCTCCAGGTAGCTCTACCCCGTCT






GGTGCTACTGGCTCCCCAGGTTCTAGCCCTTCTGCAT






CCACCGGTACCGGTCCAGGTTCTAGCCCGTCTGCATC






TACTGGTACTGGTCCAGGTGCATCCCCGGGCACTAG






CTCTACCGGTTCTCCAGGTACTCCTGGTAGCGGTACT






GCTTCTTCTTCTCCAGGTAGCTCTACTCCTTCTGGTG






CTACTGGTTCTCCAGGTTCTAGCCCTTCTGCATCCAC






CGGTACCGGCCCAGGTTCTAGCCCGTCTGCTTCTACC






GGTACTGGTCCAGGTGCTTCTCCGGGTACTAGCTCTA






CTGGTTCTCCAGGTGCATCTCCTGGTACTAGCTCTAC






TGGTTCTCCAGGTAGCTCTACTCCGTCTGGTGCAACC






GGCTCTCCAGGTTCTAGCCCTTCTGCATCTACCGGTA






CTGGTCCAGGTGCATCCCCTGGTACCAGCTCTACCG






GTTCTCCAGGTTCTAGCCCTTCTGCTTCTACCGGTAC






CGGTCCAGGTACCCCTGGCAGCGGTACCGCATCTTC






CTCTCCAGGTAGCTCTACTCCGTCTGGTGCAACCGGT






TCCCCAGGTAGCTCTACTCCTTCTGGTGCTACTGGCT






CCCCAGGTGCATCCCCTGGCACCAGCTCTACCGGTTC






TCCA






hGH-
FPTIPLSRLFDNAMLRAHR
725
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
726


AM875
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT




EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT




PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG




SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT




ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG




DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG




TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC




DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA




DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG




GFGGTSTEPSEGSAPGSEP

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT




ATSGSETPGSPAGSPTSTEE

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG




GSTSSTAESPGPGTSTPESG

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA




SASPGSTSESPSGTAPGSTS

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA




ESPSGTAPGTSTPESGSASP

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT




GTSTPESGSASPGSEPATSG

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTACTT




SETPGTSESATPESGPGSPA

CTACTGAACCGTCTGAAGGCAGCGCACCAGGTAGCG




GSPTSTEEGTSTEPSEGSAP

AACCGGCTACTTCCGGTTCTGAAACCCCAGGTAGCC




GTSESATPESGPGTSTEPSE

CAGCAGGTTCTCCAACTTCTACTGAAGAAGGTTCTA




GSAPGTSTEPSEGSAPGSP

CCAGCTCTACCGCAGAATCTCCTGGTCCAGGTACCTC




AGSPTSTEEGTSTEPSEGSA

TACTCCGGAAAGCGGCTCTGCATCTCCAGGTTCTACT




PGTSTEPSEGSAPGTSESAT

AGCGAATCTCCTTCTGGCACTGCACCAGGTTCTACTA




PESGPGTSESATPESGPGTS

GCGAATCCCCGTCTGGTACTGCTCCAGGTACTTCTAC




TEPSEGSAPGTSTEPSEGSA

TCCTGAAAGCGGTTCCGCTTCTCCAGGTACCTCTACT




PGTSESATPESGPGTSTEPS

CCGGAAAGCGGTTCTGCATCTCCAGGTAGCGAACCG




EGSAPGSEPATSGSETPGSP

GCAACCTCCGGCTCTGAAACCCCAGGTACCTCTGAA




AGSPTSTEEGSSTPSGATG

AGCGCTACTCCTGAATCCGGCCCAGGTAGCCCGGCA




SPGTPGSGTASSSPGSSTPS

GGTTCTCCGACTTCCACTGAGGAAGGTACCTCTACTG




GATGSPGTSTEPSEGSAPG

AACCTTCTGAGGGCAGCGCTCCAGGTACTTCTGAAA




TSTEPSEGSAPGSEPATSGS

GCGCTACCCCGGAGTCCGGTCCAGGTACTTCTACTG




ETPGSPAGSPTSTEEGSPA

AACCGTCCGAAGGTAGCGCACCAGGTACTTCTACCG




GSPTSTEEGTSTEPSEGSAP

AACCGTCCGAGGGTAGCGCACCAGGTAGCCCAGCAG




GASASGAPSTGGTSESATP

GTTCTCCTACCTCCACCGAGGAAGGTACTTCTACCGA




ESGPGSPAGSPTSTEEGSPA

ACCGTCCGAGGGTAGCGCACCAGGTACTTCTACCGA




GSPTSTEEGSTSSTAESPGP

ACCTTCCGAGGGCAGCGCACCAGGTACTTCTGAAAG




GSTSESPSGTAPGTSPSGES

CGCTACCCCTGAGTCCGGCCCAGGTACTTCTGAAAG




STAPGTPGSGTASSSPGSST

CGCTACTCCTGAATCCGGTCCAGGTACCTCTACTGAA




PSGATGSPGSSPSASTGTG

CCTTCCGAAGGCAGCGCTCCAGGTACCTCTACCGAA




PGSEPATSGSETPGTSESAT

CCGTCCGAGGGCAGCGCACCAGGTACTTCTGAAAGC




PESGPGSEPATSGSETPGST

GCAACCCCTGAATCCGGTCCAGGTACTTCTACTGAA




SSTAESPGPGSTSSTAESPG

CCTTCCGAAGGTAGCGCTCCAGGTAGCGAACCTGCT




PGTSPSGESSTAPGSEPATS

ACTTCTGGTTCTGAAACCCCAGGTAGCCCGGCTGGC




GSETPGSEPATSGSETPGTS

TCTCCGACCTCCACCGAGGAAGGTAGCTCTACCCCG




TEPSEGSAPGSTSSTAESPG

TCTGGTGCTACTGGTTCTCCAGGTACTCCGGGCAGCG




PGTSTPESGSASPGSTSESP

GTACTGCTTCTTCCTCTCCAGGTAGCTCTACCCCTTC




SGTAPGTSTEPSEGSAPGT

TGGTGCTACTGGCTCTCCAGGTACCTCTACCGAACCG




STEPSEGSAPGTSTEPSEGS

TCCGAGGGTAGCGCACCAGGTACCTCTACTGAACCG




APGSSTPSGATGSPGSSPSA

TCTGAGGGTAGCGCTCCAGGTAGCGAACCGGCAACC




STGTGPGASPGTSSTGSPG

TCCGGTTCTGAAACTCCAGGTAGCCCTGCTGGCTCTC




SEPATSGSETPGTSESATPE

CGACTTCTACTGAGGAAGGTAGCCCGGCTGGTTCTC




SGPGSPAGSPTSTEEGSSTP

CGACTTCTACTGAGGAAGGTACTTCTACCGAACCTTC




SGATGSPGSSPSASTGTGP

CGAAGGTAGCGCTCCAGGTGCAAGCGCAAGCGGCG




GASPGTSSTGSPGTSESATP

CGCCAAGCACGGGAGGTACTTCTGAAAGCGCTACTC




ESGPGTSTEPSEGSAPGTST

CTGAGTCCGGCCCAGGTAGCCCGGCTGGCTCTCCGA




EPSEGSAP

CTTCCACCGAGGAAGGTAGCCCGGCTGGCTCTCCAA






CTTCTACTGAAGAAGGTTCTACCAGCTCTACCGCTGA






ATCTCCTGGCCCAGGTTCTACTAGCGAATCTCCGTCT






GGCACCGCACCAGGTACTTCCCCTAGCGGTGAATCT






TCTACTGCACCAGGTACCCCTGGCAGCGGTACCGCT






TCTTCCTCTCCAGGTAGCTCTACCCCGTCTGGTGCTA






CTGGCTCTCCAGGTTCTAGCCCGTCTGCATCTACCGG






TACCGGCCCAGGTAGCGAACCGGCAACCTCCGGCTC






TGAAACTCCAGGTACTTCTGAAAGCGCTACTCCGGA






ATCCGGCCCAGGTAGCGAACCGGCTACTTCCGGCTC






TGAAACCCCAGGTTCCACCAGCTCTACTGCAGAATC






TCCGGGCCCAGGTTCTACTAGCTCTACTGCAGAATCT






CCGGGTCCAGGTACTTCTCCTAGCGGCGAATCTTCTA






CCGCTCCAGGTAGCGAACCGGCAACCTCTGGCTCTG






AAACTCCAGGTAGCGAACCTGCAACCTCCGGCTCTG






AAACCCCAGGTACTTCTACTGAACCTTCTGAGGGCA






GCGCACCAGGTTCTACCAGCTCTACCGCAGAATCTC






CTGGTCCAGGTACCTCTACTCCGGAAAGCGGCTCTG






CATCTCCAGGTTCTACTAGCGAATCTCCTTCTGGCAC






TGCACCAGGTACTTCTACCGAACCGTCCGAAGGCAG






CGCTCCAGGTACCTCTACTGAACCTTCCGAGGGCAG






CGCTCCAGGTACCTCTACCGAACCTTCTGAAGGTAG






CGCACCAGGTAGCTCTACTCCGTCTGGTGCAACCGG






CTCCCCAGGTTCTAGCCCGTCTGCTTCCACTGGTACT






GGCCCAGGTGCTTCCCCGGGCACCAGCTCTACTGGT






TCTCCAGGTAGCGAACCTGCTACCTCCGGTTCTGAA






ACCCCAGGTACCTCTGAAAGCGCAACTCCGGAGTCT






GGTCCAGGTAGCCCTGCAGGTTCTCCTACCTCCACTG






AGGAAGGTAGCTCTACTCCGTCTGGTGCAACCGGCT






CCCCAGGTTCTAGCCCGTCTGCTTCCACTGGTACTGG






CCCAGGTGCTTCCCCGGGCACCAGCTCTACTGGTTCT






CCAGGTACCTCTGAAAGCGCTACTCCGGAGTCTGGC






CCAGGTACCTCTACTGAACCGTCTGAGGGTAGCGCT






CCAGGTACTTCTACTGAACCGTCCGAAGGTAGCGCA






CCA






hGH-
FPTIPLSRLFDNAMLRAHR
727
TTTCCGACTATTCCGCTGTCTCGTCTGTTTGATAATG
728


AM1318
LHQLAFDTYQEFEEAYIPK

CTATGCTGCGTGCGCACCGTCTGCACCAGCTGGCCTT




EQKYSFLQNPQTSLCFSESI

TGATACTTACCAGGAATTTGAAGAAGCcTACATTCCT




PTPSNREETQQKSNLELLRI

AAAGAGCAGAAGTACTCTTTCCTGCAAAACCCACAG




SLLLIQSWLEPVQFLRSVF

ACTTCTCTCTGCTTCAGCGAATCTATTCCGACGCCTT




ANSLVYGASDSNVYDLLK

CCAATCGCGAGGAAACTCAGCAAAAGTCCAATCTGG




DLEEGIQTLMGRLEDGSPR

AACTACTCCGCATTTCTCTGCTTCTGATTCAGAGCTG




TGQIFKQTYSKFDTNSHND

GCTAGAACCAGTGCAATTTCTGCGTTCCGTCTTCGCC




DALLKNYGLLYCFRKDM

AATAGCCTAGTTTATGGCGCATCCGACAGCAACGTA




DKVETFLRIVQCRSVEGSC

TACGATCTCCTGAAAGATCTCGAGGAAGGCATTCAG




GFGGTSTEPSEGSAPGSEP

ACCCTGATGGGTCGTCTCGAGGATGGCTCTCCGCGT




ATSGSETPGSPAGSPTSTEE

ACTGGTCAGATCTTCAAGCAGACTTACTCTAAATTTG




GSTSSTAESPGPGTSTPESG

ATACTAACAGCCACAATGACGATGCGCTTCTAAAAA




SASPGSTSESPSGTAPGSTS

ACTATGGTCTGCTGTATTGTTTTCGTAAAGATATGGA




ESPSGTAPGTSTPESGSASP

CAAAGTTGAAACCTTCCTGCGTATTGTTCAGTGTCGT




GTSTPESGSASPGSEPATSG

TCCGTTGAGGGCAGCTGTGGTTTCTAAGGTGGTACTT




SETPGTSESATPESGPGSPA

CTACTGAACCGTCTGAAGGCAGCGCACCAGGTAGCG




GSPTSTEEGTSTEPSEGSAP

AACCGGCTACTTCCGGTTCTGAAACCCCAGGTAGCC




GTSESATPESGPGTSTEPSE

CAGCAGGTTCTCCAACTTCTACTGAAGAAGGTTCTA




GSAPGTSTEPSEGSAPGSP

CCAGCTCTACCGCAGAATCTCCTGGTCCAGGTACCTC




AGSPTSTEEGTSTEPSEGSA

TACTCCGGAAAGCGGCTCTGCATCTCCAGGTTCTACT




PGTSTEPSEGSAPGTSESAT

AGCGAATCTCCTTCTGGCACTGCACCAGGTTCTACTA




PESGPGTSESATPESGPGTS

GCGAATCCCCGTCTGGTACTGCTCCAGGTACTTCTAC




TEPSEGSAPGTSTEPSEGSA

TCCTGAAAGCGGTTCCGCTTCTCCAGGTACCTCTACT




PGTSESATPESGPGTSTEPS

CCGGAAAGCGGTTCTGCATCTCCAGGTAGCGAACCG




EGSAPGSEPATSGSETPGSP

GCAACCTCCGGCTCTGAAACCCCAGGTACCTCTGAA




AGSPTSTEEGSSTPSGATG

AGCGCTACTCCTGAATCCGGCCCAGGTAGCCCGGCA




SPGTPGSGTASSSPGSSTPS

GGTTCTCCGACTTCCACTGAGGAAGGTACCTCTACTG




GATGSPGTSTEPSEGSAPG

AACCTTCTGAGGGCAGCGCTCCAGGTACTTCTGAAA




TSTEPSEGSAPGSEPATSGS

GCGCTACCCCGGAGTCCGGTCCAGGTACTTCTACTG




ETPGSPAGSPTSTEEGSPA

AACCGTCCGAAGGTAGCGCACCAGGTACTTCTACCG




GSPTSTEEGTSTEPSEGSAP

AACCGTCCGAGGGTAGCGCACCAGGTAGCCCAGCAG




GPEPTGPAPSGGSEPATSG

GTTCTCCTACCTCCACCGAGGAAGGTACTTCTACCGA




SETPGTSESATPESGPGSPA

ACCGTCCGAGGGTAGCGCACCAGGTACTTCTACCGA




GSPTSTEEGTSESATPESGP

ACCTTCCGAGGGCAGCGCACCAGGTACTTCTGAAAG




GSPAGSPTSTEEGSPAGSPT

CGCTACCCCTGAGTCCGGCCCAGGTACTTCTGAAAG




STEEGTSESATPESGPGSPA

CGCTACTCCTGAATCCGGTCCAGGTACCTCTACTGAA




GSPTSTEEGSPAGSPTSTEE

CCTTCCGAAGGCAGCGCTCCAGGTACCTCTACCGAA




GSTSSTAESPGPGSTSESPS

CCGTCCGAGGGCAGCGCACCAGGTACTTCTGAAAGC




GTAPGTSPSGESSTAPGSTS

GCAACCCCTGAATCCGGTCCAGGTACTTCTACTGAA




ESPSGTAPGSTSESPSGTAP

CCTTCCGAAGGTAGCGCTCCAGGTAGCGAACCTGCT




GTSPSGESSTAPGTSTEPSE

ACTTCTGGTTCTGAAACCCCAGGTAGCCCGGCTGGC




GSAPGTSESATPESGPGTS

TCTCCGACCTCCACCGAGGAAGGTAGCTCTACCCCG




ESATPESGPGSEPATSGSET

TCTGGTGCTACTGGTTCTCCAGGTACTCCGGGCAGCG




PGTSESATPESGPGTSESAT

GTACTGCTTCTTCCTCTCCAGGTAGCTCTACCCCTTC




PESGPGTSTEPSEGSAPGTS

TGGTGCTACTGGCTCTCCAGGTACCTCTACCGAACCG




ESATPESGPGTSTEPSEGSA

TCCGAGGGTAGCGCACCAGGTACCTCTACTGAACCG




PGTSPSGESSTAPGTSPSGE

TCTGAGGGTAGCGCTCCAGGTAGCGAACCGGCAACC




SSTAPGTSPSGESSTAPGTS

TCCGGTTCTGAAACTCCAGGTAGCCCTGCTGGCTCTC




TEPSEGSAPGSPAGSPTSTE

CGACTTCTACTGAGGAAGGTAGCCCGGCTGGTTCTC




EGTSTEPSEGSAPGSSPSAS

CGACTTCTACTGAGGAAGGTACTTCTACCGAACCTTC




TGTGPGSSTPSGATGSPGS

CGAAGGTAGCGCTCCAGGTCCAGAACCAACGGGGCC




STPSGATGSPGSSTPSGAT

GGCCCCAAGCGGAGGTAGCGAACCGGCAACCTCCG




GSPGSSTPSGATGSPGASP

GCTCTGAAACCCCAGGTACCTCTGAAAGCGCTACTC




GTSSTGSPGASASGAPSTG

CTGAATCCGGCCCAGGTAGCCCGGCAGGTTCTCCGA




GTSPSGESSTAPGSTSSTAE

CTTCCACTGAGGAAGGTACTTCTGAAAGCGCTACTC




SPGPGTSPSGESSTAPGTSE

CTGAGTCCGGCCCAGGTAGCCCGGCTGGCTCTCCGA




SATPESGPGTSTEPSEGSAP

CTTCCACCGAGGAAGGTAGCCCGGCTGGCTCTCCAA




GTSTEPSEGSAPGSSPSAST

CTTCTACTGAAGAAGGTACTTCTGAAAGCGCTACTC




GTGPGSSTPSGATGSPGAS

CTGAGTCCGGCCCAGGTAGCCCGGCTGGCTCTCCGA




PGTSSTGSPGTSTPESGSAS

CTTCCACCGAGGAAGGTAGCCCGGCTGGCTCTCCAA




PGTSPSGESSTAPGTSPSGE

CTTCTACTGAAGAAGGTTCTACCAGCTCTACCGCTGA




SSTAPGTSESATPESGPGSE

ATCTCCTGGCCCAGGTTCTACTAGCGAATCTCCGTCT




PATSGSETPGTSTEPSEGSA

GGCACCGCACCAGGTACTTCCCCTAGCGGTGAATCT




PGSTSESPSGTAPGSTSESP

TCTACTGCACCAGGTTCTACCAGCGAATCTCCTTCTG




SGTAPGTSTPESGSASPGSP

GCACCGCTCCAGGTTCTACTAGCGAATCCCCGTCTG




AGSPTSTEEGTSESATPESG

GTACCGCACCAGGTACTTCTCCTAGCGGCGAATCTTC




PGTSTEPSEGSAPGSPAGSP

TACCGCACCAGGTACTTCTACCGAACCTTCCGAGGG




TSTEEGTSESATPESGPGSE

CAGCGCACCAGGTACTTCTGAAAGCGCTACCCCTGA




PATSGSETPGSSTPSGATGS

GTCCGGCCCAGGTACTTCTGAAAGCGCTACTCCTGA




PGASPGTSSTGSPGSSTPSG

ATCCGGTCCAGGTAGCGAACCGGCAACCTCTGGCTC




ATGSPGSTSESPSGTAPGTS

TGAAACCCCAGGTACCTCTGAAAGCGCTACTCCGGA




PSGESSTAPGSTSSTAESPG

ATCTGGTCCAGGTACTTCTGAAAGCGCTACTCCGGA




PGSSTPSGATGSPGASPGT

ATCCGGTCCAGGTACCTCTACTGAACCTTCTGAGGG




SSTGSPGTPGSGTASSSPGS

CAGCGCTCCAGGTACTTCTGAAAGCGCTACCCCGGA




PAGSPTSTEEGSPAGSPTST

GTCCGGTCCAGGTACTTCTACTGAACCGTCCGAAGG




EEGTSTEPSEGSAP

TAGCGCACCAGGTACCTCCCCTAGCGGCGAATCTTC






TACTGCTCCAGGTACCTCTCCTAGCGGCGAATCTTCT






ACCGCTCCAGGTACCTCCCCTAGCGGTGAATCTTCTA






CCGCACCAGGTACTTCTACCGAACCGTCCGAGGGTA






GCGCACCAGGTAGCCCAGCAGGTTCTCCTACCTCCA






CCGAGGAAGGTACTTCTACCGAACCGTCCGAGGGTA






GCGCACCAGGTTCTAGCCCTTCTGCTTCCACCGGTAC






CGGCCCAGGTAGCTCTACTCCGTCTGGTGCAACTGG






CTCTCCAGGTAGCTCTACTCCGTCTGGTGCAACCGGC






TCCCCAGGTAGCTCTACCCCGTCTGGTGCTACCGGCT






CTCCAGGTAGCTCTACCCCGTCTGGTGCAACCGGCTC






CCCAGGTGCATCCCCGGGTACTAGCTCTACCGGTTCT






CCAGGTGCAAGCGCAAGCGGCGCGCCAAGCACGGG






AGGTACTTCTCCGAGCGGTGAATCTTCTACCGCACC






AGGTTCTACTAGCTCTACCGCTGAATCTCCGGGCCCA






GGTACTTCTCCGAGCGGTGAATCTTCTACTGCTCCAG






GTACCTCTGAAAGCGCTACTCCGGAGTCTGGCCCAG






GTACCTCTACTGAACCGTCTGAGGGTAGCGCTCCAG






GTACTTCTACTGAACCGTCCGAAGGTAGCGCACCAG






GTTCTAGCCCTTCTGCATCTACTGGTACTGGCCCAGG






TAGCTCTACTCCTTCTGGTGCTACCGGCTCTCCAGGT






GCTTCTCCGGGTACTAGCTCTACCGGTTCTCCAGGTA






CTTCTACTCCGGAAAGCGGTTCCGCATCTCCAGGTAC






TTCTCCTAGCGGTGAATCTTCTACTGCTCCAGGTACC






TCTCCTAGCGGCGAATCTTCTACTGCTCCAGGTACTT






CTGAAAGCGCAACCCCTGAATCCGGTCCAGGTAGCG






AACCGGCTACTTCTGGCTCTGAGACTCCAGGTACTTC






TACCGAACCGTCCGAAGGTAGCGCACCAGGTTCTAC






CAGCGAATCCCCTTCTGGTACTGCTCCAGGTTCTACC






AGCGAATCCCCTTCTGGCACCGCACCAGGTACTTCT






ACCCCTGAAAGCGGCTCCGCTTCTCCAGGTAGCCCG






GCAGGCTCTCCGACCTCTACTGAGGAAGGTACTTCT






GAAAGCGCAACCCCGGAGTCCGGCCCAGGTACCTCT






ACCGAACCGTCTGAGGGCAGCGCACCAGGTAGCCCT






GCTGGCTCTCCAACCTCCACCGAAGAAGGTACCTCT






GAAAGCGCAACCCCTGAATCCGGCCCAGGTAGCGAA






CCGGCAACCTCCGGTTCTGAAACCCCAGGTAGCTCT






ACCCCGTCTGGTGCTACCGGTTCCCCAGGTGCTTCTC






CTGGTACTAGCTCTACCGGTTCTCCAGGTAGCTCTAC






CCCGTCTGGTGCTACTGGCTCTCCAGGTTCTACTAGC






GAATCCCCGTCTGGTACTGCTCCAGGTACTTCCCCTA






GCGGTGAATCTTCTACTGCTCCAGGTTCTACCAGCTC






TACCGCAGAATCTCCGGGTCCAGGTAGCTCTACCCC






TTCTGGTGCAACCGGCTCTCCAGGTGCATCCCCGGGT






ACCAGCTCTACCGGTTCTCCAGGTACTCCGGGTAGC






GGTACCGCTTCTTCCTCTCCAGGTAGCCCTGCTGGCT






CTCCGACTTCTACTGAGGAAGGTAGCCCGGCTGGTT






CTCCGACTTCTACTGAGGAAGGTACTTCTACCGAAC






CTTCCGAAGGTAGCGCTCCA





*Sequence name reflects N- to C-terminus configuration of the growth factor and XTEN components













TABLE 36







Exemplary GHXTEN comprising growth hormones and two XTEN sequences












GHXTEN







Name*
Amino Acid Sequence
SEQ ID NO:
DNA Nucleotide Sequence
SEQ ID NO:





AE48-
MAEPAGSPTSTEEGT
729
ATGGCTGAACCTGCTGGCTCTCCAAC
730



hGH-
PGSGTASSSPGSSTPS

CTCCACTGAGGAAGGTACCCCGGGTA


AE144
GATGSPGASPGTSST

GCGGTACTGCTTCTTCCTCTCCAGGTA



GSPGFPTIPLSRLFDN

GCTCTACCCCTTCTGGTGCAACCGGCT



AMLRAHRLHQLAFD

CTCCAGGTGCTTCTCCGGGCACCAGCT



TYQEFEEAYIPKEQK

CTACCGGTTCTCCAGGTTTTCCGACTA



YSFLQNPQTSLCFSE

TTCCGCTGTCTCGTCTGTTTGATAATG



SIPTPSNREETQQKS

CTATGCTGCGTGCGCACCGTCTGCACC



NLELLRISLLLIQSWL

AGCTGGCCTTTGATACTTACCAGGAA



EPVQFLRSVFANSLV

TTTGAAGAAGCcTACATTCCTAAAGAG



YGASDSNVYDLLKD

CAGAAGTACTCTTTCCTGCAAAACCC



LEEGIQTLMGRLEDG

ACAGACTTCTCTCTGCTTCAGCGAATC



SPRTGQIFKQTYSKF

TATTCCGACGCCTTCCAATCGCGAGG



DTNSHNDDALLKNY

AAACTCAGCAAAAGTCCAATCTGGAA



GLLYCFRKDMDKVE

CTACTCCGCATTTCTCTGCTTCTGATT



TFLRIVQCRSVEGSC

CAGAGCTGGCTAGAACCAGTGCAATT



GFGGSEPATSGSETP

TCTGCGTTCCGTCTTCGCCAATAGCCT



GTSESATPESGPGSE

AGTTTATGGCGCATCCGACAGCAACG



PATSGSETPGSPAGS

TATACGATCTCCTGAAAGATCTCGAG



PTSTEEGTSTEPSEGS

GAAGGCATTCAGACCCTGATGGGTCG



APGSEPATSGSETPG

TCTCGAGGATGGCTCTCCGCGTACTG



SEPATSGSETPGSEP

GTCAGATCTTCAAGCAGACTTACTCTA



ATSGSETPGTSTEPSE

AATTTGATACTAACAGCCACAATGAC



GSAPGTSESATPESG

GATGCGCTTCTAAAAAACTATGGTCT



PGSEPATSGSETPGT

GCTGTATTGTTTTCGTAAAGATATGGA



STEPSEGSAP

CAAAGTTGAAACCTTCCTGCGTATTGT





TCAGTGTCGTTCCGTTGAGGGCAGCT





GTGGTTTCTAAGGTGGTAGCGAACCG





GCAACTTCCGGCTCTGAAACCCCAGG





TACTTCTGAAAGCGCTACTCCTGAGTC





TGGCCCAGGTAGCGAACCTGCTACCT





CTGGCTCTGAAACCCCAGGTAGCCCG





GCAGGCTCTCCGACTTCCACCGAGGA





AGGTACCTCTACTGAACCTTCTGAGG





GTAGCGCTCCAGGTAGCGAACCGGCA





ACCTCTGGCTCTGAAACCCCAGGTAG





CGAACCTGCTACCTCCGGCTCTGAAA





CTCCAGGTAGCGAACCGGCTACTTCC





GGTTCTGAAACTCCAGGTACCTCTACC





GAACCTTCCGAAGGCAGCGCACCAGG





TACTTCTGAAAGCGCAACCCCTGAAT





CCGGTCCAGGTAGCGAACCGGCTACT





TCTGGCTCTGAGACTCCAGGTACTTCT





ACCGAACCGTCCGAAGGTAGCGCACCA





AM48-
MAEPAGSPTSTEEGA
731
ATGGCTGAACCTGCTGGCTCTCCAAC
732


hGH-
SPGTSSTGSPGSSTPS

CTCCACTGAGGAAGGTGCATCCCCGG


AE144
GATGSPGSSTPSGAT

GCACCAGCTCTACCGGTTCTCCAGGT



GSPGFPTIPLSRLFDN

AGCTCTACCCCGTCTGGTGCTACCGGC



AMLRAHRLHQLAFD

TCTCCAGGTAGCTCTACCCCGTCTGGT



TYQEFEEAYIPKEQK

GCTACTGGCTCTCCAGGTTTTCCGACT



YSFLQNPQTSLCFSE

ATTCCGCTGTCTCGTCTGTTTGATAAT



SIPTPSNREETQQKS

GCTATGCTGCGTGCGCACCGTCTGCA



NLELLRISLLLIQSWL

CCAGCTGGCCTTTGATACTTACCAGG



EPVQFLRSVFANSLV

AATTTGAAGAAGCcTACATTCCTAAAG



YGASDSNVYDLLKD

AGCAGAAGTACTCTTTCCTGCAAAAC



LEEGIQTLMGRLEDG

CCACAGACTTCTCTCTGCTTCAGCGAA



SPRTGQIFKQTYSKF

TCTATTCCGACGCCTTCCAATCGCGAG



DTNSHNDDALLKNY

GAAACTCAGCAAAAGTCCAATCTGGA



GLLYCFRKDMDKVE

ACTACTCCGCATTTCTCTGCTTCTGAT



TFLRIVQCRSVEGSC

TCAGAGCTGGCTAGAACCAGTGCAAT



GFGGSEPATSGSETP

TTCTGCGTTCCGTCTTCGCCAATAGCC



GTSESATPESGPGSE

TAGTTTATGGCGCATCCGACAGCAAC



PATSGSETPGSPAGS

GTATACGATCTCCTGAAAGATCTCGA



PTSTEEGTSTEPSEGS

GGAAGGCATTCAGACCCTGATGGGTC



APGSEPATSGSETPG

GTCTCGAGGATGGCTCTCCGCGTACT



SEPATSGSETPGSEP

GGTCAGATCTTCAAGCAGACTTACTCT



ATSGSETPGTSTEPSE

AAATTTGATACTAACAGCCACAATGA



GSAPGTSESATPESG

CGATGCGCTTCTAAAAAACTATGGTC



PGSEPATSGSETPGT

TGCTGTATTGTTTTCGTAAAGATATGG



STEPSEGSAP

ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTAGCGAAC





CGGCAACTTCCGGCTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGA





GTCTGGCCCAGGTAGCGAACCTGCTA





CCTCTGGCTCTGAAACCCCAGGTAGC





CCGGCAGGCTCTCCGACTTCCACCGA





GGAAGGTACCTCTACTGAACCTTCTG





AGGGTAGCGCTCCAGGTAGCGAACCG





GCAACCTCTGGCTCTGAAACCCCAGG





TAGCGAACCTGCTACCTCCGGCTCTG





AAACTCCAGGTAGCGAACCGGCTACT





TCCGGTTCTGAAACTCCAGGTACCTCT





ACCGAACCTTCCGAAGGCAGCGCACC





AGGTACTTCTGAAAGCGCAACCCCTG





AATCCGGTCCAGGTAGCGAACCGGCT





ACTTCTGGCTCTGAGACTCCAGGTACT





TCTACCGAACCGTCCGAAGGTAGCGC





ACCA





AE144-
GSEPATSGSETPGTS
733
GGTAGCGAACCGGCAACTTCCGGCTC
734


hGH-
ESATPESGPGSEPAT

TGAAACCCCAGGTACTTCTGAAAGCG


AE144
SGSETPGSPAGSPTST

CTACTCCTGAGTCTGGCCCAGGTAGC



EEGTSTEPSEGSAPG

GAACCTGCTACCTCTGGCTCTGAAAC



SEPATSGSETPGSEP

CCCAGGTAGCCCGGCAGGCTCTCCGA



ATSGSETPGSEPATS

CTTCCACCGAGGAAGGTACCTCTACT



GSETPGTSTEPSEGS

GAACCTTCTGAGGGTAGCGCTCCAGG



APGTSESATPESGPG

TAGCGAACCGGCAACCTCTGGCTCTG



SEPATSGSETPGTSTE

AAACCCCAGGTAGCGAACCTGCTACC



PSEGSAPGFPTIPLSR

TCCGGCTCTGAAACTCCAGGTAGCGA



LFDNAMLRAHRLHQ

ACCGGCTACTTCCGGTTCTGAAACTCC



LAFDTYQEFEEAYIP

AGGTACCTCTACCGAACCTTCCGAAG



KEQKYSFLQNPQTSL

GCAGCGCACCAGGTACTTCTGAAAGC



CFSESIPTPSNREETQ

GCAACCCCTGAATCCGGTCCAGGTAG



QKSNLELLRISLLLIQ

CGAACCGGCTACTTCTGGCTCTGAGA



SWLEPVQFLRSVFA

CTCCAGGTACTTCTACCGAACCGTCCG



NSLVYGASDSNVYD

AAGGTAGCGCACCAGGTTTTCCGACT



LLKDLEEGIQTLMGR

ATTCCGCTGTCTCGTCTGTTTGATAAT



LEDGSPRTGQIFKQT

GCTATGCTGCGTGCGCACCGTCTGCA



YSKFDTNSHNDDAL

CCAGCTGGCCTTTGATACTTACCAGG



LKNYGLLYCFRKDM

AATTTGAAGAAGCcTACATTCCTAAAG



DKVETFLRIVQCRSV

AGCAGAAGTACTCTTTCCTGCAAAAC



EGSCGFGGSEPATSG

CCACAGACTTCTCTCTGCTTCAGCGAA



SETPGTSESATPESGP

TCTATTCCGACGCCTTCCAATCGCGAG



GSEPATSGSETPGSP

GAAACTCAGCAAAAGTCCAATCTGGA



AGSPTSTEEGTSTEPS

ACTACTCCGCATTTCTCTGCTTCTGAT



EGSAPGSEPATSGSE

TCAGAGCTGGCTAGAACCAGTGCAAT



TPGSEPATSGSETPG

TTCTGCGTTCCGTCTTCGCCAATAGCC



SEPATSGSETPGTSTE

TAGTTTATGGCGCATCCGACAGCAAC



PSEGSAPGTSESATP

GTATACGATCTCCTGAAAGATCTCGA



ESGPGSEPATSGSET

GGAAGGCATTCAGACCCTGATGGGTC



PGTSTEPSEGSAP

GTCTCGAGGATGGCTCTCCGCGTACT





GGTCAGATCTTCAAGCAGACTTACTCT





AAATTTGATACTAACAGCCACAATGA





CGATGCGCTTCTAAAAAACTATGGTC





TGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTAGCGAAC





CGGCAACTTCCGGCTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGA





GTCTGGCCCAGGTAGCGAACCTGCTA





CCTCTGGCTCTGAAACCCCAGGTAGC





CCGGCAGGCTCTCCGACTTCCACCGA





GGAAGGTACCTCTACTGAACCTTCTG





AGGGTAGCGCTCCAGGTAGCGAACCG





GCAACCTCTGGCTCTGAAACCCCAGG





TAGCGAACCTGCTACCTCCGGCTCTG





AAACTCCAGGTAGCGAACCGGCTACT





TCCGGTTCTGAAACTCCAGGTACCTCT





ACCGAACCTTCCGAAGGCAGCGCACC





AGGTACTTCTGAAAGCGCAACCCCTG





AATCCGGTCCAGGTAGCGAACCGGCT





ACTTCTGGCTCTGAGACTCCAGGTACT





TCTACCGAACCGTCCGAAGGTAGCGC





ACCA





AE288-
GTSESATPESGPGSE
735
GGTACCTCTGAAAGCGCAACTCCTGA
736


hGH-
PATSGSETPGTSESA

GTCTGGCCCAGGTAGCGAACCTGCTA


AE144
TPESGPGSEPATSGS

CCTCCGGCTCTGAGACTCCAGGTACCT



ETPGTSESATPESGP

CTGAAAGCGCAACCCCGGAATCTGGT



GTSTEPSEGSAPGSP

CCAGGTAGCGAACCTGCAACCTCTGG



AGSPTSTEEGTSESA

CTCTGAAACCCCAGGTACCTCTGAAA



TPESGPGSEPATSGS

GCGCTACTCCTGAATCTGGCCCAGGT



ETPGTSESATPESGP

ACTTCTACTGAACCGTCCGAGGGCAG



GSPAGSPTSTEEGSP

CGCACCAGGTAGCCCTGCTGGCTCTC



AGSPTSTEEGTSTEPS

CAACCTCCACCGAAGAAGGTACCTCT



EGSAPGTSESATPES

GAAAGCGCAACCCCTGAATCCGGCCC



GPGTSESATPESGPG

AGGTAGCGAACCGGCAACCTCCGGTT



TSESATPESGPGSEP

CTGAAACCCCAGGTACTTCTGAAAGC



ATSGSETPGSEPATS

GCTACTCCTGAGTCCGGCCCAGGTAG



GSETPGSPAGSPTST

CCCGGCTGGCTCTCCGACTTCCACCGA



EEGTSTEPSEGSAPG

GGAAGGTAGCCCGGCTGGCTCTCCAA



TSTEPSEGSAPGSEP

CTTCTACTGAAGAAGGTACTTCTACCG



ATSGSETPGTSESAT

AACCTTCCGAGGGCAGCGCACCAGGT



PESGPGTSTEPSEGS

ACTTCTGAAAGCGCTACCCCTGAGTC



APGFPTIPLSRLFDNA

CGGCCCAGGTACTTCTGAAAGCGCTA



MLRAHRLHQLAFDT

CTCCTGAATCCGGTCCAGGTACTTCTG



YQEFEEAYIPKEQKY

AAAGCGCTACCCCGGAATCTGGCCCA



SFLQNPQTSLCFSESI

GGTAGCGAACCGGCTACTTCTGGTTCT



PTPSNREETQQKSNL

GAAACCCCAGGTAGCGAACCGGCTAC



ELLRISLLLIQSWLEP

CTCCGGTTCTGAAACTCCAGGTAGCC



VQFLRSVFANSLVY

CAGCAGGCTCTCCGACTTCCACTGAG



GASDSNVYDLLKDL

GAAGGTACTTCTACTGAACCTTCCGA



EEGIQTLMGRLEDGS

AGGCAGCGCACCAGGTACCTCTACTG



PRTGQIFKQTYSKFD

AACCTTCTGAGGGCAGCGCTCCAGGT



TNSHNDDALLKNYG

AGCGAACCTGCAACCTCTGGCTCTGA



LLYCFRKDMDKVET

AACCCCAGGTACCTCTGAAAGCGCTA



FLRIVQCRSVEGSCG

CTCCTGAATCTGGCCCAGGTACTTCTA



FGGSEPATSGSETPG

CTGAACCGTCCGAGGGCAGCGCACCA



TSESATPESGPGSEP

GGTTTTCCGACTATTCCGCTGTCTCGT



ATSGSETPGSPAGSP

CTGTTTGATAATGCTATGCTGCGTGCG



TSTEEGTSTEPSEGS

CACCGTCTGCACCAGCTGGCCTTTGAT



APGSEPATSGSETPG

ACTTACCAGGAATTTGAAGAAGCcTA



SEPATSGSETPGSEP

CATTCCTAAAGAGCAGAAGTACTCTT



ATSGSETPGTSTEPSE

TCCTGCAAAACCCACAGACTTCTCTCT



GSAPGTSESATPESG

GCTTCAGCGAATCTATTCCGACGCCTT



PGSEPATSGSETPGT

CCAATCGCGAGGAAACTCAGCAAAAG



STEPSEGSAP

TCCAATCTGGAACTACTCCGCATTTCT





CTGCTTCTGATTCAGAGCTGGCTAGA





ACCAGTGCAATTTCTGCGTTCCGTCTT





CGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTG





AAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCT





CTCCGCGTACTGGTCAGATCTTCAAGC





AGACTTACTCTAAATTTGATACTAACA





GCCACAATGACGATGCGCTTCTAAAA





AACTATGGTCTGCTGTATTGTTTTCGT





AAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGT





TGAGGGCAGCTGTGGTTTCTAAGGTG





GTAGCGAACCGGCAACTTCCGGCTCT





GAAACCCCAGGTACTTCTGAAAGCGC





TACTCCTGAGTCTGGCCCAGGTAGCG





AACCTGCTACCTCTGGCTCTGAAACCC





CAGGTAGCCCGGCAGGCTCTCCGACT





TCCACCGAGGAAGGTACCTCTACTGA





ACCTTCTGAGGGTAGCGCTCCAGGTA





GCGAACCGGCAACCTCTGGCTCTGAA





ACCCCAGGTAGCGAACCTGCTACCTC





CGGCTCTGAAACTCCAGGTAGCGAAC





CGGCTACTTCCGGTTCTGAAACTCCAG





GTACCTCTACCGAACCTTCCGAAGGC





AGCGCACCAGGTACTTCTGAAAGCGC





AACCCCTGAATCCGGTCCAGGTAGCG





AACCGGCTACTTCTGGCTCTGAGACTC





CAGGTACTTCTACCGAACCGTCCGAA





GGTAGCGCACCA





AF144-
GTSTPESGSASPGTSP
737
GGTACTTCTACTCCGGAAAGCGGTTC
738


hGH-
SGESSTAPGTSPSGES

CGCATCTCCAGGTACTTCTCCTAGCGG


AE144
STAPGSTSSTAESPGP

TGAATCTTCTACTGCTCCAGGTACCTC



GSTSESPSGTAPGSTS

TCCTAGCGGCGAATCTTCTACTGCTCC



STAESPGPGTSPSGES

AGGTTCTACCAGCTCTACCGCTGAATC



STAPGTSTPESGSASP

TCCTGGCCCAGGTTCTACCAGCGAAT



GSTSSTAESPGPGTSP

CCCCGTCTGGCACCGCACCAGGTTCT



SGESSTAPGTSPSGES

ACTAGCTCTACCGCAGAATCTCCGGG



STAPGTSPSGESSTAP

TCCAGGTACTTCCCCTAGCGGTGAATC



GFPTIPLSRLFDNAM

TTCTACTGCTCCAGGTACCTCTACTCC



LRAHRLHQLAFDTY

GGAAAGCGGCTCCGCATCTCCAGGTT



QEFEEAYIPKEQKYS

CTACTAGCTCTACTGCTGAATCTCCTG



FLQNPQTSLCFSESIP

GTCCAGGTACCTCCCCTAGCGGCGAA



TPSNREETQQKSNLE

TCTTCTACTGCTCCAGGTACCTCTCCT



LLRISLLLIQSWLEPV

AGCGGCGAATCTTCTACCGCTCCAGG



QFLRSVFANSLVYG

TACCTCCCCTAGCGGTGAATCTTCTAC



ASDSNVYDLLKDLE

CGCACCAGGTTTTCCGACTATTCCGCT



EGIQTLMGRLEDGSP

GTCTCGTCTGTTTGATAATGCTATGCT



RTGQIFKQTYSKFDT

GCGTGCGCACCGTCTGCACCAGCTGG



NSHNDDALLKNYGL

CCTTTGATACTTACCAGGAATTTGAAG



LYCFRKDMDKVETF

AAGCcTACATTCCTAAAGAGCAGAAG



LRIVQCRSVEGSCGF

TACTCTTTCCTGCAAAACCCACAGACT



GGSEPATSGSETPGT

TCTCTCTGCTTCAGCGAATCTATTCCG



SESATPESGPGSEPA

ACGCCTTCCAATCGCGAGGAAACTCA



TSGSETPGSPAGSPTS

GCAAAAGTCCAATCTGGAACTACTCC



TEEGTSTEPSEGSAP

GCATTTCTCTGCTTCTGATTCAGAGCT



GSEPATSGSETPGSE

GGCTAGAACCAGTGCAATTTCTGCGT



PATSGSETPGSEPAT

TCCGTCTTCGCCAATAGCCTAGTTTAT



SGSETPGTSTEPSEGS

GGCGCATCCGACAGCAACGTATACGA



APGTSESATPESGPG

TCTCCTGAAAGATCTCGAGGAAGGCA



SEPATSGSETPGTSTE

TTCAGACCCTGATGGGTCGTCTCGAG



PSEGSAP

GATGGCTCTCCGCGTACTGGTCAGAT





CTTCAAGCAGACTTACTCTAAATTTGA





TACTAACAGCCACAATGACGATGCGC





TTCTAAAAAACTATGGTCTGCTGTATT





GTTTTCGTAAAGATATGGACAAAGTT





GAAACCTTCCTGCGTATTGTTCAGTGT





CGTTCCGTTGAGGGCAGCTGTGGTTTC





TAAGGTGGTAGCGAACCGGCAACTTC





CGGCTCTGAAACCCCAGGTACTTCTG





AAAGCGCTACTCCTGAGTCTGGCCCA





GGTAGCGAACCTGCTACCTCTGGCTCT





GAAACCCCAGGTAGCCCGGCAGGCTC





TCCGACTTCCACCGAGGAAGGTACCT





CTACTGAACCTTCTGAGGGTAGCGCT





CCAGGTAGCGAACCGGCAACCTCTGG





CTCTGAAACCCCAGGTAGCGAACCTG





CTACCTCCGGCTCTGAAACTCCAGGT





AGCGAACCGGCTACTTCCGGTTCTGA





AACTCCAGGTACCTCTACCGAACCTTC





CGAAGGCAGCGCACCAGGTACTTCTG





AAAGCGCAACCCCTGAATCCGGTCCA





GGTAGCGAACCGGCTACTTCTGGCTC





TGAGACTCCAGGTACTTCTACCGAAC





CGTCCGAAGGTAGCGCACCA





AD576-
GSSESGSSEGGPGSG
739
GGTTCCTCTGAAAGCGGTTCTTCCGAA
740


hGH-
GEPSESGSSGSSESGS

GGTGGTCCAGGTTCCTCTGAAAGCGG


AE144
SEGGPGSSESGSSEG

TTCTTCTGAGGGTGGTCCAGGTGAATC



GPGSSESGSSEGGPG

TCCGGGTGGCTCCAGCGGTTCCGAGT



SSESGSSEGGPGSSES

CAGGTTCTGGTGGCGAACCTTCCGAG



GSSEGGPGESPGGSS

TCTGGTAGCTCAGGTGAATCTCCGGG



GSESGSEGSSGPGES

TGGTTCTAGCGGTTCCGAGTCAGGTG



SGSSESGSSEGGPGS

AATCTCCGGGTGGTTCCAGCGGTTCTG



SESGSSEGGPGSSES

AGTCAGGTTCCTCCGAAAGCGGTTCTT



GSSEGGPGSGGEPSE

CTGAGGGCGGTCCAGGTTCCTCCGAA



SGSSGESPGGSSGSE

AGCGGTTCTTCCGAGGGCGGTCCAGG



SGESPGGSSGSESGS

TTCTTCTGAAAGCGGTTCTTCCGAGGG



GGEPSESGSSGSSES

CGGTCCAGGTGAATCTCCTGGTGGTTC



GSSEGGPGSGGEPSE

CAGCGGTTCCGAGTCAGGTGAATCTC



SGSSGSGGEPSESGS

CAGGTGGCTCTAGCGGTTCCGAGTCA



SGSEGSSGPGESSGE

GGTGAATCTCCTGGTGGTTCTAGCGGT



SPGGSSGSESGSGGE

TCTGAATCAGGTTCCTCCGAAAGCGG



PSESGSSGSGGEPSES

TTCTTCTGAGGGCGGTCCAGGTTCCTC



GSSGSGGEPSESGSS

CGAAAGCGGTTCTTCCGAGGGCGGTC



GSSESGSSEGGPGES

CAGGTTCTTCTGAAAGCGGTTCTTCCG



PGGSSGSESGESPGG

AGGGCGGTCCAGGTTCCTCTGAAAGC



SSGSESGESPGGSSG

GGTTCTTCTGAGGGCGGTCCAGGTTCT



SESGESPGGSSGSES

TCCGAAAGCGGTTCTTCCGAGGGCGG



GESPGGSSGSESGSS

TCCAGGTTCTTCCGAAAGCGGTTCTTC



ESGSSEGGPGSGGEP

TGAAGGCGGTCCAGGTTCTGGTGGCG



SESGSSGSEGSSGPG

AACCGTCCGAGTCTGGTAGCTCAGGT



ESSGSSESGSSEGGP

GAATCTCCGGGTGGCTCTAGCGGTTC



GSGGEPSESGSSGSS

CGAGTCAGGTGAATCTCCTGGTGGTT



ESGSSEGGPGSGGEP

CCAGCGGTTCCGAGTCAGGTTCCGGT



SESGSSGESPGGSSG

GGCGAACCGTCCGAATCTGGTAGCTC



SESGESPGGSSGSES

AGGTAGCGAAGGTTCTTCTGGTCCAG



GSSESGSSEGGPGSG

GCGAATCTTCAGGTTCCTCTGAAAGC



GEPSESGSSGSSESGS

GGTTCTTCTGAGGGCGGTCCAGGTTCC



SEGGPGSGGEPSESG

GGTGGCGAACCGTCCGAATCTGGTAG



SSGSGGEPSESGSSG

CTCAGGTAGCGAAGGTTCTTCTGGTCC



ESPGGSSGSESGSEG

AGGCGAATCTTCAGGTTCCTCTGAAA



SSGPGESSGSSESGSS

GCGGTTCTTCTGAGGGCGGTCCAGGT



EGGPGSEGSSGPGES

TCCGGTGGCGAACCTTCCGAATCTGG



SGFPTIPLSRLFDNA

TAGCTCAGGTGAATCTCCGGGTGGTT



MLRAHRLHQLAFDT

CTAGCGGTTCTGAGTCAGGTTCTGGTG



YQEFEEAYIPKEQKY

GTGAACCTTCCGAGTCTGGTAGCTCA



SFLQNPQTSLCFSESI

GGTTCTGGTGGCGAACCATCCGAGTC



PTPSNREETQQKSNL

TGGTAGCTCAGGTTCTTCCGAAAGCG



ELLRISLLLIQSWLEP

GTTCTTCCGAAGGCGGTCCAGGTTCTG



VQFLRSVFANSLVY

GTGGTGAACCGTCCGAATCTGGTAGC



GASDSNVYDLLKDL

TCAGGTTCTGGTGGCGAACCATCCGA



EEGIQTLMGRLEDGS

ATCTGGTAGCTCAGGTAGCGAAGGTT



PRTGQIFKQTYSKFD

CTTCTGGTCCTGGCGAATCTTCAGGTG



TNSHNDDALLKNYG

AATCTCCAGGTGGCTCTAGCGGTTCC



LLYCFRKDMDKVET

GAATCAGGTAGCGAAGGTTCTTCCGG



FLRIVQCRSVEGSCG

TCCAGGTGAATCTTCAGGTAGCGAAG



FGGSEPATSGSETPG

GTTCTTCTGGTCCTGGTGAATCCTCAG



TSESATPESGPGSEP

GTTCCGGTGGCGAACCATCTGAATCT



ATSGSETPGSPAGSP

GGTAGCTCAGGTTCCTCTGAAAGCGG



TSTEEGTSTEPSEGS

TTCTTCCGAAGGTGGTCCAGGTTCCTC



APGSEPATSGSETPG

TGAAAGCGGTTCTTCTGAGGGTGGTC



SEPATSGSETPGSEP

CAGGTGAATCTCCGGGTGGCTCCAGC



ATSGSETPGTSTEPSE

GGTTCCGAGTCAGGTTCTGGTGGCGA



GSAPGTSESATPESG

ACCATCCGAATCTGGTAGCTCAGGTA



PGSEPATSGSETPGT

GCGAAGGTTCTTCTGGTCCTGGCGAA



STEPSEGSAP

TCTTCAGGTGAATCTCCAGGTGGCTCT





AGCGGTTCCGAATCAGGTAGCGAAGG





TTCTTCCGGTCCTGGTGAGTCTTCAGG





TGAATCTCCAGGTGGCTCTAGCGGTTC





CGAGTCAGGTAGCGAAGGTTCTTCTG





GTCCTGGCGAGTCCTCAGGTTTTCCGA





CTATTCCGCTGTCTCGTCTGTTTGATA





ATGCTATGCTGCGTGCGCACCGTCTGC





ACCAGCTGGCCTTTGATACTTACCAG





GAATTTGAAGAAGCcTACATTCCTAAA





GAGCAGAAGTACTCTTTCCTGCAAAA





CCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGA





GGAAACTCAGCAAAAGTCCAATCTGG





AACTACTCCGCATTTCTCTGCTTCTGA





TTCAGAGCTGGCTAGAACCAGTGCAA





TTTCTGCGTTCCGTCTTCGCCAATAGC





CTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCG





AGGAAGGCATTCAGACCCTGATGGGT





CGTCTCGAGGATGGCTCTCCGCGTACT





GGTCAGATCTTCAAGCAGACTTACTCT





AAATTTGATACTAACAGCCACAATGA





CGATGCGCTTCTAAAAAACTATGGTC





TGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTAGCGAAC





CGGCAACTTCCGGCTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGA





GTCTGGCCCAGGTAGCGAACCTGCTA





CCTCTGGCTCTGAAACCCCAGGTAGC





CCGGCAGGCTCTCCGACTTCCACCGA





GGAAGGTACCTCTACTGAACCTTCTG





AGGGTAGCGCTCCAGGTAGCGAACCG





GCAACCTCTGGCTCTGAAACCCCAGG





TAGCGAACCTGCTACCTCCGGCTCTG





AAACTCCAGGTAGCGAACCGGCTACT





TCCGGTTCTGAAACTCCAGGTACCTCT





ACCGAACCTTCCGAAGGCAGCGCACC





AGGTACTTCTGAAAGCGCAACCCCTG





AATCCGGTCCAGGTAGCGAACCGGCT





ACTTCTGGCTCTGAGACTCCAGGTACT





TCTACCGAACCGTCCGAAGGTAGCGC





ACCA





AE576-
GSPAGSPTSTEEGTS
741
GGTAGCCCGGCTGGCTCTCCTACCTCT
742


hGH-
ESATPESGPGTSTEPS

ACTGAGGAAGGTACTTCTGAAAGCGC


AE144
EGSAPGSPAGSPTST

TACTCCTGAGTCTGGTCCAGGTACCTC



EEGTSTEPSEGSAPG

TACTGAACCGTCCGAAGGTAGCGCTC



TSTEPSEGSAPGTSES

CAGGTAGCCCAGCAGGCTCTCCGACT



ATPESGPGSEPATSG

TCCACTGAGGAAGGTACTTCTACTGA



SETPGSEPATSGSETP

ACCTTCCGAAGGCAGCGCACCAGGTA



GSPAGSPTSTEEGTS

CCTCTACTGAACCTTCTGAGGGCAGC



ESATPESGPGTSTEPS

GCTCCAGGTACTTCTGAAAGCGCTAC



EGSAPGTSTEPSEGS

CCCGGAATCTGGCCCAGGTAGCGAAC



APGSPAGSPTSTEEG

CGGCTACTTCTGGTTCTGAAACCCCAG



TSTEPSEGSAPGTSTE

GTAGCGAACCGGCTACCTCCGGTTCT



PSEGSAPGTSESATP

GAAACTCCAGGTAGCCCGGCAGGCTC



ESGPGTSTEPSEGSA

TCCGACCTCTACTGAGGAAGGTACTT



PGTSESATPESGPGS

CTGAAAGCGCAACCCCGGAGTCCGGC



EPATSGSETPGTSTEP

CCAGGTACCTCTACCGAACCGTCTGA



SEGSAPGTSTEPSEG

GGGCAGCGCACCAGGTACTTCTACCG



SAPGTSESATPESGP

AACCGTCCGAGGGTAGCGCACCAGGT



GTSESATPESGPGSP

AGCCCAGCAGGTTCTCCTACCTCCACC



AGSPTSTEEGTSESA

GAGGAAGGTACTTCTACCGAACCGTC



TPESGPGSEPATSGS

CGAGGGTAGCGCACCAGGTACCTCTA



ETPGTSESATPESGP

CTGAACCTTCTGAGGGCAGCGCTCCA



GTSTEPSEGSAPGTS

GGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACC



EGSAPGTSTEPSEGS

GTCCGAAGGTAGCGCACCAGGTACTT



APGTSTEPSEGSAPG

CTGAAAGCGCAACCCCTGAATCCGGT



TSTEPSEGSAPGSPA

CCAGGTAGCGAACCGGCTACTTCTGG



GSPTSTEEGTSTEPSE

CTCTGAGACTCCAGGTACTTCTACCGA



GSAPGTSESATPESG

ACCGTCCGAAGGTAGCGCACCAGGTA



PGSEPATSGSETPGT

CTTCTACTGAACCGTCTGAAGGTAGC



SESATPESGPGSEPA

GCACCAGGTACTTCTGAAAGCGCAAC



TSGSETPGTSESATPE

CCCGGAATCCGGCCCAGGTACCTCTG



SGPGTSTEPSEGSAP

AAAGCGCAACCCCGGAGTCCGGCCCA



GTSESATPESGPGSP

GGTAGCCCTGCTGGCTCTCCAACCTCC



AGSPTSTEEGSPAGS

ACCGAAGAAGGTACCTCTGAAAGCGC



PTSTEEGSPAGSPTST

AACCCCTGAATCCGGCCCAGGTAGCG



EEGTSESATPESGPG

AACCGGCAACCTCCGGTTCTGAAACC



TSTEPSEGSAPGFPTI

CCAGGTACCTCTGAAAGCGCTACTCC



PLSRLFDNAMLRAH

GGAGTCTGGCCCAGGTACCTCTACTG



RLHQLAFDTYQEFEE

AACCGTCTGAGGGTAGCGCTCCAGGT



AYIPKEQKYSFLQNP

ACTTCTACTGAACCGTCCGAAGGTAG



QTSLCFSESIPTPSNR

CGCACCAGGTACTTCTACCGAACCGT



EETQQKSNLELLRIS

CCGAAGGCAGCGCTCCAGGTACCTCT



LLLIQSWLEPVQFLR

ACTGAACCTTCCGAGGGCAGCGCTCC



SVFANSLVYGASDS

AGGTACCTCTACCGAACCTTCTGAAG



NVYDLLKDLEEGIQT

GTAGCGCACCAGGTACTTCTACCGAA



LMGRLEDGSPRTGQI

CCGTCCGAGGGTAGCGCACCAGGTAG



FKQTYSKFDTNSHN

CCCAGCAGGTTCTCCTACCTCCACCGA



DDALLKNYGLLYCF

GGAAGGTACTTCTACCGAACCGTCCG



RKDMDKVETFLRIV

AGGGTAGCGCACCAGGTACCTCTGAA



QCRSVEGSCGFGGSE

AGCGCAACTCCTGAGTCTGGCCCAGG



PATSGSETPGTSESA

TAGCGAACCTGCTACCTCCGGCTCTG



TPESGPGSEPATSGS

AGACTCCAGGTACCTCTGAAAGCGCA



ETPGSPAGSPTSTEE

ACCCCGGAATCTGGTCCAGGTAGCGA



GTSTEPSEGSAPGSE

ACCTGCAACCTCTGGCTCTGAAACCC



PATSGSETPGSEPAT

CAGGTACCTCTGAAAGCGCTACTCCT



SGSETPGSEPATSGS

GAATCTGGCCCAGGTACTTCTACTGA



ETPGTSTEPSEGSAP

ACCGTCCGAGGGCAGCGCACCAGGTA



GTSESATPESGPGSE

CTTCTGAAAGCGCTACTCCTGAGTCCG



PATSGSETPGTSTEPS

GCCCAGGTAGCCCGGCTGGCTCTCCG



EGSAP

ACTTCCACCGAGGAAGGTAGCCCGGC





TGGCTCTCCAACTTCTACTGAAGAAG





GTAGCCCGGCAGGCTCTCCGACCTCT





ACTGAGGAAGGTACTTCTGAAAGCGC





AACCCCGGAGTCCGGCCCAGGTACCT





CTACCGAACCGTCTGAGGGCAGCGCA





CCAGGTTTTCCGACTATTCCGCTGTCT





CGTCTGTTTGATAATGCTATGCTGCGT





GCGCACCGTCTGCACCAGCTGGCCTTT





GATACTTACCAGGAATTTGAAGAAGC





cTACATTCCTAAAGAGCAGAAGTACTC





TTTCCTGCAAAACCCACAGACTTCTCT





CTGCTTCAGCGAATCTATTCCGACGCC





TTCCAATCGCGAGGAAACTCAGCAAA





AGTCCAATCTGGAACTACTCCGCATTT





CTCTGCTTCTGATTCAGAGCTGGCTAG





AACCAGTGCAATTTCTGCGTTCCGTCT





TCGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTG





AAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCT





CTCCGCGTACTGGTCAGATCTTCAAGC





AGACTTACTCTAAATTTGATACTAACA





GCCACAATGACGATGCGCTTCTAAAA





AACTATGGTCTGCTGTATTGTTTTCGT





AAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGT





TGAGGGCAGCTGTGGTTTCTAAGGTG





GTAGCGAACCGGCAACTTCCGGCTCT





GAAACCCCAGGTACTTCTGAAAGCGC





TACTCCTGAGTCTGGCCCAGGTAGCG





AACCTGCTACCTCTGGCTCTGAAACCC





CAGGTAGCCCGGCAGGCTCTCCGACT





TCCACCGAGGAAGGTACCTCTACTGA





ACCTTCTGAGGGTAGCGCTCCAGGTA





GCGAACCGGCAACCTCTGGCTCTGAA





ACCCCAGGTAGCGAACCTGCTACCTC





CGGCTCTGAAACTCCAGGTAGCGAAC





CGGCTACTTCCGGTTCTGAAACTCCAG





GTACCTCTACCGAACCTTCCGAAGGC





AGCGCACCAGGTACTTCTGAAAGCGC





AACCCCTGAATCCGGTCCAGGTAGCG





AACCGGCTACTTCTGGCTCTGAGACTC





CAGGTACTTCTACCGAACCGTCCGAA





GGTAGCGCACCA





AF576-
GSTSSTAESPGPGSTS
743
GGTTCTACTAGCTCTACCGCTGAATCT
744


hGH-
STAESPGPGSTSESPS

CCTGGCCCAGGTTCCACTAGCTCTACC


AE144
GTAPGSTSSTAESPG

GCAGAATCTCCGGGCCCAGGTTCTAC



PGSTSSTAESPGPGTS

TAGCGAATCCCCTTCTGGTACCGCTCC



TPESGSASPGSTSESP

AGGTTCTACTAGCTCTACCGCTGAATC



SGTAPGTSPSGESST

TCCGGGTCCAGGTTCTACCAGCTCTAC



APGSTSESPSGTAPG

TGCAGAATCTCCTGGCCCAGGTACTTC



STSESPSGTAPGTSPS

TACTCCGGAAAGCGGTTCCGCTTCTCC



GESSTAPGSTSESPSG

AGGTTCTACCAGCGAATCTCCTTCTGG



TAPGSTSESPSGTAP

CACCGCTCCAGGTACCTCTCCTAGCG



GTSPSGESSTAPGSTS

GCGAATCTTCTACCGCTCCAGGTTCTA



ESPSGTAPGSTSESPS

CTAGCGAATCTCCTTCTGGCACTGCAC



GTAPGSTSESPSGTA

CAGGTTCTACCAGCGAATCTCCTTCTG



PGTSTPESGSASPGST

GCACCGCTCCAGGTACCTCTCCTAGC



SESPSGTAPGTSTPES

GGCGAATCTTCTACCGCTCCAGGTTCT



GSASPGSTSSTAESP

ACTAGCGAATCTCCTTCTGGCACTGCA



GPGSTSSTAESPGPG

CCAGGTTCTACCAGCGAATCTCCTTCT



TSTPESGSASPGTSTP

GGCACCGCTCCAGGTACCTCTCCTAG



ESGSASPGSTSESPSG

CGGCGAATCTTCTACCGCTCCAGGTTC



TAPGTSTPESGSASP

TACTAGCGAATCTCCTTCTGGCACTGC



GTSTPESGSASPGSTS

ACCAGGTTCTACTAGCGAATCTCCTTC



ESPSGTAPGSTSESPS

TGGCACTGCACCAGGTTCTACCAGCG



GTAPGSTSESPSGTA

AATCTCCGTCTGGCACTGCACCAGGT



PGSTSSTAESPGPGTS

ACCTCTACCCCTGAAAGCGGTTCCGCT



TPESGSASPGTSTPES

TCTCCAGGTTCTACTAGCGAATCTCCT



GSASPGSTSESPSGT

TCTGGTACCGCTCCAGGTACTTCTACC



APGSTSESPSGTAPG

CCTGAAAGCGGCTCCGCTTCTCCAGG



TSTPESGSASPGSTSE

TTCCACTAGCTCTACCGCTGAATCTCC



SPSGTAPGSTSESPSG

GGGTCCAGGTTCTACTAGCTCTACTGC



TAPGTSTPESGSASP

AGAATCTCCTGGCCCAGGTACCTCTA



GTSPSGESSTAPGSTS

CTCCGGAAAGCGGCTCTGCATCTCCA



STAESPGPGTSPSGES

GGTACTTCTACCCCTGAAAGCGGTTCT



STAPGSTSSTAESPGP

GCATCTCCAGGTTCTACTAGCGAATCC



GTSTPESGSASPGSTS

CCGTCTGGTACCGCACCAGGTACTTCT



ESPSGTAPGSTSSTA

ACCCCGGAAAGCGGCTCTGCTTCTCC



ESPGPGTSTPESGSAS

AGGTACTTCTACCCCGGAAAGCGGCT



PGTSTPESGSASPGFP

CCGCATCTCCAGGTTCTACTAGCGAAT



TIPLSRLFDNAMLRA

CTCCTTCTGGTACCGCTCCAGGTTCTA



HRLHQLAFDTYQEF

CCAGCGAATCCCCGTCTGGTACTGCTC



EEAYIPKEQKYSFLQ

CAGGTTCTACCAGCGAATCTCCTTCTG



NPQTSLCFSESIPTPS

GTACTGCACCAGGTTCTACTAGCTCTA



NREETQQKSNLELLR

CTGCAGAATCTCCTGGCCCAGGTACC



ISLLLIQSWLEPVQFL

TCTACTCCGGAAAGCGGCTCTGCATCT



RSVFANSLVYGASD

CCAGGTACTTCTACCCCTGAAAGCGG



SNVYDLLKDLEEGIQ

TTCTGCATCTCCAGGTTCTACTAGCGA



TLMGRLEDGSPRTG

ATCTCCTTCTGGCACTGCACCAGGTTC



QIFKQTYSKFDTNSH

TACCAGCGAATCTCCGTCTGGCACTG



NDDALLKNYGLLYC

CACCAGGTACCTCTACCCCTGAAAGC



FRKDMDKVETFLRI

GGTTCCGCTTCTCCAGGTTCTACTAGC



VQCRSVEGSCGFGG

GAATCTCCTTCTGGCACTGCACCAGGT



SEPATSGSETPGTSES

TCTACCAGCGAATCTCCGTCTGGCACT



ATPESGPGSEPATSG

GCACCAGGTACCTCTACCCCTGAAAG



SETPGSPAGSPTSTEE

CGGTTCCGCTTCTCCAGGTACTTCTCC



GTSTEPSEGSAPGSE

GAGCGGTGAATCTTCTACCGCACCAG



PATSGSETPGSEPAT

GTTCTACTAGCTCTACCGCTGAATCTC



SGSETPGSEPATSGS

CGGGCCCAGGTACTTCTCCGAGCGGT



ETPGTSTEPSEGSAP

GAATCTTCTACTGCTCCAGGTTCCACT



GTSESATPESGPGSE

AGCTCTACTGCTGAATCTCCTGGCCCA



PATSGSETPGTSTEPS

GGTACTTCTACTCCGGAAAGCGGTTC



EGSAP

CGCTTCTCCAGGTTCTACTAGCGAATC





TCCGTCTGGCACCGCACCAGGTTCTAC





TAGCTCTACTGCAGAATCTCCTGGCCC





AGGTACCTCTACTCCGGAAAGCGGCT





CTGCATCTCCAGGTACTTCTACCCCTG





AAAGCGGTTCTGCATCTCCAGGTTTTC





CGACTATTCCGCTGTCTCGTCTGTTTG





ATAATGCTATGCTGCGTGCGCACCGT





CTGCACCAGCTGGCCTTTGATACTTAC





CAGGAATTTGAAGAAGCcTACATTCCT





AAAGAGCAGAAGTACTCTTTCCTGCA





AAACCCACAGACTTCTCTCTGCTTCAG





CGAATCTATTCCGACGCCTTCCAATCG





CGAGGAAACTCAGCAAAAGTCCAATC





TGGAACTACTCCGCATTTCTCTGCTTC





TGATTCAGAGCTGGCTAGAACCAGTG





CAATTTCTGCGTTCCGTCTTCGCCAAT





AGCCTAGTTTATGGCGCATCCGACAG





CAACGTATACGATCTCCTGAAAGATC





TCGAGGAAGGCATTCAGACCCTGATG





GGTCGTCTCGAGGATGGCTCTCCGCG





TACTGGTCAGATCTTCAAGCAGACTT





ACTCTAAATTTGATACTAACAGCCAC





AATGACGATGCGCTTCTAAAAAACTA





TGGTCTGCTGTATTGTTTTCGTAAAGA





TATGGACAAAGTTGAAACCTTCCTGC





GTATTGTTCAGTGTCGTTCCGTTGAGG





GCAGCTGTGGTTTCTAAGGTGGTAGC





GAACCGGCAACTTCCGGCTCTGAAAC





CCCAGGTACTTCTGAAAGCGCTACTC





CTGAGTCTGGCCCAGGTAGCGAACCT





GCTACCTCTGGCTCTGAAACCCCAGG





TAGCCCGGCAGGCTCTCCGACTTCCA





CCGAGGAAGGTACCTCTACTGAACCT





TCTGAGGGTAGCGCTCCAGGTAGCGA





ACCGGCAACCTCTGGCTCTGAAACCC





CAGGTAGCGAACCTGCTACCTCCGGC





TCTGAAACTCCAGGTAGCGAACCGGC





TACTTCCGGTTCTGAAACTCCAGGTAC





CTCTACCGAACCTTCCGAAGGCAGCG





CACCAGGTACTTCTGAAAGCGCAACC





CCTGAATCCGGTCCAGGTAGCGAACC





GGCTACTTCTGGCTCTGAGACTCCAG





GTACTTCTACCGAACCGTCCGAAGGT





AGCGCACCA





AE624-
MAEPAGSPTSTEEGT
745
ATGGCTGAACCTGCTGGCTCTCCAAC
746


hGH-
PGSGTASSSPGSSTPS

CTCCACTGAGGAAGGTACCCCGGGTA


AE144
GATGSPGASPGTSST

GCGGTACTGCTTCTTCCTCTCCAGGTA



GSPGSPAGSPTSTEE

GCTCTACCCCTTCTGGTGCAACCGGCT



GTSESATPESGPGTS

CTCCAGGTGCTTCTCCGGGCACCAGCT



TEPSEGSAPGSPAGS

CTACCGGTTCTCCAGGTAGCCCGGCT



PTSTEEGTSTEPSEGS

GGCTCTCCTACCTCTACTGAGGAAGG



APGTSTEPSEGSAPG

TACTTCTGAAAGCGCTACTCCTGAGTC



TSESATPESGPGSEP

TGGTCCAGGTACCTCTACTGAACCGTC



ATSGSETPGSEPATS

CGAAGGTAGCGCTCCAGGTAGCCCAG



GSETPGSPAGSPTST

CAGGCTCTCCGACTTCCACTGAGGAA



EEGTSESATPESGPG

GGTACTTCTACTGAACCTTCCGAAGG



TSTEPSEGSAPGTSTE

CAGCGCACCAGGTACCTCTACTGAAC



PSEGSAPGSPAGSPT

CTTCTGAGGGCAGCGCTCCAGGTACT



STEEGTSTEPSEGSAP

TCTGAAAGCGCTACCCCGGAATCTGG



GTSTEPSEGSAPGTS

CCCAGGTAGCGAACCGGCTACTTCTG



ESATPESGPGTSTEPS

GTTCTGAAACCCCAGGTAGCGAACCG



EGSAPGTSESATPES

GCTACCTCCGGTTCTGAAACTCCAGGT



GPGSEPATSGSETPG

AGCCCGGCAGGCTCTCCGACCTCTAC



TSTEPSEGSAPGTSTE

TGAGGAAGGTACTTCTGAAAGCGCAA



PSEGSAPGTSESATP

CCCCGGAGTCCGGCCCAGGTACCTCT



ESGPGTSESATPESG

ACCGAACCGTCTGAGGGCAGCGCACC



PGSPAGSPTSTEEGT

AGGTACTTCTACCGAACCGTCCGAGG



SESATPESGPGSEPA

GTAGCGCACCAGGTAGCCCAGCAGGT



TSGSETPGTSESATPE

TCTCCTACCTCCACCGAGGAAGGTAC



SGPGTSTEPSEGSAP

TTCTACCGAACCGTCCGAGGGTAGCG



GTSTEPSEGSAPGTS

CACCAGGTACCTCTACTGAACCTTCTG



TEPSEGSAPGTSTEPS

AGGGCAGCGCTCCAGGTACTTCTGAA



EGSAPGTSTEPSEGS

AGCGCTACCCCGGAGTCCGGTCCAGG



APGTSTEPSEGSAPG

TACTTCTACTGAACCGTCCGAAGGTA



SPAGSPTSTEEGTSTE

GCGCACCAGGTACTTCTGAAAGCGCA



PSEGSAPGTSESATP

ACCCCTGAATCCGGTCCAGGTAGCGA



ESGPGSEPATSGSET

ACCGGCTACTTCTGGCTCTGAGACTCC



PGTSESATPESGPGS

AGGTACTTCTACCGAACCGTCCGAAG



EPATSGSETPGTSES

GTAGCGCACCAGGTACTTCTACTGAA



ATPESGPGTSTEPSE

CCGTCTGAAGGTAGCGCACCAGGTAC



GSAPGTSESATPESG

TTCTGAAAGCGCAACCCCGGAATCCG



PGSPAGSPTSTEEGSP

GCCCAGGTACCTCTGAAAGCGCAACC



AGSPTSTEEGSPAGS

CCGGAGTCCGGCCCAGGTAGCCCTGC



PTSTEEGTSESATPES

TGGCTCTCCAACCTCCACCGAAGAAG



GPGTSTEPSEGSAPG

GTACCTCTGAAAGCGCAACCCCTGAA



FPTIPLSRLFDNAML

TCCGGCCCAGGTAGCGAACCGGCAAC



RAHRLHQLAFDTYQ

CTCCGGTTCTGAAACCCCAGGTACCTC



EFEEAYIPKEQKYSF

TGAAAGCGCTACTCCGGAGTCTGGCC



LQNPQTSLCFSESIPT

CAGGTACCTCTACTGAACCGTCTGAG



PSNREETQQKSNLEL

GGTAGCGCTCCAGGTACTTCTACTGA



LRISLLLIQSWLEPVQ

ACCGTCCGAAGGTAGCGCACCAGGTA



FLRSVFANSLVYGAS

CTTCTACCGAACCGTCCGAAGGCAGC



DSNVYDLLKDLEEGI

GCTCCAGGTACCTCTACTGAACCTTCC



QTLMGRLEDGSPRT

GAGGGCAGCGCTCCAGGTACCTCTAC



GQIFKQTYSKFDTNS

CGAACCTTCTGAAGGTAGCGCACCAG



HNDDALLKNYGLLY

GTACTTCTACCGAACCGTCCGAGGGT



CFRKDMDKVETFLRI

AGCGCACCAGGTAGCCCAGCAGGTTC



VQCRSVEGSCGFGG

TCCTACCTCCACCGAGGAAGGTACTT



SEPATSGSETPGTSES

CTACCGAACCGTCCGAGGGTAGCGCA



ATPESGPGSEPATSG

CCAGGTACCTCTGAAAGCGCAACTCC



SETPGSPAGSPTSTEE

TGAGTCTGGCCCAGGTAGCGAACCTG



GTSTEPSEGSAPGSE

CTACCTCCGGCTCTGAGACTCCAGGT



PATSGSETPGSEPAT

ACCTCTGAAAGCGCAACCCCGGAATC



SGSETPGSEPATSGS

TGGTCCAGGTAGCGAACCTGCAACCT



ETPGTSTEPSEGSAP

CTGGCTCTGAAACCCCAGGTACCTCT



GTSESATPESGPGSE

GAAAGCGCTACTCCTGAATCTGGCCC



PATSGSETPGTSTEPS

AGGTACTTCTACTGAACCGTCCGAGG



EGSAP

GCAGCGCACCAGGTACTTCTGAAAGC





GCTACTCCTGAGTCCGGCCCAGGTAG





CCCGGCTGGCTCTCCGACTTCCACCGA





GGAAGGTAGCCCGGCTGGCTCTCCAA





CTTCTACTGAAGAAGGTAGCCCGGCA





GGCTCTCCGACCTCTACTGAGGAAGG





TACTTCTGAAAGCGCAACCCCGGAGT





CCGGCCCAGGTACCTCTACCGAACCG





TCTGAGGGCAGCGCACCAGGTTTTCC





GACTATTCCGCTGTCTCGTCTGTTTGA





TAATGCTATGCTGCGTGCGCACCGTCT





GCACCAGCTGGCCTTTGATACTTACCA





GGAATTTGAAGAAGCcTACATTCCTAA





AGAGCAGAAGTACTCTTTCCTGCAAA





ACCCACAGACTTCTCTCTGCTTCAGCG





AATCTATTCCGACGCCTTCCAATCGCG





AGGAAACTCAGCAAAAGTCCAATCTG





GAACTACTCCGCATTTCTCTGCTTCTG





ATTCAGAGCTGGCTAGAACCAGTGCA





ATTTCTGCGTTCCGTCTTCGCCAATAG





CCTAGTTTATGGCGCATCCGACAGCA





ACGTATACGATCTCCTGAAAGATCTC





GAGGAAGGCATTCAGACCCTGATGGG





TCGTCTCGAGGATGGCTCTCCGCGTAC





TGGTCAGATCTTCAAGCAGACTTACTC





TAAATTTGATACTAACAGCCACAATG





ACGATGCGCTTCTAAAAAACTATGGT





CTGCTGTATTGTTTTCGTAAAGATATG





GACAAAGTTGAAACCTTCCTGCGTAT





TGTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTAGCGAAC





CGGCAACTTCCGGCTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGA





GTCTGGCCCAGGTAGCGAACCTGCTA





CCTCTGGCTCTGAAACCCCAGGTAGC





CCGGCAGGCTCTCCGACTTCCACCGA





GGAAGGTACCTCTACTGAACCTTCTG





AGGGTAGCGCTCCAGGTAGCGAACCG





GCAACCTCTGGCTCTGAAACCCCAGG





TAGCGAACCTGCTACCTCCGGCTCTG





AAACTCCAGGTAGCGAACCGGCTACT





TCCGGTTCTGAAACTCCAGGTACCTCT





ACCGAACCTTCCGAAGGCAGCGCACC





AGGTACTTCTGAAAGCGCAACCCCTG





AATCCGGTCCAGGTAGCGAACCGGCT





ACTTCTGGCTCTGAGACTCCAGGTACT





TCTACCGAACCGTCCGAAGGTAGCGC





ACCA





AD836-
GSSESGSSEGGPGSS
747
GGTTCCTCTGAAAGCGGTTCTTCCGAA
748


hGH-
ESGSSEGGPGESPGG

GGTGGTCCAGGTTCCTCTGAAAGCGG


AE144
SSGSESGSGGEPSES

TTCTTCTGAGGGTGGTCCAGGTGAATC



GSSGESPGGSSGSES

TCCGGGTGGCTCCAGCGGTTCCGAGT



GESPGGSSGSESGSS

CAGGTTCTGGTGGCGAACCTTCCGAG



ESGSSEGGPGSSESG

TCTGGTAGCTCAGGTGAATCTCCGGG



SSEGGPGSSESGSSE

TGGTTCTAGCGGTTCCGAGTCAGGTG



GGPGESPGGSSGSES

AATCTCCGGGTGGTTCCAGCGGTTCTG



GESPGGSSGSESGES

AGTCAGGTTCCTCCGAAAGCGGTTCTT



PGGSSGSESGSSESG

CTGAGGGCGGTCCAGGTTCCTCCGAA



SSEGGPGSSESGSSE

AGCGGTTCTTCCGAGGGCGGTCCAGG



GGPGSSESGSSEGGP

TTCTTCTGAAAGCGGTTCTTCCGAGGG



GSSESGSSEGGPGSS

CGGTCCAGGTGAATCTCCTGGTGGTTC



ESGSSEGGPGSSESG

CAGCGGTTCCGAGTCAGGTGAATCTC



SSEGGPGSGGEPSES

CAGGTGGCTCTAGCGGTTCCGAGTCA



GSSGESPGGSSGSES

GGTGAATCTCCTGGTGGTTCTAGCGGT



GESPGGSSGSESGSG

TCTGAATCAGGTTCCTCCGAAAGCGG



GEPSESGSSGSEGSS

TTCTTCTGAGGGCGGTCCAGGTTCCTC



GPGESSGSSESGSSE

CGAAAGCGGTTCTTCCGAGGGCGGTC



GGPGSGGEPSESGSS

CAGGTTCTTCTGAAAGCGGTTCTTCCG



GSEGSSGPGESSGSS

AGGGCGGTCCAGGTTCCTCTGAAAGC



ESGSSEGGPGSGGEP

GGTTCTTCTGAGGGCGGTCCAGGTTCT



SESGSSGESPGGSSG

TCCGAAAGCGGTTCTTCCGAGGGCGG



SESGSGGEPSESGSS

TCCAGGTTCTTCCGAAAGCGGTTCTTC



GSGGEPSESGSSGSS

TGAAGGCGGTCCAGGTTCTGGTGGCG



ESGSSEGGPGSGGEP

AACCGTCCGAGTCTGGTAGCTCAGGT



SESGSSGSGGEPSES

GAATCTCCGGGTGGCTCTAGCGGTTC



GSSGSEGSSGPGESS

CGAGTCAGGTGAATCTCCTGGTGGTT



GESPGGSSGSESGSE

CCAGCGGTTCCGAGTCAGGTTCCGGT



GSSGPGESSGSEGSS

GGCGAACCGTCCGAATCTGGTAGCTC



GPGESSGSGGEPSES

AGGTAGCGAAGGTTCTTCTGGTCCAG



GSSGSSESGSSEGGP

GCGAATCTTCAGGTTCCTCTGAAAGC



GSSESGSSEGGPGES

GGTTCTTCTGAGGGCGGTCCAGGTTCC



PGGSSGSESGSGGEP

GGTGGCGAACCGTCCGAATCTGGTAG



SESGSSGSEGSSGPG

CTCAGGTAGCGAAGGTTCTTCTGGTCC



ESSGESPGGSSGSES

AGGCGAATCTTCAGGTTCCTCTGAAA



GSEGSSGPGSSESGS

GCGGTTCTTCTGAGGGCGGTCCAGGT



SEGGPGSGGEPSESG

TCCGGTGGCGAACCTTCCGAATCTGG



SSGSEGSSGPGESSG

TAGCTCAGGTGAATCTCCGGGTGGTT



SEGSSGPGESSGSEG

CTAGCGGTTCTGAGTCAGGTTCTGGTG



SSGPGESSGSGGEPS

GTGAACCTTCCGAGTCTGGTAGCTCA



ESGSSGSGGEPSESG

GGTTCTGGTGGCGAACCATCCGAGTC



SSGESPGGSSGSESG

TGGTAGCTCAGGTTCTTCCGAAAGCG



ESPGGSSGSESGSGG

GTTCTTCCGAAGGCGGTCCAGGTTCTG



EPSESGSSGSEGSSGP

GTGGTGAACCGTCCGAATCTGGTAGC



GESSGESPGGSSGSE

TCAGGTTCTGGTGGCGAACCATCCGA



SGSSESGSSEGGPGS

ATCTGGTAGCTCAGGTAGCGAAGGTT



SESGSSEGGPGSSES

CTTCTGGTCCTGGCGAATCTTCAGGTG



GSSEGGPGSGGEPSE

AATCTCCAGGTGGCTCTAGCGGTTCC



SGSSGSSESGSSEGG

GAATCAGGTAGCGAAGGTTCTTCCGG



PGESPGGSSGSESGS

TCCAGGTGAATCTTCAGGTAGCGAAG



GGEPSESGSSGSSES

GTTCTTCTGGTCCTGGTGAATCCTCAG



GSSEGGPGESPGGSS

GTTCCGGTGGCGAACCATCTGAATCT



GSESGSGGEPSESGS

GGTAGCTCAGGTTCCTCTGAAAGCGG



SGESPGGSSGSESGS

TTCTTCCGAAGGTGGTCCAGGTTCCTC



GGEPSESGSSGFPTIP

TGAAAGCGGTTCTTCTGAGGGTGGTC



LSRLFDNAMLRAHR

CAGGTGAATCTCCGGGTGGCTCCAGC



LHQLAFDTYQEFEE

GGTTCCGAGTCAGGTTCTGGTGGCGA



AYIPKEQKYSFLQNP

ACCATCCGAATCTGGTAGCTCAGGTA



QTSLCFSESIPTPSNR

GCGAAGGTTCTTCTGGTCCTGGCGAA



EETQQKSNLELLRIS

TCTTCAGGTGAATCTCCAGGTGGCTCT



LLLIQSWLEPVQFLR

AGCGGTTCCGAATCAGGTAGCGAAGG



SVFANSLVYGASDS

TTCTTCCGGTCCaGGTTCCTCTGAAAG



NVYDLLKDLEEGIQT

CGGTTCTTCTGAGGGCGGTCCAGGTTC



LMGRLEDGSPRTGQI

TGGTGGCGAACCATCTGAATCTGGTA



FKQTYSKFDTNSHN

GCTCAGGTAGCGAAGGTTCTTCCGGT



DDALLKNYGLLYCF

CCGGGTGAATCTTCAGGTAGCGAAGG



RKDMDKVETFLRIV

TTCTTCCGGTCCAGGTGAATCTTCAGG



QCRSVEGSCGFGGSE

TAGCGAAGGTTCTTCTGGTCCTGGTGA



PATSGSETPGTSESA

ATCCTCAGGTTCCGGTGGCGAACCAT



TPESGPGSEPATSGS

CTGAATCTGGTAGCTCAGGTTCTGGTG



ETPGSPAGSPTSTEE

GCGAACCATCCGAATCTGGTAGCTCA



GTSTEPSEGSAPGSE

GGTGAATCTCCGGGTGGCTCCAGCGG



PATSGSETPGSEPAT

TTCTGAATCAGGTGAATCTCCTGGTGG



SGSETPGSEPATSGS

CTCCAGCGGTTCTGAGTCAGGTTCTGG



ETPGTSTEPSEGSAP

TGGCGAACCATCCGAATCTGGTAGCT



GTSESATPESGPGSE

CAGGTAGCGAAGGTTCTTCTGGTCCT



PATSGSETPGTSTEPS

GGCGAATCTTCAGGTGAATCTCCAGG



EGSAP

TGGCTCTAGCGGTTCCGAATCAGGTTC





CTCTGAAAGCGGTTCTTCTGAGGGCG





GTCCAGGTTCTTCCGAAAGCGGTTCTT





CCGAGGGCGGTCCAGGTTCTTCCGAA





AGCGGTTCTTCTGAAGGCGGTCCAGG





TTCTGGTGGCGAACCGTCCGAATCTG





GTAGCTCAGGTTCCTCCGAAAGCGGT





TCTTCTGAAGGTGGTCCAGGTGAATCT





CCAGGTGGTTCTAGCGGTTCTGAATC





AGGTTCTGGTGGCGAACCGTCCGAAT





CTGGTAGCTCAGGTTCCTCCGAAAGC





GGTTCTTCTGAAGGTGGTCCAGGTGA





ATCTCCAGGTGGTTCTAGCGGTTCTGA





ATCAGGTTCTGGTGGCGAACCGTCCG





AATCTGGTAGCTCAGGTGAATCTCCT





GGTGGTTCCAGCGGTTCCGAGTCAGG





TTCTGGTGGCGAACCTTCCGAATCTGG





TAGCTCAGGTTTTCCGACTATTCCGCT





GTCTCGTCTGTTTGATAATGCTATGCT





GCGTGCGCACCGTCTGCACCAGCTGG





CCTTTGATACTTACCAGGAATTTGAAG





AAGCcTACATTCCTAAAGAGCAGAAG





TACTCTTTCCTGCAAAACCCACAGACT





TCTCTCTGCTTCAGCGAATCTATTCCG





ACGCCTTCCAATCGCGAGGAAACTCA





GCAAAAGTCCAATCTGGAACTACTCC





GCATTTCTCTGCTTCTGATTCAGAGCT





GGCTAGAACCAGTGCAATTTCTGCGT





TCCGTCTTCGCCAATAGCCTAGTTTAT





GGCGCATCCGACAGCAACGTATACGA





TCTCCTGAAAGATCTCGAGGAAGGCA





TTCAGACCCTGATGGGTCGTCTCGAG





GATGGCTCTCCGCGTACTGGTCAGAT





CTTCAAGCAGACTTACTCTAAATTTGA





TACTAACAGCCACAATGACGATGCGC





TTCTAAAAAACTATGGTCTGCTGTATT





GTTTTCGTAAAGATATGGACAAAGTT





GAAACCTTCCTGCGTATTGTTCAGTGT





CGTTCCGTTGAGGGCAGCTGTGGTTTC





TAAGGTGGTAGCGAACCGGCAACTTC





CGGCTCTGAAACCCCAGGTACTTCTG





AAAGCGCTACTCCTGAGTCTGGCCCA





GGTAGCGAACCTGCTACCTCTGGCTCT





GAAACCCCAGGTAGCCCGGCAGGCTC





TCCGACTTCCACCGAGGAAGGTACCT





CTACTGAACCTTCTGAGGGTAGCGCT





CCAGGTAGCGAACCGGCAACCTCTGG





CTCTGAAACCCCAGGTAGCGAACCTG





CTACCTCCGGCTCTGAAACTCCAGGT





AGCGAACCGGCTACTTCCGGTTCTGA





AACTCCAGGTACCTCTACCGAACCTTC





CGAAGGCAGCGCACCAGGTACTTCTG





AAAGCGCAACCCCTGAATCCGGTCCA





GGTAGCGAACCGGCTACTTCTGGCTC





TGAGACTCCAGGTACTTCTACCGAAC





CGTCCGAAGGTAGCGCACCA





AE864-
GSPAGSPTSTEEGTS
749
GGTAGCCCGGCTGGCTCTCCTACCTCT
750


hGH-
ESATPESGPGTSTEPS

ACTGAGGAAGGTACTTCTGAAAGCGC


AE144
EGSAPGSPAGSPTST

TACTCCTGAGTCTGGTCCAGGTACCTC



EEGTSTEPSEGSAPG

TACTGAACCGTCCGAAGGTAGCGCTC



TSTEPSEGSAPGTSES

CAGGTAGCCCAGCAGGCTCTCCGACT



ATPESGPGSEPATSG

TCCACTGAGGAAGGTACTTCTACTGA



SETPGSEPATSGSETP

ACCTTCCGAAGGCAGCGCACCAGGTA



GSPAGSPTSTEEGTS

CCTCTACTGAACCTTCTGAGGGCAGC



ESATPESGPGTSTEPS

GCTCCAGGTACTTCTGAAAGCGCTAC



EGSAPGTSTEPSEGS

CCCGGAATCTGGCCCAGGTAGCGAAC



APGSPAGSPTSTEEG

CGGCTACTTCTGGTTCTGAAACCCCAG



TSTEPSEGSAPGTSTE

GTAGCGAACCGGCTACCTCCGGTTCT



PSEGSAPGTSESATP

GAAACTCCAGGTAGCCCGGCAGGCTC



ESGPGTSTEPSEGSA

TCCGACCTCTACTGAGGAAGGTACTT



PGTSESATPESGPGS

CTGAAAGCGCAACCCCGGAGTCCGGC



EPATSGSETPGTSTEP

CCAGGTACCTCTACCGAACCGTCTGA



SEGSAPGTSTEPSEG

GGGCAGCGCACCAGGTACTTCTACCG



SAPGTSESATPESGP

AACCGTCCGAGGGTAGCGCACCAGGT



GTSESATPESGPGSP

AGCCCAGCAGGTTCTCCTACCTCCACC



AGSPTSTEEGTSESA

GAGGAAGGTACTTCTACCGAACCGTC



TPESGPGSEPATSGS

CGAGGGTAGCGCACCAGGTACCTCTA



ETPGTSESATPESGP

CTGAACCTTCTGAGGGCAGCGCTCCA



GTSTEPSEGSAPGTS

GGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACC



EGSAPGTSTEPSEGS

GTCCGAAGGTAGCGCACCAGGTACTT



APGTSTEPSEGSAPG

CTGAAAGCGCAACCCCTGAATCCGGT



TSTEPSEGSAPGSPA

CCAGGTAGCGAACCGGCTACTTCTGG



GSPTSTEEGTSTEPSE

CTCTGAGACTCCAGGTACTTCTACCGA



GSAPGTSESATPESG

ACCGTCCGAAGGTAGCGCACCAGGTA



PGSEPATSGSETPGT

CTTCTACTGAACCGTCTGAAGGTAGC



SESATPESGPGSEPA

GCACCAGGTACTTCTGAAAGCGCAAC



TSGSETPGTSESATPE

CCCGGAATCCGGCCCAGGTACCTCTG



SGPGTSTEPSEGSAP

AAAGCGCAACCCCGGAGTCCGGCCCA



GTSESATPESGPGSP

GGTAGCCCTGCTGGCTCTCCAACCTCC



AGSPTSTEEGSPAGS

ACCGAAGAAGGTACCTCTGAAAGCGC



PTSTEEGSPAGSPTST

AACCCCTGAATCCGGCCCAGGTAGCG



EEGTSESATPESGPG

AACCGGCAACCTCCGGTTCTGAAACC



TSTEPSEGSAPGTSES

CCAGGTACCTCTGAAAGCGCTACTCC



ATPESGPGSEPATSG

GGAGTCTGGCCCAGGTACCTCTACTG



SETPGTSESATPESGP

AACCGTCTGAGGGTAGCGCTCCAGGT



GSEPATSGSETPGTS

ACTTCTACTGAACCGTCCGAAGGTAG



ESATPESGPGTSTEPS

CGCACCAGGTACTTCTACCGAACCGT



EGSAPGSPAGSPTST

CCGAAGGCAGCGCTCCAGGTACCTCT



EEGTSESATPESGPG

ACTGAACCTTCCGAGGGCAGCGCTCC



SEPATSGSETPGTSES

AGGTACCTCTACCGAACCTTCTGAAG



ATPESGPGSPAGSPT

GTAGCGCACCAGGTACTTCTACCGAA



STEEGSPAGSPTSTEE

CCGTCCGAGGGTAGCGCACCAGGTAG



GTSTEPSEGSAPGTS

CCCAGCAGGTTCTCCTACCTCCACCGA



ESATPESGPGTSESA

GGAAGGTACTTCTACCGAACCGTCCG



TPESGPGTSESATPES

AGGGTAGCGCACCAGGTACCTCTGAA



GPGSEPATSGSETPG

AGCGCAACTCCTGAGTCTGGCCCAGG



SEPATSGSETPGSPA

TAGCGAACCTGCTACCTCCGGCTCTG



GSPTSTEEGTSTEPSE

AGACTCCAGGTACCTCTGAAAGCGCA



GSAPGTSTEPSEGSA

ACCCCGGAATCTGGTCCAGGTAGCGA



PGSEPATSGSETPGT

ACCTGCAACCTCTGGCTCTGAAACCC



SESATPESGPGTSTEP

CAGGTACCTCTGAAAGCGCTACTCCT



SEGSAPGFPTIPLSRL

GAATCTGGCCCAGGTACTTCTACTGA



FDNAMLRAHRLHQL

ACCGTCCGAGGGCAGCGCACCAGGTA



AFDTYQEFEEAYIPK

CTTCTGAAAGCGCTACTCCTGAGTCCG



EQKYSFLQNPQTSLC

GCCCAGGTAGCCCGGCTGGCTCTCCG



FSESIPTPSNREETQQ

ACTTCCACCGAGGAAGGTAGCCCGGC



KSNLELLRISLLLIQS

TGGCTCTCCAACTTCTACTGAAGAAG



WLEPVQFLRSVFAN

GTAGCCCGGCAGGCTCTCCGACCTCT



SLVYGASDSNVYDL

ACTGAGGAAGGTACTTCTGAAAGCGC



LKDLEEGIQTLMGRL

AACCCCGGAGTCCGGCCCAGGTACCT



EDGSPRTGQIFKQTY

CTACCGAACCGTCTGAGGGCAGCGCA



SKFDTNSHNDDALL

CCAGGTACCTCTGAAAGCGCAACTCC



KNYGLLYCFRKDMD

TGAGTCTGGCCCAGGTAGCGAACCTG



KVETFLRIVQCRSVE

CTACCTCCGGCTCTGAGACTCCAGGT



GSCGFGGSEPATSGS

ACCTCTGAAAGCGCAACCCCGGAATC



ETPGTSESATPESGP

TGGTCCAGGTAGCGAACCTGCAACCT



GSEPATSGSETPGSP

CTGGCTCTGAAACCCCAGGTACCTCT



AGSPTSTEEGTSTEPS

GAAAGCGCTACTCCTGAATCTGGCCC



EGSAPGSEPATSGSE

AGGTACTTCTACTGAACCGTCCGAGG



TPGSEPATSGSETPG

GCAGCGCACCAGGTAGCCCTGCTGGC



SEPATSGSETPGTSTE

TCTCCAACCTCCACCGAAGAAGGTAC



PSEGSAPGTSESATP

CTCTGAAAGCGCAACCCCTGAATCCG



ESGPGSEPATSGSET

GCCCAGGTAGCGAACCGGCAACCTCC



PGTSTEPSEGSAP

GGTTCTGAAACCCCAGGTACTTCTGA





AAGCGCTACTCCTGAGTCCGGCCCAG





GTAGCCCGGCTGGCTCTCCGACTTCCA





CCGAGGAAGGTAGCCCGGCTGGCTCT





CCAACTTCTACTGAAGAAGGTACTTCT





ACCGAACCTTCCGAGGGCAGCGCACC





AGGTACTTCTGAAAGCGCTACCCCTG





AGTCCGGCCCAGGTACTTCTGAAAGC





GCTACTCCTGAATCCGGTCCAGGTACT





TCTGAAAGCGCTACCCCGGAATCTGG





CCCAGGTAGCGAACCGGCTACTTCTG





GTTCTGAAACCCCAGGTAGCGAACCG





GCTACCTCCGGTTCTGAAACTCCAGGT





AGCCCAGCAGGCTCTCCGACTTCCAC





TGAGGAAGGTACTTCTACTGAACCTT





CCGAAGGCAGCGCACCAGGTACCTCT





ACTGAACCTTCTGAGGGCAGCGCTCC





AGGTAGCGAACCTGCAACCTCTGGCT





CTGAAACCCCAGGTACCTCTGAAAGC





GCTACTCCTGAATCTGGCCCAGGTACT





TCTACTGAACCGTCCGAGGGCAGCGC





ACCAGGTTTTCCGACTATTCCGCTGTC





TCGTCTGTTTGATAATGCTATGCTGCG





TGCGCACCGTCTGCACCAGCTGGCCTT





TGATACTTACCAGGAATTTGAAGAAG





CcTACATTCCTAAAGAGCAGAAGTACT





CTTTCCTGCAAAACCCACAGACTTCTC





TCTGCTTCAGCGAATCTATTCCGACGC





CTTCCAATCGCGAGGAAACTCAGCAA





AAGTCCAATCTGGAACTACTCCGCAT





TTCTCTGCTTCTGATTCAGAGCTGGCT





AGAACCAGTGCAATTTCTGCGTTCCGT





CTTCGCCAATAGCCTAGTTTATGGCGC





ATCCGACAGCAACGTATACGATCTCC





TGAAAGATCTCGAGGAAGGCATTCAG





ACCCTGATGGGTCGTCTCGAGGATGG





CTCTCCGCGTACTGGTCAGATCTTCAA





GCAGACTTACTCTAAATTTGATACTAA





CAGCCACAATGACGATGCGCTTCTAA





AAAACTATGGTCTGCTGTATTGTTTTC





GTAAAGATATGGACAAAGTTGAAACC





TTCCTGCGTATTGTTCAGTGTCGTTCC





GTTGAGGGCAGCTGTGGTTTCTAAGG





TGGTAGCGAACCGGCAACTTCCGGCT





CTGAAACCCCAGGTACTTCTGAAAGC





GCTACTCCTGAGTCTGGCCCAGGTAG





CGAACCTGCTACCTCTGGCTCTGAAA





CCCCAGGTAGCCCGGCAGGCTCTCCG





ACTTCCACCGAGGAAGGTACCTCTAC





TGAACCTTCTGAGGGTAGCGCTCCAG





GTAGCGAACCGGCAACCTCTGGCTCT





GAAACCCCAGGTAGCGAACCTGCTAC





CTCCGGCTCTGAAACTCCAGGTAGCG





AACCGGCTACTTCCGGTTCTGAAACTC





CAGGTACCTCTACCGAACCTTCCGAA





GGCAGCGCACCAGGTACTTCTGAAAG





CGCAACCCCTGAATCCGGTCCAGGTA





GCGAACCGGCTACTTCTGGCTCTGAG





ACTCCAGGTACTTCTACCGAACCGTCC





GAAGGTAGCGCACCA





AF864-
GSTSESPSGTAPGTSP
751
GGTTCTACCAGCGAATCTCCTTCTGGC
752


hGH-
SGESSTAPGSTSESPS

ACCGCTCCAGGTACCTCTCCTAGCGG


AE144
GTAPGSTSESPSGTA

CGAATCTTCTACCGCTCCAGGTTCTAC



PGTSTPESGSASPGTS

TAGCGAATCTCCTTCTGGCACTGCACC



TPESGSASPGSTSESP

AGGTTCTACTAGCGAATCCCCGTCTG



SGTAPGSTSESPSGT

GTACTGCTCCAGGTACTTCTACTCCTG



APGTSPSGESSTAPG

AAAGCGGTTCCGCTTCTCCAGGTACCT



STSESPSGTAPGTSPS

CTACTCCGGAAAGCGGTTCTGCATCTC



GESSTAPGTSPSGESS

CAGGTTCTACCAGCGAATCTCCTTCTG



TAPGSTSSTAESPGP

GCACCGCTCCAGGTTCTACTAGCGAA



GTSPSGESSTAPGTSP

TCCCCGTCTGGTACCGCACCAGGTACT



SGESSTAPGSTSSTA

TCTCCTAGCGGCGAATCTTCTACCGCA



ESPGPGTSTPESGSAS

CCAGGTTCTACTAGCGAATCTCCGTCT



PGTSTPESGSASPGST

GGCACTGCTCCAGGTACTTCTCCTAGC



SESPSGTAPGSTSESP

GGTGAATCTTCTACCGCTCCAGGTACT



SGTAPGTSTPESGSA

TCCCCTAGCGGCGAATCTTCTACCGCT



SPGSTSSTAESPGPGT

CCAGGTTCTACTAGCTCTACTGCAGA



STPESGSASPGSTSES

ATCTCCGGGCCCAGGTACCTCTCCTAG



PSGTAPGTSPSGESST

CGGTGAATCTTCTACCGCTCCAGGTAC



APGSTSSTAESPGPG

TTCTCCGAGCGGTGAATCTTCTACCGC



TSPSGESSTAPGTSTP

TCCAGGTTCTACTAGCTCTACTGCAGA



ESGSASPGSTSSTAES

ATCTCCTGGCCCAGGTACCTCTACTCC



PGPGSTSSTAESPGP

GGAAAGCGGCTCTGCATCTCCAGGTA



GSTSSTAESPGPGSTS

CTTCTACCCCTGAAAGCGGTTCTGCAT



STAESPGPGTSPSGES

CTCCAGGTTCTACTAGCGAATCTCCTT



STAPGSTSESPSGTAP

CTGGCACTGCACCAGGTTCTACCAGC



GSTSESPSGTAPGTS

GAATCTCCGTCTGGCACTGCACCAGG



TPESGPXXXGASASG

TACCTCTACCCCTGAAAGCGGTTCCGC



APSTXXXXSESPSGT

TTCTCCAGGTTCTACCAGCTCTACCGC



APGSTSESPSGTAPG

AGAATCTCCTGGTCCAGGTACCTCTAC



STSESPSGTAPGSTSE

TCCGGAAAGCGGCTCTGCATCTCCAG



SPSGTAPGSTSESPSG

GTTCTACTAGCGAATCTCCTTCTGGCA



TAPGSTSESPSGTAP

CTGCACCAGGTACTTCTCCGAGCGGT



GTSTPESGSASPGTSP

GAATCTTCTACCGCACCAGGTTCTACT



SGESSTAPGTSPSGES

AGCTCTACCGCTGAATCTCCGGGCCC



STAPGSTSSTAESPGP

AGGTACTTCTCCGAGCGGTGAATCTTC



GTSPSGESSTAPGTS

TACTGCTCCAGGTACCTCTACTCCTGA



TPESGSASPGSTSESP

AAGCGGTTCTGCATCTCCAGGTTCCAC



SGTAPGSTSESPSGT

TAGCTCTACCGCAGAATCTCCGGGCC



APGTSPSGESSTAPG

CAGGTTCTACTAGCTCTACTGCTGAAT



STSESPSGTAPGTSTP

CTCCTGGCCCAGGTTCTACTAGCTCTA



ESGSASPGTSTPESGS

CTGCTGAATCTCCGGGTCCAGGTTCTA



ASPGSTSESPSGTAP

CCAGCTCTACTGCTGAATCTCCTGGTC



GTSTPESGSASPGSTS

CAGGTACCTCCCCGAGCGGTGAATCT



STAESPGPGSTSESPS

TCTACTGCACCAGGTTCTACTAGCGA



GTAPGSTSESPSGTA

ATCTCCTTCTGGCACTGCACCAGGTTC



PGTSPSGESSTAPGST

TACCAGCGAATCTCCGTCTGGCACTG



SSTAESPGPGTSPSGE

CACCAGGTACCTCTACCCCTGAAAGC



SSTAPGTSTPESGSAS

GGTCCXXXXXXXXXXXXTGCAAGCG



PGTSPSGESSTAPGTS

CAAGCGGCGCGCCAAGCACGGGAXX



PSGESSTAPGTSPSGE

XXXXXXTAGCGAATCTCCTTCTGGTA



SSTAPGSTSSTAESPG

CCGCTCCAGGTTCTACCAGCGAATCC



PGSTSSTAESPGPGTS

CCGTCTGGTACTGCTCCAGGTTCTACC



PSGESSTAPGSSPSAS

AGCGAATCTCCTTCTGGTACTGCACCA



TGTGPGSSTPSGATG

GGTTCTACTAGCGAATCTCCTTCTGGT



SPGSSTPSGATGSPG

ACCGCTCCAGGTTCTACCAGCGAATC



FPTIPLSRLFDNAML

CCCGTCTGGTACTGCTCCAGGTTCTAC



RAHRLHQLAFDTYQ

CAGCGAATCTCCTTCTGGTACTGCACC



EFEEAYIPKEQKYSF

AGGTACTTCTACTCCGGAAAGCGGTT



LQNPQTSLCFSESIPT

CCGCATCTCCAGGTACTTCTCCTAGCG



PSNREETQQKSNLEL

GTGAATCTTCTACTGCTCCAGGTACCT



LRISLLLIQSWLEPVQ

CTCCTAGCGGCGAATCTTCTACTGCTC



FLRSVFANSLVYGAS

CAGGTTCTACCAGCTCTACTGCTGAAT



DSNVYDLLKDLEEGI

CTCCGGGTCCAGGTACTTCCCCGAGC



QTLMGRLEDGSPRT

GGTGAATCTTCTACTGCACCAGGTACT



GQIFKQTYSKFDTNS

TCTACTCCGGAAAGCGGTTCCGCTTCT



HNDDALLKNYGLLY

CCAGGTTCTACCAGCGAATCTCCTTCT



CFRKDMDKVETFLRI

GGCACCGCTCCAGGTTCTACTAGCGA



VQCRSVEGSCGFGG

ATCCCCGTCTGGTACCGCACCAGGTA



SEPATSGSETPGTSES

CTTCTCCTAGCGGCGAATCTTCTACCG



ATPESGPGSEPATSG

CACCAGGTTCTACTAGCGAATCCCCG



SETPGSPAGSPTSTEE

TCTGGTACCGCACCAGGTACTTCTACC



GTSTEPSEGSAPGSE

CCGGAAAGCGGCTCTGCTTCTCCAGG



PATSGSETPGSEPAT

TACTTCTACCCCGGAAAGCGGCTCCG



SGSETPGSEPATSGS

CATCTCCAGGTTCTACTAGCGAATCTC



ETPGTSTEPSEGSAP

CTTCTGGTACCGCTCCAGGTACTTCTA



GTSESATPESGPGSE

CCCCTGAAAGCGGCTCCGCTTCTCCA



PATSGSETPGTSTEPS

GGTTCCACTAGCTCTACCGCTGAATCT



EGSAP

CCGGGTCCAGGTTCTACCAGCGAATC





TCCTTCTGGCACCGCTCCAGGTTCTAC





TAGCGAATCCCCGTCTGGTACCGCAC





CAGGTACTTCTCCTAGCGGCGAATCTT





CTACCGCACCAGGTTCTACCAGCTCTA





CTGCTGAATCTCCGGGTCCAGGTACTT





CCCCGAGCGGTGAATCTTCTACTGCA





CCAGGTACTTCTACTCCGGAAAGCGG





TTCCGCTTCTCCAGGTACCTCCCCTAG





CGGCGAATCTTCTACTGCTCCAGGTAC





CTCTCCTAGCGGCGAATCTTCTACCGC





TCCAGGTACCTCCCCTAGCGGTGAAT





CTTCTACCGCACCAGGTTCTACTAGCT





CTACTGCTGAATCTCCGGGTCCAGGTT





CTACCAGCTCTACTGCTGAATCTCCTG





GTCCAGGTACCTCCCCGAGCGGTGAA





TCTTCTACTGCACCAGGTTCTAGCCCT





TCTGCTTCCACCGGTACCGGCCCAGGT





AGCTCTACTCCGTCTGGTGCAACTGGC





TCTCCAGGTAGCTCTACTCCGTCTGGT





GCAACCGGCTCCCCAGGTTTTCCGACT





ATTCCGCTGTCTCGTCTGTTTGATAAT





GCTATGCTGCGTGCGCACCGTCTGCA





CCAGCTGGCCTTTGATACTTACCAGG





AATTTGAAGAAGCcTACATTCCTAAAG





AGCAGAAGTACTCTTTCCTGCAAAAC





CCACAGACTTCTCTCTGCTTCAGCGAA





TCTATTCCGACGCCTTCCAATCGCGAG





GAAACTCAGCAAAAGTCCAATCTGGA





ACTACTCCGCATTTCTCTGCTTCTGAT





TCAGAGCTGGCTAGAACCAGTGCAAT





TTCTGCGTTCCGTCTTCGCCAATAGCC





TAGTTTATGGCGCATCCGACAGCAAC





GTATACGATCTCCTGAAAGATCTCGA





GGAAGGCATTCAGACCCTGATGGGTC





GTCTCGAGGATGGCTCTCCGCGTACT





GGTCAGATCTTCAAGCAGACTTACTCT





AAATTTGATACTAACAGCCACAATGA





CGATGCGCTTCTAAAAAACTATGGTC





TGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTAGCGAAC





CGGCAACTTCCGGCTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGA





GTCTGGCCCAGGTAGCGAACCTGCTA





CCTCTGGCTCTGAAACCCCAGGTAGC





CCGGCAGGCTCTCCGACTTCCACCGA





GGAAGGTACCTCTACTGAACCTTCTG





AGGGTAGCGCTCCAGGTAGCGAACCG





GCAACCTCTGGCTCTGAAACCCCAGG





TAGCGAACCTGCTACCTCCGGCTCTG





AAACTCCAGGTAGCGAACCGGCTACT





TCCGGTTCTGAAACTCCAGGTACCTCT





ACCGAACCTTCCGAAGGCAGCGCACC





AGGTACTTCTGAAAGCGCAACCCCTG





AATCCGGTCCAGGTAGCGAACCGGCT





ACTTCTGGCTCTGAGACTCCAGGTACT





TCTACCGAACCGTCCGAAGGTAGCGC





ACCA





AG864-
GASPGTSSTGSPGSS
753
GGTGCTTCCCCGGGCACCAGCTCTACT
754


hGH-
PSASTGTGPGSSPSA

GGTTCTCCAGGTTCTAGCCCGTCTGCT


AE144
STGTGPGTPGSGTAS

TCTACTGGTACTGGTCCAGGTTCTAGC



SSPGSSTPSGATGSP

CCTTCTGCTTCCACTGGTACTGGTCCA



GSNPSASTGTGPGAS

GGTACCCCGGGTAGCGGTACCGCTTC



PGTSSTGSPGTPGSG

TTCTTCTCCAGGTAGCTCTACTCCGTC



TASSSPGSSTPSGAT

TGGTGCTACCGGCTCTCCAGGTTCTAA



GSPGTPGSGTASSSP

CCCTTCTGCATCCACCGGTACCGGCCC



GASPGTSSTGSPGAS

AGGTGCTTCTCCGGGCACCAGCTCTA



PGTSSTGSPGTPGSG

CTGGTTCTCCAGGTACCCCGGGCAGC



TASSSPGSSTPSGAT

GGTACCGCATCTTCTTCTCCAGGTAGC



GSPGASPGTSSTGSP

TCTACTCCTTCTGGTGCAACTGGTTCT



GTPGSGTASSSPGSS

CCAGGTACTCCTGGCAGCGGTACCGC



TPSGATGSPGSNPSA

TTCTTCTTCTCCAGGTGCTTCTCCTGG



STGTGPGSSPSASTG

TACTAGCTCTACTGGTTCTCCAGGTGC



TGPGSSTPSGATGSP

TTCTCCGGGCACTAGCTCTACTGGTTC



GSSTPSGATGSPGAS

TCCAGGTACCCCGGGTAGCGGTACTG



PGTSSTGSPGASPGT

CTTCTTCCTCTCCAGGTAGCTCTACCC



SSTGSPGASPGTSST

CTTCTGGTGCAACCGGCTCTCCAGGTG



GSPGTPGSGTASSSP

CTTCTCCGGGCACCAGCTCTACCGGTT



GASPGTSSTGSPGAS

CTCCAGGTACCCCGGGTAGCGGTACC



PGTSSTGSPGASPGT

GCTTCTTCTTCTCCAGGTAGCTCTACT



SSTGSPGSSPSASTGT

CCGTCTGGTGCTACCGGCTCTCCAGGT



GPGTPGSGTASSSPG

TCTAACCCTTCTGCATCCACCGGTACC



ASPGTSSTGSPGASP

GGCCCAGGTTCTAGCCCTTCTGCTTCC



GTSSTGSPGASPGTS

ACCGGTACTGGCCCAGGTAGCTCTAC



STGSPGSSTPSGATG

CCCTTCTGGTGCTACCGGCTCCCCAGG



SPGSSTPSGATGSPG

TAGCTCTACTCCTTCTGGTGCAACTGG



ASPGTSSTGSPGTPG

CTCTCCAGGTGCATCTCCGGGCACTA



SGTASSSPGSSTPSG

GCTCTACTGGTTCTCCAGGTGCATCCC



ATGSPGSSTPSGATG

CTGGCACTAGCTCTACTGGTTCTCCAG



SPGSSTPSGATGSPG

GTGCTTCTCCTGGTACCAGCTCTACTG



SSPSASTGTGPGASP

GTTCTCCAGGTACTCCTGGCAGCGGT



GTSSTGSPGASPGTS

ACCGCTTCTTCTTCTCCAGGTGCTTCT



STGSPGTPGSGTASS

CCTGGTACTAGCTCTACTGGTTCTCCA



SPGASPGTSSTGSPG

GGTGCTTCTCCGGGCACTAGCTCTACT



ASPGTSSTGSPGASP

GGTTCTCCAGGTGCTTCCCCGGGCACT



GTSSTGSPGASPGTS

AGCTCTACCGGTTCTCCAGGTTCTAGC



STGSPGTPGSGTASS

CCTTCTGCATCTACTGGTACTGGCCCA



SPGSSTPSGATGSPG

GGTACTCCGGGCAGCGGTACTGCTTC



TPGSGTASSSPGSSTP

TTCCTCTCCAGGTGCATCTCCGGGCAC



SGATGSPGTPGSGTA

TAGCTCTACTGGTTCTCCAGGTGCATC



SSSPGSSTPSGATGSP

CCCTGGCACTAGCTCTACTGGTTCTCC



GSSTPSGATGSPGSS

AGGTGCTTCTCCTGGTACCAGCTCTAC



PSASTGTGPGSSPSA

TGGTTCTCCAGGTAGCTCTACTCCGTC



STGTGPGASPGTSST

TGGTGCAACCGGTTCCCCAGGTAGCT



GSPGTPGSGTASSSP

CTACTCCTTCTGGTGCTACTGGCTCCC



GSSTPSGATGSPGSS

CAGGTGCATCCCCTGGCACCAGCTCT



PSASTGTGPGSSPSA

ACCGGTTCTCCAGGTACCCCGGGCAG



STGTGPGASPGTSST

CGGTACCGCATCTTCCTCTCCAGGTAG



GSPGASPGTSSTGSP

CTCTACCCCGTCTGGTGCTACCGGTTC



GSSTPSGATGSPGSS

CCCAGGTAGCTCTACCCCGTCTGGTGC



PSASTGTGPGASPGT

AACCGGCTCCCCAGGTAGCTCTACTC



SSTGSPGSSPSASTGT

CGTCTGGTGCAACCGGCTCCCCAGGT



GPGTPGSGTASSSPG

TCTAGCCCGTCTGCTTCCACTGGTACT



SSTPSGATGSPGSSTP

GGCCCAGGTGCTTCCCCGGGCACCAG



SGATGSPGASPGTSS

CTCTACTGGTTCTCCAGGTGCATCCCC



TGSPGFPTIPLSRLFD

GGGTACCAGCTCTACCGGTTCTCCAG



NAMLRAHRLHQLAF

GTACTCCTGGCAGCGGTACTGCATCTT



DTYQEFEEAYIPKEQ

CCTCTCCAGGTGCTTCTCCGGGCACCA



KYSFLQNPQTSLCFS

GCTCTACTGGTTCTCCAGGTGCATCTC



ESIPTPSNREETQQKS

CGGGCACTAGCTCTACTGGTTCTCCAG



NLELLRISLLLIQSWL

GTGCATCCCCTGGCACTAGCTCTACTG



EPVQFLRSVFANSLV

GTTCTCCAGGTGCTTCTCCTGGTACCA



YGASDSNVYDLLKD

GCTCTACTGGTTCTCCAGGTACCCCTG



LEEGIQTLMGRLEDG

GTAGCGGTACTGCTTCTTCCTCTCCAG



SPRTGQIFKQTYSKF

GTAGCTCTACTCCGTCTGGTGCTACCG



DTNSHNDDALLKNY

GTTCTCCAGGTACCCCGGGTAGCGGT



GLLYCFRKDMDKVE

ACCGCATCTTCTTCTCCAGGTAGCTCT



TFLRIVQCRSVEGSC

ACCCCGTCTGGTGCTACTGGTTCTCCA



GFGGSEPATSGSETP

GGTACTCCGGGCAGCGGTACTGCTTC



GTSESATPESGPGSE

TTCCTCTCCAGGTAGCTCTACCCCTTC



PATSGSETPGSPAGS

TGGTGCTACTGGCTCTCCAGGTAGCTC



PTSTEEGTSTEPSEGS

TACCCCGTCTGGTGCTACTGGCTCCCC



APGSEPATSGSETPG

AGGTTCTAGCCCTTCTGCATCCACCGG



SEPATSGSETPGSEP

TACCGGTCCAGGTTCTAGCCCGTCTGC



ATSGSETPGTSTEPSE

ATCTACTGGTACTGGTCCAGGTGCATC



GSAPGTSESATPESG

CCCGGGCACTAGCTCTACCGGTTCTCC



PGSEPATSGSETPGT

AGGTACTCCTGGTAGCGGTACTGCTTC



STEPSEGSAP

TTCTTCTCCAGGTAGCTCTACTCCTTC





TGGTGCTACTGGTTCTCCAGGTTCTAG





CCCTTCTGCATCCACCGGTACCGGCCC





AGGTTCTAGCCCGTCTGCTTCTACCGG





TACTGGTCCAGGTGCTTCTCCGGGTAC





TAGCTCTACTGGTTCTCCAGGTGCATC





TCCTGGTACTAGCTCTACTGGTTCTCC





AGGTAGCTCTACTCCGTCTGGTGCAA





CCGGCTCTCCAGGTTCTAGCCCTTCTG





CATCTACCGGTACTGGTCCAGGTGCA





TCCCCTGGTACCAGCTCTACCGGTTCT





CCAGGTTCTAGCCCTTCTGCTTCTACC





GGTACCGGTCCAGGTACCCCTGGCAG





CGGTACCGCATCTTCCTCTCCAGGTAG





CTCTACTCCGTCTGGTGCAACCGGTTC





CCCAGGTAGCTCTACTCCTTCTGGTGC





TACTGGCTCCCCAGGTGCATCCCCTGG





CACCAGCTCTACCGGTTCTCCAGGTTT





TCCGACTATTCCGCTGTCTCGTCTGTT





TGATAATGCTATGCTGCGTGCGCACC





GTCTGCACCAGCTGGCCTTTGATACTT





ACCAGGAATTTGAAGAAGCcTACATT





CCTAAAGAGCAGAAGTACTCTTTCCT





GCAAAACCCACAGACTTCTCTCTGCTT





CAGCGAATCTATTCCGACGCCTTCCA





ATCGCGAGGAAACTCAGCAAAAGTCC





AATCTGGAACTACTCCGCATTTCTCTG





CTTCTGATTCAGAGCTGGCTAGAACC





AGTGCAATTTCTGCGTTCCGTCTTCGC





CAATAGCCTAGTTTATGGCGCATCCG





ACAGCAACGTATACGATCTCCTGAAA





GATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTC





CGCGTACTGGTCAGATCTTCAAGCAG





ACTTACTCTAAATTTGATACTAACAGC





CACAATGACGATGCGCTTCTAAAAAA





CTATGGTCTGCTGTATTGTTTTCGTAA





AGATATGGACAAAGTTGAAACCTTCC





TGCGTATTGTTCAGTGTCGTTCCGTTG





AGGGCAGCTGTGGTTTCTAAGGTGGT





AGCGAACCGGCAACTTCCGGCTCTGA





AACCCCAGGTACTTCTGAAAGCGCTA





CTCCTGAGTCTGGCCCAGGTAGCGAA





CCTGCTACCTCTGGCTCTGAAACCCCA





GGTAGCCCGGCAGGCTCTCCGACTTC





CACCGAGGAAGGTACCTCTACTGAAC





CTTCTGAGGGTAGCGCTCCAGGTAGC





GAACCGGCAACCTCTGGCTCTGAAAC





CCCAGGTAGCGAACCTGCTACCTCCG





GCTCTGAAACTCCAGGTAGCGAACCG





GCTACTTCCGGTTCTGAAACTCCAGGT





ACCTCTACCGAACCTTCCGAAGGCAG





CGCACCAGGTACTTCTGAAAGCGCAA





CCCCTGAATCCGGTCCAGGTAGCGAA





CCGGCTACTTCTGGCTCTGAGACTCCA





GGTACTTCTACCGAACCGTCCGAAGG





TAGCGCACCA





AM875-
GTSTEPSEGSAPGSE
755
GGTACTTCTACTGAACCGTCTGAAGG
756


hGH-
PATSGSETPGSPAGS

CAGCGCACCAGGTAGCGAACCGGCTA


AE144
PTSTEEGSTSSTAESP

CTTCCGGTTCTGAAACCCCAGGTAGC



GPGTSTPESGSASPG

CCAGCAGGTTCTCCAACTTCTACTGAA



STSESPSGTAPGSTSE

GAAGGTTCTACCAGCTCTACCGCAGA



SPSGTAPGTSTPESGS

ATCTCCTGGTCCAGGTACCTCTACTCC



ASPGTSTPESGSASP

GGAAAGCGGCTCTGCATCTCCAGGTT



GSEPATSGSETPGTS

CTACTAGCGAATCTCCTTCTGGCACTG



ESATPESGPGSPAGS

CACCAGGTTCTACTAGCGAATCCCCG



PTSTEEGTSTEPSEGS

TCTGGTACTGCTCCAGGTACTTCTACT



APGTSESATPESGPG

CCTGAAAGCGGTTCCGCTTCTCCAGGT



TSTEPSEGSAPGTSTE

ACCTCTACTCCGGAAAGCGGTTCTGC



PSEGSAPGSPAGSPT

ATCTCCAGGTAGCGAACCGGCAACCT



STEEGTSTEPSEGSAP

CCGGCTCTGAAACCCCAGGTACCTCT



GTSTEPSEGSAPGTS

GAAAGCGCTACTCCTGAATCCGGCCC



ESATPESGPGTSESA

AGGTAGCCCGGCAGGTTCTCCGACTT



TPESGPGTSTEPSEGS

CCACTGAGGAAGGTACCTCTACTGAA



APGTSTEPSEGSAPG

CCTTCTGAGGGCAGCGCTCCAGGTAC



TSESATPESGPGTSTE

TTCTGAAAGCGCTACCCCGGAGTCCG



PSEGSAPGSEPATSG

GTCCAGGTACTTCTACTGAACCGTCCG



SETPGSPAGSPTSTEE

AAGGTAGCGCACCAGGTACTTCTACC



GSSTPSGATGSPGTP

GAACCGTCCGAGGGTAGCGCACCAGG



GSGTASSSPGSSTPS

TAGCCCAGCAGGTTCTCCTACCTCCAC



GATGSPGTSTEPSEG

CGAGGAAGGTACTTCTACCGAACCGT



SAPGTSTEPSEGSAP

CCGAGGGTAGCGCACCAGGTACTTCT



GSEPATSGSETPGSP

ACCGAACCTTCCGAGGGCAGCGCACC



AGSPTSTEEGSPAGS

AGGTACTTCTGAAAGCGCTACCCCTG



PTSTEEGTSTEPSEGS

AGTCCGGCCCAGGTACTTCTGAAAGC



APGASASGAPSTGGT

GCTACTCCTGAATCCGGTCCAGGTAC



SESATPESGPGSPAG

CTCTACTGAACCTTCCGAAGGCAGCG



SPTSTEEGSPAGSPTS

CTCCAGGTACCTCTACCGAACCGTCC



TEEGSTSSTAESPGP

GAGGGCAGCGCACCAGGTACTTCTGA



GSTSESPSGTAPGTSP

AAGCGCAACCCCTGAATCCGGTCCAG



SGESSTAPGTPGSGT

GTACTTCTACTGAACCTTCCGAAGGTA



ASSSPGSSTPSGATG

GCGCTCCAGGTAGCGAACCTGCTACT



SPGSSPSASTGTGPG

TCTGGTTCTGAAACCCCAGGTAGCCC



SEPATSGSETPGTSES

GGCTGGCTCTCCGACCTCCACCGAGG



ATPESGPGSEPATSG

AAGGTAGCTCTACCCCGTCTGGTGCT



SETPGSTSSTAESPGP

ACTGGTTCTCCAGGTACTCCGGGCAG



GSTSSTAESPGPGTSP

CGGTACTGCTTCTTCCTCTCCAGGTAG



SGESSTAPGSEPATS

CTCTACCCCTTCTGGTGCTACTGGCTC



GSETPGSEPATSGSE

TCCAGGTACCTCTACCGAACCGTCCG



TPGTSTEPSEGSAPG

AGGGTAGCGCACCAGGTACCTCTACT



STSSTAESPGPGTSTP

GAACCGTCTGAGGGTAGCGCTCCAGG



ESGSASPGSTSESPSG

TAGCGAACCGGCAACCTCCGGTTCTG



TAPGTSTEPSEGSAP

AAACTCCAGGTAGCCCTGCTGGCTCT



GTSTEPSEGSAPGTS

CCGACTTCTACTGAGGAAGGTAGCCC



TEPSEGSAPGSSTPSG

GGCTGGTTCTCCGACTTCTACTGAGGA



ATGSPGSSPSASTGT

AGGTACTTCTACCGAACCTTCCGAAG



GPGASPGTSSTGSPG

GTAGCGCTCCAGGTGCAAGCGCAAGC



SEPATSGSETPGTSES

GGCGCGCCAAGCACGGGAGGTACTTC



ATPESGPGSPAGSPT

TGAAAGCGCTACTCCTGAGTCCGGCC



STEEGSSTPSGATGS

CAGGTAGCCCGGCTGGCTCTCCGACT



PGSSPSASTGTGPGA

TCCACCGAGGAAGGTAGCCCGGCTGG



SPGTSSTGSPGTSESA

CTCTCCAACTTCTACTGAAGAAGGTTC



TPESGPGTSTEPSEGS

TACCAGCTCTACCGCTGAATCTCCTGG



APGTSTEPSEGSAPG

CCCAGGTTCTACTAGCGAATCTCCGTC



FPTIPLSRLFDNAML

TGGCACCGCACCAGGTACTTCCCCTA



RAHRLHQLAFDTYQ

GCGGTGAATCTTCTACTGCACCAGGT



EFEEAYIPKEQKYSF

ACCCCTGGCAGCGGTACCGCTTCTTCC



LQNPQTSLCFSESIPT

TCTCCAGGTAGCTCTACCCCGTCTGGT



PSNREETQQKSNLEL

GCTACTGGCTCTCCAGGTTCTAGCCCG



LRISLLLIQSWLEPVQ

TCTGCATCTACCGGTACCGGCCCAGG



FLRSVFANSLVYGAS

TAGCGAACCGGCAACCTCCGGCTCTG



DSNVYDLLKDLEEGI

AAACTCCAGGTACTTCTGAAAGCGCT



QTLMGRLEDGSPRT

ACTCCGGAATCCGGCCCAGGTAGCGA



GQIFKQTYSKFDTNS

ACCGGCTACTTCCGGCTCTGAAACCC



HNDDALLKNYGLLY

CAGGTTCCACCAGCTCTACTGCAGAA



CFRKDMDKVETFLRI

TCTCCGGGCCCAGGTTCTACTAGCTCT



VQCRSVEGSCGFGG

ACTGCAGAATCTCCGGGTCCAGGTAC



SEPATSGSETPGTSES

TTCTCCTAGCGGCGAATCTTCTACCGC



ATPESGPGSEPATSG

TCCAGGTAGCGAACCGGCAACCTCTG



SETPGSPAGSPTSTEE

GCTCTGAAACTCCAGGTAGCGAACCT



GTSTEPSEGSAPGSE

GCAACCTCCGGCTCTGAAACCCCAGG



PATSGSETPGSEPAT

TACTTCTACTGAACCTTCTGAGGGCAG



SGSETPGSEPATSGS

CGCACCAGGTTCTACCAGCTCTACCG



ETPGTSTEPSEGSAP

CAGAATCTCCTGGTCCAGGTACCTCTA



GTSESATPESGPGSE

CTCCGGAAAGCGGCTCTGCATCTCCA



PATSGSETPGTSTEPS

GGTTCTACTAGCGAATCTCCTTCTGGC



EGSAP

ACTGCACCAGGTACTTCTACCGAACC





GTCCGAAGGCAGCGCTCCAGGTACCT





CTACTGAACCTTCCGAGGGCAGCGCT





CCAGGTACCTCTACCGAACCTTCTGA





AGGTAGCGCACCAGGTAGCTCTACTC





CGTCTGGTGCAACCGGCTCCCCAGGT





TCTAGCCCGTCTGCTTCCACTGGTACT





GGCCCAGGTGCTTCCCCGGGCACCAG





CTCTACTGGTTCTCCAGGTAGCGAACC





TGCTACCTCCGGTTCTGAAACCCCAG





GTACCTCTGAAAGCGCAACTCCGGAG





TCTGGTCCAGGTAGCCCTGCAGGTTCT





CCTACCTCCACTGAGGAAGGTAGCTC





TACTCCGTCTGGTGCAACCGGCTCCCC





AGGTTCTAGCCCGTCTGCTTCCACTGG





TACTGGCCCAGGTGCTTCCCCGGGCA





CCAGCTCTACTGGTTCTCCAGGTACCT





CTGAAAGCGCTACTCCGGAGTCTGGC





CCAGGTACCTCTACTGAACCGTCTGA





GGGTAGCGCTCCAGGTACTTCTACTG





AACCGTCCGAAGGTAGCGCACCAGGT





TTTCCGACTATTCCGCTGCTCGTCTG





TTTGATAATGCTATGCTGCGTGCGCAC





CGTCTGCACCAGCTGGCCTTTGATACT





TACCAGGAATTTGAAGAAGCcTACATT





CCTAAAGAGCAGAAGTACTCTTTCCT





GCAAAACCCACAGACTTCTCTCTGCTT





CAGCGAATCTATTCCGACGCCTTCCA





ATCGCGAGGAAACTCAGCAAAAGTCC





AATCTGGAACTACTCCGCATTTCTCTG





CTTCTGATTCAGAGCTGGCTAGAACC





AGTGCAATTTCTGCGTTCCGTCTTCGC





CAATAGCCTAGTTTATGGCGCATCCG





ACAGCAACGTATACGATCTCCTGAAA





GATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTC





CGCGTACTGGTCAGATCTTCAAGCAG





ACTTACTCTAAATTTGATACTAACAGC





CACAATGACGATGCGCTTCTAAAAAA





CTATGGTCTGCTGTATTGTTTTCGTAA





AGATATGGACAAAGTTGAAACCTTCC





TGCGTATTGTTCAGTGTCGTTCCGTTG





AGGGCAGCTGTGGTTTCTAAGGTGGT





AGCGAACCGGCAACTTCCGGCTCTGA





AACCCCAGGTACTTCTGAAAGCGCTA





CTCCTGAGTCTGGCCCAGGTAGCGAA





CCTGCTACCTCTGGCTCTGAAACCCCA





GGTAGCCCGGCAGGCTCTCCGACTTC





CACCGAGGAAGGTACCTCTACTGAAC





CTTCTGAGGGTAGCGCTCCAGGTAGC





GAACCGGCAACCTCTGGCTCTGAAAC





CCCAGGTAGCGAACCTGCTACCTCCG





GCTCTGAAACTCCAGGTAGCGAACCG





GCTACTTCCGGTTCTGAAACTCCAGGT





ACCTCTACCGAACCTTCCGAAGGCAG





CGCACCAGGTACTTCTGAAAGCGCAA





CCCCTGAATCCGGTCCAGGTAGCGAA





CCGGCTACTTCTGGCTCTGAGACTCCA





GGTACTTCTACCGAACCGTCCGAAGG





TAGCGCACCA





AE912-
MAEPAGSPTSTEEGT
757
ATGGCTGAACCTGCTGGCTCTCCAAC
758


hGH-
PGSGTASSSPGSSTPS

CTCCACTGAGGAAGGTACCCCGGGTA


AE144
GATGSPGASPGTSST

GCGGTACTGCTTCTTCCTCTCCAGGTA



GSPGSPAGSPTSTEE

GCTCTACCCCTTCTGGTGCAACCGGCT



GTSESATPESGPGTS

CTCCAGGTGCTTCTCCGGGCACCAGCT



TEPSEGSAPGSPAGS

CTACCGGTTCTCCAGGTAGCCCGGCT



PTSTEEGTSTEPSEGS

GGCTCTCCTACCTCTACTGAGGAAGG



APGTSTEPSEGSAPG

TACTTCTGAAAGCGCTACTCCTGAGTC



TSESATPESGPGSEP

TGGTCCAGGTACCTCTACTGAACCGTC



ATSGSETPGSEPATS

CGAAGGTAGCGCTCCAGGTAGCCCAG



GSETPGSPAGSPTST

CAGGCTCTCCGACTTCCACTGAGGAA



EEGTSESATPESGPG

GGTACTTCTACTGAACCTTCCGAAGG



TSTEPSEGSAPGTSTE

CAGCGCACCAGGTACCTCTACTGAAC



PSEGSAPGSPAGSPT

CTTCTGAGGGCAGCGCTCCAGGTACT



STEEGTSTEPSEGSAP

TCTGAAAGCGCTACCCCGGAATCTGG



GTSTEPSEGSAPGTS

CCCAGGTAGCGAACCGGCTACTTCTG



ESATPESGPGTSTEPS

GTTCTGAAACCCCAGGTAGCGAACCG



EGSAPGTSESATPES

GCTACCTCCGGTTCTGAAACTCCAGGT



GPGSEPATSGSETPG

AGCCCGGCAGGCTCTCCGACCTCTAC



TSTEPSEGSAPGTSTE

TGAGGAAGGTACTTCTGAAAGCGCAA



PSEGSAPGTSESATP

CCCCGGAGTCCGGCCCAGGTACCTCT



ESGPGTSESATPESG

ACCGAACCGTCTGAGGGCAGCGCACC



PGSPAGSPTSTEEGT

AGGTACTTCTACCGAACCGTCCGAGG



SESATPESGPGSEPA

GTAGCGCACCAGGTAGCCCAGCAGGT



TSGSETPGTSESATPE

TCTCCTACCTCCACCGAGGAAGGTAC



SGPGTSTEPSEGSAP

TTCTACCGAACCGTCCGAGGGTAGCG



GTSTEPSEGSAPGTS

CACCAGGTACCTCTACTGAACCTTCTG



TEPSEGSAPGTSTEPS

AGGGCAGCGCTCCAGGTACTTCTGAA



EGSAPGTSTEPSEGS

AGCGCTACCCCGGAGTCCGGTCCAGG



APGTSTEPSEGSAPG

TACTTCTACTGAACCGTCCGAAGGTA



SPAGSPTSTEEGTSTE

GCGCACCAGGTACTTCTGAAAGCGCA



PSEGSAPGTSESATP

ACCCCTGAATCCGGTCCAGGTAGCGA



ESGPGSEPATSGSET

ACCGGCTACTTCTGGCTCTGAGACTCC



PGTSESATPESGPGS

AGGTACTTCTACCGAACCGTCCGAAG



EPATSGSETPGTSES

GTAGCGCACCAGGTACTTCTACTGAA



ATPESGPGTSTEPSE

CCGTCTGAAGGTAGCGCACCAGGTAC



GSAPGTSESATPESG

TTCTGAAAGCGCAACCCCGGAATCCG



PGSPAGSPTSTEEGSP

GCCCAGGTACCTCTGAAAGCGCAACC



AGSPTSTEEGSPAGS

CCGGAGTCCGGCCCAGGTAGCCCTGC



PTSTEEGTSESATPES

TGGCTCTCCAACCTCCACCGAAGAAG



GPGTSTEPSEGSAPG

GTACCTCTGAAAGCGCAACCCCTGAA



TSESATPESGPGSEP

TCCGGCCCAGGTAGCGAACCGGCAAC



ATSGSETPGTSESAT

CTCCGGTTCTGAAACCCCAGGTACCTC



PESGPGSEPATSGSE

TGAAAGCGCTACTCCGGAGTCTGGCC



TPGTSESATPESGPG

CAGGTACCTCTACTGAACCGTCTGAG



TSTEPSEGSAPGSPA

GGTAGCGCTCCAGGTACTTCTACTGA



GSPTSTEEGTSESATP

ACCGTCCGAAGGTAGCGCACCAGGTA



ESGPGSEPATSGSET

CTTCTACCGAACCGTCCGAAGGCAGC



PGTSESATPESGPGSP

GCTCCAGGTACCTCTACTGAACCTTCC



AGSPTSTEEGSPAGS

GAGGGCAGCGCTCCAGGTACCTCTAC



PTSTEEGTSTEPSEGS

CGAACCTTCTGAAGGTAGCGCACCAG



APGTSESATPESGPG

GTACTTCTACCGAACCGTCCGAGGGT



TSESATPESGPGTSES

AGCGCACCAGGTAGCCCAGCAGGTTC



ATPESGPGSEPATSG

TCCTACCTCCACCGAGGAAGGTACTT



SETPGSEPATSGSETP

CTACCGAACCGTCCGAGGGTAGCGCA



GSPAGSPTSTEEGTS

CCAGGTACCTCTGAAAGCGCAACTCC



TEPSEGSAPGTSTEPS

TGAGTCTGGCCCAGGTAGCGAACCTG



EGSAPGSEPATSGSE

CTACCTCCGGCTCTGAGACTCCAGGT



TPGTSESATPESGPG

ACCTCTGAAAGCGCAACCCCGGAATC



TSTEPSEGSAPGFPTI

TGGTCCAGGTAGCGAACCTGCAACCT



PLSRLFDNAMLRAH

CTGGCTCTGAAACCCCAGGTACCTCT



RLHQLAFDTYQEFEE

GAAAGCGCTACTCCTGAATCTGGCCC



AYIPKEQKYSFLQNP

AGGTACTTCTACTGAACCGTCCGAGG



QTSLCFSESIPTPSNR

GCAGCGCACCAGGTACTTCTGAAAGC



EETQQKSNLELLRIS

GCTACTCCTGAGTCCGGCCCAGGTAG



LLLIQSWLEPVQFLR

CCCGGCTGGCTCTCCGACTTCCACCGA



SVFANSLVYGASDS

GGAAGGTAGCCCGGCTGGCTCTCCAA



NVYDLLKDLEEGIQT

CTTCTACTGAAGAAGGTAGCCCGGCA



LMGRLEDGSPRTGQI

GGCTCTCCGACCTCTACTGAGGAAGG



FKQTYSKFDTNSHN

TACTTCTGAAAGCGCAACCCCGGAGT



DDALLKNYGLLYCF

CCGGCCCAGGTACCTCTACCGAACCG



RKDMDKVETFLRIV

TCTGAGGGCAGCGCACCAGGTACCTC



QCRSVEGSCGFGGTS

TGAAAGCGCAACTCCTGAGTCTGGCC



ESATPESGPGTSTEPS

CAGGTAGCGAACCTGCTACCTCCGGC



EGSAPGTSTEPSEGS

TCTGAGACTCCAGGTACCTCTGAAAG



APGTSESATPESGPG

CGCAACCCCGGAATCTGGTCCAGGTA



TSTEPSEGSAPGTSTE

GCGAACCTGCAACCTCTGGCTCTGAA



PSEGSAPGTSESATP

ACCCCAGGTACCTCTGAAAGCGCTAC



ESGPGTSTEPSEGSA

TCCTGAATCTGGCCCAGGTACTTCTAC



PGTSTEPSEGSAPGT

TGAACCGTCCGAGGGCAGCGCACCAG



STEPSEGSAPGSPAG

GTAGCCCTGCTGGCTCTCCAACCTCCA



SPTSTEEGTSTEPSEG

CCGAAGAAGGTACCTCTGAAAGCGCA



SAPG

ACCCCTGAATCCGGCCCAGGTAGCGA





ACCGGCAACCTCCGGTTCTGAAACCC





CAGGTACTTCTGAAAGCGCTACTCCT





GAGTCCGGCCCAGGTAGCCCGGCTGG





CTCTCCGACTTCCACCGAGGAAGGTA





GCCCGGCTGGCTCTCCAACTTCTACTG





AAGAAGGTACTTCTACCGAACCTTCC





GAGGGCAGCGCACCAGGTACTTCTGA





AAGCGCTACCCCTGAGTCCGGCCCAG





GTACTTCTGAAAGCGCTACTCCTGAAT





CCGGTCCAGGTACTTCTGAAAGCGCT





ACCCCGGAATCTGGCCCAGGTAGCGA





ACCGGCTACTTCTGGTTCTGAAACCCC





AGGTAGCGAACCGGCTACCTCCGGTT





CTGAAACTCCAGGTAGCCCAGCAGGC





TCTCCGACTTCCACTGAGGAAGGTAC





TTCTACTGAACCTTCCGAAGGCAGCG





CACCAGGTACCTCTACTGAACCTTCTG





AGGGCAGCGCTCCAGGTAGCGAACCT





GCAACCTCTGGCTCTGAAACCCCAGG





TACCTCTGAAAGCGCTACTCCTGAATC





TGGCCCAGGTACTTCTACTGAACCGTC





CGAGGGCAGCGCACCAGGTTTTCCGA





CTATTCCGCTGTCTCGTCTGTTTGATA





ATGCTATGCTGCGTGCGCACCGTCTGC





ACCAGCTGGCCTTTGATACTTACCAG





GAATTTGAAGAAGCcTACATTCCTAAA





GAGCAGAAGTACTCTTTCCTGCAAAA





CCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGA





GGAAACTCAGCAAAAGTCCAATCTGG





AACTACTCCGCATTTCTCTGCTTCTGA





TTCAGAGCTGGCTAGAACCAGTGCAA





TTTCTGCGTTCCGTCTTCGCCAATAGC





CTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCG





AGGAAGGCATTCAGACCCTGATGGGT





CGTCTCGAGGATGGCTCTCCGCGTACT





GGTCAGATCTTCAAGCAGACTTACTCT





AAATTTGATACTAACAGCCACAATGA





CGATGCGCTTCTAAAAAACTATGGTC





TGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTAGCGAAC





CGGCAACTTCCGGCTCTGAAACCCCA





GGTACTTCTGAAAGCGCTACTCCTGA





GTCTGGCCCAGGTAGCGAACCTGCTA





CCTCTGGCTCTGAAACCCCAGGTAGC





CCGGCAGGCTCTCCGACTTCCACCGA





GGAAGGTACCTCTACTGAACCTTCTG





AGGGTAGCGCTCCAGGTAGCGAACCG





GCAACCTCTGGCTCTGAAACCCCAGG





TAGCGAACCTGCTACCTCCGGCTCTG





AAACTCCAGGTAGCGAACCGGCTACT





TCCGGTTCTGAAACTCCAGGTACCTCT





ACCGAACCTTCCGAAGGCAGCGCACC





AGGTACTTCTGAAAGCGCAACCCCTG





AATCCGGTCCAGGTAGCGAACCGGCT





ACTTCTGGCTCTGAGACTCCAGGTACT





TCTACCGAACCGTCCGAAGGTAGCGC





ACCA





AM923-
MAEPAGSPTSTEEGA
759
ATGGCTGAACCTGCTGGCTCTCCAAC
760


hGH-
SPGTSSTGSPGSSTPS

CTCCACTGAGGAAGGTACCCCGGGTA


AE144
GATGSPGSSTPSGAT

GCGGTACTGCTTCTTCCTCTCCAGGTA



GSPGTSTEPSEGSAP

GCTCTACCCCTTCTGGTGCAACCGGCT



GSEPATSGSETPGSP

CTCCAGGTGCTTCTCCGGGCACCAGCT



AGSPTSTEEGSTSST

CTACCGGTTCTCCAGGTAGCCCGGCT



AESPGPGTSTPESGS

GGCTCTCCTACCTCTACTGAGGAAGG



ASPGSTSESPSGTAP

TACTTCTGAAAGCGCTACTCCTGAGTC



GSTSESPSGTAPGTS

TGGTCCAGGTACCTCTACTGAACCGTC



TPESGSASPGTSTPES

CGAAGGTAGCGCTCCAGGTAGCCCAG



GSASPGSEPATSGSE

CAGGCTCTCCGACTTCCACTGAGGAA



TPGTSESATPESGPG

GGTACTTCTACTGAACCTTCCGAAGG



SPAGSPTSTEEGTSTE

CAGCGCACCAGGTACCTCTACTGAAC



PSEGSAPGTSESATP

CTTCTGAGGGCAGCGCTCCAGGTACT



ESGPGTSTEPSEGSA

TCTGAAAGCGCTACCCCGGAATCTGG



PGTSTEPSEGSAPGSP

CCCAGGTAGCGAACCGGCTACTTCTG



AGSPTSTEEGTSTEPS

GTTCTGAAACCCCAGGTAGCGAACCG



EGSAPGTSTEPSEGS

GCTACCTCCGGTTCTGAAACTCCAGGT



APGTSESATPESGPG

AGCCCGGCAGGCTCTCCGACCTCTAC



TSESATPESGPGTSTE

TGAGGAAGGTACTTCTGAAAGCGCAA



PSEGSAPGTSTEPSE

CCCCGGAGTCCGGCCCAGGTACCTCT



GSAPGTSESATPESG

ACCGAACCGTCTGAGGGCAGCGCACC



PGTSTEPSEGSAPGS

AGGTACTTCTACCGAACCGTCCGAGG



EPATSGSETPGSPAG

GTAGCGCACCAGGTAGCCCAGCAGGT



SPTSTEEGSSTPSGAT

TCTCCTACCTCCACCGAGGAAGGTAC



GSPGTPGSGTASSSP

TTCTACCGAACCGTCCGAGGGTAGCG



GSSTPSGATGSPGTS

CACCAGGTACCTCTACTGAACCTTCTG



TEPSEGSAPGTSTEPS

AGGGCAGCGCTCCAGGTACTTCTGAA



EGSAPGSEPATSGSE

AGCGCTACCCCGGAGTCCGGTCCAGG



TPGSPAGSPTSTEEG

TACTTCTACTGAACCGTCCGAAGGTA



SPAGSPTSTEEGTSTE

GCGCACCAGGTACTTCTGAAAGCGCA



PSEGSAPGASASGAP

ACCCCTGAATCCGGTCCAGGTAGCGA



STGGTSESATPESGP

ACCGGCTACTTCTGGCTCTGAGACTCC



GSPAGSPTSTEEGSP

AGGTACTTCTACCGAACCGTCCGAAG



AGSPTSTEEGSTSST

GTAGCGCACCAGGTACTTCTACTGAA



AESPGPGSTSESPSGT

CCGTCTGAAGGTAGCGCACCAGGTAC



APGTSPSGESSTAPG

TTCTGAAAGCGCAACCCCGGAATCCG



TPGSGTASSSPGSSTP

GCCCAGGTACCTCTGAAAGCGCAACC



SGATGSPGSSPSAST

CCGGAGTCCGGCCCAGGTAGCCCTGC



GTGPGSEPATSGSET

TGGCTCTCCAACCTCCACCGAAGAAG



PGTSESATPESGPGS

GTACCTCTGAAAGCGCAACCCCTGAA



EPATSGSETPGSTSST

TCCGGCCCAGGTAGCGAACCGGCAAC



AESPGPGSTSSTAESP

CTCCGGTTCTGAAACCCCAGGTACCTC



GPGTSPSGESSTAPG

TGAAAGCGCTACTCCGGAGTCTGGCC



SEPATSGSETPGSEP

CAGGTACCTCTACTGAACCGTCTGAG



ATSGSETPGTSTEPSE

GGTAGCGCTCCAGGTACTTCTACTGA



GSAPGSTSSTAESPG

ACCGTCCGAAGGTAGCGCACCAGGTA



PGTSTPESGSASPGST

CTTCTACCGAACCGTCCGAAGGCAGC



SESPSGTAPGTSTEPS

GCTCCAGGTACCTCTACTGAACCTTCC



EGSAPGTSTEPSEGS

GAGGGCAGCGCTCCAGGTACCTCTAC



APGTSTEPSEGSAPG

CGAACCTTCTGAAGGTAGCGCACCAG



SSTPSGATGSPGSSPS

GTACTTCTACCGAACCGTCCGAGGGT



ASTGTGPGASPGTSS

AGCGCACCAGGTAGCCCAGCAGGTTC



TGSPGSEPATSGSET

TCCTACCTCCACCGAGGAAGGTACTT



PGTSESATPESGPGSP

CTACCGAACCGTCCGAGGGTAGCGCA



AGSPTSTEEGSSTPS

CCAGGTACCTCTGAAAGCGCAACTCC



GATGSPGSSPSASTG

TGAGTCTGGCCCAGGTAGCGAACCTG



TGPGASPGTSSTGSP

CTACCTCCGGCTCTGAGACTCCAGGT



GTSESATPESGPGTS

ACCTCTGAAAGCGCAACCCCGGAATC



TEPSEGSAPGTSTEPS

TGGTCCAGGTAGCGAACCTGCAACCT



EGSAPGFPTIPLSRLF

CTGGCTCTGAAACCCCAGGTACCTCT



DNAMLRAHRLHQL

GAAAGCGCTACTCCTGAATCTGGCCC



AFDTYQEFEEAYIPK

AGGTACTTCTACTGAACCGTCCGAGG



EQKYSFLQNPQTSLC

GCAGCGCACCAGGTACTTCTGAAAGC



FSESIPTPSNREETQQ

GCTACTCCTGAGTCCGGCCCAGGTAG



KSNLELLRISLLLIQS

CCCGGCTGGCTCTCCGACTTCCACCGA



WLEPVQFLRSVFAN

GGAAGGTAGCCCGGCTGGCTCTCCAA



SLVYGASDSNVYDL

CTTCTACTGAAGAAGGTAGCCCGGCA



LKDLEEGIQTLMGRL

GGCTCTCCGACCTCTACTGAGGAAGG



EDGSPRTGQIFKQTY

TACTTCTGAAAGCGCAACCCCGGAGT



SKFDTNSHNDDALL

CCGGCCCAGGTACCTCTACCGAACCG



KNYGLLYCFRKDMD

TCTGAGGGCAGCGCACCAGGTACCTC



KVETFLRIVQCRSVE

TGAAAGCGCAACTCCTGAGTCTGGCC



GSCGFGGSEPATSGS

CAGGTAGCGAACCTGCTACCTCCGGC



ETPGTSESATPESGP

TCTGAGACTCCAGGTACCTCTGAAAG



GSEPATSGSETPGSP

CGCAACCCCGGAATCTGGTCCAGGTA



AGSPTSTEEGTSTEPS

GCGAACCTGCAACCTCTGGCTCTGAA



EGSAPGSEPATSGSE

ACCCCAGGTACCTCTGAAAGCGCTAC



TPGSEPATSGSETPG

TCCTGAATCTGGCCCAGGTACTTCTAC



SEPATSGSETPGTSTE

TGAACCGTCCGAGGGCAGCGCACCAG



PSEGSAPGTSESATP

GTAGCCCTGCTGGCTCTCCAACCTCCA



ESGPGSEPATSGSET

CCGAAGAAGGTACCTCTGAAAGCGCA



PGTSTEPSEGSAP

ACCCCTGAATCCGGCCCAGGTAGCGA





ACCGGCAACCTCCGGTTCTGAAACCC





CAGGTACTTCTGAAAGCGCTACTCCT





GAGTCCGGCCCAGGTAGCCCGGCTGG





CTCTCCGACTTCCACCGAGGAAGGTA





GCCCGGCTGGCTCTCCAACTTCTACTG





AAGAAGGTACTTCTACCGAACCTTCC





GAGGGCAGCGCACCAGGTACTTCTGA





AAGCGCTACCCCTGAGTCCGGCCCAG





GTACTTCTGAAAGCGCTACTCCTGAAT





CCGGTCCAGGTACTTCTGAAAGCGCT





ACCCCGGAATCTGGCCCAGGTAGCGA





ACCGGCTACTTCTGGTTCTGAAACCCC





AGGTAGCGAACCGGCTACCTCCGGTT





CTGAAACTCCAGGTAGCCCAGCAGGC





TCTCCGACTTCCACTGAGGAAGGTAC





TTCTACTGAACCTTCCGAAGGCAGCG





CACCAGGTACCTCTACTGAACCTTCTG





AGGGCAGCGCTCCAGGTAGCGAACCT





GCAACCTCTGGCTCTGAAACCCCAGG





TACCTCTGAAAGCGCTACTCCTGAATC





TGGCCCAGGTACTTCTACTGAACCGTC





CGAGGGCAGCGCACCAGGTTTTCCGA





CTATTCCGCTGTCTCGTCTGTTTGATA





ATGCTATGCTGCGTGCGCACCGTCTGC





ACCAGCTGGCCTTTGATACTTACCAG





GAATTTGAAGAAGCcTACATTCCTAAA





GAGCAGAAGTACTCTTTCCTGCAAAA





CCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGA





GGAAACTCAGCAAAAGTCCAATCTGG





AACTACTCCGCATTTCTCTGCTTCTGA





TTCAGAGCTGGCTAGAACCAGTGCAA





TTTCTGCGTTCCGTgTTCGCCAATAGC





CTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCG





AGGAAGGCATTCAGACCCTGATGGGT





CGTCTCGAGGATGGCTCTCCGCGTACT





GGTCAGATCTTCAAGCAGACTTACTCT





AAATTTGATACTAACAGCCACAATGA





CGATGCGCTTCTAAAAAACTATGGTC





TGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCGGAGGTACTTCTGAAA





GCGCTACTCCGGAGTCCGGTCCAGGT





ACCTCTACCGAACCGTCCGAAGGCAG





CGCTCCAGGTACTTCTACTGAACCTTC





TGAGGGTAGCGCTCCAGGTACTTCTG





AAAGCGCTACTCCGGAGTCCGGTCCA





GGTACCTCTACCGAACCGTCCGAAGG





CAGCGCTCCAGGTACTTCTACTGAAC





CTTCTGAGGGTAGCGCTCCAGGTACC





TCTGAAAGCGCTACTCCGGAGTCTGG





CCCAGGTACCTCTACTGAACCGTCTG





AGGGTAGCGCTCCAGGTACTTCTACT





GAACCGTCCGAAGGTAGCGCACCAGG





TACTTCTACCGAACCGTCCGAGGGTA





GCGCACCAGGTAGCCCAGCAGGTTCT





CCTACCTCCACCGAGGAAGGTACTTC





TACCGAACCGTCCGAGGGTAGCGCAC





CAGGTTAA





AM1318-
GTSTEPSEGSAPGSE
761
GGTACTTCTACTGAACCGTCTGAAGG
762


hGH-
PATSGSETPGSPAGS

CAGCGCACCAGGTAGCGAACCGGCTA


AE144
PTSTEEGSTSSTAESP

CTTCCGGTTCTGAAACCCCAGGTAGC



GPGTSTPESGSASPG

CCAGCAGGTTCTCCAACTTCTACTGAA



STSESPSGTAPGSTSE

GAAGGTTCTACCAGCTCTACCGCAGA



SPSGTAPGTSTPESGS

ATCTCCTGGTCCAGGTACCTCTACTCC



ASPGTSTPESGSASP

GGAAAGCGGCTCTGCATCTCCAGGTT



GSEPATSGSETPGTS

CTACTAGCGAATCTCCTTCTGGCACTG



ESATPESGPGSPAGS

CACCAGGTTCTACTAGCGAATCCCCG



PTSTEEGTSTEPSEGS

TCTGGTACTGCTCCAGGTACTTCTACT



APGTSESATPESGPG

CCTGAAAGCGGTTCCGCTTCTCCAGGT



TSTEPSEGSAPGTSTE

ACCTCTACTCCGGAAAGCGGTTCTGC



PSEGSAPGSPAGSPT

ATCTCCAGGTAGCGAACCGGCAACCT



STEEGTSTEPSEGSAP

CCGGCTCTGAAACCCCAGGTACCTCT



GTSTEPSEGSAPGTS

GAAAGCGCTACTCCTGAATCCGGCCC



ESATPESGPGTSESA

AGGTAGCCCGGCAGGTTCTCCGACTT



TPESGPGTSTEPSEGS

CCACTGAGGAAGGTACCTCTACTGAA



APGTSTEPSEGSAPG

CCTTCTGAGGGCAGCGCTCCAGGTAC



TSESATPESGPGTSTE

TTCTGAAAGCGCTACCCCGGAGTCCG



PSEGSAPGSEPATSG

GTCCAGGTACTTCTACTGAACCGTCCG



SETPGSPAGSPTSTEE

AAGGTAGCGCACCAGGTACTTCTACC



GSSTPSGATGSPGTP

GAACCGTCCGAGGGTAGCGCACCAGG



GSGTASSSPGSSTPS

TAGCCCAGCAGGTTCTCCTACCTCCAC



GATGSPGTSTEPSEG

CGAGGAAGGTACTTCTACCGAACCGT



SAPGTSTEPSEGSAP

CCGAGGGTAGCGCACCAGGTACTTCT



GSEPATSGSETPGSP

ACCGAACCTTCCGAGGGCAGCGCACC



AGSPTSTEEGSPAGS

AGGTACTTCTGAAAGCGCTACCCCTG



PTSTEEGTSTEPSEGS

AGTCCGGCCCAGGTACTTCTGAAAGC



APGPEPTGPAPSGGS

GCTACTCCTGAATCCGGTCCAGGTAC



EPATSGSETPGTSES

CTCTACTGAACCTTCCGAAGGCAGCG



ATPESGPGSPAGSPT

CTCCAGGTACCTCTACCGAACCGTCC



STEEGTSESATPESGP

GAGGGCAGCGCACCAGGTACTTCTGA



GSPAGSPTSTEEGSP

AAGCGCAACCCCTGAATCCGGTCCAG



AGSPTSTEEGTSESA

GTACTTCTACTGAACCTTCCGAAGGTA



TPESGPGSPAGSPTST

GCGCTCCAGGTAGCGAACCTGCTACT



EEGSPAGSPTSTEEG

TCTGGTTCTGAAACCCCAGGTAGCCC



STSSTAESPGPGSTSE

GGCTGGCTCTCCGACCTCCACCGAGG



SPSGTAPGTSPSGESS

AAGGTAGCTCTACCCCGTCTGGTGCT



TAPGSTSESPSGTAP

ACTGGTTCTCCAGGTACTCCGGGCAG



GSTSESPSGTAPGTSP

CGGTACTGCTTCTTCCTCTCCAGGTAG



SGESSTAPGTSTEPSE

CTCTACCCCTTCTGGTGCTACTGGCTC



GSAPGTSESATPESG

TCCAGGTACCTCTACCGAACCGTCCG



PGTSESATPESGPGS

AGGGTAGCGCACCAGGTACCTCTACT



EPATSGSETPGTSES

GAACCGTCTGAGGGTAGCGCTCCAGG



ATPESGPGTSESATP

TAGCGAACCGGCAACCTCCGGTTCTG



ESGPGTSTEPSEGSA

AAACTCCAGGTAGCCCTGCTGGCTCT



PGTSESATPESGPGT

CCGACTTCTACTGAGGAAGGTAGCCC



STEPSEGSAPGTSPSG

GGCTGGTTCTCCGACTTCTACTGAGGA



ESSTAPGTSPSGESST

AGGTACTTCTACCGAACCTTCCGAAG



APGTSPSGESSTAPG

GTAGCGCTCCAGGTCCAGAACCAACG



TSTEPSEGSAPGSPA

GGGCCGGCCCCAAGCGGAGGTAGCGA



GSPTSTEEGTSTEPSE

ACCGGCAACCTCCGGCTCTGAAACCC



GSAPGSSPSASTGTG

CAGGTACCTCTGAAAGCGCTACTCCT



PGSSTPSGATGSPGS

GAATCCGGCCCAGGTAGCCCGGCAGG



STPSGATGSPGSSTPS

TTCTCCGACTTCCACTGAGGAAGGTA



GATGSPGSSTPSGAT

CTTCTGAAAGCGCTACTCCTGAGTCCG



GSPGASPGTSSTGSP

GCCCAGGTAGCCCGGCTGGCTCTCCG



GASASGAPSTGGTSP

ACTTCCACCGAGGAAGGTAGCCCGGC



SGESSTAPGSTSSTA

TGGCTCTCCAACTTCTACTGAAGAAG



ESPGPGTSPSGESSTA

GTACTTCTGAAAGCGCTACTCCTGAGT



PGTSESATPESGPGT

CCGGCCCAGGTAGCCCGGCTGGCTCT



STEPSEGSAPGTSTEP

CCGACTTCCACCGAGGAAGGTAGCCC



SEGSAPGSSPSASTG

GGCTGGCTCTCCAACTTCTACTGAAG



TGPGSSTPSGATGSP

AAGGTTCTACCAGCTCTACCGCTGAA



GASPGTSSTGSPGTS

TCTCCTGGCCCAGGTTCTACTAGCGAA



TPESGSASPGTSPSGE

TCTCCGTCTGGCACCGCACCAGGTACT



SSTAPGTSPSGESSTA

TCCCCTAGCGGTGAATCTTCTACTGCA



PGTSESATPESGPGS

CCAGGTTCTACCAGCGAATCTCCTTCT



EPATSGSETPGTSTEP

GGCACCGCTCCAGGTTCTACTAGCGA



SEGSAPGSTSESPSGT

ATCCCCGTCTGGTACCGCACCAGGTA



APGSTSESPSGTAPG

CTTCTCCTAGCGGCGAATCTTCTACCG



TSTPESGSASPGSPA

CACCAGGTACTTCTACCGAACCTTCCG



GSPTSTEEGTSESATP

AGGGCAGCGCACCAGGTACTTCTGAA



ESGPGTSTEPSEGSA

AGCGCTACCCCTGAGTCCGGCCCAGG



PGSPAGSPTSTEEGT

TACTTCTGAAAGCGCTACTCCTGAATC



SESATPESGPGSEPA

CGGTCCAGGTAGCGAACCGGCAACCT



TSGSETPGSSTPSGA

CTGGCTCTGAAACCCCAGGTACCTCT



TGSPGASPGTSSTGS

GAAAGCGCTACTCCGGAATCTGGTCC



PGSSTPSGATGSPGS

AGGTACTTCTGAAAGCGCTACTCCGG



TSESPSGTAPGTSPSG

AATCCGGTCCAGGTACCTCTACTGAA



ESSTAPGSTSSTAESP

CCTTCTGAGGGCAGCGCTCCAGGTAC



GPGSSTPSGATGSPG

TTCTGAAAGCGCTACCCCGGAGTCCG



ASPGTSSTGSPGTPG

GTCCAGGTACTTCTACTGAACCGTCCG



SGTASSSPGSPAGSP

AAGGTAGCGCACCAGGTACCTCCCCT



TSTEEGSPAGSPTSTE

AGCGGCGAATCTTCTACTGCTCCAGG



EGTSTEPSEGSAPGF

TACCTCTCCTAGCGGCGAATCTTCTAC



PTIPLSRLFDNAMLR

CGCTCCAGGTACCTCCCCTAGCGGTG



AHRLHQLAFDTYQE

AATCTTCTACCGCACCAGGTACTTCTA



FEEAYIPKEQKYSFL

CCGAACCGTCCGAGGGTAGCGCACCA



QNPQTSLCFSESIPTP

GGTAGCCCAGCAGGTTCTCCTACCTCC



SNREETQQKSNLELL

ACCGAGGAAGGTACTTCTACCGAACC



RISLLLIQSWLEPVQF

GTCCGAGGGTAGCGCACCAGGTTCTA



LRSVFANSLVYGAS

GCCCTTCTGCTTCCACCGGTACCGGCC



DSNVYDLLKDLEEGI

CAGGTAGCTCTACTCCGTCTGGTGCA



QTLMGRLEDGSPRT

ACTGGCTCTCCAGGTAGCTCTACTCCG



GQIFKQTYSKFDTNS

TCTGGTGCAACCGGCTCCCCAGGTAG



HNDDALLKNYGLLY

CTCTACCCCGTCTGGTGCTACCGGCTC



CFRKDMDKVETFLRI

TCCAGGTAGCTCTACCCCGTCTGGTGC



VQCRSVEGSCGFGG

AACCGGCTCCCCAGGTGCATCCCCGG



SEPATSGSETPGTSES

GTACTAGCTCTACCGGTTCTCCAGGTG



ATPESGPGSEPATSG

CAAGCGCAAGCGGCGCGCCAAGCACG



SETPGSPAGSPTSTEE

GGAGGTACTTCTCCGAGCGGTGAATC



GTSTEPSEGSAPGSE

TTCTACCGCACCAGGTTCTACTAGCTC



PATSGSETPGSEPAT

TACCGCTGAATCTCCGGGCCCAGGTA



SGSETPGSEPATSGS

CTTCTCCGAGCGGTGAATCTTCTACTG



ETPGTSTEPSEGSAP

CTCCAGGTACCTCTGAAAGCGCTACT



GTSESATPESGPGSE

CCGGAGTCTGGCCCAGGTACCTCTAC



PATSGSETPGTSTEPS

TGAACCGTCTGAGGGTAGCGCTCCAG



EGSAP

GTACTTCTACTGAACCGTCCGAAGGT





AGCGCACCAGGTTCTAGCCCTTCTGC





ATCTACTGGTACTGGCCCAGGTAGCT





CTACTCCTTCTGGTGCTACCGGCTCTC





CAGGTGCTTCTCCGGGTACTAGCTCTA





CCGGTTCTCCAGGTACTTCTACTCCGG





AAAGCGGTTCCGCATCTCCAGGTACT





TCTCCTAGCGGTGAATCTTCTACTGCT





CCAGGTACCTCTCCTAGCGGCGAATC





TTCTACTGCTCCAGGTACTTCTGAAAG





CGCAACCCCTGAATCCGGTCCAGGTA





GCGAACCGGCTACTTCTGGCTCTGAG





ACTCCAGGTACTTCTACCGAACCGTCC





GAAGGTAGCGCACCAGGTTCTACCAG





CGAATCCCCTTCTGGTACTGCTCCAGG





TTCTACCAGCGAATCCCCTTCTGGCAC





CGCACCAGGTACTTCTACCCCTGAAA





GCGGCTCCGCTTCTCCAGGTAGCCCG





GCAGGCTCTCCGACCTCTACTGAGGA





AGGTACTTCTGAAAGCGCAACCCCGG





AGTCCGGCCCAGGTACCTCTACCGAA





CCGTCTGAGGGCAGCGCACCAGGTAG





CCCTGCTGGCTCTCCAACCTCCACCGA





AGAAGGTACCTCTGAAAGCGCAACCC





CTGAATCCGGCCCAGGTAGCGAACCG





GCAACCTCCGGTTCTGAAACCCCAGG





TAGCTCTACCCCGTCTGGTGCTACCGG





TTCCCCAGGTGCTTCTCCTGGTACTAG





CTCTACCGGTTCTCCAGGTAGCTCTAC





CCCGTCTGGTGCTACTGGCTCTCCAGG





TTCTACTAGCGAATCCCCGTCTGGTAC





TGCTCCAGGTACTTCCCCTAGCGGTGA





ATCTTCTACTGCTCCAGGTTCTACCAG





CTCTACCGCAGAATCTCCGGGTCCAG





GTAGCTCTACCCCTTCTGGTGCAACCG





GCTCTCCAGGTGCATCCCCGGGTACC





AGCTCTACCGGTTCTCCAGGTACTCCG





GGTAGCGGTACCGCTTCTTCCTCTCCA





GGTAGCCCTGCTGGCTCTCCGACTTCT





ACTGAGGAAGGTAGCCCGGCTGGTTC





TCCGACTTCTACTGAGGAAGGTACTTC





TACCGAACCTTCCGAAGGTAGCGCTC





CAGGTTTTCCGACTATTCCGCTGTCTC





GTCTGTTTGATAATGCTATGCTGCGTG





CGCACCGTCTGCACCAGCTGGCCTTTG





ATACTTACCAGGAATTTGAAGAAGCcT





ACATTCCTAAAGAGCAGAAGTACTCT





TTCCTGCAAAACCCACAGACTTCTCTC





TGCTTCAGCGAATCTATTCCGACGCCT





TCCAATCGCGAGGAAACTCAGCAAAA





GTCCAATCTGGAACTACTCCGCATTTC





TCTGCTTCTGATTCAGAGCTGGCTAGA





ACCAGTGCAATTTCTGCGTTCCGTCTT





CGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTG





AAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCT





CTCCGCGTACTGGTCAGATCTTCAAGC





AGACTTACTCTAAATTTGATACTAACA





GCCACAATGACGATGCGCTTCTAAAA





AACTATGGTCTGCTGTATTGTTTTCGT





AAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGT





TGAGGGCAGCTGTGGTTTCTAAGGTG





GTAGCGAACCGGCAACTTCCGGCTCT





GAAACCCCAGGTACTTCTGAAAGCGC





TACTCCTGAGTCTGGCCCAGGTAGCG





AACCTGCTACCTCTGGCTCTGAAACCC





CAGGTAGCCCGGCAGGCTCTCCGACT





TCCACCGAGGAAGGTACCTCTACTGA





ACCTTCTGAGGGTAGCGCTCCAGGTA





GCGAACCGGCAACCTCTGGCTCTGAA





ACCCCAGGTAGCGAACCTGCTACCTC





CGGCTCTGAAACTCCAGGTAGCGAAC





CGGCTACTTCCGGTTCTGAAACTCCAG





GTACCTCTACCGAACCTTCCGAAGGC





AGCGCACCAGGTACTTCTGAAAGCGC





AACCCCTGAATCCGGTCCAGGTAGCG





AACCGGCTACTTCTGGCTCTGAGACTC





CAGGTACTTCTACCGAACCGTCCGAA





GGTAGCGCACCA





AE48-
MAEPAGSPTSTEEGT
763
ATGGCTGAACCTGCTGGCTCTCCAAC
764


hGH-
PGSGTASSSPGSSTPS

CTCCACTGAGGAAGGTACCCCGGGTA


AE288
GATGSPGASPGTSST

GCGGTACTGCTTCTTCCTCTCCAGGTA



GSPGFPTIPLSRLFDN

GCTCTACCCCTTCTGGTGCAACCGGCT



AMLRAHRLHQLAFD

CTCCAGGTGCTTCTCCGGGCACCAGCT



TYQEFEEAYIPKEQK

CTACCGGTTCTCCAGGTTTTCCGACTA



YSFLQNPQTSLCFSE

TTCCGCTGTCTCGTCTGTTTGATAATG



SIPTPSNREETQQKS

CTATGCTGCGTGCGCACCGTCTGCACC



NLELLRISLLLIQSWL

AGCTGGCCTTTGATACTTACCAGGAA



EPVQFLRSVFANSLV

TTTGAAGAAGCcTACATTCCTAAAGAG



YGASDSNVYDLLKD

CAGAAGTACTCTTTCCTGCAAAACCC



LEEGIQTLMGRLEDG

ACAGACTTCTCTCTGCTTCAGCGAATC



SPRTGQIFKQTYSKF

TATTCCGACGCCTTCCAATCGCGAGG



DTNSHNDDALLKNY

AAACTCAGCAAAAGTCCAATCTGGAA



GLLYCFRKDMDKVE

CTACTCCGCATTTCTCTGCTTCTGATT



TFLRIVQCRSVEGSC

CAGAGCTGGCTAGAACCAGTGCAATT



GFGGTSESATPESGP

TCTGCGTTCCGTCTTCGCCAATAGCCT



GSEPATSGSETPGTS

AGTTTATGGCGCATCCGACAGCAACG



ESATPESGPGSEPAT

TATACGATCTCCTGAAAGATCTCGAG



SGSETPGTSESATPES

GAAGGCATTCAGACCCTGATGGGTCG



GPGTSTEPSEGSAPG

TCTCGAGGATGGCTCTCCGCGTACTG



SPAGSPTSTEEGTSES

GTCAGATCTTCAAGCAGACTTACTCTA



ATPESGPGSEPATSG

AATTTGATACTAACAGCCACAATGAC



SETPGTSESATPESGP

GATGCGCTTCTAAAAAACTATGGTCT



GSPAGSPTSTEEGSP

GCTGTATTGTTTTCGTAAAGATATGGA



AGSPTSTEEGTSTEPS

CAAAGTTGAAACCTTCCTGCGTATTGT



EGSAPGTSESATPES

TCAGTGTCGTTCCGTTGAGGGCAGCT



GPGTSESATPESGPG

GTGGTTTCTAAGGTGGTACCTCTGAA



TSESATPESGPGSEP

AGCGCAACTCCTGAGTCTGGCCCAGG



ATSGSETPGSEPATS

TAGCGAACCTGCTACCTCCGGCTCTG



GSETPGSPAGSPTST

AGACTCCAGGTACCTCTGAAAGCGCA



EEGTSTEPSEGSAPG

ACCCCGGAATCTGGTCCAGGTAGCGA



TSTEPSEGSAPGSEP

ACCTGCAACCTCTGGCTCTGAAACCC



ATSGSETPGTSESAT

CAGGTACCTCTGAAAGCGCTACTCCT



PESGPGTSTEPSEGS

GAATCTGGCCCAGGTACTTCTACTGA



AP

ACCGTCCGAGGGCAGCGCACCAGGTA





GCCCTGCTGGCTCTCCAACCTCCACCG





AAGAAGGTACCTCTGAAAGCGCAACC





CCTGAATCCGGCCCAGGTAGCGAACC





GGCAACCTCCGGTTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGT





CCGGCCCAGGTAGCCCGGCTGGCTCT





CCGACTTCCACCGAGGAAGGTAGCCC





GGCTGGCTCTCCAACTTCTACTGAAG





AAGGTACTTCTACCGAACCTTCCGAG





GGCAGCGCACCAGGTACTTCTGAAAG





CGCTACCCCTGAGTCCGGCCCAGGTA





CTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACC





GGCTACTTCTGGTTCTGAAACCCCAG





GTAGCGAACCGGCTACCTCCGGTTCT





GAAACTCCAGGTAGCCCAGCAGGCTC





TCCGACTTCCACTGAGGAAGGTACTT





CTACTGAACCTTCCGAAGGCAGCGCA





CCAGGTACCTCTACTGAACCTTCTGAG





GGCAGCGCTCCAGGTAGCGAACCTGC





AACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTG





GCCCAGGTACTTCTACTGAACCGTCC





GAGGGCAGCGCACCA





AM48-
MAEPAGSPTSTEEGA
765
ATGGCTGAACCTGCTGGCTCTCCAAC
766


hGH-
SPGTSSTGSPGSSTPS

CTCCACTGAGGAAGGTGCATCCCCGG


AE288
GATGSPGSSTPSGAT

GCACCAGCTCTACCGGTTCTCCAGGT



GSPGFPTIPLSRLFDN

AGCTCTACCCCGTCTGGTGCTACCGGC



AMLRAHRLHQLAFD

TCTCCAGGTAGCTCTACCCCGTCTGGT



TYQEFEEAYIPKEQK

GCTACTGGCTCTCCAGGTTTTCCGACT



YSFLQNPQTSLCFSE

ATTCCGCTGTCTCGTCTGTTTGATAAT



SIPTPSNREETQQKS

GCTATGCTGCGTGCGCACCGTCTGCA



NLELLRISLLLIQSWL

CCAGCTGGCCTTTGATACTTACCAGG



EPVQFLRSVFANSLV

AATTTGAAGAAGCcTACATTCCTAAAG



YGASDSNVYDLLKD

AGCAGAAGTACTCTTTCCTGCAAAAC



LEEGIQTLMGRLEDG

CCACAGACTTCTCTCTGCTTCAGCGAA



SPRTGQIFKQTYSKF

TCTATTCCGACGCCTTCCAATCGCGAG



DTNSHNDDALLKNY

GAAACTCAGCAAAAGTCCAATCTGGA



GLLYCFRKDMDKVE

ACTACTCCGCATTTCTCTGCTTCTGAT



TFLRIVQCRSVEGSC

TCAGAGCTGGCTAGAACCAGTGCAAT



GFGGTSESATPESGP

TTCTGCGTTCCGTCTTCGCCAATAGCC



GSEPATSGSETPGTS

TAGTTTATGGCGCATCCGACAGCAAC



ESATPESGPGSEPAT

GTATACGATCTCCTGAAAGATCTCGA



SGSETPGTSESATPES

GGAAGGCATTCAGACCCTGATGGGTC



GPGTSTEPSEGSAPG

GTCTCGAGGATGGCTCTCCGCGTACT



SPAGSPTSTEEGTSES

GGTCAGATCTTCAAGCAGACTTACTCT



ATPESGPGSEPATSG

AAATTTGATACTAACAGCCACAATGA



SETPGTSESATPESGP

CGATGCGCTTCTAAAAAACTATGGTC



GSPAGSPTSTEEGSP

TGCTGTATTGTTTTCGTAAAGATATGG



AGSPTSTEEGTSTEPS

ACAAAGTTGAAACCTTCCTGCGTATT



EGSAPGTSESATPES

GTTCAGTGTCGTTCCGTTGAGGGCAG



GPGTSESATPESGPG

CTGTGGTTTCTAAGGTGGTACCTCTGA



TSESATPESGPGSEP

AAGCGCAACTCCTGAGTCTGGCCCAG



ATSGSETPGSEPATS

GTAGCGAACCTGCTACCTCCGGCTCT



GSETPGSPAGSPTST

GAGACTCCAGGTACCTCTGAAAGCGC



EEGTSTEPSEGSAPG

AACCCCGGAATCTGGTCCAGGTAGCG



TSTEPSEGSAPGSEP

AACCTGCAACCTCTGGCTCTGAAACC



ATSGSETPGTSESAT

CCAGGTACCTCTGAAAGCGCTACTCC



PESGPGTSTEPSEGS

TGAATCTGGCCCAGGTACTTCTACTGA



AP

ACCGTCCGAGGGCAGCGCACCAGGTA





GCCCTGCTGGCTCTCCAACCTCCACCG





AAGAAGGTACCTCTGAAAGCGCAACC





CCTGAATCCGGCCCAGGTAGCGAACC





GGCAACCTCCGGTTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGT





CCGGCCCAGGTAGCCCGGCTGGCTCT





CCGACTTCCACCGAGGAAGGTAGCCC





GGCTGGCTCTCCAACTTCTACTGAAG





AAGGTACTTCTACCGAACCTTCCGAG





GGCAGCGCACCAGGTACTTCTGAAAG





CGCTACCCCTGAGTCCGGCCCAGGTA





CTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACC





GGCTACTTCTGGTTCTGAAACCCCAG





GTAGCGAACCGGCTACCTCCGGTTCT





GAAACTCCAGGTAGCCCAGCAGGCTC





TCCGACTTCCACTGAGGAAGGTACTT





CTACTGAACCTTCCGAAGGCAGCGCA





CCAGGTACCTCTACTGAACCTTCTGAG





GGCAGCGCTCCAGGTAGCGAACCTGC





AACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTG





GCCCAGGTACTTCTACTGAACCGTCC





GAGGGCAGCGCACCA





AE144-
GSEPATSGSETPGTS
767
GGTAGCGAACCGGCAACTTCCGGCTC
768


hGH-
ESATPESGPGSEPAT

TGAAACCCCAGGTACTTCTGAAAGCG


AE288
SGSETPGSPAGSPTST

CTACTCCTGAGTCTGGCCCAGGTAGC



EEGTSTEPSEGSAPG

GAACCTGCTACCTCTGGCTCTGAAAC



SEPATSGSETPGSEP

CCCAGGTAGCCCGGCAGGCTCTCCGA



ATSGSETPGSEPATS

CTTCCACCGAGGAAGGTACCTCTACT



GSETPGTSTEPSEGS

GAACCTTCTGAGGGTAGCGCTCCAGG



APGTSESATPESGPG

TAGCGAACCGGCAACCTCTGGCTCTG



SEPATSGSETPGTSTE

AAACCCCAGGTAGCGAACCTGCTACC



PSEGSAPGFPTIPLSR

TCCGGCTCTGAAACTCCAGGTAGCGA



LFDNAMLRAHRLHQ

ACCGGCTACTTCCGGTTCTGAAACTCC



LAFDTYQEFEEAYIP

AGGTACCTCTACCGAACCTTCCGAAG



KEQKYSFLQNPQTSL

GCAGCGCACCAGGTACTTCTGAAAGC



CFSESIPTPSNREETQ

GCAACCCCTGAATCCGGTCCAGGTAG



QKSNLELLRISLLLIQ

CGAACCGGCTACTTCTGGCTCTGAGA



SWLEPVQFLRSVFA

CTCCAGGTACTTCTACCGAACCGTCCG



NSLVYGASDSNVYD

AAGGTAGCGCACCAGGTTTTCCGACT



LLKDLEEGIQTLMGR

ATTCCGCTGTCTCGTCTGTTTGATAAT



LEDGSPRTGQIFKQT

GCTATGCTGCGTGCGCACCGTCTGCA



YSKFDTNSHNDDAL

CCAGCTGGCCTTTGATACTTACCAGG



LKNYGLLYCFRKDM

AATTTGAAGAAGCcTACATTCCTAAAG



DKVETFLRIVQCRSV

AGCAGAAGTACTCTTTCCTGCAAAAC



EGSCGFGGTSESATP

CCACAGACTTCTCTCTGCTTCAGCGAA



ESGPGSEPATSGSET

TCTATTCCGACGCCTTCCAATCGCGAG



PGTSESATPESGPGS

GAAACTCAGCAAAAGTCCAATCTGGA



EPATSGSETPGTSES

ACTACTCCGCATTTCTCTGCTTCTGAT



ATPESGPGTSTEPSE

TCAGAGCTGGCTAGAACCAGTGCAAT



GSAPGSPAGSPTSTE

TTCTGCGTTCCGTCTTCGCCAATAGCC



EGTSESATPESGPGS

TAGTTTATGGCGCATCCGACAGCAAC



EPATSGSETPGTSES

GTATACGATCTCCTGAAAGATCTCGA



ATPESGPGSPAGSPT

GGAAGGCATTCAGACCCTGATGGGTC



STEEGSPAGSPTSTEE

GTCTCGAGGATGGCTCTCCGCGTACT



GTSTEPSEGSAPGTS

GGTCAGATCTTCAAGCAGACTTACTCT



ESATPESGPGTSESA

AAATTTGATACTAACAGCCACAATGA



TPESGPGTSESATPES

CGATGCGCTTCTAAAAAACTATGGTC



GPGSEPATSGSETPG

TGCTGTATTGTTTTCGTAAAGATATGG



SEPATSGSETPGSPA

ACAAAGTTGAAACCTTCCTGCGTATT



GSPTSTEEGTSTEPSE

GTTCAGTGTCGTTCCGTTGAGGGCAG



GSAPGTSTEPSEGSA

CTGTGGTTTCTAAGGTGGTACCTCTGA



PGSEPATSGSETPGT

AAGCGCAACTCCTGAGTCTGGCCCAG



SESATPESGPGTSTEP

GTAGCGAACCTGCTACCTCCGGCTCT



SEGSAP

GAGACTCCAGGTACCTCTGAAAGCGC





AACCCCGGAATCTGGTCCAGGTAGCG





AACCTGCAACCTCTGGCTCTGAAACC





CCAGGTACCTCTGAAAGCGCTACTCC





TGAATCTGGCCCAGGTACTTCTACTGA





ACCGTCCGAGGGCAGCGCACCAGGTA





GCCCTGCTGGCTCTCCAACCTCCACCG





AAGAAGGTACCTCTGAAAGCGCAACC





CCTGAATCCGGCCCAGGTAGCGAACC





GGCAACCTCCGGTTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGT





CCGGCCCAGGTAGCCCGGCTGGCTCT





CCGACTTCCACCGAGGAAGGTAGCCC





GGCTGGCTCTCCAACTTCTACTGAAG





AAGGTACTTCTACCGAACCTTCCGAG





GGCAGCGCACCAGGTACTTCTGAAAG





CGCTACCCCTGAGTCCGGCCCAGGTA





CTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACC





GGCTACTTCTGGTTCTGAAACCCCAG





GTAGCGAACCGGCTACCTCCGGTTCT





GAAACTCCAGGTAGCCCAGCAGGCTC





TCCGACTTCCACTGAGGAAGGTACTT





CTACTGAACCTTCCGAAGGCAGCGCA





CCAGGTACCTCTACTGAACCTTCTGAG





GGCAGCGCTCCAGGTAGCGAACCTGC





AACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTG





GCCCAGGTACTTCTACTGAACCGTCC





GAGGGCAGCGCACCA





AE288-
GTSESATPESGPGSE
769
GGTACCTCTGAAAGCGCAACTCCTGA
770


hGH-
PATSGSETPGTSESA

GTCTGGCCCAGGTAGCGAACCTGCTA


AE288
TPESGPGSEPATSGS

CCTCCGGCTCTGAGACTCCAGGTACCT



ETPGTSESATPESGP

CTGAAAGCGCAACCCCGGAATCTGGT



GTSTEPSEGSAPGSP

CCAGGTAGCGAACCTGCAACCTCTGG



AGSPTSTEEGTSESA

CTCTGAAACCCCAGGTACCTCTGAAA



TPESGPGSEPATSGS

GCGCTACTCCTGAATCTGGCCCAGGT



ETPGTSESATPESGP

ACTTCTACTGAACCGTCCGAGGGCAG



GSPAGSPTSTEEGSP

CGCACCAGGTAGCCCTGCTGGCTCTC



AGSPTSTEEGTSTEPS

CAACCTCCACCGAAGAAGGTACCTCT



EGSAPGTSESATPES

GAAAGCGCAACCCCTGAATCCGGCCC



GPGTSESATPESGPG

AGGTAGCGAACCGGCAACCTCCGGTT



TSESATPESGPGSEP

CTGAAACCCCAGGTACTTCTGAAAGC



ATSGSETPGSEPATS

GCTACTCCTGAGTCCGGCCCAGGTAG



GSETPGSPAGSPTST

CCCGGCTGGCTCTCCGACTTCCACCGA



EEGTSTEPSEGSAPG

GGAAGGTAGCCCGGCTGGCTCTCCAA



TSTEPSEGSAPGSEP

CTTCTACTGAAGAAGGTACTTCTACCG



ATSGSETPGTSESAT

AACCTTCCGAGGGCAGCGCACCAGGT



PESGPGTSTEPSEGS

ACTTCTGAAAGCGCTACCCCTGAGTC



APGFPTIPLSRLFDNA

CGGCCCAGGTACTTCTGAAAGCGCTA



MLRAHRLHQLAFDT

CTCCTGAATCCGGTCCAGGTACTTCTG



YQEFEEAYIPKEQKY

AAAGCGCTACCCCGGAATCTGGCCCA



SFLQNPQTSLCFSESI

GGTAGCGAACCGGCTACTTCTGGTTCT



PTPSNREETQQKSNL

GAAACCCCAGGTAGCGAACCGGCTAC



ELLRISLLLIQSWLEP

CTCCGGTTCTGAAACTCCAGGTAGCC



VQFLRSVFANSLVY

CAGCAGGCTCTCCGACTTCCACTGAG



GASDSNVYDLLKDL

GAAGGTACTTCTACTGAACCTTCCGA



EEGIQTLMGRLEDGS

AGGCAGCGCACCAGGTACCTCTACTG



PRTGQIFKQTYSKFD

AACCTTCTGAGGGCAGCGCTCCAGGT



TNSHNDDALLKNYG

AGCGAACCTGCAACCTCTGGCTCTGA



LLYCFRKDMDKVET

AACCCCAGGTACCTCTGAAAGCGCTA



FLRIVQCRSVEGSCG

CTCCTGAATCTGGCCCAGGTACTTCTA



FGGTSESATPESGPG

CTGAACCGTCCGAGGGCAGCGCACCA



SEPATSGSETPGTSES

GGTTTTCCGACTATTCCGCTGTCTCGT



ATPESGPGSEPATSG

CTGTTTGATAATGCTATGCTGCGTGCG



SETPGTSESATPESGP

CACCGTCTGCACCAGCTGGCCTTTGAT



GTSTEPSEGSAPGSP

ACTTACCAGGAATTTGAAGAAGCcTA



AGSPTSTEEGTSESA

CATTCCTAAAGAGCAGAAGTACTCTT



TPESGPGSEPATSGS

TCCTGCAAAACCCACAGACTTCTCTCT



ETPGTSESATPESGP

GCTTCAGCGAATCTATTCCGACGCCTT



GSPAGSPTSTEEGSP

CCAATCGCGAGGAAACTCAGCAAAAG



AGSPTSTEEGTSTEPS

TCCAATCTGGAACTACTCCGCATTTCT



EGSAPGTSESATPES

CTGCTTCTGATTCAGAGCTGGCTAGA



GPGTSESATPESGPG

ACCAGTGCAATTTCTGCGTTCCGTCTT



TSESATPESGPGSEP

CGCCAATAGCCTAGTTTATGGCGCAT



ATSGSETPGSEPATS

CCGACAGCAACGTATACGATCTCCTG



GSETPGSPAGSPTST

AAAGATCTCGAGGAAGGCATTCAGAC



EEGTSTEPSEGSAPG

CCTGATGGGTCGTCTCGAGGATGGCT



TSTEPSEGSAPGSEP

CTCCGCGTACTGGTCAGATCTTCAAGC



ATSGSETPGTSESAT

AGACTTACTCTAAATTTGATACTAACA



PESGPGTSTEPSEGS

GCCACAATGACGATGCGCTTCTAAAA



AP

AACTATGGTCTGCTGTATTGTTTTCGT





AAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGT





TGAGGGCAGCTGTGGTTTCTAAGGTG





GTACCTCTGAAAGCGCAACTCCTGAG





TCTGGCCCAGGTAGCGAACCTGCTAC





CTCCGGCTCTGAGACTCCAGGTACCTC





TGAAAGCGCAACCCCGGAATCTGGTC





CAGGTAGCGAACCTGCAACCTCTGGC





TCTGAAACCCCAGGTACCTCTGAAAG





CGCTACTCCTGAATCTGGCCCAGGTA





CTTCTACTGAACCGTCCGAGGGCAGC





GCACCAGGTAGCCCTGCTGGCTCTCC





AACCTCCACCGAAGAAGGTACCTCTG





AAAGCGCAACCCCTGAATCCGGCCCA





GGTAGCGAACCGGCAACCTCCGGTTC





TGAAACCCCAGGTACTTCTGAAAGCG





CTACTCCTGAGTCCGGCCCAGGTAGC





CCGGCTGGCTCTCCGACTTCCACCGA





GGAAGGTAGCCCGGCTGGCTCTCCAA





CTTCTACTGAAGAAGGTACTTCTACCG





AACCTTCCGAGGGCAGCGCACCAGGT





ACTTCTGAAAGCGCTACCCCTGAGTC





CGGCCCAGGTACTTCTGAAAGCGCTA





CTCCTGAATCCGGTCCAGGTACTTCTG





AAAGCGCTACCCCGGAATCTGGCCCA





GGTAGCGAACCGGCTACTTCTGGTTCT





GAAACCCCAGGTAGCGAACCGGCTAC





CTCCGGTTCTGAAACTCCAGGTAGCC





CAGCAGGCTCTCCGACTTCCACTGAG





GAAGGTACTTCTACTGAACCTTCCGA





AGGCAGCGCACCAGGTACCTCTACTG





AACCTTCTGAGGGCAGCGCTCCAGGT





AGCGAACCTGCAACCTCTGGCTCTGA





AACCCCAGGTACCTCTGAAAGCGCTA





CTCCTGAATCTGGCCCAGGTACTTCTA





CTGAACCGTCCGAGGGCAGCGCACCA





AF144-
GTSTPESGSASPGTSP
771
GGTACTTCTACTCCGGAAAGCGGTTC
772


hGH-
SGESSTAPGTSPSGES

CGCATCTCCAGGTACTTCTCCTAGCGG


AE288
STAPGSTSSTAESPGP

TGAATCTTCTACTGCTCCAGGTACCTC



GSTSESPSGTAPGSTS

TCCTAGCGGCGAATCTTCTACTGCTCC



STAESPGPGTSPSGES

AGGTTCTACCAGCTCTACCGCTGAATC



STAPGTSTPESGSASP

TCCTGGCCCAGGTTCTACCAGCGAAT



GSTSSTAESPGPGTSP

CCCCGTCTGGCACCGCACCAGGTTCT



SGESSTAPGTSPSGES

ACTAGCTCTACCGCAGAATCTCCGGG



STAPGTSPSGESSTAP

TCCAGGTACTTCCCCTAGCGGTGAATC



GFPTIPLSRLFDNAM

TTCTACTGCTCCAGGTACCTCTACTCC



LRAHRLHQLAFDTY

GGAAAGCGGCTCCGCATCTCCAGGTT



QEFEEAYIPKEQKYS

CTACTAGCTCTACTGCTGAATCTCCTG



FLQNPQTSLCFSESIP

GTCCAGGTACCTCCCCTAGCGGCGAA



TPSNREETQQKSNLE

TCTTCTACTGCTCCAGGTACCTCTCCT



LLRISLLLIQSWLEPV

AGCGGCGAATCTTCTACCGCTCCAGG



QFLRSVFANSLVYG

TACCTCCCCTAGCGGTGAATCTTCTAC



ASDSNVYDLLKDLE

CGCACCAGGTTTTCCGACTATTCCGCT



EGIQTLMGRLEDGSP

GTCTCGTCTGTTTGATAATGCTATGCT



RTGQIFKQTYSKFDT

GCGTGCGCACCGTCTGCACCAGCTGG



NSHNDDALLKNYGL

CCTTTGATACTTACCAGGAATTTGAAG



LYCFRKDMDKVETF

AAGCcTACATTCCTAAAGAGCAGAAG



LRIVQCRSVEGSCGF

TACTCTTTCCTGCAAAACCCACAGACT



GGTSESATPESGPGS

TCTCTCTGCTTCAGCGAATCTATTCCG



EPATSGSETPGTSES

ACGCCTTCCAATCGCGAGGAAACTCA



ATPESGPGSEPATSG

GCAAAAGTCCAATCTGGAACTACTCC



SETPGTSESATPESGP

GCATTTCTCTGCTTCTGATTCAGAGCT



GTSTEPSEGSAPGSP

GGCTAGAACCAGTGCAATTTCTGCGT



AGSPTSTEEGTSESA

TCCGTCTTCGCCAATAGCCTAGTTTAT



TPESGPGSEPATSGS

GGCGCATCCGACAGCAACGTATACGA



ETPGTSESATPESGP

TCTCCTGAAAGATCTCGAGGAAGGCA



GSPAGSPTSTEEGSP

TTCAGACCCTGATGGGTCGTCTCGAG



AGSPTSTEEGTSTEPS

GATGGCTCTCCGCGTACTGGTCAGAT



EGSAPGTSESATPES

CTTCAAGCAGACTTACTCTAAATTTGA



GPGTSESATPESGPG

TACTAACAGCCACAATGACGATGCGC



TSESATPESGPGSEP

TTCTAAAAAACTATGGTCTGCTGTATT



ATSGSETPGSEPATS

GTTTTCGTAAAGATATGGACAAAGTT



GSETPGSPAGSPTST

GAAACCTTCCTGCGTATTGTTCAGTGT



EEGTSTEPSEGSAPG

CGTTCCGTTGAGGGCAGCTGTGGTTTC



TSTEPSEGSAPGSEP

TAAGGTGGTACCTCTGAAAGCGCAAC



ATSGSETPGTSESAT

TCCTGAGTCTGGCCCAGGTAGCGAAC



PESGPGTSTEPSEGS

CTGCTACCTCCGGCTCTGAGACTCCAG



AP

GTACCTCTGAAAGCGCAACCCCGGAA





TCTGGTCCAGGTAGCGAACCTGCAAC





CTCTGGCTCTGAAACCCCAGGTACCTC





TGAAAGCGCTACTCCTGAATCTGGCC





CAGGTACTTCTACTGAACCGTCCGAG





GGCAGCGCACCAGGTAGCCCTGCTGG





CTCTCCAACCTCCACCGAAGAAGGTA





CCTCTGAAAGCGCAACCCCTGAATCC





GGCCCAGGTAGCGAACCGGCAACCTC





CGGTTCTGAAACCCCAGGTACTTCTG





AAAGCGCTACTCCTGAGTCCGGCCCA





GGTAGCCCGGCTGGCTCTCCGACTTCC





ACCGAGGAAGGTAGCCCGGCTGGCTC





TCCAACTTCTACTGAAGAAGGTACTTC





TACCGAACCTTCCGAGGGCAGCGCAC





CAGGTACTTCTGAAAGCGCTACCCCT





GAGTCCGGCCCAGGTACTTCTGAAAG





CGCTACTCCTGAATCCGGTCCAGGTA





CTTCTGAAAGCGCTACCCCGGAATCT





GGCCCAGGTAGCGAACCGGCTACTTC





TGGTTCTGAAACCCCAGGTAGCGAAC





CGGCTACCTCCGGTTCTGAAACTCCA





GGTAGCCCAGCAGGCTCTCCGACTTC





CACTGAGGAAGGTACTTCTACTGAAC





CTTCCGAAGGCAGCGCACCAGGTACC





TCTACTGAACCTTCTGAGGGCAGCGC





TCCAGGTAGCGAACCTGCAACCTCTG





GCTCTGAAACCCCAGGTACCTCTGAA





AGCGCTACTCCTGAATCTGGCCCAGG





TACTTCTACTGAACCGTCCGAGGGCA





GCGCACCA





AD576-
GSSESGSSEGGPGSG
773
GGTTCCTCTGAAAGCGGTTCTTCCGAA
774


hGH-
GEPSESGSSGSSESGS

GGTGGTCCAGGTTCCTCTGAAAGCGG


AE288
SEGGPGSSESGSSEG

TTCTTCTGAGGGTGGTCCAGGTGAATC



GPGSSESGSSEGGPG

TCCGGGTGGCTCCAGCGGTTCCGAGT



SSESGSSEGGPGSSES

CAGGTTCTGGTGGCGAACCTTCCGAG



GSSEGGPGESPGGSS

TCTGGTAGCTCAGGTGAATCTCCGGG



GSESGSEGSSGPGES

TGGTTCTAGCGGTTCCGAGTCAGGTG



SGSSESGSSEGGPGS

AATCTCCGGGTGGTTCCAGCGGTTCTG



SESGSSEGGPGSSES

AGTCAGGTTCCTCCGAAAGCGGTTCTT



GSSEGGPGSGGEPSE

CTGAGGGCGGTCCAGGTTCCTCCGAA



SGSSGESPGGSSGSE

AGCGGTTCTTCCGAGGGCGGTCCAGG



SGESPGGSSGSESGS

TTCTTCTGAAAGCGGTTCTTCCGAGGG



GGEPSESGSSGSSES

CGGTCCAGGTGAATCTCCTGGTGGTTC



GSSEGGPGSGGEPSE

CAGCGGTTCCGAGTCAGGTGAATCTC



SGSSGSGGEPSESGS

CAGGTGGCTCTAGCGGTTCCGAGTCA



SGSEGSSGPGESSGE

GGTGAATCTCCTGGTGGTTCTAGCGGT



SPGGSSGSESGSGGE

TCTGAATCAGGTTCCTCCGAAAGCGG



PSESGSSGSGGEPSES

TTCTTCTGAGGGCGGTCCAGGTTCCTC



GSSGSGGEPSESGSS

CGAAAGCGGTTCTTCCGAGGGCGGTC



GSSESGSSEGGPGES

CAGGTTCTTCTGAAAGCGGTTCTTCCG



PGGSSGSESGESPGG

AGGGCGGTCCAGGTTCCTCTGAAAGC



SSGSESGESPGGSSG

GGTTCTTCTGAGGGCGGTCCAGGTTCT



SESGESPGGSSGSES

TCCGAAAGCGGTTCTTCCGAGGGCGG



GESPGGSSGSESGSS

TCCAGGTTCTTCCGAAAGCGGTTCTTC



ESGSSEGGPGSGGEP

TGAAGGCGGTCCAGGTTCTGGTGGCG



SESGSSGSEGSSGPG

AACCGTCCGAGTCTGGTAGCTCAGGT



ESSGSSESGSSEGGP

GAATCTCCGGGTGGCTCTAGCGGTTC



GSGGEPSESGSSGSS

CGAGTCAGGTGAATCTCCTGGTGGTT



ESGSSEGGPGSGGEP

CCAGCGGTTCCGAGTCAGGTTCCGGT



SESGSSGESPGGSSG

GGCGAACCGTCCGAATCTGGTAGCTC



SESGESPGGSSGSES

AGGTAGCGAAGGTTCTTCTGGTCCAG



GSSESGSSEGGPGSG

GCGAATCTTCAGGTTCCTCTGAAAGC



GEPSESGSSGSSESGS

GGTTCTTCTGAGGGCGGTCCAGGTTCC



SEGGPGSGGEPSESG

GGTGGCGAACCGTCCGAATCTGGTAG



SSGSGGEPSESGSSG

CTCAGGTAGCGAAGGTTCTTCTGGTCC



ESPGGSSGSESGSEG

AGGCGAATCTTCAGGTTCCTCTGAAA



SSGPGESSGSSESGSS

GCGGTTCTTCTGAGGGCGGTCCAGGT



EGGPGSEGSSGPGES

TCCGGTGGCGAACCTTCCGAATCTGG



SGFPTIPLSRLFDNA

TAGCTCAGGTGAATCTCCGGGTGGTT



MLRAHRLHQLAFDT

CTAGCGGTTCTGAGTCAGGTTCTGGTG



YQEFEEAYIPKEQKY

GTGAACCTTCCGAGTCTGGTAGCTCA



SFLQNPQTSLCFSESI

GGTTCTGGTGGCGAACCATCCGAGTC



PTPSNREETQQKSNL

TGGTAGCTCAGGTTCTTCCGAAAGCG



ELLRISLLLIQSWLEP

GTTCTTCCGAAGGCGGTCCAGGTTCTG



VQFLRSVFANSLVY

GTGGTGAACCGTCCGAATCTGGTAGC



GASDSNVYDLLKDL

TCAGGTTCTGGTGGCGAACCATCCGA



EEGIQTLMGRLEDGS

ATCTGGTAGCTCAGGTAGCGAAGGTT



PRTGQIFKQTYSKFD

CTTCTGGTCCTGGCGAATCTTCAGGTG



TNSHNDDALLKNYG

AATCTCCAGGTGGCTCTAGCGGTTCC



LLYCFRKDMDKVET

GAATCAGGTAGCGAAGGTTCTTCCGG



FLRIVQCRSVEGSCG

TCCAGGTGAATCTTCAGGTAGCGAAG



FGGTSESATPESGPG

GTTCTTCTGGTCCTGGTGAATCCTCAG



SEPATSGSETPGTSES

GTTCCGGTGGCGAACCATCTGAATCT



ATPESGPGSEPATSG

GGTAGCTCAGGTTCCTCTGAAAGCGG



SETPGTSESATPESGP

TTCTTCCGAAGGTGGTCCAGGTTCCTC



GTSTEPSEGSAPGSP

TGAAAGCGGTTCTTCTGAGGGTGGTC



AGSPTSTEEGTSESA

CAGGTGAATCTCCGGGTGGCTCCAGC



TPESGPGSEPATSGS

GGTTCCGAGTCAGGTTCTGGTGGCGA



ETPGTSESATPESGP

ACCATCCGAATCTGGTAGCTCAGGTA



GSPAGSPTSTEEGSP

GCGAAGGTTCTTCTGGTCCTGGCGAA



AGSPTSTEEGTSTEPS

TCTTCAGGTGAATCTCCAGGTGGCTCT



EGSAPGTSESATPES

AGCGGTTCCGAATCAGGTAGCGAAGG



GPGTSESATPESGPG

TTCTTCCGGTCCTGGTGAGTCTTCAGG



TSESATPESGPGSEP

TGAATCTCCAGGTGGCTCTAGCGGTTC



ATSGSETPGSEPATS

CGAGTCAGGTAGCGAAGGTTCTTCTG



GSETPGSPAGSPTST

GTCCTGGCGAGTCCTCAGGTTTTCCGA



EEGTSTEPSEGSAPG

CTATTCCGCTGTCTCGTCTGTTTGATA



TSTEPSEGSAPGSEP

ATGCTATGCTGCGTGCGCACCGTCTGC



ATSGSETPGTSESAT

ACCAGCTGGCCTTTGATACTTACCAG



PESGPGTSTEPSEGS

GAATTTGAAGAAGCcTACATTCCTAAA



AP

GAGCAGAAGTACTCTTTCCTGCAAAA





CCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGA





GGAAACTCAGCAAAAGTCCAATCTGG





AACTACTCCGCATTTCTCTGCTTCTGA





TTCAGAGCTGGCTAGAACCAGTGCAA





TTTCTGCGTTCCGTCTTCGCCAATAGC





CTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCG





AGGAAGGCATTCAGACCCTGATGGGT





CGTCTCGAGGATGGCTCTCCGCGTACT





GGTCAGATCTTCAAGCAGACTTACTCT





AAATTTGATACTAACAGCCACAATGA





CGATGCGCTTCTAAAAAACTATGGTC





TGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTACCTCTGA





AAGCGCAACTCCTGAGTCTGGCCCAG





GTAGCGAACCTGCTACCTCCGGCTCT





GAGACTCCAGGTACCTCTGAAAGCGC





AACCCCGGAATCTGGTCCAGGTAGCG





AACCTGCAACCTCTGGCTCTGAAACC





CCAGGTACCTCTGAAAGCGCTACTCC





TGAATCTGGCCCAGGTACTTCTACTGA





ACCGTCCGAGGGCAGCGCACCAGGTA





GCCCTGCTGGCTCTCCAACCTCCACCG





AAGAAGGTACCTCTGAAAGCGCAACC





CCTGAATCCGGCCCAGGTAGCGAACC





GGCAACCTCCGGTTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGT





CCGGCCCAGGTAGCCCGGCTGGCTCT





CCGACTTCCACCGAGGAAGGTAGCCC





GGCTGGCTCTCCAACTTCTACTGAAG





AAGGTACTTCTACCGAACCTTCCGAG





GGCAGCGCACCAGGTACTTCTGAAAG





CGCTACCCCTGAGTCCGGCCCAGGTA





CTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACC





GGCTACTTCTGGTTCTGAAACCCCAG





GTAGCGAACCGGCTACCTCCGGTTCT





GAAACTCCAGGTAGCCCAGCAGGCTC





TCCGACTTCCACTGAGGAAGGTACTT





CTACTGAACCTTCCGAAGGCAGCGCA





CCAGGTACCTCTACTGAACCTTCTGAG





GGCAGCGCTCCAGGTAGCGAACCTGC





AACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTG





GCCCAGGTACTTCTACTGAACCGTCC





GAGGGCAGCGCACCA





AE576-
GSPAGSPTSTEEGTS
775
GGTAGCCCGGCTGGCTCTCCTACCTCT
776


hGH-
ESATPESGPGTSTEPS

ACTGAGGAAGGTACTTCTGAAAGCGC


AE288
EGSAPGSPAGSPTST

TACTCCTGAGTCTGGTCCAGGTACCTC



EEGTSTEPSEGSAPG

TACTGAACCGTCCGAAGGTAGCGCTC



TSTEPSEGSAPGTSES

CAGGTAGCCCAGCAGGCTCTCCGACT



ATPESGPGSEPATSG

TCCACTGAGGAAGGTACTTCTACTGA



SETPGSEPATSGSETP

ACCTTCCGAAGGCAGCGCACCAGGTA



GSPAGSPTSTEEGTS

CCTCTACTGAACCTTCTGAGGGCAGC



ESATPESGPGTSTEPS

GCTCCAGGTACTTCTGAAAGCGCTAC



EGSAPGTSTEPSEGS

CCCGGAATCTGGCCCAGGTAGCGAAC



APGSPAGSPTSTEEG

CGGCTACTTCTGGTTCTGAAACCCCAG



TSTEPSEGSAPGTSTE

GTAGCGAACCGGCTACCTCCGGTTCT



PSEGSAPGTSESATP

GAAACTCCAGGTAGCCCGGCAGGCTC



ESGPGTSTEPSEGSA

TCCGACCTCTACTGAGGAAGGTACTT



PGTSESATPESGPGS

CTGAAAGCGCAACCCCGGAGTCCGGC



EPATSGSETPGTSTEP

CCAGGTACCTCTACCGAACCGTCTGA



SEGSAPGTSTEPSEG

GGGCAGCGCACCAGGTACTTCTACCG



SAPGTSESATPESGP

AACCGTCCGAGGGTAGCGCACCAGGT



GTSESATPESGPGSP

AGCCCAGCAGGTTCTCCTACCTCCACC



AGSPTSTEEGTSESA

GAGGAAGGTACTTCTACCGAACCGTC



TPESGPGSEPATSGS

CGAGGGTAGCGCACCAGGTACCTCTA



ETPGTSESATPESGP

CTGAACCTTCTGAGGGCAGCGCTCCA



GTSTEPSEGSAPGTS

GGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACC



EGSAPGTSTEPSEGS

GTCCGAAGGTAGCGCACCAGGTACTT



APGTSTEPSEGSAPG

CTGAAAGCGCAACCCCTGAATCCGGT



TSTEPSEGSAPGSPA

CCAGGTAGCGAACCGGCTACTTCTGG



GSPTSTEEGTSTEPSE

CTCTGAGACTCCAGGTACTTCTACCGA



GSAPGTSESATPESG

ACCGTCCGAAGGTAGCGCACCAGGTA



PGSEPATSGSETPGT

CTTCTACTGAACCGTCTGAAGGTAGC



SESATPESGPGSEPA

GCACCAGGTACTTCTGAAAGCGCAAC



TSGSETPGTSESATPE

CCCGGAATCCGGCCCAGGTACCTCTG



SGPGTSTEPSEGSAP

AAAGCGCAACCCCGGAGTCCGGCCCA



GTSESATPESGPGSP

GGTAGCCCTGCTGGCTCTCCAACCTCC



AGSPTSTEEGSPAGS

ACCGAAGAAGGTACCTCTGAAAGCGC



PTSTEEGSPAGSPTST

AACCCCTGAATCCGGCCCAGGTAGCG



EEGTSESATPESGPG

AACCGGCAACCTCCGGTTCTGAAACC



TSTEPSEGSAPGFPTI

CCAGGTACCTCTGAAAGCGCTACTCC



PLSRLFDNAMLRAH

GGAGTCTGGCCCAGGTACCTCTACTG



RLHQLAFDTYQEFEE

AACCGTCTGAGGGTAGCGCTCCAGGT



AYIPKEQKYSFLQNP

ACTTCTACTGAACCGTCCGAAGGTAG



QTSLCFSESIPTPSNR

CGCACCAGGTACTTCTACCGAACCGT



EETQQKSNLELLRIS

CCGAAGGCAGCGCTCCAGGTACCTCT



LLLIQSWLEPVQFLR

ACTGAACCTTCCGAGGGCAGCGCTCC



SVFANSLVYGASDS

AGGTACCTCTACCGAACCTTCTGAAG



NVYDLLKDLEEGIQT

GTAGCGCACCAGGTACTTCTACCGAA



LMGRLEDGSPRTGQI

CCGTCCGAGGGTAGCGCACCAGGTAG



FKQTYSKFDTNSHN

CCCAGCAGGTTCTCCTACCTCCACCGA



DDALLKNYGLLYCF

GGAAGGTACTTCTACCGAACCGTCCG



RKDMDKVETFLRIV

AGGGTAGCGCACCAGGTACCTCTGAA



QCRSVEGSCGFGGTS

AGCGCAACTCCTGAGTCTGGCCCAGG



ESATPESGPGSEPAT

TAGCGAACCTGCTACCTCCGGCTCTG



SGSETPGTSESATPES

AGACTCCAGGTACCTCTGAAAGCGCA



GPGSEPATSGSETPG

ACCCCGGAATCTGGTCCAGGTAGCGA



TSESATPESGPGTSTE

ACCTGCAACCTCTGGCTCTGAAACCC



PSEGSAPGSPAGSPT

CAGGTACCTCTGAAAGCGCTACTCCT



STEEGTSESATPESGP

GAATCTGGCCCAGGTACTTCTACTGA



GSEPATSGSETPGTS

ACCGTCCGAGGGCAGCGCACCAGGTA



ESATPESGPGSPAGS

CTTCTGAAAGCGCTACTCCTGAGTCCG



PTSTEEGSPAGSPTST

GCCCAGGTAGCCCGGCTGGCTCTCCG



EEGTSTEPSEGSAPG

ACTTCCACCGAGGAAGGTAGCCCGGC



TSESATPESGPGTSES

TGGCTCTCCAACTTCTACTGAAGAAG



ATPESGPGTSESATP

GTAGCCCGGCAGGCTCTCCGACCTCT



ESGPGSEPATSGSET

ACTGAGGAAGGTACTTCTGAAAGCGC



PGSEPATSGSETPGSP

AACCCCGGAGTCCGGCCCAGGTACCT



AGSPTSTEEGTSTEPS

CTACCGAACCGTCTGAGGGCAGCGCA



EGSAPGTSTEPSEGS

CCAGGTTTTCCGACTATTCCGCTGTCT



APGSEPATSGSETPG

CGTCTGTTTGATAATGCTATGCTGCGT



TSESATPESGPGTSTE

GCGCACCGTCTGCACCAGCTGGCCTTT



PSEGSAP

GATACTTACCAGGAATTTGAAGAAGC





cTACATTCCTAAAGAGCAGAAGTACTC





TTTCCTGCAAAACCCACAGACTTCTCT





CTGCTTCAGCGAATCTATTCCGACGCC





TTCCAATCGCGAGGAAACTCAGCAAA





AGTCCAATCTGGAACTACTCCGCATTT





CTCTGCTTCTGATTCAGAGCTGGCTAG





AACCAGTGCAATTTCTGCGTTCCGTCT





TCGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTG





AAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCT





CTCCGCGTACTGGTCAGATCTTCAAGC





AGACTTACTCTAAATTTGATACTAACA





GCCACAATGACGATGCGCTTCTAAAA





AACTATGGTCTGCTGTATTGTTTTCGT





AAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGT





TGAGGGCAGCTGTGGTTTCTAAGGTG





GTACCTCTGAAAGCGCAACTCCTGAG





TCTGGCCCAGGTAGCGAACCTGCTAC





CTCCGGCTCTGAGACTCCAGGTACCTC





TGAAAGCGCAACCCCGGAATCTGGTC





CAGGTAGCGAACCTGCAACCTCTGGC





TCTGAAACCCCAGGTACCTCTGAAAG





CGCTACTCCTGAATCTGGCCCAGGTA





CTTCTACTGAACCGTCCGAGGGCAGC





GCACCAGGTAGCCCTGCTGGCTCTCC





AACCTCCACCGAAGAAGGTACCTCTG





AAAGCGCAACCCCTGAATCCGGCCCA





GGTAGCGAACCGGCAACCTCCGGTTC





TGAAACCCCAGGTACTTCTGAAAGCG





CTACTCCTGAGTCCGGCCCAGGTAGC





CCGGCTGGCTCTCCGACTTCCACCGA





GGAAGGTAGCCCGGCTGGCTCTCCAA





CTTCTACTGAAGAAGGTACTTCTACCG





AACCTTCCGAGGGCAGCGCACCAGGT





ACTTCTGAAAGCGCTACCCCTGAGTC





CGGCCCAGGTACTTCTGAAAGCGCTA





CTCCTGAATCCGGTCCAGGTACTTCTG





AAAGCGCTACCCCGGAATCTGGCCCA





GGTAGCGAACCGGCTACTTCTGGTTCT





GAAACCCCAGGTAGCGAACCGGCTAC





CTCCGGTTCTGAAACTCCAGGTAGCC





CAGCAGGCTCTCCGACTTCCACTGAG





GAAGGTACTTCTACTGAACCTTCCGA





AGGCAGCGCACCAGGTACCTCTACTG





AACCTTCTGAGGGCAGCGCTCCAGGT





AGCGAACCTGCAACCTCTGGCTCTGA





AACCCCAGGTACCTCTGAAAGCGCTA





CTCCTGAATCTGGCCCAGGTACTTCTA





CTGAACCGTCCGAGGGCAGCGCACCA





AF576-
GSTSSTAESPGPGSTS
777
GGTTCTACTAGCTCTACCGCTGAATCT
778


hGH-
STAESPGPGSTSESPS

CCTGGCCCAGGTTCCACTAGCTCTACC


AE288
GTAPGSTSSTAESPG

GCAGAATCTCCGGGCCCAGGTTCTAC



PGSTSSTAESPGPGTS

TAGCGAATCCCCTTCTGGTACCGCTCC



TPESGSASPGSTSESP

AGGTTCTACTAGCTCTACCGCTGAATC



SGTAPGTSPSGESST

TCCGGGTCCAGGTTCTACCAGCTCTAC



APGSTSESPSGTAPG

TGCAGAATCTCCTGGCCCAGGTACTTC



STSESPSGTAPGTSPS

TACTCCGGAAAGCGGTTCCGCTTCTCC



GESSTAPGSTSESPSG

AGGTTCTACCAGCGAATCTCCTTCTGG



TAPGSTSESPSGTAP

CACCGCTCCAGGTACCTCTCCTAGCG



GTSPSGESSTAPGSTS

GCGAATCTTCTACCGCTCCAGGTTCTA



ESPSGTAPGSTSESPS

CTAGCGAATCTCCTTCTGGCACTGCAC



GTAPGSTSESPSGTA

CAGGTTCTACCAGCGAATCTCCTTCTG



PGTSTPESGSASPGST

GCACCGCTCCAGGTACCTCTCCTAGC



SESPSGTAPGTSTPES

GGCGAATCTTCTACCGCTCCAGGTTCT



GSASPGSTSSTAESP

ACTAGCGAATCTCCTTCTGGCACTGCA



GPGSTSSTAESPGPG

CCAGGTTCTACCAGCGAATCTCCTTCT



TSTPESGSASPGTSTP

GGCACCGCTCCAGGTACCTCTCCTAG



ESGSASPGSTSESPSG

CGGCGAATCTTCTACCGCTCCAGGTTC



TAPGTSTPESGSASP

TACTAGCGAATCTCCTTCTGGCACTGC



GTSTPESGSASPGSTS

ACCAGGTTCTACTAGCGAATCTCCTTC



ESPSGTAPGSTSESPS

TGGCACTGCACCAGGTTCTACCAGCG



GTAPGSTSESPSGTA

AATCTCCGTCTGGCACTGCACCAGGT



PGSTSSTAESPGPGTS

ACCTCTACCCCTGAAAGCGGTTCCGCT



TPESGSASPGTSTPES

TCTCCAGGTTCTACTAGCGAATCTCCT



GSASPGSTSESPSGT

TCTGGTACCGCTCCAGGTACTTCTACC



APGSTSESPSGTAPG

CCTGAAAGCGGCTCCGCTTCTCCAGG



TSTPESGSASPGSTSE

TTCCACTAGCTCTACCGCTGAATCTCC



SPSGTAPGSTSESPSG

GGGTCCAGGTTCTACTAGCTCTACTGC



TAPGTSTPESGSASP

AGAATCTCCTGGCCCAGGTACCTCTA



GTSPSGESSTAPGSTS

CTCCGGAAAGCGGCTCTGCATCTCCA



STAESPGPGTSPSGES

GGTACTTCTACCCCTGAAAGCGGTTCT



STAPGSTSSTAESPGP

GCATCTCCAGGTTCTACTAGCGAATCC



GTSTPESGSASPGSTS

CCGTCTGGTACCGCACCAGGTACTTCT



ESPSGTAPGSTSSTA

ACCCCGGAAAGCGGCTCTGCTTCTCC



ESPGPGTSTPESGSAS

AGGTACTTCTACCCCGGAAAGCGGCT



PGTSTPESGSASPGFP

CCGCATCTCCAGGTTCTACTAGCGAAT



TIPLSRLFDNAMLRA

CTCCTTCTGGTACCGCTCCAGGTTCTA



HRLHQLAFDTYQEF

CCAGCGAATCCCCGTCTGGTACTGCTC



EEAYIPKEQKYSFLQ

CAGGTTCTACCAGCGAATCTCCTTCTG



NPQTSLCFSESIPTPS

GTACTGCACCAGGTTCTACTAGCTCTA



NREETQQKSNLELLR

CTGCAGAATCTCCTGGCCCAGGTACC



ISLLLIQSWLEPVQFL

TCTACTCCGGAAAGCGGCTCTGCATCT



RSVFANSLVYGASD

CCAGGTACTTCTACCCCTGAAAGCGG



SNVYDLLKDLEEGIQ

TTCTGCATCTCCAGGTTCTACTAGCGA



TLMGRLEDGSPRTG

ATCTCCTTCTGGCACTGCACCAGGTTC



QIFKQTYSKFDTNSH

TACCAGCGAATCTCCGTCTGGCACTG



NDDALLKNYGLLYC

CACCAGGTACCTCTACCCCTGAAAGC



FRKDMDKVETFLRI

GGTTCCGCTTCTCCAGGTTCTACTAGC



VQCRSVEGSCGFGG

GAATCTCCTTCTGGCACTGCACCAGGT



TSESATPESGPGSEP

TCTACCAGCGAATCTCCGTCTGGCACT



ATSGSETPGTSESAT

GCACCAGGTACCTCTACCCCTGAAAG



PESGPGSEPATSGSE

CGGTTCCGCTTCTCCAGGTACTTCTCC



TPGTSESATPESGPG

GAGCGGTGAATCTTCTACCGCACCAG



TSTEPSEGSAPGSPA

GTTCTACTAGCTCTACCGCTGAATCTC



GSPTSTEEGTSESATP

CGGGCCCAGGTACTTCTCCGAGCGGT



ESGPGSEPATSGSET

GAATCTTCTACTGCTCCAGGTTCCACT



PGTSESATPESGPGSP

AGCTCTACTGCTGAATCTCCTGGCCCA



AGSPTSTEEGSPAGS

GGTACTTCTACTCCGGAAAGCGGTTC



PTSTEEGTSTEPSEGS

CGCTTCTCCAGGTTCTACTAGCGAATC



APGTSESATPESGPG

TCCGTCTGGCACCGCACCAGGTTCTAC



TSESATPESGPGTSES

TAGCTCTACTGCAGAATCTCCTGGCCC



ATPESGPGSEPATSG

AGGTACCTCTACTCCGGAAAGCGGCT



SETPGSEPATSGSETP

CTGCATCTCCAGGTACTTCTACCCCTG



GSPAGSPTSTEEGTS

AAAGCGGTTCTGCATCTCCAGGTTTTC



TEPSEGSAPGTSTEPS

CGACTATTCCGCTGTCTCGTCTGTTTG



EGSAPGSEPATSGSE

ATAATGCTATGCTGCGTGCGCACCGT



TPGTSESATPESGPG

CTGCACCAGCTGGCCTTTGATACTTAC



TSTEPSEGSAP

CAGGAATTTGAAGAAGCcTACATTCCT





AAAGAGCAGAAGTACTCTTTCCTGCA





AAACCCACAGACTTCTCTCTGCTTCAG





CGAATCTATTCCGACGCCTTCCAATCG





CGAGGAAACTCAGCAAAAGTCCAATC





TGGAACTACTCCGCATTTCTCTGCTTC





TGATTCAGAGCTGGCTAGAACCAGTG





CAATTTCTGCGTTCCGTCTTCGCCAAT





AGCCTAGTTTATGGCGCATCCGACAG





CAACGTATACGATCTCCTGAAAGATC





TCGAGGAAGGCATTCAGACCCTGATG





GGTCGTCTCGAGGATGGCTCTCCGCG





TACTGGTCAGATCTTCAAGCAGACTT





ACTCTAAATTTGATACTAACAGCCAC





AATGACGATGCGCTTCTAAAAAACTA





TGGTCTGCTGTATTGTTTTCGTAAAGA





TATGGACAAAGTTGAAACCTTCCTGC





GTATTGTTCAGTGTCGTTCCGTTGAGG





GCAGCTGTGGTTTCTAAGGTGGTACCT





CTGAAAGCGCAACTCCTGAGTCTGGC





CCAGGTAGCGAACCTGCTACCTCCGG





CTCTGAGACTCCAGGTACCTCTGAAA





GCGCAACCCCGGAATCTGGTCCAGGT





AGCGAACCTGCAACCTCTGGCTCTGA





AACCCCAGGTACCTCTGAAAGCGCTA





CTCCTGAATCTGGCCCAGGTACTTCTA





CTGAACCGTCCGAGGGCAGCGCACCA





GGTAGCCCTGCTGGCTCTCCAACCTCC





ACCGAAGAAGGTACCTCTGAAAGCGC





AACCCCTGAATCCGGCCCAGGTAGCG





AACCGGCAACCTCCGGTTCTGAAACC





CCAGGTACTTCTGAAAGCGCTACTCCT





GAGTCCGGCCCAGGTAGCCCGGCTGG





CTCTCCGACTTCCACCGAGGAAGGTA





GCCCGGCTGGCTCTCCAACTTCTACTG





AAGAAGGTACTTCTACCGAACCTTCC





GAGGGCAGCGCACCAGGTACTTCTGA





AAGCGCTACCCCTGAGTCCGGCCCAG





GTACTTCTGAAAGCGCTACTCCTGAAT





CCGGTCCAGGTACTTCTGAAAGCGCT





ACCCCGGAATCTGGCCCAGGTAGCGA





ACCGGCTACTTCTGGTTCTGAAACCCC





AGGTAGCGAACCGGCTACCTCCGGTT





CTGAAACTCCAGGTAGCCCAGCAGGC





TCTCCGACTTCCACTGAGGAAGGTAC





TTCTACTGAACCTTCCGAAGGCAGCG





CACCAGGTACCTCTACTGAACCTTCTG





AGGGCAGCGCTCCAGGTAGCGAACCT





GCAACCTCTGGCTCTGAAACCCCAGG





TACCTCTGAAAGCGCTACTCCTGAATC





TGGCCCAGGTACTTCTACTGAACCGTC





CGAGGGCAGCGCACCA





AE624-
MAEPAGSPTSTEEGT
779
ATGGCTGAACCTGCTGGCTCTCCAAC
780


hGH-
PGSGTASSSPGSSTPS

CTCCACTGAGGAAGGTACCCCGGGTA


AE288
GATGSPGASPGTSST

GCGGTACTGCTTCTTCCTCTCCAGGTA



GSPGSPAGSPTSTEE

GCTCTACCCCTTCTGGTGCAACCGGCT



GTSESATPESGPGTS

CTCCAGGTGCTTCTCCGGGCACCAGCT



TEPSEGSAPGSPAGS

CTACCGGTTCTCCAGGTAGCCCGGCT



PTSTEEGTSTEPSEGS

GGCTCTCCTACCTCTACTGAGGAAGG



APGTSTEPSEGSAPG

TACTTCTGAAAGCGCTACTCCTGAGTC



TSESATPESGPGSEP

TGGTCCAGGTACCTCTACTGAACCGTC



ATSGSETPGSEPATS

CGAAGGTAGCGCTCCAGGTAGCCCAG



GSETPGSPAGSPTST

CAGGCTCTCCGACTTCCACTGAGGAA



EEGTSESATPESGPG

GGTACTTCTACTGAACCTTCCGAAGG



TSTEPSEGSAPGTSTE

CAGCGCACCAGGTACCTCTACTGAAC



PSEGSAPGSPAGSPT

CTTCTGAGGGCAGCGCTCCAGGTACT



STEEGTSTEPSEGSAP

TCTGAAAGCGCTACCCCGGAATCTGG



GTSTEPSEGSAPGTS

CCCAGGTAGCGAACCGGCTACTTCTG



ESATPESGPGTSTEPS

GTTCTGAAACCCCAGGTAGCGAACCG



EGSAPGTSESATPES

GCTACCTCCGGTTCTGAAACTCCAGGT



GPGSEPATSGSETPG

AGCCCGGCAGGCTCTCCGACCTCTAC



TSTEPSEGSAPGTSTE

TGAGGAAGGTACTTCTGAAAGCGCAA



PSEGSAPGTSESATP

CCCCGGAGTCCGGCCCAGGTACCTCT



ESGPGTSESATPESG

ACCGAACCGTCTGAGGGCAGCGCACC



PGSPAGSPTSTEEGT

AGGTACTTCTACCGAACCGTCCGAGG



SESATPESGPGSEPA

GTAGCGCACCAGGTAGCCCAGCAGGT



TSGSETPGTSESATPE

TCTCCTACCTCCACCGAGGAAGGTAC



SGPGTSTEPSEGSAP

TTCTACCGAACCGTCCGAGGGTAGCG



GTSTEPSEGSAPGTS

CACCAGGTACCTCTACTGAACCTTCTG



TEPSEGSAPGTSTEPS

AGGGCAGCGCTCCAGGTACTTCTGAA



EGSAPGTSTEPSEGS

AGCGCTACCCCGGAGTCCGGTCCAGG



APGTSTEPSEGSAPG

TACTTCTACTGAACCGTCCGAAGGTA



SPAGSPTSTEEGTSTE

GCGCACCAGGTACTTCTGAAAGCGCA



PSEGSAPGTSESATP

ACCCCTGAATCCGGTCCAGGTAGCGA



ESGPGSEPATSGSET

ACCGGCTACTTCTGGCTCTGAGACTCC



PGTSESATPESGPGS

AGGTACTTCTACCGAACCGTCCGAAG



EPATSGSETPGTSES

GTAGCGCACCAGGTACTTCTACTGAA



ATPESGPGTSTEPSE

CCGTCTGAAGGTAGCGCACCAGGTAC



GSAPGTSESATPESG

TTCTGAAAGCGCAACCCCGGAATCCG



PGSPAGSPTSTEEGSP

GCCCAGGTACCTCTGAAAGCGCAACC



AGSPTSTEEGSPAGS

CCGGAGTCCGGCCCAGGTAGCCCTGC



PTSTEEGTSESATPES

TGGCTCTCCAACCTCCACCGAAGAAG



GPGTSTEPSEGSAPG

GTACCTCTGAAAGCGCAACCCCTGAA



FPTIPLSRLFDNAML

TCCGGCCCAGGTAGCGAACCGGCAAC



RAHRLHQLAFDTYQ

CTCCGGTTCTGAAACCCCAGGTACCTC



EFEEAYIPKEQKYSF

TGAAAGCGCTACTCCGGAGTCTGGCC



LQNPQTSLCFSESIPT

CAGGTACCTCTACTGAACCGTCTGAG



PSNREETQQKSNLEL

GGTAGCGCTCCAGGTACTTCTACTGA



LRISLLLIQSWLEPVQ

ACCGTCCGAAGGTAGCGCACCAGGTA



FLRSVFANSLVYGAS

CTTCTACCGAACCGTCCGAAGGCAGC



DSNVYDLLKDLEEGI

GCTCCAGGTACCTCTACTGAACCTTCC



QTLMGRLEDGSPRT

GAGGGCAGCGCTCCAGGTACCTCTAC



GQIFKQTYSKFDTNS

CGAACCTTCTGAAGGTAGCGCACCAG



HNDDALLKNYGLLY

GTACTTCTACCGAACCGTCCGAGGGT



CFRKDMDKVETFLRI

AGCGCACCAGGTAGCCCAGCAGGTTC



VQCRSVEGSCGFGG

TCCTACCTCCACCGAGGAAGGTACTT



TSESATPESGPGSEP

CTACCGAACCGTCCGAGGGTAGCGCA



ATSGSETPGTSESAT

CCAGGTACCTCTGAAAGCGCAACTCC



PESGPGSEPATSGSE

TGAGTCTGGCCCAGGTAGCGAACCTG



TPGTSESATPESGPG

CTACCTCCGGCTCTGAGACTCCAGGT



TSTEPSEGSAPGSPA

ACCTCTGAAAGCGCAACCCCGGAATC



GSPTSTEEGTSESATP

TGGTCCAGGTAGCGAACCTGCAACCT



ESGPGSEPATSGSET

CTGGCTCTGAAACCCCAGGTACCTCT



PGTSESATPESGPGSP

GAAAGCGCTACTCCTGAATCTGGCCC



AGSPTSTEEGSPAGS

AGGTACTTCTACTGAACCGTCCGAGG



PTSTEEGTSTEPSEGS

GCAGCGCACCAGGTACTTCTGAAAGC



APGTSESATPESGPG

GCTACTCCTGAGTCCGGCCCAGGTAG



TSESATPESGPGTSES

CCCGGCTGGCTCTCCGACTTCCACCGA



ATPESGPGSEPATSG

GGAAGGTAGCCCGGCTGGCTCTCCAA



SETPGSEPATSGSETP

CTTCTACTGAAGAAGGTAGCCCGGCA



GSPAGSPTSTEEGTS

GGCTCTCCGACCTCTACTGAGGAAGG



TEPSEGSAPGTSTEPS

TACTTCTGAAAGCGCAACCCCGGAGT



EGSAPGSEPATSGSE

CCGGCCCAGGTACCTCTACCGAACCG



TPGTSESATPESGPG

TCTGAGGGCAGCGCACCAGGTTTTCC



TSTEPSEGSAP

GACTATTCCGCTGTCTCGTCTGTTTGA





TAATGCTATGCTGCGTGCGCACCGTCT





GCACCAGCTGGCCTTTGATACTTACCA





GGAATTTGAAGAAGCcTACATTCCTAA





AGAGCAGAAGTACTCTTTCCTGCAAA





ACCCACAGACTTCTCTCTGCTTCAGCG





AATCTATTCCGACGCCTTCCAATCGCG





AGGAAACTCAGCAAAAGTCCAATCTG





GAACTACTCCGCATTTCTCTGCTTCTG





ATTCAGAGCTGGCTAGAACCAGTGCA





ATTTCTGCGTTCCGTCTTCGCCAATAG





CCTAGTTTATGGCGCATCCGACAGCA





ACGTATACGATCTCCTGAAAGATCTC





GAGGAAGGCATTCAGACCCTGATGGG





TCGTCTCGAGGATGGCTCTCCGCGTAC





TGGTCAGATCTTCAAGCAGACTTACTC





TAAATTTGATACTAACAGCCACAATG





ACGATGCGCTTCTAAAAAACTATGGT





CTGCTGTATTGTTTTCGTAAAGATATG





GACAAAGTTGAAACCTTCCTGCGTAT





TGTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTACCTCTGA





AAGCGCAACTCCTGAGTCTGGCCCAG





GTAGCGAACCTGCTACCTCCGGCTCT





GAGACTCCAGGTACCTCTGAAAGCGC





AACCCCGGAATCTGGTCCAGGTAGCG





AACCTGCAACCTCTGGCTCTGAAACC





CCAGGTACCTCTGAAAGCGCTACTCC





TGAATCTGGCCCAGGTACTTCTACTGA





ACCGTCCGAGGGCAGCGCACCAGGTA





GCCCTGCTGGCTCTCCAACCTCCACCG





AAGAAGGTACCTCTGAAAGCGCAACC





CCTGAATCCGGCCCAGGTAGCGAACC





GGCAACCTCCGGTTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGT





CCGGCCCAGGTAGCCCGGCTGGCTCT





CCGACTTCCACCGAGGAAGGTAGCCC





GGCTGGCTCTCCAACTTCTACTGAAG





AAGGTACTTCTACCGAACCTTCCGAG





GGCAGCGCACCAGGTACTTCTGAAAG





CGCTACCCCTGAGTCCGGCCCAGGTA





CTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACC





GGCTACTTCTGGTTCTGAAACCCCAG





GTAGCGAACCGGCTACCTCCGGTTCT





GAAACTCCAGGTAGCCCAGCAGGCTC





TCCGACTTCCACTGAGGAAGGTACTT





CTACTGAACCTTCCGAAGGCAGCGCA





CCAGGTACCTCTACTGAACCTTCTGAG





GGCAGCGCTCCAGGTAGCGAACCTGC





AACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTG





GCCCAGGTACTTCTACTGAACCGTCC





GAGGGCAGCGCACCA





AD836-
GSSESGSSEGGPGSS
781
GGTTCCTCTGAAAGCGGTTCTTCCGAA
782


hGH-
ESGSSEGGPGESPGG

GGTGGTCCAGGTTCCTCTGAAAGCGG


AE288
SSGSESGSGGEPSES

TTCTTCTGAGGGTGGTCCAGGTGAATC



GSSGESPGGSSGSES

TCCGGGTGGCTCCAGCGGTTCCGAGT



GESPGGSSGSESGSS

CAGGTTCTGGTGGCGAACCTTCCGAG



ESGSSEGGPGSSESG

TCTGGTAGCTCAGGTGAATCTCCGGG



SSEGGPGSSESGSSE

TGGTTCTAGCGGTTCCGAGTCAGGTG



GGPGESPGGSSGSES

AATCTCCGGGTGGTTCCAGCGGTTCTG



GESPGGSSGSESGES

AGTCAGGTTCCTCCGAAAGCGGTTCTT



PGGSSGSESGSSESG

CTGAGGGCGGTCCAGGTTCCTCCGAA



SSEGGPGSSESGSSE

AGCGGTTCTTCCGAGGGCGGTCCAGG



GGPGSSESGSSEGGP

TTCTTCTGAAAGCGGTTCTTCCGAGGG



GSSESGSSEGGPGSS

CGGTCCAGGTGAATCTCCTGGTGGTTC



ESGSSEGGPGSSESG

CAGCGGTTCCGAGTCAGGTGAATCTC



SSEGGPGSGGEPSES

CAGGTGGCTCTAGCGGTTCCGAGTCA



GSSGESPGGSSGSES

GGTGAATCTCCTGGTGGTTCTAGCGGT



GESPGGSSGSESGSG

TCTGAATCAGGTTCCTCCGAAAGCGG



GEPSESGSSGSEGSS

TTCTTCTGAGGGCGGTCCAGGTTCCTC



GPGESSGSSESGSSE

CGAAAGCGGTTCTTCCGAGGGCGGTC



GGPGSGGEPSESGSS

CAGGTTCTTCTGAAAGCGGTTCTTCCG



GSEGSSGPGESSGSS

AGGGCGGTCCAGGTTCCTCTGAAAGC



ESGSSEGGPGSGGEP

GGTTCTTCTGAGGGCGGTCCAGGTTCT



SESGSSGESPGGSSG

TCCGAAAGCGGTTCTTCCGAGGGCGG



SESGSGGEPSESGSS

TCCAGGTTCTTCCGAAAGCGGTTCTTC



GSGGEPSESGSSGSS

TGAAGGCGGTCCAGGTTCTGGTGGCG



ESGSSEGGPGSGGEP

AACCGTCCGAGTCTGGTAGCTCAGGT



SESGSSGSGGEPSES

GAATCTCCGGGTGGCTCTAGCGGTTC



GSSGSEGSSGPGESS

CGAGTCAGGTGAATCTCCTGGTGGTT



GESPGGSSGSESGSE

CCAGCGGTTCCGAGTCAGGTTCCGGT



GSSGPGESSGSEGSS

GGCGAACCGTCCGAATCTGGTAGCTC



GPGESSGSGGEPSES

AGGTAGCGAAGGTTCTTCTGGTCCAG



GSSGSSESGSSEGGP

GCGAATCTTCAGGTTCCTCTGAAAGC



GSSESGSSEGGPGES

GGTTCTTCTGAGGGCGGTCCAGGTTCC



PGGSSGSESGSGGEP

GGTGGCGAACCGTCCGAATCTGGTAG



SESGSSGSEGSSGPG

CTCAGGTAGCGAAGGTTCTTCTGGTCC



ESSGESPGGSSGSES

AGGCGAATCTTCAGGTTCCTCTGAAA



GSEGSSGPGSSESGS

GCGGTTCTTCTGAGGGCGGTCCAGGT



SEGGPGSGGEPSESG

TCCGGTGGCGAACCTTCCGAATCTGG



SSGSEGSSGPGESSG

TAGCTCAGGTGAATCTCCGGGTGGTT



SEGSSGPGESSGSEG

CTAGCGGTTCTGAGTCAGGTTCTGGTG



SSGPGESSGSGGEPS

GTGAACCTTCCGAGTCTGGTAGCTCA



ESGSSGSGGEPSESG

GGTTCTGGTGGCGAACCATCCGAGTC



SSGESPGGSSGSESG

TGGTAGCTCAGGTTCTTCCGAAAGCG



ESPGGSSGSESGSGG

GTTCTTCCGAAGGCGGTCCAGGTTCTG



EPSESGSSGSEGSSGP

GTGGTGAACCGTCCGAATCTGGTAGC



GESSGESPGGSSGSE

TCAGGTTCTGGTGGCGAACCATCCGA



SGSSESGSSEGGPGS

ATCTGGTAGCTCAGGTAGCGAAGGTT



SESGSSEGGPGSSES

CTTCTGGTCCTGGCGAATCTTCAGGTG



GSSEGGPGSGGEPSE

AATCTCCAGGTGGCTCTAGCGGTTCC



SGSSGSSESGSSEGG

GAATCAGGTAGCGAAGGTTCTTCCGG



PGESPGGSSGSESGS

TCCAGGTGAATCTTCAGGTAGCGAAG



GGEPSESGSSGSSES

GTTCTTCTGGTCCTGGTGAATCCTCAG



GSSEGGPGESPGGSS

GTTCCGGTGGCGAACCATCTGAATCT



GSESGSGGEPSESGS

GGTAGCTCAGGTTCCTCTGAAAGCGG



SGESPGGSSGSESGS

TTCTTCCGAAGGTGGTCCAGGTTCCTC



GGEPSESGSSGFPTIP

TGAAAGCGGTTCTTCTGAGGGTGGTC



LSRLFDNAMLRAHR

CAGGTGAATCTCCGGGTGGCTCCAGC



LHQLAFDTYQEFEE

GGTTCCGAGTCAGGTTCTGGTGGCGA



AYIPKEQKYSFLQNP

ACCATCCGAATCTGGTAGCTCAGGTA



QTSLCFSESIPTPSNR

GCGAAGGTTCTTCTGGTCCTGGCGAA



EETQQKSNLELLRIS

TCTTCAGGTGAATCTCCAGGTGGCTCT



LLLIQSWLEPVQFLR

AGCGGTTCCGAATCAGGTAGCGAAGG



SVFANSLVYGASDS

TTCTTCCGGTCCaGGTTCCTCTGAAAG



NVYDLLKDLEEGIQT

CGGTTCTTCTGAGGGCGGTCCAGGTTC



LMGRLEDGSPRTGQI

TGGTGGCGAACCATCTGAATCTGGTA



FKQTYSKFDTNSHN

GCTCAGGTAGCGAAGGTTCTTCCGGT



DDALLKNYGLLYCF

CCGGGTGAATCTTCAGGTAGCGAAGG



RKDMDKVETFLRIV

TTCTTCCGGTCCAGGTGAATCTTCAGG



QCRSVEGSCGFGGTS

TAGCGAAGGTTCTTCTGGTCCTGGTGA



ESATPESGPGSEPAT

ATCCTCAGGTTCCGGTGGCGAACCAT



SGSETPGTSESATPES

CTGAATCTGGTAGCTCAGGTTCTGGTG



GPGSEPATSGSETPG

GCGAACCATCCGAATCTGGTAGCTCA



TSESATPESGPGTSTE

GGTGAATCTCCGGGTGGCTCCAGCGG



PSEGSAPGSPAGSPT

TTCTGAATCAGGTGAATCTCCTGGTGG



STEEGTSESATPESGP

CTCCAGCGGTTCTGAGTCAGGTTCTGG



GSEPATSGSETPGTS

TGGCGAACCATCCGAATCTGGTAGCT



ESATPESGPGSPAGS

CAGGTAGCGAAGGTTCTTCTGGTCCT



PTSTEEGSPAGSPTST

GGCGAATCTTCAGGTGAATCTCCAGG



EEGTSTEPSEGSAPG

TGGCTCTAGCGGTTCCGAATCAGGTTC



TSESATPESGPGTSES

CTCTGAAAGCGGTTCTTCTGAGGGCG



ATPESGPGTSESATP

GTCCAGGTTCTTCCGAAAGCGGTTCTT



ESGPGSEPATSGSET

CCGAGGGCGGTCCAGGTTCTTCCGAA



PGSEPATSGSETPGSP

AGCGGTTCTTCTGAAGGCGGTCCAGG



AGSPTSTEEGTSTEPS

TTCTGGTGGCGAACCGTCCGAATCTG



EGSAPGTSTEPSEGS

GTAGCTCAGGTTCCTCCGAAAGCGGT



APGSEPATSGSETPG

TCTTCTGAAGGTGGTCCAGGTGAATCT



TSESATPESGPGTSTE

CCAGGTGGTTCTAGCGGTTCTGAATC



PSEGSAP

AGGTTCTGGTGGCGAACCGTCCGAAT





CTGGTAGCTCAGGTTCCTCCGAAAGC





GGTTCTTCTGAAGGTGGTCCAGGTGA





ATCTCCAGGTGGTTCTAGCGGTTCTGA





ATCAGGTTCTGGTGGCGAACCGTCCG





AATCTGGTAGCTCAGGTGAATCTCCT





GGTGGTTCCAGCGGTTCCGAGTCAGG





TTCTGGTGGCGAACCTTCCGAATCTGG





TAGCTCAGGTTTTCCGACTATTCCGCT





GTCTCGTCTGTTTGATAATGCTATGCT





GCGTGCGCACCGTCTGCACCAGCTGG





CCTTTGATACTTACCAGGAATTTGAAG





AAGCcTACATTCCTAAAGAGCAGAAG





TACTCTTTCCTGCAAAACCCACAGACT





TCTCTCTGCTTCAGCGAATCTATTCCG





ACGCCTTCCAATCGCGAGGAAACTCA





GCAAAAGTCCAATCTGGAACTACTCC





GCATTTCTCTGCTTCTGATTCAGAGCT





GGCTAGAACCAGTGCAATTTCTGCGT





TCCGTCTTCGCCAATAGCCTAGTTTAT





GGCGCATCCGACAGCAACGTATACGA





TCTCCTGAAAGATCTCGAGGAAGGCA





TTCAGACCCTGATGGGTCGTCTCGAG





GATGGCTCTCCGCGTACTGGTCAGAT





CTTCAAGCAGACTTACTCTAAATTTGA





TACTAACAGCCACAATGACGATGCGC





TTCTAAAAAACTATGGTCTGCTGTATT





GTTTTCGTAAAGATATGGACAAAGTT





GAAACCTTCCTGCGTATTGTTCAGTGT





CGTTCCGTTGAGGGCAGCTGTGGTTTC





TAAGGTGGTACCTCTGAAAGCGCAAC





TCCTGAGTCTGGCCCAGGTAGCGAAC





CTGCTACCTCCGGCTCTGAGACTCCAG





GTACCTCTGAAAGCGCAACCCCGGAA





TCTGGTCCAGGTAGCGAACCTGCAAC





CTCTGGCTCTGAAACCCCAGGTACCTC





TGAAAGCGCTACTCCTGAATCTGGCC





CAGGTACTTCTACTGAACCGTCCGAG





GGCAGCGCACCAGGTAGCCCTGCTGG





CTCTCCAACCTCCACCGAAGAAGGTA





CCTCTGAAAGCGCAACCCCTGAATCC





GGCCCAGGTAGCGAACCGGCAACCTC





CGGTTCTGAAACCCCAGGTACTTCTG





AAAGCGCTACTCCTGAGTCCGGCCCA





GGTAGCCCGGCTGGCTCTCCGACTTCC





ACCGAGGAAGGTAGCCCGGCTGGCTC





TCCAACTTCTACTGAAGAAGGTACTTC





TACCGAACCTTCCGAGGGCAGCGCAC





CAGGTACTTCTGAAAGCGCTACCCCT





GAGTCCGGCCCAGGTACTTCTGAAAG





CGCTACTCCTGAATCCGGTCCAGGTA





CTTCTGAAAGCGCTACCCCGGAATCT





GGCCCAGGTAGCGAACCGGCTACTTC





TGGTTCTGAAACCCCAGGTAGCGAAC





CGGCTACCTCCGGTTCTGAAACTCCA





GGTAGCCCAGCAGGCTCTCCGACTTC





CACTGAGGAAGGTACTTCTACTGAAC





CTTCCGAAGGCAGCGCACCAGGTACC





TCTACTGAACCTTCTGAGGGCAGCGC





TCCAGGTAGCGAACCTGCAACCTCTG





GCTCTGAAACCCCAGGTACCTCTGAA





AGCGCTACTCCTGAATCTGGCCCAGG





TACTTCTACTGAACCGTCCGAGGGCA





GCGCACCA





AE864-
GSPAGSPTSTEEGTS
783
GGTAGCCCGGCTGGCTCTCCTACCTCT
784


hGH-
ESATPESGPGTSTEPS

ACTGAGGAAGGTACTTCTGAAAGCGC


AE288
EGSAPGSPAGSPTST

TACTCCTGAGTCTGGTCCAGGTACCTC



EEGTSTEPSEGSAPG

TACTGAACCGTCCGAAGGTAGCGCTC



TSTEPSEGSAPGTSES

CAGGTAGCCCAGCAGGCTCTCCGACT



ATPESGPGSEPATSG

TCCACTGAGGAAGGTACTTCTACTGA



SETPGSEPATSGSETP

ACCTTCCGAAGGCAGCGCACCAGGTA



GSPAGSPTSTEEGTS

CCTCTACTGAACCTTCTGAGGGCAGC



ESATPESGPGTSTEPS

GCTCCAGGTACTTCTGAAAGCGCTAC



EGSAPGTSTEPSEGS

CCCGGAATCTGGCCCAGGTAGCGAAC



APGSPAGSPTSTEEG

CGGCTACTTCTGGTTCTGAAACCCCAG



TSTEPSEGSAPGTSTE

GTAGCGAACCGGCTACCTCCGGTTCT



PSEGSAPGTSESATP

GAAACTCCAGGTAGCCCGGCAGGCTC



ESGPGTSTEPSEGSA

TCCGACCTCTACTGAGGAAGGTACTT



PGTSESATPESGPGS

CTGAAAGCGCAACCCCGGAGTCCGGC



EPATSGSETPGTSTEP

CCAGGTACCTCTACCGAACCGTCTGA



SEGSAPGTSTEPSEG

GGGCAGCGCACCAGGTACTTCTACCG



SAPGTSESATPESGP

AACCGTCCGAGGGTAGCGCACCAGGT



GTSESATPESGPGSP

AGCCCAGCAGGTTCTCCTACCTCCACC



AGSPTSTEEGTSESA

GAGGAAGGTACTTCTACCGAACCGTC



TPESGPGSEPATSGS

CGAGGGTAGCGCACCAGGTACCTCTA



ETPGTSESATPESGP

CTGAACCTTCTGAGGGCAGCGCTCCA



GTSTEPSEGSAPGTS

GGTACTTCTGAAAGCGCTACCCCGGA



TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACC



EGSAPGTSTEPSEGS

GTCCGAAGGTAGCGCACCAGGTACTT



APGTSTEPSEGSAPG

CTGAAAGCGCAACCCCTGAATCCGGT



TSTEPSEGSAPGSPA

CCAGGTAGCGAACCGGCTACTTCTGG



GSPTSTEEGTSTEPSE

CTCTGAGACTCCAGGTACTTCTACCGA



GSAPGTSESATPESG

ACCGTCCGAAGGTAGCGCACCAGGTA



PGSEPATSGSETPGT

CTTCTACTGAACCGTCTGAAGGTAGC



SESATPESGPGSEPA

GCACCAGGTACTTCTGAAAGCGCAAC



TSGSETPGTSESATPE

CCCGGAATCCGGCCCAGGTACCTCTG



SGPGTSTEPSEGSAP

AAAGCGCAACCCCGGAGTCCGGCCCA



GTSESATPESGPGSP

GGTAGCCCTGCTGGCTCTCCAACCTCC



AGSPTSTEEGSPAGS

ACCGAAGAAGGTACCTCTGAAAGCGC



PTSTEEGSPAGSPTST

AACCCCTGAATCCGGCCCAGGTAGCG



EEGTSESATPESGPG

AACCGGCAACCTCCGGTTCTGAAACC



TSTEPSEGSAPGTSES

CCAGGTACCTCTGAAAGCGCTACTCC



ATPESGPGSEPATSG

GGAGTCTGGCCCAGGTACCTCTACTG



SETPGTSESATPESGP

AACCGTCTGAGGGTAGCGCTCCAGGT



GSEPATSGSETPGTS

ACTTCTACTGAACCGTCCGAAGGTAG



ESATPESGPGTSTEPS

CGCACCAGGTACTTCTACCGAACCGT



EGSAPGSPAGSPTST

CCGAAGGCAGCGCTCCAGGTACCTCT



EEGTSESATPESGPG

ACTGAACCTTCCGAGGGCAGCGCTCC



SEPATSGSETPGTSES

AGGTACCTCTACCGAACCTTCTGAAG



ATPESGPGSPAGSPT

GTAGCGCACCAGGTACTTCTACCGAA



STEEGSPAGSPTSTEE

CCGTCCGAGGGTAGCGCACCAGGTAG



GTSTEPSEGSAPGTS

CCCAGCAGGTTCTCCTACCTCCACCGA



ESATPESGPGTSESA

GGAAGGTACTTCTACCGAACCGTCCG



TPESGPGTSESATPES

AGGGTAGCGCACCAGGTACCTCTGAA



GPGSEPATSGSETPG

AGCGCAACTCCTGAGTCTGGCCCAGG



SEPATSGSETPGSPA

TAGCGAACCTGCTACCTCCGGCTCTG



GSPTSTEEGTSTEPSE

AGACTCCAGGTACCTCTGAAAGCGCA



GSAPGTSTEPSEGSA

ACCCCGGAATCTGGTCCAGGTAGCGA



PGSEPATSGSETPGT

ACCTGCAACCTCTGGCTCTGAAACCC



SESATPESGPGTSTEP

CAGGTACCTCTGAAAGCGCTACTCCT



SEGSAPGFPTIPLSRL

GAATCTGGCCCAGGTACTTCTACTGA



FDNAMLRAHRLHQL

ACCGTCCGAGGGCAGCGCACCAGGTA



AFDTYQEFEEAYIPK

CTTCTGAAAGCGCTACTCCTGAGTCCG



EQKYSFLQNPQTSLC

GCCCAGGTAGCCCGGCTGGCTCTCCG



FSESIPTPSNREETQQ

ACTTCCACCGAGGAAGGTAGCCCGGC



KSNLELLRISLLLIQS

TGGCTCTCCAACTTCTACTGAAGAAG



WLEPVQFLRSVFAN

GTAGCCCGGCAGGCTCTCCGACCTCT



SLVYGASDSNVYDL

ACTGAGGAAGGTACTTCTGAAAGCGC



LKDLEEGIQTLMGRL

AACCCCGGAGTCCGGCCCAGGTACCT



EDGSPRTGQIFKQTY

CTACCGAACCGTCTGAGGGCAGCGCA



SKFDTNSHNDDALL

CCAGGTACCTCTGAAAGCGCAACTCC



KNYGLLYCFRKDMD

TGAGTCTGGCCCAGGTAGCGAACCTG



KVETFLRIVQCRSVE

CTACCTCCGGCTCTGAGACTCCAGGT



GSCGFGGTSESATPE

ACCTCTGAAAGCGCAACCCCGGAATC



SGPGSEPATSGSETP

TGGTCCAGGTAGCGAACCTGCAACCT



GTSESATPESGPGSE

CTGGCTCTGAAACCCCAGGTACCTCT



PATSGSETPGTSESA

GAAAGCGCTACTCCTGAATCTGGCCC



TPESGPGTSTEPSEGS

AGGTACTTCTACTGAACCGTCCGAGG



APGSPAGSPTSTEEG

GCAGCGCACCAGGTAGCCCTGCTGGC



TSESATPESGPGSEP

TCTCCAACCTCCACCGAAGAAGGTAC



ATSGSETPGTSESAT

CTCTGAAAGCGCAACCCCTGAATCCG



PESGPGSPAGSPTSTE

GCCCAGGTAGCGAACCGGCAACCTCC



EGSPAGSPTSTEEGT

GGTTCTGAAACCCCAGGTACTTCTGA



STEPSEGSAPGTSES

AAGCGCTACTCCTGAGTCCGGCCCAG



ATPESGPGTSESATP

GTAGCCCGGCTGGCTCTCCGACTTCCA



ESGPGTSESATPESG

CCGAGGAAGGTAGCCCGGCTGGCTCT



PGSEPATSGSETPGS

CCAACTTCTACTGAAGAAGGTACTTCT



EPATSGSETPGSPAG

ACCGAACCTTCCGAGGGCAGCGCACC



SPTSTEEGTSTEPSEG

AGGTACTTCTGAAAGCGCTACCCCTG



SAPGTSTEPSEGSAP

AGTCCGGCCCAGGTACTTCTGAAAGC



GSEPATSGSETPGTS

GCTACTCCTGAATCCGGTCCAGGTACT



ESATPESGPGTSTEPS

TCTGAAAGCGCTACCCCGGAATCTGG



EGSAP

CCCAGGTAGCGAACCGGCTACTTCTG





GTTCTGAAACCCCAGGTAGCGAACCG





GCTACCTCCGGTTCTGAAACTCCAGGT





AGCCCAGCAGGCTCTCCGACTTCCAC





TGAGGAAGGTACTTCTACTGAACCTT





CCGAAGGCAGCGCACCAGGTACCTCT





ACTGAACCTTCTGAGGGCAGCGCTCC





AGGTAGCGAACCTGCAACCTCTGGCT





CTGAAACCCCAGGTACCTCTGAAAGC





GCTACTCCTGAATCTGGCCCAGGTACT





TCTACTGAACCGTCCGAGGGCAGCGC





ACCAGGTTTTCCGACTATTCCGCTGTC





TCGTCTGTTTGATAATGCTATGCTGCG





TGCGCACCGTCTGCACCAGCTGGCCTT





TGATACTTACCAGGAATTTGAAGAAG





CcTACATTCCTAAAGAGCAGAAGTACT





CTTTCCTGCAAAACCCACAGACTTCTC





TCTGCTTCAGCGAATCTATTCCGACGC





CTTCCAATCGCGAGGAAACTCAGCAA





AAGTCCAATCTGGAACTACTCCGCAT





TTCTCTGCTTCTGATTCAGAGCTGGCT





AGAACCAGTGCAATTTCTGCGTTCCGT





CTTCGCCAATAGCCTAGTTTATGGCGC





ATCCGACAGCAACGTATACGATCTCC





TGAAAGATCTCGAGGAAGGCATTCAG





ACCCTGATGGGTCGTCTCGAGGATGG





CTCTCCGCGTACTGGTCAGATCTTCAA





GCAGACTTACTCTAAATTTGATACTAA





CAGCCACAATGACGATGCGCTTCTAA





AAAACTATGGTCTGCTGTATTGTTTTC





GTAAAGATATGGACAAAGTTGAAACC





TTCCTGCGTATTGTTCAGTGTCGTTCC





GTTGAGGGCAGCTGTGGTTTCTAAGG





TGGTACCTCTGAAAGCGCAACTCCTG





AGTCTGGCCCAGGTAGCGAACCTGCT





ACCTCCGGCTCTGAGACTCCAGGTAC





CTCTGAAAGCGCAACCCCGGAATCTG





GTCCAGGTAGCGAACCTGCAACCTCT





GGCTCTGAAACCCCAGGTACCTCTGA





AAGCGCTACTCCTGAATCTGGCCCAG





GTACTTCTACTGAACCGTCCGAGGGC





AGCGCACCAGGTAGCCCTGCTGGCTC





TCCAACCTCCACCGAAGAAGGTACCT





CTGAAAGCGCAACCCCTGAATCCGGC





CCAGGTAGCGAACCGGCAACCTCCGG





TTCTGAAACCCCAGGTACTTCTGAAA





GCGCTACTCCTGAGTCCGGCCCAGGT





AGCCCGGCTGGCTCTCCGACTTCCACC





GAGGAAGGTAGCCCGGCTGGCTCTCC





AACTTCTACTGAAGAAGGTACTTCTA





CCGAACCTTCCGAGGGCAGCGCACCA





GGTACTTCTGAAAGCGCTACCCCTGA





GTCCGGCCCAGGTACTTCTGAAAGCG





CTACTCCTGAATCCGGTCCAGGTACTT





CTGAAAGCGCTACCCCGGAATCTGGC





CCAGGTAGCGAACCGGCTACTTCTGG





TTCTGAAACCCCAGGTAGCGAACCGG





CTACCTCCGGTTCTGAAACTCCAGGTA





GCCCAGCAGGCTCTCCGACTTCCACT





GAGGAAGGTACTTCTACTGAACCTTC





CGAAGGCAGCGCACCAGGTACCTCTA





CTGAACCTTCTGAGGGCAGCGCTCCA





GGTAGCGAACCTGCAACCTCTGGCTC





TGAAACCCCAGGTACCTCTGAAAGCG





CTACTCCTGAATCTGGCCCAGGTACTT





CTACTGAACCGTCCGAGGGCAGCGCA





CCA





AF864-
GSTSESPSGTAPGTSP
785
GGTTCTACCAGCGAATCTCCTTCTGGC
786


hGH-
SGESSTAPGSTSESPS

ACCGCTCCAGGTACCTCTCCTAGCGG


AE288
GTAPGSTSESPSGTA

CGAATCTTCTACCGCTCCAGGTTCTAC



PGTSTPESGSASPGTS

TAGCGAATCTCCTTCTGGCACTGCACC



TPESGSASPGSTSESP

AGGTTCTACTAGCGAATCCCCGTCTG



SGTAPGSTSESPSGT

GTACTGCTCCAGGTACTTCTACTCCTG



APGTSPSGESSTAPG

AAAGCGGTTCCGCTTCTCCAGGTACCT



STSESPSGTAPGTSPS

CTACTCCGGAAAGCGGTTCTGCATCTC



GESSTAPGTSPSGESS

CAGGTTCTACCAGCGAATCTCCTTCTG



TAPGSTSSTAESPGP

GCACCGCTCCAGGTTCTACTAGCGAA



GTSPSGESSTAPGTSP

TCCCCGTCTGGTACCGCACCAGGTACT



SGESSTAPGSTSSTA

TCTCCTAGCGGCGAATCTTCTACCGCA



ESPGPGTSTPESGSAS

CCAGGTTCTACTAGCGAATCTCCGTCT



PGTSTPESGSASPGST

GGCACTGCTCCAGGTACTTCTCCTAGC



SESPSGTAPGSTSESP

GGTGAATCTTCTACCGCTCCAGGTACT



SGTAPGTSTPESGSA

TCCCCTAGCGGCGAATCTTCTACCGCT



SPGSTSSTAESPGPGT

CCAGGTTCTACTAGCTCTACTGCAGA



STPESGSASPGSTSES

ATCTCCGGGCCCAGGTACCTCTCCTAG



PSGTAPGTSPSGESST

CGGTGAATCTTCTACCGCTCCAGGTAC



APGSTSSTAESPGPG

TTCTCCGAGCGGTGAATCTTCTACCGC



TSPSGESSTAPGTSTP

TCCAGGTTCTACTAGCTCTACTGCAGA



ESGSASPGSTSSTAES

ATCTCCTGGCCCAGGTACCTCTACTCC



PGPGSTSSTAESPGP

GGAAAGCGGCTCTGCATCTCCAGGTA



GSTSSTAESPGPGSTS

CTTCTACCCCTGAAAGCGGTTCTGCAT



STAESPGPGTSPSGES

CTCCAGGTTCTACTAGCGAATCTCCTT



STAPGSTSESPSGTAP

CTGGCACTGCACCAGGTTCTACCAGC



GSTSESPSGTAPGTS

GAATCTCCGTCTGGCACTGCACCAGG



TPESGPXXXGASASG

TACCTCTACCCCTGAAAGCGGTTCCGC



APSTXXXXSESPSGT

TTCTCCAGGTTCTACCAGCTCTACCGC



APGSTSESPSGTAPG

AGAATCTCCTGGTCCAGGTACCTCTAC



STSESPSGTAPGSTSE

TCCGGAAAGCGGCTCTGCATCTCCAG



SPSGTAPGSTSESPSG

GTTCTACTAGCGAATCTCCTTCTGGCA



TAPGSTSESPSGTAP

CTGCACCAGGTACTTCTCCGAGCGGT



GTSTPESGSASPGTSP

GAATCTTCTACCGCACCAGGTTCTACT



SGESSTAPGTSPSGES

AGCTCTACCGCTGAATCTCCGGGCCC



STAPGSTSSTAESPGP

AGGTACTTCTCCGAGCGGTGAATCTTC



GTSPSGESSTAPGTS

TACTGCTCCAGGTACCTCTACTCCTGA



TPESGSASPGSTSESP

AAGCGGTTCTGCATCTCCAGGTTCCAC



SGTAPGSTSESPSGT

TAGCTCTACCGCAGAATCTCCGGGCC



APGTSPSGESSTAPG

CAGGTTCTACTAGCTCTACTGCTGAAT



STSESPSGTAPGTSTP

CTCCTGGCCCAGGTTCTACTAGCTCTA



ESGSASPGTSTPESGS

CTGCTGAATCTCCGGGTCCAGGTTCTA



ASPGSTSESPSGTAP

CCAGCTCTACTGCTGAATCTCCTGGTC



GTSTPESGSASPGSTS

CAGGTACCTCCCCGAGCGGTGAATCT



STAESPGPGSTSESPS

TCTACTGCACCAGGTTCTACTAGCGA



GTAPGSTSESPSGTA

ATCTCCTTCTGGCACTGCACCAGGTTC



PGTSPSGESSTAPGST

TACCAGCGAATCTCCGTCTGGCACTG



SSTAESPGPGTSPSGE

CACCAGGTACCTCTACCCCTGAAAGC



SSTAPGTSTPESGSAS

GGTCCXXXXXXXXXXXXTGCAAGCG



PGTSPSGESSTAPGTS

CAAGCGGCGCGCCAAGCACGGGAXX



PSGESSTAPGTSPSGE

XXXXXXTAGCGAATCTCCTTCTGGTA



SSTAPGSTSSTAESPG

CCGCTCCAGGTTCTACCAGCGAATCC



PGSTSSTAESPGPGTS

CCGTCTGGTACTGCTCCAGGTTCTACC



PSGESSTAPGSSPSAS

AGCGAATCTCCTTCTGGTACTGCACCA



TGTGPGSSTPSGATG

GGTTCTACTAGCGAATCTCCTTCTGGT



SPGSSTPSGATGSPG

ACCGCTCCAGGTTCTACCAGCGAATC



FPTIPLSRLFDNAML

CCCGTCTGGTACTGCTCCAGGTTCTAC



RAHRLHQLAFDTYQ

CAGCGAATCTCCTTCTGGTACTGCACC



EFEEAYIPKEQKYSF

AGGTACTTCTACTCCGGAAAGCGGTT



LQNPQTSLCFSESIPT

CCGCATCTCCAGGTACTTCTCCTAGCG



PSNREETQQKSNLEL

GTGAATCTTCTACTGCTCCAGGTACCT



LRISLLLIQSWLEPVQ

CTCCTAGCGGCGAATCTTCTACTGCTC



FLRSVFANSLVYGAS

CAGGTTCTACCAGCTCTACTGCTGAAT



DSNVYDLLKDLEEGI

CTCCGGGTCCAGGTACTTCCCCGAGC



QTLMGRLEDGSPRT

GGTGAATCTTCTACTGCACCAGGTACT



GQIFKQTYSKFDTNS

TCTACTCCGGAAAGCGGTTCCGCTTCT



HNDDALLKNYGLLY

CCAGGTTCTACCAGCGAATCTCCTTCT



CFRKDMDKVETFLRI

GGCACCGCTCCAGGTTCTACTAGCGA



VQCRSVEGSCGFGG

ATCCCCGTCTGGTACCGCACCAGGTA



TSESATPESGPGSEP

CTTCTCCTAGCGGCGAATCTTCTACCG



ATSGSETPGTSESAT

CACCAGGTTCTACTAGCGAATCCCCG



PESGPGSEPATSGSE

TCTGGTACCGCACCAGGTACTTCTACC



TPGTSESATPESGPG

CCGGAAAGCGGCTCTGCTTCTCCAGG



TSTEPSEGSAPGSPA

TACTTCTACCCCGGAAAGCGGCTCCG



GSPTSTEEGTSESATP

CATCTCCAGGTTCTACTAGCGAATCTC



ESGPGSEPATSGSET

CTTCTGGTACCGCTCCAGGTACTTCTA



PGTSESATPESGPGSP

CCCCTGAAAGCGGCTCCGCTTCTCCA



AGSPTSTEEGSPAGS

GGTTCCACTAGCTCTACCGCTGAATCT



PTSTEEGTSTEPSEGS

CCGGGTCCAGGTTCTACCAGCGAATC



APGTSESATPESGPG

TCCTTCTGGCACCGCTCCAGGTTCTAC



TSESATPESGPGTSES

TAGCGAATCCCCGTCTGGTACCGCAC



ATPESGPGSEPATSG

CAGGTACTTCTCCTAGCGGCGAATCTT



SETPGSEPATSGSETP

CTACCGCACCAGGTTCTACCAGCTCTA



GSPAGSPTSTEEGTS

CTGCTGAATCTCCGGGTCCAGGTACTT



TEPSEGSAPGTSTEPS

CCCCGAGCGGTGAATCTTCTACTGCA



EGSAPGSEPATSGSE

CCAGGTACTTCTACTCCGGAAAGCGG



TPGTSESATPESGPG

TTCCGCTTCTCCAGGTACCTCCCCTAG



TSTEPSEGSAP

CGGCGAATCTTCTACTGCTCCAGGTAC





CTCTCCTAGCGGCGAATCTTCTACCGC





TCCAGGTACCTCCCCTAGCGGTGAAT





CTTCTACCGCACCAGGTTCTACTAGCT





CTACTGCTGAATCTCCGGGTCCAGGTT





CTACCAGCTCTACTGCTGAATCTCCTG





GTCCAGGTACCTCCCCGAGCGGTGAA





TCTTCTACTGCACCAGGTTCTAGCCCT





TCTGCTTCCACCGGTACCGGCCCAGGT





AGCTCTACTCCGTCTGGTGCAACTGGC





TCTCCAGGTAGCTCTACTCCGTCTGGT





GCAACCGGCTCCCCAGGTTTTCCGACT





ATTCCGCTGTCTCGTCTGTTTGATAAT





GCTATGCTGCGTGCGCACCGTCTGCA





CCAGCTGGCCTTTGATACTTACCAGG





AATTTGAAGAAGCcTACATTCCTAAAG





AGCAGAAGTACTCTTTCCTGCAAAAC





CCACAGACTTCTCTCTGCTTCAGCGAA





TCTATTCCGACGCCTTCCAATCGCGAG





GAAACTCAGCAAAAGTCCAATCTGGA





ACTACTCCGCATTTCTCTGCTTCTGAT





TCAGAGCTGGCTAGAACCAGTGCAAT





TTCTGCGTTCCGTCTTCGCCAATAGCC





TAGTTTATGGCGCATCCGACAGCAAC





GTATACGATCTCCTGAAAGATCTCGA





GGAAGGCATTCAGACCCTGATGGGTC





GTCTCGAGGATGGCTCTCCGCGTACT





GGTCAGATCTTCAAGCAGACTTACTCT





AAATTTGATACTAACAGCCACAATGA





CGATGCGCTTCTAAAAAACTATGGTC





TGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTACCTCTGA





AAGCGCAACTCCTGAGTCTGGCCCAG





GTAGCGAACCTGCTACCTCCGGCTCT





GAGACTCCAGGTACCTCTGAAAGCGC





AACCCCGGAATCTGGTCCAGGTAGCG





AACCTGCAACCTCTGGCTCTGAAACC





CCAGGTACCTCTGAAAGCGCTACTCC





TGAATCTGGCCCAGGTACTTCTACTGA





ACCGTCCGAGGGCAGCGCACCAGGTA





GCCCTGCTGGCTCTCCAACCTCCACCG





AAGAAGGTACCTCTGAAAGCGCAACC





CCTGAATCCGGCCCAGGTAGCGAACC





GGCAACCTCCGGTTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGT





CCGGCCCAGGTAGCCCGGCTGGCTCT





CCGACTTCCACCGAGGAAGGTAGCCC





GGCTGGCTCTCCAACTTCTACTGAAG





AAGGTACTTCTACCGAACCTTCCGAG





GGCAGCGCACCAGGTACTTCTGAAAG





CGCTACCCCTGAGTCCGGCCCAGGTA





CTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACC





GGCTACTTCTGGTTCTGAAACCCCAG





GTAGCGAACCGGCTACCTCCGGTTCT





GAAACTCCAGGTAGCCCAGCAGGCTC





TCCGACTTCCACTGAGGAAGGTACTT





CTACTGAACCTTCCGAAGGCAGCGCA





CCAGGTACCTCTACTGAACCTTCTGAG





GGCAGCGCTCCAGGTAGCGAACCTGC





AACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTG





GCCCAGGTACTTCTACTGAACCGTCC





GAGGGCAGCGCACCA





AG864-
GASPGTSSTGSPGSS
787
GGTGCTTCCCCGGGCACCAGCTCTACT
788


hGH-
PSASTGTGPGSSPSA

GGTTCTCCAGGTTCTAGCCCGTCTGCT


AE288
STGTGPGTPGSGTAS

TCTACTGGTACTGGTCCAGGTTCTAGC



SSPGSSTPSGATGSP

CCTTCTGCTTCCACTGGTACTGGTCCA



GSNPSASTGTGPGAS

GGTACCCCGGGTAGCGGTACCGCTTC



PGTSSTGSPGTPGSG

TTCTTCTCCAGGTAGCTCTACTCCGTC



TASSSPGSSTPSGAT

TGGTGCTACCGGCTCTCCAGGTTCTAA



GSPGTPGSGTASSSP

CCCTTCTGCATCCACCGGTACCGGCCC



GASPGTSSTGSPGAS

AGGTGCTTCTCCGGGCACCAGCTCTA



PGTSSTGSPGTPGSG

CTGGTTCTCCAGGTACCCCGGGCAGC



TASSSPGSSTPSGAT

GGTACCGCATCTTCTTCTCCAGGTAGC



GSPGASPGTSSTGSP

TCTACTCCTTCTGGTGCAACTGGTTCT



GTPGSGTASSSPGSS

CCAGGTACTCCTGGCAGCGGTACCGC



TPSGATGSPGSNPSA

TTCTTCTTCTCCAGGTGCTTCTCCTGG



STGTGPGSSPSASTG

TACTAGCTCTACTGGTTCTCCAGGTGC



TGPGSSTPSGATGSP

TTCTCCGGGCACTAGCTCTACTGGTTC



GSSTPSGATGSPGAS

TCCAGGTACCCCGGGTAGCGGTACTG



PGTSSTGSPGASPGT

CTTCTTCCTCTCCAGGTAGCTCTACCC



SSTGSPGASPGTSST

CTTCTGGTGCAACCGGCTCTCCAGGTG



GSPGTPGSGTASSSP

CTTCTCCGGGCACCAGCTCTACCGGTT



GASPGTSSTGSPGAS

CTCCAGGTACCCCGGGTAGCGGTACC



PGTSSTGSPGASPGT

GCTTCTTCTTCTCCAGGTAGCTCTACT



SSTGSPGSSPSASTGT

CCGTCTGGTGCTACCGGCTCTCCAGGT



GPGTPGSGTASSSPG

TCTAACCCTTCTGCATCCACCGGTACC



ASPGTSSTGSPGASP

GGCCCAGGTTCTAGCCCTTCTGCTTCC



GTSSTGSPGASPGTS

ACCGGTACTGGCCCAGGTAGCTCTAC



STGSPGSSTPSGATG

CCCTTCTGGTGCTACCGGCTCCCCAGG



SPGSSTPSGATGSPG

TAGCTCTACTCCTTCTGGTGCAACTGG



ASPGTSSTGSPGTPG

CTCTCCAGGTGCATCTCCGGGCACTA



SGTASSSPGSSTPSG

GCTCTACTGGTTCTCCAGGTGCATCCC



ATGSPGSSTPSGATG

CTGGCACTAGCTCTACTGGTTCTCCAG



SPGSSTPSGATGSPG

GTGCTTCTCCTGGTACCAGCTCTACTG



SSPSASTGTGPGASP

GTTCTCCAGGTACTCCTGGCAGCGGT



GTSSTGSPGASPGTS

ACCGCTTCTTCTTCTCCAGGTGCTTCT



STGSPGTPGSGTASS

CCTGGTACTAGCTCTACTGGTTCTCCA



SPGASPGTSSTGSPG

GGTGCTTCTCCGGGCACTAGCTCTACT



ASPGTSSTGSPGASP

GGTTCTCCAGGTGCTTCCCCGGGCACT



GTSSTGSPGASPGTS

AGCTCTACCGGTTCTCCAGGTTCTAGC



STGSPGTPGSGTASS

CCTTCTGCATCTACTGGTACTGGCCCA



SPGSSTPSGATGSPG

GGTACTCCGGGCAGCGGTACTGCTTC



TPGSGTASSSPGSSTP

TTCCTCTCCAGGTGCATCTCCGGGCAC



SGATGSPGTPGSGTA

TAGCTCTACTGGTTCTCCAGGTGCATC



SSSPGSSTPSGATGSP

CCCTGGCACTAGCTCTACTGGTTCTCC



GSSTPSGATGSPGSS

AGGTGCTTCTCCTGGTACCAGCTCTAC



PSASTGTGPGSSPSA

TGGTTCTCCAGGTAGCTCTACTCCGTC



STGTGPGASPGTSST

TGGTGCAACCGGTTCCCCAGGTAGCT



GSPGTPGSGTASSSP

CTACTCCTTCTGGTGCTACTGGCTCCC



GSSTPSGATGSPGSS

CAGGTGCATCCCCTGGCACCAGCTCT



PSASTGTGPGSSPSA

ACCGGTTCTCCAGGTACCCCGGGCAG



STGTGPGASPGTSST

CGGTACCGCATCTTCCTCTCCAGGTAG



GSPGASPGTSSTGSP

CTCTACCCCGTCTGGTGCTACCGGTTC



GSSTPSGATGSPGSS

CCCAGGTAGCTCTACCCCGTCTGGTGC



PSASTGTGPGASPGT

AACCGGCTCCCCAGGTAGCTCTACTC



SSTGSPGSSPSASTGT

CGTCTGGTGCAACCGGCTCCCCAGGT



GPGTPGSGTASSSPG

TCTAGCCCGTCTGCTTCCACTGGTACT



SSTPSGATGSPGSSTP

GGCCCAGGTGCTTCCCCGGGCACCAG



SGATGSPGASPGTSS

CTCTACTGGTTCTCCAGGTGCATCCCC



TGSPGFPTIPLSRLFD

GGGTACCAGCTCTACCGGTTCTCCAG



NAMLRAHRLHQLAF

GTACTCCTGGCAGCGGTACTGCATCTT



DTYQEFEEAYIPKEQ

CCTCTCCAGGTGCTTCTCCGGGCACCA



KYSFLQNPQTSLCFS

GCTCTACTGGTTCTCCAGGTGCATCTC



ESIPTPSNREETQQKS

CGGGCACTAGCTCTACTGGTTCTCCAG



NLELLRISLLLIQSWL

GTGCATCCCCTGGCACTAGCTCTACTG



EPVQFLRSVFANSLV

GTTCTCCAGGTGCTTCTCCTGGTACCA



YGASDSNVYDLLKD

GCTCTACTGGTTCTCCAGGTACCCCTG



LEEGIQTLMGRLEDG

GTAGCGGTACTGCTTCTTCCTCTCCAG



SPRTGQIFKQTYSKF

GTAGCTCTACTCCGTCTGGTGCTACCG



DTNSHNDDALLKNY

GTTCTCCAGGTACCCCGGGTAGCGGT



GLLYCFRKDMDKVE

ACCGCATCTTCTTCTCCAGGTAGCTCT



TFLRIVQCRSVEGSC

ACCCCGTCTGGTGCTACTGGTTCTCCA



GFGGTSESATPESGP

GGTACTCCGGGCAGCGGTACTGCTTC



GSEPATSGSETPGTS

TTCCTCTCCAGGTAGCTCTACCCCTTC



ESATPESGPGSEPAT

TGGTGCTACTGGCTCTCCAGGTAGCTC



SGSETPGTSESATPES

TACCCCGTCTGGTGCTACTGGCTCCCC



GPGTSTEPSEGSAPG

AGGTTCTAGCCCTTCTGCATCCACCGG



SPAGSPTSTEEGTSES

TACCGGTCCAGGTTCTAGCCCGTCTGC



ATPESGPGSEPATSG

ATCTACTGGTACTGGTCCAGGTGCATC



SETPGTSESATPESGP

CCCGGGCACTAGCTCTACCGGTTCTCC



GSPAGSPTSTEEGSP

AGGTACTCCTGGTAGCGGTACTGCTTC



AGSPTSTEEGTSTEPS

TTCTTCTCCAGGTAGCTCTACTCCTTC



EGSAPGTSESATPES

TGGTGCTACTGGTTCTCCAGGTTCTAG



GPGTSESATPESGPG

CCCTTCTGCATCCACCGGTACCGGCCC



TSESATPESGPGSEP

AGGTTCTAGCCCGTCTGCTTCTACCGG



ATSGSETPGSEPATS

TACTGGTCCAGGTGCTTCTCCGGGTAC



GSETPGSPAGSPTST

TAGCTCTACTGGTTCTCCAGGTGCATC



EEGTSTEPSEGSAPG

TCCTGGTACTAGCTCTACTGGTTCTCC



TSTEPSEGSAPGSEP

AGGTAGCTCTACTCCGTCTGGTGCAA



ATSGSETPGTSESAT

CCGGCTCTCCAGGTTCTAGCCCTTCTG



PESGPGTSTEPSEGS

CATCTACCGGTACTGGTCCAGGTGCA



AP

TCCCCTGGTACCAGCTCTACCGGTTCT





CCAGGTTCTAGCCCTTCTGCTTCTACC





GGTACCGGTCCAGGTACCCCTGGCAG





CGGTACCGCATCTTCCTCTCCAGGTAG





CTCTACTCCGTCTGGTGCAACCGGTTC





CCCAGGTAGCTCTACTCCTTCTGGTGC





TACTGGCTCCCCAGGTGCATCCCCTGG





CACCAGCTCTACCGGTTCTCCAGGTTT





TCCGACTATTCCGCTGTCTCGTCTGTT





TGATAATGCTATGCTGCGTGCGCACC





GTCTGCACCAGCTGGCCTTTGATACTT





ACCAGGAATTTGAAGAAGCcTACATT





CCTAAAGAGCAGAAGTACTCTTTCCT





GCAAAACCCACAGACTTCTCTCTGCTT





CAGCGAATCTATTCCGACGCCTTCCA





ATCGCGAGGAAACTCAGCAAAAGTCC





AATCTGGAACTACTCCGCATTTCTCTG





CTTCTGATTCAGAGCTGGCTAGAACC





AGTGCAATTTCTGCGTTCCGTCTTCGC





CAATAGCCTAGTTTATGGCGCATCCG





ACAGCAACGTATACGATCTCCTGAAA





GATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTC





CGCGTACTGGTCAGATCTTCAAGCAG





ACTTACTCTAAATTTGATACTAACAGC





CACAATGACGATGCGCTTCTAAAAAA





CTATGGTCTGCTGTATTGTTTTCGTAA





AGATATGGACAAAGTTGAAACCTTCC





TGCGTATTGTTCAGTGTCGTTCCGTTG





AGGGCAGCTGTGGTTTCTAAGGTGGT





ACCTCTGAAAGCGCAACTCCTGAGTC





TGGCCCAGGTAGCGAACCTGCTACCT





CCGGCTCTGAGACTCCAGGTACCTCT





GAAAGCGCAACCCCGGAATCTGGTCC





AGGTAGCGAACCTGCAACCTCTGGCT





CTGAAACCCCAGGTACCTCTGAAAGC





GCTACTCCTGAATCTGGCCCAGGTACT





TCTACTGAACCGTCCGAGGGCAGCGC





ACCAGGTAGCCCTGCTGGCTCTCCAA





CCTCCACCGAAGAAGGTACCTCTGAA





AGCGCAACCCCTGAATCCGGCCCAGG





TAGCGAACCGGCAACCTCCGGTTCTG





AAACCCCAGGTACTTCTGAAAGCGCT





ACTCCTGAGTCCGGCCCAGGTAGCCC





GGCTGGCTCTCCGACTTCCACCGAGG





AAGGTAGCCCGGCTGGCTCTCCAACT





TCTACTGAAGAAGGTACTTCTACCGA





ACCTTCCGAGGGCAGCGCACCAGGTA





CTTCTGAAAGCGCTACCCCTGAGTCC





GGCCCAGGTACTTCTGAAAGCGCTAC





TCCTGAATCCGGTCCAGGTACTTCTGA





AAGCGCTACCCCGGAATCTGGCCCAG





GTAGCGAACCGGCTACTTCTGGTTCTG





AAACCCCAGGTAGCGAACCGGCTACC





TCCGGTTCTGAAACTCCAGGTAGCCC





AGCAGGCTCTCCGACTTCCACTGAGG





AAGGTACTTCTACTGAACCTTCCGAA





GGCAGCGCACCAGGTACCTCTACTGA





ACCTTCTGAGGGCAGCGCTCCAGGTA





GCGAACCTGCAACCTCTGGCTCTGAA





ACCCCAGGTACCTCTGAAAGCGCTAC





TCCTGAATCTGGCCCAGGTACTTCTAC





TGAACCGTCCGAGGGCAGCGCACCA





AM875-
GTSTEPSEGSAPGSE
789
GGTACTTCTACTGAACCGTCTGAAGG
790


hGH-
PATSGSETPGSPAGS

CAGCGCACCAGGTAGCGAACCGGCTA


AE288
PTSTEEGSTSSTAESP

CTTCCGGTTCTGAAACCCCAGGTAGC



GPGTSTPESGSASPG

CCAGCAGGTTCTCCAACTTCTACTGAA



STSESPSGTAPGSTSE

GAAGGTTCTACCAGCTCTACCGCAGA



SPSGTAPGTSTPESGS

ATCTCCTGGTCCAGGTACCTCTACTCC



ASPGTSTPESGSASP

GGAAAGCGGCTCTGCATCTCCAGGTT



GSEPATSGSETPGTS

CTACTAGCGAATCTCCTTCTGGCACTG



ESATPESGPGSPAGS

CACCAGGTTCTACTAGCGAATCCCCG



PTSTEEGTSTEPSEGS

TCTGGTACTGCTCCAGGTACTTCTACT



APGTSESATPESGPG

CCTGAAAGCGGTTCCGCTTCTCCAGGT



TSTEPSEGSAPGTSTE

ACCTCTACTCCGGAAAGCGGTTCTGC



PSEGSAPGSPAGSPT

ATCTCCAGGTAGCGAACCGGCAACCT



STEEGTSTEPSEGSAP

CCGGCTCTGAAACCCCAGGTACCTCT



GTSTEPSEGSAPGTS

GAAAGCGCTACTCCTGAATCCGGCCC



ESATPESGPGTSESA

AGGTAGCCCGGCAGGTTCTCCGACTT



TPESGPGTSTEPSEGS

CCACTGAGGAAGGTACCTCTACTGAA



APGTSTEPSEGSAPG

CCTTCTGAGGGCAGCGCTCCAGGTAC



TSESATPESGPGTSTE

TTCTGAAAGCGCTACCCCGGAGTCCG



PSEGSAPGSEPATSG

GTCCAGGTACTTCTACTGAACCGTCCG



SETPGSPAGSPTSTEE

AAGGTAGCGCACCAGGTACTTCTACC



GSSTPSGATGSPGTP

GAACCGTCCGAGGGTAGCGCACCAGG



GSGTASSSPGSSTPS

TAGCCCAGCAGGTTCTCCTACCTCCAC



GATGSPGTSTEPSEG

CGAGGAAGGTACTTCTACCGAACCGT



SAPGTSTEPSEGSAP

CCGAGGGTAGCGCACCAGGTACTTCT



GSEPATSGSETPGSP

ACCGAACCTTCCGAGGGCAGCGCACC



AGSPTSTEEGSPAGS

AGGTACTTCTGAAAGCGCTACCCCTG



PTSTEEGTSTEPSEGS

AGTCCGGCCCAGGTACTTCTGAAAGC



APGASASGAPSTGGT

GCTACTCCTGAATCCGGTCCAGGTAC



SESATPESGPGSPAG

CTCTACTGAACCTTCCGAAGGCAGCG



SPTSTEEGSPAGSPTS

CTCCAGGTACCTCTACCGAACCGTCC



TEEGSTSSTAESPGP

GAGGGCAGCGCACCAGGTACTTCTGA



GSTSESPSGTAPGTSP

AAGCGCAACCCCTGAATCCGGTCCAG



SGESSTAPGTPGSGT

GTACTTCTACTGAACCTTCCGAAGGTA



ASSSPGSSTPSGATG

GCGCTCCAGGTAGCGAACCTGCTACT



SPGSSPSASTGTGPG

TCTGGTTCTGAAACCCCAGGTAGCCC



SEPATSGSETPGTSES

GGCTGGCTCTCCGACCTCCACCGAGG



ATPESGPGSEPATSG

AAGGTAGCTCTACCCCGTCTGGTGCT



SETPGSTSSTAESPGP

ACTGGTTCTCCAGGTACTCCGGGCAG



GSTSSTAESPGPGTSP

CGGTACTGCTTCTTCCTCTCCAGGTAG



SGESSTAPGSEPATS

CTCTACCCCTTCTGGTGCTACTGGCTC



GSETPGSEPATSGSE

TCCAGGTACCTCTACCGAACCGTCCG



TPGTSTEPSEGSAPG

AGGGTAGCGCACCAGGTACCTCTACT



STSSTAESPGPGTSTP

GAACCGTCTGAGGGTAGCGCTCCAGG



ESGSASPGSTSESPSG

TAGCGAACCGGCAACCTCCGGTTCTG



TAPGTSTEPSEGSAP

AAACTCCAGGTAGCCCTGCTGGCTCT



GTSTEPSEGSAPGTS

CCGACTTCTACTGAGGAAGGTAGCCC



TEPSEGSAPGSSTPSG

GGCTGGTTCTCCGACTTCTACTGAGGA



ATGSPGSSPSASTGT

AGGTACTTCTACCGAACCTTCCGAAG



GPGASPGTSSTGSPG

GTAGCGCTCCAGGTGCAAGCGCAAGC



SEPATSGSETPGTSES

GGCGCGCCAAGCACGGGAGGTACTTC



ATPESGPGSPAGSPT

TGAAAGCGCTACTCCTGAGTCCGGCC



STEEGSSTPSGATGS

CAGGTAGCCCGGCTGGCTCTCCGACT



PGSSPSASTGTGPGA

TCCACCGAGGAAGGTAGCCCGGCTGG



SPGTSSTGSPGTSESA

CTCTCCAACTTCTACTGAAGAAGGTTC



TPESGPGTSTEPSEGS

TACCAGCTCTACCGCTGAATCTCCTGG



APGTSTEPSEGSAPG

CCCAGGTTCTACTAGCGAATCTCCGTC



FPTIPLSRLFDNAML

TGGCACCGCACCAGGTACTTCCCCTA



RAHRLHQLAFDTYQ

GCGGTGAATCTTCTACTGCACCAGGT



EFEEAYIPKEQKYSF

ACCCCTGGCAGCGGTACCGCTTCTTCC



LQNPQTSLCFSESIPT

TCTCCAGGTAGCTCTACCCCGTCTGGT



PSNREETQQKSNLEL

GCTACTGGCTCTCCAGGTTCTAGCCCG



LRISLLLIQSWLEPVQ

TCTGCATCTACCGGTACCGGCCCAGG



FLRSVFANSLVYGAS

TAGCGAACCGGCAACCTCCGGCTCTG



DSNVYDLLKDLEEGI

AAACTCCAGGTACTTCTGAAAGCGCT



QTLMGRLEDGSPRT

ACTCCGGAATCCGGCCCAGGTAGCGA



GQIFKQTYSKFDTNS

ACCGGCTACTTCCGGCTCTGAAACCC



HNDDALLKNYGLLY

CAGGTTCCACCAGCTCTACTGCAGAA



CFRKDMDKVETFLRI

TCTCCGGGCCCAGGTTCTACTAGCTCT



VQCRSVEGSCGFGG

ACTGCAGAATCTCCGGGTCCAGGTAC



TSESATPESGPGSEP

TTCTCCTAGCGGCGAATCTTCTACCGC



ATSGSETPGTSESAT

TCCAGGTAGCGAACCGGCAACCTCTG



PESGPGSEPATSGSE

GCTCTGAAACTCCAGGTAGCGAACCT



TPGTSESATPESGPG

GCAACCTCCGGCTCTGAAACCCCAGG



TSTEPSEGSAPGSPA

TACTTCTACTGAACCTTCTGAGGGCAG



GSPTSTEEGTSESATP

CGCACCAGGTTCTACCAGCTCTACCG



ESGPGSEPATSGSET

CAGAATCTCCTGGTCCAGGTACCTCTA



PGTSESATPESGPGSP

CTCCGGAAAGCGGCTCTGCATCTCCA



AGSPTSTEEGSPAGS

GGTTCTACTAGCGAATCTCCTTCTGGC



PTSTEEGTSTEPSEGS

ACTGCACCAGGTACTTCTACCGAACC



APGTSESATPESGPG

GTCCGAAGGCAGCGCTCCAGGTACCT



TSESATPESGPGTSES

CTACTGAACCTTCCGAGGGCAGCGCT



ATPESGPGSEPATSG

CCAGGTACCTCTACCGAACCTTCTGA



SETPGSEPATSGSETP

AGGTAGCGCACCAGGTAGCTCTACTC



GSPAGSPTSTEEGTS

CGTCTGGTGCAACCGGCTCCCCAGGT



TEPSEGSAPGTSTEPS

TCTAGCCCGTCTGCTTCCACTGGTACT



EGSAPGSEPATSGSE

GGCCCAGGTGCTTCCCCGGGCACCAG



TPGTSESATPESGPG

CTCTACTGGTTCTCCAGGTAGCGAACC



TSTEPSEGSAP

TGCTACCTCCGGTTCTGAAACCCCAG





GTACCTCTGAAAGCGCAACTCCGGAG





TCTGGTCCAGGTAGCCCTGCAGGTTCT





CCTACCTCCACTGAGGAAGGTAGCTC





TACTCCGTCTGGTGCAACCGGCTCCCC





AGGTTCTAGCCCGTCTGCTTCCACTGG





TACTGGCCCAGGTGCTTCCCCGGGCA





CCAGCTCTACTGGTTCTCCAGGTACCT





CTGAAAGCGCTACTCCGGAGTCTGGC





CCAGGTACCTCTACTGAACCGTCTGA





GGGTAGCGCTCCAGGTACTTCTACTG





AACCGTCCGAAGGTAGCGCACCAGGT





TTTCCGACTATTCCGCTGTCTCGTCTG





TTTGATAATGCTATGCTGCGTGCGCAC





CGTCTGCACCAGCTGGCCTTTGATACT





TACCAGGAATTTGAAGAAGCcTACATT





CCTAAAGAGCAGAAGTACTCTTTCCT





GCAAAACCCACAGACTTCTCTCTGCTT





CAGCGAATCTATTCCGACGCCTTCCA





ATCGCGAGGAAACTCAGCAAAAGTCC





AATCTGGAACTACTCCGCATTTCTCTG





CTTCTGATTCAGAGCTGGCTAGAACC





AGTGCAATTTCTGCGTTCCGTCTTCGC





CAATAGCCTAGTTTATGGCGCATCCG





ACAGCAACGTATACGATCTCCTGAAA





GATCTCGAGGAAGGCATTCAGACCCT





GATGGGTCGTCTCGAGGATGGCTCTC





CGCGTACTGGTCAGATCTTCAAGCAG





ACTTACTCTAAATTTGATACTAACAGC





CACAATGACGATGCGCTTCTAAAAAA





CTATGGTCTGCTGTATTGTTTTCGTAA





AGATATGGACAAAGTTGAAACCTTCC





TGCGTATTGTTCAGTGTCGTTCCGTTG





AGGGCAGCTGTGGTTTCTAAGGTGGT





ACCTCTGAAAGCGCAACTCCTGAGTC





TGGCCCAGGTAGCGAACCTGCTACCT





CCGGCTCTGAGACTCCAGGTACCTCT





GAAAGCGCAACCCCGGAATCTGGTCC





AGGTAGCGAACCTGCAACCTCTGGCT





CTGAAACCCCAGGTACCTCTGAAAGC





GCTACTCCTGAATCTGGCCCAGGTACT





TCTACTGAACCGTCCGAGGGCAGCGC





ACCAGGTAGCCCTGCTGGCTCTCCAA





CCTCCACCGAAGAAGGTACCTCTGAA





AGCGCAACCCCTGAATCCGGCCCAGG





TAGCGAACCGGCAACCTCCGGTTCTG





AAACCCCAGGTACTTCTGAAAGCGCT





ACTCCTGAGTCCGGCCCAGGTAGCCC





GGCTGGCTCTCCGACTTCCACCGAGG





AAGGTAGCCCGGCTGGCTCTCCAACT





TCTACTGAAGAAGGTACTTCTACCGA





ACCTTCCGAGGGCAGCGCACCAGGTA





CTTCTGAAAGCGCTACCCCTGAGTCC





GGCCCAGGTACTTCTGAAAGCGCTAC





TCCTGAATCCGGTCCAGGTACTTCTGA





AAGCGCTACCCCGGAATCTGGCCCAG





GTAGCGAACCGGCTACTTCTGGTTCTG





AAACCCCAGGTAGCGAACCGGCTACC





TCCGGTTCTGAAACTCCAGGTAGCCC





AGCAGGCTCTCCGACTTCCACTGAGG





AAGGTACTTCTACTGAACCTTCCGAA





GGCAGCGCACCAGGTACCTCTACTGA





ACCTTCTGAGGGCAGCGCTCCAGGTA





GCGAACCTGCAACCTCTGGCTCTGAA





ACCCCAGGTACCTCTGAAAGCGCTAC





TCCTGAATCTGGCCCAGGTACTTCTAC





TGAACCGTCCGAGGGCAGCGCACCA





AE912-
MAEPAGSPTSTEEGT
791
ATGGCTGAACCTGCTGGCTCTCCAAC
792


hGH-
PGSGTASSSPGSSTPS

CTCCACTGAGGAAGGTACCCCGGGTA


AE288
GATGSPGASPGTSST

GCGGTACTGCTTCTTCCTCTCCAGGTA



GSPGSPAGSPTSTEE

GCTCTACCCCTTCTGGTGCAACCGGCT



GTSESATPESGPGTS

CTCCAGGTGCTTCTCCGGGCACCAGCT



TEPSEGSAPGSPAGS

CTACCGGTTCTCCAGGTAGCCCGGCT



PTSTEEGTSTEPSEGS

GGCTCTCCTACCTCTACTGAGGAAGG



APGTSTEPSEGSAPG

TACTTCTGAAAGCGCTACTCCTGAGTC



TSESATPESGPGSEP

TGGTCCAGGTACCTCTACTGAACCGTC



ATSGSETPGSEPATS

CGAAGGTAGCGCTCCAGGTAGCCCAG



GSETPGSPAGSPTST

CAGGCTCTCCGACTTCCACTGAGGAA



EEGTSESATPESGPG

GGTACTTCTACTGAACCTTCCGAAGG



TSTEPSEGSAPGTSTE

CAGCGCACCAGGTACCTCTACTGAAC



PSEGSAPGSPAGSPT

CTTCTGAGGGCAGCGCTCCAGGTACT



STEEGTSTEPSEGSAP

TCTGAAAGCGCTACCCCGGAATCTGG



GTSTEPSEGSAPGTS

CCCAGGTAGCGAACCGGCTACTTCTG



ESATPESGPGTSTEPS

GTTCTGAAACCCCAGGTAGCGAACCG



EGSAPGTSESATPES

GCTACCTCCGGTTCTGAAACTCCAGGT



GPGSEPATSGSETPG

AGCCCGGCAGGCTCTCCGACCTCTAC



TSTEPSEGSAPGTSTE

TGAGGAAGGTACTTCTGAAAGCGCAA



PSEGSAPGTSESATP

CCCCGGAGTCCGGCCCAGGTACCTCT



ESGPGTSESATPESG

ACCGAACCGTCTGAGGGCAGCGCACC



PGSPAGSPTSTEEGT

AGGTACTTCTACCGAACCGTCCGAGG



SESATPESGPGSEPA

GTAGCGCACCAGGTAGCCCAGCAGGT



TSGSETPGTSESATPE

TCTCCTACCTCCACCGAGGAAGGTAC



SGPGTSTEPSEGSAP

TTCTACCGAACCGTCCGAGGGTAGCG



GTSTEPSEGSAPGTS

CACCAGGTACCTCTACTGAACCTTCTG



TEPSEGSAPGTSTEPS

AGGGCAGCGCTCCAGGTACTTCTGAA



EGSAPGTSTEPSEGS

AGCGCTACCCCGGAGTCCGGTCCAGG



APGTSTEPSEGSAPG

TACTTCTACTGAACCGTCCGAAGGTA



SPAGSPTSTEEGTSTE

GCGCACCAGGTACTTCTGAAAGCGCA



PSEGSAPGTSESATP

ACCCCTGAATCCGGTCCAGGTAGCGA



ESGPGSEPATSGSET

ACCGGCTACTTCTGGCTCTGAGACTCC



PGTSESATPESGPGS

AGGTACTTCTACCGAACCGTCCGAAG



EPATSGSETPGTSES

GTAGCGCACCAGGTACTTCTACTGAA



ATPESGPGTSTEPSE

CCGTCTGAAGGTAGCGCACCAGGTAC



GSAPGTSESATPESG

TTCTGAAAGCGCAACCCCGGAATCCG



PGSPAGSPTSTEEGSP

GCCCAGGTACCTCTGAAAGCGCAACC



AGSPTSTEEGSPAGS

CCGGAGTCCGGCCCAGGTAGCCCTGC



PTSTEEGTSESATPES

TGGCTCTCCAACCTCCACCGAAGAAG



GPGTSTEPSEGSAPG

GTACCTCTGAAAGCGCAACCCCTGAA



TSESATPESGPGSEP

TCCGGCCCAGGTAGCGAACCGGCAAC



ATSGSETPGTSESAT

CTCCGGTTCTGAAACCCCAGGTACCTC



PESGPGSEPATSGSE

TGAAAGCGCTACTCCGGAGTCTGGCC



TPGTSESATPESGPG

CAGGTACCTCTACTGAACCGTCTGAG



TSTEPSEGSAPGSPA

GGTAGCGCTCCAGGTACTTCTACTGA



GSPTSTEEGTSESATP

ACCGTCCGAAGGTAGCGCACCAGGTA



ESGPGSEPATSGSET

CTTCTACCGAACCGTCCGAAGGCAGC



PGTSESATPESGPGSP

GCTCCAGGTACCTCTACTGAACCTTCC



AGSPTSTEEGSPAGS

GAGGGCAGCGCTCCAGGTACCTCTAC



PTSTEEGTSTEPSEGS

CGAACCTTCTGAAGGTAGCGCACCAG



APGTSESATPESGPG

GTACTTCTACCGAACCGTCCGAGGGT



TSESATPESGPGTSES

AGCGCACCAGGTAGCCCAGCAGGTTC



ATPESGPGSEPATSG

TCCTACCTCCACCGAGGAAGGTACTT



SETPGSEPATSGSETP

CTACCGAACCGTCCGAGGGTAGCGCA



GSPAGSPTSTEEGTS

CCAGGTACCTCTGAAAGCGCAACTCC



TEPSEGSAPGTSTEPS

TGAGTCTGGCCCAGGTAGCGAACCTG



EGSAPGSEPATSGSE

CTACCTCCGGCTCTGAGACTCCAGGT



TPGTSESATPESGPG

ACCTCTGAAAGCGCAACCCCGGAATC



TSTEPSEGSAPGFPTI

TGGTCCAGGTAGCGAACCTGCAACCT



PLSRLFDNAMLRAH

CTGGCTCTGAAACCCCAGGTACCTCT



RLHQLAFDTYQEFEE

GAAAGCGCTACTCCTGAATCTGGCCC



AYIPKEQKYSFLQNP

AGGTACTTCTACTGAACCGTCCGAGG



QTSLCFSESIPTPSNR

GCAGCGCACCAGGTACTTCTGAAAGC



EETQQKSNLELLRIS

GCTACTCCTGAGTCCGGCCCAGGTAG



LLLIQSWLEPVQFLR

CCCGGCTGGCTCTCCGACTTCCACCGA



SVFANSLVYGASDS

GGAAGGTAGCCCGGCTGGCTCTCCAA



NVYDLLKDLEEGIQT

CTTCTACTGAAGAAGGTAGCCCGGCA



LMGRLEDGSPRTGQI

GGCTCTCCGACCTCTACTGAGGAAGG



FKQTYSKFDTNSHN

TACTTCTGAAAGCGCAACCCCGGAGT



DDALLKNYGLLYCF

CCGGCCCAGGTACCTCTACCGAACCG



RKDMDKVETFLRIV

TCTGAGGGCAGCGCACCAGGTACCTC



QCRSVEGSCGFGGTS

TGAAAGCGCAACTCCTGAGTCTGGCC



ESATPESGPGSEPAT

CAGGTAGCGAACCTGCTACCTCCGGC



SGSETPGTSESATPES

TCTGAGACTCCAGGTACCTCTGAAAG



GPGSEPATSGSETPG

CGCAACCCCGGAATCTGGTCCAGGTA



TSESATPESGPGTSTE

GCGAACCTGCAACCTCTGGCTCTGAA



PSEGSAPGSPAGSPT

ACCCCAGGTACCTCTGAAAGCGCTAC



STEEGTSESATPESGP

TCCTGAATCTGGCCCAGGTACTTCTAC



GSEPATSGSETPGTS

TGAACCGTCCGAGGGCAGCGCACCAG



ESATPESGPGSPAGS

GTAGCCCTGCTGGCTCTCCAACCTCCA



PTSTEEGSPAGSPTST

CCGAAGAAGGTACCTCTGAAAGCGCA



EEGTSTEPSEGSAPG

ACCCCTGAATCCGGCCCAGGTAGCGA



TSESATPESGPGTSES

ACCGGCAACCTCCGGTTCTGAAACCC



ATPESGPGTSESATP

CAGGTACTTCTGAAAGCGCTACTCCT



ESGPGSEPATSGSET

GAGTCCGGCCCAGGTAGCCCGGCTGG



PGSEPATSGSETPGSP

CTCTCCGACTTCCACCGAGGAAGGTA



AGSPTSTEEGTSTEPS

GCCCGGCTGGCTCTCCAACTTCTACTG



EGSAPGTSTEPSEGS

AAGAAGGTACTTCTACCGAACCTTCC



APGSEPATSGSETPG

GAGGGCAGCGCACCAGGTACTTCTGA



TSESATPESGPGTSTE

AAGCGCTACCCCTGAGTCCGGCCCAG



PSEGSAP

GTACTTCTGAAAGCGCTACTCCTGAAT





CCGGTCCAGGTACTTCTGAAAGCGCT





ACCCCGGAATCTGGCCCAGGTAGCGA





ACCGGCTACTTCTGGTTCTGAAACCCC





AGGTAGCGAACCGGCTACCTCCGGTT





CTGAAACTCCAGGTAGCCCAGCAGGC





TCTCCGACTTCCACTGAGGAAGGTAC





TTCTACTGAACCTTCCGAAGGCAGCG





CACCAGGTACCTCTACTGAACCTTCTG





AGGGCAGCGCTCCAGGTAGCGAACCT





GCAACCTCTGGCTCTGAAACCCCAGG





TACCTCTGAAAGCGCTACTCCTGAATC





TGGCCCAGGTACTTCTACTGAACCGTC





CGAGGGCAGCGCACCAGGTTTTCCGA





CTATTCCGCTGTCTCGTCTGTTTGATA





ATGCTATGCTGCGTGCGCACCGTCTGC





ACCAGCTGGCCTTTGATACTTACCAG





GAATTTGAAGAAGCcTACATTCCTAAA





GAGCAGAAGTACTCTTTCCTGCAAAA





CCCACAGACTTCTCTCTGCTTCAGCGA





ATCTATTCCGACGCCTTCCAATCGCGA





GGAAACTCAGCAAAAGTCCAATCTGG





AACTACTCCGCATTTCTCTGCTTCTGA





TTCAGAGCTGGCTAGAACCAGTGCAA





TTTCTGCGTTCCGTCTTCGCCAATAGC





CTAGTTTATGGCGCATCCGACAGCAA





CGTATACGATCTCCTGAAAGATCTCG





AGGAAGGCATTCAGACCCTGATGGGT





CGTCTCGAGGATGGCTCTCCGCGTACT





GGTCAGATCTTCAAGCAGACTTACTCT





AAATTTGATACTAACAGCCACAATGA





CGATGCGCTTCTAAAAAACTATGGTC





TGCTGTATTGTTTTCGTAAAGATATGG





ACAAAGTTGAAACCTTCCTGCGTATT





GTTCAGTGTCGTTCCGTTGAGGGCAG





CTGTGGTTTCTAAGGTGGTACCTCTGA





AAGCGCAACTCCTGAGTCTGGCCCAG





GTAGCGAACCTGCTACCTCCGGCTCT





GAGACTCCAGGTACCTCTGAAAGCGC





AACCCCGGAATCTGGTCCAGGTAGCG





AACCTGCAACCTCTGGCTCTGAAACC





CCAGGTACCTCTGAAAGCGCTACTCC





TGAATCTGGCCCAGGTACTTCTACTGA





ACCGTCCGAGGGCAGCGCACCAGGTA





GCCCTGCTGGCTCTCCAACCTCCACCG





AAGAAGGTACCTCTGAAAGCGCAACC





CCTGAATCCGGCCCAGGTAGCGAACC





GGCAACCTCCGGTTCTGAAACCCCAG





GTACTTCTGAAAGCGCTACTCCTGAGT





CCGGCCCAGGTAGCCCGGCTGGCTCT





CCGACTTCCACCGAGGAAGGTAGCCC





GGCTGGCTCTCCAACTTCTACTGAAG





AAGGTACTTCTACCGAACCTTCCGAG





GGCAGCGCACCAGGTACTTCTGAAAG





CGCTACCCCTGAGTCCGGCCCAGGTA





CTTCTGAAAGCGCTACTCCTGAATCCG





GTCCAGGTACTTCTGAAAGCGCTACC





CCGGAATCTGGCCCAGGTAGCGAACC





GGCTACTTCTGGTTCTGAAACCCCAG





GTAGCGAACCGGCTACCTCCGGTTCT





GAAACTCCAGGTAGCCCAGCAGGCTC





TCCGACTTCCACTGAGGAAGGTACTT





CTACTGAACCTTCCGAAGGCAGCGCA





CCAGGTACCTCTACTGAACCTTCTGAG





GGCAGCGCTCCAGGTAGCGAACCTGC





AACCTCTGGCTCTGAAACCCCAGGTA





CCTCTGAAAGCGCTACTCCTGAATCTG





GCCCAGGTACTTCTACTGAACCGTCC





GAGGGCAGCGCACCA





AM923-
MAEPAGSPTSTEEGA
793
ATGGCTGAACCTGCTGGCTCTCCAAC
794


hGH-
SPGTSSTGSPGSSTPS

CTCCACTGAGGAAGGTGCATCCCCGG


AE288
GATGSPGSSTPSGAT

GCACCAGCTCTACCGGTTCTCCAGGT



GSPGTSTEPSEGSAP

AGCTCTACCCCGTCTGGTGCTACCGGC



GSEPATSGSETPGSP

TCTCCAGGTAGCTCTACCCCGTCTGGT



AGSPTSTEEGSTSST

GCTACTGGCTCTCCAGGTACTTCTACT



AESPGPGTSTPESGS

GAACCGTCTGAAGGCAGCGCACCAGG



ASPGSTSESPSGTAP

TAGCGAACCGGCTACTTCCGGTTCTG



GSTSESPSGTAPGTS

AAACCCCAGGTAGCCCAGCAGGTTCT



TPESGSASPGTSTPES

CCAACTTCTACTGAAGAAGGTTCTAC



GSASPGSEPATSGSE

CAGCTCTACCGCAGAATCTCCTGGTCC



TPGTSESATPESGPG

AGGTACCTCTACTCCGGAAAGCGGCT



SPAGSPTSTEEGTSTE

CTGCATCTCCAGGTTCTACTAGCGAAT



PSEGSAPGTSESATP

CTCCTTCTGGCACTGCACCAGGTTCTA



ESGPGTSTEPSEGSA

CTAGCGAATCCCCGTCTGGTACTGCTC



PGTSTEPSEGSAPGSP

CAGGTACTTCTACTCCTGAAAGCGGTT



AGSPTSTEEGTSTEPS

CCGCTTCTCCAGGTACCTCTACTCCGG



EGSAPGTSTEPSEGS

AAAGCGGTTCTGCATCTCCAGGTAGC



APGTSESATPESGPG

GAACCGGCAACCTCCGGCTCTGAAAC



TSESATPESGPGTSTE

CCCAGGTACCTCTGAAAGCGCTACTC



PSEGSAPGTSTEPSE

CTGAATCCGGCCCAGGTAGCCCGGCA



GSAPGTSESATPESG

GGTTCTCCGACTTCCACTGAGGAAGG



PGTSTEPSEGSAPGS

TACCTCTACTGAACCTTCTGAGGGCA



EPATSGSETPGSPAG

GCGCTCCAGGTACTTCTGAAAGCGCT



SPTSTEEGSSTPSGAT

ACCCCGGAGTCCGGTCCAGGTACTTC



GSPGTPGSGTASSSP

TACTGAACCGTCCGAAGGTAGCGCAC



GSSTPSGATGSPGTS

CAGGTACTTCTACCGAACCGTCCGAG



TEPSEGSAPGTSTEPS

GGTAGCGCACCAGGTAGCCCAGCAGG



EGSAPGSEPATSGSE

TTCTCCTACCTCCACCGAGGAAGGTA



TPGSPAGSPTSTEEG

CTTCTACCGAACCGTCCGAGGGTAGC



SPAGSPTSTEEGTSTE

GCACCAGGTACTTCTACCGAACCTTCC



PSEGSAPGASASGAP

GAGGGCAGCGCACCAGGTACTTCTGA



STGGTSESATPESGP

AAGCGCTACCCCTGAGTCCGGCCCAG



GSPAGSPTSTEEGSP

GTACTTCTGAAAGCGCTACTCCTGAAT



AGSPTSTEEGSTSST

CCGGTCCAGGTACCTCTACTGAACCTT



AESPGPGSTSESPSGT

CCGAAGGCAGCGCTCCAGGTACCTCT



APGTSPSGESSTAPG

ACCGAACCGTCCGAGGGCAGCGCACC



TPGSGTASSSPGSSTP

AGGTACTTCTGAAAGCGCAACCCCTG



SGATGSPGSSPSAST

AATCCGGTCCAGGTACTTCTACTGAA



GTGPGSEPATSGSET

CCTTCCGAAGGTAGCGCTCCAGGTAG



PGTSESATPESGPGS

CGAACCTGCTACTTCTGGTTCTGAAAC



EPATSGSETPGSTSST

CCCAGGTAGCCCGGCTGGCTCTCCGA



AESPGPGSTSSTAESP

CCTCCACCGAGGAAGGTAGCTCTACC



GPGTSPSGESSTAPG

CCGTCTGGTGCTACTGGTTCTCCAGGT



SEPATSGSETPGSEP

ACTCCGGGCAGCGGTACTGCTTCTTCC



ATSGSETPGTSTEPSE

TCTCCAGGTAGCTCTACCCCTTCTGGT



GSAPGSTSSTAESPG

GCTACTGGCTCTCCAGGTACCTCTACC



PGTSTPESGSASPGST

GAACCGTCCGAGGGTAGCGCACCAGG



SESPSGTAPGTSTEPS

TACCTCTACTGAACCGTCTGAGGGTA



EGSAPGTSTEPSEGS

GCGCTCCAGGTAGCGAACCGGCAACC



APGTSTEPSEGSAPG

TCCGGTTCTGAAACTCCAGGTAGCCCT



SSTPSGATGSPGSSPS

GCTGGCTCTCCGACTTCTACTGAGGA



ASTGTGPGASPGTSS

AGGTAGCCCGGCTGGTTCTCCGACTTC



TGSPGSEPATSGSET

TACTGAGGAAGGTACTTCTACCGAAC



PGTSESATPESGPGSP

CTTCCGAAGGTAGCGCTCCAGGTGCA



AGSPTSTEEGSSTPS

AGCGCAAGCGGCGCGCCAAGCACGG



GATGSPGSSPSASTG

GAGGTACTTCTGAAAGCGCTACTCCT



TGPGASPGTSSTGSP

GAGTCCGGCCCAGGTAGCCCGGCTGG



GTSESATPESGPGTS

CTCTCCGACTTCCACCGAGGAAGGTA



TEPSEGSAPGTSTEPS

GCCCGGCTGGCTCTCCAACTTCTACTG



EGSAPGFPTIPLSRLF

AAGAAGGTTCTACCAGCTCTACCGCT



DNAMLRAHRLHQL

GAATCTCCTGGCCCAGGTTCTACTAGC



AFDTYQEFEEAYIPK

GAATCTCCGTCTGGCACCGCACCAGG



EQKYSFLQNPQTSLC

TACTTCCCCTAGCGGTGAATCTTCTAC



FSESIPTPSNREETQQ

TGCACCAGGTACCCCTGGCAGCGGTA



KSNLELLRISLLLIQS

CCGCTTCTTCCTCTCCAGGTAGCTCTA



WLEPVQFLRSVFAN

CCCCGTCTGGTGCTACTGGCTCTCCAG



SLVYGASDSNVYDL

GTTCTAGCCCGTCTGCATCTACCGGTA



LKDLEEGIQTLMGRL

CCGGCCCAGGTAGCGAACCGGCAACC



EDGSPRTGQIFKQTY

TCCGGCTCTGAAACTCCAGGTACTTCT



SKFDTNSHNDDALL

GAAAGCGCTACTCCGGAATCCGGCCC



KNYGLLYCFRKDMD

AGGTAGCGAACCGGCTACTTCCGGCT



KVETFLRIVQCRSVE

CTGAAACCCCAGGTTCCACCAGCTCT



GSCGFGGTSESATPE

ACTGCAGAATCTCCGGGCCCAGGTTC



SGPGSEPATSGSETP

TACTAGCTCTACTGCAGAATCTCCGG



GTSESATPESGPGSE

GTCCAGGTACTTCTCCTAGCGGCGAA



PATSGSETPGTSESA

TCTTCTACCGCTCCAGGTAGCGAACC



TPESGPGTSTEPSEGS

GGCAACCTCTGGCTCTGAAACTCCAG



APGSPAGSPTSTEEG

GTAGCGAACCTGCAACCTCCGGCTCT



TSESATPESGPGSEP

GAAACCCCAGGTACTTCTACTGAACC



ATSGSETPGTSESAT

TTCTGAGGGCAGCGCACCAGGTTCTA



PESGPGSPAGSPTSTE

CCAGCTCTACCGCAGAATCTCCTGGTC



EGSPAGSPTSTEEGT

CAGGTACCTCTACTCCGGAAAGCGGC



STEPSEGSAPGTSES

TCTGCATCTCCAGGTTCTACTAGCGAA



ATPESGPGTSESATP

TCTCCTTCTGGCACTGCACCAGGTACT



ESGPGTSESATPESG

TCTACCGAACCGTCCGAAGGCAGCGC



PGSEPATSGSETPGS

TCCAGGTACCTCTACTGAACCTTCCGA



EPATSGSETPGSPAG

GGGCAGCGCTCCAGGTACCTCTACCG



SPTSTEEGTSTEPSEG

AACCTTCTGAAGGTAGCGCACCAGGT



SAPGTSTEPSEGSAP

AGCTCTACTCCGTCTGGTGCAACCGG



GSEPATSGSETPGTS

CTCCCCAGGTTCTAGCCCGTCTGCTTC



ESATPESGPGTSTEPS

CACTGGTACTGGCCCAGGTGCTTCCCC



EGSAP

GGGCACCAGCTCTACTGGTTCTCCAG





GTAGCGAACCTGCTACCTCCGGTTCTG





AAACCCCAGGTACCTCTGAAAGCGCA





ACTCCGGAGTCTGGTCCAGGTAGCCC





TGCAGGTTCTCCTACCTCCACTGAGGA





AGGTAGCTCTACTCCGTCTGGTGCAA





CCGGCTCCCCAGGTTCTAGCCCGTCTG





CTTCCACTGGTACTGGCCCAGGTGCTT





CCCCGGGCACCAGCTCTACTGGTTCTC





CAGGTACCTCTGAAAGCGCTACTCCG





GAGTCTGGCCCAGGTACCTCTACTGA





ACCGTCTGAGGGTAGCGCTCCAGGTA





CTTCTACTGAACCGTCCGAAGGTAGC





GCACCAGGTTTTCCGACTATTCCGCTG





TCTCGTCTGTTTGATAATGCTATGCTG





CGTGCGCACCGTCTGCACCAGCTGGC





CTTTGATACTTACCAGGAATTTGAAG





AAGCcTACATTCCTAAAGAGCAGAAG





TACTCTTTCCTGCAAAACCCACAGACT





TCTCTCTGCTTCAGCGAATCTATTCCG





ACGCCTTCCAATCGCGAGGAAACTCA





GCAAAAGTCCAATCTGGAACTACTCC





GCATTTCTCTGCTTCTGATTCAGAGCT





GGCTAGAACCAGTGCAATTTCTGCGT





TCCGTCTTCGCCAATAGCCTAGTTTAT





GGCGCATCCGACAGCAACGTATACGA





TCTCCTGAAAGATCTCGAGGAAGGCA





TTCAGACCCTGATGGGTCGTCTCGAG





GATGGCTCTCCGCGTACTGGTCAGAT





CTTCAAGCAGACTTACTCTAAATTTGA





TACTAACAGCCACAATGACGATGCGC





TTCTAAAAAACTATGGTCTGCTGTATT





GTTTTCGTAAAGATATGGACAAAGTT





GAAACCTTCCTGCGTATTGTTCAGTGT





CGTTCCGTTGAGGGCAGCTGTGGTTTC





TAAGGTGGTACCTCTGAAAGCGCAAC





TCCTGAGTCTGGCCCAGGTAGCGAAC





CTGCTACCTCCGGCTCTGAGACTCCAG





GTACCTCTGAAAGCGCAACCCCGGAA





TCTGGTCCAGGTAGCGAACCTGCAAC





CTCTGGCTCTGAAACCCCAGGTACCTC





TGAAAGCGCTACTCCTGAATCTGGCC





CAGGTACTTCTACTGAACCGTCCGAG





GGCAGCGCACCAGGTAGCCCTGCTGG





CTCTCCAACCTCCACCGAAGAAGGTA





CCTCTGAAAGCGCAACCCCTGAATCC





GGCCCAGGTAGCGAACCGGCAACCTC





CGGTTCTGAAACCCCAGGTACTTCTG





AAAGCGCTACTCCTGAGTCCGGCCCA





GGTAGCCCGGCTGGCTCTCCGACTTCC





ACCGAGGAAGGTAGCCCGGCTGGCTC





TCCAACTTCTACTGAAGAAGGTACTTC





TACCGAACCTTCCGAGGGCAGCGCAC





CAGGTACTTCTGAAAGCGCTACCCCT





GAGTCCGGCCCAGGTACTTCTGAAAG





CGCTACTCCTGAATCCGGTCCAGGTA





CTTCTGAAAGCGCTACCCCGGAATCT





GGCCCAGGTAGCGAACCGGCTACTTC





TGGTTCTGAAACCCCAGGTAGCGAAC





CGGCTACCTCCGGTTCTGAAACTCCA





GGTAGCCCAGCAGGCTCTCCGACTTC





CACTGAGGAAGGTACTTCTACTGAAC





CTTCCGAAGGCAGCGCACCAGGTACC





TCTACTGAACCTTCTGAGGGCAGCGC





TCCAGGTAGCGAACCTGCAACCTCTG





GCTCTGAAACCCCAGGTACCTCTGAA





AGCGCTACTCCTGAATCTGGCCCAGG





TACTTCTACTGAACCGTCCGAGGGCA





GCGCACCA





AM1318-
GTSTEPSEGSAPGSE
795
GGTACTTCTACTGAACCGTCTGAAGG
796


hGH-
PATSGSETPGSPAGS

CAGCGCACCAGGTAGCGAACCGGCTA


AE288
PTSTEEGSTSSTAESP

CTTCCGGTTCTGAAACCCCAGGTAGC



GPGTSTPESGSASPG

CCAGCAGGTTCTCCAACTTCTACTGAA



STSESPSGTAPGSTSE

GAAGGTTCTACCAGCTCTACCGCAGA



SPSGTAPGTSTPESGS

ATCTCCTGGTCCAGGTACCTCTACTCC



ASPGTSTPESGSASP

GGAAAGCGGCTCTGCATCTCCAGGTT



GSEPATSGSETPGTS

CTACTAGCGAATCTCCTTCTGGCACTG



ESATPESGPGSPAGS

CACCAGGTTCTACTAGCGAATCCCCG



PTSTEEGTSTEPSEGS

TCTGGTACTGCTCCAGGTACTTCTACT



APGTSESATPESGPG

CCTGAAAGCGGTTCCGCTTCTCCAGGT



TSTEPSEGSAPGTSTE

ACCTCTACTCCGGAAAGCGGTTCTGC



PSEGSAPGSPAGSPT

ATCTCCAGGTAGCGAACCGGCAACCT



STEEGTSTEPSEGSAP

CCGGCTCTGAAACCCCAGGTACCTCT



GTSTEPSEGSAPGTS

GAAAGCGCTACTCCTGAATCCGGCCC



ESATPESGPGTSESA

AGGTAGCCCGGCAGGTTCTCCGACTT



TPESGPGTSTEPSEGS

CCACTGAGGAAGGTACCTCTACTGAA



APGTSTEPSEGSAPG

CCTTCTGAGGGCAGCGCTCCAGGTAC



TSESATPESGPGTSTE

TTCTGAAAGCGCTACCCCGGAGTCCG



PSEGSAPGSEPATSG

GTCCAGGTACTTCTACTGAACCGTCCG



SETPGSPAGSPTSTEE

AAGGTAGCGCACCAGGTACTTCTACC



GSSTPSGATGSPGTP

GAACCGTCCGAGGGTAGCGCACCAGG



GSGTASSSPGSSTPS

TAGCCCAGCAGGTTCTCCTACCTCCAC



GATGSPGTSTEPSEG

CGAGGAAGGTACTTCTACCGAACCGT



SAPGTSTEPSEGSAP

CCGAGGGTAGCGCACCAGGTACTTCT



GSEPATSGSETPGSP

ACCGAACCTTCCGAGGGCAGCGCACC



AGSPTSTEEGSPAGS

AGGTACTTCTGAAAGCGCTACCCCTG



PTSTEEGTSTEPSEGS

AGTCCGGCCCAGGTACTTCTGAAAGC



APGPEPTGPAPSGGS

GCTACTCCTGAATCCGGTCCAGGTAC



EPATSGSETPGTSES

CTCTACTGAACCTTCCGAAGGCAGCG



ATPESGPGSPAGSPT

CTCCAGGTACCTCTACCGAACCGTCC



STEEGTSESATPESGP

GAGGGCAGCGCACCAGGTACTTCTGA



GSPAGSPTSTEEGSP

AAGCGCAACCCCTGAATCCGGTCCAG



AGSPTSTEEGTSESA

GTACTTCTACTGAACCTTCCGAAGGTA



TPESGPGSPAGSPTST

GCGCTCCAGGTAGCGAACCTGCTACT



EEGSPAGSPTSTEEG

TCTGGTTCTGAAACCCCAGGTAGCCC



STSSTAESPGPGSTSE

GGCTGGCTCTCCGACCTCCACCGAGG



SPSGTAPGTSPSGESS

AAGGTAGCTCTACCCCGTCTGGTGCT



TAPGSTSESPSGTAP

ACTGGTTCTCCAGGTACTCCGGGCAG



GSTSESPSGTAPGTSP

CGGTACTGCTTCTTCCTCTCCAGGTAG



SGESSTAPGTSTEPSE

CTCTACCCCTTCTGGTGCTACTGGCTC



GSAPGTSESATPESG

TCCAGGTACCTCTACCGAACCGTCCG



PGTSESATPESGPGS

AGGGTAGCGCACCAGGTACCTCTACT



EPATSGSETPGTSES

GAACCGTCTGAGGGTAGCGCTCCAGG



ATPESGPGTSESATP

TAGCGAACCGGCAACCTCCGGTTCTG



ESGPGTSTEPSEGSA

AAACTCCAGGTAGCCCTGCTGGCTCT



PGTSESATPESGPGT

CCGACTTCTACTGAGGAAGGTAGCCC



STEPSEGSAPGTSPSG

GGCTGGTTCTCCGACTTCTACTGAGGA



ESSTAPGTSPSGESST

AGGTACTTCTACCGAACCTTCCGAAG



APGTSPSGESSTAPG

GTAGCGCTCCAGGTCCAGAACCAACG



TSTEPSEGSAPGSPA

GGGCCGGCCCCAAGCGGAGGTAGCGA



GSPTSTEEGTSTEPSE

ACCGGCAACCTCCGGCTCTGAAACCC



GSAPGSSPSASTGTG

CAGGTACCTCTGAAAGCGCTACTCCT



PGSSTPSGATGSPGS

GAATCCGGCCCAGGTAGCCCGGCAGG



STPSGATGSPGSSTPS

TTCTCCGACTTCCACTGAGGAAGGTA



GATGSPGSSTPSGAT

CTTCTGAAAGCGCTACTCCTGAGTCCG



GSPGASPGTSSTGSP

GCCCAGGTAGCCCGGCTGGCTCTCCG



GASASGAPSTGGTSP

ACTTCCACCGAGGAAGGTAGCCCGGC



SGESSTAPGSTSSTA

TGGCTCTCCAACTTCTACTGAAGAAG



ESPGPGTSPSGESSTA

GTACTTCTGAAAGCGCTACTCCTGAGT



PGTSESATPESGPGT

CCGGCCCAGGTAGCCCGGCTGGCTCT



STEPSEGSAPGTSTEP

CCGACTTCCACCGAGGAAGGTAGCCC



SEGSAPGSSPSASTG

GGCTGGCTCTCCAACTTCTACTGAAG



TGPGSSTPSGATGSP

AAGGTTCTACCAGCTCTACCGCTGAA



GASPGTSSTGSPGTS

TCTCCTGGCCCAGGTTCTACTAGCGAA



TPESGSASPGTSPSGE

TCTCCGTCTGGCACCGCACCAGGTACT



SSTAPGTSPSGESSTA

TCCCCTAGCGGTGAATCTTCTACTGCA



PGTSESATPESGPGS

CCAGGTTCTACCAGCGAATCTCCTTCT



EPATSGSETPGTSTEP

GGCACCGCTCCAGGTTCTACTAGCGA



SEGSAPGSTSESPSGT

ATCCCCGTCTGGTACCGCACCAGGTA



APGSTSESPSGTAPG

CTTCTCCTAGCGGCGAATCTTCTACCG



TSTPESGSASPGSPA

CACCAGGTACTTCTACCGAACCTTCCG



GSPTSTEEGTSESATP

AGGGCAGCGCACCAGGTACTTCTGAA



ESGPGTSTEPSEGSA

AGCGCTACCCCTGAGTCCGGCCCAGG



PGSPAGSPTSTEEGT

TACTTCTGAAAGCGCTACTCCTGAATC



SESATPESGPGSEPA

CGGTCCAGGTAGCGAACCGGCAACCT



TSGSETPGSSTPSGA

CTGGCTCTGAAACCCCAGGTACCTCT



TGSPGASPGTSSTGS

GAAAGCGCTACTCCGGAATCTGGTCC



PGSSTPSGATGSPGS

AGGTACTTCTGAAAGCGCTACTCCGG



TSESPSGTAPGTSPSG

AATCCGGTCCAGGTACCTCTACTGAA



ESSTAPGSTSSTAESP

CCTTCTGAGGGCAGCGCTCCAGGTAC



GPGSSTPSGATGSPG

TTCTGAAAGCGCTACCCCGGAGTCCG



ASPGTSSTGSPGTPG

GTCCAGGTACTTCTACTGAACCGTCCG



SGTASSSPGSPAGSP

AAGGTAGCGCACCAGGTACCTCCCCT



TSTEEGSPAGSPTSTE

AGCGGCGAATCTTCTACTGCTCCAGG



EGTSTEPSEGSAPGF

TACCTCTCCTAGCGGCGAATCTTCTAC



PTIPLSRLFDNAMLR

CGCTCCAGGTACCTCCCCTAGCGGTG



AHRLHQLAFDTYQE

AATCTTCTACCGCACCAGGTACTTCTA



FEEAYIPKEQKYSFL

CCGAACCGTCCGAGGGTAGCGCACCA



QNPQTSLCFSESIPTP

GGTAGCCCAGCAGGTTCTCCTACCTCC



SNREETQQKSNLELL

ACCGAGGAAGGTACTTCTACCGAACC



RISLLLIQSWLEPVQF

GTCCGAGGGTAGCGCACCAGGTTCTA



LRSVFANSLVYGAS

GCCCTTCTGCTTCCACCGGTACCGGCC



DSNVYDLLKDLEEGI

CAGGTAGCTCTACTCCGTCTGGTGCA



QTLMGRLEDGSPRT

ACTGGCTCTCCAGGTAGCTCTACTCCG



GQIFKQTYSKFDTNS

TCTGGTGCAACCGGCTCCCCAGGTAG



HNDDALLKNYGLLY

CTCTACCCCGTCTGGTGCTACCGGCTC



CFRKDMDKVETFLRI

TCCAGGTAGCTCTACCCCGTCTGGTGC



VQCRSVEGSCGFGG

AACCGGCTCCCCAGGTGCATCCCCGG



TSESATPESGPGSEP

GTACTAGCTCTACCGGTTCTCCAGGTG



ATSGSETPGTSESAT

CAAGCGCAAGCGGCGCGCCAAGCACG



PESGPGSEPATSGSE

GGAGGTACTTCTCCGAGCGGTGAATC



TPGTSESATPESGPG

TTCTACCGCACCAGGTTCTACTAGCTC



TSTEPSEGSAPGSPA

TACCGCTGAATCTCCGGGCCCAGGTA



GSPTSTEEGTSESATP

CTTCTCCGAGCGGTGAATCTTCTACTG



ESGPGSEPATSGSET

CTCCAGGTACCTCTGAAAGCGCTACT



PGTSESATPESGPGSP

CCGGAGTCTGGCCCAGGTACCTCTAC



AGSPTSTEEGSPAGS

TGAACCGTCTGAGGGTAGCGCTCCAG



PTSTEEGTSTEPSEGS

GTACTTCTACTGAACCGTCCGAAGGT



APGTSESATPESGPG

AGCGCACCAGGTTCTAGCCCTTCTGC



TSESATPESGPGTSES

ATCTACTGGTACTGGCCCAGGTAGCT



ATPESGPGSEPATSG

CTACTCCTTCTGGTGCTACCGGCTCTC



SETPGSEPATSGSETP

CAGGTGCTTCTCCGGGTACTAGCTCTA



GSPAGSPTSTEEGTS

CCGGTTCTCCAGGTACTTCTACTCCGG



TEPSEGSAPGTSTEPS

AAAGCGGTTCCGCATCTCCAGGTACT



EGSAPGSEPATSGSE

TCTCCTAGCGGTGAATCTTCTACTGCT



TPGTSESATPESGPG

CCAGGTACCTCTCCTAGCGGCGAATC



TSTEPSEGSAP

TTCTACTGCTCCAGGTACTTCTGAAAG





CGCAACCCCTGAATCCGGTCCAGGTA





GCGAACCGGCTACTTCTGGCTCTGAG





ACTCCAGGTACTTCTACCGAACCGTCC





GAAGGTAGCGCACCAGGTTCTACCAG





CGAATCCCCTTCTGGTACTGCTCCAGG





TTCTACCAGCGAATCCCCTTCTGGCAC





CGCACCAGGTACTTCTACCCCTGAAA





GCGGCTCCGCTTCTCCAGGTAGCCCG





GCAGGCTCTCCGACCTCTACTGAGGA





AGGTACTTCTGAAAGCGCAACCCCGG





AGTCCGGCCCAGGTACCTCTACCGAA





CCGTCTGAGGGCAGCGCACCAGGTAG





CCCTGCTGGCTCTCCAACCTCCACCGA





AGAAGGTACCTCTGAAAGCGCAACCC





CTGAATCCGGCCCAGGTAGCGAACCG





GCAACCTCCGGTTCTGAAACCCCAGG





TAGCTCTACCCCGTCTGGTGCTACCGG





TTCCCCAGGTGCTTCTCCTGGTACTAG





CTCTACCGGTTCTCCAGGTAGCTCTAC





CCCGTCTGGTGCTACTGGCTCTCCAGG





TTCTACTAGCGAATCCCCGTCTGGTAC





TGCTCCAGGTACTTCCCCTAGCGGTGA





ATCTTCTACTGCTCCAGGTTCTACCAG





CTCTACCGCAGAATCTCCGGGTCCAG





GTAGCTCTACCCCTTCTGGTGCAACCG





GCTCTCCAGGTGCATCCCCGGGTACC





AGCTCTACCGGTTCTCCAGGTACTCCG





GGTAGCGGTACCGCTTCTTCCTCTCCA





GGTAGCCCTGCTGGCTCTCCGACTTCT





ACTGAGGAAGGTAGCCCGGCTGGTTC





TCCGACTTCTACTGAGGAAGGTACTTC





TACCGAACCTTCCGAAGGTAGCGCTC





CAGGTTTTCCGACTATTCCGCTGTCTC





GTCTGTTTGATAATGCTATGCTGCGTG





CGCACCGTCTGCACCAGCTGGCCTTTG





ATACTTACCAGGAATTTGAAGAAGCcT





ACATTCCTAAAGAGCAGAAGTACTCT





TTCCTGCAAAACCCACAGACTTCTCTC





TGCTTCAGCGAATCTATTCCGACGCCT





TCCAATCGCGAGGAAACTCAGCAAAA





GTCCAATCTGGAACTACTCCGCATTTC





TCTGCTTCTGATTCAGAGCTGGCTAGA





ACCAGTGCAATTTCTGCGTTCCGTCTT





CGCCAATAGCCTAGTTTATGGCGCAT





CCGACAGCAACGTATACGATCTCCTG





AAAGATCTCGAGGAAGGCATTCAGAC





CCTGATGGGTCGTCTCGAGGATGGCT





CTCCGCGTACTGGTCAGATCTTCAAGC





AGACTTACTCTAAATTTGATACTAACA





GCCACAATGACGATGCGCTTCTAAAA





AACTATGGTCTGCTGTATTGTTTTCGT





AAAGATATGGACAAAGTTGAAACCTT





CCTGCGTATTGTTCAGTGTCGTTCCGT





TGAGGGCAGCTGGGTTTCTAAGGTG





GTACCTCTGAAAGCGCAACTCCTGAG





TCTGGCCCAGGTAGCGAACCTGCTAC





CTCCGGCTCTGAGACTCCAGGTACCTC





TGAAAGCGCAACCCCGGAATCTGGTC





CAGGTAGCGAACCTGCAACCTCTGGC





TCTGAAACCCCAGGTACCTCTGAAAG





CGCTACTCCTGAATCTGGCCCAGGTA





CTTCTACTGAACCGTCCGAGGGCAGC





GCACCAGGTAGCCCTGCTGGCTCTCC





AACCTCCACCGAAGAAGGTACCTCTG





AAAGCGCAACCCCTGAATCCGGCCCA





GGTAGCGAACCGGCAACCTCCGGTTC





TGAAACCCCAGGTACTTCTGAAAGCG





CTACTCCTGAGTCCGGCCCAGGTAGC





CCGGCTGGCTCTCCGACTTCCACCGA





GGAAGGTAGCCCGGCTGGCTCTCCAA





CTTCTACTGAAGAAGGTACTTCTACCG





AACCTTCCGAGGGCAGCGCACCAGGT





ACTTCTGAAAGCGCTACCCCTGAGTC





CGGCCCAGGTACTTCTGAAAGCGCTA





CTCCTGAATCCGGTCCAGGTACTTCTG





AAAGCGCTACCCCGGAATCTGGCCCA





GGTAGCGAACCGGCTACTTCTGGTTCT





GAAACCCCAGGTAGCGAACCGGCTAC





CTCCGGTTCTGAAACTCCAGGTAGCC





CAGCAGGCTCTCCGACTTCCACTGAG





GAAGGTACTTCTACTGAACCTTCCGA





AGGCAGCGCACCAGGTACCTCTACTG





AACCTTCTGAGGGCAGCGCTCCAGGT





AGCGAACCTGCAACCTCTGGCTCTGA





AACCCCAGGTACCTCTGAAAGCGCTA





CTCCTGAATCTGGCCCAGGTACTTCTA





CTGAACCGTCCGAGGGCAGCGCACCA





*Sequence name reflects N- to C-terminus configuration of the growth factor and XTEN components













TABLE 37







Exemplary GHXTEN comprising growth hormones, XTEN and cleavage sequences











GHXTEN
Amino Acid
SEQ ID

SEQ ID


Name*
Sequence
NO:
DNA Nucleotide Sequence
NO:





AE912-
MAEPAGSPTSTEEGT
797
ATGGCTGAACCTGCTGGCTCTCCAACCT
798


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG



Thrombin-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT



AE144
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG




GTSESATPESGPGTS

GTGCTTCTCCGGGCAGCAGCTCTACCGG




TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT




PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA




APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC




TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT




ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT




GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC




EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT




TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG




PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC




STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT




GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG




ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA




EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA




GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC




TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA




PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC




ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA




PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT




SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC




TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT




SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC




GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA




TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG




EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG




APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG




SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA




PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC




ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG




PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA




EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG




ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC




GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG




PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC




AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC




PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT




GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG




TSESATPESGPGSEP

CTACTCCGGAGTCTGGCCCAGGTACCTC




ATSGSETPGTSESAT

TACTGAACCGTCTGAGGGTAGCGCTCCA




PESGPGSEPATSGSE

GGTACTTCTACTGAACCGTCCGAAGGTA




TPGTSESATPESGPG

GCGCACCAGGTACTTCTACCGAACCGTC




TSTEPSEGSAPGSPA

CGAAGGCAGCGCTCCAGGTACCTCTACT




GSPTSTEEGTSESATP

GAACCTTCCGAGGGCAGCGCTCCAGGT




ESGPGSEPATSGSET

ACCTCTACCGAACCTTCTGAAGGTAGCG




PGTSESATPESGPGSP

CACCAGGTACTTCTACCGAACCGTCCGA




AGSPTSTEEGSPAGS

GGGTAGCGCACCAGGTAGCCCAGCAGG




PTSTEEGTSTEPSEGS

TTCTCCTACCTCCACCGAGGAAGGTACT




APGTSESATPESGPG

TCTACCGAACCGTCCGAGGGTAGCGCA




TSESATPESGPGTSES

CCAGGTACCTCTGAAAGCGCAACTCCTG




ATPESGPGSEPATSG

AGTCTGGCCCAGGTAGCGAACCTGCTAC




SETPGSEPATSGSETP

CTCCGGCTCTGAGACTCCAGGTACCTCT




GSPAGSPTSTEEGTS

GAAAGCGCAACCCCGGAATCTGGTCCA




TEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTG




EGSAPGSEPATSGSE

AAACCCCAGGTACCTCTGAAAGCGCTA




TPGTSESATPESGPG

CTCCTGAATCTGGCCCAGGTACTTCTAC




TSTEPSEGSAPGFPTI

TGAACCGTCCGAGGGCAGCGCACCAGG




PLSRLFDNAMLRAH

TACTTCTGAAAGCGCTACTCCTGAGTCC




RLHQLAFDTYQEFEE

GGCCCAGGTAGCCCGGCTGGCTCTCCGA




AYIPKEQKYSFLQNP

CTTCCACCGAGGAAGGTAGCCCGGCTG




QTSLCFSESIPTPSNR

GCTCTCCAACTTCTACTGAAGAAGGTAG




EETQQKSNLELLRIS

CCCGGCAGGCTCTCCGACCTCTACTGAG




LLLIQSWLEPVQFLR

GAAGGTACTTCTGAAAGCGCAACCCCG




SVFANSLVYGASDS

GAGTCCGGCCCAGGTACCTCTACCGAAC




NVYDLLKDLEEGIQT

CGTCTGAGGGCAGCGCACCAGGTACCT




LMGRLEDGSPRTGQI

CTGAAAGCGCAACTCCTGAGTCTGGCCC




FKQTYSKFDTNSHN

AGGTAGCGAACCTGCTACCTCCGGCTCT




DDALLKNYGLLYCF

GAGACTCCAGGTACCTCTGAAAGCGCA




RKDMDKVETFLRIV

ACCCCGGAATCTGGTCCAGGTAGCGAA




QCRSVEGSCGFGLTP

CCTGCAACCTCTGGCTCTGAAACCCCAG




RSLLVGGGGSEPATS

GTACCTCTGAAAGCGCTACTCCTGAATC




GSETPGTSESATPES

TGGCCCAGGTACTTCTACTGAACCGTCC




GPGSEPATSGSETPG

GAGGGCAGCGCACCAGGTAGCCCTGCT




SPAGSPTSTEEGTSTE

GGCTCTCCAACCTCCACCGAAGAAGGT




PSEGSAPGSEPATSG

ACCTCTGAAAGCGCAACCCCTGAATCCG




SETPGSEPATSGSETP

GCCCAGGTAGCGAACCGGCAACCTCCG




GSEPATSGSETPGTS

GTTCTGAAACCCCAGGTACTTCTGAAAG




TEPSEGSAPGTSESA

CGCTACTCCTGAGTCCGGCCCAGGTAGC




TPESGPGSEPATSGS

CCGGCTGGCTCTCCGACTTCCACCGAGG




ETPGTSTEPSEGSAP

AAGGTAGCCCGGCTGGCTCTCCAACTTC






TACTGAAGAAGGTACTTCTACCGAACCT






TCCGAGGGCAGCGCACCAGGTACTTCTG






AAAGCGCTACCCCTGAGTCCGGCCCAG






GTACTTCTGAAAGCGCTACTCCTGAATC






CGGTCCAGGTACTTCTGAAAGCGCTACC






CCGGAATCTGGCCCAGGTAGCGAACCG






GCTACTTCTGGTTCTGAAACCCCAGGTA






GCGAACCGGCTACCTCCGGTTCTGAAAC






TCCAGGTAGCCCAGCAGGCTCTCCGACT






TCCACTGAGGAAGGTACTTCTACTGAAC.






CTTCCGAAGGCAGCGCACCAGGTACCTC






TACTGAACCTTCTGAGGGCAGCGCTCCA






GGTAGCGAACCTGCAACCTCTGGCTCTG






AAACCCCAGGTACCTCTGAAAGCGCTA






CTCCTGAATCTGGCCCAGGTACTTCTAC






TGAACCGTCCGAGGGCAGCGCACCAGG






TTTTCCGACTATTCCGCTGTCTCGTCTGT






TTGATAATGCTATGCTGCGTGCGCACCG






TCTGCACCAGCTGGCCTTTGATACTTAC






CAGGAATTTGAAGAAGCcTACATTCCTA






AAGAGCAGAAGTACTCTTTCCTGCAAA






ACCCACAGACTTCTCTCTGCTTCAGCGA






ATCTATTCCGACGCCTTCCAATCGCGAG






GAAACTCAGCAAAAGTCCAATCTGGAA






CTACTCCGCATTTCTCTGCTTCTGATTCA






GAGCTGGCTAGAACCAGTGCAATTTCTG






CGTTCCGTCTTCGCCAATAGCCTAGTTT






ATGGCGCATCCGACAGCAACGTATACG






ATCTCCTGAAAGATCTCGAGGAAGGCA






TTCAGACCCTGATGGGTCGTCTCGAGGA






TGGCTCTCCGCGTACTGGTCAGATCTTC






AAGCAGACTTACTCTAAATTTGATACTA






ACAGCCACAATGACGATGCGCTTCTAA






AAAACTATGGTCTGCTGTATTGTTTTCG






TAAAGATATGGACAAAGTTGAAACCTT






CCTGCGTATTGTTCAGTGTCGTTCCGTT






GAGGGCAGCTGTGGTTTCTAAGGTctgacc






ccgcgcagcctgctggtgggcggcGGTGGTAGCGAA






CCGGCAACTTCCGGCTCTGAAACCCCAG






GTACTTCTGAAAGCGCTACTCCTGAGTC






TGGCCCAGGTAGCGAACCTGCTACCTCT






GGCTCTGAAACCCCAGGTAGCCCGGCA






GGCTCTCCGACTTCCACCGAGGAAGGTA






CCTCTACTGAACCTTCTGAGGGTAGCGC






TCCAGGTAGCGAACCGGCAACCTCTGG






CTCTGAAACCCCAGGTAGCGAACCTGCT






ACCTCCGGCTCTGAAACTCCAGGTAGCG






AACCGGCTACTTCCGGTTCTGAAACTCC






AGGTACCTCTACCGAACCTTCCGAAGGC






AGCGCACCAGGTACTTCTGAAAGCGCA






ACCCCTGAATCCGGTCCAGGTAGCGAA






CCGGCTACTTCTGGCTCTGAGACTCCAG






GTACTTCTACCGAACCGTCCGAAGGTAG






CGCACCA






AE912-
MAEPAGSPTSTEEGT
799
ATGGCTGAACCTGCTGGCTCTCCAACCT
800


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG



FXIa-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT



AE144
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG




GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG




TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT




PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA




APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC




TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT




ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT




GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC




EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT




TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG




PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC




STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT




GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG




ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA




EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA




GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC




TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA




PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC




ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA




PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT




SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC




TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT




SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC




GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA




TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG




EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG




APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG




SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA




PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC




ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG




PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA




EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG




ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC




GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG




PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC




AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC




PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT




GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG




TSESATPESGPGSEP

CTACTCCGGAGTCTGGCCCAGGTACCTC




ATSGSETPGTSESAT

TACTGAACCGTCTGAGGGTAGCGCTCCA




PESGPGSEPATSGSE

GGTACTTCTACTGAACCGTCCGAAGGTA




TPGTSESATPESGPG

GCGCACCAGGTACTTCTACCGAACCGTC




TSTEPSEGSAPGSPA

CGAAGGCAGCGCTCCAGGTACCTCTACT




GSPTSTEEGTSESATP

GAACCTTCCGAGGGCAGCGCTCCAGGT




ESGPGSEPATSGSET

ACCTCTACCGAACCTTCTGAAGGTAGCG




PGTSESATPESGPGSP

CACCAGGTACTTCTACCGAACCGTCCGA




AGSPTSTEEGSPAGS

GGGTAGCGCACCAGGTAGCCCAGCAGG




PTSTEEGTSTEPSEGS

TTCTCCTACCTCCACCGAGGAAGGTACT




APGTSESATPESGPG

TCTACCGAACCGTCCGAGGGTAGCGCA




TSESATPESGPGTSES

CCAGGTACCTCTGAAAGCGCAACTCCTG




ATPESGPGSEPATSG

AGTCTGGCCCAGGTAGCGAACCTGCTAC




SETPGSEPATSGSETP

CTCCGGCTCTGAGACTCCAGGTACCTCT




GSPAGSPTSTEEGTS

GAAAGCGCAACCCCGGAATCTGGTCCA




TEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTG




EGSAPGSEPATSGSE

AAACCCCAGGTACCTCTGAAAGCGCTA




TPGTSESATPESGPG

CTCCTGAATCTGGCCCAGGTACTTCTAC




TSTEPSEGSAPGFPTI

TGAACCGTCCGAGGGCAGCGCACCAGG




PLSRLFDNAMLRAH

TACTTCTGAAAGCGCTACTCCTGAGTCC




RLHQLAFDTYQEFEE

GGCCCAGGTAGCCCGGCTGGCTCTCCGA




AYIPKEQKYSFLQNP

CTTCCACCGAGGAAGGTAGCCCGGCTG




QTSLCFSESIPTPSNR

GCTCTCCAACTTCTACTGAAGAAGGTAG




EETQQKSNLELLRIS

CCCGGCAGGCTCTCCGACCTCTACTGAG




LLLIQSWLEPVQFLR

GAAGGTACTTCTGAAAGCGCAACCCCG




SVFANSLVYGASDS

GAGTCCGGCCCAGGTACCTCTACCGAAC




NVYDLLKDLEEGIQT

CGTCTGAGGGCAGCGCACCAGGTACCT




LMGRLEDGSPRTGQI

CTGAAAGCGCAACTCCTGAGTCTGGCCC




FKQTYSKFDTNSHN

AGGTAGCGAACCTGCTACCTCCGGCTCT




DDALLKNYGLLYCF

GAGACTCCAGGTACCTCTGAAAGCGCA




RKDMDKVETFLRIV

ACCCCGGAATCTGGTCCAGGTAGCGAA




QCRSVEGSCGFGGG

CCTGCAACCTCTGGCTCTGAAACCCCAG




KLTRVVGGGGSEPA

GTACCTCTGAAAGCGCTACTCCTGAATC




TSGSETPGTSESATPE

TGGCCCAGGTACTTCTACTGAACCGTCC




SGPGSEPATSGSETP

GAGGGCAGCGCACCAGGTAGCCCTGCT




GSPAGSPTSTEEGTS

GGCTCTCCAACCTCCACCGAAGAAGGT




TEPSEGSAPGSEPAT

ACCTCTGAAAGCGCAACCCCTGAATCCG




SGSETPGSEPATSGS

GCCCAGGTAGCGAACCGGCAACCTCCG




ETPGSEPATSGSETP

GTTCTGAAACCCCAGGTACTTCTGAAAG




GTSTEPSEGSAPGTS

CGCTACTCCTGAGTCCGGCCCAGGTAGC




ESATPESGPGSEPAT

CCGGCTGGCTCTCCGACTTCCACCGAGG




SGSETPGTSTEPSEGS

AAGGTAGCCCGGCTGGCTCTCCAACTTC




AP

TACTGAAGAAGGTACTTCTACCGAACCT






TCCGAGGGCAGCGCACCAGGTACTTCTG






AAAGCGCTACCCCTGAGTCCGGCCCAG






GTACTTCTGAAAGCGCTACTCCTGAATC






CGGTCCAGGTACTTCTGAAAGCGCTACC






CCGGAATCTGGCCCAGGTAGCGAACCG






GCTACTTCTGGTTCTGAAACCCCAGGTA






GCGAACCGGCTACCTCCGGTTCTGAAAC






TCCAGGTAGCCCAGCAGGCTCTCCGACT






TCCACTGAGGAAGGTACTTCTACTGAAC






CTTCCGAAGGCAGCGCACCAGGTACCTC






TACTGAACCTTCTGAGGGCAGCGCTCCA






GGTAGCGAACCTGCAACCTCTGGCTCTG






AAACCCCAGGTACCTCTGAAAGCGCTA






CTCCTGAATCTGGCCCAGGTACTTCTAC






TGAACCGTCCGAGGGCAGCGCACCAGG






TTTTCCGACTATTCCGCTGTCTCGTCTGT






TTGATAATGCTATGCTGCGTGCGCACCG






TCTGCACCAGCTGGCCTTTGATACTTAC






CAGGAATTTGAAGAAGCcTACATTCCTA






AAGAGCAGAAGTACTCTTTCCTGCAAA






ACCCACAGACTTCTCTCTGCTTCAGCGA






ATCTATTCCGACGCCTTCCAATCGCGAG






GAAACTCAGCAAAAGTCCAATCTGGAA






CTACTCCGCATTTCTCTGCTTCTGATTCA






GAGCTGGCTAGAACCAGTGCAATTTCTG






CGTTCCGTCTTCGCCAATAGCCTAGTTT






ATGGCGCATCCGACAGCAACGTATACG






ATCTCCTGAAAGATCTCGAGGAAGGCA






TTCAGACCCTGATGGGTCGTCTCGAGGA






TGGCTCTCCGCGTACTGGTCAGATCTTC






AAGCAGACTTACTCTAAATTTGATACTA






ACAGCCACAATGACGATGCGCTTCTAA






AAAACTATGGTCTGCTGTATTGTTTTCG






TAAAGATATGGACAAAGTTGAAACCTT






CCTGCGTATTGTTCAGTGTCGTTCCGTT






GAGGGCAGCTGTGGTTTCTAAGGTggcgg






caaactgacccgcgtggtgggcggcGGTGGTAGCGA






ACCGGCAACTTCCGGCTCTGAAACCCCA






GGTACTTCTGAAAGCGCTACTCCTGAGT






CTGGCCCAGGTAGCGAACCTGCTACCTC






TGGCTCTGAAACCCCAGGTAGCCCGGC






AGGCTCTCCGACTTCCACCGAGGAAGGT






ACCTCTACTGAACCTTCTGAGGGTAGCG






CTCCAGGTAGCGAACCGGCAACCTCTG






GCTCTGAAACCCCAGGTAGCGAACCTG






CTACCTCCGGCTCTGAAACTCCAGGTAG






CGAACCGGCTACTTCCGGTTCTGAAACT






CCAGGTACCTCTACCGAACCTTCCGAAG






GCAGCGCACCAGGTACTTCTGAAAGCG






CAACCCCTGAATCCGGTCCAGGTAGCG






AACCGGCTACTTCTGGCTCTGAGACTCC






AGGTACTTCTACCGAACCGTCCGAAGGT






AGCGCACCA






AE912-
MAEPAGSPTSTEEGT
801
ATGGCTGAACCTGCTGGCTCTCCAACCT
802


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG



Elastase-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT



AE144
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG




GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG




TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT




PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA




APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC




TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT




ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT




GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC




EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT




TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG




PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC




STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT




GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG




ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA




EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA




GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC




TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA




PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC




ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA




PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT




SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC




TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT




SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC




GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA




TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG




EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG




APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG




SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA




PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC




ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG




PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA




EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG




ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC




GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG




PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC




AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC




PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT




GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG




TSESATPESGPGSEP

CTACTCCGGAGTCTGGCCCAGGTACCTC




ATSGSETPGTSESAT

TACTGAACCGTCTGAGGGTAGCGCTCCA




PESGPGSEPATSGSE

GGTACTTCTACTGAACCGTCCGAAGGTA




TPGTSESATPESGPG

GCGCACCAGGTACTTCTACCGAACCGTC




TSTEPSEGSAPGSPA

CGAAGGCAGCGCTCCAGGTACCTCTACT




GSPTSTEEGTSESATP

GAACCTTCCGAGGGCAGCGCTCCAGGT




ESGPGSEPATSGSET

ACCTCTACCGAACCTTCTGAAGGTAGCG




PGTSESATPESGPGSP

CACCAGGTACTTCTACCGAACCGTCCGA




AGSPTSTEEGSPAGS

GGGTAGCGCACCAGGTAGCCCAGCAGG




PTSTEEGTSTEPSEGS

TTCTCCTACCTCCACCGAGGAAGGTACT




APGTSESATPESGPG

TCTACCGAACCGTCCGAGGGTAGCGCA




TSESATPESGPGTSES

CCAGGTACCTCTGAAAGCGCAACTCCTG




ATPESGPGSEPATSG

AGTCTGGCCCAGGTAGCGAACCTGCTAC




SETPGSEPATSGSETP

CTCCGGCTCTGAGACTCCAGGTACCTCT




GSPAGSPTSTEEGTS

GAAAGCGCAACCCCGGAATCTGGTCCA




TEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTG




EGSAPGSEPATSGSE

AAACCCCAGGTACCTCTGAAAGCGCTA




TPGTSESATPESGPG

CTCCTGAATCTGGCCCAGGTACTTCTAC




TSTEPSEGSAPGFPTI

TGAACCGTCCGAGGGCAGCGCACCAGG




PLSRLFDNAMLRAH

TACTTCTGAAAGCGCTACTCCTGAGTCC




RLHQLAFDTYQEFEE

GGCCCAGGTAGCCCGGCTGGCTCTCCGA




AYIPKEQKYSFLQNP

CTTCCACCGAGGAAGGTAGCCCGGCTG




QTSLCFSESIPTPSNR

GCTCTCCAACTTCTACTGAAGAAGGTAG




EETQQKSNLELLRIS

CCCGGCAGGCTCTCCGACCTCTACTGAG




LLLIQSWLEPVQFLR

GAAGGTACTTCTGAAAGCGCAACCCCG




SVFANSLVYGASDS

GAGTCCGGCCCAGGTACCTCTACCGAAC




NVYDLLKDLEEGIQT

CGTCTGAGGGCAGCGCACCAGGTACCT




LMGRLEDGSPRTGQI

CTGAAAGCGCAACTCCTGAGTCTGGCCC




FKQTYSKFDTNSHN

AGGTAGCGAACCTGCTACCTCCGGCTCT




DDALLKNYGLLYCF

GAGACTCCAGGTACCTCTGAAAGCGCA




RKDMDKVETFLRIV

ACCCCGGAATCTGGTCCAGGTAGCGAA




QCRSVEGSCGFGGG

CCTGCAACCTCTGGCTCTGAAACCCCAG




LGPVSGVPGGSEPAT

GTACCTCTGAAAGCGCTACTCCTGAATC




SGSETPGTSESATPES

TGGCCCAGGTACTTCTACTGAACCGTCC




GPGSEPATSGSETPG

GAGGGCAGCGCACCAGGTAGCCCTGCT




SPAGSPTSTEEGTSTE

GGCTCTCCAACCTCCACCGAAGAAGGT




PSEGSAPGSEPATSG

ACCTCTGAAAGCGCAACCCCTGAATCCG




SETPGSEPATSGSETP

GCCCAGGTAGCGAACCGGCAACCTCCG




GSEPATSGSETPGTS

GTTCTGAAACCCCAGGTACTTCTGAAAG




TEPSEGSAPGTSESA

CGCTACTCCTGAGTCCGGCCCAGGTAGC




TPESGPGSEPATSGS

CCGGCTGGCTCTCCGACTTCCACCGAGG




ETPGTSTEPSEGSAP

AAGGTAGCCCGGCTGGCTCTCCAACTTC






TACTGAAGAAGGTACTTCTACCGAACCT






TCCGAGGGCAGCGCACCAGGTACTTCTG






AAAGCGCTACCCCTGAGTCCGGCCCAG






GTACTTCTGAAAGCGCTACTCCTGAATC






CGGTCCAGGTACTTCTGAAAGCGCTACC






CCGGAATCTGGCCCAGGTAGCGAACCG






GCTACTTCTGGTTCTGAAACCCCAGGTA






GCGAACCGGCTACCTCCGGTTCTGAAAC






TCCAGGTAGCCCAGCAGGCTCTCCGACT






TCCACTGAGGAAGGTACTTCTACTGAAC






CTTCCGAAGGCAGCGCACCAGGTACCTC






TACTGAACCTTCTGAGGGCAGCGCTCCA






GGTAGCGAACCTGCAACCTCTGGCTCTG






AAACCCCAGGTACCTCTGAAAGCGCTA






CTCCTGAATCTGGCCCAGGTACTTCTAC






TGAACCGTCCGAGGGCAGCGCACCAGG






TTTTCCGACTATTCCGCTGTCTCGTCTGT






TTGATAATGCTATGCTGCGTGCGCACCG






TCTGCACCAGCTGGCCTTTGATACTTAC






CAGGAATTTGAAGAAGCcTACATTCCTA






AAGAGCAGAAGTACTCTTTCCTGCAAA






ACCCACAGACTTCTCTCTGCTTCAGCGA






ATCTATTCCGACGCCTTCCAATCGCGAG






GAAACTCAGCAAAAGTCCAATCTGGAA






CTACTCCGCATTTCTCTGCTTCTGATTCA






GAGCTGGCTAGAACCAGTGCAATTTCTG






CGTTCCGTCTTCGCCAATAGCCTAGTTT






ATGGCGCATCCGACAGCAACGTATACG






ATCTCCTGAAAGATCTCGAGGAAGGCA






TTCAGACCCTGATGGGTCGTCTCGAGGA






TGGCTCTCCGCGTACTGGTCAGATCTTC






AAGCAGACTTACTCTAAATTTGATACTA






ACAGCCACAATGACGATGCGCTTCTAA






AAAACTATGGTCTGCTGTATTGTTTTCG






TAAAGATATGGACAAAGTTGAAACCTT






CCTGCGTATTGTTCAGTGTCGTTCCGTT






GAGGGCAGCTGTGGTTTCTAAGGTggcgg






cctgggcccggtgagcggcgtgccgGGTGGTAGCGA






ACCGGCAACTTCCGGCTCTGAAACCCCA






GGTACTTCTGAAAGCGCTACTCCTGAGT






CTGGCCCAGGTAGCGAACCTGCTACCTC






TGGCTCTGAAACCCCAGGTAGCCCGGC






AGGCTCTCCGACTTCCACCGAGGAAGGT






ACCTCTACTGAACCTTCTGAGGGTAGCG






CTCCAGGTAGCGAACCGGCAACCTCTG






GCTCTGAAACCCCAGGTAGCGAACCTG






CTACCTCCGGCTCTGAAACTCCAGGTAG






CGAACCGGCTACTTCCGGTTCTGAAACT






CCAGGTACCTCTACCGAACCTTCCGAAG






GCAGCGCACCAGGTACTTCTGAAAGCG






CAACCCCTGAATCCGGTCCAGGTAGCG






AACCGGCTACTTCTGGCTCTGAGACTCC






AGGTACTTCTACCGAACCGTCCGAAGGT






AGCGCACCA






AE912-
MAEPAGSPTSTEEGT
803
ATGGCTGAACCTGCTGGCTCTCCAACCT
804


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG



MMP-17-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT



AE144
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG




GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG




TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT




PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA




APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC




TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT




ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT




GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC




EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT




TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG




PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC




STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT




GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG




ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA




EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA




GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC




TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA




PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC




ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA




PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT




SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC




TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT




SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC




GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA




TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG




EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG




APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG




SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA




PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC




ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG




PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA




EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG




ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC




GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG




PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC




AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC




PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT




GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG




TSESATPESGPGSEP

CTACTCCGGAGTCTGGCCCAGGTACCTC




ATSGSETPGTSESAT

TACTGAACCGTCTGAGGGTAGCGCTCCA




PESGPGSEPATSGSE

GGTACTTCTACTGAACCGTCCGAAGGTA




TPGTSESATPESGPG

GCGCACCAGGTACTTCTACCGAACCGTC




TSTEPSEGSAPGSPA

CGAAGGCAGCGCTCCAGGTACCTCTACT




GSPTSTEEGTSESATP

GAACCTTCCGAGGGCAGCGCTCCAGGT




ESGPGSEPATSGSET

ACCTCTACCGAACCTTCTGAAGGTAGCG




PGTSESATPESGPGSP

CACCAGGTACTTCTACCGAACCGTCCGA




AGSPTSTEEGSPAGS

GGGTAGCGCACCAGGTAGCCCAGCAGG




PTSTEEGTSTEPSEGS

TTCTCCTACCTCCACCGAGGAAGGTACT




APGTSESATPESGPG

TCTACCGAACCGTCCGAGGGTAGCGCA




TSESATPESGPGTSES

CCAGGTACCTCTGAAAGCGCAACTCCTG




ATPESGPGSEPATSG

AGTCTGGCCCAGGTAGCGAACCTGCTAC




SETPGSEPATSGSETP

CTCCGGCTCTGAGACTCCAGGTACCTCT




GSPAGSPTSTEEGTS

GAAAGCGCAACCCCGGAATCTGGTCCA




TEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTG




EGSAPGSEPATSGSE

AAACCCCAGGTACCTCTGAAAGCGCTA




TPGTSESATPESGPG

CTCCTGAATCTGGCCCAGGTACTTCTAC




TSTEPSEGSAPGFPTI

TGAACCGTCCGAGGGCAGCGCACCAGG




PLSRLFDNAMLRAH

TACTTCTGAAAGCGCTACTCCTGAGTCC




RLHQLAFDTYQEFEE

GGCCCAGGTAGCCCGGCTGGCTCTCCGA




AYIPKEQKYSFLQNP

CTTCCACCGAGGAAGGTAGCCCGGCTG




QTSLCFSESIPTPSNR

GCTCTCCAACTTCTACTGAAGAAGGTAG




EETQQKSNLELLRIS

CCCGGCAGGCTCTCCGACCTCTACTGAG




LLLIQSWLEPVQFLR

GAAGGTACTTCTGAAAGCGCAACCCCG




SVFANSLVYGASDS

GAGTCCGGCCCAGGTACCTCTACCGAAC




NVYDLLKDLEEGIQT

CGTCTGAGGGCAGCGCACCAGGTACCT




LMGRLEDGSPRTGQI

CTGAAAGCGCAACTCCTGAGTCTGGCCC




FKQTYSKFDTNSHN

AGGTAGCGAACCTGCTACCTCCGGCTCT




DDALLKNYGLLYCF

GAGACTCCAGGTACCTCTGAAAGCGCA




RKDMDKVETFLRIV

ACCCCGGAATCTGGTCCAGGTAGCGAA




QCRSVEGSCGFGAPL

CCTGCAACCTCTGGCTCTGAAACCCCAG




GLRLRGGGGSEPATS

GTACCTCTGAAAGCGCTACTCCTGAATC




GSETPGTSESATPES

TGGCCCAGGTACTTCTACTGAACCGTCC




GPGSEPATSGSETPG

GAGGGCAGCGCACCAGGTAGCCCTGCT




SPAGSPTSTEEGTSTE

GGCTCTCCAACCTCCACCGAAGAAGGT




PSEGSAPGSEPATSG

ACCTCTGAAAGCGCAACCCCTGAATCCG




SETPGSEPATSGSETP

GCCCAGGTAGCGAACCGGCAACCTCCG




GSEPATSGSETPGTS

GTTCTGAAACCCCAGGTACTTCTGAAAG




TEPSEGSAPGTSESA

CGCTACTCCTGAGTCCGGCCCAGGTAGC




TPESGPGSEPATSGS

CCGGCTGGCTCTCCGACTTCCACCGAGG




ETPGTSTEPSEGSAP

AAGGTAGCCCGGCTGGCTCTCCAACTTC






TACTGAAGAAGGTACTTCTACCGAACCT






TCCGAGGGCAGCGCACCAGGTACTTCTG






AAAGCGCTACCCCTGAGTCCGGCCCAG






GTACTTCTGAAAGCGCTACTCCTGAATC






CGGTCCAGGTACTTCTGAAAGCGCTACC






CCGGAATCTGGCCCAGGTAGCGAACCG






GCTACTTCTGGTTCTGAAACCCCAGGTA






GCGAACCGGCTACCTCCGGTTCTGAAAC






TCCAGGTAGCCCAGCAGGCTCTCCGACT






TCCACTGAGGAAGGTACTTCTACTGAAC






CTTCCGAAGGCAGCGCACCAGGTACCTC






TACTGAACCTTCTGAGGGCAGCGCTCCA






GGTAGCGAACCTGCAACCTCTGGCTCTG






AAACCCCAGGTACCTCTGAAAGCGCTA






CTCCTGAATCTGGCCCAGGTACTTCTAC






TGAACCGTCCGAGGGCAGCGCACCAGG






TTTTCCGACTATTCCGCTGTCTCGTCTGT






TTGATAATGCTATGCTGCGTGCGCACCG






TCTGCACCAGCTGGCCTTTGATACTTAC






CAGGAATTTGAAGAAGCcTACATTCCTA






AAGAGCAGAAGTACTCTTTCCTGCAAA






ACCCACAGACTTCTCTCTGCTTCAGCGA






ATCTATTCCGACGCCTTCCAATCGCGAG






GAAACTCAGCAAAAGTCCAATCTGGAA






CTACTCCGCATTTCTCTGCTTCTGATTCA






GAGCTGGCTAGAACCAGTGCAATTTCTG






CGTTCCGTCTTCGCCAATAGCCTAGTTT






ATGGCGCATCCGACAGCAACGTATACG






ATCTCCTGAAAGATCTCGAGGAAGGCA






TTCAGACCCTGATGGGTCGTCTCGAGGA






TGGCTCTCCGCGTACTGGTCAGATCTTC






AAGCAGACTTACTCTAAATTTGATACTA






ACAGCCACAATGACGATGCGCTTCTAA






AAAACTATGGTCTGCTGTATTGTTTTCG






TAAAGATATGGACAAAGTTGAAACCTT






CCTGCGTATTGTTCAGTGTCGTTCCGTT






GAGGGCAGCTGTGGTTTCTAAGGTgcgcc






gctgggcctgcgcctgcgcggcggcGGTGGTAGCGA






ACCGGCAACTTCCGGCTCTGAAACCCCA






GGTACTTCTGAAAGCGCTACTCCTGAGT






CTGGCCCAGGTAGCGAACCTGCTACCTC






TGGCTCTGAAACCCCAGGTAGCCCGGC






AGGCTCTCCGACTTCCACCGAGGAAGGT






ACCTCTACTGAACCTTCTGAGGGTAGCG






CTCCAGGTAGCGAACCGGCAACCTCTG






GCTCTGAAACCCCAGGTAGCGAACCTG






CTACCTCCGGCTCTGAAACTCCAGGTAG






CGAACCGGCTACTTCCGGTTCTGAAACT






CCAGGTACCTCTACCGAACCTTCCGAAG






GCAGCGCACCAGGTACTTCTGAAAGCG






CAACCCCTGAATCCGGTCCAGGTAGCG






AACCGGCTACTTCTGGCTCTGAGACTCC






AGGTACTTCTACCGAACCGTCCGAAGGT






AGCGCACCA






AE912-
MAEPAGSPTSTEEGT
805
ATGGCTGAACCTGCTGGCTCTCCAACCT
806


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG



Thrombin-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT



AE288
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG




GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG




TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT




PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA




APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC




TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT




ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT




GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC




EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT




TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG




PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC




STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT




GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG




ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA




EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA




GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC




TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA




PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC




ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA




PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT




SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC




TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT




SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC




GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA




TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG




EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG




APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG




SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA




PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC




ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG




PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA




EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG




ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC




GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG




PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC




AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC




PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT




GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG




TSESATPESGPGSEP

CTACTCCGGAGTCTGGCCCAGGTACCTC




ATSGSETPGTSESAT

TACTGAACCGTCTGAGGGTAGCGCTCCA




PESGPGSEPATSGSE

GGTACTTCTACTGAACCGTCCGAAGGTA




TPGTSESATPESGPG

GCGCACCAGGTACTTCTACCGAACCGTC




TSTEPSEGSAPGSPA

CGAAGGCAGCGCTCCAGGTACCTCTACT




GSPTSTEEGTSESATP

GAACCTTCCGAGGGCAGCGCTCCAGGT




ESGPGSEPATSGSET

ACCTCTACCGAACCTTCTGAAGGTAGCG




PGTSESATPESGPGSP

CACCAGGTACTTCTACCGAACCGTCCGA




AGSPTSTEEGSPAGS

GGGTAGCGCACCAGGTAGCCCAGCAGG




PTSTEEGTSTEPSEGS

TTCTCCTACCTCCACCGAGGAAGGTACT




APGTSESATPESGPG

TCTACCGAACCGTCCGAGGGTAGCGCA




TSESATPESGPGTSES

CCAGGTACCTCTGAAAGCGCAACTCCTG




ATPESGPGSEPATSG

AGTCTGGCCCAGGTAGCGAACCTGCTAC




SETPGSEPATSGSETP

CTCCGGCTCTGAGACTCCAGGTACCTCT




GSPAGSPTSTEEGTS

GAAAGCGCAACCCCGGAATCTGGTCCA




TEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTG




EGSAPGSEPATSGSE

AAACCCCAGGTACCTCTGAAAGCGCTA




TPGTSESATPESGPG

CTCCTGAATCTGGCCCAGGTACTTCTAC




TSTEPSEGSAPGFPTI

TGAACCGTCCGAGGGCAGCGCACCAGG




PLSRLFDNAMLRAH

TACTTCTGAAAGCGCTACTCCTGAGTCC




RLHQLAFDTYQEFEE

GGCCCAGGTAGCCCGGCTGGCTCTCCGA




AYIPKEQKYSFLQNP

CTTCCACCGAGGAAGGTAGCCCGGCTG




QTSLCFSESIPTPSNR

GCTCTCCAACTTCTACTGAAGAAGGTAG




EETQQKSNLELLRIS

CCCGGCAGGCTCTCCGACCTCTACTGAG




LLLIQSWLEPVQFLR

GAAGGTACTTCTGAAAGCGCAACCCCG




SVFANSLVYGASDS

GAGTCCGGCCCAGGTACCTCTACCGAAC




NVYDLLKDLEEGIQT

CGTCTGAGGGCAGCGCACCAGGTACCT




LMGRLEDGSPRTGQI

CTGAAAGCGCAACTCCTGAGTCTGGCCC




FKQTYSKFDTNSHN

AGGTAGCGAACCTGCTACCTCCGGCTCT




DDALLKNYGLLYCF

GAGACTCCAGGTACCTCTGAAAGCGCA




RKDMDKVETFLRIV

ACCCCGGAATCTGGTCCAGGTAGCGAA




QCRSVEGSCGFGLTP

CCTGCAACCTCTGGCTCTGAAACCCCAG




RSLLVGGGGTSESAT

GTACCTCTGAAAGCGCTACTCCTGAATC




PESGPGSEPATSGSE

TGGCCCAGGTACTTCTACTGAACCGTCC




TPGTSESATPESGPG

GAGGGCAGCGCACCAGGTAGCCCTGCT




SEPATSGSETPGTSES

GGCTCTCCAACCTCCACCGAAGAAGGT




ATPESGPGTSTEPSE

ACCTCTGAAAGCGCAACCCCTGAATCCG




GSAPGSPAGSPTSTE

GCCCAGGTAGCGAACCGGCAACCTCCG




EGTSESATPESGPGS

GTTCTGAAACCCCAGGTACTTCTGAAAG




EPATSGSETPGTSES

CGCTACTCCTGAGTCCGGCCCAGGTAGC




ATPESGPGSPAGSPT

CCGGCTGGCTCTCCGACTTCCACCGAGG




STEEGSPAGSPTSTEE

AAGGTAGCCCGGCTGGCTCTCCAACTTC




GTSTEPSEGSAPGTS

TACTGAAGAAGGTACTTCTACCGAACCT




ESATPESGPGTSESA

TCCGAGGGCAGCGCACCAGGTACTTCTG




TPESGPGTSESATPES

AAAGCGCTACCCCTGAGTCCGGCCCAG




GPGSEPATSGSETPG

GTACTTCTGAAAGCGCTACTCCTGAATC




SEPATSGSETPGSPA

CGGTCCAGGTACTTCTGAAAGCGCTACC




GSPTSTEEGTSTEPSE

CCGGAATCTGGCCCAGGTAGCGAACCG




GSAPGTSTEPSEGSA

GCTACTTCTGGTTCTGAAACCCCAGGTA




PGSEPATSGSETPGT

GCGAACCGGCTACCTCCGGTTCTGAAAC




SESATPESGPGTSTEP

TCCAGGTAGCCCAGCAGGCTCTCCGACT




SEGSAP

TCCACTGAGGAAGGTACTTCTACTGAAC






CTTCCGAAGGCAGCGCACCAGGTACCTC






TACTGAACCTTCTGAGGGCAGCGCTCCA






GGTAGCGAACCTGCAACCTCTGGCTCTG






AAACCCCAGGTACCTCTGAAAGCGCTA






CTCCTGAATCTGGCCCAGGTACTTCTAC






TGAACCGTCCGAGGGCAGCGCACCAGG






TTTTCCGACTATTCCGCTGTCTCGTCTGT






TTGATAATGCTATGCTGCGTGCGCACCG






TCTGCACCAGCTGGCCTTTGATACTTAC






CAGGAATTTGAAGAAGCcTACATTCCTA






AAGAGCAGAAGTACTCTTTCCTGCAAA






ACCCACAGACTTCTCTCTGCTTCAGCGA






ATCTATTCCGACGCCTTCCAATCGCGAG






GAAACTCAGCAAAAGTCCAATCTGGAA






CTACTCCGCATTTCTCTGCTTCTGATTCA






GAGCTGGCTAGAACCAGTGCAATTTCTG






CGTTCCGTCTTCGCCAATAGCCTAGTTT






ATGGCGCATCCGACAGCAACGTATACG






ATCTCCTGAAAGATCTCGAGGAAGGCA






TTCAGACCCTGATGGGTCGTCTCGAGGA






TGGCTCTCCGCGTACTGGTCAGATCTTC






AAGCAGACTTACTCTAAATTTGATACTA






ACAGCCACAATGACGATGCGCTTCTAA






AAAACTATGGTCTGCTGTATTGTTTTCG






TAAAGATATGGACAAAGTTGAAACCTT






CCTGCGTATTGTTCAGTGTCGTTCCGTT






GAGGGCAGCTGTGGTTTCTAAGGTctgacc






ccgcgcagcctgctggtgggcggcGGTGGTACCTCT






GAAAGCGCAACTCCTGAGTCTGGCCCA






GGTAGCGAACCTGCTACCTCCGGCTCTG






AGACTCCAGGTACCTCTGAAAGCGCAA






CCCCGGAATCTGGTCCAGGTAGCGAAC






CTGCAACCTCTGGCTCTGAAACCCCAGG






TACCTCTGAAAGCGCTACTCCTGAATCT






GGCCCAGGTACTTCTACTGAACCGTCCG






AGGGCAGCGCACCAGGTAGCCCTGCTG






GCTCTCCAACCTCCACCGAAGAAGGTAC






CTCTGAAAGCGCAACCCCTGAATCCGGC






CCAGGTAGCGAACCGGCAACCTCCGGT






TCTGAAACCCCAGGTACTTCTGAAAGCG






CTACTCCTGAGTCCGGCCCAGGTAGCCC






GGCTGGCTCTCCGACTTCCACCGAGGAA






GGTAGCCCGGCTGGCTCTCCAACTTCTA






CTGAAGAAGGTACTTCTACCGAACCTTC






CGAGGGCAGCGCACCAGGTACTTCTGA






AAGCGCTACCCCTGAGTCCGGCCCAGGT






ACTTCTGAAAGCGCTACTCCTGAATCCG






GTCCAGGTACTTCTGAAAGCGCTACCCC






GGAATCTGGCCCAGGTAGCGAACCGGC






TACTTCTGGTTCTGAAACCCCAGGTAGC






GAACCGGCTACCTCCGGTTCTGAAACTC






CAGGTAGCCCAGCAGGCTCTCCGACTTC






CACTGAGGAAGGTACTTCTACTGAACCT






TCCGAAGGCAGCGCACCAGGTACCTCT






ACTGAACCTTCTGAGGGCAGCGCTCCAG






GTAGCGAACCTGCAACCTCTGGCTCTGA






AACCCCAGGTACCTCTGAAAGCGCTACT






CCTGAATCTGGCCCAGGTACTTCTACTG






AACCGTCCGAGGGCAGCGCACCA






AE912-
MAEPAGSPTSTEEGT
807
ATGGCTGAACCTGCTGGCTCTCCAACCT
808


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG



FXIa-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT



AE288
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG




GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG




TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT




PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA




APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC




TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT




ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT




GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC




EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT




TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG




PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC




STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT




GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG




ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA




EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA




GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC




TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA




PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC




ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA




PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT




SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC




TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT




SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC




GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA




TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG




EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG




APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG




SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA




PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC




ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG




PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA




EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG




ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC




GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG




PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC




AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC




PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT




GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG




TSESATPESGPGSEP

CTACTCCGGAGTCTGGCCCAGGTACCTC




ATSGSETPGTSESAT

TACTGAACCGTCTGAGGGTAGCGCTCCA




PESGPGSEPATSGSE

GGTACTTCTACTGAACCGTCCGAAGGTA




TPGTSESATPESGPG

GCGCACCAGGTACTTCTACCGAACCGTC




TSTEPSEGSAPGSPA

CGAAGGCAGCGCTCCAGGTACCTCTACT




GSPTSTEEGTSESATP

GAACCTTCCGAGGGCAGCGCTCCAGGT




ESGPGSEPATSGSET

ACCTCTACCGAACCTTCTGAAGGTAGCG




PGTSESATPESGPGSP

CACCAGGTACTTCTACCGAACCGTCCGA




AGSPTSTEEGSPAGS

GGGTAGCGCACCAGGTAGCCCAGCAGG




PTSTEEGTSTEPSEGS

TTCTCCTACCTCCACCGAGGAAGGTACT




APGTSESATPESGPG

TCTACCGAACCGTCCGAGGGTAGCGCA




TSESATPESGPGTSES

CCAGGTACCTCTGAAAGCGCAACTCCTG




ATPESGPGSEPATSG

AGTCTGGCCCAGGTAGCGAACCTGCTAC




SETPGSEPATSGSETP

CTCCGGCTCTGAGACTCCAGGTACCTCT




GSPAGSPTSTEEGTS

GAAAGCGCAACCCCGGAATCTGGTCCA




TEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTG




EGSAPGSEPATSGSE

AAACCCCAGGTACCTCTGAAAGCGCTA




TPGTSESATPESGPG

CTCCTGAATCTGGCCCAGGTACTTCTAC




TSTEPSEGSAPGFPTI

TGAACCGTCCGAGGGCAGCGCACCAGG




PLSRLFDNAMLRAH

TACTTCTGAAAGCGCTACTCCTGAGTCC




RLHQLAFDTYQEFEE

GGCCCAGGTAGCCCGGCTGGCTCTCCGA




AYIPKEQKYSFLQNP

CTTCCACCGAGGAAGGTAGCCCGGCTG




QTSLCFSESIPTPSNR

GCTCTCCAACTTCTACTGAAGAAGGTAG




EETQQKSNLELLRIS

CCCGGCAGGCTCTCCGACCTCTACTGAG




LLLIQSWLEPVQFLR

GAAGGTACTTCTGAAAGCGCAACCCCG




SVFANSLVYGASDS

GAGTCCGGCCCAGGTACCTCTACCGAAC




NVYDLLKDLEEGIQT

CGTCTGAGGGCAGCGCACCAGGTACCT




LMGRLEDGSPRTGQI

CTGAAAGCGCAACTCCTGAGTCTGGCCC




FKQTYSKFDTNSHN

AGGTAGCGAACCTGCTACCTCCGGCTCT




DDALLKNYGLLYCF

GAGACTCCAGGTACCTCTGAAAGCGCA




RKDMDKVETFLRIV

ACCCCGGAATCTGGTCCAGGTAGCGAA




QCRSVEGSCGFGGG

CCTGCAACCTCTGGCTCTGAAACCCCAG




KLTRVVGGGGTSES

GTACCTCTGAAAGCGCTACTCCTGAATC




ATPESGPGSEPATSG

TGGCCCAGGTACTTCTACTGAACCGTCC




SETPGTSESATPESGP

GAGGGCAGCGCACCAGGTAGCCCTGCT




GSEPATSGSETPGTS

GGCTCTCCAACCTCCACCGAAGAAGGT




ESATPESGPGTSTEPS

ACCTCTGAAAGCGCAACCCCTGAATCCG




EGSAPGSPAGSPTST

GCCCAGGTAGCGAACCGGCAACCTCCG




EEGTSESATPESGPG

GTTCTGAAACCCCAGGTACTTCTGAAAG




SEPATSGSETPGTSES

CGCTACTCCTGAGTCCGGCCCAGGTAGC




ATPESGPGSPAGSPT

CCGGCTGGCTCTCCGACTTCCACCGAGG




STEEGSPAGSPTSTEE

AAGGTAGCCCGGCTGGCTCTCCAACTTC




GTSTEPSEGSAPGTS

TACTGAAGAAGGTACTTCTACCGAACCT




ESATPESGPGTSESA

TCCGAGGGCAGCGCACCAGGTACTTCTG




TPESGPGTSESATPES

AAAGCGCTACCCCTGAGTCCGGCCCAG




GPGSEPATSGSETPG

GTACTTCTGAAAGCGCTACTCCTGAATC




SEPATSGSETPGSPA

CGGTCCAGGTACTTCTGAAAGCGCTACC




GSPTSTEEGTSTEPSE

CCGGAATCTGGCCCAGGTAGCGAACCG




GSAPGTSTEPSEGSA

GCTACTTCTGGTTCTGAAACCCCAGGTA




PGSEPATSGSETPGT

GCGAACCGGCTACCTCCGGTTCTGAAAC




SESATPESGPGTSTEP

TCCAGGTAGCCCAGCAGGCTCTCCGACT




SEGSAP

TCCACTGAGGAAGGTACTTCTACTGAAC






CTTCCGAAGGCAGCGCACCAGGTACCTC






TACTGAACCTTCTGAGGGCAGCGCTCCA






GGTAGCGAACCTGCAACCTCTGGCTCTG






AAACCCCAGGTACCTCTGAAAGCGCTA






CTCCTGAATCTGGCCCAGGTACTTCTAC






TGAACCGTCCGAGGGCAGCGCACCAGG






TTTTCCGACTATTCCGCTGTCTCGTCTGT






TTGATAATGCTATGCTGCGTGCGCACCG






TCTGCACCAGCTGGCCTTTGATACTTAC






CAGGAATTTGAAGAAGCcTACATTCCTA






AAGAGCAGAAGTACTCTTTCCTGCAAA






ACCCACAGACTTCTCTCTGCTTCAGCGA






ATCTATTCCGACGCCTTCCAATCGCGAG






GAAACTCAGCAAAAGTCCAATCTGGAA






CTACTCCGCATTTCTCTGCTTCTGATTCA






GAGCTGGCTAGAACCAGTGCAATTTCTG






CGTTCCGTCTTCGCCAATAGCCTAGTTT






ATGGCGCATCCGACAGCAACGTATACG






ATCTCCTGAAAGATCTCGAGGAAGGCA






TTCAGACCCTGATGGGTCGTCTCGAGGA






TGGCTCTCCGCGTACTGGTCAGATCTTC






AAGCAGACTTACTCTAAATTTGATACTA






ACAGCCACAATGACGATGCGCTTCTAA






AAAACTATGGTCTGCTGTATTGTTTTCG






TAAAGATATGGACAAAGTTGAAACCTT






CCTGCGTATTGTTCAGTGTCGTTCCGTT






GAGGGCAGCTGTGGTTTCTAAGGTggcgg






caaactgacccgcgtggtgggcggcGGTGGTACCTC






TGAAAGCGCAACTCCTGAGTCTGGCCCA






GGTAGCGAACCTGCTACCTCCGGCTCTG






AGACTCCAGGTACCTCTGAAAGCGCAA






CCCCGGAATCTGGTCCAGGTAGCGAAC






CTGCAACCTCTGGCTCTGAAACCCCAGG






TACCTCTGAAAGCGCTACTCCTGAATCT






GGCCCAGGTACTTCTACTGAACCGTCCG






AGGGCAGCGCACCAGGTAGCCCTGCTG






GCTCTCCAACCTCCACCGAAGAAGGTAC






CTCTGAAAGCGCAACCCCTGAATCCGGC






CCAGGTAGCGAACCGGCAACCTCCGGT






TCTGAAACCCCAGGTACTTCTGAAAGCG






CTACTCCTGAGTCCGGCCCAGGTAGCCC






GGCTGGCTCTCCGACTTCCACCGAGGAA






GGTAGCCCGGCTGGCTCTCCAACTTCTA






CTGAAGAAGGTACTTCTACCGAACCTTC






CGAGGGCAGCGCACCAGGTACTTCTGA






AAGCGCTACCCCTGAGTCCGGCCCAGGT






ACTTCTGAAAGCGCTACTCCTGAATCCG






GTCCAGGTACTTCTGAAAGCGCTACCCC






GGAATCTGGCCCAGGTAGCGAACCGGC






TACTTCTGGTTCTGAAACCCCAGGTAGC






GAACCGGCTACCTCCGGTTCTGAAACTC






CAGGTAGCCCAGCAGGCTCTCCGACTTC






CACTGAGGAAGGTACTTCTACTGAACCT






TCCGAAGGCAGCGCACCAGGTACCTCT






ACTGAACCTTCTGAGGGCAGCGCTCCAG






GTAGCGAACCTGCAACCTCTGGCTCTGA






AACCCCAGGTACCTCTGAAAGCGCTACT






CCTGAATCTGGCCCAGGTACTTCTACTG






AACCGTCCGAGGGCAGCGCACCA






AE912-
MAEPAGSPTSTEEGT
809
ATGGCTGAACCTGCTGGCTCTCCAACCT
810


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG



Elastase-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT



AE288
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG




GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG




TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT




PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA




APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC




TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT




ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT




GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC




EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT




TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG




PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC




STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT




GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG




ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA




EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA




GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC




TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA




PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC




ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA




PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT




SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC




TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT




SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC




GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA




TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG




EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG




APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG




SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA




PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC




ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG




PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA




EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG




ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC




GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG




PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC




AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC




PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT




GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG




TSESATPESGPGSEP

CTACTCCGGAGTCTGGCCCAGGTACCTC




ATSGSETPGTSESAT

TACTGAACCGTCTGAGGGTAGCGCTCCA




PESGPGSEPATSGSE

GGTACTTCTACTGAACCGTCCGAAGGTA




TPGTSESATPESGPG

GCGCACCAGGTACTTCTACCGAACCGTC




TSTEPSEGSAPGSPA

CGAAGGCAGCGCTCCAGGTACCTCTACT




GSPTSTEEGTSESATP

GAACCTTCCGAGGGCAGCGCTCCAGGT




ESGPGSEPATSGSET

ACCTCTACCGAACCTTCTGAAGGTAGCG




PGTSESATPESGPGSP

CACCAGGTACTTCTACCGAACCGTCCGA




AGSPTSTEEGSPAGS

GGGTAGCGCACCAGGTAGCCCAGCAGG




PTSTEEGTSTEPSEGS

TTCTCCTACCTCCACCGAGGAAGGTACT




APGTSESATPESGPG

TCTACCGAACCGTCCGAGGGTAGCGCA




TSESATPESGPGTSES

CCAGGTACCTCTGAAAGCGCAACTCCTG




ATPESGPGSEPATSG

AGTCTGGCCCAGGTAGCGAACCTGCTAC




SETPGSEPATSGSETP

CTCCGGCTCTGAGACTCCAGGTACCTCT




GSPAGSPTSTEEGTS

GAAAGCGCAACCCCGGAATCTGGTCCA




TEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTG




EGSAPGSEPATSGSE

AAACCCCAGGTACCTCTGAAAGCGCTA




TPGTSESATPESGPG

CTCCTGAATCTGGCCCAGGTACTTCTAC




TSTEPSEGSAPGFPTI

TGAACCGTCCGAGGGCAGCGCACCAGG




PLSRLFDNAMLRAH

TACTTCTGAAAGCGCTACTCCTGAGTCC




RLHQLAFDTYQEFEE

GGCCCAGGTAGCCCGGCTGGCTCTCCGA




AYIPKEQKYSFLQNP

CTTCCACCGAGGAAGGTAGCCCGGCTG




QTSLCFSESIPTPSNR

GCTCTCCAACTTCTACTGAAGAAGGTAG




EETQQKSNLELLRIS

CCCGGCAGGCTCTCCGACCTCTACTGAG




LLLIQSWLEPVQFLR

GAAGGTACTTCTGAAAGCGCAACCCCG




SVFANSLVYGASDS

GAGTCCGGCCCAGGTACCTCTACCGAAC




NVYDLLKDLEEGIQT

CGTCTGAGGGCAGCGCACCAGGTACCT




LMGRLEDGSPRTGQI

CTGAAAGCGCAACTCCTGAGTCTGGCCC




FKQTYSKFDTNSHN

AGGTAGCGAACCTGCTACCTCCGGCTCT




DDALLKNYGLLYCF

GAGACTCCAGGTACCTCTGAAAGCGCA




RKDMDKVETFLRIV

ACCCCGGAATCTGGTCCAGGTAGCGAA




QCRSVEGSCGFGGG

CCTGCAACCTCTGGCTCTGAAACCCCAG




LGPVSGVPGGTSESA

GTACCTCTGAAAGCGCTACTCCTGAATC




TPESGPGSEPATSGS

TGGCCCAGGTACTTCTACTGAACCGTCC




ETPGTSESATPESGP

GAGGGCAGCGCACCAGGTAGCCCTGCT




GSEPATSGSETPGTS

GGCTCTCCAACCTCCACCGAAGAAGGT




ESATPESGPGTSTEPS

ACCTCTGAAAGCGCAACCCCTGAATCCG




EGSAPGSPAGSPTST

GCCCAGGTAGCGAACCGGCAACCTCCG




EEGTSESATPESGPG

GTTCTGAAACCCCAGGTACTTCTGAAAG




SEPATSGSETPGTSES

CGCTACTCCTGAGTCCGGCCCAGGTAGC




ATPESGPGSPAGSPT

CCGGCTGGCTCTCCGACTTCCACCGAGG




STEEGSPAGSPTSTEE

AAGGTAGCCCGGCTGGCTCTCCAACTTC




GTSTEPSEGSAPGTS

TACTGAAGAAGGTACTTCTACCGAACCT




ESATPESGPGTSESA

TCCGAGGGCAGCGCACCAGGTACTTCTG




TPESGPGTSESATPES

AAAGCGCTACCCCTGAGTCCGGCCCAG




GPGSEPATSGSETPG

GTACTTCTGAAAGCGCTACTCCTGAATC




SEPATSGSETPGSPA

CGGTCCAGGTACTTCTGAAAGCGCTACC




GSPTSTEEGTSTEPSE

CCGGAATCTGGCCCAGGTAGCGAACCG




GSAPGTSTEPSEGSA

GCTACTTCTGGTTCTGAAACCCCAGGTA




PGSEPATSGSETPGT

GCGAACCGGCTACCTCCGGTTCTGAAAC




SESATPESGPGTSTEP

TCCAGGTAGCCCAGCAGGCTCTCCGACT




SEGSAP

TCCACTGAGGAAGGTACTTCTACTGAAC






CTTCCGAAGGCAGCGCACCAGGTACCTC






TACTGAACCTTCTGAGGGCAGCGCTCCA






GGTAGCGAACCTGCAACCTCTGGCTCTG






AAACCCCAGGTACCTCTGAAAGCGCTA






CTCCTGAATCTGGCCCAGGTACTTCTAC






TGAACCGTCCGAGGGCAGCGCACCAGG






TTTTCCGACTATTCCGCTGTCTCGTCTGT






TTGATAATGCTATGCTGCGTGCGCACCG






TCTGCACCAGCTGGCCTTTGATACTTAC






CAGGAATTTGAAGAAGCcTACATTCCTA






AAGAGCAGAAGTACTCTTTCCTGCAAA






ACCCACAGACTTCTCTCTGCTTCAGCGA






ATCTATTCCGACGCCTTCCAATCGCGAG






GAAACTCAGCAAAAGTCCAATCTGGAA






CTACTCCGCATTTCTCTGCTTCTGATTCA






GAGCTGGCTAGAACCAGTGCAATTTCTG






CGTTCCGTCTTCGCCAATAGCCTAGTTT






ATGGCGCATCCGACAGCAACGTATACG






ATCTCCTGAAAGATCTCGAGGAAGGCA






TTCAGACCCTGATGGGTCGTCTCGAGGA






TGGCTCTCCGCGTACTGGTCAGATCTTC






AAGCAGACTTACTCTAAATTTGATACTA






ACAGCCACAATGACGATGCGCTTCTAA






AAAACTATGGTCTGCTGTATTGTTTTCG






TAAAGATATGGACAAAGTTGAAACCTT






CCTGCGTATTGTTCAGTGTCGTTCCGTT






GAGGGCAGCTGTGGTTTCTAAGGTggcgg






cctgggcccggtgagcggcgtgccgGGTGGTACCTC






TGAAAGCGCAACTCCTGAGTCTGGCCCA






GGTAGCGAACCTGCTACCTCCGGCTCTG






AGACTCCAGGTACCTCTGAAAGCGCAA






CCCCGGAATCTGGTCCAGGTAGCGAAC






CTGCAACCTCTGGCTCTGAAACCCCAGG






TACCTCTGAAAGCGCTACTCCTGAATCT






GGCCCAGGTACTTCTACTGAACCGTCCG






AGGGCAGCGCACCAGGTAGCCCTGCTG






GCTCTCCAACCTCCACCGAAGAAGGTAC






CTCTGAAAGCGCAACCCCTGAATCCGGC






CCAGGTAGCGAACCGGCAACCTCCGGT






TCTGAAACCCCAGGTACTTCTGAAAGCG






CTACTCCTGAGTCCGGCCCAGGTAGCCC






GGCTGGCTCTCCGACTTCCACCGAGGAA






GGTAGCCCGGCTGGCTCTCCAACTTCTA






CTGAAGAAGGTACTTCTACCGAACCTTC






CGAGGGCAGCGCACCAGGTACTTCTGA






AAGCGCTACCCCTGAGTCCGGCCCAGGT






ACTTCTGAAAGCGCTACTCCTGAATCCG






GTCCAGGTACTTCTGAAAGCGCTACCCC






GGAATCTGGCCCAGGTAGCGAACCGGC






TACTTCTGGTTCTGAAACCCCAGGTAGC






GAACCGGCTACCTCCGGTTCTGAAACTC






CAGGTAGCCCAGCAGGCTCTCCGACTTC






CACTGAGGAAGGTACTTCTACTGAACCT






TCCGAAGGCAGCGCACCAGGTACCTCT






ACTGAACCTTCTGAGGGCAGCGCTCCAG






GTAGCGAACCTGCAACCTCTGGCTCTGA






AACCCCAGGTACCTCTGAAAGCGCTACT






CCTGAATCTGGCCCAGGTACTTCTACTG






AACCGTCCGAGGGCAGCGCACCA






AE912-
MAEPAGSPTSTEEGT
811
ATGGCTGAACCTGCTGGCTCTCCAACCT
812


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG



MMP-17-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT



AE288
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG




GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG




TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT




PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA




APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC




TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT




ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT




GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC




EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT




TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG




PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC




STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT




GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG




ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA




EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA




GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC




TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA




PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC




ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA




PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT




SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC




TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT




SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC




GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA




TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG




EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG




APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG




SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA




PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC




ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG




PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA




EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG




ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC




GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG




PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC




AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC




PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT




GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG




TSESATPESGPGSEP

CTACTCCGGAGTCTGGCCCAGGTACCTC




ATSGSETPGTSESAT

TACTGAACCGTCTGAGGGTAGCGCTCCA




PESGPGSEPATSGSE

GGTACTTCTACTGAACCGTCCGAAGGTA




TPGTSESATPESGPG

GCGCACCAGGTACTTCTACCGAACCGTC




TSTEPSEGSAPGSPA

CGAAGGCAGCGCTCCAGGTACCTCTACT




GSPTSTEEGTSESATP

GAACCTTCCGAGGGCAGCGCTCCAGGT




ESGPGSEPATSGSET

ACCTCTACCGAACCTTCTGAAGGTAGCG




PGTSESATPESGPGSP

CACCAGGTACTTCTACCGAACCGTCCGA




AGSPTSTEEGSPAGS

GGGTAGCGCACCAGGTAGCCCAGCAGG




PTSTEEGTSTEPSEGS

TTCTCCTACCTCCACCGAGGAAGGTACT




APGTSESATPESGPG

TCTACCGAACCGTCCGAGGGTAGCGCA




TSESATPESGPGTSES

CCAGGTACCTCTGAAAGCGCAACTCCTG




ATPESGPGSEPATSG

AGTCTGGCCCAGGTAGCGAACCTGCTAC




SETPGSEPATSGSETP

CTCCGGCTCTGAGACTCCAGGTACCTCT




GSPAGSPTSTEEGTS

GAAAGCGCAACCCCGGAATCTGGTCCA




TEPSEGSAPGTSTEPS

GGTAGCGAACCTGCAACCTCTGGCTCTG




EGSAPGSEPATSGSE

AAACCCCAGGTACCTCTGAAAGCGCTA




TPGTSESATPESGPG

CTCCTGAATCTGGCCCAGGTACTTCTAC




TSTEPSEGSAPGFPTI

TGAACCGTCCGAGGGCAGCGCACCAGG




PLSRLFDNAMLRAH

TACTTCTGAAAGCGCTACTCCTGAGTCC




RLHQLAFDTYQEFEE

GGCCCAGGTAGCCCGGCTGGCTCTCCGA




AYIPKEQKYSFLQNP

CTTCCACCGAGGAAGGTAGCCCGGCTG




QTSLCFSESIPTPSNR

GCTCTCCAACTTCTACTGAAGAAGGTAG




EETQQKSNLELLRIS

CCCGGCAGGCTCTCCGACCTCTACTGAG




LLLIQSWLEPVQFLR

GAAGGTACTTCTGAAAGCGCAACCCCG




SVFANSLVYGASDS

GAGTCCGGCCCAGGTACCTCTACCGAAC




NVYDLLKDLEEGIQT

CGTCTGAGGGCAGCGCACCAGGTACCT




LMGRLEDGSPRTGQI

CTGAAAGCGCAACTCCTGAGTCTGGCCC




FKQTYSKFDTNSHN

AGGTAGCGAACCTGCTACCTCCGGCTCT




DDALLKNYGLLYCF

GAGACTCCAGGTACCTCTGAAAGCGCA




RKDMDKVETFLRIV

ACCCCGGAATCTGGTCCAGGTAGCGAA




QCRSVEGSCGFGAPL

CCTGCAACCTCTGGCTCTGAAACCCCAG




GLRLRGGGGTSESA

GTACCTCTGAAAGCGCTACTCCTGAATC




TPESGPGSEPATSGS

TGGCCCAGGTACTTCTACTGAACCGTCC




ETPGTSESATPESGP

GAGGGCAGCGCACCAGGTAGCCCTGCT




GSEPATSGSETPGTS

GGCTCTCCAACCTCCACCGAAGAAGGT




ESATPESGPGTSTEPS

ACCTCTGAAAGCGCAACCCCTGAATCCG




EGSAPGSPAGSPTST

GCCCAGGTAGCGAACCGGCAACCTCCG




EEGTSESATPESGPG

GTTCTGAAACCCCAGGTACTTCTGAAAG




SEPATSGSETPGTSES

CGCTACTCCTGAGTCCGGCCCAGGTAGC




ATPESGPGSPAGSPT

CCGGCTGGCTCTCCGACTTCCACCGAGG




STEEGSPAGSPTSTEE

AAGGTAGCCCGGCTGGCTCTCCAACTTC




GTSTEPSEGSAPGTS

TACTGAAGAAGGTACTTCTACCGAACCT




ESATPESGPGTSESA

TCCGAGGGCAGCGCACCAGGTACTTCTG




TPESGPGTSESATPES

AAAGCGCTACCCCTGAGTCCGGCCCAG




GPGSEPATSGSETPG

GTACTTCTGAAAGCGCTACTCCTGAATC




SEPATSGSETPGSPA

CGGTCCAGGTACTTCTGAAAGCGCTACC




GSPTSTEEGTSTEPSE

CCGGAATCTGGCCCAGGTAGCGAACCG




GSAPGTSTEPSEGSA

GCTACTTCTGGTTCTGAAACCCCAGGTA




PGSEPATSGSETPGT

GCGAACCGGCTACCTCCGGTTCTGAAAC




SESATPESGPGTSTEP

TCCAGGTAGCCCAGCAGGCTCTCCGACT




SEGSAP

TCCACTGAGGAAGGTACTTCTACTGAAC






CTTCCGAAGGCAGCGCACCAGGTACCTC






TACTGAACCTTCTGAGGGCAGCGCTCCA






GGTAGCGAACCTGCAACCTCTGGCTCTG






AAACCCCAGGTACCTCTGAAAGCGCTA






CTCCTGAATCTGGCCCAGGTACTTCTAC






TGAACCGTCCGAGGGCAGCGCACCAGG






TTTTCCGACTATTCCGCTGTCTCGTCTGT






TTGATAATGCTATGCTGCGTGCGCACCG






TCTGCACCAGCTGGCCTTTGATACTTAC






CAGGAATTTGAAGAAGCcTACATTCCTA






AAGAGCAGAAGTACTCTTTCCTGCAAA






ACCCACAGACTTCTCTCTGCTTCAGCGA






ATCTATTCCGACGCCTTCCAATCGCGAG






GAAACTCAGCAAAAGTCCAATCTGGAA






CTACTCCGCATTTCTCTGCTTCTGATTCA






GAGCTGGCTAGAACCAGTGCAATTTCTG






CGTTCCGTCTTCGCCAATAGCCTAGTTT






ATGGCGCATCCGACAGCAACGTATACG






ATCTCCTGAAAGATCTCGAGGAAGGCA






TTCAGACCCTGATGGGTCGTCTCGAGGA






TGGCTCTCCGCGTACTGGTCAGATCTTC






AAGCAGACTTACTCTAAATTTGATACTA






ACAGCCACAATGACGATGCGCTTCTAA






AAAACTATGGTCTGCTGTATTGTTTTCG






TAAAGATATGGACAAAGTTGAAACCTT






CCTGCGTATTGTTCAGTGTCGTTCCGTT






GAGGGCAGCTGTGGTTTCTAAGGTgcgcc






gctgggcctgcgcctgcgcggcggcGGTGGTACCTC






TGAAAGCGCAACTCCTGAGTCTGGCCCA






GGTAGCGAACCTGCTACCTCCGGCTCTG






AGACTCCAGGTACCTCTGAAAGCGCAA






CCCCGGAATCTGGTCCAGGTAGCGAAC






CTGCAACCTCTGGCTCTGAAACCCCAGG






TACCTCTGAAAGCGCTACTCCTGAATCT






GGCCCAGGTACTTCTACTGAACCGTCCG






AGGGCAGCGCACCAGGTAGCCCTGCTG






GCTCTCCAACCTCCACCGAAGAAGGTAC






CTCTGAAAGCGCAACCCCTGAATCCGGC






CCAGGTAGCGAACCGGCAACCTCCGGT






TCTGAAACCCCAGGTACTTCTGAAAGCG






CTACTCCTGAGTCCGGCCCAGGTAGCCC






GGCTGGCTCTCCGACTTCCACCGAGGAA






GGTAGCCCGGCTGGCTCTCCAACTTCTA






CTGAAGAAGGTACTTCTACCGAACCTTC






CGAGGGCAGCGCACCAGGTACTTCTGA






AAGCGCTACCCCTGAGTCCGGCCCAGGT






ACTTCTGAAAGCGCTACTCCTGAATCCG






GTCCAGGTACTTCTGAAAGCGCTACCCC






GGAATCTGGCCCAGGTAGCGAACCGGC






TACTTCTGGTTCTGAAACCCCAGGTAGC






GAACCGGCTACCTCCGGTTCTGAAACTC






CAGGTAGCCCAGCAGGCTCTCCGACTTC






CACTGAGGAAGGTACTTCTACTGAACCT






TCCGAAGGCAGCGCACCAGGTACCTCT






ACTGAACCTTCTGAGGGCAGCGCTCCAG






GTAGCGAACCTGCAACCTCTGGCTCTGA






AACCCCAGGTACCTCTGAAAGCGCTACT






CCTGAATCTGGCCCAGGTACTTCTACTG






AACCGTCCGAGGGCAGCGCACCA






AM923-
MAEPAGSPTSTEEGA
813
ATGGCTGAACCTGCTGGCTCTCCAACCT
814


hGH-
SPGTSSTGSPGSSTPS

CCACTGAGGAAGGTGCATCCCCGGGCA



Thrombin-
GATGSPGSSTPSGAT

CCAGCTCTACCGGTTCTCCAGGTAGCTC



AE144
GSPGTSTEPSEGSAP

TACCCCGTCTGGTGCTACCGGCTCTCCA




GSEPATSGSETPGSP

GGTAGCTCTACCCCGTCTGGTGCTACTG




AGSPTSTEEGSTSST

GCTCTCCAGGTACTTCTACTGAACCGTC




AESPGPGTSTPESGS

TGAAGGCAGCGCACCAGGTAGCGAACC




ASPGSTSESPSGTAP

GGCTACTTCCGGTTCTGAAACCCCAGGT




GSTSESPSGTAPGTS

AGCCCAGCAGGTTCTCCAACTTCTACTG




TPESGSASPGTSTPES

AAGAAGGTTCTACCAGCTCTACCGCAG




GSASPGSEPATSGSE

AATCTCCTGGTCCAGGTACCTCTACTCC




TPGTSESATPESGPG

GGAAAGCGGCTCTGCATCTCCAGGTTCT




SPAGSPTSTEEGTSTE

ACTAGCGAATCTCCTTCTGGCACTGCAC




PSEGSAPGTSESATP

CAGGTTCTACTAGCGAATCCCCGTCTGG




ESGPGTSTEPSEGSA

TACTGCTCCAGGTACTTCTACTCCTGAA




PGTSTEPSEGSAPGSP

AGCGGTTCCGCTTCTCCAGGTACCTCTA




AGSPTSTEEGTSTEPS

CTCCGGAAAGCGGTTCTGCATCTCCAGG




EGSAPGTSTEPSEGS

TAGCGAACCGGCAACCTCCGGCTCTGA




APGTSESATPESGPG

AACCCCAGGTACCTCTGAAAGCGCTACT




TSESATPESGPGTSTE

CCTGAATCCGGCCCAGGTAGCCCGGCA




PSEGSAPGTSTEPSE

GGTTCTCCGACTTCCACTGAGGAAGGTA




GSAPGTSESATPESG

CCTCTACTGAACCTTCTGAGGGCAGCGC




PGTSTEPSEGSAPGS

TCCAGGTACTTCTGAAAGCGCTACCCCG




EPATSGSETPGSPAG

GAGTCCGGTCCAGGTACTTCTACTGAAC




SPTSTEEGSSTPSGAT

CGTCCGAAGGTAGCGCACCAGGTACTTC




GSPGTPGSGTASSSP

TACCGAACCGTCCGAGGGTAGCGCACC




GSSTPSGATGSPGTS

AGGTAGCCCAGCAGGTTCTCCTACCTCC




TEPSEGSAPGTSTEPS

ACCGAGGAAGGTACTTCTACCGAACCG




EGSAPGSEPATSGSE

TCCGAGGGTAGCGCACCAGGTACTTCTA




TPGSPAGSPTSTEEG

CCGAACCTTCCGAGGGCAGCGCACCAG




SPAGSPTSTEEGTSTE

GTACTTCTGAAAGCGCTACCCCTGAGTC




PSEGSAPGASASGAP

CGGCCCAGGTACTTCTGAAAGCGCTACT




STGGTSESATPESGP

CCTGAATCCGGTCCAGGTACCTCTACTG




GSPAGSPTSTEEGSP

AACCTTCCGAAGGCAGCGCTCCAGGTA




AGSPTSTEEGSTSST

CCTCTACCGAACCGTCCGAGGGCAGCG




AESPGPGSTSESPSGT

CACCAGGTACTTCTGAAAGCGCAACCCC




APGTSPSGESSTAPG

TGAATCCGGTCCAGGTACTTCTACTGAA




TPGSGTASSSPGSSTP

CCTTCCGAAGGTAGCGCTCCAGGTAGCG




SGATGSPGSSPSAST

AACCTGCTACTTCTGGTTCTGAAACCCC




GTGPGSEPATSGSET

AGGTAGCCCGGCTGGCTCTCCGACCTCC




PGTSESATPESGPGS

ACCGAGGAAGGTAGCTCTACCCCGTCTG




EPATSGSETPGSTSST

GTGCTACTGGTTCTCCAGGTACTCCGGG




AESPGPGSTSSTAESP

CAGCGGTACTGCTTCTTCCTCTCCAGGT




GPGTSPSGESSTAPG

AGCTCTACCCCTTCTGGTGCTACTGGCT




SEPATSGSETPGSEP

CTCCAGGTACCTCTACCGAACCGTCCGA




ATSGSETPGTSTEPSE

GGGTAGCGCACCAGGTACCTCTACTGA




GSAPGSTSSTAESPG

ACCGTCTGAGGGTAGCGCTCCAGGTAG




PGTSTPESGSASPGST

CGAACCGGCAACCTCCGGTTCTGAAACT




SESPSGTAPGTSTEPS

CCAGGTAGCCCTGCTGGCTCTCCGACTT




EGSAPGTSTEPSEGS

CTACTGAGGAAGGTAGCCCGGCTGGTTC




APGTSTEPSEGSAPG

TCCGACTTCTACTGAGGAAGGTACTTCT




SSTPSGATGSPGSSPS

ACCGAACCTTCCGAAGGTAGCGCTCCA




ASTGTGPGASPGTSS

GGTGCAAGCGCAAGCGGCGCGCCAAGC




TGSPGSEPATSGSET

ACGGGAGGTACTTCTGAAAGCGCTACTC




PGTSESATPESGPGSP

CTGAGTCCGGCCCAGGTAGCCCGGCTG




AGSPTSTEEGSSTPS

GCTCTCCGACTTCCACCGAGGAAGGTAG




GATGSPGSSPSASTG

CCCGGCTGGCTCTCCAACTTCTACTGAA




TGPGASPGTSSTGSP

GAAGGTTCTACCAGCTCTACCGCTGAAT




GTSESATPESGPGTS

CTCCTGGCCCAGGTTCTACTAGCGAATC




TEPSEGSAPGTSTEPS

TCCGTCTGGCACCGCACCAGGTACTTCC




EGSAPGFPTIPLSRLF

CCTAGCGGTGAATCTTCTACTGCACCAG




DNAMLRAHRLHQL

GTACCCCTGGCAGCGGTACCGCTTCTTC




AFDTYQEFEEAYIPK

CTCTCCAGGTAGCTCTACCCCGTCTGGT




EQKYSFLQNPQTSLC

GCTACTGGCTCTCCAGGTTCTAGCCCGT




FSESIPTPSNREETQQ

CTGCATCTACCGGTACCGGCCCAGGTAG




KSNLELLRISLLLIQS

CGAACCGGCAACCTCCGGCTCTGAAACT




WLEPVQFLRSVFAN

CCAGGTACTTCTGAAAGCGCTACTCCGG




SLVYGASDSNVYDL

AATCCGGCCCAGGTAGCGAACCGGCTA




LKDLEEGIQTLMGRL

CTTCCGGCTCTGAAACCCCAGGTTCCAC




EDGSPRTGQIFKQTY

CAGCTCTACTGCAGAATCTCCGGGCCCA




SKFDTNSHNDDALL

GGTTCTACTAGCTCTACTGCAGAATCTC




KNYGLLYCFRKDMD

CGGGTCCAGGTACTTCTCCTAGCGGCGA




KVETFLRIVQCRSVE

ATCTTCTACCGCTCCAGGTAGCGAACCG




GSCGFGLTPRSLLVG

GCAACCTCTGGCTCTGAAACTCCAGGTA




GGGSEPATSGSETPG

GCGAACCTGCAACCTCCGGCTCTGAAAC




TSESATPESGPGSEP

CCCAGGTACTTCTACTGAACCTTCTGAG




ATSGSETPGSPAGSP

GGCAGCGCACCAGGTTCTACCAGCTCTA




TSTEEGTSTEPSEGS

CCGCAGAATCTCCTGGTCCAGGTACCTC




APGSEPATSGSETPG

TACTCCGGAAAGCGGCTCTGCATCTCCA




SEPATSGSETPGSEP

GGTTCTACTAGCGAATCTCCTTCTGGCA




ATSGSETPGTSTEPSE

CTGCACCAGGTACTTCTACCGAACCGTC




GSAPGTSESATPESG

CGAAGGCAGCGCTCCAGGTACCTCTACT




PGSEPATSGSETPGT

GAACCTTCCGAGGGCAGCGCTCCAGGT




STEPSEGSAP

ACCTCTACCGAACCTTCTGAAGGTAGCG






CACCAGGTAGCTCTACTCCGTCTGGTGC






AACCGGCTCCCCAGGTTCTAGCCCGTCT






GCTTCCACTGGTACTGGCCCAGGTGCTT






CCCCGGGCACCAGCTCTACTGGTTCTCC






AGGTAGCGAACCTGCTACCTCCGGTTCT






GAAACCCCAGGTACCTCTGAAAGCGCA






ACTCCGGAGTCTGGTCCAGGTAGCCCTG






CAGGTTCTCCTACCTCCACTGAGGAAGG






TAGCTCTACTCCGTCTGGTGCAACCGGC






TCCCCAGGTTCTAGCCCGTCTGCTTCCA






CTGGTACTGGCCCAGGTGCTTCCCCGGG






CACCAGCTCTACTGGTTCTCCAGGTACC






TCTGAAAGCGCTACTCCGGAGTCTGGCC






CAGGTACCTCTACTGAACCGTCTGAGGG






TAGCGCTCCAGGTACTTCTACTGAACCG






TCCGAAGGTAGCGCACCAGGTTTTCCGA






CTATTCCGCTGTCTCGTCTGTTTGATAAT






GCTATGCTGCGTGCGCACCGTCTGCACC






AGCTGGCCTTTGATACTTACCAGGAATT






TGAAGAAGCcTACATTCCTAAAGAGCAG






AAGTACTCTTTCCTGCAAAACCCACAGA






CTTCTCTCTGCTTCAGCGAATCTATTCCG






ACGCCTTCCAATCGCGAGGAAACTCAG






CAAAAGTCCAATCTGGAACTACTCCGCA






TTTCTCTGCTTCTGATTCAGAGCTGGCT






AGAACCAGTGCAATTTCTGCGTTCCGTC






TTCGCCAATAGCCTAGTTTATGGCGCAT






CCGACAGCAACGTATACGATCTCCTGAA






AGATCTCGAGGAAGGCATTCAGACCCT






GATGGGTCGTCTCGAGGATGGCTCTCCG






CGTACTGGTCAGATCTTCAAGCAGACTT






ACTCTAAATTTGATACTAACAGCCACAA






TGACGATGCGCTTCTAAAAAACTATGGT






CTGCTGTATTGTTTTCGTAAAGATATGG






ACAAAGTTGAAACCTTCCTGCGTATTGT






TCAGTGTCGTTCCGTTGAGGGCAGCTGT






GGTTTCTAAGGTctgaccccgcgcagcctgctggtgg






gcggcGGTGGTAGCGAACCGGCAACTTCC






GGCTCTGAAACCCCAGGTACTTCTGAAA






GCGCTACTCCTGAGTCTGGCCCAGGTAG






CGAACCTGCTACCTCTGGCTCTGAAACC






CCAGGTAGCCCGGCAGGCTCTCCGACTT






CCACCGAGGAAGGTACCTCTACTGAAC






CTTCTGAGGGTAGCGCTCCAGGTAGCGA






ACCGGCAACCTCTGGCTCTGAAACCCCA






GGTAGCGAACCTGCTACCTCCGGCTCTG






AAACTCCAGGTAGCGAACCGGCTACTTC






CGGTTCTGAAACTCCAGGTACCTCTACC






GAACCTTCCGAAGGCAGCGCACCAGGT






ACTTCTGAAAGCGCAACCCCTGAATCCG






GTCCAGGTAGCGAACCGGCTACTTCTGG






CTCTGAGACTCCAGGTACTTCTACCGAA






CCGTCCGAAGGTAGCGCACCA






AM923-
MAEPAGSPTSTEEGA
815
ATGGCTGAACCTGCTGGCTCTCCAACCT
816


hGH-
SPGTSSTGSPGSSTPS

CCACTGAGGAAGGTGCATCCCCGGGCA



FXIa-
GATGSPGSSTPSGAT

CCAGCTCTACCGGTTCTCCAGGTAGCTC



AE144
GSPGTSTEPSEGSAP

TACCCCGTCTGGTGCTACCGGCTCTCCA




GSEPATSGSETPGSP

GGTAGCTCTACCCCGTCTGGTGCTACTG




AGSPTSTEEGSTSST

GCTCTCCAGGTACTTCTACTGAACCGTC




AESPGPGTSTPESGS

TGAAGGCAGCGCACCAGGTAGCGAACC




ASPGSTSESPSGTAP

GGCTACTTCCGGTTCTGAAACCCCAGGT




GSTSESPSGTAPGTS

AGCCCAGCAGGTTCTCCAACTTCTACTG




TPESGSASPGTSTPES

AAGAAGGTTCTACCAGCTCTACCGCAG




GSASPGSEPATSGSE

AATCTCCTGGTCCAGGTACCTCTACTCC




TPGTSESATPESGPG

GGAAAGCGGCTCTGCATCTCCAGGTTCT




SPAGSPTSTEEGTSTE

ACTAGCGAATCTCCTTCTGGCACTGCAC




PSEGSAPGTSESATP

CAGGTTCTACTAGCGAATCCCCGTCTGG




ESGPGTSTEPSEGSA

TACTGCTCCAGGTACTTCTACTCCTGAA




PGTSTEPSEGSAPGSP

AGCGGTTCCGCTTCTCCAGGTACCTCTA




AGSPTSTEEGTSTEPS

CTCCGGAAAGCGGTTCTGCATCTCCAGG




EGSAPGTSTEPSEGS

TAGCGAACCGGCAACCTCCGGCTCTGA




APGTSESATPESGPG

AACCCCAGGTACCTCTGAAAGCGCTACT




TSESATPESGPGTSTE

CCTGAATCCGGCCCAGGTAGCCCGGCA




PSEGSAPGTSTEPSE

GGTTCTCCGACTTCCACTGAGGAAGGTA




GSAPGTSESATPESG

CCTCTACTGAACCTTCTGAGGGCAGCGC




PGTSTEPSEGSAPGS

TCCAGGTACTTCTGAAAGCGCTACCCCG




EPATSGSETPGSPAG

GAGTCCGGTCCAGGTACTTCTACTGAAC




SPTSTEEGSSTPSGAT

CGTCCGAAGGTAGCGCACCAGGTACTTC




GSPGTPGSGTASSSP

TACCGAACCGTCCGAGGGTAGCGCACC




GSSTPSGATGSPGTS

AGGTAGCCCAGCAGGTTCTCCTACCTCC




TEPSEGSAPGTSTEPS

ACCGAGGAAGGTACTTCTACCGAACCG




EGSAPGSEPATSGSE

TCCGAGGGTAGCGCACCAGGTACTTCTA




TPGSPAGSPTSTEEG

CCGAACCTTCCGAGGGCAGCGCACCAG




SPAGSPTSTEEGTSTE

GTACTTCTGAAAGCGCTACCCCTGAGTC




PSEGSAPGASASGAP

CGGCCCAGGTACTTCTGAAAGCGCTACT




STGGTSESATPESGP

CCTGAATCCGGTCCAGGTACCTCTACTG




GSPAGSPTSTEEGSP

AACCTTCCGAAGGCAGCGCTCCAGGTA




AGSPTSTEEGSTSST

CCTCTACCGAACCGTCCGAGGGCAGCG




AESPGPGSTSESPSGT

CACCAGGTACTTCTGAAAGCGCAACCCC




APGTSPSGESSTAPG

TGAATCCGGTCCAGGTACTTCTACTGAA




TPGSGTASSSPGSSTP

CCTTCCGAAGGTAGCGCTCCAGGTAGCG




SGATGSPGSSPSAST

AACCTGCTACTTCTGGTTCTGAAACCCC




GTGPGSEPATSGSET

AGGTAGCCCGGCTGGCTCTCCGACCTCC




PGTSESATPESGPGS

ACCGAGGAAGGTAGCTCTACCCCGTCTG




EPATSGSETPGSTSST

GTGCTACTGGTTCTCCAGGTACTCCGGG




AESPGPGSTSSTAESP

CAGCGGTACTGCTTCTTCCTCTCCAGGT




GPGTSPSGESSTAPG

AGCTCTACCCCTTCTGGTGCTACTGGCT




SEPATSGSETPGSEP

CTCCAGGTACCTCTACCGAACCGTCCGA




ATSGSETPGTSTEPSE

GGGTAGCGCACCAGGTACCTCTACTGA




GSAPGSTSSTAESPG

ACCGTCTGAGGGTAGCGCTCCAGGTAG




PGTSTPESGSASPGST

CGAACCGGCAACCTCCGGTTCTGAAACT




SESPSGTAPGTSTEPS

CCAGGTAGCCCTGCTGGCTCTCCGACTT




EGSAPGTSTEPSEGS

CTACTGAGGAAGGTAGCCCGGCTGGTTC




APGTSTEPSEGSAPG

TCCGACTTCTACTGAGGAAGGTACTTCT




SSTPSGATGSPGSSPS

ACCGAACCTTCCGAAGGTAGCGCTCCA




ASTGTGPGASPGTSS

GGTGCAAGCGCAAGCGGCGCGCCAAGC




TGSPGSEPATSGSET

ACGGGAGGTACTTCTGAAAGCGCTACTC




PGTSESATPESGPGSP

CTGAGTCCGGCCCAGGTAGCCCGGCTG




AGSPTSTEEGSSTPS

GCTCTCCGACTTCCACCGAGGAAGGTAG




GATGSPGSSPSASTG

CCCGGCTGGCTCTCCAACTTCTACTGAA




TGPGASPGTSSTGSP

GAAGGTTCTACCAGCTCTACCGCTGAAT




GTSESATPESGPGTS

CTCCTGGCCCAGGTTCTACTAGCGAATC




TEPSEGSAPGTSTEPS

TCCGTCTGGCACCGCACCAGGTACTTCC




EGSAPGFPTIPLSRLF

CCTAGCGGTGAATCTTCTACTGCACCAG




DNAMLRAHRLHQL

GTACCCCTGGCAGCGGTACCGCTTCTTC




AFDTYQEFEEAYIPK

CTCTCCAGGTAGCTCTACCCCGTCTGGT




EQKYSFLQNPQTSLC

GCTACTGGCTCTCCAGGTTCTAGCCCGT




FSESIPTPSNREETQQ

CTGCATCTACCGGTACCGGCCCAGGTAG




KSNLELLRISLLLIQS

CGAACCGGCAACCTCCGGCTCTGAAACT




WLEPVQFLRSVFAN

CCAGGTACTTCTGAAAGCGCTACTCCGG




SLVYGASDSNVYDL

AATCCGGCCCAGGTAGCGAACCGGCTA




LKDLEEGIQTLMGRL

CTTCCGGCTCTGAAACCCCAGGTTCCAC




EDGSPRTGQIFKQTY

CAGCTCTACTGCAGAATCTCCGGGCCCA




SKFDTNSHNDDALL

GGTTCTACTAGCTCTACTGCAGAATCTC




KNYGLLYCFRKDMD

CGGGTCCAGGTACTTCTCCTAGCGGCGA




KVETFLRIVQCRSVE

ATCTTCTACCGCTCCAGGTAGCGAACCG




GSCGFGGGKLTRVV

GCAACCTCTGGCTCTGAAACTCCAGGTA




GGGGSEPATSGSETP

GCGAACCTGCAACCTCCGGCTCTGAAAC




GTSESATPESGPGSE

CCCAGGTACTTCTACTGAACCTTCTGAG




PATSGSETPGSPAGS

GGCAGCGCACCAGGTTCTACCAGCTCTA




PTSTEEGTSTEPSEGS

CCGCAGAATCTCCTGGTCCAGGTACCTC




APGSEPATSGSETPG

TACTCCGGAAAGCGGCTCTGCATCTCCA




SEPATSGSETPGSEP

GGTTCTACTAGCGAATCTCCTTCTGGCA




ATSGSETPGTSTEPSE

CTGCACCAGGTACTTCTACCGAACCGTC




GSAPGTSESATPESG

CGAAGGCAGCGCTCCAGGTACCTCTACT




PGSEPATSGSETPGT

GAACCTTCCGAGGGCAGCGCTCCAGGT




STEPSEGSAP

ACCTCTACCGAACCTTCTGAAGGTAGCG






CACCAGGTAGCTCTACTCCGTCTGGTGC






AACCGGCTCCCCAGGTTCTAGCCCGTCT






GCTTCCACTGGTACTGGCCCAGGTGCTT






CCCCGGGCACCAGCTCTACTGGTTCTCC






AGGTAGCGAACCTGCTACCTCCGGTTCT






GAAACCCCAGGTACCTCTGAAAGCGCA






ACTCCGGAGTCTGGTCCAGGTAGCCCTG






CAGGTTCTCCTACCTCCACTGAGGAAGG






TAGCTCTACTCCGTCTGGTGCAACCGGC






TCCCCAGGTTCTAGCCCGTCTGCTTCCA






CTGGTACTGGCCCAGGTGCTTCCCCGGG






CACCAGCTCTACTGGTTCTCCAGGTACC






TCTGAAAGCGCTACTCCGGAGTCTGGCC






CAGGTACCTCTACTGAACCGTCTGAGGG






TAGCGCTCCAGGTACTTCTACTGAACCG






TCCGAAGGTAGCGCACCAGGTTTTCCGA






CTATTCCGCTGTCTCGTCTGTTTGATAAT






GCTATGCTGCGTGCGCACCGTCTGCACC






AGCTGGCCTTTGATACTTACCAGGAATT






TGAAGAAGCcTACATTCCTAAAGAGCAG






AAGTACTCTTTCCTGCAAAACCCACAGA






CTTCTCTCTGCTTCAGCGAATCTATTCCG






ACGCCTTCCAATCGCGAGGAAACTCAG






CAAAAGTCCAATCTGGAACTACTCCGCA






TTTCTCTGCTTCTGATTCAGAGCTGGCT






AGAACCAGTGCAATTTCTGCGTTCCGTC






TTCGCCAATAGCCTAGTTTATGGCGCAT






CCGACAGCAACGTATACGATCTCCTGAA






AGATCTCGAGGAAGGCATTCAGACCCT






GATGGGTCGTCTCGAGGATGGCTCTCCG






CGTACTGGTCAGATCTTCAAGCAGACTT






ACTCTAAATTTGATACTAACAGCCACAA






TGACGATGCGCTTCTAAAAAACTATGGT






CTGCTGTATTGTTTTCGTAAAGATATGG






ACAAAGTTGAAACCTTCCTGCGTATTGT






TCAGTGTCGTTCCGTTGAGGGCAGCTGT






GGTTTCTAAGGTggcggcaaactgacccgcgtggtg






ggcggcGGTGGTAGCGAACCGGCAACTTC






CGGCTCTGAAACCCCAGGTACTTCTGAA






AGCGCTACTCCTGAGTCTGGCCCAGGTA






GCGAACCTGCTACCTCTGGCTCTGAAAC






CCCAGGTAGCCCGGCAGGCTCTCCGACT






TCCACCGAGGAAGGTACCTCTACTGAAC






CTTCTGAGGGTAGCGCTCCAGGTAGCGA






ACCGGCAACCTCTGGCTCTGAAACCCCA






GGTAGCGAACCTGCTACCTCCGGCTCTG






AAACTCCAGGTAGCGAACCGGCTACTTC






CGGTTCTGAAACTCCAGGTACCTCTACC






GAACCTTCCGAAGGCAGCGCACCAGGT






ACTTCTGAAAGCGCAACCCCTGAATCCG






GTCCAGGTAGCGAACCGGCTACTTCTGG






CTCTGAGACTCCAGGTACTTCTACCGAA






CCGTCCGAAGGTAGCGCACCA






AM923-
MAEPAGSPTSTEEGA
817
ATGGCTGAACCTGCTGGCTCTCCAACCT
818


hGH-
SPGTSSTGSPGSSTPS

CCACTGAGGAAGGTGCATCCCCGGGCA



Elastase-
GATGSPGSSTPSGAT

CCAGCTCTACCGGTTCTCCAGGTAGCTC



AE144
GSPGTSTEPSEGSAP

TACCCCGTCTGGTGCTACCGGCTCTCCA




GSEPATSGSETPGSP

GGTAGCTCTACCCCGTCTGGTGCTACTG




AGSPTSTEEGSTSST

GCTCTCCAGGTACTTCTACTGAACCGTC




AESPGPGTSTPESGS

TGAAGGCAGCGCACCAGGTAGCGAACC




ASPGSTSESPSGTAP

GGCTACTTCCGGTTCTGAAACCCCAGGT




GSTSESPSGTAPGTS

AGCCCAGCAGGTTCTCCAACTTCTACTG




TPESGSASPGTSTPES

AAGAAGGTTCTACCAGCTCTACCGCAG




GSASPGSEPATSGSE

AATCTCCTGGTCCAGGTACCTCTACTCC




TPGTSESATPESGPG

GGAAAGCGGCTCTGCATCTCCAGGTTCT




SPAGSPTSTEEGTSTE

ACTAGCGAATCTCCTTCTGGCACTGCAC




PSEGSAPGTSESATP

CAGGTTCTACTAGCGAATCCCCGTCTGG




ESGPGTSTEPSEGSA

TACTGCTCCAGGTACTTCTACTCCTGAA




PGTSTEPSEGSAPGSP

AGCGGTTCCGCTTCTCCAGGTACCTCTA




AGSPTSTEEGTSTEPS

CTCCGGAAAGCGGTTCTGCATCTCCAGG




EGSAPGTSTEPSEGS

TAGCGAACCGGCAACCTCCGGCTCTGA




APGTSESATPESGPG

AACCCCAGGTACCTCTGAAAGCGCTACT




TSESATPESGPGTSTE

CCTGAATCCGGCCCAGGTAGCCCGGCA




PSEGSAPGTSTEPSE

GGTTCTCCGACTTCCACTGAGGAAGGTA




GSAPGTSESATPESG

CCTCTACTGAACCTTCTGAGGGCAGCGC




PGTSTEPSEGSAPGS

TCCAGGTACTTCTGAAAGCGCTACCCCG




EPATSGSETPGSPAG

GAGTCCGGTCCAGGTACTTCTACTGAAC




SPTSTEEGSSTPSGAT

CGTCCGAAGGTAGCGCACCAGGTACTTC




GSPGTPGSGTASSSP

TACCGAACCGTCCGAGGGTAGCGCACC




GSSTPSGATGSPGTS

AGGTAGCCCAGCAGGTTCTCCTACCTCC




TEPSEGSAPGTSTEPS

ACCGAGGAAGGTACTTCTACCGAACCG




EGSAPGSEPATSGSE

TCCGAGGGTAGCGCACCAGGTACTTCTA




TPGSPAGSPTSTEEG

CCGAACCTTCCGAGGGCAGCGCACCAG




SPAGSPTSTEEGTSTE

GTACTTCTGAAAGCGCTACCCCTGAGTC




PSEGSAPGASASGAP

CGGCCCAGGTACTTCTGAAAGCGCTACT




STGGTSESATPESGP

CCTGAATCCGGTCCAGGTACCTCTACTG




GSPAGSPTSTEEGSP

AACCTTCCGAAGGCAGCGCTCCAGGTA




AGSPTSTEEGSTSST

CCTCTACCGAACCGTCCGAGGGCAGCG




AESPGPGSTSESPSGT

CACCAGGTACTTCTGAAAGCGCAACCCC




APGTSPSGESSTAPG

TGAATCCGGTCCAGGTACTTCTACTGAA




TPGSGTASSSPGSSTP

CCTTCCGAAGGTAGCGCTCCAGGTAGCG




SGATGSPGSSPSAST

AACCTGCTACTTCTGGTTCTGAAACCCC




GTGPGSEPATSGSET

AGGTAGCCCGGCTGGCTCTCCGACCTCC




PGTSESATPESGPGS

ACCGAGGAAGGTAGCTCTACCCCGTCTG




EPATSGSETPGSTSST

GTGCTACTGGTTCTCCAGGTACTCCGGG




AESPGPGSTSSTAESP

CAGCGGTACTGCTTCTTCCTCTCCAGGT




GPGTSPSGESSTAPG

AGCTCTACCCCTTCTGGTGCTACTGGCT




SEPATSGSETPGSEP

CTCCAGGTACCTCTACCGAACCGTCCGA




ATSGSETPGTSTEPSE

GGGTAGCGCACCAGGTACCTCTACTGA




GSAPGSTSSTAESPG

ACCGTCTGAGGGTAGCGCTCCAGGTAG




PGTSTPESGSASPGST

CGAACCGGCAACCTCCGGTTCTGAAACT




SESPSGTAPGTSTEPS

CCAGGTAGCCCTGCTGGCTCTCCGACTT




EGSAPGTSTEPSEGS

CTACTGAGGAAGGTAGCCCGGCTGGTTC




APGTSTEPSEGSAPG

TCCGACTTCTACTGAGGAAGGTACTTCT




SSTPSGATGSPGSSPS

ACCGAACCTTCCGAAGGTAGCGCTCCA




ASTGTGPGASPGTSS

GGTGCAAGCGCAAGCGGCGCGCCAAGC




TGSPGSEPATSGSET

ACGGGAGGTACTTCTGAAAGCGCTACTC




PGTSESATPESGPGSP

CTGAGTCCGGCCCAGGTAGCCCGGCTG




AGSPTSTEEGSSTPS

GCTCTCCGACTTCCACCGAGGAAGGTAG




GATGSPGSSPSASTG

CCCGGCTGGCTCTCCAACTTCTACTGAA




TGPGASPGTSSTGSP

GAAGGTTCTACCAGCTCTACCGCTGAAT




GTSESATPESGPGTS

CTCCTGGCCCAGGTTCTACTAGCGAATC




TEPSEGSAPGTSTEPS

TCCGTCTGGCACCGCACCAGGTACTTCC




EGSAPGFPTIPLSRLF

CCTAGCGGTGAATCTTCTACTGCACCAG




DNAMLRAHRLHQL

GTACCCCTGGCAGCGGTACCGCTTCTTC




AFDTYQEFEEAYIPK

CTCTCCAGGTAGCTCTACCCCGTCTGGT




EQKYSFLQNPQTSLC

GCTACTGGCTCTCCAGGTTCTAGCCCGT




FSESIPTPSNREETQQ

CTGCATCTACCGGTACCGGCCCAGGTAG




KSNLELLRISLLLIQS

CGAACCGGCAACCTCCGGCTCTGAAACT




WLEPVQFLRSVFAN

CCAGGTACTTCTGAAAGCGCTACTCCGG




SLVYGASDSNVYDL

AATCCGGCCCAGGTAGCGAACCGGCTA




LKDLEEGIQTLMGRL

CTTCCGGCTCTGAAACCCCAGGTTCCAC




EDGSPRTGQIFKQTY

CAGCTCTACTGCAGAATCTCCGGGCCCA




SKFDTNSHNDDALL

GGTTCTACTAGCTCTACTGCAGAATCTC




KNYGLLYCFRKDMD

CGGGTCCAGGTACTTCTCCTAGCGGCGA




KVETFLRIVQCRSVE

ATCTTCTACCGCTCCAGGTAGCGAACCG




GSCGFGGGLGPVSG

GCAACCTCTGGCTCTGAAACTCCAGGTA




VPGGSEPATSGSETP

GCGAACCTGCAACCTCCGGCTCTGAAAC




GTSESATPESGPGSE

CCCAGGTACTTCTACTGAACCTTCTGAG




PATSGSETPGSPAGS

GGCAGCGCACCAGGTTCTACCAGCTCTA




PTSTEEGTSTEPSEGS

CCGCAGAATCTCCTGGTCCAGGTACCTC




APGSEPATSGSETPG

TACTCCGGAAAGCGGCTCTGCATCTCCA




SEPATSGSETPGSEP

GGTTCTACTAGCGAATCTCCTTCTGGCA




ATSGSETPGTSTEPSE

CTGCACCAGGTACTTCTACCGAACCGTC




GSAPGTSESATPESG

CGAAGGCAGCGCTCCAGGTACCTCTACT




PGSEPATSGSETPGT

GAACCTTCCGAGGGCAGCGCTCCAGGT




STEPSEGSAP

ACCTCTACCGAACCTTCTGAAGGTAGCG






CACCAGGTAGCTCTACTCCGTCTGGTGC






AACCGGCTCCCCAGGTTCTAGCCCGTCT






GCTTCCACTGGTACTGGCCCAGGTGCTT






CCCCGGGCACCAGCTCTACTGGTTCTCC






AGGTAGCGAACCTGCTACCTCCGGTTCT






GAAACCCCAGGTACCTCTGAAAGCGCA






ACTCCGGAGTCTGGTCCAGGTAGCCCTG






CAGGTTCTCCTACCTCCACTGAGGAAGG






TAGCTCTACTCCGTCTGGTGCAACCGGC






TCCCCAGGTTCTAGCCCGTCTGCTTCCA






CTGGTACTGGCCCAGGTGCTTCCCCGGG






CACCAGCTCTACTGGTTCTCCAGGTACC






TCTGAAAGCGCTACTCCGGAGTCTGGCC






CAGGTACCTCTACTGAACCGTCTGAGGG






TAGCGCTCCAGGTACTTCTACTGAACCG






TCCGAAGGTAGCGCACCAGGTTTTCCGA






CTATTCCGCTGTCTCGTCTGTTTGATAAT






GCTATGCTGCGTGCGCACCGTCTGCACC






AGCTGGCCTTTGATACTTACCAGGAATT






TGAAGAAGCcTACATTCCTAAAGAGCAG






AAGTACTCTTTCCTGCAAAACCCACAGA






CTTCTCTCTGCTTCAGCGAATCTATTCCG






ACGCCTTCCAATCGCGAGGAAACTCAG






CAAAAGTCCAATCTGGAACTACTCCGCA






TTTCTCTGCTTCTGATTCAGAGCTGGCT






AGAACCAGTGCAATTTCTGCGTTCCGTC






TTCGCCAATAGCCTAGTTTATGGCGCAT






CCGACAGCAACGTATACGATCTCCTGAA






AGATCTCGAGGAAGGCATTCAGACCCT






GATGGGTCGTCTCGAGGATGGCTCTCCG






CGTACTGGTCAGATCTTCAAGCAGACTT






ACTCTAAATTTGATACTAACAGCCACAA






TGACGATGCGCTTCTAAAAAACTATGGT






CTGCTGTATTGTTTTCGTAAAGATATGG






ACAAAGTTGAAACCTTCCTGCGTATTGT






TCAGTGTCGTTCCGTTGAGGGCAGCTGT






GGTTTCTAAGGTggcggcctgggcccggtgagcggc






gtgccgGGTGGTAGCGAACCGGCAACTTCC






GGCTCTGAAACCCCAGGTACTTCTGAAA






GCGCTACTCCTGAGTCTGGCCCAGGTAG






CGAACCTGCTACCTCTGGCTCTGAAACC






CCAGGTAGCCCGGCAGGCTCTCCGACTT






CCACCGAGGAAGGTACCTCTACTGAAC






CTTCTGAGGGTAGCGCTCCAGGTAGCGA






ACCGGCAACCTCTGGCTCTGAAACCCCA






GGTAGCGAACCTGCTACCTCCGGCTCTG






AAACTCCAGGTAGCGAACCGGCTACTTC






CGGTTCTGAAACTCCAGGTACCTCTACC






GAACCTTCCGAAGGCAGCGCACCAGGT






ACTTCTGAAAGCGCAACCCCTGAATCCG






GTCCAGGTAGCGAACCGGCTACTTCTGG






CTCTGAGACTCCAGGTACTTCTACCGAA






CCGTCCGAAGGTAGCGCACCA






AM923-
MAEPAGSPTSTEEGA
819
ATGGCTGAACCTGCTGGCTCTCCAACCT
820


hGH-
SPGTSSTGSPGSSTPS

CCACTGAGGAAGGTGCATCCCCGGGCA



MMP-17-
GATGSPGSSTPSGAT

CCAGCTCTACCGGTTCTCCAGGTAGCTC



AE144
GSPGTSTEPSEGSAP

TACCCCGTCTGGTGCTACCGGCTCTCCA




GSEPATSGSETPGSP

GGTAGCTCTACCCCGTCTGGTGCTACTG




AGSPTSTEEGSTSST

GCTCTCCAGGTACTTCTACTGAACCGTC




AESPGPGTSTPESGS

TGAAGGCAGCGCACCAGGTAGCGAACC




ASPGSTSESPSGTAP

GGCTACTTCCGGTTCTGAAACCCCAGGT




GSTSESPSGTAPGTS

AGCCCAGCAGGTTCTCCAACTTCTACTG




TPESGSASPGTSTPES

AAGAAGGTTCTACCAGCTCTACCGCAG




GSASPGSEPATSGSE

AATCTCCTGGTCCAGGTACCTCTACTCC




TPGTSESATPESGPG

GGAAAGCGGCTCTGCATCTCCAGGTTCT




SPAGSPTSTEEGTSTE

ACTAGCGAATCTCCTTCTGGCACTGCAC




PSEGSAPGTSESATP

CAGGTTCTACTAGCGAATCCCCGTCTGG




ESGPGTSTEPSEGSA

TACTGCTCCAGGTACTTCTACTCCTGAA




PGTSTEPSEGSAPGSP

AGCGGTTCCGCTTCTCCAGGTACCTCTA




AGSPTSTEEGTSTEPS

CTCCGGAAAGCGGTTCTGCATCTCCAGG




EGSAPGTSTEPSEGS

TAGCGAACCGGCAACCTCCGGCTCTGA




APGTSESATPESGPG

AACCCCAGGTACCTCTGAAAGCGCTACT




TSESATPESGPGTSTE

CCTGAATCCGGCCCAGGTAGCCCGGCA




PSEGSAPGTSTEPSE

GGTTCTCCGACTTCCACTGAGGAAGGTA




GSAPGTSESATPESG

CCTCTACTGAACCTTCTGAGGGCAGCGC




PGTSTEPSEGSAPGS

TCCAGGTACTTCTGAAAGCGCTACCCCG




EPATSGSETPGSPAG

GAGTCCGGTCCAGGTACTTCTACTGAAC




SPTSTEEGSSTPSGAT

CGTCCGAAGGTAGCGCACCAGGTACTTC




GSPGTPGSGTASSSP

TACCGAACCGTCCGAGGGTAGCGCACC




GSSTPSGATGSPGTS

AGGTAGCCCAGCAGGTTCTCCTACCTCC




TEPSEGSAPGTSTEPS

ACCGAGGAAGGTACTTCTACCGAACCG




EGSAPGSEPATSGSE

TCCGAGGGTAGCGCACCAGGTACTTCTA




TPGSPAGSPTSTEEG

CCGAACCTTCCGAGGGCAGCGCACCAG




SPAGSPTSTEEGTSTE

GTACTTCTGAAAGCGCTACCCCTGAGTC




PSEGSAPGASASGAP

CGGCCCAGGTACTTCTGAAAGCGCTACT




STGGTSESATPESGP

CCTGAATCCGGTCCAGGTACCTCTACTG




GSPAGSPTSTEEGSP

AACCTTCCGAAGGCAGCGCTCCAGGTA




AGSPTSTEEGSTSST

CCTCTACCGAACCGTCCGAGGGCAGCG




AESPGPGSTSESPSGT

CACCAGGTACTTCTGAAAGCGCAACCCC




APGTSPSGESSTAPG

TGAATCCGGTCCAGGTACTTCTACTGAA




TPGSGTASSSPGSSTP

CCTTCCGAAGGTAGCGCTCCAGGTAGCG




SGATGSPGSSPSAST

AACCTGCTACTTCTGGTTCTGAAACCCC




GTGPGSEPATSGSET

AGGTAGCCCGGCTGGCTCTCCGACCTCC




PGTSESATPESGPGS

ACCGAGGAAGGTAGCTCTACCCCGTCTG




EPATSGSETPGSTSST

GTGCTACTGGTTCTCCAGGTACTCCGGG




AESPGPGSTSSTAESP

CAGCGGTACTGCTTCTTCCTCTCCAGGT




GPGTSPSGESSTAPG

AGCTCTACCCCTTCTGGTGCTACTGGCT




SEPATSGSETPGSEP

CTCCAGGTACCTCTACCGAACCGTCCGA




ATSGSETPGTSTEPSE

GGGTAGCGCACCAGGTACCTCTACTGA




GSAPGSTSSTAESPG

ACCGTCTGAGGGTAGCGCTCCAGGTAG




PGTSTPESGSASPGST

CGAACCGGCAACCTCCGGTTCTGAAACT




SESPSGTAPGTSTEPS

CCAGGTAGCCCTGCTGGCTCTCCGACTT




EGSAPGTSTEPSEGS

CTACTGAGGAAGGTAGCCCGGCTGGTTC




APGTSTEPSEGSAPG

TCCGACTTCTACTGAGGAAGGTACTTCT




SSTPSGATGSPGSSPS

ACCGAACCTTCCGAAGGTAGCGCTCCA




ASTGTGPGASPGTSS

GGTGCAAGCGCAAGCGGCGCGCCAAGC




TGSPGSEPATSGSET

ACGGGAGGTACTTCTGAAAGCGCTACTC




PGTSESATPESGPGSP

CTGAGTCCGGCCCAGGTAGCCCGGCTG




AGSPTSTEEGSSTPS

GCTCTCCGACTTCCACCGAGGAAGGTAG




GATGSPGSSPSASTG

CCCGGCTGGCTCTCCAACTTCTACTGAA




TGPGASPGTSSTGSP

GAAGGTTCTACCAGCTCTACCGCTGAAT




GTSESATPESGPGTS

CTCCTGGCCCAGGTTCTACTAGCGAATC




TEPSEGSAPGTSTEPS

TCCGTCTGGCACCGCACCAGGTACTTCC




EGSAPGFPTIPLSRLF

CCTAGCGGTGAATCTTCTACTGCACCAG




DNAMLRAHRLHQL

GTACCCCTGGCAGCGGTACCGCTTCTTC




AFDTYQEFEEAYIPK

CTCTCCAGGTAGCTCTACCCCGTCTGGT




EQKYSFLQNPQTSLC

GCTACTGGCTCTCCAGGTTCTAGCCCGT




FSESIPTPSNREETQQ

CTGCATCTACCGGTACCGGCCCAGGTAG




KSNLELLRISLLLIQS

CGAACCGGCAACCTCCGGCTCTGAAACT




WLEPVQFLRSVFAN

CCAGGTACTTCTGAAAGCGCTACTCCGG




SLVYGASDSNVYDL

AATCCGGCCCAGGTAGCGAACCGGCTA




LKDLEEGIQTLMGRL

CTTCCGGCTCTGAAACCCCAGGTTCCAC




EDGSPRTGQIFKQTY

CAGCTCTACTGCAGAATCTCCGGGCCCA




SKFDTNSHNDDALL

GGTTCTACTAGCTCTACTGCAGAATCTC




KNYGLLYCFRKDMD

CGGGTCCAGGTACTTCTCCTAGCGGCGA




KVETFLRIVQCRSVE

ATCTTCTACCGCTCCAGGTAGCGAACCG




GSCGFGAPLGLRLR

GCAACCTCTGGCTCTGAAACTCCAGGTA




GGGGSEPATSGSETP

GCGAACCTGCAACCTCCGGCTCTGAAAC




GTSESATPESGPGSE

CCCAGGTACTTCTACTGAACCTTCTGAG




PATSGSETPGSPAGS

GGCAGCGCACCAGGTTCTACCAGCTCTA




PTSTEEGTSTEPSEGS

CCGCAGAATCTCCTGGTCCAGGTACCTC




APGSEPATSGSETPG

TACTCCGGAAAGCGGCTCTGCATCTCCA




SEPATSGSETPGSEP

GGTTCTACTAGCGAATCTCCTTCTGGCA




ATSGSETPGTSTEPSE

CTGCACCAGGTACTTCTACCGAACCGTC




GSAPGTSESATPESG

CGAAGGCAGCGCTCCAGGTACCTCTACT




PGSEPATSGSETPGT

GAACCTTCCGAGGGCAGCGCTCCAGGT




STEPSEGSAP

ACCTCTACCGAACCTTCTGAAGGTAGCG






CACCAGGTAGCTCTACTCCGTCTGGTGC






AACCGGCTCCCCAGGTTCTAGCCCGTCT






GCTTCCACTGGTACTGGCCCAGGTGCTT






AGGTAGCGAACCTGCTACCTCCGGTTCT






GAAACCCCAGGTACCTCTGAAAGCGCA






ACTCCGGAGTCTGGTCCAGGTAGCCCTG






CAGGTTCTCCTACCTCCACTGAGGAAGG






TAGCTCTACTCCGTCTGGTGCAACCGGC






TCCCCAGGTTCTAGCCCGTCTGCTTCCA






CTGGTACTGGCCCAGGTGCTTCCCCGGG






CACCAGCTCTACTGGTTCTCCAGGTACC






TCTGAAAGCGCTACTCCGGAGTCTGGCC






CAGGTACCTCTACTGAACCGTCTGAGGG






TAGCGCTCCAGGTACTTCTACTGAACCG






TCCGAAGGTAGCGCACCAGGTTTTCCGA






CTATTCCGCTGTCTCGTCTGTTTGATAAT






GCTATGCTGCGTGCGCACCGTCTGCACC






AGCTGGCCTTTGATACTTACCAGGAATT






TGAAGAAGCcTACATTCCTAAAGAGCAG






AAGTACTCTTTCCTGCAAAACCCACAGA






CTTCTCTCTGCTTCAGCGAATCTATTCCG






ACGCCTTCCAATCGCGAGGAAACTCAG






CAAAAGTCCAATCTGGAACTACTCCGCA






TTTCTCTGCTTCTGATTCAGAGCTGGCT






AGAACCAGTGCAATTTCTGCGTTCCGTC






TTCGCCAATAGCCTAGTTTATGGCGCAT






CCGACAGCAACGTATACGATCTCCTGAA






AGATCTCGAGGAAGGCATTCAGACCCT






GATGGGTCGTCTCGAGGATGGCTCTCCG






CGTACTGGTCAGATCTTCAAGCAGACTT






ACTCTAAATTTGATACTAACAGCCACAA






TGACGATGCGCTTCTAAAAAACTATGGT






CTGCTGTATTGTTTTCGTAAAGATATGG






ACAAAGTTGAAACCTTCCTGCGTATTGT






TCAGTGTCGTTCCGTTGAGGGCAGCTGT






GGTTTCTAAGGTgcgccgctgggcctgcgcctgcgc






ggcggcGGTGGTAGCGAACCGGCAACTTC






CGGCTCTGAAACCCCAGGTACTTCTGAA






AGCGCTACTCCTGAGTCTGGCCCAGGTA






GCGAACCTGCTACCTCTGGCTCTGAAAC






CCCAGGTAGCCCGGCAGGCTCTCCGACT






TCCACCGAGGAAGGTACCTCTACTGAAC






CTTCTGAGGGTAGCGCTCCAGGTAGCGA






ACCGGCAACCTCTGGCTCTGAAACCCCA






GGTAGCGAACCTGCTACCTCCGGCTCTG






AAACTCCAGGTAGCGAACCGGCTACTTC






CGGTTCTGAAACTCCAGGTACCTCTACC






GAACCTTCCGAAGGCAGCGCACCAGGT






ACTTCTGAAAGCGCAACCCCTGAATCCG






GTCCAGGTAGCGAACCGGCTACTTCTGG






CTCTGAGACTCCAGGTACTTCTACCGAA






CCGTCCGAAGGTAGCGCACCA






AM923-
MAEPAGSPTSTEEGA
821
ATGGCTGAACCTGCTGGCTCTCCAACCT
822


hGH-
SPGTSSTGSPGSSTPS

CCACTGAGGAAGGTGCATCCCCGGGCA



Thrombin-
GATGSPGSSTPSGAT

CCAGCTCTACCGGTTCTCCAGGTAGCTC



AE288
GSPGTSTEPSEGSAP

TACCCCGTCTGGTGCTACCGGCTCTCCA




GSEPATSGSETPGSP

GGTAGCTCTACCCCGTCTGGTGCTACTG




AGSPTSTEEGSTSST

GCTCTCCAGGTACTTCTACTGAACCGTC




AESPGPGTSTPESGS

TGAAGGCAGCGCACCAGGTAGCGAACC




ASPGSTSESPSGTAP

GGCTACTTCCGGTTCTGAAACCCCAGGT




GSTSESPSGTAPGTS

AGCCCAGCAGGTTCTCCAACTTCTACTG




TPESGSASPGTSTPES

AAGAAGGTTCTACCAGCTCTACCGCAG




GSASPGSEPATSGSE

AATCTCCTGGTCCAGGTACCTCTACTCC




TPGTSESATPESGPG

GGAAAGCGGCTCTGCATCTCCAGGTTCT




SPAGSPTSTEEGTSTE

ACTAGCGAATCTCCTTCTGGCACTGCAC




PSEGSAPGTSESATP

CAGGTTCTACTAGCGAATCCCCGTCTGG




ESGPGTSTEPSEGSA

TACTGCTCCAGGTACTTCTACTCCTGAA




PGTSTEPSEGSAPGSP

AGCGGTTCCGCTTCTCCAGGTACCTCTA




AGSPTSTEEGTSTEPS

CTCCGGAAAGCGGTTCTGCATCTCCAGG




EGSAPGTSTEPSEGS

TAGCGAACCGGCAACCTCCGGCTCTGA




APGTSESATPESGPG

AACCCCAGGTACCTCTGAAAGCGCTACT




TSESATPESGPGTSTE

CCTGAATCCGGCCCAGGTAGCCCGGCA




PSEGSAPGTSTEPSE

GGTTCTCCGACTTCCACTGAGGAAGGTA




GSAPGTSESATPESG

CCTCTACTGAACCTTCTGAGGGCAGCGC




PGTSTEPSEGSAPGS

TCCAGGTACTTCTGAAAGCGCTACCCCG




EPATSGSETPGSPAG

GAGTCCGGTCCAGGTACTTCTACTGAAC




SPTSTEEGSSTPSGAT

CGTCCGAAGGTAGCGCACCAGGTACTTC




GSPGTPGSGTASSSP

TACCGAACCGTCCGAGGGTAGCGCACC




GSSTPSGATGSPGTS

AGGTAGCCCAGCAGGTTCTCCTACCTCC




TEPSEGSAPGTSTEPS

ACCGAGGAAGGTACTTCTACCGAACCG




EGSAPGSEPATSGSE

TCCGAGGGTAGCGCACCAGGTACTTCTA




TPGSPAGSPTSTEEG

CCGAACCTTCCGAGGGCAGCGCACCAG




SPAGSPTSTEEGTSTE

GTACTTCTGAAAGCGCTACCCCTGAGTC




PSEGSAPGASASGAP

CGGCCCAGGTACTTCTGAAAGCGCTACT




STGGTSESATPESGP

CCTGAATCCGGTCCAGGTACCTCTACTG




GSPAGSPTSTEEGSP

AACCTTCCGAAGGCAGCGCTCCAGGTA




AGSPTSTEEGSTSST

CCTCTACCGAACCGTCCGAGGGCAGCG




AESPGPGSTSESPSGT

CACCAGGTACTTCTGAAAGCGCAACCCC




APGTSPSGESSTAPG

TGAATCCGGTCCAGGTACTTCTACTGAA




TPGSGTASSSPGSSTP

CCTTCCGAAGGTAGCGCTCCAGGTAGCG




SGATGSPGSSPSAST

AACCTGCTACTTCTGGTTCTGAAACCCC




GTGPGSEPATSGSET

AGGTAGCCCGGCTGGCTCTCCGACCTCC




PGTSESATPESGPGS

ACCGAGGAAGGTAGCTCTACCCCGTCTG




EPATSGSETPGSTSST

GTGCTACTGGTTCTCCAGGTACTCCGGG




AESPGPGSTSSTAESP

CAGCGGTACTGCTTCTTCCTCTCCAGGT




GPGTSPSGESSTAPG

AGCTCTACCCCTTCTGGTGCTACTGGCT




SEPATSGSETPGSEP

CTCCAGGTACCTCTACCGAACCGTCCGA




ATSGSETPGTSTEPSE

GGGTAGCGCACCAGGTACCTCTACTGA




GSAPGSTSSTAESPG

ACCGTCTGAGGGTAGCGCTCCAGGTAG




PGTSTPESGSASPGST

CGAACCGGCAACCTCCGGTTCTGAAACT




SESPSGTAPGTSTEPS

CCAGGTAGCCCTGCTGGCTCTCCGACTT




EGSAPGTSTEPSEGS

CTACTGAGGAAGGTAGCCCGGCTGGTTC




APGTSTEPSEGSAPG

TCCGACTTCTACTGAGGAAGGTACTTCT




SSTPSGATGSPGSSPS

ACCGAACCTTCCGAAGGTAGCGCTCCA




ASTGTGPGASPGTSS

GGTGCAAGCGCAAGCGGCGCGCCAAGC




TGSPGSEPATSGSET

ACGGGAGGTACTTCTGAAAGCGCTACTC




PGTSESATPESGPGSP

CTGAGTCCGGCCCAGGTAGCCCGGCTG




AGSPTSTEEGSSTPS

GCTCTCCGACTTCCACCGAGGAAGGTAG




GATGSPGSSPSASTG

CCCGGCTGGCTCTCCAACTTCTACTGAA




TGPGASPGTSSTGSP

GAAGGTTCTACCAGCTCTACCGCTGAAT




GTSESATPESGPGTS

CTCCTGGCCCAGGTTCTACTAGCGAATC




TEPSEGSAPGTSTEPS

TCCGTCTGGCACCGCACCAGGTACTTCC




EGSAPGFPTIPLSRLF

CCTAGCGGTGAATCTTCTACTGCACCAG




DNAMLRAHRLHQL

GTACCCCTGGCAGCGGTACCGCTTCTTC




AFDTYQEFEEAYIPK

CTCTCCAGGTAGCTCTACCCCGTCTGGT




EQKYSFLQNPQTSLC

GCTACTGGCTCTCCAGGTTCTAGCCCGT




FSESIPTPSNREETQQ

CTGCATCTACCGGTACCGGCCCAGGTAG




KSNLELLRISLLLIQS

CGAACCGGCAACCTCCGGCTCTGAAACT




WLEPVQFLRSVFAN

CCAGGTACTTCTGAAAGCGCTACTCCGG




SLVYGASDSNVYDL

AATCCGGCCCAGGTAGCGAACCGGCTA




LKDLEEGIQTLMGRL

CTTCCGGCTCTGAAACCCCAGGTTCCAC




EDGSPRTGQIFKQTY

CAGCTCTACTGCAGAATCTCCGGGCCCA




SKFDTNSHNDDALL

GGTTCTACTAGCTCTACTGCAGAATCTC




KNYGLLYCFRKDMD

CGGGTCCAGGTACTTCTCCTAGCGGCGA




KVETFLRIVQCRSVE

ATCTTCTACCGCTCCAGGTAGCGAACCG




GSCGFGLTPRSLLVG

GCAACCTCTGGCTCTGAAACTCCAGGTA




GGGTSESATPESGPG

GCGAACCTGCAACCTCCGGCTCTGAAAC




SEPATSGSETPGTSES

CCCAGGTACTTCTACTGAACCTTCTGAG




ATPESGPGSEPATSG

GGCAGCGCACCAGGTTCTACCAGCTCTA




SETPGTSESATPESGP

CCGCAGAATCTCCTGGTCCAGGTACCTC




GTSTEPSEGSAPGSP

TACTCCGGAAAGCGGCTCTGCATCTCCA




AGSPTSTEEGTSESA

GGTTCTACTAGCGAATCTCCTTCTGGCA




TPESGPGSEPATSGS

CTGCACCAGGTACTTCTACCGAACCGTC




ETPGTSESATPESGP

CGAAGGCAGCGCTCCAGGTACCTCTACT




GSPAGSPTSTEEGSP

GAACCTTCCGAGGGCAGCGCTCCAGGT




AGSPTSTEEGTSTEPS

ACCTCTACCGAACCTTCTGAAGGTAGCG




EGSAPGTSESATPES

CACCAGGTAGCTCTACTCCGTCTGGTGC




GPGTSESATPESGPG

AACCGGCTCCCCAGGTTCTAGCCCGTCT




TSESATPESGPGSEP

GCTTCCACTGGTACTGGCCCAGGTGCTT




ATSGSETPGSEPATS

CCCCGGGCACCAGCTCTACTGGTTCTCC




GSETPGSPAGSPTST

AGGTAGCGAACCTGCTACCTCCGGTTCT




EEGTSTEPSEGSAPG

GAAACCCCAGGTACCTCTGAAAGCGCA




TSTEPSEGSAPGSEP

ACTCCGGAGTCTGGTCCAGGTAGCCCTG




ATSGSETPGTSESAT

CAGGTTCTCCTACCTCCACTGAGGAAGG




PESGPGTSTEPSEGS

TAGCTCTACTCCGTCTGGTGCAACCGGC




AP

TCCCCAGGTTCTAGCCCGTCTGCTTCCA






CTGGTACTGGCCCAGGTGCTTCCCCGGG






CACCAGCTCTACTGGTTCTCCAGGTACC






TCTGAAAGCGCTACTCCGGAGTCTGGCC






CAGGTACCTCTACTGAACCGTCTGAGGG






TAGCGCTCCAGGTACTTCTACTGAACCG






TCCGAAGGTAGCGCACCAGGTTTTCCGA






CTATTCCGCTGTCTCGTCTGTTTGATAAT






GCTATGCTGCGTGCGCACCGTCTGCACC






AGCTGGCCTTTGATACTTACCAGGAATT






TGAAGAAGCcTACATTCCTAAAGAGCAG






AAGTACTCTTTCCTGCAAAACCCACAGA






CTTCTCTCTGCTTCAGCGAATCTATTCCG






ACGCCTTCCAATCGCGAGGAAACTCAG






CAAAAGTCCAATCTGGAACTACTCCGCA






TTTCTCTGCTTCTGATTCAGAGCTGGCT






AGAACCAGTGCAATTTCTGCGTTCCGTC






TTCGCCAATAGCCTAGTTTATGGCGCAT






CCGACAGCAACGTATACGATCTCCTGAA






AGATCTCGAGGAAGGCATTCAGACCCT






GATGGGTCGTCTCGAGGATGGCTCTCCG






CGTACTGGTCAGATCTTCAAGCAGACTT






ACTCTAAATTTGATACTAACAGCCACAA






TGACGATGCGCTTCTAAAAAACTATGGT






CTGCTGTATTGTTTTCGTAAAGATATGG






ACAAAGTTGAAACCTTCCTGCGTATTGT






TCAGTGTCGTTCCGTTGAGGGCAGCTGT






GGTTTCTAAGGTctgaccccgcgcagcctgctggtgg






gcggcGGTGGTACCTCTGAAAGCGCAACT






CCTGAGTCTGGCCCAGGTAGCGAACCTG






CTACCTCCGGCTCTGAGACTCCAGGTAC






CTCTGAAAGCGCAACCCCGGAATCTGGT






CCAGGTAGCGAACCTGCAACCTCTGGCT






CTGAAACCCCAGGTACCTCTGAAAGCG






CTACTCCTGAATCTGGCCCAGGTACTTC






TACTGAACCGTCCGAGGGCAGCGCACC






AGGTAGCCCTGCTGGCTCTCCAACCTCC






ACCGAAGAAGGTACCTCTGAAAGCGCA






ACCCCTGAATCCGGCCCAGGTAGCGAA






CCGGCAACCTCCGGTTCTGAAACCCCAG






GTACTTCTGAAAGCGCTACTCCTGAGTC






CGGCCCAGGTAGCCCGGCTGGCTCTCCG






ACTTCCACCGAGGAAGGTAGCCCGGCT






GGCTCTCCAACTTCTACTGAAGAAGGTA






CTTCTACCGAACCTTCCGAGGGCAGCGC






ACCAGGTACTTCTGAAAGCGCTACCCCT






GAGTCCGGCCCAGGTACTTCTGAAAGC






GCTACTCCTGAATCCGGTCCAGGTACTT






CTGAAAGCGCTACCCCGGAATCTGGCCC






AGGTAGCGAACCGGCTACTTCTGGTTCT






GAAACCCCAGGTAGCGAACCGGCTACC






TCCGGTTCTGAAACTCCAGGTAGCCCAG






CAGGCTCTCCGACTTCCACTGAGGAAGG






TACTTCTACTGAACCTTCCGAAGGCAGC






GCACCAGGTACCTCTACTGAACCTTCTG






AGGGCAGCGCTCCAGGTAGCGAACCTG






CAACCTCTGGCTCTGAAACCCCAGGTAC






CTCTGAAAGCGCTACTCCTGAATCTGGC






CCAGGTACTTCTACTGAACCGTCCGAGG






GCAGCGCACCA






AM923-
MAEPAGSPTSTEEGA
823
ATGGCTGAACCTGCTGGCTCTCCAACCT
824


hGH-
SPGTSSTGSPGSSTPS

CCACTGAGGAAGGTGCATCCCCGGGCA



FXIa-
GATGSPGSSTPSGAT

CCAGCTCTACCGGTTCTCCAGGTAGCTC



AE288
GSPGTSTEPSEGSAP

TACCCCGTCTGGTGCTACCGGCTCTCCA




GSEPATSGSETPGSP

GGTAGCTCTACCCCGTCTGGTGCTACTG




AGSPTSTEEGSTSST

GCTCTCCAGGTACTTCTACTGAACCGTC




AESPGPGTSTPESGS

TGAAGGCAGCGCACCAGGTAGCGAACC




ASPGSTSESPSGTAP

GGCTACTTCCGGTTCTGAAACCCCAGGT




GSTSESPSGTAPGTS

AGCCCAGCAGGTTCTCCAACTTCTACTG




TPESGSASPGTSTPES

AAGAAGGTTCTACCAGCTCTACCGCAG




GSASPGSEPATSGSE

AATCTCCTGGTCCAGGTACCTCTACTCC




TPGTSESATPESGPG

GGAAAGCGGCTCTGCATCTCCAGGTTCT




SPAGSPTSTEEGTSTE

ACTAGCGAATCTCCTTCTGGCACTGCAC




PSEGSAPGTSESATP

CAGGTTCTACTAGCGAATCCCCGTCTGG




ESGPGTSTEPSEGSA

TACTGCTCCAGGTACTTCTACTCCTGAA




PGTSTEPSEGSAPGSP

AGCGGTTCCGCTTCTCCAGGTACCTCTA




AGSPTSTEEGTSTEPS

CTCCGGAAAGCGGTTCTGCATCTCCAGG




EGSAPGTSTEPSEGS

TAGCGAACCGGCAACCTCCGGCTCTGA




APGTSESATPESGPG

AACCCCAGGTACCTCTGAAAGCGCTACT




TSESATPESGPGTSTE

CCTGAATCCGGCCCAGGTAGCCCGGCA




PSEGSAPGTSTEPSE

GGTTCTCCGACTTCCACTGAGGAAGGTA




GSAPGTSESATPESG

CCTCTACTGAACCTTCTGAGGGCAGCGC




PGTSTEPSEGSAPGS

TCCAGGTACTTCTGAAAGCGCTACCCCG




EPATSGSETPGSPAG

GAGTCCGGTCCAGGTACTTCTACTGAAC




SPTSTEEGSSTPSGAT

CGTCCGAAGGTAGCGCACCAGGTACTTC




GSPGTPGSGTASSSP

TACCGAACCGTCCGAGGGTAGCGCACC




GSSTPSGATGSPGTS

AGGTAGCCCAGCAGGTTCTCCTACCTCC




TEPSEGSAPGTSTEPS

ACCGAGGAAGGTACTTCTACCGAACCG




EGSAPGSEPATSGSE

TCCGAGGGTAGCGCACCAGGTACTTCTA




TPGSPAGSPTSTEEG

CCGAACCTTCCGAGGGCAGCGCACCAG




SPAGSPTSTEEGTSTE

GTACTTCTGAAAGCGCTACCCCTGAGTC




PSEGSAPGASASGAP

CGGCCCAGGTACTTCTGAAAGCGCTACT




STGGTSESATPESGP

CCTGAATCCGGTCCAGGTACCTCTACTG




GSPAGSPTSTEEGSP

AACCTTCCGAAGGCAGCGCTCCAGGTA




AGSPTSTEEGSTSST

CCTCTACCGAACCGTCCGAGGGCAGCG




AESPGPGSTSESPSGT

CACCAGGTACTTCTGAAAGCGCAACCCC




APGTSPSGESSTAPG

TGAATCCGGTCCAGGTACTTCTACTGAA




TPGSGTASSSPGSSTP

CCTTCCGAAGGTAGCGCTCCAGGTAGCG




SGATGSPGSSPSAST

AACCTGCTACTTCTGGTTCTGAAACCCC




GTGPGSEPATSGSET

AGGTAGCCCGGCTGGCTCTCCGACCTCC




PGTSESATPESGPGS

ACCGAGGAAGGTAGCTCTACCCCGTCTG




EPATSGSETPGSTSST

GTGCTACTGGTTCTCCAGGTACTCCGGG




AESPGPGSTSSTAESP

CAGCGGTACTGCTTCTTCCTCTCCAGGT




GPGTSPSGESSTAPG

AGCTCTACCCCTTCTGGTGCTACTGGCT




SEPATSGSETPGSEP

CTCCAGGTACCTCTACCGAACCGTCCGA




ATSGSETPGTSTEPSE

GGGTAGCGCACCAGGTACCTCTACTGA




GSAPGSTSSTAESPG

ACCGTCTGAGGGTAGCGCTCCAGGTAG




PGTSTPESGSASPGST

CGAACCGGCAACCTCCGGTTCTGAAACT




SESPSGTAPGTSTEPS

CCAGGTAGCCCTGCTGGCTCTCCGACTT




EGSAPGTSTEPSEGS

CTACTGAGGAAGGTAGCCCGGCTGGTTC




APGTSTEPSEGSAPG

TCCGACTTCTACTGAGGAAGGTACTTCT




SSTPSGATGSPGSSPS

ACCGAACCTTCCGAAGGTAGCGCTCCA




ASTGTGPGASPGTSS

GGTGCAAGCGCAAGCGGCGCGCCAAGC




TGSPGSEPATSGSET

ACGGGAGGTACTTCTGAAAGCGCTACTC




PGTSESATPESGPGSP

CTGAGTCCGGCCCAGGTAGCCCGGCTG




AGSPTSTEEGSSTPS

GCTCTCCGACTTCCACCGAGGAAGGTAG




GATGSPGSSPSASTG

CCCGGCTGGCTCTCCAACTTCTACTGAA




TGPGASPGTSSTGSP

GAAGGTTCTACCAGCTCTACCGCTGAAT




GTSESATPESGPGTS

CTCCTGGCCCAGGTTCTACTAGCGAATC




TEPSEGSAPGTSTEPS

TCCGTCTGGCACCGCACCAGGTACTTCC




EGSAPGFPTIPLSRLF

CCTAGCGGTGAATCTTCTACTGCACCAG




DNAMLRAHRLHQL

GTACCCCTGGCAGCGGTACCGCTTCTTC




AFDTYQEFEEAYIPK

CTCTCCAGGTAGCTCTACCCCGTCTGGT




EQKYSFLQNPQTSLC

GCTACTGGCTCTCCAGGTTCTAGCCCGT




FSESIPTPSNREETQQ

CTGCATCTACCGGTACCGGCCCAGGTAG




KSNLELLRISLLLIQS

CGAACCGGCAACCTCCGGCTCTGAAACT




WLEPVQFLRSVFAN

CCAGGTACTTCTGAAAGCGCTACTCCGG




SLVYGASDSNVYDL

AATCCGGCCCAGGTAGCGAACCGGCTA




LKDLEEGIQTLMGRL

CTTCCGGCTCTGAAACCCCAGGTTCCAC




EDGSPRTGQIFKQTY

CAGCTCTACTGCAGAATCTCCGGGCCCA




SKFDTNSHNDDALL

GGTTCTACTAGCTCTACTGCAGAATCTC




KNYGLLYCFRKDMD

CGGGTCCAGGTACTTCTCCTAGCGGCGA




KVETFLRIVQCRSVE

ATCTTCTACCGCTCCAGGTAGCGAACCG




GSCGFGGGKLTRVV

GCAACCTCTGGCTCTGAAACTCCAGGTA




GGGGTSESATPESGP

GCGAACCTGCAACCTCCGGCTCTGAAAC




GSEPATSGSETPGTS

CCCAGGTACTTCTACTGAACCTTCTGAG




ESATPESGPGSEPAT

GGCAGCGCACCAGGTTCTACCAGCTCTA




SGSETPGTSESATPES

CCGCAGAATCTCCTGGTCCAGGTACCTC




GPGTSTEPSEGSAPG

TACTCCGGAAAGCGGCTCTGCATCTCCA




SPAGSPTSTEEGTSES

GGTTCTACTAGCGAATCTCCTTCTGGCA




ATPESGPGSEPATSG

CTGCACCAGGTACTTCTACCGAACCGTC




SETPGTSESATPESGP

CGAAGGCAGCGCTCCAGGTACCTCTACT




GSPAGSPTSTEEGSP

GAACCTTCCGAGGGCAGCGCTCCAGGT




AGSPTSTEEGTSTEPS

ACCTCTACCGAACCTTCTGAAGGTAGCG




EGSAPGTSESATPES

CACCAGGTAGCTCTACTCCGTCTGGTGC




GPGTSESATPESGPG

AACCGGCTCCCCAGGTTCTAGCCCGTCT




TSESATPESGPGSEP

GCTTCCACTGGTACTGGCCCAGGTGCTT




ATSGSETPGSEPATS

CCCCGGGCACCAGCTCTACTGGTTCTCC




GSETPGSPAGSPTST

AGGTAGCGAACCTGCTACCTCCGGTTCT




EEGTSTEPSEGSAPG

GAAACCCCAGGTACCTCTGAAAGCGCA




TSTEPSEGSAPGSEP

ACTCCGGAGTCTGGTCCAGGTAGCCCTG




ATSGSETPGTSESAT

CAGGTTCTCCTACCTCCACTGAGGAAGG




PESGPGTSTEPSEGS

TAGCTCTACTCCGTCTGGTGCAACCGGC




AP

TCCCCAGGTTCTAGCCCGTCTGCTTCCA






CTGGTACTGGCCCAGGTGCTTCCCCGGG






CACCAGCTCTACTGGTTCTCCAGGTACC






TCTGAAAGCGCTACTCCGGAGTCTGGCC






CAGGTACCTCTACTGAACCGTCTGAGGG






TAGCGCTCCAGGTACTTCTACTGAACCG






TCCGAAGGTAGCGCACCAGGTTTTCCGA






CTATTCCGCTGTCTCGTCTGTTTGATAAT






GCTATGCTGCGTGCGCACCGTCTGCACC






AGCTGGCCTTTGATACTTACCAGGAATT






TGAAGAAGCcTACATTCCTAAAGAGCAG






AAGTACTCTTTCCTGCAAAACCCACAGA






CTTCTCTCTGCTTCAGCGAATCTATTCCG






ACGCCTTCCAATCGCGAGGAAACTCAG






CAAAAGTCCAATCTGGAACTACTCCGCA






TTTCTCTGCTTCTGATTCAGAGCTGGCT






AGAACCAGTGCAATTTCTGCGTTCCGTC






TTCGCCAATAGCCTAGTTTATGGCGCAT






CCGACAGCAACGTATACGATCTCCTGAA






AGATCTCGAGGAAGGCATTCAGACCCT






GATGGGTCGTCTCGAGGATGGCTCTCCG






CGTACTGGTCAGATCTTCAAGCAGACTT






ACTCTAAATTTGATACTAACAGCCACAA






TGACGATGCGCTTCTAAAAAACTATGGT






CTGCTGTATTGTTTTCGTAAAGATATGG






ACAAAGTTGAAACCTTCCTGCGTATTGT






TCAGTGTCGTTCCGTTGAGGGCAGCTGT






GGTTTCTAAGGTggcggcaaactgacccgcgtggtg






ggcggcGGTGGTACCTCTGAAAGCGCAAC






TCCTGAGTCTGGCCCAGGTAGCGAACCT






GCTACCTCCGGCTCTGAGACTCCAGGTA






CCTCTGAAAGCGCAACCCCGGAATCTG






GTCCAGGTAGCGAACCTGCAACCTCTGG






CTCTGAAACCCCAGGTACCTCTGAAAGC






GCTACTCCTGAATCTGGCCCAGGTACTT






CTACTGAACCGTCCGAGGGCAGCGCAC






CAGGTAGCCCTGCTGGCTCTCCAACCTC






CACCGAAGAAGGTACCTCTGAAAGCGC






AACCCCTGAATCCGGCCCAGGTAGCGA






ACCGGCAACCTCCGGTTCTGAAACCCCA






GGTACTTCTGAAAGCGCTACTCCTGAGT






CCGGCCCAGGTAGCCCGGCTGGCTCTCC






GACTTCCACCGAGGAAGGTAGCCCGGC






TGGCTCTCCAACTTCTACTGAAGAAGGT






ACTTCTACCGAACCTTCCGAGGGCAGCG






CACCAGGTACTTCTGAAAGCGCTACCCC






TGAGTCCGGCCCAGGTACTTCTGAAAGC






GCTACTCCTGAATCCGGTCCAGGTACTT






CTGAAAGCGCTACCCCGGAATCTGGCCC






AGGTAGCGAACCGGCTACTTCTGGTTCT






GAAACCCCAGGTAGCGAACCGGCTACC






TCCGGTTCTGAAACTCCAGGTAGCCCAG






CAGGCTCTCCGACTTCCACTGAGGAAGG






TACTTCTACTGAACCTTCCGAAGGCAGC






GCACCAGGTACCTCTACTGAACCTTCTG






AGGGCAGCGCTCCAGGTAGCGAACCTG






CAACCTCTGGCTCTGAAACCCCAGGTAC






CTCTGAAAGCGCTACTCCTGAATCTGGC






CCAGGTACTTCTACTGAACCGTCCGAGG






GCAGCGCACCA






AM923-
MAEPAGSPTSTEEGA
825
ATGGCTGAACCTGCTGGCTCTCCAACCT
826


hGH-
SPGTSSTGSPGSSTPS

CCACTGAGGAAGGTGCATCCCCGGGCA



Elastase-
GATGSPGSSTPSGAT

CCAGCTCTACCGGTTCTCCAGGTAGCTC



AE288
GSPGTSTEPSEGSAP

TACCCCGTCTGGTGCTACCGGCTCTCCA




GSEPATSGSETPGSP

GGTAGCTCTACCCCGTCTGGTGCTACTG




AGSPTSTEEGSTSST

GCTCTCCAGGTACTTCTACTGAACCGTC




AESPGPGTSTPESGS

TGAAGGCAGCGCACCAGGTAGCGAACC




ASPGSTSESPSGTAP

GGCTACTTCCGGTTCTGAAACCCCAGGT




GSTSESPSGTAPGTS

AGCCCAGCAGGTTCTCCAACTTCTACTG




TPESGSASPGTSTPES

AAGAAGGTTCTACCAGCTCTACCGCAG




GSASPGSEPATSGSE

AATCTCCTGGTCCAGGTACCTCTACTCC




TPGTSESATPESGPG

GGAAAGCGGCTCTGCATCTCCAGGTTCT




SPAGSPTSTEEGTSTE

ACTAGCGAATCTCCTTCTGGCACTGCAC




PSEGSAPGTSESATP

CAGGTTCTACTAGCGAATCCCCGTCTGG




ESGPGTSTEPSEGSA

TACTGCTCCAGGTACTTCTACTCCTGAA




PGTSTEPSEGSAPGSP

AGCGGTTCCGCTTCTCCAGGTACCTCTA




AGSPTSTEEGTSTEPS

CTCCGGAAAGCGGTTCTGCATCTCCAGG




EGSAPGTSTEPSEGS

TAGCGAACCGGCAACCTCCGGCTCTGA




APGTSESATPESGPG

AACCCCAGGTACCTCTGAAAGCGCTACT




TSESATPESGPGTSTE

CCTGAATCCGGCCCAGGTAGCCCGGCA




PSEGSAPGTSTEPSE

GGTTCTCCGACTTCCACTGAGGAAGGTA




GSAPGTSESATPESG

CCTCTACTGAACCTTCTGAGGGCAGCGC




PGTSTEPSEGSAPGS

TCCAGGTACTTCTGAAAGCGCTACCCCG




EPATSGSETPGSPAG

GAGTCCGGTCCAGGTACTTCTACTGAAC




SPTSTEEGSSTPSGAT

CGTCCGAAGGTAGCGCACCAGGTACTTC




GSPGTPGSGTASSSP

TACCGAACCGTCCGAGGGTAGCGCACC




GSSTPSGATGSPGTS

AGGTAGCCCAGCAGGTTCTCCTACCTCC




TEPSEGSAPGTSTEPS

ACCGAGGAAGGTACTTCTACCGAACCG




EGSAPGSEPATSGSE

TCCGAGGGTAGCGCACCAGGTACTTCTA




TPGSPAGSPTSTEEG

CCGAACCTTCCGAGGGCAGCGCACCAG




SPAGSPTSTEEGTSTE

GTACTTCTGAAAGCGCTACCCCTGAGTC




PSEGSAPGASASGAP

CGGCCCAGGTACTTCTGAAAGCGCTACT




STGGTSESATPESGP

CCTGAATCCGGTCCAGGTACCTCTACTG




GSPAGSPTSTEEGSP

AACCTTCCGAAGGCAGCGCTCCAGGTA




AGSPTSTEEGSTSST

CCTCTACCGAACCGTCCGAGGGCAGCG




AESPGPGSTSESPSGT

CACCAGGTACTTCTGAAAGCGCAACCCC




APGTSPSGESSTAPG

TGAATCCGGTCCAGGTACTTCTACTGAA




TPGSGTASSSPGSSTP

CCTTCCGAAGGTAGCGCTCCAGGTAGCG




SGATGSPGSSPSAST

AACCTGCTACTTCTGGTTCTGAAACCCC




GTGPGSEPATSGSET

AGGTAGCCCGGCTGGCTCTCCGACCTCC




PGTSESATPESGPGS

ACCGAGGAAGGTAGCTCTACCCCGTCTG




EPATSGSETPGSTSST

GTGCTACTGGTTCTCCAGGTACTCCGGG




AESPGPGSTSSTAESP

CAGCGGTACTGCTTCTTCCTCTCCAGGT




GPGTSPSGESSTAPG

AGCTCTACCCCTTCTGGTGCTACTGGCT




SEPATSGSETPGSEP

CTCCAGGTACCTCTACCGAACCGTCCGA




ATSGSETPGTSTEPSE

GGGTAGCGCACCAGGTACCTCTACTGA




GSAPGSTSSTAESPG

ACCGTCTGAGGGTAGCGCTCCAGGTAG




PGTSTPESGSASPGST

CGAACCGGCAACCTCCGGTTCTGAAACT




SESPSGTAPGTSTEPS

CCAGGTAGCCCTGCTGGCTCTCCGACTT




EGSAPGTSTEPSEGS

CTACTGAGGAAGGTAGCCCGGCTGGTTC




APGTSTEPSEGSAPG

TCCGACTTCTACTGAGGAAGGTACTTCT




SSTPSGATGSPGSSPS

ACCGAACCTTCCGAAGGTAGCGCTCCA




ASTGTGPGASPGTSS

GGTGCAAGCGCAAGCGGCGCGCCAAGC




TGSPGSEPATSGSET

ACGGGAGGTACTTCTGAAAGCGCTACTC




PGTSESATPESGPGSP

CTGAGTCCGGCCCAGGTAGCCCGGCTG




AGSPTSTEEGSSTPS

GCTCTCCGACTTCCACCGAGGAAGGTAG




GATGSPGSSPSASTG

CCCGGCTGGCTCTCCAACTTCTACTGAA




TGPGASPGTSSTGSP

GAAGGTTCTACCAGCTCTACCGCTGAAT




GTSESATPESGPGTS

CTCCTGGCCCAGGTTCTACTAGCGAATC




TEPSEGSAPGTSTEPS

TCCGTCTGGCACCGCACCAGGTACTTCC




EGSAPGFPTIPLSRLF

CCTAGCGGTGAATCTTCTACTGCACCAG




DNAMLRAHRLHQL

GTACCCCTGGCAGCGGTACCGCTTCTTC




AFDTYQEFEEAYIPK

CTCTCCAGGTAGCTCTACCCCGTCTGGT




EQKYSFLQNPQTSLC

GCTACTGGCTCTCCAGGTTCTAGCCCGT




FSESIPTPSNREETQQ

CTGCATCTACCGGTACCGGCCCAGGTAG




KSNLELLRISLLLIQS

CGAACCGGCAACCTCCGGCTCTGAAACT




WLEPVQFLRSVFAN

CCAGGTACTTCTGAAAGCGCTACTCCGG




SLVYGASDSNVYDL

AATCCGGCCCAGGTAGCGAACCGGCTA




LKDLEEGIQTLMGRL

CTTCCGGCTCTGAAACCCCAGGTTCCAC




EDGSPRTGQIFKQTY

CAGCTCTACTGCAGAATCTCCGGGCCCA




SKFDTNSHNDDALL

GGTTCTACTAGCTCTACTGCAGAATCTC




KNYGLLYCFRKDMD

CGGGTCCAGGTACTTCTCCTAGCGGCGA




KVETFLRIVQCRSVE

ATCTTCTACCGCTCCAGGTAGCGAACCG




GSCGFGGGLGPVSG

GCAACCTCTGGCTCTGAAACTCCAGGTA




VPGGTSESATPESGP

GCGAACCTGCAACCTCCGGCTCTGAAAC




GSEPATSGSETPGTS

CCCAGGTACTTCTACTGAACCTTCTGAG




ESATPESGPGSEPAT

GGCAGCGCACCAGGTTCTACCAGCTCTA




SGSETPGTSESATPES

CCGCAGAATCTCCTGGTCCAGGTACCTC




GPGTSTEPSEGSAPG

TACTCCGGAAAGCGGCTCTGCATCTCCA




SPAGSPTSTEEGTSES

GGTTCTACTAGCGAATCTCCTTCTGGCA




ATPESGPGSEPATSG

CTGCACCAGGTACTTCTACCGAACCGTC




SETPGTSESATPESGP

CGAAGGCAGCGCTCCAGGTACCTCTACT




GSPAGSPTSTEEGSP

GAACCTTCCGAGGGCAGCGCTCCAGGT




AGSPTSTEEGTSTEPS

ACCTCTACCGAACCTTCTGAAGGTAGCG




EGSAPGTSESATPES

CACCAGGTAGCTCTACTCCGTCTGGTGC




GPGTSESATPESGPG

AACCGGCTCCCCAGGTTCTAGCCCGTCT




TSESATPESGPGSEP

GCTTCCACTGGTACTGGCCCAGGTGCTT




ATSGSETPGSEPATS

CCCCGGGCACCAGCTCTACTGGTTCTCC




GSETPGSPAGSPTST

AGGTAGCGAACCTGCTACCTCCGGTTCT




EEGTSTEPSEGSAPG

GAAACCCCAGGTACCTCTGAAAGCGCA




TSTEPSEGSAPGSEP

ACTCCGGAGTCTGGTCCAGGTAGCCCTG




ATSGSETPGTSESAT

CAGGTTCTCCTACCTCCACTGAGGAAGG




PESGPGTSTEPSEGS

TAGCTCTACTCCGTCTGGTGCAACCGGC




AP

TCCCCAGGTTCTAGCCCGTCTGCTTCCA






CTGGTACTGGCCCAGGTGCTTCCCCGGG






CACCAGCTCTACTGGTTCTCCAGGTACC






TCTGAAAGCGCTACTCCGGAGTCTGGCC






CAGGTACCTCTACTGAACCGTCTGAGGG






TAGCGCTCCAGGTACTTCTACTGAACCG






TCCGAAGGTAGCGCACCAGGTTTTCCGA






CTATTCCGCTGTCTCGTCTGTTTGATAAT






GCTATGCTGCGTGCGCACCGTCTGCACC






AGCTGGCCTTTGATACTTACCAGGAATT






TGAAGAAGCcTACATTCCTAAAGAGCAG






AAGTACTCTTTCCTGCAAAACCCACAGA






CTTCTCTCTGCTTCAGCGAATCTATTCCG






ACGCCTTCCAATCGCGAGGAAACTCAG






CAAAAGTCCAATCTGGAACTACTCCGCA






TTTCTCTGCTTCTGATTCAGAGCTGGCT






AGAACCAGTGCAATTTCTGCGTTCCGTC






TTCGCCAATAGCCTAGTTTATGGCGCAT






CCGACAGCAACGTATACGATCTCCTGAA






AGATCTCGAGGAAGGCATTCAGACCCT






GATGGGTCGTCTCGAGGATGGCTCTCCG






CGTACTGGTCAGATCTTCAAGCAGACTT






ACTCTAAATTTGATACTAACAGCCACAA






TGACGATGCGCTTCTAAAAAACTATGGT






CTGCTGTATTGTTTTCGTAAAGATATGG






ACAAAGTTGAAACCTTCCTGCGTATTGT






TCAGTGTCGTTCCGTTGAGGGCAGCTGT






GGTTTCTAAGGTggcggcctgggcccggtgagcggc






gtgccgGGTGGTACCTCTGAAAGCGCAACT






CCTGAGTCTGGCCCAGGTAGCGAACCTG






CTACCTCCGGCTCTGAGACTCCAGGTAC






CTCTGAAAGCGCAACCCCGGAATCTGGT






CCAGGTAGCGAACCTGCAACCTCTGGCT






CTGAAACCCCAGGTACCTCTGAAAGCG






CTACTCCTGAATCTGGCCCAGGTACTTC






TACTGAACCGTCCGAGGGCAGCGCACC






AGGTAGCCCTGCTGGCTCTCCAACCTCC






ACCGAAGAAGGTACCTCTGAAAGCGCA






ACCCCTGAATCCGGCCCAGGTAGCGAA






CCGGCAACCTCCGGTTCTGAAACCCCAG






GTACTTCTGAAAGCGCTACTCCTGAGTC






CGGCCCAGGTAGCCCGGCTGGCTCTCCG






ACTTCCACCGAGGAAGGTAGCCCGGCT






GGCTCTCCAACTTCTACTGAAGAAGGTA






CTTCTACCGAACCTTCCGAGGGCAGCGC






ACCAGGTACTTCTGAAAGCGCTACCCCT






GAGTCCGGCCCAGGTACTTCTGAAAGC






GCTACTCCTGAATCCGGTCCAGGTACTT






CTGAAAGCGCTACCCCGGAATCTGGCCC






AGGTAGCGAACCGGCTACTTCTGGTTCT






GAAACCCCAGGTAGCGAACCGGCTACC






TCCGGTTCTGAAACTCCAGGTAGCCCAG






CAGGCTCTCCGACTTCCACTGAGGAAGG






TACTTCTACTGAACMCCGAAGGCAGC






GCACCAGGTACCTCTACTGAACCTTCTG






AGGGCAGCGCTCCAGGTAGCGAACCTG






CAACCTCTGGCTCTGAAACCCCAGGTAC






CTCTGAAAGCGCTACTCCTGAATCTGGC






CCAGGTACTTCTACTGAACCGTCCGAGG






GCAGCGCACCA






AM923-
MAEPAGSPTSTEEGA
827
ATGGCTGAACCTGCTGGCTCTCCAACCT
828


hGH-
SPGTSSTGSPGSSTPS

CCACTGAGGAAGGTGCATCCCCGGGCA



MMP-17-
GATGSPGSSTPSGAT

CCAGCTCTACCGGTTCTCCAGGTAGCTC



AE288
GSPGTSTEPSEGSAP

TACCCCGTCTGGTGCTACCGGCTCTCCA




GSEPATSGSETPGSP

GGTAGCTCTACCCCGTCTGGTGCTACTG




AGSPTSTEEGSTSST

GCTCTCCAGGTACTTCTACTGAACCGTC




AESPGPGTSTPESGS

TGAAGGCAGCGCACCAGGTAGCGAACC




ASPGSTSESPSGTAP

GGCTACTTCCGGTTCTGAAACCCCAGGT




GSTSESPSGTAPGTS

AGCCCAGCAGGTTCTCCAACTTCTACTG




TPESGSASPGTSTPES

AAGAAGGTTCTACCAGCTCTACCGCAG




GSASPGSEPATSGSE

AATCTCCTGGTCCAGGTACCTCTACTCC




TPGTSESATPESGPG

GGAAAGCGGCTCTGCATCTCCAGGTTCT




SPAGSPTSTEEGTSTE

ACTAGCGAATCTCCTTCTGGCACTGCAC




PSEGSAPGTSESATP

CAGGTTCTACTAGCGAATCCCCGTCTGG




ESGPGTSTEPSEGSA

TACTGCTCCAGGTACTTCTACTCCTGAA




PGTSTEPSEGSAPGSP

AGCGGTTCCGCTTCTCCAGGTACCTCTA




AGSPTSTEEGTSTEPS

CTCCGGAAAGCGGTTCTGCATCTCCAGG




EGSAPGTSTEPSEGS

TAGCGAACCGGCAACCTCCGGCTCTGA




APGTSESATPESGPG

AACCCCAGGTACCTCTGAAAGCGCTACT




TSESATPESGPGTSTE

CCTGAATCCGGCCCAGGTAGCCCGGCA




PSEGSAPGTSTEPSE

GGTTCTCCGACTTCCACTGAGGAAGGTA




GSAPGTSESATPESG

CCTCTACTGAACCTTCTGAGGGCAGCGC




PGTSTEPSEGSAPGS

TCCAGGTACTTCTGAAAGCGCTACCCCG




EPATSGSETPGSPAG

GAGTCCGGTCCAGGTACTTCTACTGAAC




SPTSTEEGSSTPSGAT

CGTCCGAAGGTAGCGCACCAGGTACTTC




GSPGTPGSGTASSSP

TACCGAACCGTCCGAGGGTAGCGCACC




GSSTPSGATGSPGTS

AGGTAGCCCAGCAGGTTCTCCTACCTCC




TEPSEGSAPGTSTEPS

ACCGAGGAAGGTACTTCTACCGAACCG




EGSAPGSEPATSGSE

TCCGAGGGTAGCGCACCAGGTACTTCTA




TPGSPAGSPTSTEEG

CCGAACCTTCCGAGGGCAGCGCACCAG




SPAGSPTSTEEGTSTE

GTACTTCTGAAAGCGCTACCCCTGAGTC




PSEGSAPGASASGAP

CGGCCCAGGTACTTCTGAAAGCGCTACT




STGGTSESATPESGP

CCTGAATCCGGTCCAGGTACCTCTACTG




GSPAGSPTSTEEGSP

AACCTTCCGAAGGCAGCGCTCCAGGTA




AGSPTSTEEGSTSST

CCTCTACCGAACCGTCCGAGGGCAGCG




AESPGPGSTSESPSGT

CACCAGGTACTTCTGAAAGCGCAACCCC




APGTSPSGESSTAPG

TGAATCCGGTCCAGGTACTTCTACTGAA




TPGSGTASSSPGSSTP

CCTTCCGAAGGTAGCGCTCCAGGTAGCG




SGATGSPGSSPSAST

AACCTGCTACTTCTGGTTCTGAAACCCC




GTGPGSEPATSGSET

AGGTAGCCCGGCTGGCTCTCCGACCTCC




PGTSESATPESGPGS

ACCGAGGAAGGTAGCTCTACCCCGTCTG




EPATSGSETPGSTSST

GTGCTACTGGTTCTCCAGGTACTCCGGG




AESPGPGSTSSTAESP

CAGCGGTACTGCTTCTTCCTCTCCAGGT




GPGTSPSGESSTAPG

AGCTCTACCCCTTCTGGTGCTACTGGCT




SEPATSGSETPGSEP

CTCCAGGTACCTCTACCGAACCGTCCGA




ATSGSETPGTSTEPSE

GGGTAGCGCACCAGGTACCTCTACTGA




GSAPGSTSSTAESPG

ACCGTCTGAGGGTAGCGCTCCAGGTAG




PGTSTPESGSASPGST

CGAACCGGCAACCTCCGGTTCTGAAACT




SESPSGTAPGTSTEPS

CCAGGTAGCCCTGCTGGCTCTCCGACTT




EGSAPGTSTEPSEGS

CTACTGAGGAAGGTAGCCCGGCTGGTTC




APGTSTEPSEGSAPG

TCCGACTTCTACTGAGGAAGGTACTTCT




SSTPSGATGSPGSSPS

ACCGAACCTTCCGAAGGTAGCGCTCCA




ASTGTGPGASPGTSS

GGTGCAAGCGCAAGCGGCGCGCCAAGC




TGSPGSEPATSGSET

ACGGGAGGTACTTCTGAAAGCGCTACTC




PGTSESATPESGPGSP

CTGAGTCCGGCCCAGGTAGCCCGGCTG




AGSPTSTEEGSSTPS

GCTCTCCGACTTCCACCGAGGAAGGTAG




GATGSPGSSPSASTG

CCCGGCTGGCTCTCCAACTTCTACTGAA




TGPGASPGTSSTGSP

GAAGGTTCTACCAGCTCTACCGCTGAAT




GTSESATPESGPGTS

CTCCTGGCCCAGGTTCTACTAGCGAATC




TEPSEGSAPGTSTEPS

TCCGTCTGGCACCGCACCAGGTACTTCC




EGSAPGFPTIPLSRLF

CCTAGCGGTGAATCTTCTACTGCACCAG




DNAMLRAHRLHQL

GTACCCCTGGCAGCGGTACCGCTTCTTC




AFDTYQEFEEAYIPK

CTCTCCAGGTAGCTCTACCCCGTCTGGT




EQKYSFLQNPQTSLC

GCTACTGGCTCTCCAGGTTCTAGCCCGT




FSESIPTPSNREETQQ

CTGCATCTACCGGTACCGGCCCAGGTAG




KSNLELLRISLLLIQS

CGAACCGGCAACCTCCGGCTCTGAAACT




WLEPVQFLRSVFAN

CCAGGTACTTCTGAAAGCGCTACTCCGG




SLVYGASDSNVYDL

AATCCGGCCCAGGTAGCGAACCGGCTA




LKDLEEGIQTLMGRL

CTTCCGGCTCTGAAACCCCAGGTTCCAC




EDGSPRTGQIFKQTY

CAGCTCTACTGCAGAATCTCCGGGCCCA




SKFDTNSHNDDALL

GGTTCTACTAGCTCTACTGCAGAATCTC




KNYGLLYCFRKDMD

CGGGTCCAGGTACTTCTCCTAGCGGCGA




KVETFLRIVQCRSVE

ATCTTCTACCGCTCCAGGTAGCGAACCG




GSCGFGAPLGLRLR

GCAACCTCTGGCTCTGAAACTCCAGGTA




GGGGTSESATPESGP

GCGAACCTGCAACCTCCGGCTCTGAAAC




GSEPATSGSETPGTS

CCCAGGTACTTCTACTGAACCTTCTGAG




ESATPESGPGSEPAT

GGCAGCGCACCAGGTTCTACCAGCTCTA




SGSETPGTSESATPES

CCGCAGAATCTCCTGGTCCAGGTACCTC




GPGTSTEPSEGSAPG

TACTCCGGAAAGCGGCTCTGCATCTCCA




SPAGSPTSTEEGTSES

GGTTCTACTAGCGAATCTCCTTCTGGCA




ATPESGPGSEPATSG

CTGCACCAGGTACTTCTACCGAACCGTC




SETPGTSESATPESGP

CGAAGGCAGCGCTCCAGGTACCTCTACT




GSPAGSPTSTEEGSP

GAACCTTCCGAGGGCAGCGCTCCAGGT




AGSPTSTEEGTSTEPS

ACCTCTACCGAACCTTCTGAAGGTAGCG




EGSAPGTSESATPES

CACCAGGTAGCTCTACTCCGTCTGGTGC




GPGTSESATPESGPG

AACCGGCTCCCCAGGTTCTAGCCCGTCT




TSESATPESGPGSEP

GCTTCCACTGGTACTGGCCCAGGTGCTT




ATSGSETPGSEPATS

CCCCGGGCACCAGCTCTACTGGTTCTCC




GSETPGSPAGSPTST

AGGTAGCGAACCTGCTACCTCCGGTTCT




EEGTSTEPSEGSAPG

GAAACCCCAGGTACCTCTGAAAGCGCA




TSTEPSEGSAPGSEP

ACTCCGGAGTCTGGTCCAGGTAGCCCTG




ATSGSETPGTSESAT

CAGGTTCTCCTACCTCCACTGAGGAAGG




PESGPGTSTEPSEGS

TAGCTCTACTCCGTCTGGTGCAACCGGC




AP

TCCCCAGGTTCTAGCCCGTCTGCTTCCA






CTGGTACTGGCCCAGGTGCTTCCCCGGG






CACCAGCTCTACTGGTTCTCCAGGTACC






TCTGAAAGCGCTACTCCGGAGTCTGGCC






CAGGTACCTCTACTGAACCGTCTGAGGG






TAGCGCTCCAGGTACTTCTACTGAACCG






TCCGAAGGTAGCGCACCAGGTTTTCCGA






CTATTCCGCTGTCTCGTCTGTTTGATAAT






GCTATGCTGCGTGCGCACCGTCTGCACC






AGCTGGCCTTTGATACTTACCAGGAATT






TGAAGAAGCcTACATTCCTAAAGAGCAG






AAGTACTCTTTCCTGCAAAACCCACAGA






CTTCTCTCTGCTTCAGCGAATCTATTCCG






ACGCCTTCCAATCGCGAGGAAACTCAG






CAAAAGTCCAATCTGGAACTACTCCGCA






TTTCTCTGCTTCTGATTCAGAGCTGGCT






AGAACCAGTGCAATTTCTGCGTTCCGTC






TTCGCCAATAGCCTAGTTTATGGCGCAT






CCGACAGCAACGTATACGATCTCCTGAA






AGATCTCGAGGAAGGCATTCAGACCCT






GATGGGTCGTCTCGAGGATGGCTCTCCG






CGTACTGGTCAGATCTTCAAGCAGACTT






ACTCTAAATTTGATACTAACAGCCACAA






TGACGATGCGCTTCTAAAAAACTATGGT






CTGCTGTATTGTTTTCGTAAAGATATGG






ACAAAGTTGAAACCTTCCTGCGTATTGT






TCAGTGTCGTTCCGTTGAGGGCAGCTGT






GGTTTCTAAGGTgcgccgctgggcctgcgcctgcgc






ggcggcGGTGGTACCTCTGAAAGCGCAAC






TCCTGAGTCTGGCCCAGGTAGCGAACCT






GCTACCTCCGGCTCTGAGACTCCAGGTA






CCTCTGAAAGCGCAACCCCGGAATCTG






GTCCAGGTAGCGAACCTGCAACCTCTGG






CTCTGAAACCCCAGGTACCTCTGAAAGC






GCTACTCCTGAATCTGGCCCAGGTACTT






CTACTGAACCGTCCGAGGGCAGCGCAC






CAGGTAGCCCTGCTGGCTCTCCAACCTC






CACCGAAGAAGGTACCTCTGAAAGCGC






AACCCCTGAATCCGGCCCAGGTAGCGA






ACCGGCAACCTCCGGTTCTGAAACCCCA






GGTACTTCTGAAAGCGCTACTCCTGAGT






CCGGCCCAGGTAGCCCGGCTGGCTCTCC






GACTTCCACCGAGGAAGGTAGCCCGGC






TGGCTCTCCAACTTCTACTGAAGAAGGT






ACTTCTACCGAACCTTCCGAGGGCAGCG






CACCAGGTACTTCTGAAAGCGCTACCCC






TGAGTCCGGCCCAGGTACTTCTGAAAGC






GCTACTCCTGAATCCGGTCCAGGTACTT






CTGAAAGCGCTACCCCGGAATCTGGCCC






AGGTAGCGAACCGGCTACTTCTGGTTCT






GAAACCCCAGGTAGCGAACCGGCTACC






TCCGGTTCTGAAACTCCAGGTAGCCCAG






CAGGCTCTCCGACTTCCACTGAGGAAGG






TACTTCTACTGAACCTTCCGAAGGCAGC






GCACCAGGTACCTCTACTGAACCTTCTG






AGGGCAGCGCTCCAGGTAGCGAACCTG






CAACCTCTGGCTCTGAAACCCCAGGTAC






CTCTGAAAGCGCTACTCCTGAATCTGGC






CCAGGTACTTCTACTGAACCGTCCGAGG






GCAGCGCACCA






AE624-
MAEPAGSPTSTEEGT
829
ATGGCTGAACCTGCTGGCTCTCCAACCT
830


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG



Thrombin-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT



AE144
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG




GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG




TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT




PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA




APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC




TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT




ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT




GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC




EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT




TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG




PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC




STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT




GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG




ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA




EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA




GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC




TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA




PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC




ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA




PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT




SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC




TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT




SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC




GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA




TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG




EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG




APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG




SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA




PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC




ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG




PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA




EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG




ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC




GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG




PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC




AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC




PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT




GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG




FPTIPLSRLFDNAML

CTACTCCGGAGTCTGGCCCAGGTACCTC




RAHRLHQLAFDTYQ

TACTGAACCGTCTGAGGGTAGCGCTCCA




EFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTA




LQNPQTSLCFSESIPT

GCGCACCAGGTACTTCTACCGAACCGTC




PSNREETQQKSNLEL

CGAAGGCAGCGCTCCAGGTACCTCTACT




LRISLLLIQSWLEPVQ

GAACCTTCCGAGGGCAGCGCTCCAGGT




FLRSVFANSLVYGAS

ACCTCTACCGAACCTTCTGAAGGTAGCG




DSNVYDLLKDLEEGI

CACCAGGTACTTCTACCGAACCGTCCGA




QTLMGRLEDGSPRT

GGGTAGCGCACCAGGTAGCCCAGCAGG




GQIFKQTYSKFDTNS

TTCTCCTACCTCCACCGAGGAAGGTACT




HNDDALLKNYGLLY

TCTACCGAACCGTCCGAGGGTAGCGCA




CFRKDMDKVETFLRI

CCAGGTACCTCTGAAAGCGCAACTCCTG




VQCRSVEGSCGFGL

AGTCTGGCCCAGGTAGCGAACCTGCTAC




TPRSLLVGGGGSEPA

CTCCGGCTCTGAGACTCCAGGTACCTCT




TSGSETPGTSESATPE

GAAAGCGCAACCCCGGAATCTGGTCCA




SGPGSEPATSGSETP

GGTAGCGAACCTGCAACCTCTGGCTCTG




GSPAGSPTSTEEGTS

AAACCCCAGGTACCTCTGAAAGCGCTA




TEPSEGSAPGSEPAT

CTCCTGAATCTGGCCCAGGTACTTCTAC




SGSETPGSEPATSGS

TGAACCGTCCGAGGGCAGCGCACCAGG




ETPGSEPATSGSETP

TACTTCTGAAAGCGCTACTCCTGAGTCC




GTSTEPSEGSAPGTS

GGCCCAGGTAGCCCGGCTGGCTCTCCGA




ESATPESGPGSEPAT

CTTCCACCGAGGAAGGTAGCCCGGCTG




SGSETPGTSTEPSEGS

GCTCTCCAACTTCTACTGAAGAAGGTAG




AP

CCCGGCAGGCTCTCCGACCTCTACTGAG






GAAGGTACTTCTGAAAGCGCAACCCCG






GAGTCCGGCCCAGGTACCTCTACCGAAC






CGTCTGAGGGCAGCGCACCAGGTTTTCC






GACTATTCCGCTGTCTCGTCTGTTTGAT






AATGCTATGCTGCGTGCGCACCGTCTGC






ACCAGCTGGCCTTTGATACTTACCAGGA






ATTTGAAGAAGCcTACATTCCTAAAGAG






CAGAAGTACTCTTTCCTGCAAAACCCAC






AGACTTCTCTCTGCTTCAGCGAATCTAT






TCCGACGCCTTCCAATCGCGAGGAAACT






CAGCAAAAGTCCAATCTGGAACTACTCC






GCATTTCTCTGCTTCTGATTCAGAGCTG






GCTAGAACCAGTGCAATTTCTGCGTTCC






GTCTTCGCCAATAGCCTAGTTTATGGCG






CATCCGACAGCAACGTATACGATCTCCT






GAAAGATCTCGAGGAAGGCATTCAGAC






CCTGATGGGTCGTCTCGAGGATGGCTCT






CCGCGTACTGGTCAGATCTTCAAGCAGA






CTTACTCTAAATTTGATACTAACAGCCA






CAATGACGATGCGCTTCTAAAAAACTAT






GGTCTGCTGTATTGTTTTCGTAAAGATA






TGGACAAAGTTGAAACCTTCCTGCGTAT






TGTTCAGTGTCGTTCCGTTGAGGGCAGC






TGTGGTTTCTAAGGTctgaccccgcgcagcctgctg






gtgggcggcGGTGGTAGCGAACCGGCAACT






TCCGGCTCTGAAACCCCAGGTACTTCTG






AAAGCGCTACTCCTGAGTCTGGCCCAGG






TAGCGAACCTGCTACCTCTGGCTCTGAA






ACCCCAGGTAGCCCGGCAGGCTCTCCG






ACTTCCACCGAGGAAGGTACCTCTACTG






AACCTTCTGAGGGTAGCGCTCCAGGTAG






CGAACCGGCAACCTCTGGCTCTGAAACC






CCAGGTAGCGAACCTGCTACCTCCGGCT






CTGAAACTCCAGGTAGCGAACCGGCTA






CTTCCGGTTCTGAAACTCCAGGTACCTC






TACCGAACCTTCCGAAGGCAGCGCACC






AGGTACTTCTGAAAGCGCAACCCCTGA






ATCCGGTCCAGGTAGCGAACCGGCTACT






TCTGGCTCTGAGACTCCAGGTACTTCTA






CCGAACCGTCCGAAGGTAGCGCACCA






AE624-
MAEPAGSPTSTEEGT
831
ATGGCTGAACCTGCTGGCTCTCCAACCT
832


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG



FXIa-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT



AE144
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG




GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG




TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT




PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA




APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC




TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT




ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT




GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC




EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT




TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG




PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC




STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT




GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG




ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA




EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA




GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC




TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA




PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC




ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA




PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT




SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC




TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT




SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC




GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA




TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG




EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG




APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG




SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA




PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC




ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG




PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA




EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG




ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC




GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG




PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC




AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC




PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT




GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG




FPTIPLSRLFDNAML

CTACTCCGGAGTCTGGCCCAGGTACCTC




RAHRLHQLAFDTYQ

TACTGAACCGTCTGAGGGTAGCGCTCCA




EFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTA




LQNPQTSLCFSESIPT

GCGCACCAGGTACTTCTACCGAACCGTC




PSNREETQQKSNLEL

CGAAGGCAGCGCTCCAGGTACCTCTACT




LRISLLLIQSWLEPVQ

GAACCTTCCGAGGGCAGCGCTCCAGGT




FLRSVFANSLVYGAS

ACCTCTACCGAACCTTCTGAAGGTAGCG




DSNVYDLLKDLEEGI

CACCAGGTACTTCTACCGAACCGTCCGA




QTLMGRLEDGSPRT

GGGTAGCGCACCAGGTAGCCCAGCAGG




GQIFKQTYSKFDTNS

TTCTCCTACCTCCACCGAGGAAGGTACT




HNDDALLKNYGLLY

TCTACCGAACCGTCCGAGGGTAGCGCA




CFRKDMDKVETFLRI

CCAGGTACCTCTGAAAGCGCAACTCCTG




VQCRSVEGSCGFGG

AGTCTGGCCCAGGTAGCGAACCTGCTAC




GKLTRVVGGGGSEP

CTCCGGCTCTGAGACTCCAGGTACCTCT




ATSGSETPGTSESAT

GAAAGCGCAACCCCGGAATCTGGTCCA




PESGPGSEPATSGSE

GGTAGCGAACCTGCAACCTCTGGCTCTG




TPGSPAGSPTSTEEG

AAACCCCAGGTACCTCTGAAAGCGCTA




TSTEPSEGSAPGSEP

CTCCTGAATCTGGCCCAGGTACTTCTAC




ATSGSETPGSEPATS

TGAACCGTCCGAGGGCAGCGCACCAGG




GSETPGSEPATSGSE

TACTTCTGAAAGCGCTACTCCTGAGTCC




TPGTSTEPSEGSAPG

GGCCCAGGTAGCCCGGCTGGCTCTCCGA




TSESATPESGPGSEP

CTTCCACCGAGGAAGGTAGCCCGGCTG




ATSGSETPGTSTEPSE

GCTCTCCAACTTCTACTGAAGAAGGTAG




GSAP

CCCGGCAGGCTCTCCGACCTCTACTGAG






GAAGGTACTTCTGAAAGCGCAACCCCG






GAGTCCGGCCCAGGTACCTCTACCGAAC






CGTCTGAGGGCAGCGCACCAGGTTTTCC






GACTATTCCGCTGTCTCGTCTGTTTGAT






AATGCTATGCTGCGTGCGCACCGTCTGC






ACCAGCTGGCCTTTGATACTTACCAGGA






ATTTGAAGAAGCcTACATTCCTAAAGAG






CAGAAGTACTCTTTCCTGCAAAACCCAC






AGACTTCTCTCTGCTTCAGCGAATCTAT






TCCGACGCCTTCCAATCGCGAGGAAACT






CAGCAAAAGTCCAATCTGGAACTACTCC






GCATTTCTCTGCTTCTGATTCAGAGCTG






GCTAGAACCAGTGCAATTTCTGCGTTCC






GTCTTCGCCAATAGCCTAGTTTATGGCG






CATCCGACAGCAACGTATACGATCTCCT






GAAAGATCTCGAGGAAGGCATTCAGAC






CCTGATGGGTCGTCTCGAGGATGGCTCT






CCGCGTACTGGTCAGATCTTCAAGCAGA






CTTACTCTAAATTTGATACTAACAGCCA






CAATGACGATGCGCTTCTAAAAAACTAT






GGTCTGCTGTATTGTTTTCGTAAAGATA






TGGACAAAGTTGAAACCTTCCTGCGTAT






TGTTCAGTGTCGTTCCGTTGAGGGCAGC






TGTGGTTTCTAAGGTggeggcaaactgacccgcgt






ggtgggcggcGGTGGTAGCGAACCGGCAAC






TTCCGGCTCTGAAACCCCAGGTACTTCT






GAAAGCGCTACTCCTGAGTCTGGCCCAG






GTAGCGAACCTGCTACCTCTGGCTCTGA






AACCCCAGGTAGCCCGGCAGGCTCTCC






GACTTCCACCGAGGAAGGTACCTCTACT






GAACCTTCTGAGGGTAGCGCTCCAGGTA






GCGAACCGGCAACCTCTGGCTCTGAAA






CCCCAGGTAGCGAACCTGCTACCTCCGG






CTCTGAAACTCCAGGTAGCGAACCGGCT






ACTTCCGGTTCTGAAACTCCAGGTACCT






CTACCGAACCTTCCGAAGGCAGCGCAC






CAGGTACTTCTGAAAGCGCAACCCCTGA






ATCCGGTCCAGGTAGCGAACCGGCTACT






TCTGGCTCTGAGACTCCAGGTACTTCTA






CCGAACCGTCCGAAGGTAGCGCACCA






AE624-
MAEPAGSPTSTEEGT
833
ATGGCTGAACCTGCTGGCTCTCCAACCT
834


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG



Elastase-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT



AE144
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG




GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG




TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT




PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA




APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC




TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT




ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT




GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC




EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT




TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG




PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC




STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT




GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG




ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA




EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA




GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC




TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA




PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC




ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA




PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT




SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC




TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT




SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC




GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA




TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG




EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG




APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG




SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA




PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC




ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG




PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA




EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG




ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC




GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG




PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC




AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC




PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT




GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG




FPTIPLSRLFDNAML

CTACTCCGGAGTCTGGCCCAGGTACCTC




RAHRLHQLAFDTYQ

TACTGAACCGTCTGAGGGTAGCGCTCCA




EFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTA




LQNPQTSLCFSESIPT

GCGCACCAGGTACTTCTACCGAACCGTC




PSNREETQQKSNLEL

CGAAGGCAGCGCTCCAGGTACCTCTACT




LRISLLLIQSWLEPVQ

GAACCTTCCGAGGGCAGCGCTCCAGGT




FLRSVFANSLVYGAS

ACCTCTACCGAACCTTCTGAAGGTAGCG




DSNVYDLLKDLEEGI

CACCAGGTACTTCTACCGAACCGTCCGA




QTLMGRLEDGSPRT

GGGTAGCGCACCAGGTAGCCCAGCAGG




GQIFKQTYSKFDTNS

TTCTCCTACCTCCACCGAGGAAGGTACT




HNDDALLKNYGLLY

TCTACCGAACCGTCCGAGGGTAGCGCA




CFRKDMDKVETFLRI

CCAGGTACCTCTGAAAGCGCAACTCCTG




VQCRSVEGSCGFGG

AGTCTGGCCCAGGTAGCGAACCTGCTAC




GLGPVSGVPGGSEPA

CTCCGGCTCTGAGACTCCAGGTACCTCT




TSGSETPGTSESATPE

GAAAGCGCAACCCCGGAATCTGGTCCA




SGPGSEPATSGSETP

GGTAGCGAACCTGCAACCTCTGGCTCTG




GSPAGSPTSTEEGTS

AAACCCCAGGTACCTCTGAAAGCGCTA




TEPSEGSAPGSEPAT

CTCCTGAATCTGGCCCAGGTACTTCTAC




SGSETPGSEPATSGS

TGAACCGTCCGAGGGCAGCGCACCAGG




ETPGSEPATSGSETP

TACTTCTGAAAGCGCTACTCCTGAGTCC




GTSTEPSEGSAPGTS

GGCCCAGGTAGCCCGGCTGGCTCTCCGA




ESATPESGPGSEPAT

CTTCCACCGAGGAAGGTAGCCCGGCTG




SGSETPGTSTEPSEGS

GCTCTCCAACTTCTACTGAAGAAGGTAG




AP

CCCGGCAGGCTCTCCGACCTCTACTGAG






GAAGGTACTTCTGAAAGCGCAACCCCG






GAGTCCGGCCCAGGTACCTCTACCGAAC






CGTCTGAGGGCAGCGCACCAGGTTTTCC






GACTATTCCGCTGTCTCGTCTGTTTGAT






AATGCTATGCTGCGTGCGCACCGTCTGC






ACCAGCTGGCCTTTGATACTTACCAGGA






ATTTGAAGAAGCcTACATTCCTAAAGAG






CAGAAGTACTCTTTCCTGCAAAACCCAC






AGACTTCTCTCTGCTTCAGCGAATCTAT






TCCGACGCCTTCCAATCGCGAGGAAACT






CAGCAAAAGTCCAATCTGGAACTACTCC






GCATTTCTCTGCTTCTGATTCAGAGCTG






GCTAGAACCAGTGCAATTTCTGCGTTCC






GTCTTCGCCAATAGCCTAGTTTATGGCG






CATCCGACAGCAACGTATACGATCTCCT






GAAAGATCTCGAGGAAGGCATTCAGAC






CCTGATGGGTCGTCTCGAGGATGGCTCT






CCGCGTACTGGTCAGATCTTCAAGCAGA






CTTACTCTAAATTTGATACTAACAGCCA






CAATGACGATGCGCTTCTAAAAAACTAT






GGTCTGCTGTATTGTTTTCGTAAAGATA






TGGACAAAGTTGAAACCTTCCTGCGTAT






TGTTCAGTGTCGTTCCGTTGAGGGCAGC






TGTGGTTTCTAAGGTggcggcctgggcccggtgag






cggcgtgccgGGTGGTAGCGAACCGGCAACT






TCCGGCTCTGAAACCCCAGGTACTTCTG






AAAGCGCTACTCCTGAGTCTGGCCCAGG






TAGCGAACCTGCTACCTCTGGCTCTGAA






ACCCCAGGTAGCCCGGCAGGCTCTCCG






ACTTCCACCGAGGAAGGTACCTCTACTG






AACCTTCTGAGGGTAGCGCTCCAGGTAG






CGAACCGGCAACCTCTGGCTCTGAAACC






CCAGGTAGCGAACCTGCTACCTCCGGCT






CTGAAACTCCAGGTAGCGAACCGGCTA






CTTCCGGTTCTGAAACTCCAGGTACCTC






TACCGAACCTTCCGAAGGCAGCGCACC






AGGTACTTCTGAAAGCGCAACCCCTGA






ATCCGGTCCAGGTAGCGAACCGGCTACT






TCTGGCTCTGAGACTCCAGGTACTTCTA






CCGAACCGTCCGAAGGTAGCGCACCA






AE624-
MAEPAGSPTSTEEGT
835
ATGGCTGAACCTGCTGGCTCTCCAACCT
836


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG



MMP-17-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT



AE144
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG




GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG




TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT




PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA




APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC




TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT




ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT




GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC




EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT




TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG




PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC




STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT




GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG




ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA




EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA




GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC




TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA




PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC




ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA




PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT




SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC




TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT




SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC




GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA




TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG




EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG




APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG




SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA




PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC




ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG




PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA




EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG




ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC




GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG




PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC




AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC




PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT




GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG




FPTIPLSRLFDNAML

CTACTCCGGAGTCTGGCCCAGGTACCTC




RAHRLHQLAFDTYQ

TACTGAACCGTCTGAGGGTAGCGCTCCA




EFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTA




LQNPQTSLCFSESIPT

GCGCACCAGGTACTTCTACCGAACCGTC




PSNREETQQKSNLEL

CGAAGGCAGCGCTCCAGGTACCTCTACT




LRISLLLIQSWLEPVQ

GAACCTTCCGAGGGCAGCGCTCCAGGT




FLRSVFANSLVYGAS

ACCTCTACCGAACCTTCTGAAGGTAGCG




DSNVYDLLKDLEEGI

CACCAGGTACTTCTACCGAACCGTCCGA




QTLMGRLEDGSPRT

GGGTAGCGCACCAGGTAGCCCAGCAGG




GQIFKQTYSKFDTNS

TTCTCCTACCTCCACCGAGGAAGGTACT




HNDDALLKNYGLLY

TCTACCGAACCGTCCGAGGGTAGCGCA




CFRKDMDKVETFLRI

CCAGGTACCTCTGAAAGCGCAACTCCTG




VQCRSVEGSCGFGA

AGTCTGGCCCAGGTAGCGAACCTGCTAC




PLGLRLRGGGGSEPA

CTCCGGCTCTGAGACTCCAGGTACCTCT




TSGSETPGTSESATPE

GAAAGCGCAACCCCGGAATCTGGTCCA




SGPGSEPATSGSETP

GGTAGCGAACCTGCAACCTCTGGCTCTG




GSPAGSPTSTEEGTS

AAACCCCAGGTACCTCTGAAAGCGCTA




TEPSEGSAPGSEPAT

CTCCTGAATCTGGCCCAGGTACTTCTAC




SGSETPGSEPATSGS

TGAACCGTCCGAGGGCAGCGCACCAGG




ETPGSEPATSGSETP

TACTTCTGAAAGCGCTACTCCTGAGTCC




GTSTEPSEGSAPGTS

GGCCCAGGTAGCCCGGCTGGCTCTCCGA




ESATPESGPGSEPAT

CTTCCACCGAGGAAGGTAGCCCGGCTG




SGSETPGTSTEPSEGS

GCTCTCCAACTTCTACTGAAGAAGGTAG




AP

CCCGGCAGGCTCTCCGACCTCTACTGAG






GAAGGTACTTCTGAAAGCGCAACCCCG






GAGTCCGGCCCAGGTACCTCTACCGAAC






CGTCTGAGGGCAGCGCACCAGGTTTTCC






GACTATTCCGCTGTCTCGTCTGTTTGAT






AATGCTATGCTGCGTGCGCACCGTCTGC






ACCAGCTGGCCTTTGATACTTACCAGGA






ATTTGAAGAAGCcTACATTCCTAAAGAG






CAGAAGTACTCTTTCCTGCAAAACCCAC






AGACTTCTCTCTGCTTCAGCGAATCTAT






TCCGACGCCTTCCAATCGCGAGGAAACT






CAGCAAAAGTCCAATCTGGAACTACTCC






GCATTTCTCTGCTTCTGATTCAGAGCTG






GCTAGAACCAGTGCAATTTCTGCGTTCC






GTCTTCGCCAATAGCCTAGTTTATGGCG






CATCCGACAGCAACGTATACGATCTCCT






GAAAGATCTCGAGGAAGGCATTCAGAC






CCTGATGGGTCGTCTCGAGGATGGCTCT






CCGCGTACTGGTCAGATCTTCAAGCAGA






CTTACTCTAAATTTGATACTAACAGCCA






CAATGACGATGCGCTTCTAAAAAACTAT






GGTCTGCTGTATTGTTTTCGTAAAGATA






TGGACAAAGTTGAAACCTTCCTGCGTAT






TGTTCAGTGTCGTTCCGTTGAGGGCAGC






TGTGGTTTCTAAGGTgcgccgctgggcctgcgcct






gcgcggcggcGGTGGTAGCGAACCGGCAAC






TTCCGGCTCTGAAACCCCAGGTACTTCT






GAAAGCGCTACTCCTGAGTCTGGCCCAG






GTAGCGAACCTGCTACCTCTGGCTCTGA






AACCCCAGGTAGCCCGGCAGGCTCTCC






GACTTCCACCGAGGAAGGTACCTCTACT






GAACCTTCTGAGGGTAGCGCTCCAGGTA






GCGAACCGGCAACCTCTGGCTCTGAAA






CCCCAGGTAGCGAACCTGCTACCTCCGG






CTCTGAAACTCCAGGTAGCGAACCGGCT






ACTTCCGGTTCTGAAACTCCAGGTACCT






CTACCGAACCTTCCGAAGGCAGCGCAC






CAGGTACTTCTGAAAGCGCAACCCCTGA






ATCCGGTCCAGGTAGCGAACCGGCTACT






TCTGGCTCTGAGACTCCAGGTACTTCTA






CCGAACCGTCCGAAGGTAGCGCACCA






AE624-
MAEPAGSPTSTEEGT
837
ATGGCTGAACCTGCTGGCTCTCCAACCT
838


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG



Thrombin-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT



AE288
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG




GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG




TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT




PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA




APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC




TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT




ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT




GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC




EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT




TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG




PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC




STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT




GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG




ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA




EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA




GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC




TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA




PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC




ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA




PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT




SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC




TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT




SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC




GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA




TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG




EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG




APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG




SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA




PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC




ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG




PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA




EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG




ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC




GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG




PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC




AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC




PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT




GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG




FPTIPLSRLFDNAML

CTACTCCGGAGTCTGGCCCAGGTACCTC




RAHRLHQLAFDTYQ

TACTGAACCGTCTGAGGGTAGCGCTCCA




EFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTA




LQNPQTSLCFSESIPT

GCGCACCAGGTACTTCTACCGAACCGTC




PSNREETQQKSNLEL

CGAAGGCAGCGCTCCAGGTACCTCTACT




LRISLLLIQSWLEPVQ

GAACCTTCCGAGGGCAGCGCTCCAGGT




FLRSVFANSLVYGAS

ACCTCTACCGAACCTTCTGAAGGTAGCG




DSNVYDLLKDLEEGI

CACCAGGTACTTCTACCGAACCGTCCGA




QTLMGRLEDGSPRT

GGGTAGCGCACCAGGTAGCCCAGCAGG




GQIFKQTYSKFDTNS

TTCTCCTACCTCCACCGAGGAAGGTACT




HNDDALLKNYGLLY

TCTACCGAACCGTCCGAGGGTAGCGCA




CFRKDMDKVETFLRI

CCAGGTACCTCTGAAAGCGCAACTCCTG




VQCRSVEGSCGFGL

AGTCTGGCCCAGGTAGCGAACCTGCTAC




TPRSLLVGGGGTSES

CTCCGGCTCTGAGACTCCAGGTACCTCT




ATPESGPGSEPATSG

GAAAGCGCAACCCCGGAATCTGGTCCA




SETPGTSESATPESGP

GGTAGCGAACCTGCAACCTCTGGCTCTG




GSEPATSGSETPGTS

AAACCCCAGGTACCTCTGAAAGCGCTA




ESATPESGPGTSTEPS

CTCCTGAATCTGGCCCAGGTACTTCTAC




EGSAPGSPAGSPTST

TGAACCGTCCGAGGGCAGCGCACCAGG




EEGTSESATPESGPG

TACTTCTGAAAGCGCTACTCCTGAGTCC




SEPATSGSETPGTSES

GGCCCAGGTAGCCCGGCTGGCTCTCCGA




ATPESGPGSPAGSPT

CTTCCACCGAGGAAGGTAGCCCGGCTG




STEEGSPAGSPTSTEE

GCTCTCCAACTTCTACTGAAGAAGGTAG




GTSTEPSEGSAPGTS

CCCGGCAGGCTCTCCGACCTCTACTGAG




ESATPESGPGTSESA

GAAGGTACTTCTGAAAGCGCAACCCCG




TPESGPGTSESATPES

GAGTCCGGCCCAGGTACCTCTACCGAAC




GPGSEPATSGSETPG

CGTCTGAGGGCAGCGCACCAGGTTTTCC




SEPATSGSETPGSPA

GACTATTCCGCTGTCTCGTCTGTTTGAT




GSPTSTEEGTSTEPSE

AATGCTATGCTGCGTGCGCACCGTCTGC




GSAPGTSTEPSEGSA

ACCAGCTGGCCTTTGATACTTACCAGGA




PGSEPATSGSETPGT

ATTTGAAGAAGCcTACATTCCTAAAGAG




SESATPESGPGTSTEP

CAGAAGTACTCTTTCCTGCAAAACCCAC




SEGSAP

AGACTTCTCTCTGCTTCAGCGAATCTAT






TCCGACGCCTTCCAATCGCGAGGAAACT






CAGCAAAAGTCCAATCTGGAACTACTCC






GCATTTCTCTGCTTCTGATTCAGAGCTG






GCTAGAACCAGTGCAATTTCTGCGTTCC






GTCTTCGCCAATAGCCTAGTTTATGGCG






CATCCGACAGCAACGTATACGATCTCCT






GAAAGATCTCGAGGAAGGCATTCAGAC






CCTGATGGGTCGTCTCGAGGATGGCTCT






CCGCGTACTGGTCAGATCTTCAAGCAGA






CTTACTCTAAATTTGATACTAACAGCCA






CAATGACGATGCGCTTCTAAAAAACTAT






GGTCTGCTGTATTGTTTTCGTAAAGATA






TGGACAAAGTTGAAACCTTCCTGCGTAT






TGTTCAGTGTCGTTCCGTTGAGGGCAGC






TGTGGTTTCTAAGGTctgaccccgcgcagcctgctg






gtgggcggcGGTGGTACCTCTGAAAGCGCA






ACTCCTGAGTCTGGCCCAGGTAGCGAAC






CTGCTACCTCCGGCTCTGAGACTCCAGG






TACCTCTGAAAGCGCAACCCCGGAATCT






GGTCCAGGTAGCGAACCTGCAACCTCTG






GCTCTGAAACCCCAGGTACCTCTGAAAG






CGCTACTCCTGAATCTGGCCCAGGTACT






TCTACTGAACCGTCCGAGGGCAGCGCA






CCAGGTAGCCCTGCTGGCTCTCCAACCT






CCACCGAAGAAGGTACCTCTGAAAGCG






CAACCCCTGAATCCGGCCCAGGTAGCG






AACCGGCAACCTCCGGTTCTGAAACCCC






AGGTACTTCTGAAAGCGCTACTCCTGAG






TCCGGCCCAGGTAGCCCGGCTGGCTCTC






CGACTTCCACCGAGGAAGGTAGCCCGG






CTGGCTCTCCAACTTCTACTGAAGAAGG






TACTTCTACCGAACCTTCCGAGGGCAGC






GCACCAGGTACTTCTGAAAGCGCTACCC






CTGAGTCCGGCCCAGGTACTTCTGAAAG






CGCTACTCCTGAATCCGGTCCAGGTACT






TCTGAAAGCGCTACCCCGGAATCTGGCC






CAGGTAGCGAACCGGCTACTTCTGGTTC






TGAAACCCCAGGTAGCGAACCGGCTAC






CTCCGGTTCTGAAACTCCAGGTAGCCCA






GCAGGCTCTCCGACTTCCACTGAGGAAG






GTACTTCTACTGAACCTTCCGAAGGCAG






CGCACCAGGTACCTCTACTGAACCTTCT






GAGGGCAGCGCTCCAGGTAGCGAACCT






GCAACCTCTGGCTCTGAAACCCCAGGTA






CCTCTGAAAGCGCTACTCCTGAATCTGG






CCCAGGTACTTCTACTGAACCGTCCGAG






GGCAGCGCACCA






AE624-
MAEPAGSPTSTEEGT
839
ATGGCTGAACCTGCTGGCTCTCCAACCT
840


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG



FXIa-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT



AE288
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG




GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG




TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT




PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA




APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC




TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT




ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT




GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC




EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT




TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG




PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC




STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT




GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG




ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA




EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA




GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC




TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA




PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC




ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA




PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT




SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC




TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT




SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC




GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA




TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG




EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG




APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG




SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA




PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC




ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG




PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA




EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG




ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC




GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG




PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC




AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC




PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT




GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG




FPTIPLSRLFDNAML

CTACTCCGGAGTCTGGCCCAGGTACCTC




RAHRLHQLAFDTYQ

TACTGAACCGTCTGAGGGTAGCGCTCCA




EFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTA




LQNPQTSLCFSESIPT

GCGCACCAGGTACTTCTACCGAACCGTC




PSNREETQQKSNLEL

CGAAGGCAGCGCTCCAGGTACCTCTACT




LRISLLLIQSWLEPVQ

GAACCTTCCGAGGGCAGCGCTCCAGGT




FLRSVFANSLVYGAS

ACCTCTACCGAACCTTCTGAAGGTAGCG




DSNVYDLLKDLEEGI

CACCAGGTACTTCTACCGAACCGTCCGA




QTLMGRLEDGSPRT

GGGTAGCGCACCAGGTAGCCCAGCAGG




GQIFKQTYSKFDTNS

TTCTCCTACCTCCACCGAGGAAGGTACT




HNDDALLKNYGLLY

TCTACCGAACCGTCCGAGGGTAGCGCA




CFRKDMDKVETFLRI

CCAGGTACCTCTGAAAGCGCAACTCCTG




VQCRSVEGSCGFGG

AGTCTGGCCCAGGTAGCGAACCTGCTAC




GKLTRVVGGGGTSE

CTCCGGCTCTGAGACTCCAGGTACCTCT




SATPESGPGSEPATS

GAAAGCGCAACCCCGGAATCTGGTCCA




GSETPGTSESATPES

GGTAGCGAACCTGCAACCTCTGGCTCTG




GPGSEPATSGSETPG

AAACCCCAGGTACCTCTGAAAGCGCTA




TSESATPESGPGTSTE

CTCCTGAATCTGGCCCAGGTACTTCTAC




PSEGSAPGSPAGSPT

TGAACCGTCCGAGGGCAGCGCACCAGG




STEEGTSESATPESGP

TACTTCTGAAAGCGCTACTCCTGAGTCC




GSEPATSGSETPGTS

GGCCCAGGTAGCCCGGCTGGCTCTCCGA




ESATPESGPGSPAGS

CTTCCACCGAGGAAGGTAGCCCGGCTG




PTSTEEGSPAGSPTST

GCTCTCCAACTTCTACTGAAGAAGGTAG




EEGTSTEPSEGSAPG

CCCGGCAGGCTCTCCGACCTCTACTGAG




TSESATPESGPGTSES

GAAGGTACTTCTGAAAGCGCAACCCCG




ATPESGPGTSESATP

GAGTCCGGCCCAGGTACCTCTACCGAAC




ESGPGSEPATSGSET

CGTCTGAGGGCAGCGCACCAGGTTTTCC




PGSEPATSGSETPGSP

GACTATTCCGCTGTCTCGTCTGTTTGAT




AGSPTSTEEGTSTEPS

AATGCTATGCTGCGTGCGCACCGTCTGC




EGSAPGTSTEPSEGS

ACCAGCTGGCCTTTGATACTTACCAGGA




APGSEPATSGSETPG

ATTTGAAGAAGCcTACATTCCTAAAGAG




TSESATPESGPGTSTE

CAGAAGTACTCTTTCCTGCAAAACCCAC




PSEGSAP

AGACTTCTCTCTGCTTCAGCGAATCTAT






TCCGACGCCTTCCAATCGCGAGGAAACT






CAGCAAAAGTCCAATCTGGAACTACTCC






GCATTTCTCTGCTTCTGATTCAGAGCTG






GCTAGAACCAGTGCAATTTCTGCGTTCC






GTCTTCGCCAATAGCCTAGTTTATGGCG






CATCCGACAGCAACGTATACGATCTCCT






GAAAGATCTCGAGGAAGGCATTCAGAC






CCTGATGGGTCGTCTCGAGGATGGCTCT






CCGCGTACTGGTCAGATCTTCAAGCAGA






CTTACTCTAAATTTGATACTAACAGCCA






CAATGACGATGCGCTTCTAAAAAACTAT






GGTCTGCTGTATTGTTTTCGTAAAGATA






TGGACAAAGTTGAAACCTTCCTGCGTAT






TGTTCAGTGTCGTTCCGTTGAGGGCAGC






TGTGGTTTCTAAGGTggcggcaaactgacccgcgt






ggtgggcggcGGTGGTACCTCTGAAAGCGCA






ACTCCTGAGTCTGGCCCAGGTAGCGAAC






CTGCTACCTCCGGCTCTGAGACTCCAGG






TACCTCTGAAAGCGCAACCCCGGAATCT






GGTCCAGGTAGCGAACCTGCAACCTCTG






GCTCTGAAACCCCAGGTACCTCTGAAAG






CGCTACTCCTGAATCTGGCCCAGGTACT






TCTACTGAACCGTCCGAGGGCAGCGCA






CCAGGTAGCCCTGCTGGCTCTCCAACCT






CCACCGAAGAAGGTACCTCTGAAAGCG






CAACCCCTGAATCCGGCCCAGGTAGCG






AACCGGCAACCTCCGGTTCTGAAACCCC






AGGTACTTCTGAAAGCGCTACTCCTGAG






TCCGGCCCAGGTAGCCCGGCTGGCTCTC






CGACTTCCACCGAGGAAGGTAGCCCGG






CTGGCTCTCCAACTTCTACTGAAGAAGG






TACTTCTACCGAACCTTCCGAGGGCAGC






GCACCAGGTACTTCTGAAAGCGCTACCC






CTGAGTCCGGCCCAGGTACTTCTGAAAG






CGCTACTCCTGAATCCGGTCCAGGTACT






TCTGAAAGCGCTACCCCGGAATCTGGCC






CAGGTAGCGAACCGGCTACTTCTGGTTC






TGAAACCCCAGGTAGCGAACCGGCTAC






CTCCGGTTCTGAAACTCCAGGTAGCCCA






GCAGGCTCTCCGACTTCCACTGAGGAAG






GTACTTCTACTGAACCTTCCGAAGGCAG






CGCACCAGGTACCTCTACTGAACCTTCT






GAGGGCAGCGCTCCAGGTAGCGAACCT






GCAACCTCTGGCTCTGAAACCCCAGGTA






CCTCTGAAAGCGCTACTCCTGAATCTGG






CCCAGGTACTTCTACTGAACCGTCCGAG






GGCAGCGCACCA






AE624-
MAEPAGSPTSTEEGT
841
ATGGCTGAACCTGCTGGCTCTCCAACCT
842


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG



Elastase-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT



AE288
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG




GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG




TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT




PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA




APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC




TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT




ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT




GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC




EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT




TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG




PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC




STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT




GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG




ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA




EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA




GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC




TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA




PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC




ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA




PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT




SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC




TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT




SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC




GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA




TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG




EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG




APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG




SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA




PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC




ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG




PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA




EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG




ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC




GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG




PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC




AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC




PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT




GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG




FPTIPLSRLFDNAML

CTACTCCGGAGTCTGGCCCAGGTACCTC




RAHRLHQLAFDTYQ

TACTGAACCGTCTGAGGGTAGCGCTCCA




EFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTA




LQNPQTSLCFSESIPT

GCGCACCAGGTACTTCTACCGAACCGTC




PSNREETQQKSNLEL

CGAAGGCAGCGCTCCAGGTACCTCTACT




LRISLLLIQSWLEPVQ

GAACCTTCCGAGGGCAGCGCTCCAGGT




FLRSVFANSLVYGAS

ACCTCTACCGAACCTTCTGAAGGTAGCG




DSNVYDLLKDLEEGI

CACCAGGTACTTCTACCGAACCGTCCGA




QTLMGRLEDGSPRT

GGGTAGCGCACCAGGTAGCCCAGCAGG




GQIFKQTYSKFDTNS

TTCTCCTACCTCCACCGAGGAAGGTACT




HNDDALLKNYGLLY

TCTACCGAACCGTCCGAGGGTAGCGCA




VQCRSVEGSCGFGG

AGTCTGGCCCAGGTAGCGAACCTGCTAC




GLGPVSGVPGGTSES

CTCCGGCTCTGAGACTCCAGGTACCTCT




ATPESGPGSEPATSG

GAAAGCGCAACCCCGGAATCTGGTCCA




SETPGTSESATPESGP

GGTAGCGAACCTGCAACCTCTGGCTCTG




GSEPATSGSETPGTS

AAACCCCAGGTACCTCTGAAAGCGCTA




ESATPESGPGTSTEPS

CTCCTGAATCTGGCCCAGGTACTTCTAC




EGSAPGSPAGSPTST

TGAACCGTCCGAGGGCAGCGCACCAGG




EEGTSESATPESGPG

TACTTCTGAAAGCGCTACTCCTGAGTCC




SEPATSGSETPGTSES

GGCCCAGGTAGCCCGGCTGGCTCTCCGA




ATPESGPGSPAGSPT

CTTCCACCGAGGAAGGTAGCCCGGCTG




STEEGSPAGSPTSTEE

GCTCTCCAACTTCTACTGAAGAAGGTAG




GTSTEPSEGSAPGTS

CCCGGCAGGCTCTCCGACCTCTACTGAG




ESATPESGPGTSESA

GAAGGTACTTCTGAAAGCGCAACCCCG




TPESGPGTSESATPES

GAGTCCGGCCCAGGTACCTCTACCGAAC




GPGSEPATSGSETPG

CGTCTGAGGGCAGCGCACCAGGTTTTCC




SEPATSGSETPGSPA

GACTATTCCGCTGTCTCGTCTGTTTGAT




GSPTSTEEGTSTEPSE

AATGCTATGCTGCGTGCGCACCGTCTGC




GSAPGTSTEPSEGSA

ACCAGCTGGCCTTTGATACTTACCAGGA




PGSEPATSGSETPGT

ATTTGAAGAAGCcTACATTCCTAAAGAG




SESATPESGPGTSTEP

CAGAAGTACTCTTTCCTGCAAAACCCAC




SEGSAP

AGACTTCTCTCTGCTTCAGCGAATCTAT






TCCGACGCCTTCCAATCGCGAGGAAACT






CAGCAAAAGTCCAATCTGGAACTACTCC






GCATTTCTCTGCTTCTGATTCAGAGCTG






GCTAGAACCAGTGCAATTTCTGCGTTCC






GTCTTCGCCAATAGCCTAGTTTATGGCG






CATCCGACAGCAACGTATACGATCTCCT






GAAAGATCTCGAGGAAGGCATTCAGAC






CCTGATGGGTCGTCTCGAGGATGGCTCT






CCGCGTACTGGTCAGATCTTCAAGCAGA






CTTACTCTAAATTTGATACTAACAGCCA






CAATGACGATGCGCTTCTAAAAAACTAT






GGTCTGCTGTATTGTTTTCGTAAAGATA






TGGACAAAGTTGAAACCTTCCTGCGTAT






TGTTCAGTGTCGTTCCGTTGAGGGCAGC






TGTGGTTTCTAAGGTggcggcctgggcccggtgag






cggcgtgccgGGTGGTACCTCTGAAAGCGCA






ACTCCTGAGTCTGGCCCAGGTAGCGAAC






CTGCTACCTCCGGCTCTGAGACTCCAGG






TACCTCTGAAAGCGCAACCCCGGAATCT






GGTCCAGGTAGCGAACCTGCAACCTCTG






GCTCTGAAACCCCAGGTACCTCTGAAAG






GCTCTGAAACCCCAGGTACCTCTGAAAG






CGCTACTCCTGAATCTGGCCCAGGTACT






TCTACTGAACCGTCCGAGGGCAGCGCA






CCAGGTAGCCCTGCTGGCTCTCCAACCT






CCACCGAAGAAGGTACCTCTGAAAGCG






CAACCCCTGAATCCGGCCCAGGTAGCG






AACCGGCAACCTCCGGTTCTGAAACCCC






AGGTACTTCTGAAAGCGCTACTCCTGAG






TCCGGCCCAGGTAGCCCGGCTGGCTCTC






CGACTTCCACCGAGGAAGGTAGCCCGG






CTGGCTCTCCAACTTCTACTGAAGAAGG






TACTTCTACCGAACCTTCCGAGGGCAGC






GCACCAGGTACTTCTGAAAGCGCTACCC






CTGAGTCCGGCCCAGGTACTTCTGAAAG






CGCTACTCCTGAATCCGGTCCAGGTACT






TCTGAAAGCGCTACCCCGGAATCTGGCC






CAGGTAGCGAACCGGCTACTTCTGGTTC






TGAAACCCCAGGTAGCGAACCGGCTAC






CTCCGGTTCTGAAACTCCAGGTAGCCCA






GCAGGCTCTCCGACTTCCACTGAGGAAG






GTACTTCTACTGAACCTTCCGAAGGCAG






CGCACCAGGTACCTCTACTGAACCTTCT






GAGGGCAGCGCTCCAGGTAGCGAACCT






GCAACCTCTGGCTCTGAAACCCCAGGTA






CCTCTGAAAGCGCTACTCCTGAATCTGG






CCCAGGTACTTCTACTGAACCGTCCGAG






GGCAGCGCACCA






AE624-
MAEPAGSPTSTEEGT
843
ATGGCTGAACCTGCTGGCTCTCCAACCT
844


hGH-
PGSGTASSSPGSSTPS

CCACTGAGGAAGGTACCCCGGGTAGCG



MMP-17-
GATGSPGASPGTSST

GTACTGCTTCTTCCTCTCCAGGTAGCTCT



AE288
GSPGSPAGSPTSTEE

ACCCCTTCTGGTGCAACCGGCTCTCCAG




GTSESATPESGPGTS

GTGCTTCTCCGGGCACCAGCTCTACCGG




TEPSEGSAPGSPAGS

TTCTCCAGGTAGCCCGGCTGGCTCTCCT




PTSTEEGTSTEPSEGS

ACCTCTACTGAGGAAGGTACTTCTGAAA




APGTSTEPSEGSAPG

GCGCTACTCCTGAGTCTGGTCCAGGTAC




TSESATPESGPGSEP

CTCTACTGAACCGTCCGAAGGTAGCGCT




ATSGSETPGSEPATS

CCAGGTAGCCCAGCAGGCTCTCCGACTT




GSETPGSPAGSPTST

CCACTGAGGAAGGTACTTCTACTGAACC




EEGTSESATPESGPG

TTCCGAAGGCAGCGCACCAGGTACCTCT




TSTEPSEGSAPGTSTE

ACTGAACCTTCTGAGGGCAGCGCTCCAG




PSEGSAPGSPAGSPT

GTACTTCTGAAAGCGCTACCCCGGAATC




STEEGTSTEPSEGSAP

TGGCCCAGGTAGCGAACCGGCTACTTCT




GTSTEPSEGSAPGTS

GGTTCTGAAACCCCAGGTAGCGAACCG




ESATPESGPGTSTEPS

GCTACCTCCGGTTCTGAAACTCCAGGTA




EGSAPGTSESATPES

GCCCGGCAGGCTCTCCGACCTCTACTGA




GPGSEPATSGSETPG

GGAAGGTACTTCTGAAAGCGCAACCCC




TSTEPSEGSAPGTSTE

GGAGTCCGGCCCAGGTACCTCTACCGA




PSEGSAPGTSESATP

ACCGTCTGAGGGCAGCGCACCAGGTAC




ESGPGTSESATPESG

TTCTACCGAACCGTCCGAGGGTAGCGCA




PGSPAGSPTSTEEGT

CCAGGTAGCCCAGCAGGTTCTCCTACCT




SESATPESGPGSEPA

CCACCGAGGAAGGTACTTCTACCGAAC




TSGSETPGTSESATPE

CGTCCGAGGGTAGCGCACCAGGTACCT




SGPGTSTEPSEGSAP

CTACTGAACCTTCTGAGGGCAGCGCTCC




GTSTEPSEGSAPGTS

AGGTACTTCTGAAAGCGCTACCCCGGA




TEPSEGSAPGTSTEPS

GTCCGGTCCAGGTACTTCTACTGAACCG




EGSAPGTSTEPSEGS

TCCGAAGGTAGCGCACCAGGTACTTCTG




APGTSTEPSEGSAPG

AAAGCGCAACCCCTGAATCCGGTCCAG




SPAGSPTSTEEGTSTE

GTAGCGAACCGGCTACTTCTGGCTCTGA




PSEGSAPGTSESATP

GACTCCAGGTACTTCTACCGAACCGTCC




ESGPGSEPATSGSET

GAAGGTAGCGCACCAGGTACTTCTACTG




PGTSESATPESGPGS

AACCGTCTGAAGGTAGCGCACCAGGTA




EPATSGSETPGTSES

CTTCTGAAAGCGCAACCCCGGAATCCG




ATPESGPGTSTEPSE

GCCCAGGTACCTCTGAAAGCGCAACCC




GSAPGTSESATPESG

CGGAGTCCGGCCCAGGTAGCCCTGCTG




PGSPAGSPTSTEEGSP

GCTCTCCAACCTCCACCGAAGAAGGTAC




AGSPTSTEEGSPAGS

CTCTGAAAGCGCAACCCCTGAATCCGGC




PTSTEEGTSESATPES

CCAGGTAGCGAACCGGCAACCTCCGGT




GPGTSTEPSEGSAPG

TCTGAAACCCCAGGTACCTCTGAAAGCG




FPTIPLSRLFDNAML

CTACTCCGGAGTCTGGCCCAGGTACCTC




RAHRLHQLAFDTYQ

TACTGAACCGTCTGAGGGTAGCGCTCCA




EFEEAYIPKEQKYSF

GGTACTTCTACTGAACCGTCCGAAGGTA




LQNPQTSLCFSESIPT

GCGCACCAGGTACTTCTACCGAACCGTC




PSNREETQQKSNLEL

CGAAGGCAGCGCTCCAGGTACCTCTACT




LRISLLLIQSWLEPVQ

GAACCTTCCGAGGGCAGCGCTCCAGGT




FLRSVFANSLVYGAS

ACCTCTACCGAACCTTCTGAAGGTAGCG




DSNVYDLLKDLEEGI

CACCAGGTACTTCTACCGAACCGTCCGA




QTLMGRLEDGSPRT

GGGTAGCGCACCAGGTAGCCCAGCAGG




GQIFKQTYSKFDTNS

TTCTCCTACCTCCACCGAGGAAGGTACT




HNDDALLKNYGLLY

TCTACCGAACCGTCCGAGGGTAGCGCA




CFRKDMDKVETFLRI

CCAGGTACCTCTGAAAGCGCAACTCCTG




VQCRSVEGSCGFGA

AGTCTGGCCCAGGTAGCGAACCTGCTAC




PLGLRLRGGGGTSES

CTCCGGCTCTGAGACTCCAGGTACCTCT




ATPESGPGSEPATSG

GAAAGCGCAACCCCGGAATCTGGTCCA




SETPGTSESATPESGP

GGTAGCGAACCTGCAACCTCTGGCTCTG




GSEPATSGSETPGTS

AAACCCCAGGTACCTCTGAAAGCGCTA




ESATPESGPGTSTEPS

CTCCTGAATCTGGCCCAGGTACTTCTAC




EGSAPGSPAGSPTST

TGAACCGTCCGAGGGCAGCGCACCAGG




EEGTSESATPESGPG

TACTTCTGAAAGCGCTACTCCTGAGTCC




SEPATSGSETPGTSES

GGCCCAGGTAGCCCGGCTGGCTCTCCGA




ATPESGPGSPAGSPT

CTTCCACCGAGGAAGGTAGCCCGGCTG




STEEGSPAGSPTSTEE

GCTCTCCAACTTCTACTGAAGAAGGTAG




GTSTEPSEGSAPGTS

CCCGGCAGGCTCTCCGACCTCTACTGAG




ESATPESGPGTSESA

GAAGGTACTTCTGAAAGCGCAACCCCG




TPESGPGTSESATPES

GAGTCCGGCCCAGGTACCTCTACCGAAC




GPGSEPATSGSETPG

CGTCTGAGGGCAGCGCACCAGGTTTTCC




SEPATSGSETPGSPA

GACTATTCCGCTGTCTCGTCTGTTTGAT




GSPTSTEEGTSTEPSE

AATGCTATGCTGCGTGCGCACCGTCTGC




GSAPGTSTEPSEGSA

ACCAGCTGGCCTTTGATACTTACCAGGA




PGSEPATSGSETPGT

ATTTGAAGAAGCcTACATTCCTAAAGAG




SESATPESGPGTSTEP

CAGAAGTACTCTTTCCTGCAAAACCCAC




SEGSAP

AGACTTCTCTCTGCTTCAGCGAATCTAT






TCCGACGCCTTCCAATCGCGAGGAAACT






CAGCAAAAGTCCAATCTGGAACTACTCC






GCATTTCTCTGCTTCTGATTCAGAGCTG






GCTAGAACCAGTGCAATTTCTGCGTTCC






GTCTTCGCCAATAGCCTAGTTTATGGCG






CATCCGACAGCAACGTATACGATCTCCT






GAAAGATCTCGAGGAAGGCATTCAGAC






CCTGATGGGTCGTCTCGAGGATGGCTCT






CCGCGTACTGGTCAGATCTTCAAGCAGA






CTTACTCTAAATTTGATACTAACAGCCA






CAATGACGATGCGCTTCTAAAAAACTAT






GGTCTGCTGTATTGTTTTCGTAAAGATA






TGGACAAAGTTGAAACCTTCCTGCGTAT






TGTTCAGTGTCGTTCCGTTGAGGGCAGC






TGTGGTTTCTAAGGTgcgccgctgggcctgcgcct






gcgcggcggcGGTGGTACCTCTGAAAGCGC






AACTCCTGAGTCTGGCCCAGGTAGCGA






ACCTGCTACCTCCGGCTCTGAGACTCCA






GGTACCTCTGAAAGCGCAACCCCGGAA






TCTGGTCCAGGTAGCGAACCTGCAACCT






CTGGCTCTGAAACCCCAGGTACCTCTGA






AAGCGCTACTCCTGAATCTGGCCCAGGT






ACTTCTACTGAACCGTCCGAGGGCAGCG






CACCAGGTAGCCCTGCTGGCTCTCCAAC






CTCCACCGAAGAAGGTACCTCTGAAAG






CGCAACCCCTGAATCCGGCCCAGGTAG






CGAACCGGCAACCTCCGGTTCTGAAACC






CCAGGTACTTCTGAAAGCGCTACTCCTG






AGTCCGGCCCAGGTAGCCCGGCTGGCTC






TCCGACTTCCACCGAGGAAGGTAGCCC






GGCTGGCTCTCCAACTTCTACTGAAGAA






GGTACTTCTACCGAACCTTCCGAGGGCA






GCGCACCAGGTACTTCTGAAAGCGCTAC






CCCTGAGTCCGGCCCAGGTACTTCTGAA






AGCGCTACTCCTGAATCCGGTCCAGGTA






CTTCTGAAAGCGCTACCCCGGAATCTGG






CCCAGGTAGCGAACCGGCTACTTCTGGT






TCTGAAACCCCAGGTAGCGAACCGGCT






ACCTCCGGTTCTGAAACTCCAGGTAGCC






CAGCAGGCTCTCCGACTTCCACTGAGGA






AGGTACTTCTACTGAACCTTCCGAAGGC






AGCGCACCAGGTACCTCTACTGAACCTT






CTGAGGGCAGCGCTCCAGGTAGCGAAC






CTGCAACCTCTGGCTCTGAAACCCCAGG






TACCTCTGAAAGCGCTACTCCTGAATCT






GGCCCAGGTACTTCTACTGAACCGTCCG






AGGGCAGCGCACCA





*Sequence name reflects N- to C-terminus configuration of the growth factor, cleavage sequence and XTEN components





Claims
  • 1. An isolated fusion protein, comprising a growth hormone (GH) sequence that is at least 90% identical to the amino acid sequence of SEQ ID NO: 1, wherein said growth hormone is linked to an extended recombinant polypeptide (XTEN) comprising a sequence which is at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NOS: 67, 71, 74, and 75, wherein the XTEN is further characterized in that: (a) the XTEN sequence is substantially non-repetitive such that (i) the XTEN sequence contains no three contiguous amino acids that are identical unless the amino acids are serine residues, or (ii) at least 80% of the XTEN sequence consists of non-overlapping sequence motifs, each of the sequence motifs comprising from 9 to 14 amino acid residues, wherein any two contiguous amino acid residues does not occur more than twice in each of the sequence motifs; or it has a subsequence score of less than 10; and(b) the sum of glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) residues constitutes more than 90% of the total amino acid residues of the XTEN.
  • 2. The isolated fusion protein of claim 1, further comprising a second XTEN sequence.
  • 3. The isolated fusion protein of claim 1, wherein the GH sequence and the XTEN are linked via a spacer, wherein the spacer sequence comprises between 1 to about 50 amino acid residues.
  • 4. The isolated fusion protein of claim 1, wherein the binding affinity of the fusion protein to the growth hormone receptor is reduced by at least 10-fold as compared to the binding affinity of the corresponding GH that lacks the XTEN.
  • 5. A pharmaceutical composition comprising the isolated fusion protein of claim 1, and a pharmaceutically acceptable carrier.
  • 6. The isolated fusion protein of claim 1 that is configured according to formula I: (XTEN)x-GH-(XTEN)y   (I)wherein independently for each occurrence: (a) x is either 0 or 1; and(b) y is either 0 or 1, wherein x+y>1.
  • 7. The isolated fusion protein of claim 1, wherein the XTEN is fused to the growth hormone on an N- or C-terminus of the growth hormone.
  • 8. The isolated fusion protein of claim 1, wherein the growth hormone is linked to an XTEN comprising a sequence which is at least 90% identical to the sequence of SEQ ID NO: 75.
  • 9. A method of producing a fusion protein comprising a growth hormone (GH) fused to one or more extended recombinant polypeptides (XTEN), comprising: (a) providing a host cell comprising a recombinant polynucleotide molecule encoding the fusion protein of claim 1;(b) culturing the host cell under conditions permitting the expression of the fusion protein; and(c) recovering the fusion protein.
  • 10. The method of claim 9, wherein the growth hormone of the fusion protein has at least 95% sequence identity to SEQ. ID NO. 1.
  • 11. The method of claim 9, wherein the one or more XTEN of the expressed fusion protein comprises an amino acid sequence having at least 95% sequence identity to a sequence selected from the group consisting of SEQ ID NOS: 67, 71, 74, and 75.
  • 12. The method of claim 9, wherein the polynucleotide is codon optimized for enhanced expression of said fusion protein in the host cell.
  • 13. The method of claim 9, wherein the host cell is a prokaryotic cell.
  • 14. The method of claim 9, wherein the isolated fusion protein is recovered from the host cell cytoplasm.
  • 15. A method of treating a growth-hormone related condition in a subject, comprising administering to the subject a therapeutically effective amount of a fusion protein of claim 1 wherein the growth-hormone related condition is selected from growth-hormone deficiency, Turner's Syndrome, Prader-Willi Syndrome, idiopathic short stature, AIDS wasting, multiple sclerosis, Crohn's disease, ulcerative colitis, and muscular dystronhy.
  • 16. The isolated fusion protein of claim 1, wherein the growth hormone is linked to an XTEN comprising a sequence which is at least 95% identical to SEQ ID NO: 75.
  • 17. The isolated fusion protein of claim 1, wherein the growth hormone is linked to an XTEN comprising a sequence which is at least 99% identical to the sequence of SEQ ID NO: 75.
  • 18. The isolated fusion protein of any one of claims 1, 2, 6-8, and 16-17, wherein the GH sequence is at least 95% identical to the amino acid sequence of SEQ ID NO: 1.
  • 19. The isolated fusion protein of any one of claims 1, 2, 6-8, and 16-17, wherein the GH sequence is at least 99% identical to the amino acid sequence of SEQ ID NO: 1.
  • 20. The isolated fusion protein of any one of claims 1, 2, 6-8, and 16-17, wherein the GH sequence is at least 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO: 1.
  • 21. The isolated fusion protein of any one of claims 1, 2, 6-8, and 16-17, wherein the GH sequence comprises the amino acid sequence of SEQ ID NO: 1.
  • 22. The isolated fusion protein of claim 1, wherein the fusion protein comprises an XTEN-GH configuration.
  • 23. The isolated fusion protein of claim 1 or 2, wherein the fusion protein comprises an XTEN-GH-XTEN configuration.
  • 24. The fusion protein of any one of claims 1 and 2-4, comprising an amino acid sequence that has at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 689, SEQ ID NO: 695, SEQ ID NO: 697, SEQ ID NO: 757, and SEQ ID NO: 791.
  • 25. The fusion protein of claim 24, comprising an amino acid sequence that has at least 90% sequence identity to the amino acid sequence of SEQ ID NO: 757.
  • 26. The fusion protein of claim 25, comprising an amino acid sequence that has at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 757.
  • 27. The fusion protein of claim 25, comprising an amino acid sequence that has at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 757.
  • 28. The fusion protein of claim 25, wherein the amino acid sequence is at least 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO: 757.
  • 29. An isolated fusion protein comprising an amino acid sequence having at least 90% sequence identity to the sequence of SEQ ID NO: 1 linked to an extended recombinant polypeptide (XTEN) sequence having at least 90% sequence identity to the sequence of SEQ ID NO: 75.
  • 30. The fusion protein of claim 29, wherein the XTEN polypeptide sequence has at least 95% identity to the amino acid sequence of SEQ ID NO: 75.
  • 31. The fusion protein of claim 29, wherein the XTEN polypeptide sequence has at least 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of SEQ ID NO: 75.
  • 32. The fusion protein of claim 30, wherein the XTEN polypeptide sequence has at least 99% identity to the amino acid sequence of SEQ ID NO: 75.
  • 33. The fusion protein of claim 29, wherein the XTEN polypeptide sequence comprises the amino acid sequence of SEQ ID NO: 75.
  • 34. The fusion protein of any one of claims 29 to 33, further comprising an additional XTEN polypeptide sequence having at least 90% sequence identity to the sequence of SEQ ID NO: 851.
  • 35. The fusion protein of claim 34, wherein the additional XTEN polypeptide sequence has at least 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of SEQ ID NO: 851.
  • 36. The fusion protein of claim 34, wherein the additional XTEN polypeptide sequence has at least 95% identity to the amino acid sequence of SEQ ID NO: 851.
  • 37. The fusion protein of claim 34, wherein the additional XTEN polypeptide sequence comprises the amino acid sequence of SEQ ID NO: 851.
  • 38. The fusion protein of claim 3, wherein the spacer comprises a cleavage sequence.
  • 39. The fusion protein of claim 36, wherein the additional XTEN polypeptide sequence has at least 99% identity to the amino acid sequence of SEQ ID NO: 851.
  • 40. The fusion protein of any one of claims 29 to 33, further comprising an additional XTEN polypeptide sequence having at least 90% sequence identity to the sequence of SEQ ID NO: 259.
  • 41. The fusion protein of claim 40, wherein the additional XTEN polypeptide sequence has at least 95% identity to the amino acid sequence of SEQ ID NO: 259.
  • 42. The fusion protein of claim 40, wherein the additional XTEN polypeptide sequence has at least 98% identity to the amino acid sequence of SEQ ID NO: 259.
  • 43. The fusion protein of claim 40, wherein the additional XTEN polypeptide sequence comprises the amino acid sequence of SEQ ID NO: 259.
  • 44. The fusion protein of any one of claims 29 to 33, further comprising an additional XTEN polypeptide sequence comprising the amino acid sequences of SEQ ID NOS: 259 and 279.
  • 45. The fusion protein of any one of claims 29 to 33, further comprising an additional XTEN polypeptide sequence having at least 90% sequence identity to the sequence of SEQ ID NO: 279.
  • 46. The fusion protein of claim 45, wherein the additional XTEN polypeptide sequence has at least 95% identity to the amino acid sequence of SEQ ID NO: 279.
  • 47. The fusion protein of claim 46, wherein the additional XTEN polypeptide sequence has at least 98% identity to the amino acid sequence of SEQ ID NO: 279.
  • 48. The fusion protein of claim 45, wherein the additional XTEN polypeptide sequence comprises the amino acid sequence of SEQ ID NO: 279.
  • 49. The fusion protein of claim 24, comprising an amino acid sequence that has at least 90% sequence identity to the amino acid sequence of SEQ ID NO: 689.
  • 50. The fusion protein of claim 49, comprising an amino acid sequence that has at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 689.
  • 51. The fusion protein of claim 50, comprising an amino acid sequence that has at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 689.
  • 52. The fusion protein of claim 50, comprising the amino acid sequence of SEQ ID NO: 689.
  • 53. The fusion protein of claim 24, wherein the comprising an amino acid sequence that has at least 90% sequence identity to the amino acid sequence of SEQ ID NO: 695.
  • 54. The fusion protein of claim 53, wherein the comprising an amino acid sequence that has at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 695.
  • 55. The fusion protein of claim 54, wherein the comprising an amino acid sequence that has at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 695.
  • 56. The fusion protein of claim 24, comprising the amino acid sequence of SEQ ID NO: 695.
  • 57. The fusion protein of claim 24, comprising an amino acid sequence that has at least 90% sequence identity to the amino acid sequence of SEQ ID NO: 697.
  • 58. The fusion protein of claim 57, comprising an amino acid sequence that has at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 697.
  • 59. The fusion protein of claim 58, comprising an amino acid sequence that has at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 697.
  • 60. The fusion protein of claim 24, comprising the amino acid sequence of SEQ ID NO: 697.
  • 61. The fusion protein of claim 24, comprising an amino acid sequence that has at least 90% sequence identity to the amino acid sequence of SEQ ID NO: 791.
  • 62. The fusion protein of claim 61, comprising an amino acid sequence that has at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 791.
  • 63. The fusion protein of claim 62, comprising an amino acid sequence that has at least 99% sequence identity to the amino acid sequence of SEQ ID NO: 791.
  • 64. The fusion protein of claim 24, comprising the amino acid sequence of SEQ ID NO: 791.
  • 65. The isolated fusion protein of claim 1, wherein the growth hormone is linked to an XTEN comprising a sequence which is at least 90% identical to the sequence of SEQ ID NO: 67.
  • 66. The isolated fusion protein of claim 65, wherein the growth hormone is linked to an XTEN comprising a sequence which is at least 95% identical to the sequence of SEQ ID NO: 67.
  • 67. The isolated fusion protein of claim 66, wherein the growth hormone is linked to an XTEN comprising a sequence which is at least 99% identical to the sequence of SEQ ID NO: 67.
  • 68. The isolated fusion protein of claim 1, wherein the growth hormone is linked to an XTEN comprising the sequence of SEQ ID NO: 67.
  • 69. The isolated fusion protein of claim 1, wherein the growth hormone is linked to an XTEN comprising a sequence which is at least 90% identical to the sequence of SEQ ID NO: 71.
  • 70. The isolated fusion protein of claim 69, wherein the growth hormone is linked to an XTEN comprising a sequence which is at least 95% identical to the sequence of SEQ ID NO: 71.
  • 71. The isolated fusion protein of claim 70, wherein the growth hormone is linked to an XTEN comprising a sequence which is at least 99% identical to the sequence of SEQ ID NO: 71.
  • 72. The isolated fusion protein of claim 1, wherein the growth hormone is linked to an XTEN comprising the sequence of SEQ ID NO: 71.
  • 73. The isolated fusion protein of claim 1, wherein the growth hormone is linked to an XTEN comprising a sequence which is at least 90% identical to the sequence of SEQ ID NO: 74.
  • 74. The isolated fusion protein of claim 73, wherein the growth hormone is linked to an XTEN comprising a sequence which is at least 95% identical to the sequence of SEQ ID NO: 74.
  • 75. The isolated fusion protein of claim 74, wherein the growth hormone is linked to an XTEN comprising a sequence which is at least 99% identical to the sequence of SEQ ID NO: 74.
  • 76. The isolated fusion protein of claim 1, wherein the growth hormone is linked to an XTEN comprising the sequence of SEQ ID NO: 74.
  • 77. The isolated fusion protein of claim 29, wherein the amino acid sequence linked to the XTEN sequence is at least 95% identical to the amino acid sequence of SEQ ID NO: 1.
  • 78. The isolated fusion protein of claim 77, wherein the amino acid sequence linked to the XTEN sequence is at least 99% identical to the amino acid sequence of SEQ ID NO: 1.
  • 79. The isolated fusion protein of claim 29, wherein the amino acid sequence linked to the XTEN sequence comprises the amino acid sequence of SEQ ID NO: 1.
  • 80. The method of claim 15, wherein growth-hormone related condition is growth-hormone deficiency.
  • 81. The method of claim 15, wherein growth-hormone related condition is Turner's Syndrome.
  • 82. The method of claim 15, wherein growth-hormone related condition is Prader-Willi Syndrome.
  • 83. The method of claim 15, wherein growth-hormone related condition is idiopathic short stature.
  • 84. The method of claim 15, wherein the growth-hormone related condition is selected from the group consisting of AIDS wasting, multiple sclerosis, Crohn's disease, ulcerative colitis, and muscular dystrophy.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 12/699,761, filed Feb. 3, 2010, which in turn claims the priority benefit of U.S. Provisional Application Ser. Nos. 61/149,669, filed Feb. 3, 2009; 61/185,112, filed Jun. 8, 2009; 61/268,193, filed Jun. 8, 2009; 61/236,493, filed Aug. 24, 2009; 61/236,836, filed Aug. 25, 2009; 61/243,707, filed Sept. 18, 2009; 61/245,490, filed Sept. 24, 2009; 61/280,955, filed Nov. 10, 2009; 61/280,956, filed Nov. 10, 2009; and 61/281,109, filed Nov. 12, 2009. This application also claims the priority benefit of U.S. Provisional Application Ser. Nos. 61/185,112, filed Jun. 8, 2009; 61/236,836, filed Aug. 25, 2009; 61/280,955, filed Nov. 10, 2009 and PCT Application Serial No. PCT/US10/23106, filed Feb. 3, 2010, all of which are hereby incorporated herein by reference in their entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under SBIR grant 2R44GM079873-02 awarded by the National Institutes of Health. The government has certain rights in the invention.

US Referenced Citations (46)
Number Name Date Kind
5270176 Dorschug et al. Dec 1993 A
5424199 Goeddel et al. Jun 1995 A
5554730 Woiszwillo et al. Sep 1996 A
5599907 Anderson et al. Feb 1997 A
6500448 Johnson et al. Dec 2002 B1
6905688 Rosen et al. Jun 2005 B2
7045318 Ballance May 2006 B2
7442778 Gegg et al. Oct 2008 B2
7452967 Bertin Nov 2008 B2
7528242 Anderson et al. May 2009 B2
7846455 Collins et al. Dec 2010 B2
20030049689 Edwards et al. Mar 2003 A1
20030181381 Himmelspach et al. Sep 2003 A1
20030190740 Altman Oct 2003 A1
20040043446 DeFrees et al. Mar 2004 A1
20040142870 Finn Jul 2004 A1
20040259775 Kyle Dec 2004 A1
20040259780 Glasebrook et al. Dec 2004 A1
20050042721 Fang et al. Feb 2005 A1
20050118136 Leung et al. Jun 2005 A1
20050123997 Lollar Jun 2005 A1
20050287153 Dennis Dec 2005 A1
20060026719 Kieliszewski et al. Feb 2006 A1
20060287220 Li et al. Dec 2006 A1
20060293232 Levy et al. Dec 2006 A1
20070048282 Rosen et al. Mar 2007 A1
20070161087 Glaesner et al. Jul 2007 A1
20070203058 Lau et al. Aug 2007 A1
20070244301 Siekmann et al. Oct 2007 A1
20080039341 Schellenberger et al. Feb 2008 A1
20080167238 Rosen et al. Jul 2008 A1
20080176288 Leung et al. Jul 2008 A1
20080234193 Bossard et al. Sep 2008 A1
20080260755 Metzner et al. Oct 2008 A1
20080261877 Ballance et al. Oct 2008 A1
20080269125 Ballance et al. Oct 2008 A1
20080286808 Schellenberger et al. Nov 2008 A1
20080312157 Levy et al. Dec 2008 A1
20090042787 Metzner et al. Feb 2009 A1
20090060862 Chang et al. Mar 2009 A1
20090092582 Bogin et al. Apr 2009 A1
20100189682 Schellenberger et al. Jul 2010 A1
20100239554 Schellenberger et al. Sep 2010 A1
20100292130 Skerra et al. Nov 2010 A1
20110151433 Schellenberger et al. Jun 2011 A1
20110172146 Schellenberger et al. Jul 2011 A1
Foreign Referenced Citations (22)
Number Date Country
0556171 Sep 2000 EP
2005133665 Jun 2006 RU
WO 9711178 Mar 1997 WO
WO 9733552 Sep 1997 WO
WO 9949901 Oct 1999 WO
WO 2005025499 Mar 2005 WO
WO 2005025499 May 2005 WO
WO 2006024953 Mar 2006 WO
WO 2006081249 Aug 2006 WO
WO 2006081249 Feb 2007 WO
WO 2007090584 Aug 2007 WO
WO 2007103455 Sep 2007 WO
WO 2007103455 Nov 2007 WO
WO 2008077616 Jul 2008 WO
WO 2008155134 Dec 2008 WO
WO 2010091122 Aug 2010 WO
WO 2010144502 Dec 2010 WO
WO 2010144508 Dec 2010 WO
WO 2011028228 Mar 2011 WO
WO 2011028229 Mar 2011 WO
WO 2011084808 Jul 2011 WO
WO 2011123813 Oct 2011 WO
Non-Patent Literature Citations (59)
Entry
Bailon, et al. Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C. Bioconjug Chem. Mar.-Apr. 2001;12(2):195-202.
Cleland, et al. A novel human growth hormone XTEN construct (VRS-317) for monthly administration. Endocrine Journal, vol. 57, no. Suppl. 2, Mar. 2010, p. S618, XP002696184, & 14th International Congress of Endocrinology ICE2010; Kyoto, Japan; Mar. 26-30, 2010 ISSN: 0918-8959 (abstract).
Cleland, et al. A novel long-acting human growth hormone fusion protein (VRS-317): enhanced in vivo potency and half-life. J Pharm Sci. Aug. 2012;101(8):2744-54. doi: 10.1002/jps.23229. Epub Jun. 7, 2012.
European search report and search opinion dated May 14, 2013 for EP Application No. 10786725.
Geething, et al. Gcg-XTEN: an improved glucagon capable of preventing hypoglycemia without increasing baseline blood glucose. PLoS One. Apr. 14, 2010;5(4):e10175. doi: 10.1371/journal.pone.0010175.
Kyngas, et al. Unreliability of the Chou-Fasman parameters in predicting protein secondary structure. Protein Eng. May 1998;11(5):345-8.
Office action dated Aug. 23, 2012 for U.S. Appl. No. 12/848,984.
Schlapschy, et al. Fusion of a recombinant antibody fragment with a homo-amino-acid polymer: effects on biophysical properties and prolonged plasma half-life. Protein Eng Des Sel. Jun. 2007;20(6):273-84. Epub Jun. 26, 2007.
Etherton, et al. Biology of somatotropin in growth and lactation of domestic animals. Physiol Rev. Jul. 1998;78(3):745-61.
International search report dated Mar. 14, 2012 for PCT Application No. US2011/48517.
Altschul et al. Basic Local Alignment Search Tool. J. Mol. Biol. 1990; 215:403-410.
Alvarez, et al. Improving Protein Pharmacokinetics by Genetic Fusion to Simple Amino Acid Sequences. J Biol Chem. 2004; 279: 3375-81.
Arndt, et al. Factors influencing the dimer to monomer transition of an antibody single-chain Fv fragment. Biochemistry. 1998; 37(37):12918-26.
Ausubel, et al. eds. Current Protocols in Molecular Biology. Wiley. 1987.
Chou, et al. Prediction of Protein Conformation. Biochemistry. 1974; 13: 222-245.
Clark, et al. Long-acting growth hormones produced by conjugation with polyethylene glycol. J Biol Chem. 1996; 271(36):21969-77.
Clark, et al. Recombinant human growth hormone (GH)-binding protein enhances the growth-promoting activity of human GH in the rat. Endocrinology. 1996; 137(10):4308-15.
Collen, et al. Polyethylene Glycol-Derivatized Cysteine-Substitution Variants of Recombinant Staphylokinase for Single-Bolus Treatment of Acute Myocardial Infarction. Circulation. 2000; 102: 1766-72.
D'Aquino, et al. The magnitude of the backbone conformational entropy change in protein folding. Proteins. 1996; 25: 143-56.
Dattani, et al. An investigation into the lability of the bioactivity of human growth hormone using the ESTA bioassay. Horm Res. 1996; 46(2):64-73.
Deckert, et al. Pharmacokinetics and microdistribution of polyethylene glycol-modified humanized A33 antibody targeting colon cancer xenografts. Int J Cancer. 2000; 87: 382-90.
Dhalluin, et al. Structural and biophysical characterization of the 40 kDa PEG-interferon-alpha2a and its individual positional isomers. Bioconjug Chem. 2005; 16: 504-17.
Ellis, et al. Valid and invalid implementations of GOR secondary structure predictions. Comput Appl Biosci. Jun. 1994;10(3):341-8. (Abstract only).
Greenwald, et al. Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev. 2003; 55: 217-50.
Gustafsson, et al. Codon bias and heterologous protein expression. Trends Biotechnol. 2004; 22: 346-53.
Harris, et al. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003; 2: 214-21.
Hinds, et al. PEGylated insulin in PLGA microparticles. In vivo and in vitro analysis. J Control Release. Jun. 2, 2005;104(3):447-60.
Hopp, et al. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S a 1981; 78, 3824, #3232.
International search report dated Oct. 29, 2010 for PCT Application No. US10/37855.
International search report dated Dec. 26, 2007 for PCT Application No. US2007/05952.
International search report dated Mar. 16, 2009 for PCT Application No. US2008/09787.
International search report dated Apr. 20, 2010 for PCT Application No. US10-23106.
Khan, et al. Solubilization of recombinant ovine growth hormone with retention of native-like secondary structure and its refolding from the inclusion bodies of Escherichia coli. Biotechnol Prog. 1998; 14(5):722-8.
Kochendoerfer. Chemical and biological properties of polymer-modified proteins. Expert Opin Biol Ther. 2003; 3: 1253-61.
Kohn, et al. Random-coil behavior and the dimensions of chemically unfolded proteins. Proc Natl Acad Sci U S A. Aug. 24, 2004;101(34):12491-6.
Kornblatt, et al. Cross-linking of cytochrome oxidase subunits with difluorodinitrobenzene. Can J. Biochem. 1980; 58: 219-224.
Kubetzko, et al. Protein PEGylation decreases observed target association rates via a dual blocking mechanism. Mol Pharmacol. 2005; 68: 1439-54.
Levitt. A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol 1976; 104, 59-107.
Mcpherson, et al. eds. PCR 2: a practical approach. Oxford University Press. 1995.
Mitraki, et al. Protein Folding Intermediates and Inclusion Body Formation. Bio/Technology. 1989; 7:690-697.
Oslo, ed. Remington's Pharmaceutical Sciences. 16th edition. 1980.
Pepinsky, et al. Improved pharmacokinetic properties of a polyethylene glycol-modified form of interferon-beta-1a with preserved in vitro bioactivity. J Pharmacol Exp Ther. 2001; 297: 1059-66.
Sambrook, et al. Molecular Cloning: A Laboratory Manual, 2nd Edition; Current Protocols in Molecular Biology. 1989.
Singh, et al. ProPred: Prediction of HLA-DR binding sites. Bioinformatics. 2001; 17: 1236-1237.
Smith, et al. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988; 67(1):31-40.
Stickler, et al. Human population-based identification of CD4(+) T-cell peptide epitope determinants. J Immunol Methods. 2003; 281: 95-108.
Stites, et al. Empirical evaluation of the influence of side chains on the conformational entropy of the polypeptide backbone. Proteins. 1995; 22: 132-140.
Sturniolo, et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Natural Biotechnol. 1999; 17: 555-561.
Venkatachalam, et al. Conformation of polypeptide chains. Annu Rev Biochem. 1969; 38: 45-82.
Yang, et al. Tailoring structure-function and pharmacokinetic properties of single-chain Fv proteins by site-specific PEGylation. Protein Eng. 2003; 16: 761-70.
Yankai, et al. Ten tandem repeats of beta-hCG 109-118 enhance immunogenicity and anti-tumor effects of beta-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65. Biochem Biophys Res Commun. 2006; 345(4):1365-71.
International search report and written opinion dated Dec. 20, 2010 for PCT Application No. US10/02147.
Schellenberger, et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat Biotechnol. Dec. 2009;27(12):1186-92.
European search report and search opinion dated Jan. 27, 2011 for Application No. 08795371.7.
Buscaglia, et al. Tandem amino acid repeats from Trypanosoma cruzi shed antigens increase the half-life of proteins in blood. Blood. Mar. 15, 1999;93(6):2025-32.
International search report dated Jul. 12, 2011 for PCT Application No. US20/61590.
Uversky, et al. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins. Nov. 15, 2000;41(3):415-27.
Walker, et al. Using protein-based motifs to stabilize peptides. J Pept Res. Nov. 2003;62(5):214-26.
Wright, et al. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol. Oct. 22, 1999;293(2):321-31.
Related Publications (1)
Number Date Country
20110077199 A1 Mar 2011 US
Provisional Applications (10)
Number Date Country
61149669 Feb 2009 US
61185112 Jun 2009 US
61268193 Jun 2009 US
61236493 Aug 2009 US
61236836 Aug 2009 US
61243707 Sep 2009 US
61245490 Sep 2009 US
61280955 Nov 2009 US
61280956 Nov 2009 US
61281109 Nov 2009 US
Continuation in Parts (1)
Number Date Country
Parent 12699761 Feb 2010 US
Child 12796640 US