The thermal performance of a power semiconductor device module depends on the material “stack” used for the module application. For example, in a common half-bridge power module (a typical module used in automotive applications), the transistors or semiconductor die are soldered to a substrate, which then can be soldered or fastened to a heat sink or base plate. In both cases, the stack-up of materials will generate high thermal resistance from the semiconductor junction to the heat sink.
The interface between the many layers of the stack-ups has the following drawbacks:
1. When the substrate is fastened to a heat sink, a thermal interface layer will need to be added to eliminate the air gap. This system normally has a high thermal resistance.
2. In case of soldering the substrate to a base plate, the system has a processing issue in that soldering a large substrate area to a base-plate can be difficult and can result in limited reliability of performance.
It is desirable to have a power module that does not exhibit the drawbacks of the prior art modules.
To overcome the drawbacks of the prior art, a half bridge power module (including an ASIC gate driver) is provided with AlSiC heat sinks integrated into a molded frame.
According to one aspect of the present invention semiconductor die are directly attached to the heatsinks, thereby reducing the reliability of performance problems encountered in the prior art.
A module according to the present invention may further include lead frames molded in the frame. In one embodiment of the present invention, a lead frame is provided for power input, a lead frame is provided for ground connection and a lead frame is provided for output connection. The lead frames are then electrically attached, where appropriated, to the heatsinks by wirebonds.
In an alternative embodiment, direct connections can be made to the heatsinks, thereby eliminating some of the wirebonds and thus reducing the resistance of the module.
Other features and advantages of the present invention will become apparent from the following description of the invention which refers to the accompanying drawings.
Referring to
As is well known, and schematically illustrated, any number of half-bridge circuits may be parallel-connected between the power bus B+ and the ground terminal B−. Thus, for example, another half-bridge circuit including another high side power device Q3 and another low side power device Q4 can be connected in series between power bus B+ and ground B−.
A suitable semiconductor power device for use in a half-bridge is an N-channel type power MOSFET. In a half-bridge configuration, an N-channel power MOSFET selected for the high side is electrically connected in series at the source terminal thereof to the drain terminal of the power MOSFET selected for the low side and at the drain side thereof to power bus B+. The source terminal of the power MOSFET selected for the low side is then electrically connected to the ground terminal B− in order to form a half-bridge circuit. The output signal of the half-bridge so constructed is taken from the point of connection of the source terminal of the power MOSFETs at the high side and the drain terminal of the power MOSFET at the low side.
Referring to
Referring back to
Referring now to
According to one aspect of the present invention, heatsinks 20, 22 are insert molded in a molded frame 24.
According to another aspect of the present invention at least one power semiconductor device is disposed on a respective top flat surface 20A, 22A of a heat sink 20, 22. In the preferred embodiment of the present invention, the power semiconductor device is an N-channel MOSFET Q1, Q2. Furthermore, in the preferred embodiment of the present invention at least one more N-channel MOSFET Q3, Q4 is disposed on a respective top flat surface 20A, 22A of a heatsink 20, 22.
According to another aspect of the present invention heatsinks 20, 22 are formed from an electrically conductive material. Each power MOSFET Q1, Q2, Q3, Q4 is electrically connected at its drain side D1,D2 to a respective top flat surface 20A, 22A by, for example, a layer of conductive adhesive such as solder or conductive epoxy.
According to another aspect of the present invention heatsinks 20, 22 are formed from AlSiC (Aluminum Silicon Carbide). AlSiC is comprised of SiC particles in a continuous aluminum metal phase. As is known, the ratio of aluminum and SiC particles can be changed to modify the CTE (coefficient of thermal expansion) of the heatsink in order to meet the specification requirements. The use of AlSiC for heatsinks 20, 22 is advantageous in that it can be designed to have the same coefficient of thermal expansion as the die, thereby reducing thermal stress problems.
A module according to the present invention further includes a ground connection lead frame 26, a power input lead frame 28 and an output connection lead frame 30. Ground connection lead frame 26, power input lead frame 28, and output lead frame 30 are preferably made from copper, although other electrically conductive materials may be suitable for forming these elements. As seen in
According to an aspect of the present invention, each top flat surface 20A, 22A is provided with a wirebondable surface 32A, 32B. The wirebondable surface 32A, 32B may be a solderable anvil having a top aluminum surface for receiving the wirebonds. Thus, as shown in
According to a second embodiment of the present invention, at least one or both heatsinks 20, 22 may be provided with an external connector 36A, 36B. An external connector 36A, 36B may be used in lieu of a lead frame. Thus, external connector 36A may serve as the external connection to the power input B+ instead of power input lead frame 28, and external connector 36B may serve as the external output connection for the bridge circuits instead of output lead frame 30. External connectors 36A, 36B can be preferably threadably attached to heatsinks 20, 22.
Referring now to
ASIC chip 28 is operatively connected with gate electrodes G1, G2, G3, G4 of MOSFETs Q1, Q2, Q3, Q4 by wirebonds 42. A suitable wirebond 42 may be the same material as wirebonds 34. Specifically, for example, aluminum wirebonds of 0.005 to 0.008 gauge can be used for wirebonds 34 and wirebonds 42.
It should be noted that in the preferred embodiment, conductive jumpers 50 may be used to connect ASIC chip 38 to gate electrodes G1, G3, of MOSFETs Q1, Q3. The use of jumpers 50 is advantageous in that it reduces the required length of a wirebond that may otherwise need to extend from the location of ASIC chip 38 to gate electrodes G1, G2. ASIC chip 38 is electrically connected to external signal connectors 44 by wirebonds 46. External signal connectors 44 are adapted to receive control signals from an external source such as a microcontroller (not shown) outside of the module.
According to an aspect of the present invention, heatsinks 20, 22, power input lead frame 28, ground lead frame 26, output lead frame 30, and plate 40 are insert molded in frame 24. Next, conductive adhesive such as solder is deposited on top flat surface 20A, 22A of heatsinks 20, 22 and MOSFETs Q1, Q2, Q3, Q4 are positioned over the deposits of solder. In order to ensure good connection, a solderable region is formed over the heatsinks 20, 22 on which solder is deposited. The solderable layer may be plated atop flat surfaces 20A, and 22A, and may cover all of the same. Any material capable of receiving solder may be suitable for forming the solderable layer. Thereafter, heat is applied to reflow the solder. Next, the appropriate wirebondings are carried out in order to obtain a module according to the preferred embodiment as described in detail herebefore.
Thus, after molding heatsinks 20,22 with frame 24 the following steps can be carried out to obtain a functional module according to the present invention:
According to an aspect of the present invention, the material selected for frame 24 can withstand at least the solder reflow temperature. Thus, frame 24 can keep its structural integrity during the manufacturing process. A suitable material for this purpose may be a glass filled Amodel polymer.
In an exemplary application three modules according to the preferred embodiment of the present invention can be interconnected to make a three-phase bridge configuration. The three-module-three-phase bridge can be mounted on the back of a motor (such as an alternator for an active rectifier application for a starter/alternator application), in a box, on racks, or on metal frames using fasteners and mounting holes. The mounting holes could be a part of frame 26 or heat sinks 20, 22. Since in a module according to the present invention the die are directly mounted to a heat sink, the mounting of the module does not impact thermal performance as do conventional power modules using substrates. The three modules can be placed close to one another and the gate signals of all three devices can be interconnected using a PCB (printed circuit board), a flexible PCB, an insert molded lead frame or a molded flexible PCB. The power input B+ and the ground B− of the modules can be interconnected using, for example, a welding technology.
The advantages of a module according to the present invention are as follows:
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.
This application is based on and claims benefit of U.S. Provisional Application No. 60/478,996, filed on Jun. 17, 2003, entitled Half-Bridge Power Module With Insert Molded Heat Sinks, to which a claim of priority is hereby made, and the disclosure of which is incorporated by reference.