The present technology relates to utility meters. More particularly, the present technology relates to methodologies and corresponding apparatus for improved controlling of temperature drift in Hall sensors, such as may be associated with electricity utility meters.
The general object of metrology is to monitor one or more selected physical phenomena to permit a record of monitored events. Such basic purpose of metrology can be applied to a variety of metering devices used in a number of contexts. One broad area of measurement relates, for example, to utility meters. Such role may also specifically include, in such context, the monitoring of the consumption or production of a variety of forms of energy or other commodities, for example, including but not limited to, electricity, water, gas, or oil.
More particularly concerning electricity meters, mechanical forms of registers were historically used for outputting accumulated electricity consumption data. Such an approach provided a relatively dependable field device, especially for the basic or relatively lower level task of simply monitoring accumulated kilowatt-hour consumption. Such basic mechanical form of register was typically limited in its mode of output, so that only a very basic or lower level metrology function was achieved. Subsequently, electronic forms of metrology devices began to be introduced, to permit relatively higher levels of monitoring, involving different forms and modes of data.
In the context of electricity meters specifically, for a variety of management and billing purposes, it has become desirable to obtain more sophisticated usage data. Solid state devices provided on printed circuit boards, for example, utilizing programmable integrated circuit components, have provided effective tools for implementing many of such higher level monitoring functions desired in the electricity meter context. In addition to the beneficial introduction of electronic forms of metrology, a variety of electronic registers have been introduced with certain advantages. Still further, other forms of data output have been introduced and are beneficial for certain applications, including wired transmissions, data output via radio frequency transmission, pulse output of data, and telephone line connection via such as modems and/or wireless (such as cellular) linkups.
The advent of such variety and alternatives has often required utility companies to provide data collection mechanisms wherein appropriate data may be collected in environments that are increasingly hostile to such data collection. For example, electrical noise emanating from sources near electricity meter sensing functions may constitute a source of error in collected data. Likewise, different types of metering and/or monitoring components may have various thermal sensitivities, accounting for which may become more problematic as the complexity of associated circuitry and thermal environment fluctuations increase.
Electricity meters typically include input circuitry for receiving voltage and current signals or levels at the electrical service. Input circuitry of whatever type or specific design for receiving the electrical service current signals is referred to herein generally as current acquisition circuitry, while input circuitry of whatever type or design for receiving the electrical service voltage signals is referred to herein generally as voltage acquisition circuitry. There are additional issues related to the measurement of voltage and current that present their own problems. One such problem relates to the stability and reliability of the measured quantities during operation over a dynamic range of conditions, including ranging thermal conditions. Under more or less normal operational conditions, thermal conditions may vary significantly, and for a variety of reasons. Due to such fact, it can be difficult to use simple, reliable approaches for accommodating and/or compensating for, or otherwise preventing deleterious measurement effects due to, varying thermal conditions.
Hall sensors are generally known and often used to measure magnetic fields in a wide variety of applications such as in position sensing, contactless current sensing, and in electricity metering. In general, and as is well known to those of ordinary skill in the art, a Hall sensor is a device with at least four contacting electrodes. When biased with a current (Ibias) through two of such electrodes, a Hall sensor delivers between its other two electrodes a voltage that is proportional both to the component of the magnetic field perpendicular to the current trajectory, and to the value of the biasing current (Ibias).
It is a common practice that many Hall sensors are fabricated using thin-film technologies, at least in some respects similar to techniques and technologies as used with semiconductor processing. However, because of changes in electron population in the active area of such sensors, the magnetic sensitivities of such Hall sensors tends to be temperature dependent.
In view of the foregoing, it is desired to provide a metrology technology that permits the collection of accurate data regardless of the environment in which the metrology device is installed, and irrespective of the load under which the supply source operates, i.e., to provide a metrology device which is universally applicable with respect to environment, particularly as to a varying thermal environment. In the instance of an electricity meter which makes use of Hall sensor technology, it is desired to provide method and apparatus for controlling the sensitivity temperature drift of such Hall sensor technology at any current bias (Ibias) chosen therefore.
While various aspects and alternative embodiments may be known in the field of utility metering, no one design has emerged that generally encompasses the above-referenced characteristics and other desirable features associated with utility metering technology as herein presented.
In view of the recognized features encountered in the prior art and addressed by the present subject matter, an improved apparatus and corresponding methodology for filtering temperature-dependent characteristics and/or variations from collected data signals has been provided.
In a broader present object, methodology and corresponding apparatus are provided for reducing or removing the effects of temperature from sensed signals of interest.
In one of its simpler forms, the present technology advantageously provides control of temperature-related effects which might otherwise cause signal error in the form of signal drift in a sensed signal of interest.
Another advantageous aspect of the present signal filtering subject matter is that it may be provided by reliable techniques yet utilizing a minimal number of components while improving the thermal drift of the magnetic sensitivity of a Hall sensor.
Yet another more specific object of the present technology is to provide method and apparatus resulting in a nulling effect on the thermal drift of the magnetic sensitivity of a Hall sensor when operating in conjunction with an otherwise desired biasing current value.
Another present object of the subject technology is to improve the reliability and stability of the magnetic sensitivity of Hall sensor technology, so that use of such improved Hall sensor technology in the context of electricity metering produces correspondingly more reliable and more stable metrology data based on the sensing outputs of such improved Hall sensor technology.
One present exemplary embodiment relates to a Hall sensor, comprising a planar semiconductive material having, respectively, a central magnetic field responsive active area portion and outer perimeter portions; a plurality of electrical contacts coupled to the outer perimeter portions; and a gate electrode coupled to and covering at least a fractional portion of the central magnetic field responsive active area portion, so that thermal drift characteristics of the Hall sensor may be compensated. Additional present embodiments of such type may involve such an exemplary Hall sensor further combined with the input of a meter, for example, such as an electricity meter.
Another present exemplary embodiment relates to a Hall sensor, comprising a planar semiconductive material having, respectively, a central magnetic field responsive active area portion and outer perimeter portions; a plurality of electrical contacts coupled to the outer perimeter portions; a gate electrode coupled to and covering such central magnetic field responsive active area portion; and a gate control external to the planar semiconductive material, so that thermal drift characteristics may be compensated. Likewise, additional present embodiments of such type may involve such an exemplary Hall sensor further combined with the input of a meter, for example, such as an electricity meter.
Still further present exemplary embodiments equally relate to subject methodology. One example of such a present methodology relates to a method for providing a Hall sensor with improved thermal drift characteristics, comprising: providing a planar semiconductive material having a central magnetic field responsive active area portion and outer perimeter portions; coupling a plurality of electrical contacts to the outer perimeter portions; covering at least a portion of the central magnetic field responsive active area portion with a gate electrode coupled; providing a gate current supply; coupling the gate electrode to the gate current supply; selecting a desired operating bias current value for the Hall sensor; and varying effective gate electrode characteristics, whereby thermal drift characteristics of the Hall sensor may be at least substantially annulled. Optionally, such methodology may further include providing from such Hall sensor an output connected to the input of a meter, for example, such as an electricity meter.
Still further present exemplary embodiments equally relate to subject methodology. One example of such a present methodology relates to a method for providing a Hall sensor with improved thermal drift characteristics, comprising: providing a planar semiconductive material having a central magnetic field responsive active area portion and outer perimeter portions; coupling a plurality of electrical contacts to the outer perimeter portions; covering at least a portion of the central magnetic field responsive active area portion with a gate electrode coupled; providing a gate current supply; coupling the gate electrode to the gate current supply; selecting a desired operating bias current value for the Hall sensor; and varying effective gate electrode characteristics, whereby thermal drift characteristics of the Hall sensor may be at least substantially annulled. Optionally, such methodology may further include providing from such Hall sensor an output connected to the input of a meter, for example, such as an electricity meter.
Additional objects and advantages of the present subject matter are set forth in, or will be apparent to, those of ordinary skill in the art from the detailed description herein. Also, it should be further appreciated that modifications and variations to the specifically illustrated, referred and discussed features, elements, and steps hereof may be practiced in various embodiments and uses of the present subject matter without departing from the spirit and scope of the subject matter. Variations may include, but are not limited to, substitution of equivalent means, features, or steps for those illustrated, referenced, or discussed, and the functional, operational, or positional reversal of various parts, features, steps, or the like.
Still further, it is to be understood that different embodiments, as well as different presently preferred embodiments, of the present subject matter may include various combinations or configurations of presently disclosed features, steps, or elements, or their equivalents including combinations of features, parts, or steps or configurations thereof not expressly shown in the figures or stated in the detailed description of such figures.
Additional embodiments of the present subject matter, not necessarily expressed in the summarized section, may include and incorporate various combinations of aspects of features, components, or steps referenced in the summarized objects above, and/or other features, components, or steps as otherwise discussed in this application. Those of ordinary skill in the art will better appreciate the features and aspects of such embodiments, and others, upon review of the remainder of the specification.
A full and enabling disclosure of the present subject matter, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Repeat use of reference characters throughout the present specification and appended drawings is intended to represent same or analogous features, elements, or steps of the present subject matter.
As discussed in the Summary of the Invention section, the present subject matter is particularly concerned with corresponding methodology and apparatus for improving thermal drift characteristics for the magnetic sensitivity of Hall sensor devices and, in particular, for annulling the thermal drift for a desired biasing current value used with such Hall sensor devices, for the overall improvement of a measured or sensed particular signal of interest, such as used for example in conjunction with an electricity meter.
Selected combinations of aspects of the disclosed technology correspond to a plurality of different embodiments of the present subject matter. It should be noted that each of the exemplary embodiments presented and discussed herein should not insinuate limitations of the present subject matter. Features or steps illustrated or described as part of one embodiment may be used in combination with aspects of another embodiment to yield yet further embodiments. Additionally, certain features may be interchanged with similar devices or features not expressly mentioned which perform the same or similar function.
Moreover, it should be appreciated that, whereas the general discussion herein relates more specifically to electricity meters using specific sensor types including Hall effect sensors, such particular combined use of the Hall effect sensor technology is not a limitation of the present technology. In general the present technology may be applied to any use or application of Hall sensors, where elimination or reduction of thermal drift of the magnetic sensitivity of the Hall sensor device may be desirable.
Reference will now be made in detail to presently preferred embodiments of the subject corresponding methodology and apparatus for improving thermal drift of magnetic sensitivity of a Hall sensor, including additional background discussion of prior Hall sensor technology for further contrast thereof with the present subject matter.
Most Hall sensors are planar devices, i.e., the conduction of the electrons occurs in a very thin plane parallel to the surface of the semiconductor device. As known to those of ordinary skill in the art, a Hall sensor typically is a device with at least four contacting electrodes. In such configurations, the biasing current is applied between two opposite contact electrodes and the Hall voltage is measured between two other electrodes on each side of the current path. Information on preferred Hall device shapes and contact locations is well known, such as in the well known textbook “Hall Effect Devices, Second Edition” (ISBN 0750308559) by R. S. Popovic.
As is also well known to those of ordinary skill in the art, the output of a Hall sensor for various voltage biasing conditions reads:
VH=Gμn·Vbias·Bz
where G denotes a geometric coefficient related to the aspect ratio (width/length) of the Hall sensor, μn is the electron mobility, and B is the magnetic induction to be measured.
Since the electron mobility μn is known to always have a relatively large temperature variation, voltage biasing should be avoided when one wants to obtain precision magnetic measurements. Therefore, it is understood by those of ordinary skill in the art that the preferred implementation for precision magnetic measurements is controlled current biasing (Ibias) conditions, for which the voltage output of a Hall sensor is known to read:
VH=KH·Ibias·Bz
where KH denotes the so-called cross-sensitivity.
The cross-sensitivity KH is related to ns, the sheet electron concentration in the current channel at the location between the Hall contacts, by:
KH=1/e ns
where e is the electron charge.
Practically, the temperature dependence of ns, and hence of KH, can be made lower than a few 100 ppm/° C. for a particular design of the device parameters. Using, for example, a stabilized biasing current Ibias, the absolute magnetic sensitivity is represented by:
VH/Bz=KH·Ibias
Such absolute magnetic sensitivity will show a thermal drift amounting to the same amount as that of the cross-sensitivity KH. However, for some applications, such remaining thermal drift is still too high as compared to the desired or required measurement precision specifications in the considered temperature range. However, practice of the subject matter otherwise presently disclosed will, in contrast, provide improvement of the thermal drift of the magnetic sensitivity of a Hall sensor, and more peculiarly a method for annulling the thermal drift for a desired biasing current value.
One previously known method for seeking to control the remaining thermal drift of the magnetic sensitivity is to implement a metal gate over the active area of the sensor and adjust the value of the control gate voltage as a function of temperature in order to compensate for the thermal drift of the electron population in the active area. The intended result is a constant magnetic sensitivity over temperature variations. Such a methodology has been mentioned previously in the scientific literature. See, for example, R. Kyburz, J. Schmid, R. S. Popovic, H. Melchior, “High Performance InGaAs/InP Hall Sensors With Low Temperature Coefficient of the Sensitivity”, ESSDERC 93 Proceedings, 655-658 (1993).
Where VG is the gate voltage, VT an equivalent threshold voltage, and VDS the voltage drop across the Hall sensor, with
VDS=Rin×Ibias
where Rin is the Hall sensor input resistance. By tying the gate to the low voltage input of the Hall cell, there is a specific value of current for which the temperature dependence of (VG−VDS/2) cancels out the temperature dependence of VT. This is represented by the “Fully gated sensor” curve in
The prior technique represented in conjunction with
Such limitation on the established zero-drift supply current value is a drawback because it may not be the best choice when considering other properties or requirements of the sensor. For example, it has been found that such value may be about 70 microampere for Hall sensors if used in certain electricity meter configurations, and such value may be contrary to other needs of such configuration (for example, too low). Efforts have been made to overcome such drawback of the limited bias current approach. Present
In such an arrangement as in present
Representative of another attempt to address such drawback of the limited bias current approach,
Therefore, while the two methodologies represented by present
In accordance with present technology, a methodology has been developed whereby the effect imparted by a gate electrode may be varied to annul thermal effects within the Hall sensor. In some embodiments of the present subject matter, the gating effect may be varied by physically varying the gate electrode. In other embodiments the gating effect may be varied by varying the control voltage applied to the gate electrode. In further embodiments, combinations of the first and second embodiments may be employed.
In comparison with the gate 20 of the
The graphs of present
Those of ordinary skill in the art will understand that one of the response lines of
The graphic illustrations of present
As an additional feature in accordance with the present subject matter, such bias current Ibias operating point of the present “Partially gated” Hall sensor embodiments can advantageously be chosen (that is, specified) by tuning the fraction of the active area that is gated. Therefore, the descriptive language included on present
In such present “Partially gated” Hall sensor embodiments, the overall temperature dependence of the Hall sensor is now the average of the gated and ungated zones. Changing by design the fraction of gate coverage, the unique zero-thermal-drift supply current can therefore be set as desired, or as needed for a particular embodiment or set of design criteria. Therefore, in accordance with present apparatus and methodology, those of ordinary skill in the art practicing the present subject matter may now first determine and select a supply current optimized per the overall needs of the implementation, and then subsequently adjust or tune the coverage size of the gate surface over and relative to the active area of the Hall sensor, in order to have a magnetic sensitivity that is independent of temperature, even while operating at the optimum supply current. Therefore, the present methodology and corresponding apparatus has the advantage of simplicity over prior methods (that is, no extra components or circuits required), even if for the same or similar final results.
With reference now to
In other words, the first embodiment of the present subject matter provides a tunable operating point based on adjustments in the coverage area of the gating electrode. In the second embodiment of the present subject matter, the coverage area of the gating electrode may be fixed and the voltage applied may be varied to achieve a preselected tunable operating point. Of importance to the second method, however, is the source of the voltage applied to the gating electrode, as will be explained more fully with reference to
In the exemplary embodiment of present
While the exemplary embodiments of such
While
Such combined present features of present
With reference now to
With respect to the embodiment of
While the present subject matter has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing may readily produce alterations to, variations of, and equivalents to such embodiments. For example, the embodiments illustrated and described with respect to
This application claims priority under 35 USC 119(e) of Provisional Patent Application Ser. No. 60/841,632 filed Aug. 31, 2006, entitled “HALL SENSOR TEMPERATURE DRIFT CONTROL,” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4160950 | Houldsworth | Jul 1979 | A |
4435653 | Matui et al. | Mar 1984 | A |
4464629 | Tanaka et al. | Aug 1984 | A |
4704575 | Arnoux et al. | Nov 1987 | A |
4799062 | Sanderford, Jr. et al. | Jan 1989 | A |
4977577 | Arthur et al. | Dec 1990 | A |
4998102 | Wyler et al. | Mar 1991 | A |
5065088 | Habiro et al. | Nov 1991 | A |
5067136 | Arthur et al. | Nov 1991 | A |
5095493 | Arthur et al. | Mar 1992 | A |
5119396 | Snderford, Jr. | Jun 1992 | A |
5198796 | Hessling, Jr. | Mar 1993 | A |
5265120 | Sanderford, Jr. | Nov 1993 | A |
5310075 | Wyler | May 1994 | A |
5311541 | Sanderford, Jr. | May 1994 | A |
5377222 | Sanderford, Jr. | Dec 1994 | A |
5377232 | Davidov et al. | Dec 1994 | A |
5457713 | Sanderford, Jr. et al. | Oct 1995 | A |
5486805 | Mak | Jan 1996 | A |
5554927 | Maruyama | Sep 1996 | A |
5570034 | Needham et al. | Oct 1996 | A |
5598427 | Arthur et al. | Jan 1997 | A |
5604768 | Fulton | Feb 1997 | A |
5626755 | Keyser et al. | May 1997 | A |
5661750 | Fulton | Aug 1997 | A |
5668828 | Sanderford, Jr. et al. | Sep 1997 | A |
5694103 | Goodwin et al. | Dec 1997 | A |
5696441 | Mak et al. | Dec 1997 | A |
RE35829 | Sanderford, Jr. | Jun 1998 | E |
5818225 | Miekley et al. | Oct 1998 | A |
5920589 | Rouquette et al. | Jul 1999 | A |
5926531 | Petite | Jul 1999 | A |
5933072 | Kelley | Aug 1999 | A |
5953368 | Sanderford et al. | Sep 1999 | A |
5987058 | Sanderford et al. | Nov 1999 | A |
6028522 | Petite | Feb 2000 | A |
6031883 | Sanderford, Jr. et al. | Feb 2000 | A |
6044062 | Brownrigg et al. | Mar 2000 | A |
6047016 | Ramberg et al. | Apr 2000 | A |
6100816 | Moore | Aug 2000 | A |
6163276 | Irving et al. | Dec 2000 | A |
6178197 | Froelich et al. | Jan 2001 | B1 |
6181258 | Summers et al. | Jan 2001 | B1 |
6195018 | Ragle et al. | Feb 2001 | B1 |
6218953 | Petite | Apr 2001 | B1 |
6232885 | Ridenour et al. | May 2001 | B1 |
6233327 | Petite | May 2001 | B1 |
6246677 | Nap et al. | Jun 2001 | B1 |
6249516 | Brownrigg et al. | Jun 2001 | B1 |
6263009 | Ramberg et al. | Jul 2001 | B1 |
6335953 | Sanderford, Jr. et al. | Jan 2002 | B1 |
6363057 | Ardalan et al. | Mar 2002 | B1 |
6369769 | Nap et al. | Apr 2002 | B1 |
6377609 | Brennan, Jr. | Apr 2002 | B1 |
6396839 | Ardalan et al. | May 2002 | B1 |
6424270 | Ali | Jul 2002 | B1 |
6426027 | Scarborough, III et al. | Jul 2002 | B1 |
6430268 | Petite | Aug 2002 | B1 |
6437692 | Petite et al. | Aug 2002 | B1 |
6452986 | Luxford et al. | Sep 2002 | B1 |
6456644 | Ramberg et al. | Sep 2002 | B1 |
6538577 | Ehrke et al. | Mar 2003 | B1 |
6555997 | De Vries et al. | Apr 2003 | B1 |
6604434 | Hamilton et al. | Aug 2003 | B1 |
6612188 | Hamilton | Sep 2003 | B2 |
6617879 | Chung | Sep 2003 | B1 |
6617976 | Walden et al. | Sep 2003 | B2 |
6617978 | Ridenour et al. | Sep 2003 | B2 |
6618578 | Petite | Sep 2003 | B1 |
6626048 | Dam Es et al. | Sep 2003 | B1 |
6628114 | Lancaster et al. | Sep 2003 | B2 |
6628764 | Petite | Sep 2003 | B1 |
6630882 | Heremans et al. | Oct 2003 | B1 |
6639939 | Naden et al. | Oct 2003 | B1 |
6650249 | Meyer et al. | Nov 2003 | B2 |
6657552 | Belski et al. | Dec 2003 | B2 |
6671586 | David et al. | Dec 2003 | B2 |
6700902 | Meyer | Mar 2004 | B1 |
6704301 | Chari et al. | Mar 2004 | B2 |
6727684 | Hatanaka | Apr 2004 | B2 |
6734663 | Fye et al. | May 2004 | B2 |
6747557 | Petite et al. | Jun 2004 | B1 |
6747981 | Ardalan et al. | Jun 2004 | B2 |
6778099 | Meyer et al. | Aug 2004 | B1 |
6784807 | Petite et al. | Aug 2004 | B2 |
6803638 | Takatsuka | Oct 2004 | B2 |
6816538 | Shuey et al. | Nov 2004 | B2 |
6836108 | Balko et al. | Dec 2004 | B1 |
6836737 | Petite et al. | Dec 2004 | B2 |
6850197 | Paun | Feb 2005 | B2 |
6859186 | Lizalek et al. | Feb 2005 | B2 |
6862498 | David et al. | Mar 2005 | B2 |
6867707 | Kelley et al. | Mar 2005 | B1 |
6885309 | Van Heteren | Apr 2005 | B1 |
6891838 | Petite et al. | May 2005 | B1 |
6900737 | Ardalan et al. | May 2005 | B1 |
6914533 | Petite | Jul 2005 | B2 |
6914893 | Petite | Jul 2005 | B2 |
6918311 | Nathan | Jul 2005 | B2 |
6931445 | Davis | Aug 2005 | B2 |
6940396 | Hammond et al. | Sep 2005 | B2 |
6965575 | Srikrishna et al. | Nov 2005 | B2 |
6972555 | Balko et al. | Dec 2005 | B2 |
6982651 | Fischer | Jan 2006 | B2 |
7046682 | Carpenter et al. | May 2006 | B2 |
7053600 | Takabatake | May 2006 | B2 |
7054271 | Brownrigg et al. | May 2006 | B2 |
7103511 | Petite | Sep 2006 | B2 |
7126494 | Ardalan et al. | Oct 2006 | B2 |
20020019725 | Petite | Feb 2002 | A1 |
20020146985 | Naden | Oct 2002 | A1 |
20020169643 | Petite et al. | Nov 2002 | A1 |
20030006753 | Lancaster et al. | Jan 2003 | A1 |
20030048199 | Zigdon et al. | Mar 2003 | A1 |
20030063723 | Booth et al. | Apr 2003 | A1 |
20030078029 | Petite | Apr 2003 | A1 |
20030093484 | Petite | May 2003 | A1 |
20030103486 | Salt et al. | Jun 2003 | A1 |
20030179149 | Savage et al. | Sep 2003 | A1 |
20040004555 | Martin | Jan 2004 | A1 |
20040008663 | Srikrishna et al. | Jan 2004 | A1 |
20040040368 | Guckenberger et al. | Mar 2004 | A1 |
20040053639 | Petite et al. | Mar 2004 | A1 |
20040061623 | Tootoonian Mashhad et al. | Apr 2004 | A1 |
20040062224 | Brownrigg et al. | Apr 2004 | A1 |
20040085928 | Chari et al. | May 2004 | A1 |
20040088083 | Davis et al. | May 2004 | A1 |
20040131125 | Sanderford, Jr. et al. | Jul 2004 | A1 |
20040183687 | Petite et al. | Sep 2004 | A1 |
20040192415 | Luglio et al. | Sep 2004 | A1 |
20040218616 | Ardalan et al. | Nov 2004 | A1 |
20040264379 | Srikrishna et al. | Dec 2004 | A1 |
20040264435 | Chari et al. | Dec 2004 | A1 |
20050024235 | Shuey et al. | Feb 2005 | A1 |
20050030199 | Petite et al. | Feb 2005 | A1 |
20050036487 | Srikrishna | Feb 2005 | A1 |
20050043059 | Petite et al. | Feb 2005 | A1 |
20050043860 | Petite | Feb 2005 | A1 |
20050052290 | Naden et al. | Mar 2005 | A1 |
20050052328 | De Angelis | Mar 2005 | A1 |
20050068970 | Srikrishna et al. | Mar 2005 | A1 |
20050074015 | Chari et al. | Apr 2005 | A1 |
20050129005 | Srikrishna et al. | Jun 2005 | A1 |
20050147097 | Chari et al. | Jul 2005 | A1 |
20050163144 | Srikrishna et al. | Jul 2005 | A1 |
20050169020 | Knill | Aug 2005 | A1 |
20050171696 | Naden et al. | Aug 2005 | A1 |
20050172024 | Cheifot et al. | Aug 2005 | A1 |
20050190055 | Petite | Sep 2005 | A1 |
20050195768 | Petite et al. | Sep 2005 | A1 |
20050195775 | Petite et al. | Sep 2005 | A1 |
20050201397 | Petite | Sep 2005 | A1 |
20050218873 | Shuey et al. | Oct 2005 | A1 |
20050226179 | Behroozi | Oct 2005 | A1 |
20050243867 | Petite | Nov 2005 | A1 |
20050251401 | Shuey | Nov 2005 | A1 |
20050251403 | Shuey | Nov 2005 | A1 |
20050271006 | Chari et al. | Dec 2005 | A1 |
20050278440 | Scoggins | Dec 2005 | A1 |
20060002350 | Behroozi | Jan 2006 | A1 |
20060012935 | Murphy | Jan 2006 | A1 |
20060018303 | Sugiarto et al. | Jan 2006 | A1 |
20060038548 | Shuey | Feb 2006 | A1 |
20060043961 | Loy | Mar 2006 | A1 |
20060071810 | Scoggins et al. | Apr 2006 | A1 |
20060071812 | Mason, Jr. et al. | Apr 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20080088298 A1 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
60841632 | Aug 2006 | US |