HEAT DISSIPATION DEVICE WITH HEAT PIPE

Abstract
An exemplary heat dissipation device includes a heat pipe and a fin assembly. The heat pipe includes a main body and an end portion. The end portion has a width smaller than that of the main body. The fin assembly includes a first fin and a second fin adjoining to the first fin. The first fin forms a flange from a side of thereof. The second fin forms a flange from a side of thereof. The flange of the first fin has an extending portion overlapping and soldering to the flange of the second fin. The extending portion defines a number of through holes corresponding to the flange of the second fin. The end portion of the heat pipe is soldered to the extending portion of the first fin and soldered to the flange of the second fin by the through holes of the extending portion.
Description
BACKGROUND

1. Technical Field


The disclosure relates to heat dissipation devices in electronics, and more particularly to a heat dissipation device with a heat pipe.


2. Description of Related Art


During operation of an electronic device such as a computer central processing unit (CPU), a large amount of heat is often produced. The heat must be quickly removed from the CPU to prevent it from becoming unstable or being damaged. Typically, a heat dissipation device is attached to an outer surface of the CPU to absorb the heat from the CPU.


Conventionally, a heat dissipation device in a limited space includes a solid metal base attached to the CPU, a heat pipe connected to the base, and a plurality of fins soldered to the heat pipe. However, ends of the heat pipe are shrunk to form a sealed structure. The outermost fins are difficult to be soldered to the shrunk ends of the heat pipe, which results in easily dropping of the outmost fins from the heat dissipation device and harming peripheral devices, such as the CPU.


What is needed, therefore, is a heat dissipation device which can overcome the limitations described.





BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present embodiments. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.



FIG. 1 is an assembled, isometric view of a heat dissipation device in accordance with a first embodiment of the disclosure.



FIG. 2 is an exploded view of the heat dissipation device of FIG. 1.



FIG. 3 is a view similar FIG. 2, but showing the heat dissipation device in another view.



FIG. 4 is an exploded view of a first fin and a second fin of FIG. 3.



FIG. 5 is exploded, isometric view of a heat dissipation device in accordance with a second embodiment of the disclosure.





DETAILED DESCRIPTION

Referring to FIG. 1, a heat dissipation device 100 in accordance with a first embodiment of the disclosure is shown. The heat dissipation device 100 is for thermally contacting an electronic component (not shown) mounted on a printed circuit board (not shown) to dissipate heat generated by the electronic component. The heat dissipation device 100 includes a fin assembly 10 and two heat pipes 20 soldered on the fin assembly 10.


Referring to FIGS. 2-4, each heat pipe 20 is flattened and has a flat bottom wall contacting the fin assembly 10. The heat pipe 20 is used to facilitate heat transfer from the heat generating electronic component to the fin assembly 10. The heat pipe 20 includes a main body 21 and an end portion 22 with a width gradually decreasing from the main body 21. The end portion 22 has a triangular shape.


The fin assembly 10 includes a first fin 30, a second fin 40 and a number of third fins 50. The first fin 30 and the second fin 40 are correspondingly soldered with the end portion 22 of the heat pipe 20. An amount of the combination of the first fin 30 and the second fin 40 can be changed relative to a length of the end portion 22.


The first fin 30, the second fin 40 and each of the third fins 50 are punched by a metical piece having a good thermal conductivity, respectively. The first fin 30 has an elongated and rectangular shape. The first fin 30 forms a first flange 31 and a second flange 32 from top and bottom sides thereof along a same direction. The second flange 32 is flat. The first flange 31 has an extending portion 33 at a middle portion. The extending portion 33 is lower than two ends of the first flange 31 thereby the first flange 31 having a concave shape. A width of the extending portion 33 is larger than that of other portion of the first flange 31. The width of the extending portion 33 is substantially a summation of the width of the first flange 31 and a width of a first flange 41 of the second fin 40. In this embodiment, the width of the extending portion 33 is about twice of that of the two ends of the first flange 31. The extending portion 33 defines a plurality of holes 330 at an outer side thereof.


The second fin 40 has a shape similar to that of the first fin 30. The second fin 40 forms the first flange 41 and a second flange 42 from top and bottom sides thereof along a same direction. The second flange 42 is flat and coplanar with the second flange 32 of the first fin 30. The first flange 41 has a concave portion 410 at a middle portion thereof. The concave portion 410 is lower than two ends of the first flange 41. The concave portion 410 is lower than the extending portion 33 of the first fin 30. When the second flange 42 is juxtaposed and coplanar with the second flange 32, the concave portion 410 is attached and covered by the extending portion 33.


Each of the third fins 50 forms a first flange 51 and a second flange 52 from top and bottom sides thereof along a same direction. The second flange 52 is flat and coplanar with the second flange 42 of the second fin 40. The first flange 51 has a concave portion 510 at a middle portion thereof. The concave portion 510 is lower than two ends of the first flange 51. The ends of the first flange 51 are coplanar with the ends of the first flange 41. The concave portion 510 is coplanar with the extending portion 33.


In assembly, the first, second, third fins 30, 40, 50 are juxtaposed with each other. The second flanges 32, 42, 52 are coplanar with each other to form a bottom surface of the fin assembly. The extending portion 33 of the first fin 30 covers the first flange 41 in the concave portion 410 of the second fin 40. The heat pipe 20 is soldered on the first, second, and third fins 30, 40, and 50. The end portion 22 is soldered on the extending portion 33 of the first fin 30, and the main body 21 is soldered to the first flange 51 in the concave portions 510 of the third fins 50. The first flange 41 in the concave portion 410 of the second fin 40 is soldered with the extending portion 33 of the first fin 30 and the end portion 22 of the heat pipe 20 by solder flowing to the first flange 41 via the through holes 330 of the extending portion 33 of the first fin 30. The first fin 30 soldered with the second fin 40 is securely connected to the narrow end portion 22, whereby the first fin 30 and the second fin 40 at an outermost position of the fin assembly 10 are not easy to drop from the heat dissipation device 100.


Referring to FIG. 5, a heat dissipation device 200 in accordance with a second embodiment of the disclosure is shown. Different from the heat dissipation device 100 of the first embodiment, the heat dissipation device 200 includes a number of combinations of the first fin 30 and the second fin 40 instead of the third fins 50 of the heat dissipation device 100; in other words, the first fins 30 and second fins 40 of the heat dissipation device 200 are alternately arranged. The heat pipe 20 is soldered on the extending portions 33 of the first fins 30.


It is to be understood, however, that even though numerous characteristics and advantages of certain embodiments have been set forth in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims
  • 1. A heat dissipation device comprising: a heat pipe comprising a main body and an end portion , the end portion having a width smaller than a with of the main body; anda fin assembly comprising a first fin and a second fin adjoining to the first fin, the first fin forming a first flange from a side of thereof, the second fin forming a first flange from a side of thereof, the first flange of the first fin having an extending portion overlapping and soldering to the first flange of the second fin, the extending portion defining a number of through holes corresponding to the first flange of the second fin; wherein the end portion of the heat pipe is soldered to the extending portion of the first fin and soldered to the first flange of the second fin by solder filled in the through holes of the extending portion.
  • 2. The heat dissipation device of claim 1, wherein the fin assembly further comprises a number of third fins, each of the third fins having a first flange coplanar with the first flange of the first fin and soldered with the main body of the heat pipe.
  • 3. The heat dissipation device of claim 2, wherein the first flanges of the first fin, the second fin, and the third fins extend from the end portion of the heat pipe to the main body.
  • 4. The heat dissipation device of claim 3, wherein a middle potion of the first flange of the second fin is concave to received the extending portion of the first fin.
  • 5. The heat dissipation device of claim 1, wherein a width of the extending portion of the first fin is a summation of the width of the first flange of the first fin and a width of the first flange of the second fin.
  • 6. The heat dissipation device of claim 1, wherein the first fin forms a second flange at an opposite side thereof, the second fin forming a second flange coplanar to the second flange of the first fin.
  • 7. A heat dissipation device comprising: a heat pipe comprising a main body and an end portion , the end portion having a width smaller than a with of the main body; anda fin assembly comprising a number of first fins and second fins, the first fins and the second fins being alternately arranged, each of the first fin forming a first flange from a side of thereof, each of the second fin forming a first flange from a side of thereof, the first flange of each first fin having an extending portion overlapping and soldering on the first flange of adjoining one of the second fins; wherein the end portion of the heat pipe is soldered to the extending portion of an outermost one of the first fins.
  • 8. The heat dissipation device of claim 7, wherein the extending portion of each of the first fins defines a number of through holes corresponding to the first flange of the adjoining second fin for accommodating solder.
  • 9. The heat dissipation device of claim 7, wherein the first flanges of the first fins and the second fin extend from the end portion of the heat pipe to the main body.
  • 10. The heat dissipation device of claim 7, wherein a middle potion of the first flange of each second fin is concave to receive the extending portion of the adjoining first fin.
  • 11. The heat dissipation device of claim 7, wherein a width of the extending portion of each first fin is a summation of the width of the first flange of each first fin and a width of the first flange of each second fin.
  • 12. The heat dissipation device of claim 7, wherein the first fins and the second fins each form a second flange at an opposite side thereof, the second flanges being coplanar to the each other.
  • 13. A heat dissipation device comprising: a first fin comprising a main body and a flange extending from an edge of the main body;a second fin comprising a main body adjoining the first fin and a flange extending from an edge of the main body, an outer portion of the flange of the first fin overlapping the flange of the second fin, at least one through hole being defined in the outer portion of the flange of the first fin for accommodating solder; anda heat pipe comprising a main body and an end portion with a width less than that of the main body, the end portion of the heat pipe being soldered to the flange of the first fin and the flange of the second fin by solder filled in the at least one through hole.
Priority Claims (1)
Number Date Country Kind
201110162969.5 Jun 2011 CN national