Embodiments of the heat exchanger of the invention are described with reference to the drawings.
One of the embodiments of the heat exchanger of the invention is an heat exchanger including a base plate portion with at least one heat generating component thermally connected thereto; at least one fin portion comprising a plurality of fins thermally connected to said base plate portion, arranged in parallel at a prescribed angle along a longitudinal direction of said base plate portion; an inlet portion through which a cooling fluid is introduced to each of said at least one fin portion; a baffle plate portion and a partition plate portion guiding said cooling fluid so that the cooling fluid is decelerated to be uniformly flown through fins in said at least one fin portion; and an outlet portion to evacuate the cooling fluid.
For example, in one embodiment of the heat exchanger of the invention, at least one fin portion comprises one fin portion, a partition plate portion is arranged in both side end portions of the fin portion, and a baffle plate portion is arranged in the vicinity of the respective nearest and farthest plate shaped fins in the longitudinal direction of the fin portion.
A plate shaped fin, a fin portion and a fin group used in the present invention are defined as follows: each of the plate shaped fins is depicted in
The inlet portion 6 through which the cooling air is blown into and the outlet portion 7 through which the cooling air is evacuated are provided in the heat exchanger 1. A high flow rate of the cooling air 8 is blown through the inlet portion 6 into the heat exchanger 1. Since the baffle plate portion 5-1 is fixed to the nearest plate shaped fin 3 in the fin portion 13, the cooling air 8 is prevented from flowing by the baffle plate portion 5-1 and is caused to flow along the passage formed by the partition plate portion 4 and the side end portion of the fin portion 13, i.e., which is formed by the end portions of the plurality of plate shaped fins 3 arranged in parallel along the longitudinal direction of the base plate portion 2, as depicted in
The above-mentioned high flow rate of the cooling air 8 hits the baffle plate portion 5-2 fixed to the farthest plate shaped fin 3, and is disturbed thereby. Thus disturbed flow of the cooling air 8 is guided by the baffle plate portion 5-2 and the partition plate portion 4 so that the flow changes the direction and is decelerated to flow through the plate shaped fins 3 as a low flow rate of the cooling air 9. The low flow rate of the cooling air passing through the plate shaped fins joins together in the passage formed by the partition plate portion 4 and the other side end portion of the fin portion 13, i.e., which is formed by the other end portions of the plurality of plate shaped fins 3 arranged in parallel along the longitudinal direction of the base plate portion 2, and is evacuated through the outlet portion 7 (represented by the numeral reference 11) to the outside of the heat exchanger, as depicted in
With reference to
In the heat exchanger as depicted in
As shown in the right side portion of
On the contrary, in the heat exchanger as depicted in
More specifically, as shown in the right side in
It is necessary to appropriately define the relation between the distance between the adjacent fins, the length of the fin, and the flow rate of the cooling air flowing through the fins in the heat exchanger excellent in the heat dissipating efficiency as depicted in
The distance d (mm) between the adjacent fins of the plate shaped fins is derived from the condition under which the temperature boundary layers are overlapped (i.e., obtaining enough thickness of the temperature boundary layers) as depicted in
d=2√{square root over ( )}((22×10−6)(L/v))=9.4×10−3√{square root over ( )}(L/v)
therefore, d=9.4√{square root over ( )}(L/v)
where, L (m) is the length of the fin, v (m/s) is the flow rate of the cooling air flowing through the fins.
Thus, d≦9.4√{square root over ( )}(L/v)×3 is to be satisfied in the present invention. Preferably, d≦9.4√{square root over ( )}(L/v)×2 is to be satisfied. More preferably, d≦9.4√{square root over ( )}(L/v) is to be satisfied. The essence of the present invention lies in the appropriate defining the shape of the fin, and the flow rate. In order to simplify the explanation, the flat plate fin such as the fin having a flat surface is exemplified. However, the fin in the present invention is not limited to the flat plate fin. More specifically, fins having a grid structure, a knurling fin (i.e., fin with recessed portion and protruding portion formed on the surface thereof), pin fins and the fin having wave portion at the downwind or windward side may be used, and the same effect can be obtained thereby.
The U-shaped curved lines as depicted in
The relation between the temperature of the cooling air and the temperature of the fin is expressed as follows:
T(x,t)=T0×erfc(z), z=y/2/√{square root over ( )}(a′x/v)
where, x is a length from the inlet of the fins, y is a distance from the surface of the fin, T(x,t) is the temperature of the cooling air, T0 is the temperature of the fin, a′ is a thermal diffusivity coefficient, and z is a substantial distance from the fin.
Furthermore, the following equation is derived, considering affection from the adjacent fins:
T(x,t)=T0×(erfc(z)+erfc(z′)),
z′=(d−y)/2/√{square root over ( )}(a′x/v)
where, d is the distance between the adjacent fins, other elements are the same as those in the previous equation. Thus, the U-shaped curved lines as depicted in
As described above, the substantial distance z from the fin may be considered as z=y/2/√{square root over ( )}(a′x/v), thus the above value may be used as the parameter in the design of the heat exchanger.
Magnifications of an average temperature of the fins to the temperature of the cooling air at the outlet portion are as follows: when z=3, 2.65 times; when z=2, 1.79 times; when z=1, 1.12 times. Z<3 is preferable, z<2 is more preferable, and z<1 is most preferable.
Typically, for example, the distance between the adjacent fins is within a range from 0.5 mm to 1 mm, and the thickness of the fin is selected within a range from 1 mm to 2 mm, in addition, about 2 times of the distance between the adjacent fins. The length of the fin is within a range from 3 to 20 mm. However, the above values are merely shown as an example and are not limited to show a range within which the effect of the invention can be obtained.
Another embodiment of the heat exchanger of the invention includes a base plate portion with at least one heat generating component thermally connected to one surface thereof; a plurality of fin portions each comprising a plurality of fins thermally connected to the other surface of the base plate portion, arranged in parallel at a prescribed angle along a longitudinal direction of the base plate portion; an inlet portion through which a cooling air is introduced to each of the plurality of fin portions; baffle plate portions and partition plate portions guiding the cooling air so that the cooling air is decelerated to be uniformly flown through fins in the respective plurality of fin portions; and an outlet portion to evacuate the cooling air.
More specifically, a plurality of fin portions are arranged side by side in the width direction of the base plate portion. The partition plate portion is arranged between the adjacent fin portions, and the respective outer end portions of the base plate portion. The baffle plate portion is arranged in contact with the respective nearest fin and the farthest fin in the flowing direction of the cooling air in each of the fin portions.
More specifically, the heat exchanger of the invention includes a base plate portion 2 with at least one heat generating component (not shown) thermally connected to one surface thereof, a plurality of fin portions 13 each comprising a plurality of plate shaped fins 3 thermally connected to the other surface of the base plate portion 13, arranged in parallel at a prescribed angle along a longitudinal direction of the base plate portion 13; an inlet portion 6 through which a cooling air is introduced to each of the plurality of fin portions 13, baffle plate portions 5-1, 5-2 and partition plate portions 4 guiding the cooling air so that the cooling air is decelerated to be uniformly flown through fins 3 in the respective plurality of fin portions 13, and an outlet portion 7 to evacuate the cooling air.
The plurality of fin portions 13 are arranged side by side in the width direction of the base plate portion 2. The partition plate portion 4 is arranged between the adjacent fin portions 13, and the respective outer end portions of the base plate portion 2. The baffle plate portion 5-1, 5-2 is arranged in contact with the respective nearest fin 3 and the farthest fin 3 in the flowing direction of the cooling air in each of the fin portions 13.
The heat exchanger 10 has a plurality of fin portions (i.e., heat dissipating member) arranged side by side in the width direction of the base plate portion, each having a plurality of plate shaped fins arranged in the space enclosed by the partition plate portion and the baffle plate portion along the longitudinal direction on the base plate portion. High flow rate of cooling air is blown into the respective fin portions though the inlet portion. Since the baffle plate portion 5-1 is fixed to the nearest plate shaped fin 3 in the fin portion 13, the cooling air 8 is prevented from flowing by the baffle plate portion 5-1 and is caused to flow along the passage formed by the partition plate portion 4 and the side end portion of the fin portion 13.
The above-mentioned high flow rate of the cooling air 8 hits the baffle plate portion 5-2 fixed to the farthest plate shaped fin 3, and is disturbed thereby. Thus disturbed flow of the cooling air 8 is guided by the baffle plate portion 5-2 and the partition plate portion 4 so that the flow changes the direction and is decelerated to flow through the plate shaped fins 3 as a low flow rate of the cooling air 9. The low flow rate of the cooling air passing through the plate shaped fins joins together in the passage formed by the partition plate portion 4 and the other side end portion of the fin portion 13, and is evacuated through the outlet portion 7 to the outside of the heat exchanger. Thus, the cooling air is blown through all the plate shaped fins arranged along the longitudinal direction of the base plate portion.
In this embodiment of the heat exchanger, as explained with reference to
For the distance d (mm) between the adjacent fins of the plate shaped fins, d≦9.4√{square root over ( )}(L/v)×3 is to be satisfied, preferably, d≦9.4√{square root over ( )}(L/v)×2 is to be satisfied, and more preferably, d≦9.4√{square root over ( )}(L/v) is to be satisfied, where L (m) is the length of the fin, v (m/s) is the flow rate of the cooling air.
When the embodiment of the heat exchanger as depicted in
a) is a partial oblique perspective view to explain-one of the other embodiments of the heat exchanger of the invention.
As depicted in
Furthermore, in order to facilitate heat transfer, rod-like member may be placed in the vicinity of the fin, one or more slits may be formed in the fin, or the passage may be made to be crank-like (i.e., the shape connecting two L-like in succession).
As described above, when the fin groups 18 comprising a pair of fin portions are arranged side by side on the base plate portion, the high flow rate of cooling air 8 may be decelerated and substantially uniformly flown through the fins without using the baffle plate portion and the partition plate portion.
In addition to the above-mentioned extrusion molding, the fin may be formed by the (hot or cold) press working of aluminum material. Furthermore, a fin portion may be formed by laminating a plate and a punched metal plate. Pin type fins may be integrally formed on the base portion by (hot or cold) press-working a thick aluminum material.
As depicted in
For a typical size, there is exemplified that the distance between the adjacent fins is 0.5 mm, the fin thickness is about 1 to 3 mm, the fin length is about 3 to 7 mm, the fin height is about 3 to 60 mm, and [fin thickness]/[distance between the adjacent fins]=1 to 3. The fins may be arranged so as to be slanted with 30 degrees to the flowing direction of the cooling air at the inlet portion of the heat sink, so that the apparent thickness of the fin at the inlet portion of the heat sink may be suppressed to about 30% of the total inlet portion, thus reducing the pressure loss. This is exemplified as an example, and not limited to the scope of the effecting of the invention.
The heat exchanger of the invention can be applied to both of the air cooling, and water cooling type heat exchanger. More specifically, when applied to the air cooling type heat exchanger, amount of exchanged heat was improved by 10%, and when applied to the water cooling type heat exchanger, the heat transfer was improved by 25%.
For a typical size, there is exemplified that the distance between the adjacent fins is 2 mm, the fin thickness is about 1 to 3 mm, the fin length is about 3 to 7 mm, the fin height is about 3 to 60 mm, and [fin thickness]/[distance between the adjacent fins]=1 to 2. This is exemplified as an example, and not limited to the scope of the effecting of the invention.
According to the invention, the temperature of the heat generating component can be lowered, and the pressure loss of the fluid can be lowered under the condition of the restricted enveloping volume and air flow. More specifically, the heat exchanger excellent in heat dissipating efficiency can be obtained, which cooling capacity is high under the same enveloping volume, and into which cool air is blown even to the downwind without producing temperature difference between windward and downwind. In particular, the heat exchanger remarkably excellent in heat dissipating can be obtained, which base plate portion with the fins arranged thereon is long.
Number | Date | Country | Kind |
---|---|---|---|
2006-203212 | Jul 2006 | JP | national |
2007-015783 | Jan 2007 | JP | national |
2007-159687 | Jun 2007 | JP | national |