The above and other objects, features and advantages of the present invention will become more apparent from the following description of preferred embodiments in connection with the accompanying drawings, wherein:
The embodiments of the present invention are described below, in detail, with reference to the accompanying drawings. In the drawings, the same or similar components are denoted by common reference numerals.
Referring to the drawings,
As shown in
The base 12 is a rectangular flat-plate element, and is provided on one flat surface 12a thereof with the plurality of heat-radiating projections 14, each of which is a fin-shaped (or thin plate-like) element, and which project in an integral or unitary manner from the base 12 and are generally arranged parallel with each other at regular intervals. In the illustrated embodiment, a plurality of (four, in the drawing) first projections 16, each having a rigidity higher than the rigidity of the second projection 18, are arranged near a center of the surface 12a of the base 12 and a plurality of (two, in the drawing) second projections 18, each having the rigidity lower than the rigidity of the first projections 16, are arranged along a pair of outer edges of the base surface 12a. The heat sink 10 is integrally or unitarily molded, in its entirety, from a metallic material having excellent heat conductivity.
As shown in
As shown by way of example in
In the configuration wherein the heat sink 10 is securely attached directly to the electronic component 22 mounted on the circuit board 20 in a manner as described above, stress may concentrate on the electronic component 22, thereby damaging the electronic component 22 (particularly, in a region for electrically conductive connection to the circuit board 20, such as a lead, a solder ball, etc.), when unexpected external force is applied to the heat sink 10 due to, for example, the collision of the heat-radiating projections 14 of the heat sink 10, extending significantly outward from the surface 20a of the circuit board 20, with surrounding objects. Therefore, in the heat sink 10, among the plurality of heat-radiating projections 14, the second projection 18, located along the outer periphery of the array or configuration of the heat-radiating projections 14 on the base 12, is structured to have lower rigidity allowing the second projections 18 to be deformed by less external force, compared with the first projection 16.
Among the plurality of heat-radiating projections 14 of the heat sink 10, the heat-radiating projection 14 located along the outer periphery of the array or configuration of the heat-radiating projections 14 on the base 12 is, in particular, likely to receive unexpected external force, due to a collision with surrounding objects caused by, e.g., carelessness in manufacturing, transportation, storage, parts replacement, etc., of electric or electronic equipment. In the heat sink 10 in which the heat-radiating projection 14, disposed at such a location as to be easily subjected to external force, is structured as the second projection 18 having relatively low rigidity, it is possible, when external force is applied, to relieve the impact due to the external force by the deformation of the second projection 18, and thus to effectively prevent stress from concentrating on, and the resultant damage of, the electronic component 22. It should be noted that, even under the above circumstances, the first projections 16 having relatively high rigidity can maintain their shape against external force, and therefore, the heat-radiating function of the heat sink 10 is not significantly affected.
Further, in the case where the second projection 18 is deformed, but the electronic component 22 is damaged when external force is applied to the heat sink 10, reliable evidence of the applied external force, such as the plastic deformation of the second projection 18, etc., remains, and therefore, when the electric or electronic equipment is inspected or an investigation is made after a malfunction, it is possible to easily determine that the malfunction is the result of external force applied to the heat sink 10 and the conductive connection region of the electronic component 22 may thereby be damaged. As described above, according to the heat sink 10, it is possible to prevent damage to the electronic component 22 due to external force applied to the heat sink 10 as much as possible, and thus easily determine the cause of damage if damage occurs.
In the present invention, among the plurality of the heat-radiating projections 14 provided on the heat sink 10, the first projection 16 and the second projection 18, having rigidities different from each other in order to maintain their shape against external force, are not limited to the configuration of the above-described embodiment, and other various configurations may be adopted. For example, as shown in
Also, as shown in
Moreover, as shown in
In the second embodiment described above, among a plurality of heat-radiating projections 14, all of which have an identical shape and dimension, the heat-radiating projection 14 located along the outer periphery of the array or configuration of the heat-radiating projections 14 on the base 12 may be structured as the second projection 18. In this configuration, the second projection 18 is provided with the proximal end portion 26 having a shape and dimension identical to that of each of the remaining first projections 16, and is structured by securely attaching the distal end portion 28 made of, e.g., silicone rubber, urethane rubber, soft resin, to a corner 26a of the extremity of the proximal end portion 26. Alternatively, the heat-radiating projection 14 located along the outer periphery of the array or configuration of the heat-radiating projections 14 on the base 12 may be structured in advance as the second projection 18, by molding the proximal end portion 26 having a shape different from that of the first projection 16 (for example, a shape having a chamfered portion 26b at the corner of its extremity) in a manner as to be integral or unitary with the base 12, and securely attaching the distal end portion 28 to the proximal end portion 26, so as to obtain a shape similar to that of the first projection 16.
In the heat sink 10 according to the above-described second embodiment, in which the heat-radiating projection 14, disposed at such a location as to be easily subjected to unexpected external force, is structured as the second projection 18 including the distal end portion 28 having relatively low rigidity, it is possible, when external force is applied, to relieve impact due to external force by the deformation of the distal end portion 28 of the second projection 18, and thus to effectively prevent stress from concentrating on, and the resultant damage of, the electronic component 22. Further, in the case where the material of the distal end portion 28 is selected so that the distal end portion 28 has plastic deformation by external force, reliable evidence of the applied external force remains, and therefore, when the electric or electronic equipment is inspected or an investigation is made after a malfunction, it is possible to easily determine the cause of malfunction and the damaged portion. In particular, according to the second embodiment, among the plurality of heat-radiating projections 14, it is possible to provide the distal end portion 28, capable of exhibiting a sufficiently impact-relieving function, for the heat-radiating projection 14 located at a position where it is highly anticipated that external force may be applied to the projection, by a posterior attaching work as occasion demands, and therefore, there is an advantage that the heat sink 10 can be made more versatile.
In the above-described second embodiment, in order not to impair the heat-radiating function of the heat sink 10, it is advantageous that the distal end portion 28 of the second projection 18 is made of a material that is not only adapted to be deformed (preferably, plastically deformed) relatively easily by external force, but also has excellent heat-resistance and heat-radiating properties. Further, the configuration of the second projection 18 structured by two types of elements may be additionally applied to the second projection 18 having a cross-sectional area smaller than that of the first projection 16 as already described.
While the invention has been described with reference to specific preferred embodiments, it will be understood, by those skilled in the art, that various changes and modifications may be made thereto without departing from the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-182004 | Jun 2006 | JP | national |