The present disclosure relates generally to computer systems and information handling systems, and, more particularly, to a heat sink that includes vertical air flow panels.
As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option available to these users is an information handling system. An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, information handling systems may vary with respect to the type of information handled; the methods for handling the information; the methods for processing, storing or communicating the information; the amount of information processed, stored, or communicated; and the speed and efficiency with which the information is processed, stored, or communicated. The variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, information handling systems may include or comprise a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
A computer system may include one or more heat sinks. A heat sink is typically formed of a metal and is placed in the interior of the computer system to dissipate heat generated in the interior of the computer system. A heat sink may be placed in close proximity to a processor, for example, to absorb the heat generated by the processor and direct heat away from the processor. An active heat sink is characterized by the placement of a fan on or near the heat sink. The fan will directs air over the heat sink so that the heat being absorbed by the heat sink is dissipated into the interior or exterior of the computer system. Although a fan may be effective in directing air at a heat sink, the configuration of the fan itself may generate air swirl, which prevents air from being effectively passed through the heat sink. If the air flow generated by the fan generates air swirl and the air flow is not passed effectively through the heat sink, the ambient air temperature in the vicinity of the processor could rise, thereby compromising the operation of the processor and surrounding components.
In accordance with the present disclosure, a heat sink is disclosed that includes a set of horizontal fins that are coupled to multiple solid vertical panels. A fan is located near the heat sink to direct air across the surface of the horizontal fins. Vertical panels may be located on the opposite ends of the heat sink to prevent air from exiting from the heat sink in a direction that is perpendicular to the axis of the fan. The presence of the vertical panels within the interior of the heat sink is advantageous because the vertical panels direct the forced air from the fan so that the air flows through the heat sink in the direction of the axis of the fan. Because air is directed in the axial direction, swirl within the interior of the heat sink is minimized, allowing the heat sink to more efficiently dissipate heat within the interior of the heat sink. Other technical advantages will be apparent to those of ordinary skill in the art in view of the following specification, claims, and drawings.
A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
For purposes of this disclosure, an information handling system may include any instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, or other purposes. For example, an information handling system may be a personal computer, a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price. The information handling system may include random access memory (RAM), one or more processing resources such as a central processing unit (CPU) or hardware or software control logic, ROM, and/or other types of nonvolatile memory. Additional components of the information handling system may include one or more disk drives, one or more network ports for communication with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, and a video display. The information handling system may also include one or more buses operable to transmit communications between the various hardware components.
Shown in
Heat sink 10 includes a number of vertical panels 14. Panels 14 are generally perpendicular to the horizontal fins of the heat sink and to the heat source, which is disposed beneath the heat sink. Panels 14 are preferably solid. In the example, of
Shown in
Although it is shown in the figures herein that the fan is shown as forcing air across the heat sink in a first axial direction, it should be recognized that the fan could direct air across the heat sink in the opposite axial direction. Although the present disclosure has been described in detail, it should be understood that various changes, substitutions, and alterations can be made hereto without departing from the spirit and the scope of the invention as defined by the appended claims.