The present invention relates to a heat sink having a heat-radiation structure for cooling a heating element formed with electronic components or the like, and more particularly to a heat sink having a heat-radiation structure for carrying out cooling by use of forced convection.
A conventional heat sink is configured in such a way that the flow of a cooling fluid is stirred by pin-shaped fins so that the heat-transfer performance (heat radiation) is enhanced in comparison with a heat-radiation member provided with a continuous fin (e.g., refer to Patent Document 1).
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2004-63898 (Page 6 and FIG. 8)
A conventional heat sink is configured in such a way that pin-shaped fins are provided in a two-dimensional flow to utilize the turbulence effect so that the heat-transfer performance is enhanced; however, in recent years, it has been a problem that the heat-transfer performance such that an increasing amount of heat generated in an electronic apparatus is sufficiently radiated cannot be obtained.
The present invention has been implemented in order to solve the foregoing problem of the conventional technique; the objective of the present invention is to provide a heat sink in which a three-dimensional flow of a cooling fluid is caused so that the heat-transfer efficiency is enhanced with a simpler structure.
A heat sink according to the present invention is provided with a heat-transfer container incorporating a flow path through which a cooling fluid flows; the heat sink cools a heating element in contact with the heat-transfer container, by means of the cooling fluid that flows through the flow path. The flow path includes a first cross-sectional portion that becomes narrower as the distance between a given point therein and a side, of the heat-transfer container, which makes contact with the heating element becomes longer in a direction perpendicular to the direction in which the cooling fluid flows and a second cross-sectional portion that is approximately constant in the direction perpendicular to the direction in which the cooling fluid flows; the first cross-sectional portion and the second cross-sectional portion alternately continue in the direction in which the cooling fluid 1 flows.
Moreover, in a heat sink according to the present invention, the shape of the first cross-sectional portion of the flow path is formed based on one or more protrusions provided inside the heat-transfer container.
Still moreover, in a heat sink according to the present invention, the protrusion has at least one of the shapes of an approximate cone, an approximate multi-sided pyramid, an approximate sphere, and a hemisphere.
Still moreover, in a heat sink according to the present invention, a fin extending in the direction in which the cooling fluid flows is provided on the inner surface of the heat-transfer container.
Furthermore, in a heat sink according to the present invention, the protrusions are arranged in plurality on a substrate provided in the heat-transfer container.
Still furthermore, in a heat sink according to the present invention, the substrate is disposed inside the heat-transfer container in such a way as to divide the flow path into two flow paths, the protrusions are arranged on both sides of the substrate, and the heat-transfer container is configured in such a way that a side thereof in contact with one of the divided flow paths and a side thereof in contact with the other of the divided flow paths make contact with respective heating elements.
Moreover, a heat sink according to the present invention is provided with a heat-transfer container having a flow path through which a cooling fluid flows; the heat sink cools a heating element in contact with the heat-transfer container, by means of the cooling fluid that flows through the flow path. The heat-transfer container has an opening for bringing the cooling fluid into direct contact with the heating element; the flow path includes a first cross-sectional portion that becomes narrower as the distance between a given point therein and a side, of the heat-transfer container, which makes contact with the heating element becomes longer in a direction perpendicular to the direction in which the cooling fluid flows and a second cross-sectional portion that is approximately constant in the direction perpendicular to the direction in which the cooling fluid flows; the first cross-sectional portion and the second cross-sectional portion alternately continue in the direction in which the cooling fluid 1 flows.
Still moreover, in a heat sink according to the present invention, a fin extending in the direction in which the cooling fluid flows is provided on a side, of the heating element, which makes contact with the cooling fluid.
A heat sink according to the present invention is configured in such a way that the flow path thereof includes a first cross-sectional portion that becomes narrower as the distance between a given point therein and a side, of the heat-transfer container, which makes contact with the heating element becomes longer in a direction perpendicular to the direction in which the cooling fluid flows and a second cross-sectional portion that is approximately constant in the direction perpendicular to the direction in which the cooling fluid flows, and the first cross-sectional portion and the second cross-sectional portion alternately continue in the direction in which the cooling fluid 1 flows; therefore, a three-dimensional flow of the cooling fluid is caused, whereby the heat-transfer properties can be enhanced with a simplified structure.
Moreover, in a heat sink according to the present invention, the shape of the first cross-sectional portion of the flow path is formed based on one or more protrusions provided inside the heat-transfer container; therefore, the three-dimensional flow of the cooling fluid is caused with a simplified structure, whereby the heat-transfer properties can be enhanced.
Still moreover, in a heat sink according to the present invention, a fin extending in the direction in which the cooling fluid flows is provided on the inner surface of the heat-transfer container; therefore, heat can more effectively be radiated.
Furthermore, in a heat sink according to the present invention, the protrusions are arranged in plurality on the substrate provided in the heat-transfer container; therefore, by inserting the substrate into the heat-transfer container, the protrusions can simply be arranged inside the heat-transfer container.
Still furthermore, in a heat sink according to the present invention, the substrate is disposed inside the heat-transfer container in such a way as to divide the flow path into two flow paths, the protrusions are arranged on both sides of the substrate, and the heat-transfer container is configured in such a way that a side thereof in contact with one of the divided flow paths and a side thereof in contact with the other of the divided flow paths make contact with respective heating elements; therefore, a plurality of heating elements can concurrently and efficiently be cooled.
Moreover, a heat sink according to the present invention is provided with a heat-transfer container having a flow path through which a cooling fluid flows; the heat sink cools a heating element in contact with the heat-transfer container, by means of the cooling fluid that flows through the flow path. The heat sink is configured in such a way that the heat-transfer container has an opening for bringing the cooling fluid into direct contact with the heating element; the flow path includes a first cross-sectional portion that becomes narrower as the distance between a given point therein and a side, of the heat-transfer container, which makes contact with the heating element becomes longer in a direction perpendicular to the direction in which the cooling fluid flows and a second cross-sectional portion that is approximately constant in the direction perpendicular to the direction in which the cooling fluid flows; and the first cross-sectional portion and the second cross-sectional portion alternately continue in the direction in which the cooling fluid 1 flows. As a result, because the heating element is brought into direct contact with the cooling fluid so as to be cooled, cooling can more efficiently be carried out.
Still moreover, in a heat sink according to the present invention, a fin extending in the direction in which the cooling fluid flows is provided on a side, of the heating element, which makes contact with the cooling fluid; cooling can further efficiently be carried out.
In
The cross sections, of the flow paths 2, in a direction perpendicular to the direction in which the cooling fluid 11 as a refrigerant flows are arranged in such a way that first cross-sectional portions each of which, due to the existence of the protrusion 7, becomes narrower as a given viewing point in the first cross-sectional portion moves away from the base 8, on which the heating element 6 is mounted, toward the lid 10 and second cross-sectional portions each of which, i.e., the width of the flow path 2, due to no existence of the protrusion 7, is constant even though a given viewing point in the second cross-sectional portion moves away from the base 8, on which the heating element 6 is mounted, toward the lid 10 alternately continue in the direction in which the cooling fluid 11 flows. As a result, the flow path 2 is configured in such a way that approximately trapezoidal flow paths the width of each of which gradually decreases, in the height direction (thickness direction) of the heat-transfer container 3, from the vicinity of the base 8 on which the heating element 6 is mounted and flow paths the width of each of which is approximately constant in the height direction of the heat-transfer container 3 are sequentially coupled in the direction in which the cooling fluid 11 flows. The heat-transfer container serves as a main body of the heat sink.
The heat sink is a heat-radiation structure configured in such a way that the cooling-fluid inlet 1 for inputting the low-temperature cooling fluid 11, the heat-transfer container 3 with which the heating element 6 is thermally coupled and inside of which the flow path 2 is formed, and the cooling-fluid outlet 4 for outputting the cooling fluid 11 that has absorbed heat from the heating element 6 and has become high-temperature form the continuous fluid-flow path 5. The foregoing heat sink is coupled with an unillustrated pump or fan, by the intermediary of a fluid-flow pipe, and the cooling fluid 11 is made to flow in the heat sink, so that heat generated by the heating element 6 is radiated toward surroundings. Moreover, by coupling the heat sink with a heat-radiation device by means of an unillustrated fluid-flow pipe, a circulating fluid-flow loop may be formed; still moreover, a reservoir and a filter may be provided in midstream of the fluid-flow loop. In this case, the cooling fluid 11 circulates within the fluid-flow loop, the cooling fluid 11 transports heat generated by the heating element 6 to the heat-radiation device, and then the heat is radiated from the heat-radiation device toward the surroundings. In addition, a distribution header or a merging header may be provided in the heat-transfer container 3 so that the cooling fluid 11 flows more evenly within the flow path.
In Embodiment 1, the base 8 thermally coupled with the heating element 6 and the sidewall 9 are integrally molded; by combining the lid 10 with the integrated base 8 and the side wall 9, the heat-transfer container 3 is formed. However, the present invention is not necessarily limited thereto; the base 8, the sidewall 9, and the lid 10 may be separately produced and then combined, or the sidewall 9 and the lid 10 may be integrally molded and then combined with the base 8. Moreover, the base 8, part of the sidewall 9, and the lid 10 may be integrally molded, and then combined with the residual sidewall 9.
Next, the operation of the heat sink according to Embodiment 1 of the present invention will be explained. In
Accordingly, when the passage section for the cooling fluid 11 changes from a passage section corresponding to the A-A section to a passage section corresponding to the B-B section, the cooling fluid 11 moves from the vicinity of the base 8, where the flow rate is high, toward the lid 10. Because the longitudinal travel (in the thickness direction of the heat sink) of the cooling fluid 11 and the transverse travel (in the width direction of the heat sink) due to the cooling fluid 11 traveling while avoiding the protrusions 7 are concurrently caused, three-dimensional travels of the cooling fluid 11 occur, thereby stirring the cooling fluid 11.
In other words, as indicated by the arrows in the transverse section in
The base 8 that makes direct contact with the heating element 6 receives heat and becomes high-temperature, whereby the temperature difference between the cooling fluid 11 in the flow path 2 and the base 8 is produced; thus, the heat is transferred from the base 8 to the cooling fluid 11. The cooling fluid 11 becomes high-temperature and then outputted from the cooling-fluid outlet 4. Accordingly, while passing through the cooling-fluid inlet 1, the flow path 2 inside the heat-transfer container 3, the cooling-fluid outlet 4, and further the flow path 5, the cooling fluid 11 becomes high-temperature, and then the high-temperature cooling fluid 11 is outputted from the cooling-fluid outlet 4.
As described above, in the heat sink according to Embodiment 1 of the present invention, the cone-shaped protrusions 7 cause the three-dimensional flow of the cooling fluid 11; thus, the forced-convection heat transfer due to the flow of the cooling fluid 11 inside the heat sink, the sensible heat change in the cooling fluid 11, the swirling flow, in the flow path 2, which causes a three-dimensional flow, and the stirring effect due to the collision enable heat to be efficiently radiated from the heating element 6 to the outside of the heat sink.
In the case of a conventional finless heat sink in which no fin is provided in the flow path of the heat-transfer container, a cooling fluid linearly (in a one-dimensional manner) travels from the cooling-fluid inlet to the cooling-fluid outlet; therefore, a relatively thick temperature boundary layer is formed in the vicinity of the inner surface of the base, whereby the heat characteristics are deteriorated. In addition, in the case of a conventional straight-fin heat sink in which a plurality of tabular fins are provided in the flow path of the heat-transfer container, the heat-transfer area in which the base and the cooling fluid make contact with each other increases, whereby the heat-transfer properties are enhanced; even in this case, however, a relatively thick temperature boundary layer is formed in the vicinity of the heat-transfer surface, whereby the effect that enhances the heat characteristics becomes relatively small. In addition, the fin here denotes a fin that has a function of radiating heat from the heating element 6 to the cooling fluid 11.
Moreover, in the case of a conventional pin-fin heat sink in which a plurality of pins are provided in the flow path of the heat-transfer container, the heat-transfer area in which the base and the cooling fluid make contact with each other increases and a two-dimensional flow is produced because the cooling fluid avoids the pins, whereby the heat-transfer properties are enhanced to some extent; however, the production thereof is difficult and the production costs become high. Additionally, in general, pin-fin heat sinks are produced through die-casting; however, because, in the case where a pin-fin heat sink is produced through die-casting, the heat conductivity of the heat-sink material is low, the thermal-diffusion properties of the base unit and the fin efficiency of the fin unit are lowered, whereby the heat characteristics of the heat sink are deteriorated. Moreover, in producing the pin-fin heat sink, it is required to provide a draft angle to some extent (1.5° to 2°); because this draft angle makes the passage-section area in the vicinity of the base small, the cooling fluid inside the flow path is likely to pass in the vicinity of the lid, whereby the heat-transfer properties are deteriorated. In addition, it is normally considered that the larger the draft angle is, the more the heat-transfer properties of the heat sink are deteriorated.
In contrast, in the case of the heat sink according to Embodiment 1 of the present invention, the protrusions 7 provided on the inner surface of the lid 10 are facilitators of turbulence in three-dimensional directions, especially in three-dimensional directions including the thickness direction of the heat sink; therefore, it is not required to produce the heat sink with a material of high heat conductivity. Moreover, in Embodiment 1 of the present invention, the larger is the draft angle of the protrusion 7, i.e., the conical angle, the more is the cooling fluid 11 likely to pass in the vicinity of the base 8, whereby the longitudinal travels (the collision and the swirling flow) are further facilitated; the heat-transfer properties are enhanced. In other words, in Embodiment 1 of the present invention, instead of obtaining an effect of enhancing the heat transfer through increase in the heat-transfer area in which the base 8 and the cooling fluid 11 make contact with each other, the stirring effect is improved by use of a material that is low-cost and high-workability. Furthermore, by enlarging the draft angle of the protrusion 7 up to the range that is normally not utilized, the passage-section area in the vicinity of the base 8 is increased while improving the workability of the protrusion 7, and the cooling fluid 11 is situated to be close to the base 8, so that the heat-transfer efficiency can be enhanced. Still moreover, because the finer protrusions 7 can be provided on the inner surface of the lid 10, the heat-transfer properties are enhanced in comparison with heat sinks having a conventional structure.
Because the increase in fluid-stirring power enhances the heat-transfer properties of the heat sink, it is not required that the material of the protrusion 7 is of high heat conductivity; therefore, the flexibility in selecting of the material of the protrusion 7 is raised, and, for example, in the case where the heat sink is produced through die-casting, the draft angle can be enlarged so as to improve the workability, whereby the production is readily carried out and the production costs can be lowered.
In the figures, the heating element 6 is symbolically illustrated. The heating element 6 includes heat sources such as a heater, an electronic apparatus, and an electronic component, or the heat-radiation units and the heat exchangers of the apparatuses that transport heat from the foregoing heat sources (a heat sink similar to that of the present invention is included). The structure and the size of the heating element 6 are not limited, as long as the heating element 6 applies heat to a heat sink. In addition, the heating element 6 may be directly mounted to the base 8 through soldering or brazing, pressure welding, and the like; it may thermally be connected to the base 8 by the intermediary of a contact-thermal-resistance reduction structure such as thermal grease.
The heat-transfer container 3 serves as a container for the cooling fluid 11 and as a path through which the cooling fluid 11 travels; the heat-transfer container 3 can play roles of connecting the heating element 6 with the cooling fluid 11 and of diffusing and equalizing heat from the heating element 6. Moreover, the heat-transfer container 3 can be utilized for fixing the heating element 6 and the accompanying components. Still moreover, the heat-transfer container 3 plays, at the downstream side of the cooling-fluid inlet 1, a role of distributing the cooling fluid 11 into the flow paths 2 and equalizing the flows, and plays, at the upstream side of the cooling-fluid outlet 4, a role of merging the cooling fluids 11.
As a variant example, illustrated in
In addition, in the variant example, illustrated in
The protrusion 7 has a role of stirring the cooling fluid 11 and, in some cases, has a role as a pillar or a reinforcement member for holding the space between the base 8 and the lid 10. In Embodiment 1, the structure of the heat sink has been explained by utilizing an example in which the protrusions 7 are provided on the inner surface of the lid 10; however, as a variant example, illustrated in
As a result, for example, in the case where the heat sink is considerably large, mold processing such as die-casting or forging cannot be carried out in some cases, depending on pressurization performance of the processing machine; however, by dividing and diminishing the substrate 18 provided with the protrusions 7, the production of the substrate 18 can readily be performed. Moreover, by exchanging the substrate 18, the heat characteristics of the heat sink can readily be changed. Still moreover, by combining a plurality of the substrates 18 each provided with the different types of the protrusions 7, a heat sink can readily be produced in which the heat-transfer properties differ depending on positions in the flow path 2. In addition, the substrate 18 may be fixed to the heat-transfer container 3 by providing protrusions as guides in the flow path within the heat-transfer container 3; alternatively, the substrate 18 may be adhered by means of an adhesive or welded by means of a solvent to the inner surface of the heat-transfer container 3.
Although, in Embodiment 1 illustrated in
Moreover, the front end of the protrusion 7 may be of a spherical surface illustrated in
In addition, in the case where the front end of the protrusion 7 is flat and makes contact with the inner surface of the base 8, the heat-transfer area where the inner surface of the base 8 and the cooling fluid 11 make contact with each other decreases, whereby the heat-transfer properties are deteriorated. Therefore, it is desirable that the structure of the heat sink is in such a way that the front end of the protrusion 7 is formed in such a way as to have a sharp vertex angle or a spherical surface so that the front end of the protrusion 7 makes point contact with the inner surface of the base 8. Additionally, the smaller the space between the protrusion 7 and the inner surface of the base 8 is, the more excellent the heat-transfer properties are; it is more preferable that the inner surface of the base 8 and the protrusion 7 make contact with each other.
Meanwhile, the inner surface of the base 8 and the front end of the protrusion 7 may thermally be coupled, e.g., through soldering or brazing. In that case, the front end of the protrusion 7 may not have a sharp vertex angle. In the case where the front end of the protrusion 7 and the inner surface of the base 8 are thermally coupled, the protrusion 7 demonstrates an effect as a fin; heat is transferred from the inner surface of the base 8 to the protrusion 7 and further to the lid 10, and then the heat is radiated from the outer surface of the protrusion 7 and the lid 10 to the cooling fluid 11, whereby the heat can efficiently be radiated.
Additionally, for the purpose of actively creating the three-dimensional flow of the cooling fluid 11, it is desirable that the root portion of the protrusion 7, i.e., the portion, of the protrusion 7, which makes contact with the lid 10 (in
In addition, the draft angle for the protrusion 7, i.e., the conical angle may be 1.5°; however, the conical angle of the same as or larger than 5° is preferable. The conical angle is preferably 20° or larger. That is because, in the case where the protrusion 7 is produced through die-casting and removed from the mold, the draft angle of 5° or larger enables the protrusion 7 to be extremely readily removed. Additionally, in the case where the draft angle is 20° or larger, the passage-section area in the vicinity of the base 8 is increased and the cooling fluid 11 is situated to be close to the base 8, so that the heat-transfer effect can be enhanced.
The cooling-fluid inlet 1 has a role of inputting the low-temperature cooling fluid 11; in contrast, the cooling-fluid outlet 4 has a role of outputting the high-temperature cooling fluid 11. The respective fluid-flow pipes 15 to be connected to the cooling-fluid inlet 1 and the cooling-fluid outlet 4 are formed of a circular tube, a rectangular tube, a flexible tube, a rubber-made hose, or the like. In the case where the cross section of the flow path 2 in the heat-transfer container 3 is flat, it is desirable to flatten the respective cross sections of the cooling-fluid inlet 1 and the cooling-fluid outlet 4; accordingly, it is desirable to flatten the cross section of the portion, of the fluid-flow pipe 15, which is in the vicinity of the coupling position between the fluid-flow pipe 15 and the foregoing inlet and outlet. In addition, in Embodiment 1 illustrated in
With regard to the materials that form the heat sink, it is desirable that the base 8 is made of a material having high heat conductivity; accordingly, the base 8 is formed of a metal material, having high heat conductivity, such as aluminum, copper, or an Al—Co composite material. In contrast, the sidewall 9, the lid 10, the protrusion 7, the substrate 18, and the fluid-flow pipe 15, which are the portions other than the base 8, may also be formed of a similar metal material; however, in terms of ease of molding and cost reduction, the protrusion 7 may be produced by molding a resin material. The lid 10 and the substrate 18 may also be formed through sheet-metal machining so as to reduce the costs. In this case, a recess is formed in the rear side, whereby the protrusion 7 becomes hollow; however, because the protrusion 7 is a turbulence facilitator, no problem such as deterioration in the heat characteristics exists. In addition, in consequence, weight saving can be achieved.
The cooling fluid 11 is a liquid such as distilled water, antifreeze solutions alcohol, ammonia, or ammonia water; alternatively, the cooling fluid 11 is a gas such as air, or nitrogen gas. In addition, in the present invention, when the cooling fluid is a liquid, the effect thereof is enlarged.
In addition, by providing the protrusions 7 in a predetermined arrangement on at least one side of the substrate 14, instead of providing the protrusions 7 on the both sides of the substrate 14, the cooling effect of the portion, of the heat sink, in which the protrusions 7 are provided can be enhanced. In addition, a plurality of the substrates 14 on one side of which the protrusions 7 each having an approximately conical shape are provided in a predetermined arrangement may be mounted inside the heat-transfer container in such a way that the respective surfaces, of the substrates 14, on which the protrusions 7 are not provided are brought into contact with each other.
In Embodiment 1 illustrated in
In addition, a recess may be provided in the inner surface of at least one side of the flow path 2 in order to facilitate the positioning of the turbulence facilitator 19. Additionally, the turbulence facilitator 19 may thermally be coupled with at least one surface of the flow path 2, e.g., through soldering or brazing. When being thermally coupled with the surface of the wall, of the heat-transfer container 3, on which the heating element 6 is provided, the turbulence facilitator 19 demonstrates an effect of a fin; heat is transferred through heat conduction from the inner surface to the turbulence facilitator 19 and the heat is radiated from the outer surface of the turbulence facilitator 19 to the cooling fluid 11, whereby the heat can efficiently be radiated.
When the turbulence facilitator 19 is thermally coupled with the inner surfaces of both sides, in the flow path, of the heat-transfer container 3, heat is transferred through heat conduction from the inner surface of the heat-transfer container 3 to the turbulence facilitator 19 and further to the lid 10; thus, the heat is radiated from the outer surface of the turbulence facilitator 19 and the lid 10 to the cooling fluid 11, whereby the heat can further efficiently be radiated. The turbulence facilitators 19 may be spaced apart from one another or may make contact with one another. Moreover, the turbulence facilitator 19 may be a hollow sphere; the material of the turbulence facilitator 19 may be of high heat conductivity, as is the case with the protrusion 7, or a material, such as a resin, of low heat conductivity.
In the foregoing cases, in the cross section, of the flow path 2, perpendicular to the flow direction, a portion that narrows in proportion to the distance from the side on which the heating element 6 is mounted and a portion in which the width of the flow path 2 is constant are also formed alternately. In addition, the flow path 2 is configured in such a way that approximately trapezoidal flow paths the width of each of which gradually decreases, in the height direction (thickness direction) of the heat-transfer container 3, from the side on which the heating element 6 is mounted and flow paths the width of each of which is approximately constant are sequentially coupled.
According to Embodiment 2, unlike Embodiment 1, the heat-transfer container 3, as illustrated in
In Embodiment 2, without providing any fin in the heating element 6, the heat transfer between the heating element 6 and the cooling fluid 11 is enhanced through turbulence facilitation effects of the protrusions 7 provided on the lid 10, whereby the radiation characteristics are enhanced. As described above, because no fin is directly provided in the heating element 6, the heating element 6 of an electronic apparatus, a power module, or the like is readily produced, whereby the costs can be lowered. Moreover, even in the case where the amount of heat generated by the heating element 6 changes depending on usage conditions, the radiation characteristics can be changed by changing the shapes, the sizes, the arrangement pitch, or the like of the protrusions 7 provided on the lid 10. Still moreover, because it is not required to change the structure of the heating element 6 itself, the heating element 6 can be produced so as to be universal, whereby the convenience is enhanced and the costs of the overall system can be reduced.
In addition, the coupling between the heating element 6 and the heat-transfer container 3 can be carried out through pressure-bonding utilizing an O-ring or a gasket or through adhesion utilizing an adhesive.
Moreover, as illustrated in
In addition, with the heating element 6 disposed in an opening provided in the heat-transfer container 3, the foregoing fins 17 may be provided on the heat-transfer surface, of the heating element 6, which makes contact with the cooling fluid 11.
In the heat sink according to Embodiment 3, the fins 17 are provided in Embodiment 1 or in Embodiment 2 so as to enlarge the heat-transfer area; thus, the heat-transfer properties can be enhanced.
A heat sink according to the present invention can be utilized as a cooling device for cooling a heating element such as an electronic component in an electronic apparatus.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2005/016796 | 9/13/2005 | WO | 00 | 1/3/2008 |