This application is being filed electronically via EFS-Web and includes an electronically submitted Sequence Listing in .txt format. The .txt file contains a sequence listing entitled “2018-04-02_5667-00427_ST25.txt” created on Apr. 2, 2018 and is 52,689 bytes in size. The Sequence Listing contained in this .txt file is part of the specification and is hereby incorporated by reference herein in its entirety.
The human epidermal growth factor receptor (HER) family, consisting of HER1 (also known as EGFR), HER2, HER3 and HER4, drives the progression of many epithelial malignancies. EGFR and HER2 have been extensively studied as mediators of poor prognosis and are credentialed therapeutic targets of both small molecule inhibitors and monoclonal antibody therapy. In contrast, HER3, overexpressed in breast, lung, gastric, head and neck, and ovarian cancers and melanoma, is associated with poor prognosis, but has not been a credentialed therapeutic target because it lacks catalytic kinase activity and is not transforming by itself. However, HER3 is thought to function as a signaling substrate for other HER proteins with which it heterodimerizes (13, 14). Not only are these HER3 heterodimers potent oncogenic signaling drivers, but also they have been described as a cause of therapeutic resistance to anti-EGFR, anti-HER2 and hormonal therapies. Therefore, HER3 is an attractive therapeutic target. Although the lack of a catalytic kinase domain limits direct inhibition with small molecule tyrosine kinase inhibitors (TKIs), HER3 may be targeted with antibodies that either block binding of its ligand neuregulin-1 (NRG-1) (also called heregulin) or cause internalization of HER3, inhibiting downstream signaling. Additionally, the anti-HER2 monoclonal antibody pertuzumab disrupts neuregulin-induced HER2-HER3 dimerization and signaling; however, it is less effective at disrupting the elevated basal state of ligand-independent HER2-HER3 interaction and signaling in HER2-overexpressing tumor cells. There, however, remains a need in the art for therapeutic alternatives to monoclonal antibodies that may target the HER3 protein.
In one aspect, the present invention relates to vaccine vectors including a polynucleotide encoding a HER3 polypeptide. The HER3 polypeptide may include a polypeptide having at least 60%, 70%, 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98%, or 99%, or 100% sequence identity to SEQ ID NO: 1 (Human HER3 Protein amino acid sequence), SEQ ID NO: 2 (Human HER3 Protein Precursor amino acid sequence), or any one of SEQ ID NOS: 3-27 or 32 (HER3 Antigenic Epitopes).
In another aspect, compositions including any one of the vaccine vectors described herein and a checkpoint inhibitor are provided.
In a further aspect, pharmaceutical compositions are provided. The pharmaceutical compositions may include a pharmaceutically-acceptable carrier and any one of the vaccine vectors described herein or any one of the combination compositions described herein.
In a still further aspect, methods of treating a cancer or precancer, or of reducing the likelihood of the cancer or precancer developing resistance to a cancer therapeutic or prevention agent in a subject are provided. The methods may include administering a therapeutically effective amount of any one of the combination compositions described herein to the subject having the cancer or precancer. Alternatively, the methods may include administering a therapeutically effective amount of any one of the vaccine vectors described herein to the subject having the cancer or precancer, and administering a therapeutically effective amount of a checkpoint inhibitor. Optionally, each of these methods may further include administering a therapeutically effective amount of the cancer therapeutic or prevention agent to the subject.
The present inventors hypothesized that activation of T cells by a vaccine against a tumor antigen would lead to increased tumor infiltration of antigen-specific T cells and the anti-tumor activity of these T cells would be enhanced by checkpoint blockade.
In order to activate immune responses against HER3, the present inventors, in the non-limiting Examples, generated a recombinant adenoviral vector expressing full length human HER3 (SEQ ID NO: 2; Ad-HER3-FL) and demonstrated that it elicited HER3-specific humoral and cellular immune responses in HER3-transgenic mice, thus breaking tolerance. They also developed breast cancer models expressing HER3 and surprisingly demonstrated that delayed tumor progression with preventive and therapeutic vaccination was associated with an accumulation of PD-1 expressing-tumor infiltrating lymphocytes (TIL). A combination of the Ad-HER3 vaccine with either anti-PD-1 or anti-PD-L1 antibodies suppressed or eliminated HER3-expressing breast cancer more effectively than either alone when used in preventive models, but had only a modest anti-tumor effect in therapeutic models. A combination of anti-CTLA4 and Ad-HER3 vaccine demonstrated a greater anti-tumor effect in the therapeutic model.
Expression of human epidermal growth factor family member 3 (HER3), a critical heterodimerization partner with EGFR and HER2, promotes more aggressive biology in breast and other epithelial malignancies. As such, inhibiting HER3 could have broad applicability to the treatment of EGFR- and HER2-driven tumors. Although lack of a functional kinase domain limits use of receptor tyrosine kinase inhibitors, HER3 contains antigenic targets for T cells and antibodies. Using novel human HER3 transgenic mouse models of breast cancer, the present inventors demonstrate that immunization with recombinant adenoviral vectors encoding full length human HER3 (Ad-HER3-FL) induces HER3-specific T cells and antibodies, alters the T cell infiltrate in tumors, and influences responses to immune checkpoint inhibitions. Both preventative and therapeutic Ad-HER3-FL immunization delayed tumor growth, but were associated with both intratumoral PD-1 expressing CD8+ T cells and regulatory CD4+T cell infiltrates. Immune checkpoint inhibition with either anti-PD-1, anti-PD-L1 antibodies increased intratumoral CD8+ T cell infiltration and eliminated tumor following preventive vaccination with Ad-HER3-FL vaccine. The combination of dual PD-1/PD-L1 and CTLA4 blockade slowed the growth of tumor in response to Ad-HER3-FL in the therapeutic model. The present inventors conclude that HER3-targeting vaccines activate HER3-specific T cells and induce anti-HER3 specific antibodies, which alters the intratumoral T cell infiltrate and responses to immune checkpoint inhibition.
The following abbreviations are used throughout this specification:
In one aspect, the present invention relates to vaccine vectors including a polynucleotide encoding a HER3 polypeptide. The HER3 polypeptide may include a polypeptide having at least 60%, 70%, 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98%, or 99%, or 100% sequence identity to SEQ ID NO: 1 (Human HER3 Protein amino acid sequence), SEQ ID NO: 2 (Human HER3 Protein Precursor amino acid sequence), or any one of SEQ ID NOS: 3-27, 32 (HER3 Antigenic Epitopes).
As used herein, the terms “protein” or “polypeptide” or “peptide” may be used interchangeably to refer to a polymer of amino acids. A “polypeptide” as contemplated herein typically comprises a polymer of naturally occurring amino acids (e.g., alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine). The proteins contemplated herein may be further modified in vitro or in vivo to include non-amino acid moieties.
The HER3 polypeptides disclosed herein may include “variant” HER3 polypeptides. As used herein the term “wild-type” is a term of the art understood by skilled persons and means the typical form of an organism, strain, gene or characteristic as it occurs in nature as distinguished from variant forms. As used herein, a “variant, “mutant,” or “derivative” refers to a polypeptide molecule having an amino acid sequence that differs from a reference protein or polypeptide molecule. A variant or mutant may have one or more insertions, deletions, or substitutions of an amino acid residue relative to a reference molecule. A variant or mutant may include a fragment of a reference molecule. For example, a HER3 variant molecule may have one or more insertions, deletions, or substitution of at least one amino acid residue relative to the HER3 “wild-type” polypeptide sequence of a particular organism. The polypeptide sequences of the “wild-type” HER3 polypeptides from, for example, humans are presented as SEQ ID NOS: 1-27 and 32. The full length HER3 polypeptide is presented as SEQ ID NO: 1 or 2. These sequences may be used as reference sequences.
The HER3 polypeptides provided herein may be full-length polypeptides (as in SEQ ID NOS: 1 or 2) or may be fragments of the full-length polypeptide (e.g., SEQ ID NO: 3-27 or 32). The HER3 polypeptides may be encompassed in a fragment of full-length HER3. For example, the HER3 polypeptides are all within the intracellular domain of HER3 which is presented as SEQ ID NO: 26. As used herein, a “fragment” is a portion of an amino acid sequence which is identical in sequence to but shorter in length than a reference sequence. A fragment may comprise or consist of up to the entire length of the reference sequence (e.g., SEQ ID NOS: 1-27, 32), minus at least one amino acid residue. In some embodiments, a fragment of the HER3 polypeptides may comprise or consist of at least 5, 6, 7, 8, 9, or more amino acids thereof. Preferably, a fragment of a HER3 antigenic polypeptide includes the amino acid residues responsible for eliciting an immune response such as a T cell response in a subject.
The vaccine vectors may include a promoter operably connected to the polynucleotide encoding any one of the HER3 polypeptides described herein. The vectors may include an origin of replication suitable to allow maintenance of the polynucleotide within a prokaryotic or eukaryotic host cell or within a viral nucleic acid. The vector may be viral vectors including, without limitation, an adenovirus, adeno-associated virus, fowlpox, vaccinia, viral equine encephalitis virus, or venezuelan equine encephalitis virus. In some embodiments, the vector is a DNA-based plasmid vector or DNA vaccine vector.
In some embodiments, the vaccine vector may include an adenovirus serotype 5 vector with E2b, E1, and E3 genes deleted.
The vaccine vector may also be mini-circle DNA (mcDNA) vectors. Mini-circle DNA vectors are episomal DNA vectors that are produced as circular expression cassettes devoid of any bacterial plasmid DNA backbone. See, e.g. System Biosciences, Mountain View CA, MN501A-1. Their smaller molecular size enables more efficient transfections and offers sustained expression over a period of weeks as compared to standard plasmid vectors that only work for a few days. The minicircle constructs can be derived from a plasmid with a bacterial origin of replication and optionally antibiotic resistance genes flanked by att sites to allow for recombination and exclusion of the DNA between the att sites and formation of the minicircle DNA.
As used herein, a “heterologous promoter” refers to any promoter not naturally associated with a polynucleotide to which it is operably connected. Promoters useful in the practice of the present invention include, without limitation, constitutive, inducible, temporally-regulated, developmentally regulated, chemically regulated, physically regulated (e.g., light regulated or temperature-regulated), tissue-preferred, and tissue-specific promoters. Promoters may include pol I, pol II, or pol III promoters. In mammalian cells, typical promoters include, without limitation, promoters for Rous sarcoma virus (RSV), human immunodeficiency virus (HIV-1), cytomegalovirus (CMV), SV40 virus, and the like as well as the translational elongation factor EF-la promoter or ubiquitin promoter. Those of skill in the art are familiar with a wide variety of additional promoters for use in various cell types.
Suitably the polynucleotide encodes the full-length HER3 antigenic polypeptide, however, polynucleotides encoding partial, fragment, mutant, variant, or derivative HER3 antigenic polypeptide are also provided. In some embodiments, the polynucleotides may be codon-optimized for expression in a particular cell.
The polynucleotide encoding any of the HER3 polypeptides described herein may also be fused in frame to a second polynucleotide encoding fusion partners such as fusion polynucleotides or polypeptides which provide additional functionality to the antigenic cargo. For example, the second polynucleotide may encode a polypeptide that would target the HER3 polypeptide to the exosome, or would enhance presentation of the HER3 polypeptide, or would stimulate immune responses to the HER3 polypeptide. In some embodiments, the vaccine vectors described herein include a polynucleotide encoding any of the HER3 polypeptides described herein that is fused in frame to a second polynucleotide encoding a lactadherin polypeptide or portions thereof. Lactadherin is a protein that is trafficked to exosomes though its C1C2 domain, a lipid binding domain. The lactadherin polypeptide may include SEQ ID NOS: 28-31 or a homolog thereof.
In another aspect, compositions including any one of the vaccine vectors described herein and a checkpoint inhibitor or a polynucleotide encoding a checkpoint inhibitor are provided.
As used herein, a “checkpoint inhibitor” is an agent, such as antibody or small molecule, which blocks the immune checkpoint pathways in immune cells that are responsible for maintaining self-tolerance and modulating the degree of an immune response. Exemplary checkpoint inhibitors include, without limitation, antibodies or other agents targeting programmed cell death protein 1 (PD1, also known as CD279), programmed cell death 1 ligand 1 (PD-L1, also known as CD274), PD-L2, cytotoxic T-lymphocyte antigen 4 (CTLA4, also known as CD152), A2AR, CD27, CD28, CD40, CD80, CD86, CD122, CD137, OX40, GITR, ICOS, TIM-3, LAG3, B7-H3, B7-H4, BTLA, IDO, KIR, or VISTA. Suitable anti-PD1 antibodies include, without limitation, lambrolizumab (Merck MK-3475), nivolumab (Bristol-Myers Squibb BMS-936558), AMP-224 (Merck), and pidilizumab (CureTech CT-011). Suitable anti-PD-L1 antibodies include, without limitation, MDX-1105 (Medarex), MEDI4736 (Medimmune) MPDL3280A (Genentech/Roche) and BMS-936559 (Bristol-Myers Squibb). Exemplary anti-CTLA4 antibodies include, without limitation, ipilimumab (Bristol-Myers Squibb) and tremelimumab (Pfizer).
In some embodiments, the checkpoint inhibitor may be selected from the group consisting of an anti-PD-1 agent, an anti-PDL1 agent, and an anti-CTLA-4 agent.
In some embodiments, the checkpoint inhibitor may be the form of a polynucleotide encoding a checkpoint inhibitor. For example, with regards to antibody-based checkpoint inhibitors, the checkpoint inhibitor may be in the form of a DNA polynucleotide that is included in any one of the vaccine vectors disclosed herein or may be a DNA polynucleotide that is included in a different expression vector or plasmid. Alternatively, the checkpoint inhibitor may be in the form of a RNA polynucleotide such as, without limitation, an mRNA.
The combination compositions described herein may also include two checkpoint inhibitors, wherein one checkpoint inhibitor comprises an anti-PD-1 agent or an anti-PDL1 agent and the other checkpoint inhibitor comprises an anti-CTLA-4 agent.
The combination compositions may further include a cancer therapeutic or prevention agent. As used herein, a “cancer therapeutic or prevention agent” may be any agent capable of treating the cancer or inhibiting growth of cancer cells. Suitable agents include those which target HER2, HER1/EGFR, estrogen receptor or IGF1R. The cancer therapeutic or prevention agent may be trastuzumab, lapatinib, pertuzumab or another HER2 targeting therapeutic agent or it may be an EGFR targeting therapeutic agent such as cetuximab or erlotanib, or it may be an antiestrogen, or an agent that prevents estrogen synthesis such as an aromatase inhibitor.
In a further aspect, pharmaceutical compositions are provided. The pharmaceutical compositions may include a pharmaceutically-acceptable carrier and any one of the vaccine vectors described herein or any one of the combination compositions described herein.
The pharmaceutical compositions may include a pharmaceutical carrier, excipient, or diluent, which are nontoxic to the cell or subject being exposed thereto at the dosages and concentrations employed. Often a pharmaceutical diluent is in an aqueous pH buffered solution. Examples of pharmaceutical carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN™ brand surfactant, polyethylene glycol (PEG), and PLURONICS™ surfactant.
The pharmaceutical compositions may include adjuvants to increase immunogenicity of the composition. In some embodiments, these pharmaceutical compositions comprise one or more of a mineral adjuvant, gel-based adjuvant, tensoactive agent, bacterial product, oil emulsion, particulated adjuvant, fusion protein, and lipopeptide. Mineral salt adjuvants include aluminum adjuvants, salts of calcium (e.g. calcium phosphate), iron and zirconium. Gel-based adjuvants include aluminum gel-based adjuvants and acemannan. Tensoactive agents include Quil A, saponin derived from an aqueous extract from the bark of Quillaja saponaria; saponins, tensoactive glycosides containing a hydrophobic nucleus of triterpenoid structure with carbohydrate chains linked to the nucleus, and QS-21. Bacterial products include cell wall peptidoglycan or lipopolysaccharide of Gram-negative bacteria (e.g. from Mycobacterium spp., Corynebacterium parvum, C. granulosum, Bordetella pertussis and Neisseria meningitidis), N-acetyl muramyl-L-alanyl-D-isoglutamine (MDP), different compounds derived from MDP (e.g. threonyl-MDP), lipopolysaccharides (LPS) (e.g. from the cell wall of Gram-negative bacteria), trehalose dimycolate (TDM), cholera toxin or other bacterial toxins, and DNA containing CpG motifs. Oil emulsions include FIA, Montanide, Adjuvant 65, Lipovant, the montanide family of oil-based adjuvants, and various liposomes. Among particulated and polymeric systems, poly (DL-lactide-coglycolide) microspheres have been extensively studied and find use herein. Notably, several of the delivery particles noted above may also act as adjuvants.
In some embodiments, the pharmaceutical compositions further include cytokines (e.g. IFN-γ, granulocyte-macrophage colony stimulating factor (GM-CSF) IL-2, or IL-12) or immunostimulatory molecules such as FasL, CD40 ligand or a toll-like receptor agonist, or carbohydrate adjuvants (e.g. inulin-derived adjuvants, such as, gamma inulin, algammulin, and polysaccharides based on glucose and mannose, such as glucans, dextrans, lentinans, glucomannans and galactomannans). In some embodiments, adjuvant formulations are useful in the present invention and include alum salts in combination with other adjuvants such as Lipid A, algammulin, immunostimulatory complexes (ISCOMS), which are virus like particles of 30-40 nm and dodecahedric structure, composed of Quil A, lipids, and cholesterol.
In some embodiments, the additional adjuvants are described in Jennings et al. Adjuvants and Delivery Systems for Viral Vaccines-Mechanisms and Potential. In: Brown F, Haaheim L R, (eds). Modulation of the Immune Response to Vaccine Antigens. Dev. Biol. Stand, Vol. 92. Basel: Karger 1998; 19-28 and/or Sayers et al. J Biomed Biotechnol. 2012; 2012: 831486, and/or Petrovsky and Aguilar, Immunology and Cell Biology (2004) 82,488-496.
In some embodiments, the adjuvant is an aluminum gel or salt, such as aluminum hydroxide, aluminum phosphate, and potassium aluminum sulfate, AS04 (which is composed of aluminum salt and MPL), and ALHYDROGEL. In some embodiments, the aluminum gel or salt is a formulation or mixture with any of the additional adjuvants described herein.
In some embodiments, pharmaceutical compositions include oil-in-water emulsion formulations, saponin adjuvants, ovalbumin, Freunds Adjuvant, cytokines, and/or chitosans. Illustrative compositions comprise one or more of the following.
(1) ovalbumin (e.g. ENDOFIT);
(2) oil-in-water emulsion formulations, with or without other specific immunostimulating agents, such as: (a) MF59 (PCT Publ. No. WO 90/14837), which may contain 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE) formulated into submicron particles, (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, (c) RIBI adjuvant system (RAS), (RIBI IMMUNOCHEM, Hamilton, Mo.) containing 2% Squalene, 0.2% Tween 80, and, optionally, one or more bacterial cell wall components from the group of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), including MPL+CWS (DETOX™); and (d) ADDAVAX (Invitrogen);
(3) saponin adjuvants, such as STIMULON (Cambridge Bioscience, Worcester, Mass.);
(4) Complete Freunds Adjuvant (CFA) and Incomplete Freunds Adjuvant (IFA);
(5) cytokines, such as interleukins (by way of non-limiting example, IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (e.g., gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc;
(6) chitosans and other derivatives of chitin or poly-N-acetyl-D-glucosamine in which the greater proportion of the N-acetyl groups have been removed through hydrolysis; and
(7) other substances that act as immunostimulating agents to enhance the effectiveness of the composition, e.g., monophosphoryl lipid A.
In other embodiments, adjuvants include a flagellin-based agent, an aluminium salt or gel, a pattern recognition receptors (PRR) agonist, CpG ODNs and imidazoquinolines. In some embodiments, adjuvants include a TLR agonist (e.g. TLR1, and/or TLR2, and/or TLR3, and/or TLR4, and/or TLR5, and/or TLR6, and/or TLR7, and/or TLR8, and/or TLR9, and/or TLR10, and/or TLR11, and/or TLR12, and/or TLR13), a nucleotide-binding oligomerization domain (NOD) agonist, a stimulator of interferon genes (STING) ligand, or related agent.
In a still further aspect, methods of treating a cancer or precancer, or of reducing the likelihood of the cancer or precancer developing resistance to a cancer therapeutic or prevention agent in a subject are provided. The methods may include administering a therapeutically effective amount of any one of the combination compositions described herein to the subject having the cancer or precancer. Alternatively, the methods may include administering a therapeutically effective amount of any one of the vaccine vectors described herein to the subject having the cancer or precancer, and administering a therapeutically effective amount of a checkpoint inhibitor or a polynucleotide encoding a checkpoint inhibitor. Optionally, each of these methods may further include administering a therapeutically effective amount of the cancer therapeutic or prevention agent to the subject.
In some embodiments of the present methods, two checkpoint inhibitors may be administered wherein one checkpoint inhibitor comprises an anti-PD-1 agent or an anti-PDL1 agent and the other checkpoint inhibitor comprises an anti-CTLA-4 agent.
In some embodiments, the administration of the vaccine vector and the checkpoint inhibitor results in decreased tumor growth rate or decreased tumor size after administration as compared to administration of either the vaccine vector or checkpoint inhibitor alone.
The subject may be any mammal, suitably a human, domesticated animal such as a dog or cat, or a mouse or rat.
Exemplary cancers in accordance with the present invention include, without limitation, primary and metastatic breast, ovarian, liver, pancreatic, prostate, bladder, lung, osteosarcoma, pancreatic, gastric, esophageal, colon, skin cancers (basal and squamous carcinoma; melanoma), testicular, colorectal, urothelial, renal cell, hepatocellular, leukemia, lymphoma, multiple myeloma, head and neck, and central nervous system cancers or pre-cancers. In some embodiments, the cancer may be HER2 positive. The cancer may be selected from any cancer capable of developing resistance to a therapeutic agent by increasing expression or activation of a protein by the cancer cells. In particular the cancer may be any cancer capable of developing resistance to a therapeutic agent which targets a HER family tyrosine kinase, suitably HER2 or EGFR or the estrogen receptor, suitably anti-estrogens. The cancer may develop resistance by increasing the expression of HER3, which although not a kinase, will dimerize with another HER family kinase and allow for signaling to occur.
Thus the HER3 vaccine vectors provided herein may be administered in combination with other therapeutic agents including those targeting a HER family kinase such a s HER2 or EGFR such as a tyrosine kinase inhibitor or may be combined with a checkpoint inhibitor or may be combined with both a HER targeting agent and a checkpoint inhibitor. The vaccines need not be administered at the same time as the other agents. The HER3 vaccine vectors may be administered before, at the same time or after the other agents. In addition to the HER3 vaccine vectors provided herein, other vaccine vectors may also be used such as those in published applications WO 2016/007499; WO 2016/007504; and WO 2017/120576. Each of these vaccine vectors may be combined with at least one checkpoint inhibitor.
Treating cancer includes, but is not limited to, reducing the number of cancer cells or the size of a tumor in the subject, reducing progression of a cancer to a more aggressive form, reducing proliferation of cancer cells or reducing the speed of tumor growth, killing of cancer cells, reducing metastasis of cancer cells or reducing the likelihood of recurrence of a cancer in a subject. Treating a subject as used herein refers to any type of treatment that imparts a benefit to a subject afflicted with a disease or at risk of developing the disease, including improvement in the condition of the subject (e.g., in one or more symptoms), delay in the progression of the disease, delay the onset of symptoms or slow the progression of symptoms, etc.
Co-administration of one or more checkpoint inhibitors or other cancer therapeutic or prevention agent with the HER3 vaccine vector may be administered in any order, at the same time or as part of a unitary composition. The compositions and combinations may be administered such that one agent is administered before the other with a difference in administration time of 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, 16 hours, 20 hours, 1 day, 2 days, 4 days, 7 days, 2 weeks, 4 weeks or more.
In some embodiments, the vaccine vector is administered prior to or simultaneously with the checkpoint inhibitor.
In some embodiments, the vaccine vector is administered prior to the administration of the optional cancer therapeutic or prevention agent.
An “effective amount” or a “therapeutically effective amount” as used herein means the amount of a composition that, when administered to a subject for treating a state, disorder or condition is sufficient to effect a treatment (as defined above). The therapeutically effective amount will vary depending on the composition, formulation or combination, the disease and its severity and the age, weight, physical condition and responsiveness of the subject to be treated.
The compositions (i.e., those including the vaccine vector(s), checkpoint inhibitor(s), or cancer therapeutic or prevention agent(s)) described herein may be administered by any means known to those skilled in the art, including, but not limited to, oral, topical, intranasal, intraperitoneal, parenteral, intravenous, intramuscular, subcutaneous, intrathecal, transcutaneous, nasopharyngeal, or transmucosal absorption. Thus the compositions may be formulated as an ingestable, injectable, topical or suppository formulation. The composition may also be delivered with in a liposomal or time-release vehicle. Administration of the compositions to a subject in accordance with the invention appears to exhibit beneficial effects in a dose-dependent manner. Thus, within broad limits, administration of larger quantities of the compositions is expected to achieve increased beneficial biological effects than administration of a smaller amount. Moreover, efficacy is also contemplated at dosages below the level at which toxicity is seen.
It will be appreciated that the specific dosage administered in any given case will be adjusted in accordance with the compositions being administered, the disease to be treated or inhibited, the condition of the subject, and other relevant medical factors that may modify the activity of the compositions or the response of the subject, as is well known by those skilled in the art. For example, the specific dose for a particular subject depends on age, body weight, general state of health, diet, the timing and mode of administration, the rate of excretion, medicaments used in combination and the severity of the particular disorder to which the therapy is applied. Dosages for a given patient can be determined using conventional considerations, e.g., by customary comparison of the differential activities of the compound of the invention and of a known agent such as tocopherol, such as by means of an appropriate conventional pharmacological or prophylactic protocol.
The maximal dosage for a subject is the highest dosage that does not cause undesirable or intolerable side effects. The number of variables in regard to an individual prophylactic or treatment regimen is large, and a considerable range of doses is expected. The route of administration will also impact the dosage requirements. It is anticipated that dosages of the compound will reduce symptoms of the condition at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100% compared to pre-treatment symptoms or symptoms is left untreated. It is specifically contemplated that pharmaceutical preparations and compositions may palliate or alleviate symptoms of the disease without providing a cure, or, in some embodiments, may be used to cure the disease or disorder.
The present disclosure is not limited to the specific details of construction, arrangement of components, or method steps set forth herein. The compositions and methods disclosed herein are capable of being made, practiced, used, carried out and/or formed in various ways that will be apparent to one of skill in the art in light of the disclosure that follows. The phraseology and terminology used herein is for the purpose of description only and should not be regarded as limiting to the scope of the claims. Ordinal indicators, such as first, second, and third, as used in the description and the claims to refer to various structures or method steps, are not meant to be construed to indicate any specific structures or steps, or any particular order or configuration to such structures or steps. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to facilitate the disclosure and does not imply any limitation on the scope of the disclosure unless otherwise claimed. No language in the specification, and no structures shown in the drawings, should be construed as indicating that any non-claimed element is essential to the practice of the disclosed subject matter. The use herein of the terms “including,” “comprising,” or “having,” and variations thereof, is meant to encompass the elements listed thereafter and equivalents thereof, as well as additional elements. Embodiments recited as “including,” “comprising,” or “having” certain elements are also contemplated as “consisting essentially of” and “consisting of” those certain elements.
Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. For example, if a concentration range is stated as 1% to 50%, it is intended that values such as 2% to 40%, 10% to 30%, or 1% to 3%, etc., are expressly enumerated in this specification. These are only examples of what is specifically intended, and all possible combinations of numerical values between and including the lowest value and the highest value enumerated are to be considered to be expressly stated in this disclosure. Use of the word “about” to describe a particular recited amount or range of amounts is meant to indicate that values very near to the recited amount are included in that amount, such as values that could or naturally would be accounted for due to manufacturing tolerances, instrument and human error in forming measurements, and the like. All percentages referring to amounts are by weight unless indicated otherwise.
No admission is made that any reference, including any non-patent or patent document cited in this specification, constitutes prior art. In particular, it will be understood that, unless otherwise stated, reference to any document herein does not constitute an admission that any of these documents forms part of the common general knowledge in the art in the United States or in any other country. Any discussion of the references states what their authors assert, and the applicant reserves the right to challenge the accuracy and pertinence of any of the documents cited herein. All references cited herein are fully incorporated by reference, unless explicitly indicated otherwise. The present disclosure shall control in the event there are any disparities between any definitions and/or description found in the cited references.
The following examples are meant only to be illustrative and are not meant as limitations on the scope of the invention or of the appended claims.
In order to develop a potent, clinically relevant vaccine to induce HER3 specific T and B cell responses, we modified the well-characterized first generation adenovirus serotype 5 vector Ad5[E1-E3-] by inserting the gene for full length human HER3 to generate a viral vector construct referred to subsequently as Ad[E1-]HER3. A recognized challenge with first generation adenoviral vectors is that pre-existing or induced neutralizing antibodies reduce their immunogenicity. Because we have previously demonstrated potent immunogenicity despite anti-vector neutralizing antibodies by using recombinant adenovirus serotype 5 vectors deleted of the early gene E2b in addition to the deletion of E1 and E3 genes (Ad5[E1-E2b-])(29), we generated an Ad5[E1-E2b-] vector expressing full length human HER3 (Ad-HER3-FL). To test the immunogenicity of this HER3 vaccine in the stringent setting where human HER3 is a self-antigen, we first developed a human HER3-transgenic mouse. Further, we crossed the human HER3-transgenic mice to a BALB/c background (F1 Hybrid mice; BALB/c x MMTV-neu/MMTV-hHER3) and created a new human HER3 expressing tumor model based on the BALB/c-derived JC murine breast cancer cell line (JC-HER3).
These human HER3-transgenic mice were immunized with the Ad-HER3-FL vector following which their splenocytes were analyzed for HER3-specific cellular immune responses by the IFN-gamma ELISPOT assay.
We tested the anti-tumor effects of vaccination with the Ad-HER3-FL construct in therapeutic models following JC-HER3 tumor cell implantation. We found that the Ad-HER3-FL vaccine effectively suppressed JC-HER3 tumor growth compared to the controls, specifically saline (p<0.001), and an irrelevant vaccine, Ad-GFP (p<0.001) (
In order to investigate potential sources for tumor escape from the HER3-specific immune response, we first analyzed tumor expression of HER3. In this model of HER3 immunotherapy, tumor expression of HER3 is not critical to maintaining the malignant phenotype. Therefore, one mechanism of immune escape in the presence of HER3 specific T cells and anti-HER3 antibodies would be HER3 antigen loss. We performed western blot on tumor lysates and flow cytometry on tumor cells remaining 21 days after the first vaccination. As shown in
We sought to evaluate other potential explanations of tumor progression despite robust T cell responses against HER3. First we wished to determine if there was T cell infiltration of tumor by analyzing tumor infiltrating lymphocytes (TIL) in all vaccinated mice and found a greater number of CD3+ TILs in Ad-HER3-FL immunized mice compared to the Ad-GFP immunized mice (
Other proposed mechanisms for immunosuppression involve the presence of regulatory T cells (Treg). We noted fewer intratumoral Tregs in the Ad-HER3-FL vaccinated mice compared to the Ad-GFP treated mice, p=0.026 (
Analysis of PD-1 expression on TILs, splenocytes and distant (non-tumor draining) lymph nodes after Ad-HERS-FL or Ad-GFP vaccination confirmed that PD-1 tended to be overexpressed by CD8+ TILs after Ad-HER3-FL vaccination compared to PD-1 expression by CD8+ T cells isolated from splenocytes and non-tumor draining lymph nodes in these same mice (
In order to study the functional consequences of PD-1 expression by intratumoral T cells, we tested whether blockade of the PD-1/PD-L1 interaction in combination with Ad-HER3-FL immunizations would have greater anti-tumor efficacy than either alone. We first evaluated this effect in a tumor prevention model. In this model, mice were first immunized with the Ad-HER3-FL vaccine, tumor was then implanted, and tumor implantation was followed by anti-PD-1 or anti-PD-L1 antibody administration. While Ad-HER3-FL alone or anti-PD-1 or anti-PD-L1 with control vector resulted in some delayed tumor growth, there was no tumor regression (
We next wanted to determine whether tumor regression was due to the modulation of the intratumoral T cell infiltrate by checkpoint blockade after vaccination in the prevention model. The addition of anti-PD-1 antibodies to Ad-HER3-FL vaccination significantly increased the number of CD3+ T cells/hpf within the tumor compared to Ad-HER3-FL vaccination alone (p<0.0001) (
We next interrogated if anti-PD-1 treatment could augment the magnitude of both the HER3-specific T cell and anti-HER3 antibody response induced by Ad-HER3-FL alone. In the prevention model, splenocytes from mice treated with either the Ad-HER3-FL vaccine, Ad-HER3-FL vaccine+anti-PD-1 antibody, or Ad-HER3-FL vaccine+anti-PD-L1 antibody demonstrated an increased frequency of T cells specific for HER3 ECD and ICD peptides (
Having demonstrated that checkpoint blockade enhanced the anti-tumor activity of the Ad-HER3-FL in the less stringent prevention model, we wished to evaluate the efficacy of these antibodies in enhancing the anti-tumor activity of Ad-HER3-FL immunization in tumor-bearing mice (treatment model). We focused on anti-PD-L1 and anti-CTLA4 in these experiments. HER3 transgenic mice implanted with JC-HER3 cells were vaccinated with Ad-HER3-FL or control Ad-GFP simultaneously with anti-PD-L1, anti-CTLA4 or both. There was slowing of tumor growth by Ad-HER3-FL plus either antibody alone (p<0.001, for both comparisons) or with the combination of both antibodies (p<0.001) compared with Ad-HER3-FL alone (
Further, each antibody and their combination when administered with the Ad-HER3-FL vaccine, decreased intratumoral Treg content (
HER3 mediates resistance to EGFR-, HER2- and endocrine-directed therapies in breast cancer and other epithelial malignancies, but has been challenging to target. Our initial objective was to develop a vaccine capable of inducing HER3-specific immune effectors, which would have anti-tumor efficacy against resistant tumors. We chose an adenoviral backbone deleted of the E1 and E2b genes that we previously demonstrated in clinical studies to activate immune responses against the encoded transgene despite the development of anti-Ad neutralizing antibody (30). We developed a model of human HER3 expressing murine breast cancer (JC-HER3) implantable into immune competent human HER3 transgenic mice to test the adenoviral vaccines. The E1, E2b-deleted vector induced T cells with specificities against both intracellular and extracellular domains of HER3 in HER3-transgenic mice. The Ad-HER3 vaccine also demonstrated the ability to modulate the immune cell content of tumors. Specifically, Ad-HER3 vaccination resulted in an increased percentage of intratumoral CD8 T cells and a decreased percentage of intratumoral Tregs, yielding an increased CD8 to Treg ratio, a trend favorable for inducing immune mediated anti-tumor activity. This resulted in a delay in tumor growth; however, we wished to develop a strategy that led to greater tumor regression.
One strategy to enhance the antitumor activity of the vaccine was suggested by the observation that although the Ad-HER3-FL immunization caused an increase in TILs compared to control immunizations, these TILs demonstrated high expression of PD-1 compared with splenocytes or T cells from non-tumor draining lymph nodes. It has been previously suggested that T cells specific for a vaccinating antigen upregulate PD-1.(30, 31) As the PD-1/PD-L1 interaction is well established to impair T cell-mediated anti-tumor activity, we sought to enhance the anti-tumor activity of the Ad-HER3-FL vaccine by blocking the PD-1/PD-L1 interaction. Indeed, there was elimination of tumor when we immunized mice with the Ad-HER3-FL prior to tumor implantation and then delivered the anti-PD-1 or anti-PD-L1 antibody after tumor implantation. In this setting, there was sufficient time to generate a robust intratumoral antigen specific immune response which could be further enhanced by checkpoint blockade. The robust immune response generated by vaccination before tumor cell implantation may model the clinical scenario of vaccination of patients with resected tumors at high risk of recurrence. In this setting if tumor were to recur, anti-PD-1/PD-L1 blockade may lead to tumor regression because of the presence of intratumoral T cells activated by previous vaccination. This may also model the clinical scenario of tumors controlled by standard therapy, which then grow upon development of resistance due to upregulation of molecules such as HER3. In this setting, tumors that upregulate HER3 and contain infiltrates with HER3 specific T cells would be rapidly eliminated upon application of PD-1/PD-L1 blockade.
In contrast to the prevention model, vaccination therapies of established malignancies have had modest success in pre-clinical and clinical testing; as other groups have reported greater anti-tumor activity for vaccines combined with PD-1/PD-L1 blockade in murine treatment models (32-34), we wished to test the administration of PD-1/PD-L1 blockade with Ad-HER3-FL in established tumors. In the stringent treatment models, there was slowing of tumor growth with either PD-1/PD-L1 blockade. We reasoned that in treatment models, there would be little time for a T cell response following vaccination alone to achieve a frequency necessary to eradicate tumor. Therefore, we also tested the addition of anti-CTLA4 to determine if this alone or in conjunction with PD-1/PD-L1 blockade could cause rapid T cell expansion after vaccination.
In poorly immunogenic tumor models, it has been demonstrated that anti-CTLA4 therapy strongly enhances the amplitude of vaccine induced anti-tumor activity (35, 36). We observed in the treatment model that anti-CTLA4 or blockade of the PD-1/PD-L1 interaction (anti-PD-L1) and their combination plus the Ad-HEr3 vaccine similarly enhanced immune-mediated tumor control.
Our data suggest that current cancer vaccine strategies would be enhanced by checkpoint blockade. Single and dual checkpoint blockade appear to enhance anti-tumor response to the Ad-HER3 vaccine similarly. Therefore, the choice of checkpoint antibody may depend more on their indication. For example, if single agent checkpoint blockade is the standard therapy for a malignancy where HER3 would also be relevant (e.g. triple negative breast cancer), then combining the HER3 vaccine with the standard single agent checkpoint blockade antibody would be appropriate. However, where dual checkpoint is the standard, our data suggest that this leads to similar enhancement in anti-tumor activity to the HER3-FL vaccine.
Our data now warrant clinical testing of the Ad-HER3-FL vaccine with anti-PD-1/PD-L1, anti-CTLA4 therapy, or both in the setting of established malignancy and with anti-PD-1 or anti-PD-L1 antibodies in the adjuvant setting. As our pre-clinical testing has demonstrated minimal side effects from this vaccine, we anticipate that our planned first-in-human clinical trial of this vaccine will be well tolerated. A phase I study of the Ad-HER3 full-length vaccine will open shortly in order to evaluate the safety and immunogenicity of this vaccine in metastatic cancer patients with a planned expansion cohort for hormone receptor positive breast cancer. As HER3 is recognized to mediate anti-HER2 therapy resistance, we plan to open a clinical trial of the Ad-HER3 vaccine given in combination with anti-HER2 therapy in metastatic HER2+ breast cancer. Our prior studies have also revealed that in HER2+ breast cancer, activation of the HER3 signaling axis is associated with a poor outcome (37). Lastly, there is increasing evidence that single agent check point blockade is clinically active in a portion of TNBC patients (38, 39). In addition, there is evidence that HER3 expression is associated with worse DFS and OS in TNBC (40). Based on these observations, we will open a trial of concurrent Ad-HER3 vaccination and check point blockade in TNBC to assess the safety and immunogenicity of this combination therapy.
The human HER3 cDNA was excised from a pCMVSport6-HER3-HsIMAGE6147464 plasmid (cDNA clone MGC:88033/IMAGE:6147464) from the ATCC (Manassas, Va.). Construction of a first-generation [E1−, E3−] Ad vector containing human full length HER3 under control of human CMV promoter/enhancer elements was performed using the pAdEasy system (Agilent technologies, Santa Clara, Calif.) as previously described(41). The modified adenoviral vector, [E1−,E2b−] Ad, was constructed as previously described (42). This vector has multiple deletions of the early region 1 (E1) and E2b regions (DNA polymerase and pTP genes), and was engineered to express the identical human CMV promoter/enhancer-transgene cassette as utilized for the [E1−E3−] Ad-HER3 vector. Ad[E1−E2b−]-HER3 FL vector was constructed with full length of HER3 cDNA. Complementing C-7 cell lines were used to support the growth and production of high titers of these vectors, and cesium chloride double banding was performed to purify the vectors, as previously reported (43).
Mixtures of HER3 peptides containing 15 mer peptides, each overlapping the next by 11 amino acids, spanning extracellular domain plus transmembrane segment (ECD-TM) of HER3 protein and intracellular domain (ICD) of HER3 protein, were purchased from JPT Peptide Technologies (Berlin, Germany), and were used for the IFN-γ ELISPOT assay. An HIV peptide mix representing HIV gag protein was purchased from JPT Peptide Technologies (Berlin, Germany) and was used as a negative control. Anti-murine PD-1 (BE0146, clone J43) and anti-murine PD-L1 (BE0101, clone 10F.9G2) and anti-murine CTLA4 (BE0164, clone 9D9) monoclonal antibodies were purchased from Bio X Cell (West Lebanon, N.H.) for animal experiments. Collagenase III (cat# 4183) was purchased from Worthington Biochemical (Lakewood, N.J.), and hyaluronidase (H3884) and DNase (D5025) from Sigma-Aldrich (St. Louis, Mo.).
Female wild-type BALB/c mice (Jackson Laboratory, Bar Harbor, Me., USA) were bred and maintained in the Duke University Medical Center pathogen-free Animal Research Facility, and used at 6 to 8 weeks of age. Human HER3-transgenic mice (MMTV-neu/MMTV-hHER3) with FVB background were a kind gift from Dr. Stan Gerson at Case Western Reserve University. FVB mice homozygous for the HER3 gene were established at Duke University and crossed with BALB/c mice to generate F1 hybrid HER3 transgenic mice (FVB x BALB/c) for use in tumor implantation experiments. All animal studies described were approved by the Duke University Medical Center Institutional Animal Care & Use Committee and the US Army Medical Research and Materiel Command (USAMRMC) Animal Care and Use Review Office (ACURO) and performed in accordance with guidelines published by the Commission on Life Sciences of the National Research Council.
Tumor tissues were collected at the termination of animal experiments and minced and homogenized in RIPA buffer in the presence of proteinase inhibitors. After centrifugation at 13,000 rpm for 10 min at 4° C., the supernatant was pooled, filtered through a 0.22 μm filter, aliquoted and stored at −80° C. until needed. Protein concentration was determined by a BCA assay. Thirty μg of protein was applied for each lane, run on 12% Tris-HCl acrylamide gel, and transferred to polyvinylidene fluoride (PVDF) membranes. Membranes were incubated with anti-HER3 antibody (1:1000 dilution, Santa Cruz Biotechnology, Inc., Santa Cruz, Calif.) or anti-GAPDH antibody (1:1000 dilution, Santa Cruz) for 1 h, followed by incubation with horseradish peroxidase-conjugated goat anti-mouse IgG antibody (1:2000 dilution, Bio-Rad, Hercules, Calif.). The chemiluminescent substrate kit (Thermo Scientific, Rockford, Ill.) was used for the development.
Tumors were excised from mice at the termination of tumor implantation experiments, minced with surgical blades and digested with triple enzyme buffer (collagenase III, hyaluronidase, DNase) for 1.5 hours at 37° C. The cell suspension was washed 3 times with PBS and resuspended in PBS. Cells were first labeled with viability dye (Fixable Aqua Dead Cell Stain Kit, Invitrogen, Eugene, Oreg.) for 5 min, and then with PerCP/Cy5.5-anti-CD3, APC/Cy7-anti-CD8, Alexa Fluor 700-anti-CD4, FITC-anti-CD25, APC-anti-PD-1, and PE-anti-PD-L1 or PE-anti-HER3 antibody (BioLegend, San Diego, CA) for 30 min at 4° C. Cells were washed twice with PBS and analyzed on a LSRII machine (BD Biosciences) using FlowJo software.
Mouse IFN-γ ELISPOT assay (Mabtech Inc., Cincinnati, Ohio) was performed according to the manufacturer's instructions. At the end of the mouse experiments, their spleens were collected and lymphocytes were harvested by mincing and passing through a 40 μm Cell Strainer. Red blood cells were lysed with red blood cell lysis buffer (Sigma). Splenocytes (500,000 cells/well) were incubated in RPMI-1640 medium (Invitrogen) supplemented with 10% horse serum, and HER3 ECD-TM peptide mix and/or HER3 ICD peptide mix (1.3 μg/ml) were used as stimulating antigens. HIV peptide mix was used as a negative control, and a mixture of PMA (50 ng/ml) and Ionomycin (1 μg/ml) was used as a positive control for the assay. Membranes were read with a high-resolution automated ELISpot reader system (Carl Zeiss, Inc., Thornwood, N.Y., USA) using the KS ELISpot version 4.2 software.
4T1 cells were transduced with HER3 gene by lentiviral vectors to express human HER3 on the cell surface (4T1-HER3 cell). 4T1 and 4T1-HER3 cells were incubated overnight at 37° C. in 96 well flat bottomed plates (3×104 cells in 100 μL medium/well). Mouse sera were prepared by diluting with DMEM medium (final titrations 1:50˜1:6,400), and 50 μl of mouse sera-containing media were added to the wells and incubated for 1 hour on ice. The plates were gently washed with PBS twice, and then, cells were fixed with diluted formalin (1:10 dilution of formalin in 1% BSA in PBS) for 20 min at room temperature. After washing three times with PBS, 50 μL of 1:2000 diluted HRP-conjugated goat anti-mouse IgG was added to the wells, and incubated for 1 h at room temperature. After washing three times with PBS, TMB substrate was added to the wells (50 μl/well) and incubated for approximately 20 min. The color development was stopped by adding 50 μl of 1M H2SO4 buffer. Absorbance at 450 nm was read using a BioRad Microplate Reader (Model 680). As the alternative method for the detection of HER3-specific antibody, near infrared red (nIR) dye-conjugated anti-mouse IgG (IRDye 800CW, LI-COR Biosciences, Lincoln, Nebr.) was used as a secondary antibody, and the nIR signal was detected by a LI-COR Odyssey Imager (LI-COR) using the 800 nm channel.
HER3-transgenic F1 hybrid mice were immunized by footpad injection on days −11, −4 and 14 with 2.6×1010 particles of the Ad[E1−,E2b−]-HER3-FL or Ad-GFP control in 40 μL of saline. On day 0, mice were inoculated with 5×105 JC-HER3 cells in 100 μl saline subcutaneously into the flank. Tumor dimensions were measured serially, and tumor volumes calculated using the following formula: long axis×(short axis)2×0.5. For the combination treatment with immune checkpoint inhibitors, mice were vaccinated with Ad-HER3-FL or Ad-GFP on days −11, −4 and 14, and received peritoneal injection of anti-PD-1 antibody, anti-PD-L1 antibody or control IgG (200 μg/injection) twice a week (on days 3, 6, 10, 13, 17 and 20) after tumor implantation.
HER3 transgenic F1 hybrid mice were inoculated with 5×105 JC-HER3 cells in 100 μL saline subcutaneously into the flank on day 0. On days 3 and 10, mice were immunized via footpad injection with Ad-HER3-FL or Ad-GFP control vector (2.6×1010 particles/mouse for each injection). Tumor dimensions were measured serially and tumor volumes were calculated as described above. Mice were euthanized when the tumor size reached the humane endpoint, or by day 34. For the combined treatment with immune checkpoint inhibitors (anti-PD-1, anti-PD-L1, or anti-CTLA4 antibody), mice received peritoneal injection of the checkpoint inhibitor (200 μg/injection) twice a week after tumor implantation.
Tumor tissue collected at the time mice were euthanized was fixed in 10% neutral buffered formalin for a minimum of 24 hours. The tissue was then processed and embedded in paraffin. Sections with 5 μm thickness were made for hemotoxylin and eosin staining and CD3+ T cell staining. For immunohistochemistry using anti-CD3 antibody (Thermo Fisher Scientific, Waltham, Mass.), heat-induced antigen retrieval was performed using sodium citrate buffer for 20 min after deparaffinization of tissue sections. Following quenching of endogenous peroxidase activity with 3% H2O2, 10% normal horse serum was used to block nonspecific binding sites. Anti-CD3 antibody (1:150 dilution) was applied to the sections, which were incubated overnight at 4° C. After three washes with PBS, anti-rabbit IgG secondary antibody (ImmPRESS anti-Rabbit IgG Polymer, Vector Lab, Burlingame, Calif.) was applied for 30 min, and then color was developed using the DAB Peroxidase substrate kit (Vector Lab). Counterstaining was performed with hematoxylin. After assessment of adequate staining by two independent observers, ten high power fields (magnification ×200; objective lens ×20, ocular ×10) of tumor tissue for each group, avoiding necrotic area, were randomly selected and photographed using an IX73 Inverted Microscope with Dual CCD Chip Monochrome/Color Camera (Olympus). CD3-positive spots were counted for each field by two observers who had no previous knowledge of treatments performed for individual groups.
For the ELISpot and ELISA assays, differences in IFN-γ production and antibody binding, respectively, were analyzed using the Student's t test. Tumor volume measurements for in vivo models were analyzed under a cubic root transformation to stabilize the variance. Welch t-tests were used to assess differences between mice injected with HER3-VIA or control GFP-VIA.
To compare tumor growth volumes over time, a multivariable Generalized Additive Model for Location, Scale and Shape (GAMLSS) (44) considering Group, Experiment, Time and interaction between Time and Group as covariables for Tumor Volume location and Time for Tumor Volume scale was applied. The Normal distribution was considered for the effectiveness of Ad-HER3 FL vaccine model and the Zero Adjusted Gamma distribution for the effectiveness of antibodies model. Time was modeled using penalized cubic spline (45) and the interaction between Time and Group was modeled using Varying Coefficient (46). Areas under tumor growth curve were calculated under spline interpolation (44) and adaptive quadrature for the tumor prevention model. A simple GAMLSS with Gamma distribution quantifies the relationship between mean of area under tumor growth curve and the covariable Group.
Contrasts were calculated using the Wald statistic and multiples comparisons were corrected as suggested by Holm (47). Model diagnostics was performed based on Worm-plots (48) and fitted values were compared considering 95% Bootstrap Confidence Intervals (49).
The Kaplan-Meier method was used to estimate overall survival and treatments were compared using a two-sided log-rank test. Analyses were performed using R version 2.10.1, SAS v. 9.3 (SAS Institute, Cary NC) and R, version 3.2.5 (50), survival plots were created using Spotfire S+ v. 8.1 (TIBCO, Palo Alto, Calif.). All tests of hypotheses will be two-sided considering a significance level of 0.05.
The present application claims the benefit of priority of U.S. Provisional Patent Application No. 62/479,870, filed on Mar. 31, 2017 and U.S. Provisional Patent Application No. 62/622,605, filed on Jan. 26, 2018, the contents of which are incorporated herein by reference in their entireties.
This work was supported by grants from the Department of Defense Breast Cancer Research Program Clinical Translational Research Award [W81XWH-12-1-0574 to HKL]. The United States Government has certain rights in this invention.
Number | Date | Country | |
---|---|---|---|
62479870 | Mar 2017 | US | |
62622605 | Jan 2018 | US |