Measurement optics in a polarization based or multiplexed heterodyne interferometer such as used for precision measurements in semiconductor device manufacturing equipment generally require a light beam including orthogonal polarization components that have slightly different frequencies. However, the light sources such as lasers that generate the required beams also produce heat and temperature gradients that are generally unacceptable for precision operation of the interferometer measurement optics. Accordingly, the light sources generally must be separated from the measurement optics. Transmission of the polarization components on a single optical fiber is generally not used because even a polarization-maintaining (PM) fiber will typically change the polarizations too much for the precise measurements.
In one system for beam delivery, a beam splitter feeds one polarization component to a first PM fiber and feeds the second polarization component to a second PM fiber. The two separate fibers carry the two component beams to the interferometer optics near the measurement site. Polarizers, alignment optics, and a combiner can then recombine the two component beams so that the beams travel along a common path. Suitable alignment optics include, for example, collimators, flat transmissive windows, polarizing optics, beam splitters, and total and partial reflectors to translate and tilt the beams. The interferometer optics then reflect one of the component beams off of a stage being measured and reflect the other component off of a reference reflector. The phase difference between the two beams after respective reflections indicates the displacement or movement of the stage.
Conventional interferometer systems using two PM fibers for beam delivery often require sensitive alignment processes for the optics and combiner that recombine the two component beams. Additionally, having two fiber paths generally requires duplication of equipment or optical elements, which can increase system cost and size. Thus, a system that maintains the polarization of two light beams in a single fiber could reduce cost and complexity.
In one embodiment of the invention, a polarization control system includes a beam source that generates two beam components with orthogonal polarizations and different frequencies. A polarization state modulator adjusts the polarization states of the two beam components for transmission on a single optical fiber. At the output from the fiber, a detector measures the output polarizations of the components. One such detector includes three detector paths that generate a first beat signal, a second signal, and a third signal from the two light beams. An amplitude detector determines the amplitude of the first beat signal at a beat frequency. A phase comparator determines the phase difference between the second and third signals. The system then uses the amplitude and the phase difference to determine how to adjust the polarization state modulator in order to give the first and the second light beams the desired polarizations when output from the fiber.
The beam source can be implemented using a Zeeman-split laser, a laser containing a birefringent element, a pair of phase-locked lasers, and/or a variety of configurations of electro-optic or acousto-optic crystals that are operated to create or enhance the frequency difference between the beam components.
In accordance with an aspect of the invention, a beam delivery system for a heterodyne interferometer uses a single fiber for delivery of a heterodyne beam containing frequency components with orthogonal linear polarizations. To deliver frequency components having the required orientations, the beam delivery system measures the magnitude and phase of a beat frequency in a polarization component and actively adjusts the polarizations of the beams input to the fiber to minimize the magnitude of the beat signal.
A polarization state modulator (PSM) generally converts an input polarization state into an output polarization state. One or more external inputs applied to the PSM controls the polarization conversion, and in general, the output polarization state differs from the input polarization state. For example, PSM 14 may consist of multiple variable retarders. A retarder (or waveplate) is an optical device that resolves a light wave into two orthogonal polarization components and produces a phase shift (or retardance) between them. The resulting light wave is generally of a different polarization form. Ideally, retarders simply change the polarization form of a light beam without polarizing or inducing an intensity change in the light beam. A variable retarder has a retardance that can be changed by external means, e.g., by the application of a voltage.
In system 10, a beam source 12 generates (1) a light beam E1 with a polarization state P1 and a frequency ω1 and (2) a light E2 with a polarization state P2 and a frequency ω2. In one embodiment, beam source 12 includes a Helium Neon (HeNe) laser and electro-optical components required to generate the desired polarizations and frequencies. For example, beam source 12 can be a 5517D laser made by Agilent Technologies. PSM 14 receives light beams E1 and E2 and adjusts initial polarization states P1 and P2 to polarization states P1′ and P2′, respectively, before launching light beams E1 and E2 into fiber 16. PSM 14 is operable to change any input polarization state P1 or P2 to any desired output polarization state P1′ or P2′. In one embodiment, PSM 14 includes a voltage-controlled variable retarder 18 oriented at 0°, a voltage-controlled variable retarder 20 oriented at 45°, and a voltage-controlled variable retarder 22 oriented at 0°. Voltages V1, V2, and V3 control respective retarders 18, 20, and 22 to generate respective retardances Γ1, Γ2, and Γ3.
Fiber 16 carries light beams E1 and E2 downstream to interferometer optics at a measurement site. In one embodiment, fiber 16 is a polarization-maintaining (PM) fiber. Experiments show that fiber 16 changes the polarization states P1′ and P2′ of light beams E1 and E2 to polarization states P1″ and P2″, respectively, that generally depend on the temperature and mechanical deformation of fiber 16. Nonetheless, fiber 16 produces negligible change to the orthogonal relationship between the polarization states of light beams E1 and E2.
At the measurement site, a beam splitter 24 divides light beams E1 and E2 into two paths. An output path 26 carries light beams E1 and E2 to the distance-measuring interferometer (hereafter “DMI”) system. A monitor path 28 carries a fraction of the power from light beams E1 and E2 to components that monitor the polarization states P1″ and P2″ of beams E1 and E2 as described hereafter. Some or all of the components along the monitor path 28 can be located either at the measurement site or away from the measurement site. For example, light exiting components 38, 52, and 62 can be coupled to respective multimode fibers in conjunction with focusing lenses leading to the detector components away from the measurement site.
A beam splitter 30 splits light beams E1 and E2 on monitor path 28 into two paths. A path 32 carries light beams E1 and E2 to a first detector path 34, and a path 36 carries light beams E1 and E2 to other detector paths. First detector path 34 includes a polarizer 38 that allows the components of light beams E1 and E2 at a selected polarization state P3 to reach a light detector 40. A focusing lens may be interposed between polarizer 38 and light detector 40 to focus the light. In response to the light intensity received, light detector 40 transmits a beat signal B1 at a beat frequency of (ω1-ω2) to an amplitude-sensing device 42. Beat signal B1′ represents the optical power detected at beat frequency (ω1-ω2). An amplifier may be interposed between light detector 40 and amplitude-sensing device 42 to amplify beat signal B1. Before polarizer 38, first detector path 34 can optionally include one or more wave plates 37. Wave plates 37 and polarizer 38 are selected according to the desired orientation of the output polarization states of light beams E1 and E2. In particular, wave plates 37 and polarizer 38 can be selected so that beat signal B1 is small (ideally zero) when polarizations P1″ and P2″ are along the desired directions.
A beam splitter 44 receives light beams E1 and E2 from path 36 and divides them into two paths. A path 46 carries light beams E1 and E2 to a second detector path 48, and a path 50 carries light beams E1 and E2 to another detector path. Second detector path 48 includes a polarizer 52 that allows the components of light beams E1 and E2 at a selected polarization state P4 to reach a light detector 54. A focusing lens may be interposed between polarizer 52 and light detector 54. In response to the light intensity received, light detector 54 transmits a beat signal B2 to a phase detector 56. An amplifier may be interposed between light detector 54 and phase detector 56. Before polarizer 52, second detector path 48 optionally includes one or more wave plates 51. Wave plates 51 and polarizer 52 are selected to generate a large beat signal B2 depending on the desired orientation of the output polarization states of light beams E1 and E2.
Path 50 carries light beams E1 and E2 to a third detector path 58. Third detector path 58 includes a polarizer 62 that allows the components of light beams E1 and E2 at a selected polarization state P5 to reach a light detector 64. A focusing lens may be interposed between polarizer 62 and light detector 64. In response to the light intensity received, light detector 64 transmits a beat signal B3 to phase detector 56. An amplifier may be interposed between light detector 64 and phase detector 56. Before polarizer 62, the third detector path 58 optionally includes one or more wave plates 60. Wave plates 60 and polarizer 62 are selected to generate a beat signal B3 that has a different phase relationship with beat signal B2 for each of the two possible solutions of E1 and E2 corresponding to a minimum amplitude detected by amplitude-sensing device 42 in first detector path 34. In one embodiment, the phase relationship is 90° out of phase (i.e., beat signals B2 and B3 are in quadrature) when beams E1 and E2 have the desired polarizations.
Phase detector 56 determines a phase difference ΔΨ between beat signals B2 and B3. Amplitude-sensing device 42 determines an amplitude B1′ of beat signal B1 at the beat tone frequency (i.e., ω1-ω2). A controller 43 uses amplitude B1′ and phase difference ΔΨ to generate control voltages or signals V1, V2, and V3 that are applied to PSM 14 in order to achieve the desired polarization states P1″ and P2″ of light beams E1 and E2. Amplifiers may be interposed between controller 43 and PSM 14 to amplify the control signals V1, V2, and V3. Controller 43 can be implemented using analog or digital components.
Specifically, controller 43 adjusts PSM 14 until beat tone amplitude B1′ reaches one of two local minimums. Beat tone amplitude B1′ has two local minimums, one minimum corresponding to linear polarizations P1″ and P2″ having the desired orientations, and the other minimum corresponding to linear polarizations P1″ and P2″ being rotated by 90°. Controller 43 uses phase difference ΔΨ to uniquely determine the polarization states of E1 and E2 because the phase difference ΔΨ has different values at the two minimums that correspond to the two orientations of E1 and E2. The exact correspondence between the values of phase difference ΔΨ and the orientations of E1 and E2 can be derived conventionally using Jones calculus.
In steps 106 to 114, controller 43 adjusts retardance Γ1 of retarder 18 to find the minimum value of beat tone amplitude B1′ that can be achieved with retardance Γ1. Specifically, in step 106, controller 43 selects retarder 18. In step 108, controller 43 increments retardance Γ1 by adjusting voltage V1. In step 110, controller 43 determines if beat tone amplitude B1′ has decreased. If so, step 110 is followed by step 108. Otherwise, step 110 is followed by step 112.
In step 112, controller 43 decrements retardance Γ1 by adjusting voltage V1. In step 114, controller 43 determines if beat tone amplitude B1′ has decreased. If so, step 114 is followed by step 112. Otherwise, step 114 is followed by step 116.
In steps 116 to 124, controller 43 adjusts retardance Γ2 of retarder 20 to find the minimum value of beat tone amplitude B1′ that can be achieved with retardance Γ2. Step 124 is followed by step 126 once the minimum value of beat tone amplitude B1′ has been achieved. In steps 126 to 134, controller 43 adjusts retardance Γ3 of retarder 22 to find the minimum value of beat tone amplitude B1′ that can be achieved with retardance Γ3. Step 134 is followed by step 136 once the minimum value of beat tone amplitude B1′ has been achieved.
In step 136, controller 43 records the value of beat tone amplitude B1′ for the current iteration. In step 138, controller 43 determines phase difference ΔΨ between beat signals B2 and B3. In step 140, controller 43 determines if the value of phase difference ΔΨ corresponds to the desired output polarization states of E1 and E2. Phase difference ΔΨ may not correspond to the desired output polarization states if there is a large and sudden change in the condition of fiber 16 that causes a large and sudden change in the polarization states of beams E1 and E2, which may cause the control loop to lose lock momentarily, and hence the system may not be locked to the same initial solution thereafter. If so, then step 140 is followed by step 104 where method 100 is repeated to search for another initial solution of retardances Γ1, Γ2, and Γ3. If phase difference ΔΨ corresponds to the desired output polarization states of E1 and E2, then step 140 is followed by step 142.
In step 142, controller 43 determines if the current beat tone amplitude B1′ is the same as the beat tone amplitude B1′ recorded from the previous iteration. If so, then step 142 is followed by 136 and method 100 loops until the beat tone amplitude B1′ changes value. If the current beat tone amplitude B1′ is not the same as the beat tone amplitude B1′ recorded from the previous iteration, then step 142 is followed by step 106, and method 100 is repeated to search for another minimum beat tone amplitude B1′.
In step 182, controller 43 reinitializes Γ3 to 0. In step 184, controller 43 increments retardance Γ2 by adjusting voltage V2. In step 186, controller 43 determines if retardance Γ2 exceeds its maximum value. If so, then step 186 is followed by step 188. If retardance Γ2 has not exceeded its maximum value, then step 186 is followed by step 176 and the above steps loop until both retardances Γ3 and Γ2 exceed their maximum values.
In step 188, controller 43 reinitializes Γ2 to 0. In step 190, controller 43 increments retardance Γ1 by adjusting voltage V1. In step 192, controller 43 determines if retardance Γ1 exceeds its maximum value. If so, then step 192 is followed by step 194. If retardance Γ1 has not exceeded its maximum value, then step 192 is followed by step 176 and the above steps loop until retardances Γ3, Γ2, and Γ1 exceed their maximum values. In step 194, controller 43 selects the values of retardances Γ3, Γ2, and Γ1 that produce a desired phase difference ΔΨ0, which corresponds to the desired output polarization states of component beams E1 and E2, as the initial solution for method 100.
In one embodiment, system 10A can use a method similar to method 100 (
When a PM fiber is used in the systems described above, component beams E1 and E2 typically undergo a small polarization change (e.g., less than 20% power change through the polarizer). Thus, there may not be a need for a PSM that can generate all the possible input polarization states in order to find and lock to the desired output polarization states. In fact, a proper design can reduce the range of polarization states that needs to be searched, thereby allowing the elimination of some variable retarders and possibly the quadrature detection. For example, only polarization states covering half of the Poincare sphere (a mathematical construction which describes all polarization states) may need to be searched.
A retarder 252 and a PSM 14B are used to produce a subset of the possible polarization states of component beams E1 and E2. Retarder 252 is a half-wave plate oriented at 22.5. PSM 14B includes (1) a variable retarder 254 oriented at 0 and having a variable retardance that ranges from 0 to λ/2, and (2) a variable retarder 256 oriented at 45 and having a variable retardance that ranges from 0 to λ/2. Retarder 252 and PSM 14B allow approximately half of the Poincare sphere to be searched so system 10B will lock onto only one of the two minimums of beat tone amplitude B1′, since the design excludes the other solution. Furthermore, retarder 252 and PSM 14B allow polarization states to be scanned continuously without any breaks within the region of interest (e.g., half the Poincare sphere) that would otherwise require one or more additional variable retarders to provide endless (i.e., reset-free) polarization control.
System 10B includes only one detector path, i.e., the first detector path 34 that generates beat signal B1. Controller 43 uses only beat signal B1 to lock onto the only minimum within the input polarization states that PSM 14B can produce. No global search for an initial solution is needed, as only one minimum is accessible within the input polarization states that retarder plate 252 and PSM 14B can produce. A search for the initial solution in half of the Poincare sphere is still required.
While the desired polarization states for a heterodyne interferometer typically correspond to a VLP beam E1 and a HLP beam E2, it is possible to design a system that locks component beams E1 and E2 to polarization states other than VLP and HLP while still obtaining VLP and HLP states before E1 and E2 enter the interferometer.
The various embodiments of the polarization control system described above have all been shown in a remote operation configuration, where the PSM is located upstream from the fiber and the measurement site.
Various other adaptations and combinations of features of the embodiments disclosed are within the scope of the invention. For example, the desired output polarization states do not need to be the same as the input polarization states emerging from the light source. One embodiment of system 10B in
Various alternative embodiments of the PSM can be used in the embodiments described above. One embodiment of the PSM includes two or more fiber squeezers whose birefringence properties are varied by the application of mechanical stresses. Mechanical stresses are applied to the fiber squeezers in response to the control signals from controller 43. Another embodiment of PSM includes two or more liquid crystal cells whose retardances and/or polarization axes are varied in response to the control signals from controller 43. Yet another embodiment of PSM includes two or more mechanically rotatable wave plates with fixed retardance. The wave plates are rotated in response to the control signals from controller 43. Yet another embodiment of the PSM includes two or more photoelastic modulators whose linear birefringences are induced by the application of mechanical stresses. Mechanical stresses are applied to these photoelastic modulators in response to the control signals from controller 43.
Various alternative embodiments of the beam source that provide the initial heterodyne light beam can also be employed.
An optical system 505 including one or more waveplates converts the two orthogonal polarizations from beam source 12A into two appropriate orthogonal polarization states. The orthogonal polarization states chosen depend on the exact configuration of the PSM, such as those shown in
Beam source 12A transmits the dual-frequency or heterodyne beam through PSM 14 and a polarization maintaining optical fiber 16 to beam splitter 24 and through beam splitter 24 to a path 26 to further interferometer optics. As described above, the PSM can either precede the fiber as shown in
Depending on the configuration of PSM 14, birefringence waveplates may be included after splitter 24 if necessary to convert the two orthogonal polarization components in beam 26 to vertical and horizontal linear polarization components. More generally, similar elements that provide fixed changes of the orthogonal polarizations can be provided in any of the disclosed embodiments of the invention, even where the discussion of such elements is not be repeated.
A permanent magnet 526 produces an axial magnetic field along the direction of a light beam 530 oscillating between output coupler mirror 528 and reflector 518. The axial magnetic field has two effects on laser gain medium 524. The applied magnetic field causes the Zeeman effect, which splits gain curve of medium 524 into two gain curves, one for left circularly-polarized light and the other for right circularly-polarized light. Additionally, the Faraday effect splits the real part of refractive index curve into two curves, one for left circularly-polarized light and the other for right circularly-polarized light. As a result, the output beam 530 transmitted through output coupler mirror 528 has a left circularly-polarized component with a wavelength that differs from the wavelength of the right circularly-polarized component of light beam 530. An optical element 534 such as a quarter-wave plate can transform the orthogonal circularly-polarized components of beam 530 into orthogonal linear components.
Zeeman-split laser 12B further uses an adjustable magneto-optical apparatus in and around tube 510 to increase the split frequency difference between the two polarizations. The magneto-optical apparatus includes an optically transparent medium 512 in the path of beam 530 in tube 510, a permanent magnet 514 that is outside of enclosure 510 and surrounding optically transparent medium 512, and an electromagnet 516 surrounding permanent magnet 514. Permanent magnet 514 and electromagnet 516 produce a magnetic field of adjustable magnitude along the direction of laser beam 530. Since the Faraday effect is many orders of magnitude stronger in optically transparent medium 512 than in laser gain medium 524, the magnitude of frequency split introduced by the optically transparent medium can be much larger than that of the laser gain medium. In addition to increasing the frequency split, the optically transparent medium also permits active stabilization of the frequency difference between the polarization components.
To stabilize the absolute frequencies and the difference frequency of the polarization components of beam 530, a beam splitter 532 reflects a portion of beam 530 to a detector 540. In the illustrated embodiment, detector 540 detects the frequency difference between the two orthogonal polarization components of beam 530 and detects at least one of the component frequencies. If a detected frequency differs from the desired frequency, a drive circuit 542 adjusts cavity length of tube 510 (e.g., by setting the power to a heating element 536 causing tube 510 to expand or contract) as required to adjust the output frequency. Detector 540 also generates an electrical signal having the difference or beat frequency for the polarization components of beam 530. Feedback control circuit 546 compares the signal from detector 540 to the frequency of an electronic oscillator 544 and actively adjusts the current through electromagnet 516 to set the magnetic field in medium 512 to a strength that provides the desired frequency difference.
Including a birefringent material in a laser cavity is another method for generating a heterodyne beam as described in U.S. Pat. No. 5,091,912, which is hereby incorporated by reference in its entirety.
As shown in
The frequency difference can be changed by angular adjustment of plate 564. Accordingly, a feedback control system similar to the one discussed in paragraph in regard to
Another technique for producing a heterodyne beam containing polarization components with different frequencies uses a pair of phase-locked lasers.
Accurate control of the frequency difference f2−f1 can be maintained using active feedback. In particular, beam source 12E includes a beam splitter 612 that reflects a portion of beam 610 through a polarizer 614 into a detector 616. With polarizer 614 having an axis that is at 45° with the polarizations of the frequency components of beam 610, detector 616 can generate an electrical signal having the beat frequency f2−f1 of the two frequency components. A phase-lock circuit 618 compares the frequency of the signal from detector 616 to an electronic reference frequency from an oscillator 620 and generates a control signal that sets the output frequency f2 of laser 604. For example, phase lock circuit 618 can control the power provided to a heating element or other device that controls the length of the resonant cavity in laser 604. In this manner, the frequency difference f2−f1 can be tightly controlled as required for precision interferometer measurements.
The output beam from beam source 12E or 12F can thus be used with a polarization control system including a PSM 14, an optical fiber 16, a beam monitor 70, and a controller 43 having the functions described above. Alternatively, the functions of beam monitor 70 and detector 616 can be integrated into a single system that measures the properties of the output beam and actively controls both PSM 14 and the coupled light sources to ensure that the heterodyne beam used for interferometer measurements has the desired frequencies and polarizations. U.S. Pat. No. 6,052,186 further describes beam sources including dual laser systems and is hereby incorporated by reference in its entirety.
Another way to generate a heterodyne beam for an interferometer is to use an electro-optic modulator on the output beam from a laser.
Acousto-optic modulators (AOMs) can also be used to create or increase the frequency difference between polarization components. U.S. Pat. No. 5,485,272, for example, describes several heterodyne beam sources employing AOMs and is hereby incorporated by reference in its entirety. An example of an AOM is an acousto-optic Bragg cell (e.g., a uniaxial birefringent crystal) with an attached electro-acoustic transducer. The electro-acoustic transducer converts the electrical signal into sound waves that the transducer launches through the birefringent crystal. In one embodiment, the birefringent crystal can be oriented such that sound waves propagate along the optic axis of the crystal. The sound waves formed in the material generate refractive index variations in the material, resulting in a three-dimensional diffraction grating known as a Bragg grating. This grating diffracts a beam traversing the modulator into a plurality of diffraction orders.
In order to concentrate as much radiation as possible in one diffracted order, Bragg's condition should be met for that particular order. For example, in the case of maximizing diffracted power into the first order, the condition sin θd=λfa/(2Va) should be met, where θd is the angle which the input beam makes with the Bragg grating lines, fa is the acoustic frequency, λ is the optical wavelength of the input beam, and Va is acoustic velocity. As a result of Bragg diffraction, the output optical wave from the birefringent crystal is subject not only to diffraction but also to a frequency shift. Only the undiffracted order propagates through the crystal with no change in propagation angle and optical frequency; all other diffracted orders undergo a change in propagation angle as well as a shift in optical frequency depending on several parameters such as the diffracted order, the propagation direction of the acoustic wave relative to that of the input beam, and the drive frequency. The text “Acousto-Optic Devices: Principles, Design, and Applications,” Jieping Xu & Robert Stroud, John Wiley & Sons Inc., 1992 further describes the operation of AOMs.
Since propagation direction of the diffracted beam is different from that of the input beam in general, alignment optics 643 and 653 are used to adjust the propagation angle of the separate polarization components output from respective AOMs 642 and 652 so that they travel the required paths for entering beam combiner 650. Beam combiner 650 recombines the polarization components into a collinear beam suitable for transmission on a single fiber 16 in a polarization monitoring system including PSM 14, beam monitor 70, and controller 43.
Polarization optics 662 can be included immediately after Zeeman-split laser 640 if necessary so that light incident on PBS 658 is linearly polarized at 45° to the polarization axis of PBS 658. As a result, the two polarization components exiting PBS 658 carry similar optical powers, which is generally preferred for heterodyne interferometer applications, and have polarization directions 643 and 653, respectively, as shown in FIG. 14B. Polarization optics 662 can also be chosen to produce an arbitrary polarization state other than linear polarization at 45° if different optical powers for the two beams are desired. The separated beam components from PBS 658 traverse respective AOMs 642 and 652 having respective optical axes 641 and 651. PBS 658 is designed such that the two output beams enter each of the AOM 642 and AOM 652 respectively at the Bragg angle of the desired diffracted order.
AOMs 642 and 652 cause frequency shifts in the respective traversing beams. The opposite drive directions to AOM 642 and 652 in
In another embodiment of beam source 12K, laser 640 can be a Zeeman-split laser. Polarization optics 641 immediately following laser transform left and right circular polarizations from the Zeeman-split laser 640 into two output beams with orthogonal linear polarizations having polarization direction aligned with the polarization axis of the polarizing beam splitter 658. As a result, PBS 658 splits the two beams, each with a different frequency, into two orthogonally-polarized beams, which propagate through the AOMs 664 and 666, respectively. In this embodiment, the two AOMs are used to increase the frequency split between the two orthogonal components, which have an initial non-zero frequency difference when emerging from Zeeman-split laser 640. Polarization beam splitter 660 then recombines the two beams to form a single output beam with two orthogonal linear polarizations and an increased frequency split.
Another optical system 676 converts the two frequency components having the same polarizations but different propagation directions into two parallel beams having orthogonal linear polarizations. In an exemplary embodiment, beams 684 and 682 after exiting Bragg cell 672 are incident on a birefringent prism 676 that is made of a crystal (e.g. quartz) with the optical axis parallel to the apex edge. An apex angle α of birefringent prism 676 satisfies Equation 1. In Equation 1, δ′ is the angle separation between beams 684 and 682, no and ne are the ordinary and extraordinary indices of refraction respectively, and θ is the exit angle of the output beam 678 relative to the normal from the output surface of prism 676. Birefringent prism 676 acts on intermediate beams 684 and 682 to split each into two orthogonally polarized beams, one parallel and one perpendicular to the plane of the figure, to produce two output beams 682A and 684A and two spurious beams 682B and 684B. Spurious beams 682B and 684B have directions of propagation different from the output beams 682A and 684A and can be eliminated by aperture 678, or by a conventional pinhole spatial filter arrangement. Light sources similar to beam source 12L are further described in U.S. Pat. No. 4,684,828, which is hereby incorporated by reference in its entirety.
δ′=sin−1[no sin {α−sin−1(sin θ/no)}]−sin−1[ne sin {α−sin−1(sin θ/ne)}] Equation 1:
In general, Equation 2 indicates the index of refraction for an extraordinarily polarized beam propagating at an angle θ with respect to an optic axis of a birefringent crystal. In Equation 2, no and ne are the ordinary and extraordinary principal indices of refraction of the birefringent crystal. The different indices of refraction for beam components 682X and 684X can be determined from Equation 2. The index of refraction for ordinarily polarized beam components 682Y and 684Y is no. According to these indices of refraction, the optic axis 687 orientation and the thickness of retardation plate 686 are chosen such that retardation plate 686 introduces a phase shift of pπ radians in beam 682X relative to beam 682Y and a phase shift of (p+1) π radians in beam 684X relative to beam 684Y, p being an integer. Typically the angle β is set at a value substantially equal to 45°.
1/n2=cos2θ/no2+sin2θ/ne2 Equation 2:
Beams 682X, 682Y, 684X, and 684Y exit phase retardation plate 686 as beams 682A, 682B, 684A, and 684B, respectively. As a consequence of the phase shifts introduced in beams 682X, 682Y, 684X, and 684Y, the polarization of portions of beams 682A and 682B that overlap one another is substantially at 45° to the plane of FIG. 16A and is substantially orthogonal to the polarization of portions of beams 684A and 684B that overlap one another, which is substantially 135° to the plane of FIG. 16A. The directions of propagation of beams 682A and 682B are parallel, and the directions of propagation of beams 684A and 684B are parallel because the entrance and exit faces of retardation plate 686 are substantially parallel.
There is a small lateral displacement Sb between beams 682A and 682B and between beams 684A and 684B in
Referring again to
Upon entering birefringent prism 688, each of beams 682A, 682B, 684A, and 684B separate into ordinarily-polarized beams (polarized at about 135°) and extraordinarily-polarized beams (polarized at about 45°). Because beams 682A and 682B substantially overlap one another and because retardation plate 686 introduces a phase difference between these two beams, the ordinarily polarized beams from beams 682A and 682B destructively interfere with one another, substantially canceling out each other. Thus, the ordinarily polarized beams from 682A and 682B are not shown in FIG. 16A. Conversely, the extraordinarily polarized beams from beams 682A and 682B constructively interfere with one another and emerge from prism 688 as beams 682C and 682D, respectively, which substantially overlap and have polarizations of 45°. Similarly, the extraordinarily polarized beams from beams 684A and 684B destructively interfere with one another, substantially canceling out each other. Thus, the extraordinarily polarized beams from beams 684A and 684B are not shown in FIG. 16A. The ordinarily polarized beams from beams 684A and 684B constructively interfere with one another and emerge from prism 688 as beams 684C and 684D, respectively, which substantially overlap and have polarizations of −45°.
The apex angle α2 of birefringent prism 688 is selected so that beams 682C and 682D exit birefringent prism 688 parallel to beams 684C and 684D. This is possible because beams 682C and 682D emerge from beams propagating as extraordinarily polarized beams in prism 688 and beams 684C and 684D emerge from beams propagating as ordinarily polarized beams in prism 688. As a result, if beams 682 and 684 have substantially equal intensities, the system produces a pair of substantially equal-intensity output beams, beam 692 (formed from the superposition of beams 682C and 682D) and beam 694 (formed from the superposition of beams 684C and 684D that propagate parallel to one another and have orthogonal polarizations (45° and −45°, respectively). There is a small non-zero lateral displacement between beams 682D and 684D, Sa. Typically, this displacement is less than about 100 microns. Beams 682C and 682D have the same frequency profile as the first input beam component 682 and beams 684C and 684D have the same frequency profile as the second input beam component 684, which is different from that of beams 682C and 682D if, for example, beams 682 and 684 emerge from an acousto-optic modulator within light source 680.
In some cases, such as when the lateral displacement Sb is not negligible, the destructive interference between portions of beams 682A and 682B that propagate as ordinarily polarized beams within prism 688 is not complete. Similarly, the destructive interference between portions of beams 684A and 684B that propagate as extraordinarily polarized beams within prism 688 can also be incomplete. However, even in these cases, birefringent prism 688 ensures that beam 692 (which emerges from extraordinarily-polarized beams) has a polarization orthogonal to the polarization of beam 694 (which emerges from ordinarily-polarized beams). Portions of beams 682A and 682B that propagate as ordinarily polarized beams within prism 686 and do not completely cancel out because of destructive interference emerge as spurious beams, which diverge away from beams 692 and 694. Similarly, portions of beams 684A and 684B that propagate as extraordinarily polarized beams within prism 688 and do not completely cancel out because of destructive interference emerge as spurious beams, which also diverge away from beams 692 and 694. Because of the divergence, a spatial filter can be used to separate the spurious beams from output beams 692 and 694
Many variations of the apparatus shown in
In another embodiment for
Beams 760a and 760b then propagate though an acousto-optic Bragg cell 756, which diffracts half of beams 760a and 760b into frequency-shifted beams 760a2 and 760b2. The undiffracted halves of beams 760a and 760b emerge from Bragg cell 756 as beams 760a1 and 760b1. Beams 706a1, 760a2, 760b1, and 760b2 enter a retardation plate 758. The thickness of phase retardation plate 758 is chosen to exactly compensate for the lateral displacement introduced by phase retardation plate 754. Thus, beams 760a1 and 760b1 completely overlap each other, forming a beam 760-1, and beams 760a2 and 762b2 completely overlap each other forming a beam 760-2 that differs in frequency and polarization from beam 760-1.
A similar method to compensate lateral displacement is shown in
U.S. Pat. No. 6,452,682, which is hereby incorporated by reference in its entirety, further describes light sources using similar techniques for generation of suitable heterodyne beams.
Another type of beam source including an AOM uses both diffracted and non-diffracted beams.
Beams 708 and 710 exit acousto-optic Bragg cell 704 through a crystal face on which the piezoelectric transducer is fixed. Under this exit condition, output beams 708 and 710 are substantially parallel and spatially displaced, typically by only a small fraction of the beam diameter. Preferably, the electrical output of the power amplifier is adjusted so that exit beams 708 and 710 each have approximately the same intensity, which is approximately one-half that of input beam. Consequently, the output beam includes the two components 708 and 710, which are collinear, are orthogonally polarized, and differ in frequency.
sin θi=λo/(2niv){fo+v2(ni2−nd2)/(foλo2)} Equation 3:
sin θd=λo/(2ndv){fo−v2(ni2−nd2)/(foλo2)} Equation 4:
Equation 2 above defines the index of refraction n for the extraordinarily polarized beam. The extraordinarily-polarized beam propagates at a small angle relative to the ordinarily-polarized beam, has a polarization orthogonal to that of the ordinarily-polarized beam, and has a frequency shifted by the diffraction from acoustic wave 716. A crystal face 714B reflects the two orthogonally-polarized beams. The respective angles of incidence and reflection or refraction for the beams at crystal faces 714A and 714B can be chosen such that beams exiting acousto-optic Bragg cell 714 are parallel and spatially displaced by only a small fraction of the beam diameter. For purposes of illustration,
An electrical oscillator 841 preferably provides a frequency stabilized electrical signal 842 of frequency fo to a conventional power amplifier 843. An electrical output signal 844 of power amplifier 843 preferably drives a conventional piezoelectric transducer 846 affixed to a crystal 847, which is used to generate an acoustic beam, preferably of the shear wave type. Conventional techniques known to those skilled in the art of acousto-optical modulation are used to absorb in a preferred distribution the acoustic beam that passes through to the walls of acousto-optical crystal 847 for the purpose of substantially reducing temperature gradients in acousto-optical crystal 847. In particular, an absorber 848 can absorb the acoustic beam at the walls of acousto-optical crystal 847. The distribution of absorber 848 on the surface or surfaces of acousto-optical crystal 847 can be designed to permit absorber 848 to make the distribution of energy dissipation of the acoustic beam at the walls of acousto-optical crystal 847 correspond to a preferred distribution of absorption of the acoustic beam.
The presently preferred acousto-optical crystal 847 is made of a uniaxial crystal having an optical axis 850 that is in the plane of FIG. 17D and makes an angle φ with the direction of propagation of the acoustic wave 852 generated by piezoelectric transducer 846.
Input beam 818 preferably enters acousto-optical crystal 847 at a surface 854 with an angle of incidence φ1 (as shown in FIG. 17E), becoming an ordinarily polarized beam 820. Beam 820 reflects from a surface 855 becoming an ordinarily polarized beam 822. Beam 822 reflects from a surface 856 becoming ordinarily polarized incident beam 824A. Small angle Bragg diffraction resulting from the photoelastic interaction of incident beam 824A with the acoustic wave 852 generates an extraordinarily polarized beam, diffracted beam 824B when Equations 3 and 4 above are satisfied. Again, the definitions of angles are illustrated in
Diffracted beam 824B propagates at a small angle to that of the non-diffracted incident beam 824A, the polarization of diffracted beam 824B being orthogonal to that of incident beam 824A. In addition, the frequency of beam 824B is fL−f0, while the frequency of beam 824A is fL. Beams 824A and 824B reflect from a crystal face 857 becoming beams 826A and 826B, respectively. Beams 826A and 826B reflect from crystal face 858 as beams 828A and 828B, respectively, and beams 828A and 828B exit acousto-optical crystal 847 at crystal face 859 as beams 830A and 830B, respectively.
Input beam 819 preferably enters acousto-optical crystal 847 at surface 854 with an angle of incidence φ1, becoming an extraordinarily polarized beam 821. Beam 821 reflects from surface 855 becoming an extraordinarily polarized beam 823. Beam 823 reflects from surface 856 becoming extraordinarily polarized incident beam 825A. Due to the photoelastic interaction of incident beam 825A with acoustic wave 852, an ordinarily polarized, diffracted beam 825B is generated by small angle Bragg diffraction when the relationships given by Equations 3 and 4 are satisfied.
Diffracted beam 825B propagates at a small angle to that of non-diffracted incident beam 825A, the polarization of diffracted beam 825B being orthogonal to that of incident beam 825A. In addition, the frequency of beam 825B is fL+f0, while the frequency of beam 825A is fL. Beams 825A and 825B reflect from crystal face 857 as beams 827A and 827B, respectively. Beams 827A and 827B reflect from crystal face 858 as beams 829A and 829B, respectively, and beams 829A and 829B exit acousto-optical crystal 847 at face 859 as beams 831A and 831B, respectively.
The respective angles of incidence and refraction for beams 818, 819, 820, and 821 at surface 854, the respective angles of incidence and reflection for beams 820, 821, 822, and 823 at surface 855, and the respective angles of incidence and reflection for beams 822, 823, 824A, and 825A at surface 856 are chosen such that the angle of deviation between beams 824B and 825B is ε−δ where ε is a small angle, preferably 0≦ε≦δ, the angle of deviation between beams 824A and 824B is δ, the angle of deviation between beams 825A and 825B is −δ, and the angle of deviation between beams 824A and 825A is δ+ε, where δ is specified by Equation 5. In Equation 5, Λ is the wavelength of the acoustic beam in acousto-optical crystal 847.
sin δ=λo/(niΛ)cos θd=λo/(ndΛ)cos θi Equation 5:
The above condition with respect to relative directions of propagation of beams 824A, 824B, 825A, and 825B can be obtained by choosing the apex angles α1 and α2 illustrated in
δ+ε={α2−α1+sin−1(sin φ1/no)}−sin−1{(n3e/n′3e)sin {α2−sin−1[(n2e/n′2e)sin [α1−sin−1{sin φ1/n′1e}]]}} Equation 6:
The respective angles of incidence and reflection for beams 824A, 824B, 825A, 825B, 826A, 826B, 827A, and 827B at surface 857, the respective angles of incidence and reflection for beams 826A, 826B, 827A, 827B, 828A, 828B, 829A, and 829B at surface 858, and the respective angles of incidence and refraction for beams 828A, 828B, 829A, 829B, 830A, 830B, 831A, and 831B at surface 859 are chosen such that beams 830B and 831B preferably are parallel. Beams 830B and 831B preferably are spatially displaced by a minute amount, i.e., a small fraction of the beam diameters, therein being substantially coextensive. The conditions with respect to the relative directions of propagation of beams 831B and 830B are obtained by choosing the apex angles satisfying Equation 7. In Equation 7, α3 and α4 are angles shown in
δ−ε={α4−α3+sin−1(sin φ2/no)}−sin−1{(n6e/n′6e)sin {α4−sin−1[(n5e/n′5e)sin [α3−sin−1{sin φ2/n′4e}]]}} Equation 7:
When it is desired to have the beams 830B and 831B be not parallel, i.e., φ2 for beam 830B not the same as φ2 for beam 831B, then the values of the parameters of Equations 5 and 6 may be chosen so that beams 830B and 831B have a predetermined angle of divergence or convergence between them. In addition, when it is desired to have beams 818 and 819 be not parallel, i.e., φ1 for beam 818 not the same as φ2 for beam 819, then the values of parameters of Equations 5 and 6 may also be chosen so that beams 818 and 819 have a predetermined angle of divergence or convergence between them.
Preferably, the electrical output 844 of power amplifier 843 is adjusted so that intensity of principal output beam 830B relative to the intensity of the input beam 818 is some selected nominal value between 0% and 100%, preferably 100%. The ratio of the intensity of principal output beam 831B to the intensity of beam 819 is substantially the same as the ratio of the intensity of beam 830B to the intensity of beam 818. Further, beams 830B and 831B are orthogonally polarized and substantially coextensive. The frequencies of principal output beams 831B and 830B differ by 2f0 and differ from the frequency of beam 1016 by ±f0, respectively.
Spurious secondary output beams 830A and 831A are orthogonally polarized beams with frequencies the same as the frequency of beam 816. The directions of propagation of secondary output beams 830A and 831A deviate from the direction of propagation of principal output beams 830B and 831B by approximately −noε and noε, respectively. The intensities of the secondary output beams 830A and 831A preferably have nominal values of 0% of the intensities of principal output beams 830B and 831B, respectively, as a consequence of the adjustment of electrical output 844 of the power amplifier 843 so that intensity of either principal output beam 830B relative to the intensity of input beam 818 or principal output beam 831B relative to the intensity of the input beam 819 preferably is the nominal value of 100%.
An important feature of the embodiment shown in
Alternative embodiments to the system shown in
Referring to
A source of a first subset of the secondary output beams is the elliptically polarized eigenmodes for the propagation of light beams in acousto-optical modulator cell 734 comprising an optically active anisotropic crystal. The elliptical polarization of the eigenmodes of acousto-optical modulator cell 734 and the boundary conditions that must be satisfied by electric and magnetic fields of light beams being reflected and refracted at interfaces of optically active anisotropic crystals generate the first subset of the secondary output beams. These secondary output beams generally have reduced intensities in the apparatus. The first subset of the secondary beams have directions of propagation different from the directions of propagation of output beams 760 and 762 principally because of properties of birefringent truncated prisms 740 and 742.
Input beam 731 enters acousto-optical modulator cell 734 and, through an acousto-optical interaction with a first acoustic beam in the first interaction region 734A, is converted to an intermediate beam. The intensity of the intermediate beam is preferably substantially the same as the intensity of input beam 731. The intermediate beam subsequently passes through a second acoustic beam in the second interaction region 734B. By way of an acousto-optical interaction of the intermediate beam with the second acoustic beam, a portion of the intermediate beam is converted into a beam exiting acousto-optical apparatus as one of the output beams 760 and 762 with the remaining non-converted portion of the intermediate beam exiting acousto-optical apparatus as the other of the output beams 760 and 762.
Incomplete conversion of input beam 732 into the intermediate beam generates a second subset of the secondary output beams. The second subset of the secondary beams have reduced intensities in the apparatus and have directions of propagation different from the directions of propagation of output beams 760 and 762.
The net relative lateral displacements for beams 760 and 762 one with respect to the other, the displacements due to different directions of wave front vectors of internal optical beams in acousto-optical apparatus shown in FIG. 18 and to deviations of energy flux vectors from corresponding wave front vectors for optical beams propagating in a birefringent medium, are compensated for to a high level because of the design of compensating truncated prisms 740 and 742 shown in FIG. 18. The optic axes for prisms 740 and 742 are orthogonal to the plane of FIG. 18. The prisms 740 and 742 may be affixed to the acousto-optic crystal as shown, or may be used as separate, individual components.
Although the invention has been described with reference to particular embodiments, the description is only an example of the invention's application and should not be taken as a limitation. Various adaptations and combinations of features of the embodiments disclosed are within the scope of the invention as defined by the following claims.
This patent document is a continuation-in-part and claims benefit of the earlier filing date of U.S. patent application Ser. No. 10/439,970, filed May 15, 2003, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4684828 | Sommargren | Aug 1987 | A |
4687958 | Sommargren | Aug 1987 | A |
4817206 | Calvani et al. | Mar 1989 | A |
4960319 | Dankowych | Oct 1990 | A |
5091912 | Bretenaker et al. | Feb 1992 | A |
5412474 | Reasenberg et al. | May 1995 | A |
5416628 | Betti et al. | May 1995 | A |
5485272 | Dirksen et al. | Jan 1996 | A |
5586133 | Sommargren | Dec 1996 | A |
5862164 | Hill | Jan 1999 | A |
5970077 | Hill | Oct 1999 | A |
6052186 | Tsai | Apr 2000 | A |
6157660 | Hill | Dec 2000 | A |
6452682 | Hill et al. | Sep 2002 | B2 |
Number | Date | Country | |
---|---|---|---|
20040227943 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10439970 | May 2003 | US |
Child | 10728559 | US |