This disclosure relates generally to capacitor devices and more particularly to high capacitance density metal-insulator-metal capacitor devices.
Electromechanical systems (EMS) include devices having electrical and mechanical elements, actuators, transducers, sensors, optical components (including mirrors) and electronics. Electromechanical systems can be manufactured at a variety of scales including, but not limited to, microscales and nanoscales. For example, microelectromechanical systems (MEMS) devices can include structures having sizes ranging from about a micron to hundreds of microns or more. Nanoelectromechanical systems (NEMS) devices can include structures having sizes smaller than a micron including, for example, sizes smaller than several hundred nanometers. Electromechanical elements may be created using deposition, etching, lithography, and/or other micromachining processes that etch away parts of substrates and/or deposited material layers, or that add layers to form electrical and electromechanical devices.
One type of EMS device is called an interferometric modulator (IMOD). As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In some implementations, an interferometric modulator may include a pair of conductive plates, one or both of which may be transparent and/or reflective, wholly or in part, and capable of relative motion upon application of an appropriate electrical signal. In an implementation, one plate may include a stationary layer deposited on a substrate and the other plate may include a reflective membrane separated from the stationary layer by an air gap. The position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator. Interferometric modulator devices have a wide range of applications, and are anticipated to be used in improving existing products and creating new products, especially those with display capabilities.
Capacitor devices or capacitors may be used in implementations of EMS devices and/or associated with systems in which EMS devices are implemented. One type of capacitor device, for example, is a metal-insulator-metal (MIM) capacitor. With smaller capacitors, an increase in the capacitance density compared to larger capacitors may be used to supply the same capacitance as a larger capacitor.
The systems, methods and devices of the disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.
One innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus including a first base metal layer on a first side of a substrate. A first polymer layer may be disposed on the first base metal layer and on the first side of the substrate. The first polymer layer may define a first plurality of vias though the first polymer layer, the vias exposing portions of the first base metal layer. A first electrode layer may be disposed on the first polymer layer. The first electrode layer may contact the portions of the first base metal layer. A first dielectric layer may be disposed on the first electrode layer. A second electrode layer may be disposed on the first dielectric layer. The first dielectric layer may electrically isolate the first electrode layer from the second electrode layer.
In some implementations, a first via of the first plurality of vias in the first polymer layer may have an aspect ratio of at least about 10 to 1. In some implementations, the apparatus may further include a second base metal layer on a second side of the substrate. A second polymer layer may be disposed on the second base metal layer and on the second side of the substrate. The second polymer layer may define a second plurality of vias though the second polymer layer, the vias exposing portions of the second base metal layer. A third electrode layer may be disposed on the second polymer layer. The third electrode layer may contact the portions of the second base metal layer. A second dielectric layer may be disposed on the third electrode layer. A fourth electrode layer may be disposed on the second dielectric layer. The second dielectric layer may electrically isolate the third electrode layer from the fourth electrode layer. A first connection may electrically connect the first and the third electrode layers. A second connection may electrically connect the second and the fourth electrode layers.
Another innovative aspect of the subject matter described in this disclosure can be implemented an apparatus including a base metal layer on a substrate. A polymer layer may be disposed on the base metal layer and on the substrate. A first electrode layer may be disposed on the polymer layer. The apparatus further includes a second electrode layer, a means for exposing portions of the base metal layer, and a means for electrically isolating the first electrode layer from the second electrode layer. The first electrode layer may contact the portions of the base metal layer.
In some implementations, the means for exposing portions of the base metal layer may increase a surface area between the first electrode layer and the second electrode layer. In some implementations, the base metal layer may reduce the equivalent series resistance of the apparatus.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a method including depositing a base metal layer on a surface of a substrate. A polymer layer may be formed on the base metal layer and on the surface of the substrate. A process may be used to pattern a design in the polymer layer. A first electrode layer may be deposited on the polymer layer and on exposed portions of the base metal layer. A dielectric layer may be deposited on the first electrode layer. A second electrode layer may be deposited on the dielectric layer.
In some implementations, the process used to pattern the design in the polymer layer may be a nanoimprinting process. The nanoimprinting process may include heating the polymer layer, pressing a mold into the polymer layer, cooling the polymer layer, and removing the mold from the polymer layer. Alternatively, the nanoimprinting process may include heating the polymer layer, pressing a mold into the polymer layer, treating the polymer layer with an ultraviolet light, and removing the mold from the polymer layer.
Details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Although the examples provided in this disclosure are primarily described in terms of electromechanical systems (EMS) and microelectromechanical systems (MEMS)-based displays, the concepts provided herein may apply to other types of displays, such as liquid crystal displays, organic light-emitting diode (“OLED”) displays and field emission displays. Other features, aspects, and advantages will become apparent from the description, the drawings and the claims. Note that the relative dimensions of the following figures may not be drawn to scale.
Like reference numbers and designations in the various drawings indicate like elements.
The following description is directed to certain implementations for the purposes of describing the innovative aspects of this disclosure. However, a person having ordinary skill in the art will readily recognize that the teachings herein can be applied in a multitude of different ways. The described implementations may be implemented in any device or system that can be configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual, graphical or pictorial. More particularly, it is contemplated that the described implementations may be included in or associated with a variety of electronic devices such as, but not limited to: mobile telephones, multimedia Internet enabled cellular telephones, mobile television receivers, wireless devices, smartphones, Bluetooth® devices, personal data assistants (PDAs), wireless electronic mail receivers, hand-held or portable computers, netbooks, notebooks, smartbooks, tablets, printers, copiers, scanners, facsimile devices, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, electronic reading devices (i.e., e-readers), computer monitors, auto displays (including odometer and speedometer displays, etc.), cockpit controls and/or displays, camera view displays (such as the display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, microwaves, refrigerators, stereo systems, cassette recorders or players, DVD players, CD players, VCRs, radios, portable memory chips, washers, dryers, washer/dryers, parking meters, packaging (such as in electromechanical systems (EMS), microelectromechanical systems (MEMS) and non-MEMS applications), aesthetic structures (e.g., display of images on a piece of jewelry) and a variety of EMS devices. The teachings herein also can be used in non-display applications such as, but not limited to, electronic switching devices, radio frequency filters, sensors, accelerometers, gyroscopes, motion-sensing devices, magnetometers, inertial components for consumer electronics, parts of consumer electronics products, varactors, liquid crystal devices, electrophoretic devices, drive schemes, manufacturing processes and electronic test equipment. Thus, the teachings are not intended to be limited to the implementations depicted solely in the Figures, but instead have wide applicability as will be readily apparent to one having ordinary skill in the art.
Some implementations described herein relate to high capacitance density metal-insulator-metal (MIM) capacitors. For example, a MIM capacitor may include two metal layers separated by a dielectric layer. A base metal layer in electrical contact with one of the two metal layers may serve to decrease the equivalent series resistance (ESR) of the MIM capacitor.
For example, in some implementations described herein, a MIM capacitor may include a first base metal layer on a first side of a substrate. A first polymer layer may be disposed on the first base metal layer and on the first side of the substrate. The first polymer layer may define a first plurality of vias though the first polymer layer, the first plurality of vias exposing portions of the first base metal layer. A first electrode layer may be disposed on the first polymer layer. The first electrode layer may contact the portions of the first base metal layer. A first dielectric layer may be disposed on the first electrode layer. A second electrode layer may be disposed on the first dielectric layer. The first dielectric layer may electrically isolate the first electrode layer from the second electrode layer.
Particular implementations of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages. In some implementations, a base metal layer may decrease the ESR of a MIM capacitor. In some implementations, a polymer layer including vias may increase the surface areas of the electrodes, thus increasing the capacitance density of a MIM capacitor. In some implementations, these features may be combined, yielding a MIM capacitor having a high capacitance density with a low ESR. In some implementations, a substrate on which a MIM capacitor is disposed may function as an interposer. With the MIM capacitor disposed on the substrate functioning as an interposer, the distance of the MIM capacitor from electronic components (e.g., an integrated circuit and a printed circuit board) that the interposer is interconnecting may be reduced, which may reduce the signal to noise ratio.
An example of a suitable EMS or MEMS device, to which the described implementations may apply, is a reflective display device. Reflective display devices can incorporate interferometric modulators (IMODs) to selectively absorb and/or reflect light incident thereon using principles of optical interference. IMODs can include an absorber, a reflector that is movable with respect to the absorber, and an optical resonant cavity defined between the absorber and the reflector. The reflector can be moved to two or more different positions, which can change the size of the optical resonant cavity and thereby affect the reflectance of the interferometric modulator. The reflectance spectrums of IMODs can create fairly broad spectral bands which can be shifted across the visible wavelengths to generate different colors. The position of the spectral band can be adjusted by changing the thickness of the optical resonant cavity, i.e., by changing the position of the reflector.
The IMOD display device can include a row/column array of IMODs. Each IMOD can include a pair of reflective layers, i.e., a movable reflective layer and a fixed partially reflective layer, positioned at a variable and controllable distance from each other to form an air gap (also referred to as an optical gap or cavity). The movable reflective layer may be moved between at least two positions. In a first position, i.e., a relaxed position, the movable reflective layer can be positioned at a relatively large distance from the fixed partially reflective layer. In a second position, i.e., an actuated position, the movable reflective layer can be positioned more closely to the partially reflective layer. Incident light that reflects from the two layers can interfere constructively or destructively depending on the position of the movable reflective layer, producing either an overall reflective or non-reflective state for each pixel. In some implementations, the IMOD may be in a reflective state when unactuated, reflecting light within the visible spectrum, and may be in a dark state when unactuated, reflecting light outside of the visible range (e.g., infrared light). In some other implementations, however, an IMOD may be in a dark state when unactuated, and in a reflective state when actuated. In some implementations, the introduction of an applied voltage can drive the pixels to change states. In some other implementations, an applied charge can drive the pixels to change states.
The depicted portion of the pixel array in
In
The optical stack 16 can include a single layer or several layers. The layer(s) can include one or more of an electrode layer, a partially reflective and partially transmissive layer and a transparent dielectric layer. In some implementations, the optical stack 16 is electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20. The electrode layer can be formed from a variety of materials, such as various metals, for example indium tin oxide (ITO). The partially reflective layer can be formed from a variety of materials that are partially reflective, such as various metals, e.g., chromium (Cr), semiconductors, and dielectrics. The partially reflective layer can be formed of one or more layers of materials, and each of the layers can be formed of a single material or a combination of materials. In some implementations, the optical stack 16 can include a single semi-transparent thickness of metal or semiconductor which serves as both an optical absorber and conductor, while different, more conductive layers or portions (e.g., of the optical stack 16 or of other structures of the IMOD) can serve to bus signals between IMOD pixels. The optical stack 16 also can include one or more insulating or dielectric layers covering one or more conductive layers or a conductive/absorptive layer.
In some implementations, the layer(s) of the optical stack 16 can be patterned into parallel strips, and may form row electrodes in a display device as described further below. As will be understood by one having ordinary skill in the art, the term “patterned” is used herein to refer to masking as well as etching processes. In some implementations, a highly conductive and reflective material, such as aluminum (Al), may be used for the movable reflective layer 14, and these strips may form column electrodes in a display device. The movable reflective layer 14 may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of the optical stack 16) to form columns deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, a defined gap 19, or optical cavity, can be formed between the movable reflective layer 14 and the optical stack 16. In some implementations, the spacing between posts 18 may be approximately 1-1000 um, while the gap 19 may be less than 10,000 Angstroms (Å).
In some implementations, each pixel of the IMOD, whether in the actuated or relaxed state, is essentially a capacitor formed by the fixed and moving reflective layers. When no voltage is applied, the movable reflective layer 14 remains in a mechanically relaxed state, as illustrated by the IMOD 12 on the left in
The processor 21 can be configured to communicate with an array driver 22. The array driver 22 can include a row driver circuit 24 and a column driver circuit 26 that provide signals to, e.g., a display array or panel 30. The cross section of the IMOD display device illustrated in
In some implementations, a frame of an image may be created by applying data signals in the form of “segment” voltages along the set of column electrodes, in accordance with the desired change (if any) to the state of the pixels in a given row. Each row of the array can be addressed in turn, such that the frame is written one row at a time. To write the desired data to the pixels in a first row, segment voltages corresponding to the desired state of the pixels in the first row can be applied on the column electrodes, and a first row pulse in the form of a specific “common” voltage or signal can be applied to the first row electrode. The set of segment voltages can then be changed to correspond to the desired change (if any) to the state of the pixels in the second row, and a second common voltage can be applied to the second row electrode. In some implementations, the pixels in the first row are unaffected by the change in the segment voltages applied along the column electrodes, and remain in the state they were set to during the first common voltage row pulse. This process may be repeated for the entire series of rows, or alternatively, columns, in a sequential fashion to produce the image frame. The frames can be refreshed and/or updated with new image data by continually repeating this process at some desired number of frames per second.
The combination of segment and common signals applied across each pixel (that is, the potential difference across each pixel) determines the resulting state of each pixel.
As illustrated in
When a hold voltage is applied on a common line, such as a high hold voltage VCHOLD
When an addressing, or actuation, voltage is applied on a common line, such as a high addressing voltage VCADD
In some implementations, hold voltages, address voltages, and segment voltages may be used which always produce the same polarity potential difference across the modulators. In some other implementations, signals can be used which alternate the polarity of the potential difference of the modulators. Alternation of the polarity across the modulators (that is, alternation of the polarity of write procedures) may reduce or inhibit charge accumulation which could occur after repeated write operations of a single polarity.
During the first line time 60a, a release voltage 70 is applied on common line 1; the voltage applied on common line 2 begins at a high hold voltage 72 and moves to a release voltage 70; and a low hold voltage 76 is applied along common line 3. Thus, the modulators (common 1, segment 1), (1,2) and (1,3) along common line 1 remain in a relaxed, or unactuated, state for the duration of the first line time 60a, the modulators (2,1), (2,2) and (2,3) along common line 2 will move to a relaxed state, and the modulators (3,1), (3,2) and (3,3) along common line 3 will remain in their previous state. With reference to
During the second line time 60b, the voltage on common line 1 moves to a high hold voltage 72, and all modulators along common line 1 remain in a relaxed state regardless of the segment voltage applied because no addressing, or actuation, voltage was applied on the common line 1. The modulators along common line 2 remain in a relaxed state due to the application of the release voltage 70, and the modulators (3,1), (3,2) and (3,3) along common line 3 will relax when the voltage along common line 3 moves to a release voltage 70.
During the third line time 60c, common line 1 is addressed by applying a high address voltage 74 on common line 1. Because a low segment voltage 64 is applied along segment lines 1 and 2 during the application of this address voltage, the pixel voltage across modulators (1,1) and (1,2) is greater than the high end of the positive stability window (i.e., the voltage differential exceeded a predefined threshold) of the modulators, and the modulators (1,1) and (1,2) are actuated. Conversely, because a high segment voltage 62 is applied along segment line 3, the pixel voltage across modulator (1,3) is less than that of modulators (1,1) and (1,2), and remains within the positive stability window of the modulator; modulator (1,3) thus remains relaxed. Also during line time 60c, the voltage along common line 2 decreases to a low hold voltage 76, and the voltage along common line 3 remains at a release voltage 70, leaving the modulators along common lines 2 and 3 in a relaxed position.
During the fourth line time 60d, the voltage on common line 1 returns to a high hold voltage 72, leaving the modulators along common line 1 in their respective addressed states. The voltage on common line 2 is decreased to a low address voltage 78. Because a high segment voltage 62 is applied along segment line 2, the pixel voltage across modulator (2,2) is below the lower end of the negative stability window of the modulator, causing the modulator (2,2) to actuate. Conversely, because a low segment voltage 64 is applied along segment lines 1 and 3, the modulators (2,1) and (2,3) remain in a relaxed position. The voltage on common line 3 increases to a high hold voltage 72, leaving the modulators along common line 3 in a relaxed state.
Finally, during the fifth line time 60e, the voltage on common line 1 remains at high hold voltage 72, and the voltage on common line 2 remains at a low hold voltage 76, leaving the modulators along common lines 1 and 2 in their respective addressed states. The voltage on common line 3 increases to a high address voltage 74 to address the modulators along common line 3. As a low segment voltage 64 is applied on segment lines 2 and 3, the modulators (3,2) and (3,3) actuate, while the high segment voltage 62 applied along segment line 1 causes modulator (3,1) to remain in a relaxed position. Thus, at the end of the fifth line time 60e, the 3×3 pixel array is in the state shown in
In the timing diagram of
The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example,
As illustrated in
In implementations such as those shown in
The process 80 continues at block 84 with the formation of a sacrificial layer 25 over the optical stack 16. The sacrificial layer 25 is later removed (e.g., at block 90) to form the cavity 19 and thus the sacrificial layer 25 is not shown in the resulting interferometric modulators 12 illustrated in
The process 80 continues at block 86 with the formation of a support structure e.g., a post 18 as illustrated in
The process 80 continues at block 88 with the formation of a movable reflective layer or membrane such as the movable reflective layer 14 illustrated in
The process 80 continues at block 90 with the formation of a cavity, e.g., cavity 19 as illustrated in
Electronic devices may incorporate IMODS as part of a display of the electronic device. Such electronic devices also may include other various electronic components, including capacitor devices or capacitors. One type of capacitor is a metal-insulator-metal (MIM) capacitor. Mobile telephones, for example, may incorporate MIM capacitors that are used during the operation of the mobile telephone. With the reduction in the size of some personal electronic devices, including mobile telephones, there also may be a corresponding reduction in the size of the electronic components, including MIM capacitors, which are part of the personal electronic devices. When the capacitance density is increased, a smaller capacitor may be used to supply substantially the same capacitance as a larger capacitor.
However, some capacitors are not ideal electronic components because they may exhibit other electronic properties in addition to capacitance. For example, a capacitor can be modeled as an ideal capacitor in series with a resistor. The resistance of such a resistor is defined as the equivalent series resistance (ESR) of the capacitor. To make a capacitor behave more like an ideal capacitor, it is desirable to keep its ESR as low as possible. When fabricating a MIM capacitor on an insulating substrate, it may be difficult to achieve a high capacitance density while maintaining a low ESR for the capacitor.
For example, a MIM capacitor having a high capacitance density can be formed by creating a capacitor having a number of nanometer-sized features (e.g., submicron-sized features) or larger features (e.g., features having a size of greater than about 1 micron). This may increase the available surface area of electrodes of the capacitor and thus increase the capacitance density. A MIM capacitor having a low ESR, however, may have thick electrode layers that may aid in reducing the ESR. It may be difficult to incorporate thick electrode layers in nanometer-sized or micron-sized features, however.
As described herein, a MIM capacitor may be fabricated that has a high capacitance density combined with a low ESR. For example, a MIM capacitor having a capacitance density of greater than about 200 nanofarads per millimeter squared (nF/mm2), an ESR of less than about 50 milliohms (mΩ), and a breakdown voltage of greater than about 12 volts may be fabricated. A low ESR is important in the performance of RF devices, as the electronic noise in circuit increases exponentially with increases in ESR.
To aid in the understanding of implementations of MIM capacitors as described herein, a manufacturing process for a MIM capacitor, accompanied by top-down and cross-sectional schematic illustrations of a MIM capacitor at various stages in the manufacturing process, is set forth below.
In the process 900 shown in
In some implementations, the base metal layer may be deposited with a physical vapor deposition (PVD) process, a chemical vapor deposition (CVD) process, or an atomic layer deposition (ALD) process. In some implementations, the base metal layer may include aluminum (Al) or an Al alloy. The base metal layer may be about 0.5 microns to 5 microns thick, in some implementations. The base metal layer may be deposited over an area of the substrate of about 1 millimeter by 1 millimeter or about 1 millimeter by 3 millimeters, in some implementations.
Returning to
At block 906, a design is patterned in the polymer layer. In some implementations, the design may be patterned by an embossing type of process. Depending on the scale of the features of the design, the design may be patterned by a nanoimprinting process (features less than about 1 micron in size; i.e., submicron-sized features) or an embossing process (features greater than about 1 micron in size).
For example, for a nanoimprinting or embossing process, the polymer layer may first be heated. In some implementations, the polymer layer may be heated to about 100° C. to 200° C. Then, a mold having the design that is to be patterned into the polymer layer may be pressed into the polymer layer. For example, to form vias in the polymer layer, the mold may include a number of posts. When the polymer layer is a thermoplastic polymer, after pressing the mold into the polymer layer, the polymer layer may be cooled and then the mold may be removed. When the polymer layer is a photosetting polymer, after pressing the mold into the polymer layer, the polymer layer may be cured with ultraviolet (UV) light and then the mold may be removed. When using a photosetting polymer, the mold may be made out of a material that is transparent to ultraviolet light, such as fused silica, for example.
In some implementations, the design that is patterned in the polymer layer may include a plurality of features, such as a plurality of vias. The vias may be of a depth in the polymer layer such that the base metal layer is exposed at the bottom of each of the individual vias. In some implementations, a via of the plurality of vias may have an aspect ratio of at least about 10 to 1 (i.e., a ratio of the height of a via to the width of a via). For example, when the polymer layer is about 1 micron to 5 microns thick, the via may have an opening on a surface of the polymer layer of about 100 nanometers to 500 nanometers. As another example, when the polymer layer is about 10 microns to 250 microns thick, the via may have an opening on a surface of the polymer layer of about 1 micron to 25 microns.
With some nanoimprinting or embossing processes, polymer may remain at the bottom of the vias after the process is performed. As a result, the base metal layer may not be exposed at the bottoms of the vias. In some implementations, polymer remaining at the bottoms of vias may be removed with a wet or dry etching process to expose the base metal layer at the bottoms of the vias.
Returning to
Returning to
Returning to
As noted above, in some implementations, the substrate 1002 may include a glass (e.g., a display glass, a borosilicate glass, or a photoimageable glass). In some implementations, the base metal layer 1004 may include Al or an Al alloy and may be about 0.5 microns to 5 microns thick. In some implementations, the polymer layer 1012 may include a thermoplastic polymer, and in some other implementations, the polymer layer may include a photosetting polymer. The polymer layer 1012 may be about 10 microns to 250 microns thick, about 1 micron to 5 microns thick, or about 2 microns to 5 microns thick. In some implementations, the first electrode layer 1016 and the second electrode layer 1024 may include Al or an Al alloy and each may be less than about 50 nanometers thick. In some implementations, the dielectric layer 1020 may include ZrO2, Al2O3, SrO, STO, TiO2, combinations of layers of these different oxides, or other dielectrics, and may be about 2 nanometers to 35 nanometers thick.
This completes the manufacturing process for a structure that is capable of yielding a capacitance. For example, a capacitance may be generated between the second electrode layer 1024 and the first electrode layer 1016 in contact with the base metal layer 1004, with the second electrode layer 1024 and the first electrode layer 1016 being electrically isolated from one another by the dielectric layer 1020. Further process operations may be performed to complete the fabrication of the MIM capacitor, however. Examples of these process operations are shown in
At block 952 of the process 950 shown in
Returning to
Returning to
The manufacturing process shown in
In some implementations, the apparatus described herein may function as interposers. For example, the process 900 shown in
An interposer may serve to connect a first electronic component to a second electronic component. In some implementations, the at least one through via in the substrate may include a conductive material and may be configured to electrically connect a first electronic component to a second electronic component. For example, an interposer may connect an integrated circuit to a printed circuit board. When the substrate serves as an interposer, a MIM capacitor on the substrate may function as a decoupling capacitor. A decoupling capacitor may function to decouple one part of an electronic circuit from another. The decoupling capacitor may be configured as a shunt between the two parts of the electronic circuit, and the effect of electronic noise generated by a first part of the electronic circuit on a second part of the electronic circuit may be reduced.
For example, assembly 1200 may include a MIM capacitor on each side of a substrate 1002. Each MIM capacitor may similar to the MIM capacitor shown in
In a manufacturing process for the assembly 1200 shown in
In some implementations, the substrate 1002 of the assembly 1200 may be an interposer. One or more silicon dies may be attached to the top of assembly 1200 and a substrate or a printed circuit board may be attached to the bottom of the assembly 1200. Thus, the assembly 1200, including a MIM capacitor on each side of a substrate 1002, may be used in microelectronics applications.
In some implementations, the substrate 1002 may include a glass (e.g., a display glass, a borosilicate glass, or a photoimageable glass). In some implementations, the base metal layer 1004 may include Al or an Al alloy and may be about 0.5 microns to 5 microns thick. In some implementations, the polymer layer 1012 may include a thermoplastic polymer, and in some other implementations, the polymer layer 1012 may include a photosetting polymer. The polymer layer 1012 may be about 10 microns to 250 microns thick, about 1 micron to 5 microns thick, or about 2 microns to 5 microns thick. In some implementations, the first electrode layer 1016 and the second electrode layer 1024 may include Al or an Al alloy and each may be less than about 50 nanometers thick. In some implementations, the dielectric layer 1020 may include ZrO2, Al2O3, SrO, STO, TiO2, combinations of layers of these different oxides, or other dielectrics, and may be about 2 nanometers to 35 nanometers thick.
In some implementations, the passivation layer 1028 may include a dielectric layer, such as an oxide (e.g., SiO2), and may be about 0.2 microns to 100 microns thick. For example, a passivation layer 1028 of SiO2 may have a thickness of about 1.5 microns. The passivation layer 1028 may protect the second electrode layer 1024 from oxidation or corrosion. In some implementations, the metallization 1036 may be in electrical contact with the first electrode layer 1016 and the base metal layer 1004. The metallization 1040 may be in electrical contact with the second electrode layer 1024 by a portion of the second electrode layer 1024 not covered with the passivation layer 1028. In some implementations, the metallization 1036 and 1040 may include Cu, a Cu alloy, Al, an Al alloy, Ni, or other metal, and may be about 0.5 microns to 10 microns thick.
The MIMIM capacitor 1400 shown in
Metallization 1414 may be in electrical contact with the first electrode layer 1016 and the base metal layer 1004. The metallization 1414 also may be in electrical contact with the third electrode layer 1406. Metallization 1418 may be in electrical contact with the second electrode layer 1024 by a portion of the second electrode layer 1024 not covered with the second dielectric layer 1402.
In some implementations, the second dielectric layer 1402 may include ZrO2, Al2O3, SrO, STO, TiO2, combinations of layers of these different oxides, or other dielectrics, and may be about 2 nanometers to 35 nanometers thick. In some implementations, the third electrode layer 1406 may include Al or an Al alloy and may be less than about 50 nanometers thick. In some implementations, the passivation layer 1410 may include a dielectric layer, such as an oxide (e.g., SiO2), and may be about 0.2 microns to 100 microns thick. For example, a passivation layer 1028 of SiO2 may have a thickness of about 1.5 microns. In some implementations, the metallization 1414 and 1418 may include Cu, a Cu alloy, Al, an Al alloy, Ni, or other metal, and may be about 0.5 microns to 10 microns thick.
Additional configurations of the MIM and MIMIM capacitors disclosed herein are possible. For example, an assembly may include a MIMIM capacitor on both sides of a substrate, similar to the assembly 1200 shown in
Further, operations of the process 900 shown in
The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48 and a microphone 46. The housing 41 can be formed from any of a variety of manufacturing processes, including injection molding, and vacuum forming. In addition, the housing 41 may be made from any of a variety of materials, including, but not limited to: plastic, metal, glass, rubber and ceramic, or a combination thereof. The housing 41 can include removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
The display 30 may be any of a variety of displays, including a bi-stable or analog display, as described herein. The display 30 also can be configured to include a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD, or a non-flat-panel display, such as a CRT or other tube device. In addition, the display 30 can include an interferometric modulator display, as described herein.
The components of the display device 40 are schematically illustrated in
The network interface 27 includes the antenna 43 and the transceiver 47 so that the display device 40 can communicate with one or more devices over a network. The network interface 27 also may have some processing capabilities to relieve, for example, data processing requirements of the processor 21. The antenna 43 can transmit and receive signals. In some implementations, the antenna 43 transmits and receives RF signals according to the IEEE 16.11 standard, including IEEE 16.11(a), (b), or (g), or the IEEE 802.11 standard, including IEEE 802.11a, b, g, n, and further implementations thereof. In some other implementations, the antenna 43 transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna 43 is designed to receive code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), Global System for Mobile communications (GSM), GSM/General Packet Radio Service (GPRS), Enhanced Data GSM Environment (EDGE), Terrestrial Trunked Radio (TETRA), Wideband-CDMA (W-CDMA), Evolution Data Optimized (EV-DO), 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Evolved High Speed Packet Access (HSPA+), Long Term Evolution (LTE), AMPS, or other known signals that are used to communicate within a wireless network, such as a system utilizing 3G or 4G technology. The transceiver 47 can pre-process the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also can process signals received from the processor 21 so that they may be transmitted from the display device 40 via the antenna 43.
In some implementations, the transceiver 47 can be replaced by a receiver. In addition, in some implementations, the network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. The processor 21 can control the overall operation of the display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 can send the processed data to the driver controller 29 or to the frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation and gray-scale level.
The processor 21 can include a microcontroller, CPU, or logic unit to control operation of the display device 40. The conditioning hardware 52 may include amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. The conditioning hardware 52 may be discrete components within the display device 40, or may be incorporated within the processor 21 or other components.
The driver controller 29 can take the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and can re-format the raw image data appropriately for high speed transmission to the array driver 22. In some implementations, the driver controller 29 can re-format the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as an LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. For example, controllers may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
The array driver 22 can receive the formatted information from the driver controller 29 and can re-format the video data into a parallel set of waveforms that are applied many times per second to the hundreds, and sometimes thousands (or more), of leads coming from the display's x-y matrix of pixels.
In some implementations, the driver controller 29, the array driver 22, and the display array 30 are appropriate for any of the types of displays described herein. For example, the driver controller 29 can be a conventional display controller or a bi-stable display controller (such as an IMOD controller). Additionally, the array driver 22 can be a conventional driver or a bi-stable display driver (such as an IMOD display driver). Moreover, the display array 30 can be a conventional display array or a bi-stable display array (such as a display including an array of IMODs). In some implementations, the driver controller 29 can be integrated with the array driver 22. Such an implementation can be useful in highly integrated systems, for example, mobile phones, portable-electronic devices, watches or small-area displays.
In some implementations, the input device 48 can be configured to allow, for example, a user to control the operation of the display device 40. The input device 48 can include a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a rocker, a touch-sensitive screen, a touch-sensitive screen integrated with display array 30, or a pressure- or heat-sensitive membrane. The microphone 46 can be configured as an input device for the display device 40. In some implementations, voice commands through the microphone 46 can be used for controlling operations of the display device 40.
The power supply 50 can include a variety of energy storage devices. For example, the power supply 50 can be a rechargeable battery, such as a nickel-cadmium battery or a lithium-ion battery. In implementations using a rechargeable battery, the rechargeable battery may be chargeable using power coming from, for example, a wall socket or a photovoltaic device or array. Alternatively, the rechargeable battery can be wirelessly chargeable. The power supply 50 also can be a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell or solar-cell paint. The power supply 50 also can be configured to receive power from a wall outlet.
In some implementations, control programmability resides in the driver controller 29 which can be located in several places in the electronic display system. In some other implementations, control programmability resides in the array driver 22. The above-described optimization may be implemented in any number of hardware and/or software components and in various configurations.
The various illustrative logics, logical blocks, modules, circuits and algorithm steps described in connection with the implementations disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. The interchangeability of hardware and software has been described generally, in terms of functionality, and illustrated in the various illustrative components, blocks, modules, circuits and steps described above. Whether such functionality is implemented in hardware or software depends upon the particular application and design constraints imposed on the overall system.
The hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single- or multi-chip processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. A processor also may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some implementations, particular steps and methods may be performed by circuitry that is specific to a given function.
In one or more aspects, the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
Various modifications to the implementations described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the implementations shown herein, but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein. The word “exemplary” is used exclusively herein to mean “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other possibilities or implementations. Additionally, a person having ordinary skill in the art will readily appreciate, the terms “upper” and “lower” are sometimes used for ease of describing the figures, and indicate relative positions corresponding to the orientation of the figure on a properly oriented page, and may not reflect the proper orientation of an IMOD as implemented.
Certain features that are described in this specification in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, a person having ordinary skill in the art will readily recognize that such operations need not be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one more example processes in the form of a flow diagram. However, other operations that are not depicted can be incorporated in the example processes that are schematically illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. Additionally, other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.
This disclosure claims priority to U.S. Provisional Patent Application No. 61/611,703, filed Mar. 16, 2012, entitled “HIGH CAPACITANCE DENSITY METAL-INSULATOR-METAL CAPACITORS,” and assigned to the assignee hereof. The disclosure of the prior application is considered part of, and is incorporated by reference in, this disclosure.
Number | Date | Country | |
---|---|---|---|
61611703 | Mar 2012 | US |