HIGH-EFFICIENCY SOLDERING APPARATUS FOR WINDING HEAD OF FLAT-WIRE MOTOR AND SOLDERING PROCESS

Information

  • Patent Application
  • 20210220936
  • Publication Number
    20210220936
  • Date Filed
    December 30, 2019
    4 years ago
  • Date Published
    July 22, 2021
    2 years ago
Abstract
The high-efficiency soldering apparatus for a winding head of a flat-wire motor includes a support base, a solder tray, a solder spot isolation and limit plate, a shaft lever and a movable tray. The solder tray is provided at the center of the support base. The solder spot isolation and limit plate is provided on the solder tray. The shaft lever is provided on the support base. The movable tray is provided on the shaft lever. The movable tray is located above the solder tray. The movable tray moves vertically along the shaft lever. A stator is placed at the center of the movable tray, and a winding head of the stator extends below the movable tray.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

See Application Data Sheet.


STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.


THE NAMES OF PARTIES TO A JOINT RESEARCH AGREEMENT

Not applicable.


INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC OR AS A TEXT FILE VIA THE OFFICE ELECTRONIC FILING SYSTEM (EFS-WEB)

Not applicable.


STATEMENT REGARDING PRIOR DISCLOSURES BY THE INVENTOR OR A JOINT INVENTOR

Not applicable.


BACKGROUND OF THE INVENTION
1. Field of the Invention

The present disclosure relates to a soldering apparatus for a winding head of a stator of a vehicle drive motor or a generator and a soldering process.


2. Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 37 CFR 1.98

In the formation of a winding of a stator of a flat-wire motor, a formed hair-pin coil or single-sided coil is first inserted in a slot in a stator iron core, a bending die is then used to bend an opening end of the coil, and bent adjacent conductors are soldered to implement the electrical connection of the winding. Existing welding manners mainly include laser beam welding or argon arc welding. In both the methods, copper is molten at an instantaneous high temperature to form a welding spot, so as to implement the electrical connection of a winding. However, the prior art mainly has two disadvantages. First, a high temperature needs to be instantaneously generated to melt copper in laser beam welding or argon arc welding, and enamel films of enamel wires around the welding spot are prone to damage, resulting in reduced insulation reliability. Second, a large number of hair-pin coils or single-sided coils form a winding of a stator of a flat-wire motor, and a large number of welding spots are needed. In laser beam welding or argon arc welding, welding is usually performed at welding spots one by one, and the production efficiency of a flat-wire stator is severely affected.


BRIEF SUMMARY OF THE INVENTION

An objective of the present disclosure is to provide a soldering apparatus mainly for a winding of a stator of a flat-wire motor and a high-efficiency soldering process. In the soldering process, a winding head of a stator is dipped in a molten solder to complete the soldering of all the solder spots once, thereby improving the production efficiency and quality.


A technical solution of the present disclosure is a high-efficiency soldering apparatus for a winding head of a flat-wire motor, wherein the soldering apparatus includes a support base, a solder tray, a solder spot isolation and limit plate, a shaft lever and a movable tray; the solder tray is provided at the center of the support base; the solder spot isolation and limit plate is provided on the solder tray; the shaft lever is provided on the support base; the movable tray is provided on the shaft lever; the movable tray is located above the solder tray; the movable tray moves vertically along the shaft lever; and a stator is placed at the center of the movable tray, and a winding head of the stator extends below the movable tray.


Preferably, the solder spot isolation and limit plate is provided with threaded holes, and screws pass through the threaded holes to fix the solder spot isolation and limit plate on the solder tray.


Preferably, the solder spot isolation and limit plate is provided with solder spot isolation and limit through holes, and the solder spot isolation and limit through holes are evenly distributed in a ring.


Preferably, the solder tray is provided with an annular solder slot.


Preferably, there are four shaft levers.


Preferably, the shaft lever is a smooth shaft lever.


Preferably, the solder tray is provided with a threaded fixing hole, and the solder tray is connected to the support base by a screw passing through the threaded fixing hole.


A soldering process using the high-efficiency soldering apparatus for a winding head of a flat-wire motor, wherein specific process steps include:


(1) melting a solder: placing the solder in the solder tray, and enabling the solder to reach and stay in a molten state;


(2) applying a flux: before the stator is placed on the movable tray, applying the flux to the winding head to be dip soldered of the stator or dipping the winding head in the flux in advance;


(3) placing the stator: placing the stator applied or dipped with the flux on the movable tray, with the winding head of the stator extending below the movable tray;


(4) performing dip soldering: moving the movable tray downward along the shaft lever, partially dipping the winding head of the stator in the solder tray holding the molten solder, and performing dip soldering by using the solder spot isolation and limit plate; and


(5) performing resetting: after moving the movable tray downward to reach the position to finish the dip soldering, moving the movable tray on which the stator is placed upward along the shaft lever to return to an initial position, thereby completing the soldering process.


The advantages of the present disclosure are as follows.


1. The soldering apparatus of the present disclosure has a compact and appropriate structure and requires simple operations.


2. The design of the solder spot isolation and limit plate can facilitate the soldering of adjacent conductors and can also ensure that adjacent solder spots are not stuck together, thereby improving the production efficiency.


3. The soldering of all the solder spots can be completed by performing the soldering process once, so that the production efficiency is high.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The present disclosure is further described below with reference to the accompanying drawings and embodiments.



FIG. 1 is a three-dimensional schematic structural diagram of a high-efficiency soldering apparatus for a winding head of a flat-wire motor according to the present disclosure;



FIG. 2 is a schematic structural front view of a high-efficiency soldering apparatus for a winding head of a flat-wire motor according to the present disclosure;



FIG. 3 is a schematic structural view of a solder spot isolation and limit plate of a high-efficiency soldering apparatus for a winding head of a flat-wire motor according to the present disclosure;



FIG. 4 is a schematic structural view of a solder tray of a high-efficiency soldering apparatus for a winding head of a flat-wire motor according to the present disclosure;



FIG. 5 is a schematic diagram of an iron core slot number and a layer number of an 8-pole 48-slot flat-wire motor stator of a high-efficiency soldering apparatus for a winding head of a flat-wire motor according to the present disclosure; and



FIG. 6 is a schematic diagram of solder spots of a winding head of an 8-pole 48-slot flat-wire motor stator of a high-efficiency soldering apparatus for a winding head of a flat-wire motor according to the present disclosure,


Where: 1.8-pole 48-slot flat-wire motor stator; 2. movable tray; 3. shaft lever; 4. solder spot isolation and limit plate; 5. solder tray; 6. support base; 41. threaded hole; 42. solder spot isolation and limit through hole; 51. annular solder slot; and 52. threaded fixing hole.





DETAILED DESCRIPTION OF THE INVENTION
Embodiment

As shown in FIG. 1 to FIG. 4, a high-efficiency soldering apparatus for a winding head of a flat-wire motor is described by using an 8-pole 48-slot flat-wire motor stator 1 as an example. The soldering apparatus includes a support base 6, a solder tray 5, a solder spot isolation and limit plate 4, a shaft lever 3 and a movable tray 2. The solder tray 5 is provided at the center of the support base 6. The solder tray 5 is provided with an annular solder slot 51. The solder tray is provided with a threaded fixing hole 52. The solder tray 5 is connected to the support base 6 by a screw passing through the threaded fixing hole 52. The solder spot isolation and limit plate 4 is provided on the solder tray 5. The shaft lever 3 is provided on the support base 6. The movable tray 2 is provided on the shaft lever 3. There are four shaft levers 3 respectively distributed at four corners of the support base 6. The shaft lever 3 is a smooth shaft lever. The movable tray 2 is located above the solder tray 5. The movable tray 2 moves vertically along the shaft lever 3. The 8-pole 48-slot flat-wire motor stator 1 is placed at the center of the movable tray 2, and a non-outlet terminal of a winding head of the stator extends below the movable tray 2. As shown in FIG. 5 and FIG. 6, iron core slot numbers of the 8-pole 48-slot flat-wire motor stator 1 are sequentially labeled as S1, S2, . . . , S47, and S48 in a clockwise direction. Each slot has eight conductors. Layer numbers of the conductors in the slot are sequentially named L1, L2, . . . , L7, and L8 in a radial direction away from the center of circle. A winding of the 8-pole 48-slot flat-wire motor stator 1 is formed by a plurality of single-sided coils. Two ends of the single-sided coils are soldered to implement the electrical connection of the winding. Solder spots at the non-outlet terminal of the winding head of the stator are evenly distributed in a circumferential direction. The solder spots are sequentially named H1, H2, H3, and H4 in the radial direction away from the center of circle. The conductor layers L1 and L2 in the slot form the solder spot H1, L3 and L4 form the solder spot H2, L5 and L6 form the solder spot H3, and L7 and L8 form the solder spot H4. The solder spot isolation and limit plate 4 is provided with threaded holes 41. Screws pass through the threaded holes 41 to fix the solder spot isolation and limit plate 4 on the solder tray 5. The solder spot isolation and limit plate 4 is provided with solder spot isolation and limit through holes 42. The solder spot isolation and limit through holes 42 are evenly distributed in a ring. The positions of the solder spot isolation and limit through holes correspond to those of the solder spots of the winding of the stator. There are a total of four ring, with each ring having 48 solder spot isolation and limit through holes.


The structure of the solder spot isolation and limit plate in this solution is not limited to the structure in the schematic diagram herein. The arrangement positions, layer numbers, and quantity of the isolation and limit through holes of the solder spot isolation and limit plate depend on the design positions, layer numbers, and quantity of connection solder spots of a flat-wire winding head.


A soldering process using the high-efficiency soldering apparatus for a winding head of a flat-wire motor, wherein specific process steps include:


(1) melting a solder: placing the solder in the annular solder slot 51 of the solder tray 5, and enabling the solder to reach and stay in a molten state;


(2) applying a flux: applying the flux to the winding head to be dip soldered of the 8-pole 48-slot flat-wire motor stator 1 or dipping the winding head in the flux in advance;


(3) placing the stator: placing the 8-pole 48-slot flat-wire motor stator 1 with the winding head applied or dipped with the flux on the movable tray, with the winding head of the stator extending below the movable tray 2;


(4) performing dip soldering: moving the movable tray 2 downward along the shaft lever 3, partially dipping the winding head of the stator in the annular solder slot 51 of the solder tray 5 holding the molten solder, and performing dip soldering by using the solder spot isolation and limit plate, wherein the solder spot isolation and limit through holes 42 are used to limit the positions of adjacent conductors to be soldered and isolate adjacent solder spots, so that it is easier to solder adjacent conductors and it can be ensured that adjacent solder spots are not stuck together.


(5) performing resetting: after moving the movable tray 2 downward to reach the position to finish the dip soldering, moving the movable tray 2 on which the 8-pole 48-slot flat-wire motor stator 1 is placed upward along the shaft lever to return to the initial position, thereby completing the soldering process.


The soldering process in this solution have relatively high requirements for the melting point, adhesive property, and electrical conductivity of the solder, and an appropriate copper-based brazing filler metal or silver-based brazing filler metal may be chosen. The soldering process is applicable to a hair-pin flat-wire winding stator and an I-pin soldered flat-wire winding stator.


The principle and effect of the present disclosure are only schematically described in the foregoing embodiments, and these embodiments are not used to limit the present disclosure. Any person skilled in the art may make modifications or changes to the foregoing embodiments without departing from the spirit and scope of the present disclosure. Therefore, all equivalent modifications or changes completed by a person of ordinary skill in the technical field without departing from the spirit and technical concept disclosed in the present disclosure shall still fall within the claims of the present disclosure.

Claims
  • 1. A soldering apparatus, comprising: a support base,a solder tray,a solder spot isolation and limit plate,a shaft lever, anda movable tray;wherein the solder tray is provided at the center of the support base;wherein the solder spot isolation and limit plate is provided on the solder tray;wherein the shaft lever is provided on the support base;wherein the movable tray is provided on the shaft lever;wherein the movable tray is located above the solder tray;wherein the movable tray moves vertically along the shaft lever;wherein a stator is placed at the center of the movable tray, andwherein a winding head of the stator extends below the movable tray.
  • 2. The soldering apparatus according to claim 1, wherein the solder spot isolation and limit plate is provided with threaded holes, and screws pass through the threaded holes to fix the solder spot isolation and limit plate on the solder tray.
  • 3. The soldering apparatus according to claim 1, wherein the solder spot isolation and limit plate is provided with solder spot isolation and limit through holes, and the solder spot isolation and limit through holes are evenly distributed in a ring.
  • 4. The soldering apparatus according to claim 1, wherein the solder tray is provided with an annular solder slot.
  • 5. The soldering apparatus for a according to claim 1, wherein there are four shaft levers.
  • 6. The soldering apparatus according to claim 1, wherein the shaft lever is a smooth shaft lever.
  • 7. The soldering apparatus according to claim 1, wherein the solder tray is provided with a threaded fixing hole, and the solder tray is connected to the support base by a screw passing through the threaded fixing hole.
  • 8. A soldering process comprising the steps of: (1) melting a solder with a soldering apparatus of claim 1, wherein the step of melting comprises: placing the solder in the solder tray, and enabling the solder to reach and stay in a molten state;(2) applying a flux, wherein the step of applying comprises: before the stator is placed on the movable tray, applying the flux to the winding head to be dip soldered of the stator or dipping the winding head in the flux in advance;(3) placing the stator, wherein the step of placing comprises: placing the stator applied or dipped with the flux on the movable tray, with the winding head of the stator extending below the movable tray;(4) performing dip soldering, wherein the step of performing dip soldering comprises: moving the movable tray downward along the shaft lever, partially dipping the winding head of the stator in the solder tray holding the molten solder, and performing dip soldering by using the solder spot isolation and limit plate; and(5) performing resetting, wherein the step of resetting comprises: after moving the movable tray downward to reach the position to finish the dip soldering, moving the movable tray on which the stator is placed upward along the shaft lever to return to an initial position, thus completing the soldering process.
Priority Claims (1)
Number Date Country Kind
201910067209.2 Jan 2019 CN national
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2019/129702 12/30/2019 WO 00