This application relates to antenna technologies, and in particular, to a high-frequency radiator, a multi-frequency array antenna, and a base station.
With development of mobile communication systems, base station antennas need to implement multi-frequency and multi-polarization, to meet common requirements of a plurality of operators. However, during implementation, a conventional multi-frequency antenna can meet an indicator requirement only when a width size of the antenna is excessively large. Once the width size decreases, common-mode resonance is generated in a high-frequency radiator when an electromagnetic wave is coupled from a low-frequency radiator to the high-frequency radiator, resulting in significant deterioration of a low-frequency indicator.
Currently, a method for suppressing common-mode resonance at a low operating frequency band in a high-frequency radiator of a multi-frequency antenna is to load a capacitor-inductor-capacitor circuit on a balun of the high-frequency radiator and a dipole arm of the high-frequency radiator, to implement matching at a high frequency band, and move, at the low frequency band, the common-mode resonance of the high-frequency radiator out of the low frequency band.
However, a bandwidth of the multi-frequency antenna is limited, and processing costs are comparatively high.
This application provides a high-frequency radiator, a multi-frequency array antenna, and a base station, to resolve a problem of common-mode resonance of a high-frequency radiator without affecting a bandwidth of an antenna, thereby featuring low processing costs.
According to a first aspect, this application provides a high-frequency radiator. The high-frequency radiator is a dual-polarized radiator, and the dual-polarized radiator includes two plus and minus 45-degree single-polarized radiators.
The single-polarized radiator includes a radiation arm, a balun, a feeder circuit, a filter, and a ground plane. The radiation arm and the balun are electrically connected. The feeder circuit and the balun are separately disposed on two surfaces of a first dielectric plate that is placed vertically. The ground plane is disposed on a downward surface of a second dielectric plate that is placed horizontally. The first dielectric plate is vertically disposed on the second dielectric plate. The filter includes a capacitor branch and an inductor branch. The inductor branch is disposed on a same surface of the first dielectric plate as the balun. The inductor branch is separately electrically connected to the balun and the ground plane. The capacitor branch is coupled to the ground plane.
The feeder circuit is configured to feed the high-frequency radiator.
The filter is configured to weaken an impact of the high-frequency radiator on a low-frequency radiator, where a highest frequency of an operating frequency band of the low-frequency radiator is lower than a lowest frequency of an operating frequency band of the high-frequency radiator.
In this application, when structures of the radiation arm and the balun of the high-frequency radiator are not affected, the filter is added between the balun and the ground plane, to weaken the impact of the high-frequency radiator on the low-frequency radiator, and implement normal transmission of a signal of the high-frequency radiator. This not only resolves a problem of common-mode resonance of the high-frequency radiator, but also ensures that a bandwidth of an antenna is not affected, and processing costs are low.
In a possible implementation, the capacitor branch is disposed on an upward surface of the second dielectric plate, and the capacitor branch is electrically connected to the balun.
In a possible implementation, the capacitor branch is disposed on a same surface of the first dielectric plate as the balun, and the capacitor branch is electrically connected to the balun.
In a possible implementation, the capacitor branch includes a first capacitor branch and a second capacitor branch, the first capacitor branch is disposed on an upward surface of the second dielectric plate, the second capacitor branch is disposed on a same surface of the first dielectric plate as the balun, the second capacitor branch is electrically connected to the balun, and the first capacitor branch is electrically connected to the second capacitor branch.
In a possible implementation, the capacitor branch includes a first capacitor branch and a second capacitor branch, the first capacitor branch is disposed on an upward surface of the second dielectric plate, the second capacitor branch is disposed on a same surface of the first dielectric plate as the balun, the inductor branch is electrically connected to the second capacitor branch, and the first capacitor branch is electrically connected to the second capacitor branch.
In a possible implementation, the inductor branch is used as the ground plane, the feeder circuit and the inductor branch form a microstrip line structure, and a coaxial line is disposed on the downward surface of the second dielectric plate, where an outer conductor of the coaxial line is electrically connected to the ground plane, and an inner conductor of the coaxial line is electrically connected to the feeder circuit.
In this application using a microstrip line structure, a high-frequency current signal transmitted from the coaxial line flows to the feeder circuit and the balun without loss through the inner conductor by using the microstrip line structure, and the outer conductor and the ground plane are directly electrically connected through welding, which implements a complete feeding system of the entire high-frequency radiator. In addition, a standing wave bandwidth is higher, and there is no signal discontinuity.
In a possible implementation, both the inductor branch and the capacitor branch are metal stub lines, and a contour formed by a metal stub line used as the inductor branch is narrower and longer than a contour formed by a metal stub line used as the capacitor branch.
According to a second aspect, this application provides a multi-frequency array antenna, including an antenna radiator and an antenna reflection plate. The antenna radiator is disposed on the antenna reflection plate. The antenna radiator includes at least one high-frequency radiator and at least one low-frequency radiator. The high-frequency radiator and the low-frequency radiator are arranged crosswise in a horizontal direction. A highest frequency of an operating frequency band of the low-frequency radiator is lower than a lowest frequency of an operating frequency band of the high-frequency radiator. The high-frequency radiator according to any one of the implementations of the first aspect is used as the high-frequency radiator.
According to the multi-frequency array antenna in this application, when structures of the radiation arm and the balun of the high-frequency radiator are not affected, the filter is added between the balun and the ground plane, to weaken an impact of the high-frequency radiator on the low-frequency radiator, and implement normal transmission of a signal of the high-frequency radiator. This not only resolves a problem of common-mode resonance of the high-frequency radiator, but also ensures that a bandwidth of the antenna is not affected, and processing costs are low.
In a possible implementation, a distance between the high-frequency radiator and the low-frequency radiator is less than or equal to 0.4λ, where λ is a wavelength corresponding to a center frequency of the operating frequency band of the low-frequency radiator.
According to a third aspect, this application provides a base station. The base station includes a multi-frequency array antenna, and the antenna according to any one of the implementations of the second aspect is used as the multi-frequency array antenna.
According to the antenna used in the base station in this application, when structures of the radiation arm and the balun of the high-frequency radiator are not affected, the filter is added between the balun and the ground plane, to weaken the impact of the high-frequency radiator on the low-frequency radiator, and implement normal transmission of a signal of the high-frequency radiator. This not only resolves the problem of the common-mode resonance of the high-frequency radiator, but also ensures that the bandwidth of the antenna is not affected, and the processing costs are low.
To make the objectives, technical solutions, and advantages of the embodiments of this application clearer, the following clearly describes the technical solutions in the embodiments of this application with reference to the accompanying drawings in the embodiments of this application. It is clear that the described embodiments are merely a part rather than all of the embodiments of this application. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of this application without creative efforts shall fall within the protection scope of this application.
In this application, when structures of a radiation arm and the balun of the high-frequency radiator are not affected, the filter is added between the balun and the ground plane, to weaken the impact of the high-frequency radiator on the low-frequency radiator, and implement normal transmission of a signal of the high-frequency radiator. This not only resolves a problem of common-mode resonance of the high-frequency radiator, but also ensures that a bandwidth of an antenna is not affected, and processing costs are low.
On the basis of the embodiment shown in
In this application, when structures of a radiation arm and the balun 12 of the high-frequency radiator are not affected, the filter is added between the balun 12 and the ground plane 15, to weaken an impact of the high-frequency radiator on a low-frequency radiator, and implement normal transmission of a signal of the high-frequency radiator. This not only resolves a problem of common-mode resonance of the high-frequency radiator, but also ensures that a bandwidth of an antenna is not affected, and processing costs are low.
In this application, when structures of a radiation arm and the balun of the high-frequency radiator are not affected, the filter is added between the balun and the ground plane, to weaken the impact of the high-frequency radiator on the low-frequency radiator, and implement normal transmission of a signal of the high-frequency radiator. This not only resolves a problem of common-mode resonance of the high-frequency radiator, but also ensures that a bandwidth of an antenna is not affected, and processing costs are low.
In this application, when structures of a radiation arm and the balun of the high-frequency radiator are not affected, the filter is added between the balun and the ground plane, to weaken the impact of the high-frequency radiator on the low-frequency radiator, and implement normal transmission of a signal of the high-frequency radiator. This not only resolves a problem of common-mode resonance of the high-frequency radiator, but also ensures that a bandwidth of an antenna is not affected, and processing costs are low.
According to the multi-frequency array antenna in this application, when structures of a radiation arm and a balun of the high-frequency radiator are not affected, a filter is added between the balun and a ground plane, to weaken an impact of the high-frequency radiator on the low-frequency radiator, and implement normal transmission of a signal of the high-frequency radiator. This not only resolves a problem of common-mode resonance of the high-frequency radiator, but also ensures that a bandwidth of the antenna is not affected, and processing costs are low.
In a possible implementation, this application provides a base station. The base station includes a multi-frequency array antenna, and the multi-frequency array antenna in the embodiment shown in
The foregoing descriptions are merely specific implementations of this application, but are not intended to limit the protection scope of this application. Any variation or replacement readily figured out by a person skilled in the art within the technical scope disclosed in this application shall fall within the protection scope of this application. Therefore, the protection scope of this application shall be subject to the protection scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
201811640716.2 | Dec 2018 | CN | national |
This application is a continuation of International Application No. PCT/CN2019/128374, filed on Dec. 25, 2019, which claims priority to Chinese Patent Application No. 201811640716.2, filed on Dec. 29, 2018. The disclosures of the aforementioned applications are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
5532708 | Krenz et al. | Jul 1996 | A |
9698486 | Shooshtari et al. | Jul 2017 | B2 |
10446926 | Xiao | Oct 2019 | B2 |
10511088 | Xiao | Dec 2019 | B2 |
10680323 | Zhang | Jun 2020 | B2 |
11296425 | Zhang | Apr 2022 | B2 |
11322834 | Daojian | May 2022 | B2 |
11394120 | Zhang | Jul 2022 | B2 |
11710908 | Cao | Jul 2023 | B2 |
20150070234 | Jones | Mar 2015 | A1 |
20180323513 | Varnoosfaderani et al. | Nov 2018 | A1 |
20180351246 | Yu et al. | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
105281031 | Jan 2016 | CN |
103730728 | Sep 2016 | CN |
105960737 | Sep 2016 | CN |
107134639 | Sep 2017 | CN |
107210531 | Sep 2017 | CN |
108963454 | Dec 2018 | CN |
2017035726 | Mar 2017 | WO |
2018214427 | Nov 2018 | WO |
2018231670 | Dec 2018 | WO |
Entry |
---|
Liu Y., et al., “A Compact Dual-Band Dual-Polarized Antenna With Filtering Structures for Sub-6 GHz Base Station Applications”, IEEE Antennas and Wireless Propagation Letters, vol. 17, No. 10, Oct. 2018, 5 Pages. |
Xue, C., et al., “MIMO Antenna Using Hybrid Electric and Magnetic Coupling for Isolation Enhancement”, IEEE Transactions on Antennas and Propagation, vol. 65, No. 10, Oct. 2017, 9 Pages. |
Number | Date | Country | |
---|---|---|---|
20210328365 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2019/128374 | Dec 2019 | US |
Child | 17360107 | US |