The disclosure pertains to high numerical optical systems for lithography.
Pattern-transfer systems using extreme ultraviolet radiation (EUV) can be used to transfer dense patterns having fine features from a reticle to sensitized substrate. Optical systems that can image portions of a reticle are generally reflective (catoptric). EUV sources tend to offer limited EUV power, and efficient use of EUV source power is required in practical systems. Conventional multi-element catoptric systems generally exhibit asymmetric aberrations, limited numerical apertures, and curved image fields. Such conventional systems are disclosed in Mann et al., U.S. Pat. No. 8,169,694 and Mann et al., U.S. Patent Application Publication 20120008124.
Conventional EUV projection optical systems use an annular field of view and rotational symmetry to minimize the variations of aberrations with field position. If the numerical apertures (NAs) of such conventional systems are to be increased, the annular field becomes disadvantageous, particularly as the distance of the annular field from the optical axis increases with NA, thereby further increasing higher-order aberrations. The annular field in combination with a high NA tends to increase the difficulty of fully correcting for reticle obliquity effects caused by non-telecentric illumination that varies its orientation around the field.
Catoptric optical systems comprise a plurality of reflective surfaces situated along a common axis from an image to an object. Each of the surfaces can be offset and tilted with respect to the common axis so as to be symmetric about a meridian plan. The reflective surfaces are configured to image a rectangular area of an object to a rectangular image area at an image space numerical aperture of at least 0.5. In some examples, the reflective surfaces are freeform surfaces such as fringe Zernike polynomial-based surfaces, and in some cases based on bilaterally symmetric fringe Zernike polynomials. In some examples, the plurality of reflective optical surfaces includes first, third, fourth, and fifth reflective surfaces having curvatures of a first sign, and second and sixth reflective surfaces having curvatures of an opposite sign. In a representative example, the plurality of reflective optical surfaces includes exactly six reflective surfaces, each of which is decentered and tilted so as be symmetric with respect to a meridian plane.
Projection systems and pattern transfer methods using such optical systems are also provided.
The foregoing and other objects, features, and advantages of the disclosure will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
Table 1 is a surface listing for the mirror system of
Tables 2-7 list parameters for surface types S-1 to S-6, including surface curvatures and fringe Zernike polynomial coefficients. The selected fringe Zernike coefficients are associated with bilaterally symmetric fringe Zernike polynomials. For convenience, surface curvatures (reciprocals of surface radii) are included even though surface radii are listed in Table. 1.
Table 8 summarizes tilts and decenters. All reflective surfaces of Table 1 are tilted and decentered. As noted above, coordinate axes and tilts are illustrated with the coordinate axes of
Table 9 lists the order of surface decenterings and displacements. A decenter defines a new coordinate system (displaced and/or rotated) in which subsequent surfaces are defined. Surfaces following a decenter are aligned on a local mechanical axis (z-axis) of a new coordinate system. While a new mechanical axis remains in use until changed by another decenter, in the example of
This disclosure pertains to catoptric projection optics, particularly for EUV lithography. In one example, a 0.5 NA 6-mirror catoptric projection optical system is disclosed having an instantaneous rectangular field of view of 26×1 mm and a central obscuration in the aperture for use in an EUV step-and-scan lithography tool. This system uses mirror surfaces described by Zernike polynomials containing only terms that are bilaterally symmetrical about a meridian plane (the plane of
The mirror tilts and decenters are constrained such that the object and image planes are parallel to each other to facilitate the scanning reticle and wafer stages. In this embodiment, so-called Fringe Zernike mirror surfaces are used, but so-called Y-Zernike polynomials, Forbes freeform surfaces, or other types of orthogonal polynomials may be used. Orthogonal polynomials are preferred because they facilitate correction of higher-order aberrations that arise at higher numerical apertures with rectangular field shapes. However, other types of freeform surfaces, such as non-uniform rational B-splines (NURBS), may also be used.
For convenient description, reflective surface characteristics are listed in the accompanying tables in an order from an image to an object along an axis. As shown in
With reference to
The reflective surfaces of
The methods and apparatus disclosed above can be used in conjunction with various precision systems such as various types of lithography systems and other wafer processing systems and methods. Turning to
The reticle stage 244 is configured to move the reticle 250 in the X-direction, Y-direction, and rotationally about the Z-axis. To such end, the reticle stage is equipped with one or more linear motors having cooled coils as described herein. The two-dimensional position and orientation of the reticle 250 on the reticle stage 244 are detected by a laser interferometer (not shown) in real time, and positioning of the reticle 250 is effected by a main control unit on the basis of the detection thus made.
The wafer 252 is held by a wafer holder (“chuck,” not shown) on the wafer stage 248. The wafer stage 248 includes a mechanism (not shown) for controlling and adjusting, as required, the focusing position (along the Z-axis) and the tilting angle of the wafer 252. The wafer stage 248 also includes electromagnetic actuators (e.g., linear motors or a planar motor, or both) for moving the wafer in the X-Y plane substantially parallel to the image-formation surface of the projection-optical system 246. These actuators desirably comprise linear motors, one more planar motors, or both.
The wafer stage 248 also includes mechanisms for adjusting the tilting angle of the wafer 252 by an auto-focusing and auto-leveling method. Thus, the wafer stage serves to align the wafer surface with the image surface of the projection-optical system. The two-dimensional position and orientation of the wafer are monitored in real time by another laser interferometer (not shown). Control data based on the results of this monitoring are transmitted from the main control unit to a drive circuits for driving the wafer stage. During exposure, the light passing through the projection-optical system is made to move in a sequential manner from one location to another on the wafer, according to the pattern on the reticle in a step-and-repeat or step-and-scan manner.
The projection-optical system 246 normally comprises many lens or reflective elements that work cooperatively to form the exposure image on the resist-coated surface of the wafer 252. For convenience, the most distal optical element (i.e., closest to the wafer surface) is an objective lens 253. Since the depicted system is an immersion lithography system, it includes an immersion liquid 254 situated between the objective lens 253 and the surface of the wafer 252. As discussed above, the immersion liquid 254 is of a specified type. The immersion liquid is present at least while the pattern image of the reticle is being exposed onto the wafer.
The immersion liquid 254 is provided from a liquid-supply unit 256 that may comprise a tank, a pump, and a temperature regulator (not individually shown). The liquid 254 is gently discharged by a nozzle mechanism 255 into the gap between the objective lens 253 and the wafer surface. A liquid-recovery system 258 includes a recovery nozzle 257 that removes liquid from the gap as the supply 256 provides fresh liquid 254. As a result, a substantially constant volume of continuously replaced immersion liquid 254 is provided between the objective lens 253 and the wafer surface. The temperature of the liquid is regulated to be approximately the same as the temperature inside the chamber in which the lithography system itself is disposed.
Also shown is a sensor window 260 extending across a recess 262, defined in the wafer stage 248, in which a sensor 264 is located. Thus, the window 260 sequesters the sensor 264 in the recess 262. Movement of the wafer stage 248 so as to place the window 260 beneath the objective lens 253, with continuous replacement of the immersion fluid 254, allows a beam passing through the projection-optical system 246 to transmit through the immersion fluid and the window 260 to the sensor 264.
An interrogation beam source 280 is situated to direct an interrogation optical beam 281 to the reticle 250, and a detection system 282 is configured to detect a portion of the interrogation beam as modulated by the reticle 251. The detected beam can be used as described above to assess reticle distortion so that suitable system adjustments can be made to correct, prevent, or at least partially compensate distortion.
Referring now to
An EUV reticle 316 is held by a reticle chuck 314 coupled to a reticle stage 310. The reticle stage 310 holds the reticle 316 and allows the reticle to be moved laterally in a scanning manner, for example, during use of the reticle for making lithographic exposures. Between the reticle 316 and the barrier wall 320 is a blind apparatus. An illumination source 324 produces an EUV illumination beam 326 that enters the optical chamber 308b and reflects from one or more mirrors 328 and through an illumination-optical system 322 to illuminate a desired location on the reticle 316. As the illumination beam 326 reflects from the reticle 316, the beam is “patterned” by the pattern portion actually being illuminated on the reticle. The barrier wall 320 serves as a differential-pressure barrier and can serve as a reticle shield that protects the reticle 316 from particulate contamination during use. The barrier wall 320 defines an aperture 334 through which the illumination beam 326 may illuminate the desired region of the reticle 316. The incident illumination beam 326 on the reticle 316 becomes patterned by interaction with pattern-defining elements on the reticle, and the resulting patterned beam 330 propagates generally downward through a projection-optical system 338 onto the surface of a wafer 332 held by a wafer chuck 336 on a wafer stage 340 that performs scanning motions of the wafer during exposure. Hence, images of the reticle pattern are projected onto the wafer 332.
The wafer stage 340 can include (not detailed) a positioning stage that may be driven by a planar motor or one or more linear motors, for example, and a wafer table that is magnetically coupled to the positioning stage using an EI-core actuator, for example. The wafer chuck 336 is coupled to the wafer table, and may be levitated relative to the wafer table by one or more voice-coil motors, for example. If the positioning stage is driven by a planar motor, the planar motor typically uses respective electromagnetic forces generated by magnets and corresponding armature coils arranged in two dimensions. The positioning stage is configured to move in multiple degrees of freedom of motion, e.g., three to six degrees of freedom, to allow the wafer 332 to be positioned at a desired position and orientation relative to the projection-optical system 338 and the reticle 316.
An EUVL system including the above-described EUV-source and illumination-optical system can be constructed by assembling various assemblies and subsystems in a manner ensuring that prescribed standards of mechanical accuracy, electrical accuracy, and optical accuracy are met and maintained. To establish these standards before, during, and after assembly, various subsystems (especially the illumination-optical system 322 and projection-optical system 338) are assessed and adjusted as required to achieve the specified accuracy standards. The projection-optical system 338 can be a catoptric system as described above. Similar assessments and adjustments are performed as required of the mechanical and electrical subsystems and assemblies. Assembly of the various subsystems and assemblies includes the creation of optical and mechanical interfaces, electrical interconnections, and plumbing interconnections as required between assemblies and subsystems. After assembling the EUVL system, further assessments, calibrations, and adjustments are made as required to ensure attainment of specified system accuracy and precision of operation. To maintain certain standards of cleanliness and avoidance of contamination, the EUVL system (as well as certain subsystems and assemblies of the system) are assembled in a clean room or the like in which particulate contamination, temperature, and humidity are controlled.
As shown in
Semiconductor devices can be fabricated by processes including microlithography steps performed using a microlithography system as described above. Referring to
Representative details of a wafer-processing process including a microlithography step are shown in
At each stage of wafer processing, when the pre-processing steps have been completed, the following “post-processing” steps are implemented. A first post-process step is step 515 (“photoresist formation”) in which a suitable resist is applied to the surface of the wafer. Next, in step 504 (“exposure”), the microlithography system described above is used for lithographically transferring a pattern from the reticle to the resist layer on the wafer. Reticle distortion can be compensated during pattern transfer. In step 517 (“developing”), the exposed resist on the wafer is developed to form a usable mask pattern, corresponding to the resist pattern, in the resist on the wafer. In step 518 (“etching”), regions not covered by developed resist (i.e., exposed material surfaces) are etched away to a controlled depth. In step 519 (“photoresist removal”), residual developed resist is removed (“stripped”) from the wafer.
Formation of multiple interconnected layers of circuit patterns on the wafer is achieved by repeating the pre-processing and post-processing steps as required. Generally, a set of pre-processing and post-processing steps are conducted to form each layer.
The following paragraphs describe these and other aspects of the present invention in more general terms. The applicant reserves the right to direct claims to any of these aspects or any combinations thereof:
(1) Catoptric optical systems, comprising a plurality of reflective surfaces situated along a common axis from an image to an object and offset and tilted with respect to the common axis so as to be symmetric about a meridian plane, wherein the reflective surfaces are configured to image a rectangular area of an object to a rectangular image area;
(2) Catoptric optical systems such as those of paragraph (1), wherein an image space numerical aperture is at least 0.4;
(3) Catoptric optical systems such as those of paragraph (1), wherein an image space numerical aperture is at least 0.45;
(4) Catoptric optical systems such as those of paragraph (1), wherein an image space numerical aperture is at least 0.5;
(5) Catoptric optical systems such as those of paragraph (1), wherein the plurality of reflective surfaces includes at least six free form optical surfaces;
(6) Catoptric optical systems such as those of paragraph (1), wherein at least one of the free form reflective surfaces is a fringe Zernike surface described by a series of fringe Zernike polynomials;
(7) Catoptric optical systems such as those of paragraphs (1-6), wherein the plurality of reflective optical surfaces includes exactly six reflective surfaces;
(8) Catoptric optical systems such as those of paragraph (1), wherein at least one of the freeform reflective surfaces is a Forbes surface described by series of Forbes polynomials.
(9) Catoptric optical systems such as those of paragraph (5), wherein at least one of the freeform reflective surfaces is a non-uniform B-spline surface.
(10) Catoptric optical systems such as those of paragraph (5), wherein the free form reflective surfaces are fringe Zernike surfaces described by respective series of fringe Zernike polynomials;
(11) Catoptric optical systems such as those of paragraph (5), wherein the fringe Zernike polynomials are symmetric about the meridian plane.
(12) Catoptric optical systems such as those of paragraph (5), wherein the freeform reflective surfaces are fringe Zernike surfaces, Forbes polynomial surfaces, or non-uniform B-spline surfaces or combinations thereof.
(13) Catoptric optical systems such as those of paragraph (1), wherein the plurality of reflective optical surfaces includes first, third, fourth, and fifth reflective surfaces having curvatures of a first sign, and second and sixth reflective surfaces having curvatures of an opposite sign.
(14) Catoptric optical systems such as those of paragraph (13), wherein the plurality of reflective optical surfaces includes exactly six reflective surfaces.
(15) Catoptric optical systems such as those of paragraph (1), wherein at least one of the plurality of reflective surfaces is decentered and tilted in a meridian plane;
(16) Catoptric optical systems such as those of paragraph (1), wherein each of the plurality of reflective surfaces is decentered and tilted in a meridian plane.
(17) Catoptric optical systems such as those of paragraph (1), wherein the image area is a rectangular area of at least 1 mm by 26 mm;
(18) Catoptric optical systems such as those of paragraph (1), wherein an image plane and an object plane are parallel.
(19) Catoptric optical systems such as those of paragraph (1), wherein the reflective surfaces are specified by any of Tables 1-8.
(20) Pattern transfer apparatus, comprising a light source configured to irradiate a reticle; and a catoptric optical system as recited in any of paragraphs (1-19) and configured to image an irradiated portion of the reticle onto a sensitized surface.
(21) Methods, comprising arranging a plurality of freeform optical surfaces along a common axis, each of the free from surfaces offset and tilted with respect to the common axis with respect to a meridian plane so as to from an image a reticle surface in a first plane to a sensitized substrate surface in a second plane, wherein the first plane and the second plane are parallel; and irradiating the reticle so as to expose the sensitized substrate to the image of the reticle.
The above examples are provided in order to illustrate selected embodiments, but the invention is not to be limited by features in any particular embodiment. I claim all that is encompassed by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 14/171,672, filed Feb. 3, 2014, which claims the benefit of U.S. Provisional Application No. 61/760,547, filed Feb. 4, 2013, both of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61760547 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14171672 | Feb 2014 | US |
Child | 16217933 | US |