1. Technical Field
The present invention relates to time domain reflectometry and, in particular, to systems for high performance time domain reflectometry using a tripod stabilized probe configuration.
2. Description of the Related Art
Line impedance is a key parameter of fabricated high speed transmission lines in printed circuit boards (PCBs). Time Domain Reflectometry (TDR) is often used to measure impedance using relatively simple test equipment. If this impedance differs from the impedance of other elements connected by these transmission lines, reflections will occur which can lead to errors in data communication. As communications speeds on PCBs has increased, impedance information is now needed at much higher frequencies, and while fast TDR step generator units are readily available, launching a very fast edge onto PCB traces is limited by existing TDR probes and TDR launch construction.
A probe is shown that includes at least one mechanically biased pin to connect to at least one contact point and at least three fixed guide pins arranged about the at least one biased pin to facilitate alignment of said at least one biased pin by first engaging at least one grounded area, such that the at least one mechanically biased pin is guided to the at least one contact point.
A high-speed probe launch is shown that includes a printed circuit board (PCB) configured to provide access to a probe. The PCB includes at least one signal terminal connected to at least one signal via and at least three guide terminals arranged around the at least one signal terminal, wherein at least one of said guide terminals is connected to at least one ground via.
A time domain reflectometry system is shown that includes a PCB and a probe. The PCB includes at least one signal terminal connected to at least one signal via and at least three guide terminals arranged around the at least one high-frequency signal terminal, wherein at least one of said guide terminals is connected to at least one ground via. The probe includes at least one biased pin to contact the at least one signal terminal and at least three fixed guide pins arranged about the at least one biased pin to facilitate alignment of said at least one biased pin by first engaging at least one guide terminal area, such that the at least one mechanically biased pin is guided to the at least one contact point.
A high bandwidth time domain reflectometry system is shown that include a PCB and a probe. The PCB includes at least one high-frequency signal terminal; and at least three ground terminals arranged around the at least one high-frequency signal terminal. The probe includes at least one spring-loaded pin to contact signal vias and at least three grounding fixed pins having conical tips formed arranged about the at least one spring-loaded pin to facilitate alignment of said spring-loaded pins and to provide mechanical stability.
A method for time domain reflectometry (TDR) is shown that includes providing a TDR probe having at least one biased pin and at least three fixed guide pins to correspond to at least one signal terminal and at least three guide terminals on a device under test (DUT) PCB, wherein the at least one biased pin is recessed relative to the fixed guide pins and applying the TDR probe to the DUT PCB such that the fixed pins align with the guide terminals and permit the at least one recessed biased pin to contact the signal terminal.
These and other features and advantages will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.
The disclosure will provide details in the following description of preferred embodiments with reference to the following figures wherein:
When a signal propagates through a transmission line, changes in impedance can interfere with propagation by attenuating the signal and introducing reflections. As such, the measurement of impedance is an important step in testing. Time domain reflectometry (TDR) helps accomplish this. TDR sends a pulse through the transmission line and measures reflected waveforms that result from impedance changes. Because the speed of propagation is generally stable through a transmission line, measuring the time between pulse and reflection provides information regarding the location of the impedance change. However, the usefulness of TDR can be limited at high frequencies due to limitations in the tools used.
The size of an impedance discontinuity can be determined from the amplitude of a reflected signal in TDR. Furthermore, the distance of the reflecting impedance from the signal launch can be determined from the time that a pulse takes to return if the transmission properties of the medium are known. For example, a coaxial cable formed with a solid polyethylene dielectric has a wave velocity of 66% the speed of light in a vacuum.
This technique is limited in particular by the “rise time” of the system, which refers to the amount of time it takes a signal to change from a specified low value to a specified high value (or vice-versa for the equivalent “fall times”). For example, in a square wave, there will be an imperfection in the signal due to the limitations of the equipment, such that there will be a measurable ramp in the signal rather than an ideal step. Using high-frequency equipment decreases this rise time and improves the accuracy of TDR measurements as faster rise times allow one to examine higher frequency behavior and to improve the spatial resolution of the measurement. A high-frequency test signal will find transmission faults that may be invisible at lower frequencies.
For example, if a pure resistive load is placed at the output of a reflectometer and a step signal is applied, a step signal will be observed in the measurement with its height being a function of the resistance. The magnitude of the reflection caused by the resistive load may be expressed as a function of the input signal as given by:
RL represents the resistance of the resistive load and Z0 represents the characteristic impedance of the transmission line. A discontinuity can be interpreted as a termination impedance and substituted for RL. In this way, using the measured reflected magnitude, a known line impedance, and a known speed of transmission in the transmission medium, an operator is able to determine both the location and size of an impedance defect in the medium. Some impedances are dependent on frequency, such that faults which are invisible at low frequencies can become very large at higher frequencies. High-frequency testing equipment is needed to determine the size and locations of such high-frequency faults.
Exemplary applications for TDR include preventative maintenance in telecommunication lines, where operators can detect points of growing resistance as transmission lines corrode. TDR is also useful in determining the presence and location of wiretaps. For example, the slight change in line impedance caused by the introduction of a tap or splice in a line will show up as a reflected signal in a TDR measurement. In the present case, TDR may be used, for example, to find unsoldered pins and short circuits in a printed circuit board (PCB). In this fashion, TDR may be used as a non-destructive technique to find defects in semiconductor device packages.
High-frequency signals are affected by changes in impedance that occur at higher frequencies than those that affect low-frequency signals. Impedances of transmission lines and other components, such as connectors, tend to deviate more from their ideal values at higher frequencies than at low frequencies. Therefore, high frequency data suffers greater distortions than would be inferred from TDR measurements limited only to the lower frequencies. For this reason, a short rise time (or “fast edge”) in the TDR's step function is needed to test in systems that use high-frequencies. Toward this end, the present principles provide high-frequency probes and launches to enable high-frequency reflectometry in an efficient, easy-to-use manner.
Referring now to the drawings in which like numerals represent the same or similar elements and initially to
Industry standards such as IPC 2.5.5.7 which define how to measure the “Characteristic Impedance of Lines on Printed Boards by TDR” are limited in terms of frequency bandwidth by the constraints imposed by low cost rugged probes that can be used by untrained manufacturing personnel to quickly measure device-under-test (DUT) PCB test coupons in a production setting. These probes are mechanically rugged and should not require time consuming alignment (e.g., use of microscopes). These requirements have led to the design of test coupons and probes that are physically large and, due to resulting electrical parasitics, do not possess the performance needed to test at higher bandwidths called for by high speed designs (e.g., 10 Gb/s and above).
The present principles provide a high speed probe structure with tripod stabilization that is able to launch much faster signals into internal PCB traces. When used in conjunction with backdrilling and/or cavity milling, all internal signal layers can be reached within a PCB. Using such a low cost probe and launch structure will enable not only line impedance but also line loss measurements to extend beyond 10 GHz instead of the 1 GHz limits of current structures. The present principles make use of miniaturized spring-loaded pins to construct a probe that, when used in conjunction with a recommended test coupon layout on the DUT PCB, can produce TDR and time domain transmission results with fidelity sufficient to cover 10 GHz requirements.
Referring now to
It is furthermore contemplated that the holes 202 may simply be recessed areas on the PCB, allowing the pins of the probe to align with them. Additionally, it is contemplated that fewer than all of the holes 202 may be connected to a true ground.
Referring now to
These ground pins 302 are fixed in that they do not retract upon seating. A spring-loaded pin 304 is disposed in the centroid of the equilateral triangle. The spring-loaded pin 304 is small, for example, 10-12 mils in diameter. Use of small pins 304 allow for smaller diameter signal vias in the DUT PCB, with a higher associated bandwidth. Spring loading of this pin provides for vertical mechanical compliance of the probe assembly to avoid damage to the fragile pin 304.
Small-diameter pins 304 need to be accurately aligned to make effective contact with signal vias. When the probe is then lowered to make contact, the conical tips 302 guide the fragile signal pin 304 to the correct location. By aligning the guiding ground pins 302 with ground vias 202, the probe is centered and the signal pin 304 is accurately aligned with its contact point.
The ground vias may be formed by, e.g., a drilling or milling operation. The conical shapes of the tips 302 guide the apex of the cones into the drilled holes of the ground vias and provide a self-centering effect. The tips of the conical probes 302 travel a small distance beyond the plane of the PCB, which allows the recessed signal tip 304 to make contact with the signal via pad 204 on the surface. The tripod configuration of the robust ground pins 302 forms a mechanical cage which prevents damage to the central pin 304 when the probe is not engaged with a PCB. Because the signal pin 304 is mechanically biased with, e.g., a spring, it can compress after making contact with the PCB. This helps prevent damage to the signal pin 304.
The probe design shown in
To provide for high bandwidths, e.g., about 10 GHz or higher, signal vias 204 may be backdrilled for thicker PCB stackups, so that the residual stub is preferably less than 20 mils in length. Additionally, the spring-loaded pins 304 should transition into an impedance controlled structure and should be positioned so that the coupling between the ground 302 and signal pins 304 continue this controlled impedance structure.
Referring now to
Referring now to
Referring now to
Referring now to
The conical ground pins pass through the top surface plane of the DUT PCB, allowing the recessed signal pin (e.g., 304) to engage with the DUT PCB's signal terminal (e.g., 204) at block 706. This forms an operative connection between the probe and the DUT PCB, allowing the probe to perform a high-frequency TDR measurement at block 708. The TDR measurement may include applying a high-frequency signal to the signal terminal(s) 204 and measuring reflected signals, allowing the operator to determine the position and magnitude of line impedance changes.
Referring now to
The impedances 804 and 806 may be frequency-sensitive. For example, an inductive impedance may be characterized as
Z=jωL,
where j is √{square root over (−1)}, ω is the frequency, and L is the inductance. At low frequencies, an inductive impedance will be relatively small and will have little effect on the transmission of signals. As frequencies increase beyond, for example, 10 GHz, the impedance increases proportionally and may become very significant. This means that low-inductance features, which were undetectable and harmless at low frequencies, should be tested for using high-frequency test signals. In such systems, the present principles are highly advantageous in providing TDR at frequencies in such a high operating range.
Referring now to
As noted above, the size and timing of the pulses allow an operator to precisely determine the location and severity of faults in the line. Echo reflections, such as 908, can be detected and removed by noting their periodicity and rapidly diminishing strength. This allows for precise determination of the locations of impedance changes as well as a filtering of information which might otherwise be mistakenly interpreted as such changes.
Having described preferred embodiments of a system and method for high performance time domain reflectometry (which are intended to be illustrative and not limiting), it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made in the particular embodiments disclosed which are within the scope of the invention as outlined by the appended claims. Having thus described aspects of the invention, with the details and particularity required by the patent laws, what is claimed and desired protected by Letters Patent is set forth in the appended claims.
This invention was made with Government support under Contract No.: HR0011-07-9-0002 awarded by Defense Advanced Research Projects Agency. The Government has certain rights to this invention.