The present application is based on, and claims priority from, Taiwan Application Serial Number 93127017, filed Sep. 7, 2004, the disclosure of which is hereby incorporated by reference herein in its entirety.
1. Field of Invention
The present invention relates a high-power Light Emitting Diode (LED). More particularly, the present invention relates to a high-power LED array.
2. Description of Related Art
A high-power LED array, such as a III-V high-power LED array, is frequently employed in outdoor display panels. Conventionally, packed high-power LEDs are assembled on a Printed Circuit Board (PCB) to form this type of high-power LED array.
The high-power LED die 103 is placed in a cavity 106 of the cathode 102. The high-power LED die 103 is electrically connected to the cathode 102. The high-power LED die 103 is also electrically connected to the anode 101 via a wire 105. The cavity 106 is then filled with packing material to secure the high-power LED die 103 in the cavity 106. The packing material is also used as electrical isolation between the anode 101 and the cathode 102. The lens 104 is placed on the anode 101 to focus light emitted by the high-power LED die 103. After high-power LEDs 100 are all electrically connected to the PCB 110, anodes 101 of the high-power LED 100 are electrically connected by anode wires 107.
However, several drawbacks arise for the conventional high-power LED array. First, when the high-power LED array is manufactured by assembling packed LEDs, the size of the LED array is usually bulky. Additional assembling procedures are required, and the manufacturing cost is therefore increased.
Besides, optical misalignment is another issue concerned for the conventional high-power LED array. The optical misalignment results from the misalignment of the packed LED during the assembling procedures. The optical misalignment results in divergence and decreased light intensity. Since the lens inside the packed LED can't be adjusted, an additional external lens is usually required for re-focusing light emitted from the high-power LED array.
Furthermore, inefficiency of heat dissipation is another disadvantage. Since the packed LED has a smaller surface area, the dissipation efficiency is compromised. The inefficiency of heat dissipation further degrades the light intensity of the high-power LED array.
It is therefore an objective of the present invention to provide a high-power LED array with decreased size, efficient heat dissipation, and improved optical alignment.
It is another objective of the present invention to provide a high-power LED array packing method for packing a high-power LED array on a PCB.
In accordance with the foregoing and other objectives of the present invention, a high-power LED array is provided. The high-power LED array includes a PCB, anodes, cathodes, high-power LED dies, packing material, and lenses. The PCB includes cavities arranged in an array. The cavity contains an anode and a cathode. The anodes are electrically connected. The cathodes are also electrically connected. At least one high-power LED die is located in the cavity. The high-power LED die is electrically connected to the anode and the cathode of the cavity in series or in parallel. The cavity is filled with packing material for securing the high-power LED die. A lens is placed on the cavity for focusing light emitted by the high-power LED die.
According to another objective of the present invention, a high-power LED array packing method for packing a high-power LED array on a PCB is provided. The PCB includes cavities arranged in an array. The cavity contains an anode and a cathode. The anodes of the cavities are electrically connected. The cathodes of the cavities are also electrically connected. According to the high-power LED packing method of the present invention, at least one high-power LED die is first placed in the cavity. Next, the high-power LED die is electrically connected to the anode and the cathode of the cavity in series or in parallel. Further, the cavity is filled with packing material for securing the high-power LED die in the cavity. Finally, a lens is placed on the cavity to focus light emitted by the high-power LED die. The placement of the high-power LED die can be adjusted to optimize the light output.
The high-power LED array according to the present invention has a significantly reduced size, and the efficiency of heat dissipation and the optical alignment are also improved. The placement of the lens on the cavity can be adjusted to optimize the light output. Further, the configuration of more than one high-power LED dies in the cavity enables the combination of high-power LED dies with different emission wavelengths in a single high-power LED array. The light intensity per unit area of the high-power LED array is also dramatically increased. Further, the high-power LED array packing method according to the present invention simplifies the packing procedures, increases the power-to-volume ratio, and reduces the manufacturing cost.
It is to be understood that both the foregoing general description and the following detailed description are examples, and are intended to provide further explanation of the invention as claimed.
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
According to the high-power LED array of the present invention, the high-power LED dies are directly packed in the cavities of the PCB. The size of the high-power LED array can therefore be reduced dramatically. Further, the heat sink in the PCB also improves the efficiency of heat dissipation. Additionally, the placement of the lens on each cavity can be adjusted to optimize light output from the high-power LED array.
The PCB 210 includes cavities 211 arranged in an array. One or more high-power LED dies 240 are placed in the cavity 211. More than one high-power LED dies 240 with the same emission wavelength, such as blue color high-power LED dies, can be placed in the cavity 211. Alternatively, a combination of high-power LED dies 240 with different emission wavelength can be employed. For example, a combination of red, green, and blue color high-power LED dies 240 in the cavity 211 results in a white, high-power LED array.
An anode 220 and a cathode 230 are inside the cavity 211, and are electrically connected to the high-power LED dies 240 for providing power to the high-power LED dies 240. The anode 220 and the cathode 230 of the cavity 211 are correspondingly connected in parallel to the anode 220 and the cathode 230 of the adjacent cavity 211. The anode 220 and the cathode 230 are further connected to a common anode 221 and a common cathode 231, respectively.
The high-power LED dies 240 inside the cavity 211 are connected in series. As shown in the
Further, the PCB 210 includes heat sinks 250. The heat sink 250 corresponds to each high-power LED die 240, and is located underneath the metal contact 212. The heat sink 250 is connected to the metal contacts 212 for conducting the heat generated by the high-power LED dies 240. The heat sink 250 is further connected to a common heat sink 251. The common heat sink 251 is located on the backside of the PCB 210 for providing larger dissipation area. The heat generated by the high-power LED dies 240 can be dissipated efficiently by the common heat sink 251.
After the high-power LED dies 240 are placed in the cavity 211 and electrically connected to the anode 220 and the cathode 230 via the wire 213, he cavity 211 is filled with packing material for securing the high-power LED dies 240. The packing material can be silicone or epoxy.
Subsequently, the lens 260 is placed on the cavity 211 and bonded to the packing material. The placement of the lens 260 can be adjusted for respective cavity 211 to optimize light emitted from each cavity 211.
The PCB 310 includes cavities 311 arranged in an array. One or more high-power LED dies 340 are placed in the cavity 311. A plurality of one high-power LED dies 340 with the same emission wavelength, such as blue high-power LED dies, can be placed in the cavity 311. Alternatively, a combination of high-power LED dies 340 with different emission wavelengths can be employed. For example, a combination of red, green, and blue color high-power LED dies 340 in the cavity 311 result in a white, high-power LED array.
An anode 320 and a cathode 330 are inside the cavity 311, and are electrically connected to the high-power LED dies 340 for providing power to the high-power LED dies 340. The anode 320 and the cathode 330 of each cavity 311 are correspondingly connected to the anode 320 and the cathode 330 of the adjacent cavity 311 in parallel. The anode 320 and the cathode 330 are further connected to a common anode 321 and a common cathode 331, respectively.
The high-power LED dies 340 inside the cavity 311 are connected in parallel. As shown in the
Further, the PCB 310 includes heat sinks 350. The heat sink 350 corresponds to each high-power LED die 340, and is located underneath the metal contact 312. The heat sink 350 is connected to the metal contact 312 for conducting the heat generated by the high-power LED dies 340. The heat sink 350 is further connected to a common heat sink 351. The common heat sink 351 is located on the backside of the PCB 310 for providing a larger dissipation area. By the common heat sink 351, the heat generated by the high-power LED dies 340 can be dissipated efficiently.
After the high-power LED dies 340 are placed in the cavity 311 and electrically connected to the anode 320 and the cathode 330 via the wire 313. The cavity 311 for securing the high-power LED dies 340 is filled with packing material. The packing material can be silicone or epoxy.
Subsequently, the lens 360 is placed on the cavity 311 and bonded to the packing material. The placement of each lens 360 can be adjusted for respective cavity 311 to optimize light emitted from each cavity 311.
Further, the anodes and the cathodes of the adjacent cavities can also be electrically connected in series except for the parallel connection shown in the
Further, the high-power LED array according to the present invention can be connected to a secondary heat sink for enhancing the heat dissipation efficiency. As shown in the
The high-power LED array according to the present invention has a significantly reduced size, and the efficiency of heat dissipation and the optical alignment are also improved. The placement of the lens on the cavity can be adjusted to optimize the light output. Further, the configuration of more than one high-power LED dies in the cavity enables the combination of high-power LED dies with different emission wavelengths in a single high-power LED array. The light intensity per unit area of the high-power LED array is also dramatically increased. Further, the high-power LED array packing method according to the present invention simplifies the packing procedures, increases the power-to-volume ratio, and reduces the manufacturing cost.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
93127017 | Sep 2004 | TW | national |