The present invention relates to a semiconductor device suitable for a high-voltage analog switch, and in particular, to a semiconductor device suitable for conducting a change-over operation between transmission and reception of a vibrator in an ultrasound imaging system.
Systems such as an ultrasound imaging system and a printer include a plurality of switches to produce a desired input/output plotted image by individually driving the respective switches. To use a large number of switches of this type arranged in parallel connection at a highly integrated configuration, an analog switch integrated circuit (to be referred to as an analog switch IC herein below) using semiconductors has been employed. JP-A-2004-363997 describes an ultrasound imaging system adopting such analog switch ICs.
When such an analog switch IC used in the ultrasound imaging system conducts a change-over operation between a conductive state and a non-conductive state in response to reception of a control signal, noise takes place due to a leakage current from a drive circuit driving the analog switch IC depending on cases. To overcome this difficulty, an element having a small saturation current is adopted as the drive circuit to reduce the leakage current from the drive circuit to thereby produce an output with lower noise.
An analog switch IC includes a field effect bipolar transistor with metal oxide semiconductor (MOS) gate (to be referred to as an MOSFET hereinbelow). The MOSFET is a switching element to control a current flowing between a drain electrode and a source electrode according to a voltage applied to a gate electrode. The MOSFET has a characteristic in which when the drain-source voltage is increased with the gate voltage kept at a fixed value, the drain current monotonously increases with a low drain-source voltage and saturates with a voltage equal to or more than a predetermined value. To enhance the countermeasure against the noise, it is a common practice to narrow the width of the gate electrode to resultantly produce an MOSFET having a reduced saturation current.
When the width of the gate electrode of the MOSFET becomes narrower, the current and/or the electric field are/is concentrated onto the channel region as the current path beneath the gate electrode depending on cases. The current and/or the electric field concentrated as above lead/leads to creation of high-energy hot carriers. When the hot carriers are injected into the gate oxide film, the film is deteriorated. This causes aging of the MOSFET, namely, a change thereof with the passage of time, leading to, for example, a change in the threshold value voltage of the MOSFET. As a result, the characteristic of the analog switch IC becomes unstable to resultantly affect stability of performance of the ultrasound imaging device including the analog switch IC.
It is therefore an object of the present invention to provide an MOSFET for a small-sized analog switch including high voltage gates in which the saturation current of the MOSFET is reduced while suppressing creation of hot carriers.
In the MOSFET according to the present invention, a resistive region appearing due to a depletion phenomenon of current carriers is disposed between a drain region and a channel region. For the resistive region, there is employed a Junction-FET (JFET) resistor formed by a carrier depletion layer which extends from a junction boundary interface or plane when an n-type region side of a semiconductor junction between a p-type region and an n-type region is at a higher electric potential.
In the MOSFET with an integrated JFET resistor according to the present invention, since the JFET resistor is loaded with most of the drain-source voltage, the voltage imposed on the channel region is reduced and hence the electric field is not concentrated therein. Since the JFET current is used to adjust the saturation current, the width of the gate electrode can be sufficiently secured and the current concentration onto the channel region is also avoided.
According to the present invention, since the voltage imposed on the JFET resistor suppresses creation of hot carriers, the aging of the semiconductor device is reduced. This hence guarantees high reliability of the analog switch IC and the ultrasound imaging system using the same.
Description will now be given in detail of the present invention by referring to the drawings.
The embodiment of the semiconductor device 10 shown in
In the embodiment of the n-type channel MOSFET, when a positive voltage is sufficiently applied across a gate terminal 3 and a source terminal 2, that is, the supplied voltage to the gate terminal 3 is larger than that to the source terminal 2, and a positive voltage is applied across a drain terminal 1 and the source terminal 2, that is, the supplied voltage to the drain terminal 1 is larger than that to the source terminal 2, a drain current flows from a drain electrode 132 to a source electrode 131 via an n+-type drain electrode contact layer 121, the n−-type silicon substrate 100, a central region surrounded by the ring-shaped p-type channel layer 110, a channel region formed beneath a gate electrode 133 and on a surface of the p-type channel layer 110, and an n+-type source electrode contact layer 120.
In the n-type channel MOSFET of the embodiment, the saturation current can be reduced by the JFET resistor appearing in a carrier depletion layer extending from the p-type channel layer 110 through a narrow current path surrounded by the p-type channel layer 110 to the n−-type silicon substrate 100. Since the JEFT resistor is loaded with most of the voltage applied between the drain terminal 1 and the source terminal 2, the voltage to be imposed on the channel region is lowered and hence the electric field is not concentrated onto the channel region. Since the JFET register adjusts the saturation current, the width of the gate electrode can be sufficiently secured and hence the electric field is not concentrated onto the channel region. This resultantly suppresses the creation of hot carriers and the aging of the n-type channel MOSFET of the embodiment. When compared with an associated device using a resistor other than the JFET resistor, for example, a resistor using a long n−-type drift layer and a polycrystalline silicon, the MOSFET of the embodiment is advantageous for the following reason. The MOSFET includes a vertical JFET resistor to reduce the element area on the semiconductor substrate, and hence the device size can be reduced for higher integration. The n-type channel MOSFET of the embodiment can be created using a small element area and is therefore particularly suitable to produce a high voltage analog switch on a dielectric isolation substrate or on a Silicon On Insulator (SOI) substrate including semiconductor islands insulation-isolated by insulator such as SiO2.
The area enclosed by the ring-shaped p-type channel layer 110 can be adjusted according to the amount of the saturation current. That is, the shape of the area in a plan view can be a polygon and an ellipse in addition to a circle. Alternatively, the area may be a rectangle extending in one direction as well as a cross or a star having a shape extending in a plurality of directions. A shape of the area may be a race-track shape. Also, the area in a plan view may be a discontinuous shape in which at least one position is discontinuous in the p-type channel layer 110 and the n+-type source electrode contact layer 120. However, in the configuration of the discontinuous shape, it is required that the n+-type source electrode contact layer 120 is disposed within the p-type channel layer 110. The shape in a plan view of the gate electrode 133 can be appropriately adjusted according to the shape in a plan view of the p-type channel layer 110.
Description has been given of an embodiment of an n-type channel MOSFET on an n−-type substrate. It is also possible to similarly produce a p-type channel MOSFET on a p−-type substrate, which leads to an advantage similar to that of the n-type channel MOSFET on an n−-type substrate.
In the second embodiment, when a sufficient negative voltage is applied across the gate terminal 3 and the source terminal 2 that is, the supplied voltage to the gate terminal 3 is smaller than that to the source terminal 2, and a negative voltage is applied across the drain terminal 1 and the source terminal 2, that is, the supplied voltage to the drain terminal 1 is smaller than that of the source terminal 2, a drain current flows from a drain electrode 232 to a source electrode 231 via a p+-type drain electrode contact layer 221, a p−-type drift layer including a region sandwiched between two JFET resistor creating n-type layers 211, a channel region beneath a gate electrode 233 on surfaces of the n−-type silicon substrate 200 and an n-type channel layer 210, and an p+-type source electrode contact layer 220.
In the second embodiment, the saturation current can be lowered in a narrow current path enclosed by the two JFET resistor creating n-type layers 211 by use of a JFET resistor created in a carrier depletion layer extending from the n−-type silicon substrate 200 and two n-type layers 211 to the p−-type drift layer 223. In the embodiment, since the JEFT resistor is loaded with most of the voltage applied between the drain terminal 1 and the source terminal 2, the voltage to be imposed on the channel region is reduced and hence the electric field is not concentrated onto the channel region. Since the JFET register adjusts the saturation current, the width of the gate electrode can be sufficiently secured and hence the electric field is not concentrated onto the channel region. This resultantly suppresses the creation of hot carriers and the aging of the MOSFET. When compared with an associated device using a resistor other than the JFET resistor, for example, a resistor using a long p−-type drift layer and polycrystalline silicon, the MOSFET of the embodiment is advantageous for the following reason. The MOSFET includes a high resistance JFET resistor to reduce the element area on the semiconductor substrate, and hence the device size can be reduced for higher integration. The p-type channel MOSFET of the embodiment can be created using a small element area and is therefore particularly suitable to produce a high voltage analog switch on a dielectric isolation substrate or on an SOI substrate including semiconductor islands insulation-isolated by insulator such as SiO2.
The shape in a plan view of each of the two JFET resistor creating n-type layers 211 can be arbitrarily determined and is, for example, a polygon with rounded corners in addition to the polygon shown in
The JFET resistor creating n-type layer 211 can also be subdivided into at least two areas. There may also be arranged a plurality of current paths enclosed by the JFET resistor creating n-type layers 211 in the p-type drift layer 223. However, it is required that the layers 211 are at a potential substantially equal to that of the source electrode. In the embodiment of
Description has been given of an embodiment of a p-type channel MOSFET on an n−-type substrate. It is also possible to similarly produce an n-type channel MOSFET on a p−-type substrate, which leads to almost the same advantage as for the p-type channel MOSFET on an n−-type substrate.
In the ultrasound imaging system adopting the analog switch IC 911 according to the first or second embodiment, the noise taking place at change-over of the switch can be lowered. This makes it possible for the system to produce a clear image while reducing deterioration with the passage of time in the control performance and picture quality.
The analog switch IC 800 of the present invention can also be employed for apparatuses including a plasma display, printers such as an ink-jet printer and a laser beam printer, and a tester to evaluate a printed circuit board. This leads to reduction of output noise, prevention of erroneous operations, and suppression of deterioration due to the aging to thereby improve reliability of the apparatuses using the analog switch IC 800 as in the case of the ultrasound imaging systems.
It should be further understood by those skilled in the art that although the foregoing description has been made on embodiments of the invention, the invention is not limited thereto and various changes and modifications may be made without departing from the spirit of the invention and the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2005-160851 | Jun 2005 | JP | national |