The present disclosure generally relates to the field of high-voltage device structures.
High-voltage, field-effect transistors (HVFETs) are well known in the semiconductor arts. Many HVFETs employ a device structure that includes an extended drain region that supports or “blocks” the applied high-voltage (e.g., 200 volts or more) when the device is in the “off” state. HVFETs of this type are commonly used in power conversion applications such as AC/DC converters for offline power supplies, motor controls, and so on. These devices can be switched at high voltages and achieve a high blocking voltage in the off state while minimizing the resistance to current flow in the “on” state. The extended drain region of a typical HVFET is usually lightly doped to support high voltages applied to the drain when the device is off. The length of the extended drain region is also increased as compared to a conventional low-voltage MOSFET to spread the electric field over a larger area so the device can sustain higher voltages. When the device is on (i.e., conducting) current flows through the extended drain region.
In a vertical HVFET structure, a mesa of semiconductor material forms the extended drain or drift region for current flow in the on-state. A trench gate structure is formed near the top of the substrate, adjacent the sidewall regions of the mesa where the body region is disposed. Application of an appropriate voltage potential to the gate causes a conductive channel to be formed along the vertical sidewall portion of the body region such that current may flow vertically through the semiconductor material, i.e., from a top surface of the substrate where the source region is disposed, down to the bottom of the substrate where the drain region is located.
Conventional power integrated circuit (IC) devices often employ a large vertical high-voltage output transistor in a configuration wherein the drain of the transistor is coupled directly to an external pin. The IC typically includes a controller circuit formed on a semiconductor die or chip that is separate from the semiconductor die that includes the high-voltage output transistor. Both semiconductor chips (the controller and output transistor) are usually housed in the same IC package. To provide start-up current for the controller circuit of the IC, a high external voltage may be applied to the external pin. The controller is typically protected from the high externally-applied voltage limited by a junction field-effect transistor (JFET) “tap” structure. For example, when the drain of the high voltage output transistor is taken to, say 550V, the tap transistor limits the maximum voltage coupled to the controller to approximately 50V, thereby providing a small (2-3 mA) current for start-up of the device. However, a problem with this type of circuit configuration occurs when the drain pin goes negative, as commonly happens in some power supply configurations. The negative swing on the drain of the vertical output HVFET can inject a large amount of minority carriers into the substrate, which can cause latch-up of the controller.
The present invention is illustrated by way of example, and not limitation, in the figures of the accompanying drawings, wherein:
In the following description specific details are set forth, such as material types, dimensions, structural features, processing steps, etc., in order to provide a thorough understanding of the present invention. However, persons having ordinary skill in the relevant arts will appreciate that these specific details may not be needed to practice the embodiments described.
It should be understood that the elements in the figures are representational, and are not drawn to scale in the interest of clarity. It is also appreciated that although an IC utilizing N-channel transistor devices are disclosed, P-channel transistors may also be fabricated by utilizing the opposite conductivity types for all of the appropriate doped regions. Furthermore, those of skill in the art of high-voltage semiconductor devices will understand that transistor structures such as those shown by way of example in the figures may be integrated with other transistor device structures, or otherwise fabricated in a manner such that different devices share common connections and semiconductor regions (e.g., N-well, substrate, etc.).
In the context of the present application a high-voltage or power transistor is any semiconductor transistor structure that is capable of supporting approximately 150V or more in an “off” state or condition. In one embodiment, a high-voltage output transistor is illustrated as an N-channel metal-oxide-semiconductor field-effect transistor (MOSFET) with the high-voltage being supported between the source and drain regions. In other embodiments, a high-voltage output transistor may comprise a bipolar junction transistor (BJT), an insulated gate field effect transistor (IGFET), or other device structures that provide a transistor function.
For purposes of this disclosure, “ground” or “ground potential” refers to a reference voltage or potential against which all other voltages or potentials of a circuit or IC are defined or measured.
In the context of the present disclosure a tap transistor is a transistor device structure in which a voltage at a first or tap terminal is substantially proportional to an applied voltage across the second and third terminals when the applied voltage is less than a pinch-off voltage of the transistor device. When the applied voltage across the second and third terminals exceeds the pinch-off voltage, the voltage provided at the tap terminal is substantially constant or unchanging with increased applied voltage. In one embodiment, a tap transistor comprises a junction field-effect transistor (JFET).
In the example of
During operation of the power IC device, when the drain (node 13) of vertical HVFET 11 transitions to a negative voltage, resistor 14 limits the current that flows to the controller, thereby preventing latch-up of the internal controller circuitry. The value of resistor 14 may be determined based on the maximum current that can be tolerated in the controller section of the IC before latch-up occurs. For example, if the power IC device is able to tolerate current up to 10 mA, and assuming in a worst case scenario that the drain of HVFET 11 can transition to a negative voltage of about −1V, then resistor 14 should have a resistance value of 100 ohms.
Practitioners in the art will appreciate that when node 13 transitions to a positive voltage of, say 550V, both terminal ends of resistor 14 (i.e., nodes 13 & 17) float up to substantially the same high voltage level. That is, only a relatively small voltage potential difference appears across resistor 14 between nodes 13 and 17. For example, one end of resistor 14 coupled to node 13 may be at 550V; whereas the other end of resistor 14 coupled to node 17 may be at about 549.8V. Note that the drain metal electrode of HVFET 11 and the N-well of the underlying tap transistor structure are also at substantially the same potential as that of the end of resistor 14 coupled to node 13. In this state (i.e., off-state), the substrate beneath the N-well, and the gate of the tap transistor, are at or near ground potential.
The controller circuitry draws startup current (e.g., ˜2 mA) from node 13 through tap transistor 15 and resistor 14. When this occurs, the voltage drop across resistor 14 (assuming a 100 ohm resistance) is about 0.2V, which is negligible compared to the available voltage.
Also connected to node 17 is the drain of a high-voltage MOSFET 22, which is shown configured with its source, body region, and gate grounded. In a normal operating condition, transistor 22 is off, i.e., non-conducting. In one embodiment, high-voltage MOSFET 22 and tap transistor 15 are fabricated such that both devices share the same N-well region formed in a P-type substrate. In the example of
As can be seen, a plurality of substantially parallel spaced-apart P-type buried regions 34 are shown disposed in the left-hand area of N-well 33, laterally-adjacent to the area directly underneath resistor 39. The uppermost buried region 34 is shown coincident with field oxide region 38. The right-hand area of N-well 33 comprises the tap JFET structure, which includes a plurality of substantially parallel spaced-apart P-type buried regions 35 disposed beneath a section of field oxide region 38 formed between N+ regions 36 and 37.
Note that in this embodiment, the P-type buried regions 34 or 35 do not extend beneath N+ regions 36 or 37. An interlayer dielectric layer 40 is formed over portions of field oxide regions 38 and resistor layer 39. Electrode 41 provides electrical connection to one end of layer 39 through interlayer dielectric layer 40. Via openings in interlayer dielectric layer 40 allow electrode 42 to electrically connect to one end of layer 39 and also to N+ region 36 (node 17 in
Practitioners in the semiconductor arts will appreciate that the P type buried regions 35 comprise the gate of the JFET structure. A deep implant (not shown) or any other type of equivalent structure may be used to electrically connect to one end of each of buried regions 35. For example, in
In the off-state, the end of each of the P type buried regions 35 not grounded (i.e., the end closest to region 37) floats up to the maximum voltage, e.g., substantially the same voltage appearing at electrode 43, which is the drain of output transistor 11. In this configuration, the high external voltage applied to node 13 is dropped laterally across the each of the P type buried layers 35. Hence, the actual voltage on the JFET gate (P type buried regions) varies in a lateral direction from drain (region 37) to the source (region 36) of the JFET structure.
In one embodiment of the device structure shown in
In the example cross-section of
Persons of skill in the semiconductor arts will appreciate that the tap transistor portion of the integrated high-voltage device structure shown in
Continuing with the example embodiment of
Regions 34 & 35 may be formed, for example, by high-energy ion implantation. This results in an N-well region 33 that is divided into multiple JFET conduction channels interleaved with P-buried regions 34 (beneath layer 39) and P-buried regions 35 (between N+ regions 36 & 37). It is appreciated that N-well 33 may also be formed by high-energy ion implantation. The implant energies and doses may be chosen in order to keep the maximum electric field at the N-well-P-buried layer junction below the critical electric field at which avalanche breakdown occurs. In one embodiment, the maximum charge in P-buried regions 34 & 35 and each of the JFET channels is about 1-2×1012/cm2. Those of ordinary skill in the art will appreciate that to form N-well region 33 with a plurality of JFET conduction channels, the doping and implant energy levels of the N-well and the plurality of P-buried regions may be chosen to approximate the above-described charge levels.
During normal operation of the power IC of
It should be further understood that when electrode 41 is at a high positive voltage of, say, 550V, both ends of polysilicon resistor layer 39 (i.e., electrodes 41 and 42) float up to substantially the same high voltage. For example, when a voltage of 550V appears at electrode 41, electrode 42 may be at a voltage potential of about 549.8V, depending on the resistance value of resistor layer 39 and the current flow through resistor layer 39 and transistor 15. The N-well region 33 directly beneath resistor layer 39 is also at substantially the same high potential as electrode 42. When the controller section of the IC draws startup current (e.g., 2 mA) from electrode 41, a small, negligible voltage drop (e.g., ˜0.2V) occurs across resistor layer 39 between electrodes 41 & 42.
Although the uppermost P-type buried regions 34 & 35 are illustrated in
In another embodiment, instead of having a plurality of P-type buried regions, only a single P-type buried region 34 and a single P-type buried region 35 are formed on opposite sides of N-well 33.
In one embodiment, field oxide regions 38 comprises silicon dioxide formed using a variety of well-known methods, including thermal growth and chemical vapor deposition. It is appreciated that in other embodiments field oxide regions 38 may comprise silicon nitride or other suitable dielectric materials. Similarly, interlayer dielectric layer 40 may comprise silicon dioxide, silicon nitride, or other suitable dielectric materials.
Although the present invention has been described in conjunction with specific embodiments, those of ordinary skill in the arts will appreciate that numerous modifications and alterations are well within the scope of the present invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
This application is a continuation of application Ser. No. 12/583,426, filed Aug. 20, 2009, entitled, “High-Voltage Transistor Device With Integrated Resistor”, which is assigned to the assignee of the present application.
Number | Name | Date | Kind |
---|---|---|---|
5282107 | Balakrishnan | Jan 1994 | A |
5285369 | Balakrishnan | Feb 1994 | A |
5977763 | Loughmiller et al. | Nov 1999 | A |
6128241 | Choi | Oct 2000 | A |
6388853 | Balakrishnan et al. | May 2002 | B1 |
6449207 | Sher et al. | Sep 2002 | B2 |
6630724 | Marr | Oct 2003 | B1 |
6635544 | Disney | Oct 2003 | B2 |
6640435 | Balakrishnan | Nov 2003 | B2 |
6668451 | Balakrishnan | Dec 2003 | B2 |
6693481 | Zheng | Feb 2004 | B1 |
6750640 | Balakrishnan et al. | Jun 2004 | B2 |
6954057 | Balakrishnan et al. | Oct 2005 | B2 |
6987299 | Disney et al. | Jan 2006 | B2 |
7002398 | Disney | Feb 2006 | B2 |
7170756 | Balakrishnan | Jan 2007 | B2 |
7205824 | Disney | Apr 2007 | B2 |
7221011 | Banerjee et al. | May 2007 | B2 |
7227733 | Balakrishnan et al. | Jun 2007 | B2 |
7308754 | Balakrishnan | Dec 2007 | B2 |
7335944 | Banerjee et al. | Feb 2008 | B2 |
7336095 | Erickson et al. | Feb 2008 | B2 |
7400483 | Balakrishnan et al. | Jul 2008 | B2 |
7932738 | Banerjee et al. | Apr 2011 | B1 |
7998817 | Disney | Aug 2011 | B2 |
20030218924 | Duval et al. | Nov 2003 | A1 |
20060092742 | Paillet et al. | May 2006 | A1 |
20060214221 | Challa et al. | Sep 2006 | A1 |
20080122006 | Williams et al. | May 2008 | A1 |
20090166797 | Kim et al. | Jul 2009 | A1 |
20100163990 | Ko | Jul 2010 | A1 |
20100301412 | Parthasarathy et al. | Dec 2010 | A1 |
20110272758 | Banerjee et al. | Nov 2011 | A1 |
20130181723 | Mauder et al. | Jul 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20120146105 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12583426 | Aug 2009 | US |
Child | 13385264 | US |