The present invention relates to a vertical EEPROM that combines a surface MOSFET with deeply buried trench.
Vertically oriented non-volatile memory cells are known. For example, U.S. Pat. No. 6,921,696 to Rudeck discloses a non-volatile memory cell that has a vertically oriented transistor having a vertical floating gate and a vertical control gate. A vertical channel region is formed with a source region that is formed in one plane and a drain region that is formed in a plane above the source region. U.S. Pat. No. 6,878,991 to Forbes describes an EEPROM memory device that provides vertical floating gate memory cells having N+ doped regions provided respectively at the top and bottom of a vertical trench to form the source and to the drain regions for a vertically oriented floating gate memory cell. These types of non-volatile memory devices are fabricated with a vertical orientation such that the drain and source regions are at different levels and the channel region is vertically oriented.
Many conventional MOSFET devices are so-called surface devices that are fabricated on a semiconductor wafer with their drain and source regions at the same level near the top surface of a substrate and with their channels horizontally oriented. Adding a small number of non-volatile EEPROM cells with floating gates to such a wafer requires a number of additional mask layers and fabrication process modifications.
The present invention provides for adding non-volatile memory cells with trench-filled polysilicon gate to conventional power MOSFET surface devices which have their drain and source regions at the same level near the top surface of a substrates and with their channels horizontally oriented. The present invention provides an added buried vertical trench-filled polysilicon gate using a small number of additional mask layers and fabrication process modifications.
The present invention provides an EEPROM device structures that includes a substrate with a surface MOSFET formed in an upper region of the substrate. The surface MOSFET has a body portion. A vertical trench-filled polysilicon gate is formed in a trench in a lower region of the substrate and adjacent to the MOSFET body portion of the substrate. The vertical trench-filled polysilicon gate is isolated by dielectric material from the body portion of the MOSFET with one side of the vertical trench-filled polysilicon gate being adjacent to the MOSFET body portion of the substrate. A “word line” region is formed in the lower region of the substrate adjacent to another side of the vertical trench-filled polysilicon gate and isolated from the vertical trench-filled polysilicon gate by dielectric material.
In one embodiment of the invention, the MOSFET body portion is a P-doped material, the MOSFET source and drain regions are diffused N+ material, and the memory word line, region is a P-type silicon material. A buried oxide layer is formed beneath the substrate, it which is formed the trench containing the vertical trench-filled polysilicon gate. Respective electrical contacts are connected to the MOSFET body portion, the MOSFET source region, the MOSFET drain, the MOSFET gate region, and the “word line” region.
The present invention provides an EEPROM device structure that includes a substrate and a surface MOSFET formed in an upper region of the substrate. The surface MOSFET includes a MOSFET body portion of the substrate, a MOSFET source region that is formed in the MOSFET body portion of the substrate, a MOSFET drain region that is formed in the MOSFET body portion of the substrate, a MOSFET channel region that is formed between the MOSFET source and drain regions in the MOSFET body portion of the substrate, and a MOSFET gate region that is formed over the MOSFET channel region and that is insulated from the MOSFET channel region by a gate dielectric layer.
The EEPROM device structure further includes a deep buried vertical trench-filled polysilicon gate that is formed in a trench in a lower region of the substrate adjacent to the MOSFET body portion of the substrate. The vertical trench-filled polysilicon gate is isolated by dielectric material from the MOSFET body portion of the substrate. One side of the vertical trench-filled polysilicon gate is adjacent to the MOSFET body portion of the substrate.
The EEPROM device structure also includes a memory “word line” region that is formed in the lower region of the substrate adjacent to another side of the vertical trench-felled polysilicon gate and isolated from the vertical trench-filled polysilicon gate by dielectric material.
In one embodiment of the invention the MOSFET body portion is a P-doped material, the MOSFET source and drain regions are diffused N+ material, and the memory word line region is a P-type silicon material.
In another embodiment of the invention, a buried oxide layer is formed beneath the substrate over which is the trench containing the vertical trench-filled polysilicon gate.
The EEPROM device structure includes respective electrical contacts that are connected to the MOSFET body portion, the MOSFET source region, the MOSFET drain, the MOSFET gate region, and the “word line” region.
In another embodiment of the invention, a dual EEPROM device structure is provided that includes a substrate and a first and a second surface MOSFET formed in an upper region of the substrate. Each of the surface MOSFETs includes: a MOSFET body portion of the substrate, a MOSFET source region that is formed in the MOSFET body portion of the substrate, a MOSFET drain region that is formed in the MOSFET body portion of the substrate, a MOSFET channel region that is formed between the MOSFET source and drain regions in the MOSFET body portion of the substrate, and a MOSFET gate region that is formed over the MOSFET channel region and that is insulated from the MOSFET channel region by a gate dielectric layer. For the dual EEPROM device structure, a first and a second vertical trench-filled polysilicon gate are each formed in a respective trench in a lower region of the substrate. Each trench is adjacent to a respective MOSFET body portion of the substrate and each of the vertical trench-filled polysilicon gates is isolated by dielectric material from the respective MOSFET body. One side of each of the vertical trench-filled polysilicon gate is adjacent to the respective MOSFET body portion of one of the surface MOSFETS. A commonly shared memory “word line” region is formed in the lower region of the substrate adjacent to another side of each of the vertical trench-filled polysilicon gates and isolated from the vertical trench-filled polysilicon gates by dielectric material.
A method of fabricating an EEPROM device includes the steps of: forming a trench in a lower region of a substrate; lining the trench with a dielectric material; filling the lined trench with polysilicon material to provide a vertical trench-filled polysilicon gate; forming a surface MOSFET in an upper region of a body portion of the substrate; and forming a “word line” region in the lower region of the substrate adjacent to another side of the vertical trench-filled polysilicon gate and isolated from the vertical polysilicon floating gate by dielectric material lining the trench.
The method further includes the steps of doping the MOSFET body portion to provide a P-doped body portion, diffusing N+material into the MOSFET source and drain regions, and doping the memory word line region to provide a P-type silicon material.
The method includes forming a buried oxide layer over which is formed the trench containing the vertical trench-filled polysilicon gate. Respective electrical contacts are connected to the MOSFET body portion, the MOSFET source region, the MOSFET drain, the MOSFET gate region, and the “word line” region.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention:
The present invention allows non-volatile memory devices to be added to integrated circuits and to power MOS integrated circuits. With a minimal addition of several mask layers, a non-volatile memory can be merged with or embedded in conventional MOSFET or high-power integrated circuits by adding a deeply buried vertical trench-filled polysilicon gate to a surface MOSFET device.
An object of the present invention is to take a high-voltage power device technology, with full dielectric isolation, and quickly and inexpensively add an EEPROM-like device, with no or minimal extra process steps and with no or minimal modification to the process. The added memory devices would be sufficient to store, for example, a few hundred bits of a program code or an identification code.
With reference to
For the surface MOSFET transistor 10, a heavily doped N diffusion layer 26 forms a MOSFET drain region that is provided with a conductive via 28 for external connection. Another heavily doped N diffusion layer 30 forms a MOSFET source region that is provided with a conductive via 32 for external connection. A heavily doped P diffusion layer 34 is diffused into the body of the MOSFET transistor 10 and is provided with a conductive via 36 for external connection. A conventional gate 38 for the MOSFET is formed as a conductive strips that overlies a channel region formed near the top surface of the substrate. A thin dielectric layer 39 is placed between the gate 38 and the channel region. A conductive via 40 is provided for external connection to the gate 38.
In a similar manner, the other surface MOSFET transistor 11 has a heavily doped N diffusion layer 46 that forms a MOSFET drain region that is provided with a conductive via 48 for external connection. Another heavily doped N diffusion layer 50 forms a MOSFET source region that is provided with a conductive via 52 for external connection. A heavily doped P diffusion layer 54 is diffused into the body of the MOSFET transistor 11 and is provided with a conductive via 56 for external connection. A conventional gate for the MOSFET is formed as a conductive strip 58 that overlies another channel region formed near the top surface of the substrate. A thin dielectric layer is placed between the gate 58 and the channel region. A conductive via 60 is provided for external connection to the gate 58.
The trench-tilled polysilicon is undoped. It is believed that the structure of the present invention stored charge that modifies the conductivity state, or leakage characteristics, of the MOSFET devices adjacent to the trench-fill polysilicon. This means that the trench-fill polysilicon may function minimally as a Floating gate. It is believed that a main function of the trench-fill polysilicon is probably as a high-K dielectric material which increases the effect of the neighboring voltage on the sidewall of the MOSFET device functioning as a memory device. Silicon diode has a relative dielectric constant of about 3.9 and silicon is about 11.9. The high-K material reduces the electrical width of the trench dielectric and silicon composite sandwich. It is believed that controlling charge may be stored in the trench dielectric regions 25a, 25b, between the trench-fill polysilicon and the body of the adjacent MOSFET regions 18a and 18d.
An appropriate bias voltage applied to the gate 38 through the conductive via 40 can be used to adjust the memory properties ad the operation of EEPROM devices provided according to the present invention.
With reference to
If the body 102 of the high-voltage power device 104 is at 80 volts and the body 106 of the NMOS device is at 0 volts, the resultant electric field produces a depletion zone 122 in the body 108 of the NMOS device. The depletion zone 122 provides parasitic leakage paths 124a, 124b. The depletion zone 122 causes punch through between a source and drain of the NMOS device 108 in a punch through zone 126 formed at the junction of the n+ doped region 116 and the depletion region 122.
The performance of an EEPROM-like device provided by the present invention may be restricted regarding, for example, write time. Controlling charge is stored for example, in the trench dielectric material between the trench-filled polysilicon gates and the adjacent body portions of the MOSFETS. This may result in limited cycling performance. High voltages for inviting function are available in a high-voltage power device.
The foregoing description of a specific embodiment of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiment was chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.