Illumination optical apparatus, exposure apparatus, and device manufacturing method

Information

  • Patent Grant
  • 10101666
  • Patent Number
    10,101,666
  • Date Filed
    Tuesday, May 19, 2015
    9 years ago
  • Date Issued
    Tuesday, October 16, 2018
    6 years ago
Abstract
An illumination optical apparatus guides exposure light emitted from an exposure light source, to an illumination target object. The illumination optical apparatus has a plurality of spatial light modulation members arranged in an array form, and each spatial light modulation member is so configured that a plurality of reflecting optical elements each including a movable reflecting surface are arranged in an array form. At least one of the spatial light modulation members is arranged in an optical path of the light emitted from the light source.
Description
BACKGROUND OF THE INVENTION

Field


The present invention relates to an illumination optical apparatus for illuminating an illumination target object, an exposure apparatus having the illumination optical apparatus, and a device manufacturing method using the exposure apparatus.


Description of the Related Art


The conventional exposure apparatus, for example, described in Japanese Patent Application Laid-open No. 2002-353105 was proposed as an exposure apparatus to be used in manufacture of micro devices such as semiconductor integrated circuits. This exposure apparatus has an illumination optical apparatus for illuminating a mask such as a reticle on which a predetermined pattern is formed; and a projection optical apparatus for projecting a pattern image formed by illumination of the mask with the illumination optical apparatus, onto a substrate such as a wafer or a glass plate coated with a photosensitive material.


The illumination optical apparatus has a spatial light modulation member for adjusting a pupil luminance distribution on an illumination target surface of the mask. This spatial light modulation member has a plurality of reflecting optical elements arranged in an array form, and a reflecting surface of each reflecting optical element is coated with a reflecting film. Each reflecting optical element is so configured that exposure light from a light source is reflected toward the mask by the reflecting surface thereof.


SUMMARY

Embodiments of the present invention provide an illumination optical apparatus, an exposure apparatus, and a device manufacturing method capable of contributing to increase in manufacture efficiency of devices with increase in output of the light source even in the case where the spatial light modulation member is arranged in the optical path of the light emitted from the light source.


For purposes of summarizing the invention, certain aspects, advantages, and novel features of the invention have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessary achieving other advantages as may be taught or suggested herein.


An illumination optical apparatus according to an embodiment of the present invention is an illumination optical apparatus which guides light emitted from a light source and traveling along a predetermined optical path, to an illumination target object, the illumination optical apparatus comprising: a plurality of spatial light modulation members in which a plurality of reflecting optical elements each including a movable reflecting surface are arranged in an array form; wherein at least one of the spatial light modulation members is arranged in the optical path.





BRIEF DESCRIPTION OF THE DRAWINGS

A general architecture that implements the various features of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the invention and not to limit the scope of the invention.



FIG. 1 is a schematic configuration diagram showing an exposure apparatus in the first embodiment.



FIG. 2 is a schematic perspective view showing a movable multi-mirror in the first embodiment.



FIG. 3 is a schematic perspective view showing an array form of mirror elements forming a movable multi-mirror.



FIG. 4 is a schematic perspective view showing a configuration of a drive unit to drive a mirror element.



FIG. 5 is a schematic configuration diagram showing a part of an illumination optical apparatus in the second embodiment.



FIG. 6 is a schematic configuration diagram showing a part of an illumination optical apparatus in the third embodiment.



FIG. 7 is a schematic configuration diagram showing a part of an illumination optical apparatus in the fourth embodiment.



FIG. 8 is a schematic configuration diagram showing a part of an illumination optical apparatus in the fifth embodiment.



FIG. 9 is a flowchart of a manufacture example of devices.



FIG. 10 is a detailed flowchart about processing of a substrate in the case of semiconductor devices.





DESCRIPTION
First Embodiment

The first embodiment as a specific example of the present invention will be described below on the basis of FIGS. 1 to 4.


As shown in FIG. 1, an exposure apparatus 11 of the present embodiment is composed of an illumination optical apparatus 13 to which exposure light EL from an exposure light source 12 is supplied, a reticle stage 14 holding a reticle R (which may be a photomask) on which a predetermined pattern is formed, a projection optical device 15, and a wafer stage 16 holding a wafer W having a surface coated with a photosensitive material such as a resist. The exposure light source 12 consists of for example, an ArF excimer laser light source. The exposure light EL emitted from the exposure light source 12 passes through the illumination optical apparatus 13 to be so adjusted as to evenly illuminate the pattern on the reticle R.


The reticle stage 14 is arranged on the object plane side of the projection optical device 15 described later, so that a mounting surface of the reticle R is approximately perpendicular to the direction of the optical axis of the projection optical device 15. This projection optical device 15 has a barrel 17 internally filled with an inert gas such as nitrogen, and a plurality of lenses not shown are disposed along the optical path of the exposure light EL in this barrel 17. An image of the pattern on the reticle R illuminated with the exposure light EL is projected and transferred in a reduced state at a predetermined reducing rate through the projection optical device 15, onto the wafer W on the wafer stage 16. The optical path herein refers to a path in which light is intended to pass in a use state.


The illumination optical apparatus 13 of the present embodiment will be described below on the basis of FIG. 1.


The illumination optical apparatus 13 is provided with a relay optical system 18 into which the exposure light EL emitted from the exposure light source 12 is incident. This relay optical system 18 is typically composed of a first positive lens 19, a negative lens 20, and a second positive lens 21 arranged along the optical axis AX1 in the order named from the exposure light source 12 side. The exposure light EL incident from the exposure light source 12 into the relay optical system 18 is emitted in an enlarged state of its sectional shape to the opposite side to the exposure light source 12.


In the illumination optical apparatus 13, a reflecting optical system 23 has a configuration in which a plurality of movable multi-mirrors 22 (only fifteen of which are illustrated in FIG. 2) are arranged in an array form, as shown in FIGS. 1 and 2, and is disposed in an unmovable state on the opposite side to the exposure light source 12 with respect to the relay optical system 18. This reflecting optical system 23 has a base 24 of a planar plate shape and, mirror rows in each of which three movable multi-mirrors 22 are juxtaposed in the X-direction, are formed in five lines in the Y-direction on the base 24. Each movable multi-mirror 22 is provided with an effective region 25 of a nearly rectangular shape capable of reflecting the exposure light EL and the exposure light EL impinges upon each of the effective regions 25 of all the movable multi-mirrors 22. The above-described arrangement of movable multi-mirrors 22 (i.e., three in the X-direction and five in the Y-direction) is just an example, and the arrangement and number of movable multi-mirrors 22 may be those different from the above-described arrangement.


The exposure light EL reflected on each movable multi-mirror 22 travels through a condenser optical system (distribution forming optical system) 26 arranged along the optical axis AX2 making a predetermined angle with the optical axis AX1 on the entrance side of each movable multi-mirror 22, into an optical integrator (fly's eye lens in the present embodiment) 27. The front focal point of the condenser optical system 26 is located near an arrangement plane P where each mirror element in each movable multi-mirror 22 is located, and the rear focal point of the condenser optical system 26 is located on a plane P2 near an entrance surface of the optical integrator 27. This optical integrator 27 has a configuration in which a plurality of lens elements 28 (only five of which are shown in FIG. 1) are two-dimensionally arranged. The exposure light EL incident into the optical integrator 27 is split into a plurality of beams by the lens elements 28. As a consequence, a large number of light source images are formed on the right side plane (or image plane) in FIG. 1 of the optical integrator 27.


The exposure light EL emitted from the optical integrator 27, which consists of beams emitted from the large number of light source images, travels through a condenser optical system 29 to illuminate a mask blind 30 in a superposedly condensed state. The exposure light EL having passed through an aperture 31 of the mask blind 30 travels through a condenser optical system 32 to illuminate a reticle R. A pupil luminance distribution in an illumination region illuminated with the exposure light EL on the reticle R is appropriately adjusted.


In the present embodiment, the reticle R arranged on an illumination target surface of the illumination optical system IL is illuminated by Köhler illumination, using the secondary light source formed by the optical integrator 27, as a light source. For this reason, a position P3 where the secondary light source is formed is optically conjugate with a position P4 of an aperture stop AS of the projection optical system PL and the forming plane P3 of the secondary light source can be called an illumination pupil plane of the illumination optical system IL. Typically, the illumination target surface (a plane where the mask M is arranged, or a plane where the wafer W is arranged in the case where the illumination optical system is considered to include the projection optical system PL) is an optical Fourier transform plane of the illumination pupil plane.


In the present embodiment, a splitting mirror for reflecting part of the exposure light EL is provided on the exit side of the optical integrator 27 and an exposure amount sensor SE1 is provided so as to receive light reflected by the splitting mirror. The exposure amount can be controlled by monitoring the output of the exposure amount sensor SE1.


In the present embodiment, the wafer stage 16 is provided with a pupil luminance distribution detector SE2 for monitoring the pupil luminance distribution of exposure light arriving at the wafer W. The configuration of this pupil intensity distribution detector is disclosed, for example, in Japanese Patent Application Laid-open No. 2006-59834 and U.S. Pat. Published Application No. 2008/0030707 corresponding thereto. U.S. Pat. Published Application No. 2008/0030707 is incorporated herein by reference.


The configuration of movable multi-mirror 22 will be described below on the basis of FIGS. 2 to 4.


As shown in FIGS. 2 and 3, the movable multi-mirror 22 has a plurality of mirror elements 33 of a square shape on their plan view with a reflecting surface 34 coated with a reflecting film, and the mirror elements 33 are arranged in an array form. In order to reduce a loss in light quantity in the reflecting optical system 23, these mirror elements 33 are arranged with a gap as small as possible between mirror elements 33 adjacent to each other. Each mirror element 33 is movable to change an angle of inclination to the optical path of exposure light EL. In the description hereinafter, the “angle of inclination of the mirror element 33 to the optical path of exposure light EL” will be referred to simply as an “inclination angle of mirror element 33.” As shown in FIG. 1, the mirror elements of the movable multi-mirrors 22 are arranged along the arrangement plane P1 located on the XY plane.


The reflecting optical system 23 of the present embodiment is composed of plural types (two types in the present embodiment) of movable multi-mirrors 22A, 22B. Specifically, the mirror row located on the nearest side in the Y-direction in FIG. 2, the mirror row located in the middle among the mirror rows, and the mirror row located on the farthest side each are composed of first movable multi-mirrors 22A, while the other mirror rows each are composed of second movable multi-mirrors 22B. The first movable multi-mirror 22A is composed of a plurality of mirror elements 33 rotatable around a first axis S1, as shown in FIG. 4. On the other hand, the second movable multi-mirror 22B is composed of a plurality of mirror elements 33 rotatable around a second axis S2 nearly perpendicular to the first axis S1. The first axis S1 is an axis corresponding to a first diagonal line among the two diagonal lines of the mirror element 33 and the second axis S2 is an axis corresponding to a second diagonal line perpendicular to the first diagonal line.


A drive unit for the mirror element 33 forming the first movable multi-mirror 22A will be described below on the basis of FIG. 4. Since a drive unit for the mirror element 33 forming the second movable multi-mirror 22B has the same configuration as the drive unit for the mirror element 33 forming the first movable multi-mirror 22A except that the mirror element 33 is rotated around the second axis 82, the description thereof is omitted herein.


As shown in FIG. 4, the drive unit 35 for the mirror element 33 forming the first movable multi-mirror 22A is provided with a base member 36 of a square plate shape corresponding to the shape of the mirror element 33, and support members 37 stand at two corners located on the first axis S1 out of the four corners of the base member 36. The drive unit 35 is provided with a hinge member 38 extending in the extending direction of the first axis S1, and the hinge member 38 is supported in a rotatable state around the first axis S1 on the support members 37. A projection 39 projecting in the Z-direction is provided in the central part in the longitudinal direction of the hinge member 38 and the mirror element 33 is fixed through the projection 39 to the hinge member 38.


First electrode portions 40 extending in two directions perpendicular to the first axis S1 from the hinge member 38 are formed on the first end side and on the second end side, respectively, in the longitudinal direction of the hinge member 38. Second electrode portions 41 are also provided at respective positions corresponding to the four first electrode portions 40, on the base member 36. When a potential difference is made between each pair of first electrode portion 40 and second electrode portion 41 in a mutually corresponding relation, the hinge member 38 rotates around the first axis S1 because of electrostatic forces acting based on these potential differences, whereby the mirror element 33 rotates around the first axis S1. Namely, the inclination angle of mirror element 33 can be controlled by adjusting each of the potential differences between each of the pairs of electrode portions 40, 41 in the mutually corresponding relation.


The exposure light EL incident to each of the movable multi-mirrors 22A, 22B is folded into a direction corresponding to the inclination angle of each mirror element 33 to which the light is incident. Since the condenser optical system 26 which can be regarded as a distribution forming optical system has a function to convert the angle information of incident light into position information, the sectional shape of exposure light EL on the plane P2 near the entrance surface of the optical integrator 27 is changed into any size and shape by individually adjusting the inclination angles of the respective mirror elements 33. This condenser optical system 26 superimposes part of the exposure light EL having passed via the movable multi-mirrors 22A, and part of the exposure light having passed via the movable multi-mirrors 22B, at least in part on the plane P2. Since the exposure light beams from the plurality of movable multi-mirrors 22A, 22B are superimposed, it is feasible to enhance evenness of light intensity in the superimposed region.


In other words, the light spatially angle-modulated by the movable multi-mirrors 22A, 22B is converted into the spatially modulated light by the condenser optical system 26, to form the pupil intensity distribution as a desired light intensity distribution on the plane P2.


The pupil intensity distribution is a light intensity distribution (luminance distribution) on the illumination pupil plane of the illumination optical system or on a plane optically conjugate with the illumination pupil plane. When the number of wavefront divisions by the optical integrator 27 is relatively large, a high correlation is demonstrated between the overall light intensity distribution formed on the plane P2 near the entrance surface of the optical integrator 27 and the overall light intensity distribution (pupil intensity distribution) of the entire secondary light source. For this reason, light intensity distributions on the entrance surface of the optical integrator 27 and on the planes P3, P4 optically conjugate with the entrance surface can also be called pupil intensity distributions.


In this manner, the secondary light source with the light intensity distribution approximately equal to the exposure light EL with the sectional shape modified in the desired size and shape is formed on the plane P3 which is also the rear focal plane of the optical integrator 27. Furthermore, a light intensity distribution corresponding to the pupil intensity distribution formed on the plane P3 is also formed at other illumination pupil positions optically conjugate with the rear focal plane of the optical integrator 27, i.e., at the pupil position of the condenser optical system 32 and at the pupil position of the projection optical system PL.


The pupil intensity distribution can be, for example, a light intensity distribution of an annular shape or a multi-polar shape (dipolar, quadrupolar, or other shape). It is feasible to implement annular illumination with formation of the annular pupil intensity distribution, or to implement multi-polar illumination with formation of the multi-polar pupil intensity distribution.


In recent years, there are strong desires for increase in power of exposure light for achieving increase in efficiency of projection of the pattern image onto the substrate and enhancement of accuracy. It is, however, very difficult to coat the reflecting surface of each reflecting optical element forming the spatial light modulation member, with a reflecting film having relatively high durability. Therefore, the reflecting surface is coated with a reflecting film having relatively low durability. For this reason, the life of the spatial light modulation member becomes shorter because the reflecting film deteriorates earlier with increase in the intensity of the exposure light emitted from the light source and because a larger quantity of light reaches a drive portion of each reflecting optical element so as to cause breakage of the drive portion. The spatial light modulation member may be replaced earlier when the intensity of the exposure light is relatively high, than when the intensity of the exposure light is relatively low.


In the exposure apparatus of the configuration as described in Japanese Patent Application Laid-open No. 2002-353105, however, the spatial light modulation member may be replaced in a state in which the drive of the exposure apparatus is temporarily suspended. Therefore, the higher the intensity of the exposure light emitted from the light source, the earlier the timing of replacement of the spatial light modulation member, there was thus the concern of decrease in efficiency of manufacture of micro devices due to the increase in output of the light source in the exposure apparatus in which the spatial light modulation member was arranged in the optical path of the exposure light.


Therefore, the present embodiment achieves the effects described below.


(1) The exposure light EL emitted from the exposure light source 12 is reflected toward the condenser optical system 26 by all the movable multi-mirrors 22A, 22B forming the reflecting optical system 23 and guided to the reticle R. For this reason, even when the exposure light EL from the exposure light source 12 has a higher power, the intensity of exposure light EL incident to each movable multi-mirror 22A, 22B is lower than in the conventional case where the entire exposure light EL emitted from the exposure light source 12 is incident to one movable multi-mirror 22. As a consequence, deterioration of the reflecting film over the reflecting surface of each mirror element 33 to which the exposure light EL is incident becomes slower than in the conventional case, so as to lengthen the lives of the movable multi-mirrors 22A, 22B. Namely, the timing of replacement of the movable multi-mirrors 22A, 22B can be delayed. Therefore, a contribution can be made to increase in manufacture efficiency of semiconductor devices with increase in output of the exposure light source 12 even in the case where the movable multi-mirrors 22A, 22B are arranged in the optical path of exposure light EL emitted from the exposure light source 12.


(2) The rotating direction of the mirror elements 33 forming the first movable multi-mirrors 22A is different from the rotating direction of the mirror elements 33 forming the second movable multi-mirrors 22B. For this reason, degrees of freedom can be higher in change in the size and shape of exposure light EL to illuminate the reticle R, than in the case where the reflecting optical system 23 is composed of only one type of movable multimirrors 22 (e.g., the first movable multi-mirrors 22A).


(3) Since the angle α between the arrangement plane P1 and the entrance-side optical axis AX1 and the angle β between the arrangement plane P1 and the exit-side optical axis AX2 are so set as to direct zero-order reflected light N from the portions other than the mirror elements 33 of the movable multi-mirrors 22A, 22B (typically, gaps between mirror elements 33) and from the regions other than the effective regions 25 of the movable multi-mirrors 22A, 22B in the plane along the arrangement plane P1, toward the region outside the entrance pupil of the condenser optical system 26, it is feasible to prevent the zero-order reflected light from affecting the pupil luminance distribution and, typically, to prevent the zero-order reflected light from forming a light spot at a position near the optical axis AX2.


Second Embodiment

The second embodiment of the present invention will be described next according to FIG. 5. The second embodiment is different in the optical element arranged between the exposure light source 12 and the reflecting optical system 23, from the first embodiment. Therefore, only the differences from the first embodiment will be mainly explained in the description below and the components identical or equivalent to those in the first embodiment will be denoted by the same reference symbols, without redundant description.


As shown in FIG. 5, a truncated pyramid axicon pair 50 arranged along the optical axis AX1 is provided between the exposure light source 12 and the reflecting optical system 23 and this truncated pyramid axicon pair 50 is composed of a first prism member 51 arranged on the exposure light source 12 side and a second prism member 52 arranged on the reflecting optical system 23 side. In the first prism member 51, a plane perpendicular to the optical axis of the exposure light EL is formed on the exposure light source 12 side and a refracting surface 51a of a concave shape is formed on the reflecting optical system 23 side. This refracting surface 51a is composed of a center part of a planar shape perpendicular to the optical axis of the exposure light EL, and a peripheral pyramid part corresponding to side faces of a rectangular pyramid centered on the optical axis.


In the second prism member 52, a plane perpendicular to the optical axis of the exposure light EL is formed on the reflecting optical system 23 side and a refracting surface 52a of a convex shape corresponding to the shape of the refracting surface 51a of the first prism member 51 is formed on the first prism member 51 side. This refracting surface 52a is composed of a center part of a planar shape perpendicular to the optical axis of the exposure light EL, and a peripheral pyramid part corresponding to side faces of a rectangular pyramid centered on the optical axis.


When the prism members 51, 52 are arranged with a space of a predetermined distance h between them in the optical path of exposure light EL, the exposure light EL incident from the exposure light source 12 into the truncated pyramid axicon pair 50 is split into a plurality of beams. The predetermined distance h is so adjusted that the effective regions 25 of the movable multi-mirrors 22 are located in traveling directions of the respective beams. For this reason, the beams split by the truncated pyramid axicon pair 50 are reflected toward the condenser optical system 26 on the respective effective regions 25 of the movable multi-mirrors 22 arranged in the array form.


Therefore, the present embodiment achieves the effects described below, in addition to the effects (1) and (2) in the first embodiment.


(3) The effective regions of the movable multi-mirrors 22 are located in the traveling directions of the respective beams split by the truncated pyramid axicon pair 50. For this reason, the exposure light EL is scarcely incident to the positions other than the locations of the movable multi-mirrors 22 in the reflecting optical system 23 and to the portions other than the effective regions 25 of the movable multi-mirrors 22. Therefore, a loss in light quantity can be reduced in the reflecting optical system 23. Furthermore, it is feasible to restrain promotion of deterioration of the movable multi-mirrors 22 due to increase in temperature based on illumination with the exposure light EL in the positions other than the locations of the movable multi-mirrors 22 in the reflecting optical system 23 and the portions other than the effective regions 25 of the movable multi-mirrors 22.


(4) Since no member with power (inverse of the focal length) is arranged in the optical path between the truncated pyramid axicon pair 50, which can be regarded as a beam splitter, and the movable multi-mirrors 22a, 22b, 22c, the beams that can be regarded as parallel beams are incident to the mirror elements of the movable multi-mirrors, which can enhance controllability of the pupil luminance distribution on the plane P2. On the other hand, when the beams incident to the mirror elements have an angle distribution, a light spot formed on the plane P2 by the light from the mirror elements through the condenser optical-system 26 will become spread, which will make control of the pupil luminance distribution difficult.


In the present embodiment, the above-described structure can be regarded as a configuration wherein the entrance-side optical axis AX1 being an axis of the optical path of the light emitted from the light source 12 is interposed between the first position where the movable multi-mirror 22a is arranged and the second position where another movable multi-mirror 22c is arranged among the plurality of movable multi-mirrors 22. Furthermore, it can also be regarded as a configuration wherein the truncated pyramid axicon pair 50 (beam splitter) splits the beam in a plane including the optical axis AX1 (i.e., in the XY plane in the drawing).


Third Embodiment

The third embodiment of the present invention will be described below according to FIG. 6. The third embodiment is different in the optical element for splitting the exposure light EL into a plurality of optical paths, from the second embodiment. Therefore, only the differences from each of the above embodiments will be mainly explained in the description hereinafter and the components identical or equivalent to those in the above embodiments will be denoted by the same reference symbols, without redundant description.


As shown in FIG. 6, a diffractive optical element 55 for multi-polar illumination (e.g., for quadrupolar illumination) is provided between the exposure light source 12 and the reflecting optical system 23. This diffractive optical element 55 is a transmission type diffractive optical element and is made by forming level differences at the pitch approximately equal to the wavelength of the exposure light EL in a transparent substrate. This diffractive optical element 55 is so configured that when parallel exposure light EL is incident thereto, it splits the exposure light EL into a plurality of (e.g., four) beams. As a result, multi-polar (e.g., quadrupolar) illumination regions are formed on the reflecting optical system 23. The arrangement of the diffractive optical element 55 is so adjusted that the effective regions 25 of the movable multi-mirrors 22 are located in the respective beams formed by splitting the incident exposure light EL.


The diffractive optical element 55 has a plurality of wavefront division regions in the plane of the diffractive optical element 55, in order to form an approximately even illumination region in each of the plurality of regions separated by a predetermined distance. Wavefront division regions belonging to a first set among the plurality of wavefront division regions direct the exposure light EL incident thereto, toward a first illumination region out of the plurality of illumination regions.


This causes the first illumination region to be superposedly illuminated by a plurality of beams having passed via the wavefront division regions belonging to the first set, and to have an even illuminance distribution. Similarly, wavefront division regions belonging to a second set different from the first set among the plurality of wavefront division regions direct the exposure light EL incident thereto, toward a second illumination region different from the first illumination region out of the plurality of illumination regions. This causes the second illumination region to be superposedly illuminated by a plurality of beams having passed via the wavefront division regions belonging to the second set, and to have an even illuminance distribution.


For example, the diffractive optical element 55 of the present embodiment can be the one disclosed in U.S. Pat. No. 5,850,300. U.S. Pat. No. 5,850,300 is incorporated herein by reference.


Therefore, the present embodiment achieves the effect described below, in addition to the effects (1) to (4) in the second embodiment.


(5) Since the diffractive optical element 55 makes the light intensity distribution even, the plurality of movable multi-mirrors 22 are illuminated with light of the even intensity distribution even when the intensity distribution is uneven in the cross section of the light EL emitted from the light source 12. For this reason, it is feasible to enhance the controllability of the pupil luminance distribution formed on the plane P2. On the other hand, when the movable multi-mirrors 22 are illuminated with light of an uneven intensity distribution, this unevenness of the intensity distribution will affect the pupil luminance distribution and each mirror element of the movable multi-mirrors 22 can be controlled in consideration of this unevenness. Therefore, the control becomes complicated.


Fourth Embodiment

The fourth embodiment of the present invention will be described below according to FIG. 7. The fourth embodiment is different in the optical element for splitting the exposure light EL into a plurality of optical paths, from the second and third embodiments. Therefore, only the differences from each of the above embodiments will be mainly explained in the description below and the components identical or equivalent to those in the embodiments will be denoted by the same reference symbols, without redundant description.


As shown in FIG. 7, a fly's eye lens 60 is provided between the exposure light source 12 and the reflecting optical system 23 and the fly's eye lens 60 is composed of a plurality of lens elements 61 (only four of which are shown in FIG. 7) as arranged two-dimensionally. A relay optical system 18A is disposed between the fly's eye lens 60 and the reflecting optical system 23 and the relay optical system 18A refocuses a plurality of beams split by the fly's eye lens 60, in respective effective regions 25 of the movable multi-mirrors 22.


In the reflecting optical system 23 of the present embodiment, the movable multi-mirrors 22 are arranged so as to positionally correspond to the respective lens elements 61 of the fly's eye lens 60. For example, in a case where the fly's eye lens 60 is one in which four lens elements are arrayed in the X-direction, the reflecting optical system 23 is so configured that four movable multi-mirrors 22 are arrayed along the X-direction. This configuration achieves the same operational effects as in each of the aforementioned second and third embodiments.


The exposure light EL incident to each movable multi-mirror 22 is mostly reflected toward the condenser optical system 26, but part of the rest (which will be referred to hereinafter as “return light”) can be reflected toward the fly's eye lens 60. This return light is restrained from entering the fly's eye lens 60, by the relay optical system 18A arranged between the reflecting optical system 23 and the fly's eye lens 60. For this reason, the large number of light source images formed on the image plane of the fly's eye lens 60 can be prevented from being disturbed by the return light. As described above, the relay optical system can be regarded as a restraining member which restrains the return light from each movable multi-mirror 22 from entering the beam splitter.


Fifth Embodiment

The fifth embodiment of the present invention will be described below according to FIG. 8. The fifth embodiment is different from the first embodiment in that the exposure light EL impinges upon only some movable multi-mirrors 22 out of the movable multi-mirrors 22 forming the reflecting optical system 23. Therefore, only the differences from the first embodiment will be mainly explained in the description hereinafter and the components identical or equivalent to those in the first embodiment will be denoted by the same reference symbols, without redundant description.


As shown in FIG. 8, the illumination optical apparatus 13 of the present embodiment is provided with a moving mechanism 65 for moving the reflecting optical system 23 along the X-direction. In the reflecting optical system 23, a plurality of movable multi-mirrors 22 (only five of which are shown in FIG. 8) are arranged along the X-direction. The exposure light EL emitted from the exposure light source 12 is incident to some movable multi-mirrors 22 (e.g., two movable multi-mirrors 22) out of these movable multi-mirrors 22, while the exposure light EL is not incident to the other movable multi-mirrors 22.


When the intensity of the exposure light EL for forming the pattern image on the wafer W becomes lowered or when the pupil luminance distribution on the wafer W becomes disturbed, based on a secular change in characteristics of the movable multi-mirrors 22 to which the exposure light EL is incident (e.g., based on deterioration of the reflecting film or deterioration of the drive unit 35 for the mirror element 33), the moving mechanism 65 is actuated to guide the exposure light EL onto the movable multi-mirrors 22 to which the exposure light EL has not been guided heretofore.


For example, in a case where the output of the exposure amount sensor SE1 monitored becomes lowered, or in a case where a deviation of the pupil luminance distribution measured by the pupil luminance distribution detector SE2, from a target value becomes off a permissible range, the control unit 66 sends a control signal to instruct replacement of the movable multi-mirrors 22, to the moving mechanism 65.


As described above, the exposure apparatus 11 of the present embodiment allows the movable multi-mirrors 22 to which the exposure light EL emitted from the exposure light source 12 is incident, to be replaced with others, without temporary suspension of drive of the exposure apparatus 11. Therefore, a contribution can be made to increase in manufacture efficiency of semiconductor devices with increase in output of the exposure light source 12, even in the case where the movable multi-mirrors 22 are arranged in the optical path of the exposure light EL emitted from the exposure light source 12.


Each of the above embodiments may be modified into another embodiment as described below.


In each embodiment the reflecting optical system 23 may be one composed of three or more types of movable multi-mirrors 22, 22A, 22B. For example, the reflecting optical system 23 may have a configuration having third movable multi-mirrors consisting of mirror elements 33 rotatable around a third axis (e.g., an axis extending in the X-direction) intersecting with the first axis S1 and the second axis S2, in addition to the first movable multi-mirrors 22A and the second movable multi-mirrors 22B.


In each embodiment, the first movable multi-mirrors 22A may be those having mirror elements 33 rotatable around an axis parallel to the first axis S1. Similarly, the second movable multi-mirrors 22B may be those having mirror elements 33 rotatable around an axis parallel to the second axis S2.


In each embodiment, the first axis S1 does not have to be one extending along a diagonal line of each mirror element 33, but may be, for example, an axis extending along the X-direction. In this case, the second axis S2 may be an axis extending along the Y-direction.


In each embodiment, the reflecting optical system 23 may be one consisting of one type of movable multi-mirrors 22 (e.g., the first movable multi-mirrors 22A).


In the fifth embodiment, the movable multi-mirrors 22 to which the exposure light EL is incident may be switched at intervals of a predetermined time.


In the fifth embodiment, the number of movable multi-mirrors 22 to which the exposure light EL is incident, may be an arbitrary number except for two (e.g., one or three).


In the fifth embodiment, where the movable multi-mirrors 22 to which the exposure light EL is incident are switched, the apparatus may be so configured as to switch at least only one of them to which the exposure light EL is incident.


In each embodiment, the movable multi-mirrors 22 may be those having mirror elements 33 rotatable around mutually orthogonal axes (those having two degrees of freedom for inclination). The spatial light modulation members of this type can be selected, for example, from those disclosed in Japanese Patent Application Laid-open (Translation of PCT Application) No. 10-503300 and European Patent Application Publication EP 779530 corresponding thereto, Japanese Patent Application Laid-open No, 2004-78136 and U.S. Pat. No. 6,900,915 corresponding thereto, Japanese Patent Application Laid-open (Translation of PCT Application) No. 2006-524349 and U.S. Pat. No. 7,095,546 corresponding thereto, and Japanese Patent Application Laid-open No. 2006-113437. European Patent Application Publication EP 779530, U.S. Pat. No. 6,900,915, and U.S. Pat. No. 7,095,546 are incorporated herein by reference.


In each embodiment, the movable multi-mirrors 22 were those in which the orientations (inclinations) of the mirror elements arranged two-dimensionally could be individually controlled, but it is also possible, for example, to use spatial light modulation members in which heights (positions) of reflecting surfaces arranged two-dimensionally can be individually controlled. Such spatial light modulation members can be, for example, those disclosed in Japanese Patent Application Laid-open No. 6-281869 and U.S. Pat. No. 5,312,513 corresponding thereto, and in FIG. 1d in Japanese Patent Application Laid-open (Translation of PCT Application) No. 2004-520618 and U.S. Pat. No. 6,885,493 corresponding thereto. These spatial light modulation members are able to apply the same action as a diffracting surface, to incident light through formation of a two-dimensional height distribution. U.S. Pat. No. 5,312,513 and U.S. Pat. No. 6,885,493 are incorporated herein by reference.


In each embodiment, the movable multi-mirrors 22 may be modified, for example, according to the disclosure in Japanese Patent Application Laid-open (Translation of PCT Application) No. 2006-513442 and U.S. Pat. No. 6,891,655 corresponding thereto or according to the disclosure in Japanese Patent Application Laid-open (Translation of PCT Application) No. 2005-524112 and U.S. Pat. Published Application No. 2005/0095749 corresponding thereto. U.S. Pat. No. 6,891,655 and U.S. Pat. Published Application No, 2005/0095749 are incorporated herein by reference.


In each embodiment, the exposure apparatus 11 may be an exposure apparatus which transfers a circuit pattern from a mother reticle onto a glass substrate, a silicon wafer, or the like, in order to manufacture a reticle or a mask to be used in photo exposure apparatus, EUV exposure apparatus, X-ray exposure apparatus, electron beam exposure apparatus, and so on, as well as the micro devices such as the semiconductor devices. The exposure apparatus 11 may also be an exposure apparatus used in manufacture of displays including liquid-crystal display devices (LCDs) and others, to transfer a device pattern onto a glass plate, an exposure apparatus used in manufacture of thin-film magnetic heads or the like to transfer a device pattern onto a ceramic wafer or the like, or an exposure apparatus used in manufacture of imaging devices such as CCDs.


The illumination optical apparatus 13 in each of the embodiments can be mounted on a scanning stepper configured to transfer a pattern of an illumination target object onto a substrate in a state in which the illumination target object and the substrate are relatively moved, and to successively move the substrate stepwise, and can also be mounted on a stepper of the step-and-repeat method configured to transfer a pattern of an illumination target object onto a substrate in a state in which the illumination target object and the substrate are stationary, and to successively move the substrate stepwise.


In each embodiment, the exposure light source 12 may be, for example, an exposure light source capable of supplying the g-line (436 nm), the i-line (365 nm), the KrF excimer laser (248 nm), the F2 laser (157 nm), the Kr2 laser (146 nm), the Ar2 laser (126 nm), or the like. The exposure light source 12 may also be an exposure light source capable of supplying a harmonic obtained by amplifying a single-wavelength laser beam in the infrared region or in the visible region lased from a DFB semiconductor laser or a fiber laser, for example, by a fiber amplifier doped with erbium (or with both of erbium and ytterbium), and converting the wavelength into ultraviolet light with a nonlinear optical crystal.


In each embodiment, it is also possible to apply the so-called polarized illumination method disclosed in U.S Pat. Published Application Nos. 2006/0203214, 2006/0170901, and 2007/0146676. Teachings of the U.S Pat. Published Application Nos. 2006/0203214, 2006/0170901, and 2007/0146676 are incorporated herein by reference.


The below will describe an embodiment of a manufacture method of micro devices using the device manufacturing method with the exposure apparatus 11 of the embodiments of the present invention in the lithography process. FIG. 9 is a drawing showing a flowchart of a manufacture example of micro devices (semiconductor chips such as ICs and LSIs, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, etc.).


The first block S101 (design block) is to design the function and performance of micro devices (e.g., design the circuitry for semiconductor devices or the like) and to design a pattern for realizing the function. The subsequent block S102 (mask production block) is to produce a mask (reticle R or the like) on which the designed circuit pattern is formed. On the other hand, block S103 (substrate production block) is to produce a substrate of a material such as silicon, glass, or ceramics (which becomes a wafer W where a silicon material is used).


The next block S104 (substrate processing block) is to form an actual circuit and others on the substrate by the lithography technology and others, as described below, using the mask and the substrate prepared in the blocks S101-S103. The next block S105 (device assembly block) is to assemble devices using the substrate processed in block S104. This block S105 includes such blocks as a dicing block, a bonding block, and a packaging block (chip encapsulation) as occasion may demand. The final block S106 (inspection block) is to perform such inspections as an operation check test and a durability test of the micro devices fabricated in block S105. After completion of these blocks, the micro devices are completed and shipped.



FIG. 10 is a drawing showing an example of detailed blocks in the block S104 in the case of semiconductor devices.


Block S111 (oxidation block) is to oxidize the surface of the substrate. Block S112 (CVD block) is to form an insulating film on the surface of the substrate. Block S113 (electrode forming block) is to form electrodes on the substrate by evaporation. Block S114 (ion implantation block) is to implant ions into the substrate. Each of the above blocks S111-S114 constitutes a preprocessing block in each stage of substrate processing and is executed as selected according to a process necessary in each stage.


After completion of the above-described preprocessing blocks in the stages of the substrate processing, post-processing blocks are executed as described below. In the post-processing blocks, the first block S115 (resist forming block) is to apply a photosensitive material onto the substrate. The subsequent block S116 (exposure block) is to transfer the circuit pattern of the mask onto the wafer by the above-described lithography system (exposure apparatus 11). The next block S117 (development block) is to develop the substrate exposed in block S116, to form a mask layer consisting of the circuit pattern on the surface of the substrate. In block S118 (etching block) subsequent thereto, the exposed member is removed by etching from the portions other than the resist-remaining portions. The following block S119 (resist removal block) is to remove the photosensitive material unnecessary after the etching. Namely, the blocks S118 and S119 are to process the surface of the substrate through the mask layer. By repeatedly carrying out these preprocessing blocks and post-processing blocks, circuit patterns are multiply formed on the substrate.


Namely, as mentioned above, according to embodiments of the present invention, the light emitted from the light source is guided to the illumination target object by the plurality of spatial light modulation members arranged in the array form. For this reason, the timing of replacement of the spatial light modulation member with temporary suspension of drive of the exposure apparatus can be delayed by increase in the number of spatial light modulation members used, when compared with the conventional case where the light emitted from the light source is guided to the illumination target object with the use of one spatial light modulation member. Therefore, a contribution can be made to increase in manufacture efficiency of devices with increase in output of the light source, even in the case where the spatial light modulation member is arranged in the optical path of the light emitted from the light source.


Embodiments of the present invention successfully achieve the contribution to increase in manufacture efficiency of devices with increase in output of the light source.


In the above-described embodiments, the light source 12 can be, for example, an ArF excimer laser light source which supplies pulsed laser light at the wavelength of 193 nm, or a KrF excimer laser light source which supplies pulsed laser light at the wavelength of 248 nm. Without having to be limited to these, it is also possible, for example, to use another appropriate light source such as an F2 laser light source or an ultrahigh pressure mercury lamp. The exposure apparatus of the above-described embodiments can be used as scanning exposure apparatus performing exposure while moving the reticle (mask) and the wafer (photosensitive substrate) relative to the projection optical system, or as exposure apparatus of the one-shot exposure type performing projection exposure in a state in which the reticle (mask) and the wafer (photosensitive substrate) are stationary relative to the projection optical system.


In the foregoing embodiment, it is also possible to apply a technique of filling the interior of the optical path between the projection optical system and the photosensitive substrate with a medium having the refractive index larger than 1.1 (typically, a liquid), which is so called a liquid immersion method. In this case, it is possible to adopt one of the following techniques as a technique of filling the interior of the optical path between the projection optical system and the photosensitive substrate with the liquid: the technique of locally filling the optical path with the liquid as disclosed in International Publication WO99/49504; the technique of moving a stage holding the substrate to be exposed, in a liquid bath as disclosed in Japanese Patent Application Laid-open No. 6-124873; the technique of forming a liquid bath of a predetermined depth on a stage and holding the substrate therein as disclosed in Japanese Patent Application Laid-open No. 10-303114, and so on. The teachings in WO99/49504, Japanese Patent Application Laid-open No. 6-124873, and Japanese Patent Application Laid-open No, 10-303114 are incorporated herein by reference.


The invention is not limited to the fore going embodiments but various changes and modifications of its components may be made without departing from the scope of the present invention. Also, the components disclosed in the embodiments may be assembled in any combination for embodying the present invention. For example, some of the components may be omitted from all components disclosed in the embodiments. Further, components in different embodiments may be appropriately combined.

Claims
  • 1. An illumination optical system which illuminates a pattern with illumination light, the illumination optical system comprising: an optical element having a plurality of wavefront division regions arranged in an optical path of the illumination light, the plurality of wavefront division regions dividing the illumination light into a plurality of beams;a spatial light modulator having a plurality of movable mirrors arranged in array form so as to reflect the illumination light from the optical element; anda distribution forming optical system arranged in the optical path of the illumination light from the spatial light modulator so as to form a predetermined light intensity distribution on an illumination pupil plane of the illumination optical system,wherein the optical element directs the plurality of beams to an area on the spatial light modulator such that the plurality of beams from the plurality of wavefront division regions overlap in illuminating the area including the plurality of movable mirrors, andthe optical element directs a first part of the plurality of beams from a first part of the plurality of wavefront division regions to a first part of the area so as to superposedly illuminate the first part of the area by the first part of the beams and directs a second part of the plurality of beams from a second part of the plurality of wavefront division regions to a second part of the area so as to superposedly illuminate the second part of the area by the second part of the beams, the first part of the area and the second part of the area being different from each other.
  • 2. The illumination optical system according to claim 1, wherein the optical element comprises a transmission type diffractive optical element.
  • 3. An exposure apparatus comprising: the illumination optical system according to claim 1 which illuminates the pattern; anda projection optical apparatus which projects an image of the pattern onto a substrate to which a photosensitive material is applied.
  • 4. A device manufacturing method comprising: exposing the substrate with the pattern by using the exposure apparatus according to claim 3;developing the substrate to form a mask layer having a shape corresponding to the pattern on a surface of the substrate; andprocessing the surface of the substrate through the mask layer.
  • 5. The illumination optical system according to claim 1, wherein first movable mirrors which are a part of the plurality of movable mirrors located in the first part of the area have a first reflecting surface of which an inclination angle to an optical axis of the illumination optical system is adjustable, the first reflecting surface being rotatable about a first rotational axis, andsecond movable mirrors which are another part of the plurality of movable mirrors located in the second part of the area have a second reflecting surface of which an inclination angle to the optical axis is adjustable, the second reflecting surface being rotatable about a second rotational axis different from the first rotational axis.
  • 6. The illumination optical system according to claim 5, wherein the first and second rotational axes are substantially perpendicular to each other.
  • 7. The illumination optical system according to claim 5, wherein the first movable mirrors reflect the first part of the beams so as to direct the first part of the beams to a first distribution area on the illumination pupil plane via the distribution forming optical system, and the second movable mirrors reflect the second part of the beams so as to direct the second part of the beams to a second distribution area on the illumination pupil plane via the distribution optical system, the first and second distribution areas being different from each other.
  • 8. The illumination optical system according to claim 7, wherein the first and second distribution areas are located on opposite sides from each other with respect to the optical axis on the illumination pupil plane.
  • 9. The illumination optical system according to claim 1, wherein the distribution forming optical system comprises a lens system and a fly's eye lens of which an entrance surface is located at or near a rear focal position of the lens system.
  • 10. The illumination optical system according to claim 9, wherein the fly's eye lens is arranged such that a rear focal plane of the fly's eye lens is coincident with the illumination pupil plane.
  • 11. An exposure method comprising: illuminating the pattern by use of the illumination optical system according to claim 1; andprojecting an image of the pattern onto a substrate to which a photosensitive material is applied.
  • 12. A device manufacturing method comprising: exposing the substrate with the pattern by using the exposure method according to claim 11;developing the substrate to form a mask layer having a shape corresponding to the pattern on a surface of the substrate; andprocessing the surface of the substrate through the mask layer.
Priority Claims (1)
Number Date Country Kind
2007-266691 Oct 2007 JP national
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a Continuation of U.S. application Ser. No. 12/250,519 filed Oct. 13, 2008, which is based upon and claims the benefit of priorities from Japanese Patent Application No. 2007-266691, filed on Oct. 12, 2007 and U.S. Provisional Application No. 60/996,035, filed on Oct. 25, 2007, the entire contents of which are incorporated herein by reference.

US Referenced Citations (116)
Number Name Date Kind
4346164 Tabarelli et al. Aug 1982 A
5153428 Ellis Oct 1992 A
5216541 Takesue et al. Jun 1993 A
5251222 Hester et al. Oct 1993 A
5312513 Florence et al. May 1994 A
5383000 Michaloski et al. Jan 1995 A
5461410 Venkateswar et al. Oct 1995 A
5610733 Feldman et al. Mar 1997 A
5850300 Kathman et al. Dec 1998 A
5850310 Schweizer Dec 1998 A
5991009 Nishi et al. Nov 1999 A
6285488 Sandstrom Sep 2001 B1
6406148 Marshall et al. Jun 2002 B1
6466304 Smith Oct 2002 B1
6577379 Boettiger et al. Jun 2003 B1
6577429 Kurtz et al. Jun 2003 B1
6665119 Kurtz et al. Dec 2003 B1
6737662 Mulder et al. May 2004 B2
6819490 Sandstrom et al. Nov 2004 B2
6829090 Katsumata et al. Dec 2004 B2
6844927 Stokowski et al. Jan 2005 B2
6885493 Ljungblad et al. Apr 2005 B2
6891655 Grebinski et al. May 2005 B2
6900915 Nanjyo et al. May 2005 B2
6958806 Mulder et al. Oct 2005 B2
6958867 Ohmori et al. Oct 2005 B2
6960035 Okazaki et al. Nov 2005 B2
6961116 Den Boef et al. Nov 2005 B2
6977718 LaFontaine Dec 2005 B1
7015491 Eurlings et al. Mar 2006 B2
7030962 Iizuka et al. Apr 2006 B2
7061226 Duff Jun 2006 B2
7095481 Morohoshi Aug 2006 B2
7095546 Mala et al. Aug 2006 B2
7095921 Okazaki et al. Aug 2006 B2
7116403 Troost et al. Oct 2006 B2
7121740 Okazaki et al. Oct 2006 B2
7130021 Kobayashi Oct 2006 B2
7130120 Katsumata et al. Oct 2006 B2
7148952 Eurlings et al. Dec 2006 B2
7177012 Bleeker et al. Feb 2007 B2
7193684 Iizuka et al. Mar 2007 B2
7259827 Dierichs Aug 2007 B2
7289276 Ohmori et al. Oct 2007 B2
7400382 Baba-Ali et al. Jul 2008 B2
7423731 Tanitsu et al. Sep 2008 B2
7508492 Sekigawa et al. Mar 2009 B2
7525642 Mulder et al. Apr 2009 B2
7532378 Tanaka et al. May 2009 B2
7542129 Sandstrom Jun 2009 B2
7551261 Fiolka Jun 2009 B2
7573052 Inoue et al. Aug 2009 B2
7573564 Ruff et al. Aug 2009 B2
7580559 Latypov et al. Aug 2009 B2
7605386 Singer et al. Oct 2009 B2
7701555 Arai Apr 2010 B2
7714983 Koehler et al. May 2010 B2
7965380 Bleeker et al. Jun 2011 B2
8018589 MacKinnon et al. Sep 2011 B2
20030071204 Sandstrom et al. Apr 2003 A1
20030098959 Hagiwara et al. May 2003 A1
20030214571 Ishikawa et al. Nov 2003 A1
20040053148 Morohoshi Mar 2004 A1
20040057034 Zinn et al. Mar 2004 A1
20040100629 Stokowski et al. May 2004 A1
20040108467 Eurlings et al. Jun 2004 A1
20040130775 Grebinski et al. Jul 2004 A1
20040160582 Lof et al. Aug 2004 A1
20040207386 Durr Oct 2004 A1
20050024612 Hirukawa et al. Feb 2005 A1
20050041232 Yamada et al. Feb 2005 A1
20050094122 Hagiwara et al. May 2005 A1
20050095749 Krellmann et al. May 2005 A1
20050141583 Sandstrom Jun 2005 A1
20050168790 Latypov et al. Aug 2005 A1
20050213068 Ishii et al. Sep 2005 A1
20050231703 Kobayashi Oct 2005 A1
20050270515 Troost et al. Dec 2005 A1
20050281516 Okazaki et al. Dec 2005 A1
20060001855 Lof et al. Jan 2006 A1
20060050261 Brotsack Mar 2006 A1
20060055834 Tanitsu et al. Mar 2006 A1
20060114446 Gui Jun 2006 A1
20060138349 Bleeker et al. Jun 2006 A1
20060170901 Tanitsu et al. Aug 2006 A1
20060175556 Yabuki Aug 2006 A1
20060176452 Kim et al. Aug 2006 A1
20060203214 Shiraishi Sep 2006 A1
20060232841 Toishi et al. Oct 2006 A1
20060245033 Baba-Ali et al. Nov 2006 A1
20070013888 Flagello et al. Jan 2007 A1
20070146676 Tanitsu et al. Jun 2007 A1
20070165202 Koehler et al. Jul 2007 A1
20070201338 Yaoita et al. Aug 2007 A1
20070273852 Arai Nov 2007 A1
20070273853 Bleeker et al. Nov 2007 A1
20080021948 Wilson et al. Jan 2008 A1
20080030707 Tanaka et al. Feb 2008 A1
20080079930 Klarenbeek Apr 2008 A1
20080095531 Yeo et al. Apr 2008 A1
20080239268 Mulder et al. Oct 2008 A1
20080259304 Dierichs Oct 2008 A1
20090021656 Ozaki Jan 2009 A1
20090033902 Mulder et al. Feb 2009 A1
20090073411 Tanitsu Mar 2009 A1
20090091730 Tanaka Apr 2009 A1
20090097007 Tanaka Apr 2009 A1
20090097094 Tanaka Apr 2009 A1
20090109417 Tanitsu Apr 2009 A1
20090128886 Hirota May 2009 A1
20090147247 Endo et al. Jun 2009 A1
20090174877 Mulder et al. Jul 2009 A1
20090263736 Inoue et al. Oct 2009 A1
20100195077 Koehler et al. Aug 2010 A1
20120202157 Tanitsu Aug 2012 A1
20120236284 Tanaka Sep 2012 A1
Foreign Referenced Citations (873)
Number Date Country
1501175 Jun 2004 CN
1573571 Feb 2005 CN
1576908 Feb 2005 CN
1601322 Mar 2005 CN
1879062 Dec 2006 CN
206 607 Feb 1984 DE
242 880 Feb 1984 DE
221 563 Apr 1985 DE
224 448 Jul 1985 DE
196 35 792 Apr 1997 DE
10029938 Jul 2001 DE
10343333 Apr 2005 DE
0 023 231 Feb 1981 EP
0 208 552 Jan 1987 EP
0 656 555 Jun 1995 EP
0 764 858 Mar 1997 EP
0779530 Jun 1997 EP
1 109 067 Jun 2001 EP
1 211 561 Jun 2002 EP
1262836 Dec 2002 EP
1 280 007 Jan 2003 EP
1 395 049 Mar 2004 EP
1 489 462 Dec 2004 EP
1 674 935 Jun 2006 EP
1 798 758 Jun 2007 EP
1 882 895 Jan 2008 EP
1 993 120 Nov 2008 EP
2 474 708 Jul 1981 FR
S44-4993 Feb 1969 JP
S56-6666 Jan 1981 JP
557-117238 Jul 1982 JP
S57-152129 Sep 1982 JP
S57-153433 Sep 1982 JP
S58-45502 Mar 1983 JP
S58-49932 Mar 1983 JP
S58-115945 Jul 1983 JP
S58-202448 Nov 1983 JP
S59-19912 Feb 1984 JP
S59-155843 Sep 1984 JP
S59-226317 Dec 1984 JP
S61-44429 Mar 1986 JP
S61-45923 Mar 1986 JP
S61-91662 May 1986 JP
S61-94342 Jun 1986 JP
S61-156736 Jul 1986 JP
S61-196532 Aug 1986 JP
S61-217434 Sep 1986 JP
S61-251025 Nov 1986 JP
S61-270049 Nov 1986 JP
S62-2539 Jan 1987 JP
S62-2540 Jan 1987 JP
S62-17705 Jan 1987 JP
S62-65326 Mar 1987 JP
S62-100161 May 1987 JP
S62-120026 Jun 1987 JP
S62-121417 Jun 1987 JP
S62-122215 Jun 1987 JP
S62-153710 Jul 1987 JP
S62-183522 Aug 1987 JP
S62-188316 Aug 1987 JP
S62-203526 Sep 1987 JP
S63-12134 Jan 1988 JP
S63-36526 Feb 1988 JP
S63-73628 Apr 1988 JP
S63-128713 Jun 1988 JP
S63-131008 Jun 1988 JP
S63-141313 Jun 1988 JP
S63-157419 Jun 1988 JP
S63-160192 Jul 1988 JP
S63-231217 Sep 1988 JP
S63-275912 Nov 1988 JP
S63-292005 Nov 1988 JP
S64-18002 Jan 1989 JP
S64-26704 Feb 1989 JP
S64-68926 Mar 1989 JP
H01-91419 Apr 1989 JP
H01-115033 May 1989 JP
H01-147516 Jun 1989 JP
H01-127379 Aug 1989 JP
H1-202833 Aug 1989 JP
H01-214042 Aug 1989 JP
H01-255404 Oct 1989 JP
H01-258550 Oct 1989 JP
H01-276043 Nov 1989 JP
H01-278240 Nov 1989 JP
H01-286478 Nov 1989 JP
H01-292343 Nov 1989 JP
H01-314247 Dec 1989 JP
H01-319964 Dec 1989 JP
H02-42382 Feb 1990 JP
H02-65149 Mar 1990 JP
H02-65222 Mar 1990 JP
H02-97239 Apr 1990 JP
H02-106917 Apr 1990 JP
H02-116115 Apr 1990 JP
H02-139146 May 1990 JP
H02-166717 Jun 1990 JP
H02-261073 Oct 1990 JP
H02-264901 Oct 1990 JP
H02-285320 Nov 1990 JP
H02-287308 Nov 1990 JP
H02-298431 Dec 1990 JP
H02-311237 Dec 1990 JP
H03-41399 Feb 1991 JP
H03-64811 Mar 1991 JP
H03-72298 Mar 1991 JP
H03-94445 Apr 1991 JP
H03-132663 Jun 1991 JP
H03-134341 Jun 1991 JP
H03-167419 Jul 1991 JP
H03-168640 Jul 1991 JP
H03-211812 Sep 1991 JP
H03-263810 Nov 1991 JP
H04-11613 Jan 1992 JP
H04-32154 Feb 1992 JP
H04-065603 Mar 1992 JP
H04-96315 Mar 1992 JP
H04-101148 Apr 1992 JP
H04-130710 May 1992 JP
H04-132909 May 1992 JP
H04-133414 May 1992 JP
H04-152512 May 1992 JP
H04-179115 Jun 1992 JP
H04-80052 Jul 1992 JP
H04-186244 Jul 1992 JP
H04-211110 Aug 1992 JP
H04-225357 Aug 1992 JP
H04-235558 Aug 1992 JP
H04-265805 Sep 1992 JP
H04-273245 Sep 1992 JP
H04-273427 Sep 1992 JP
H04-117212 Oct 1992 JP
H04-280619 Oct 1992 JP
H04-282539 Oct 1992 JP
H04-296092 Oct 1992 JP
H04-297030 Oct 1992 JP
H04-305915 Oct 1992 JP
H04-305917 Oct 1992 JP
H04-330961 Nov 1992 JP
H04-343307 Nov 1992 JP
H04-350925 Dec 1992 JP
H05-13292 Jan 1993 JP
H05-21314 Jan 1993 JP
H05-45886 Feb 1993 JP
H05-62877 Mar 1993 JP
H05-90128 Apr 1993 JP
H05-109601 Apr 1993 JP
H05-127086 May 1993 JP
H05-129184 May 1993 JP
H05-134230 May 1993 JP
H05-160002 Jun 1993 JP
H05-175098 Jul 1993 JP
H05-199680 Aug 1993 JP
H05-217837 Aug 1993 JP
H05-217840 Aug 1993 JP
H05-241324 Sep 1993 JP
H05-243364 Sep 1993 JP
H05-259069 Oct 1993 JP
H05-283317 Oct 1993 JP
H05-304072 Nov 1993 JP
H05-319774 Dec 1993 JP
H05-323583 Dec 1993 JP
H05-326370 Dec 1993 JP
H06-29204 Feb 1994 JP
H06-42918 Feb 1994 JP
H06-53120 Feb 1994 JP
H06-29102 Apr 1994 JP
H06-97269 Apr 1994 JP
H06-104167 Apr 1994 JP
H06-120110 Apr 1994 JP
H06-36054 May 1994 JP
H06-124126 May 1994 JP
H06-124872 May 1994 JP
H06-124873 May 1994 JP
H06-140306 May 1994 JP
H06-148399 May 1994 JP
H06-163350 Jun 1994 JP
H06-168866 Jun 1994 JP
H06-177007 Jun 1994 JP
H06-181157 Jun 1994 JP
H06-186025 Jul 1994 JP
H06-188169 Jul 1994 JP
H06-196388 Jul 1994 JP
H06-204113 Jul 1994 JP
H06-204121 Jul 1994 JP
H06-229741 Aug 1994 JP
H06-241720 Sep 1994 JP
H06-244082 Sep 1994 JP
H06-267825 Sep 1994 JP
H06-283403 Oct 1994 JP
H06-291023 Oct 1994 JP
H06-310399 Nov 1994 JP
H06-325894 Nov 1994 JP
H06-326174 Nov 1994 JP
H06-349701 Dec 1994 JP
H07-69621 Mar 1995 JP
H07-92424 Apr 1995 JP
H07-122469 May 1995 JP
H07-132262 May 1995 JP
H07-134955 May 1995 JP
H07-135158 May 1995 JP
H07-135165 May 1995 JP
H07-147223 Jun 1995 JP
H07-167998 Jul 1995 JP
H07-168286 Jul 1995 JP
H07-174974 Jul 1995 JP
H07-176468 Jul 1995 JP
H07-183201 Jul 1995 JP
H07-183214 Jul 1995 JP
H07-190741 Jul 1995 JP
H07-201723 Aug 1995 JP
H07-220989 Aug 1995 JP
H07-220990 Aug 1995 JP
H07-221010 Aug 1995 JP
H07-239212 Sep 1995 JP
H07-243814 Sep 1995 JP
H07-245258 Sep 1995 JP
H07-263315 Oct 1995 JP
H07-283119 Oct 1995 JP
H07-297272 Nov 1995 JP
H07-307268 Nov 1995 JP
H07-318847 Dec 1995 JP
H07-335748 Dec 1995 JP
H08-10971 Jan 1996 JP
H08-17709 Jan 1996 JP
H08-22948 Jan 1996 JP
H08-37149 Feb 1996 JP
H08-37227 Feb 1996 JP
H08-46751 Feb 1996 JP
H08-63231 Mar 1996 JP
H08-115868 May 1996 JP
H08-136475 May 1996 JP
H08-151220 Jun 1996 JP
H08-162397 Jun 1996 JP
H08-166475 Jun 1996 JP
H08-171054 Jul 1996 JP
H08-195375 Jul 1996 JP
H08-203803 Aug 1996 JP
H08-279549 Oct 1996 JP
H08-288213 Nov 1996 JP
H08-297699 Nov 1996 JP
H08-313842 Nov 1996 JP
H08-316125 Nov 1996 JP
H08-316133 Nov 1996 JP
H08-330224 Dec 1996 JP
H08-334695 Dec 1996 JP
H08-335552 Dec 1996 JP
H09-7933 Jan 1997 JP
H09-15834 Jan 1997 JP
H09-22121 Jan 1997 JP
H09-61686 Mar 1997 JP
H09-82626 Mar 1997 JP
H09-83877 Mar 1997 JP
H09-92593 Apr 1997 JP
H09-108551 Apr 1997 JP
H09-115794 May 1997 JP
H09-134870 May 1997 JP
H09-148406 Jun 1997 JP
H09-151658 Jun 1997 JP
H09-160004 Jun 1997 JP
H09-160219 Jun 1997 JP
H09-162106 Jun 1997 JP
H09-178415 Jul 1997 JP
H09-184787 Jul 1997 JP
H09-184918 Jul 1997 JP
H09-186082 Jul 1997 JP
H09-190969 Jul 1997 JP
H09-213129 Aug 1997 JP
H09-219358 Aug 1997 JP
H09-227294 Sep 1997 JP
H09-232213 Sep 1997 JP
H09-243892 Sep 1997 JP
H09-246672 Sep 1997 JP
H09-251208 Sep 1997 JP
H09-281077 Oct 1997 JP
H09-325255 Dec 1997 JP
H09-326338 Dec 1997 JP
H10-2865 Jan 1998 JP
H10-3039 Jan 1998 JP
H10-20195 Jan 1998 JP
H10-32160 Feb 1998 JP
H10-38517 Feb 1998 JP
H10-38812 Feb 1998 JP
H10-55713 Feb 1998 JP
H10-62305 Mar 1998 JP
H10-64790 Mar 1998 JP
H10-79337 Mar 1998 JP
H10-82611 Mar 1998 JP
H10-92735 Apr 1998 JP
H10-97969 Apr 1998 JP
H10-104427 Apr 1998 JP
H10-116760 May 1998 JP
H10-116778 May 1998 JP
H10-116779 May 1998 JP
H10-125572 May 1998 JP
H10-134028 May 1998 JP
H10-135099 May 1998 JP
H10-163099 Jun 1998 JP
H10-163302 Jun 1998 JP
H10-169249 Jun 1998 JP
H10-189427 Jul 1998 JP
H10-189700 Jul 1998 JP
H10-206714 Aug 1998 JP
H10-208993 Aug 1998 JP
H10-209018 Aug 1998 JP
H10-214783 Aug 1998 JP
H10-228661 Aug 1998 JP
H10-255319 Sep 1998 JP
H10-294268 Nov 1998 JP
H10-303114 Nov 1998 JP
H10-340846 Dec 1998 JP
11-003849 Jan 1999 JP
H11-3849 Jan 1999 JP
H11-3856 Jan 1999 JP
H11-8194 Jan 1999 JP
H11-14876 Jan 1999 JP
H11-16816 Jan 1999 JP
H11-40657 Feb 1999 JP
H11-54426 Feb 1999 JP
H11-74185 Mar 1999 JP
H11-87237 Mar 1999 JP
H11-111601 Apr 1999 JP
H11-111818 Apr 1999 JP
H11-111819 Apr 1999 JP
H11-121328 Apr 1999 JP
H11-135400 May 1999 JP
H11-142556 May 1999 JP
H11-150062 Jun 1999 JP
H11-159571 Jun 1999 JP
H11-162831 Jun 1999 JP
H11-163103 Jun 1999 JP
H11-164543 Jun 1999 JP
H11-166990 Jun 1999 JP
H11-98 Jul 1999 JP
H11-176727 Jul 1999 JP
H11-176744 Jul 1999 JP
H11-195602 Jul 1999 JP
H11-204390 Jul 1999 JP
H11-218466 Aug 1999 JP
H11-219882 Aug 1999 JP
H11-233434 Aug 1999 JP
H11-238680 Aug 1999 JP
H11-239758 Sep 1999 JP
H11-260686 Sep 1999 JP
H11-260791 Sep 1999 JP
H11-264756 Sep 1999 JP
H11-283903 Oct 1999 JP
H11-288879 Oct 1999 JP
H11-307610 Nov 1999 JP
H11-312631 Nov 1999 JP
H11-354624 Dec 1999 JP
2000-003874 Jan 2000 JP
2000-003874 Jan 2000 JP
2000-012453 Jan 2000 JP
2000-012453 Jan 2000 JP
2000-021742 Jan 2000 JP
2000-021742 Jan 2000 JP
2000-021748 Jan 2000 JP
2000-021748 Jan 2000 JP
2000-029202 Jan 2000 JP
2000-029202 Jan 2000 JP
2000-032403 Jan 2000 JP
2000-032403 Jan 2000 JP
2000-036449 Feb 2000 JP
2000-036449 Feb 2000 JP
2000-058436 Feb 2000 JP
2000-058436 Feb 2000 JP
2000-081320 Mar 2000 JP
2000-081320 Mar 2000 JP
2000-092815 Mar 2000 JP
2000-097616 Apr 2000 JP
2000-106340 Apr 2000 JP
2000-114157 Apr 2000 JP
2000-121491 Apr 2000 JP
2000-121498 Apr 2000 JP
2000-147346 May 2000 JP
2000-154251 Jun 2000 JP
2000-180371 Jun 2000 JP
2000-206279 Jul 2000 JP
2000-208407 Jul 2000 JP
2000-240717 Sep 2000 JP
2000-243684 Sep 2000 JP
2000-252201 Sep 2000 JP
2000-283889 Oct 2000 JP
2000-286176 Oct 2000 JP
2000-311853 Nov 2000 JP
2000-311853 Nov 2000 JP
2000-323403 Nov 2000 JP
2000-323403 Nov 2000 JP
2001-007015 Jan 2001 JP
2001-020951 Jan 2001 JP
2001-023996 Jan 2001 JP
2001-037201 Feb 2001 JP
2001-044097 Feb 2001 JP
2001-074240 Mar 2001 JP
2001-083472 Mar 2001 JP
2001-085307 Mar 2001 JP
2001-097734 Apr 2001 JP
2001-110707 Apr 2001 JP
2001-118773 Apr 2001 JP
2001-135560 May 2001 JP
2001-135562 May 2001 JP
2001-144004 May 2001 JP
2001-507139 May 2001 JP
2001-167996 Jun 2001 JP
2001-176766 Jun 2001 JP
2001-203140 Jul 2001 JP
2001-218497 Aug 2001 JP
2001-228401 Aug 2001 JP
2001-228404 Aug 2001 JP
2001-230323 Aug 2001 JP
2001-242269 Sep 2001 JP
2001-265581 Sep 2001 JP
2001-267227 Sep 2001 JP
2001-272764 Oct 2001 JP
2001-274083 Oct 2001 JP
2001-282526 Oct 2001 JP
2001-296105 Oct 2001 JP
2001-297976 Oct 2001 JP
2001-304332 Oct 2001 JP
2001-307982 Nov 2001 JP
2001-307983 Nov 2001 JP
2001-313250 Nov 2001 JP
2001-338868 Dec 2001 JP
2001-345262 Dec 2001 JP
2002-014005 Jan 2002 JP
2002-015978 Jan 2002 JP
2002-016124 Jan 2002 JP
2002-043213 Feb 2002 JP
2002-057097 Feb 2002 JP
2002-066428 Mar 2002 JP
2002-071513 Mar 2002 JP
2002-072080 Mar 2002 JP
2002-075816 Mar 2002 JP
2002-091922 Mar 2002 JP
2002-093686 Mar 2002 JP
2002-093690 Mar 2002 JP
2002-100561 Apr 2002 JP
2002-118058 Apr 2002 JP
2002-141270 May 2002 JP
2002-158157 May 2002 JP
2002-170495 Jun 2002 JP
2002-190438 Jul 2002 JP
2002-195912 Jul 2002 JP
2002-198284 Jul 2002 JP
2002-202221 Jul 2002 JP
2002-203763 Jul 2002 JP
2002-208562 Jul 2002 JP
2002-520810 Jul 2002 JP
2002-222754 Aug 2002 JP
2002-227924 Aug 2002 JP
2002-231619 Aug 2002 JP
2002-258487 Sep 2002 JP
2002-261004 Sep 2002 JP
2002-263553 Sep 2002 JP
2002-277742 Sep 2002 JP
2002-289505 Oct 2002 JP
2002-305140 Oct 2002 JP
2002-323658 Nov 2002 JP
2002-324743 Nov 2002 JP
2002-329651 Nov 2002 JP
2002-334836 Nov 2002 JP
2002-353105 Dec 2002 JP
2002-357715 Dec 2002 JP
2002-359174 Dec 2002 JP
2002-362737 Dec 2002 JP
2002-365783 Dec 2002 JP
2002-367523 Dec 2002 JP
2002-367886 Dec 2002 JP
2002-373849 Dec 2002 JP
2003-015040 Jan 2003 JP
2003-017003 Jan 2003 JP
2003-017404 Jan 2003 JP
2003-028673 Jan 2003 JP
2003-035822 Feb 2003 JP
2003-043223 Feb 2003 JP
2003-045219 Feb 2003 JP
2003-045712 Feb 2003 JP
2003-059286 Feb 2003 JP
2003-059803 Feb 2003 JP
2003-059821 Feb 2003 JP
2003-068600 Mar 2003 JP
2003-075703 Mar 2003 JP
2003-081654 Mar 2003 JP
2003-084445 Mar 2003 JP
2003-098651 Apr 2003 JP
2003-100597 Apr 2003 JP
2003-114387 Apr 2003 JP
2003-124095 Apr 2003 JP
2003-130132 May 2003 JP
2003-149363 May 2003 JP
2003-151880 May 2003 JP
2003-161882 Jun 2003 JP
2003-163158 Jun 2003 JP
2003-166856 Jun 2003 JP
2003-173957 Jun 2003 JP
2003-188087 Jul 2003 JP
2003-195223 Jul 2003 JP
2003-224961 Aug 2003 JP
2003-229347 Aug 2003 JP
2003-233001 Aug 2003 JP
2003-238577 Aug 2003 JP
2003-240906 Aug 2003 JP
2003-249443 Sep 2003 JP
2003-258071 Sep 2003 JP
2003-262501 Sep 2003 JP
2003-263119 Sep 2003 JP
2003-272837 Sep 2003 JP
2003-273338 Sep 2003 JP
2003-279889 Oct 2003 JP
2003-282423 Oct 2003 JP
2003-297727 Oct 2003 JP
2003-532281 Oct 2003 JP
2003-532282 Oct 2003 JP
2003-311923 Nov 2003 JP
2004-006440 Jan 2004 JP
2004-007417 Jan 2004 JP
2004-014642 Jan 2004 JP
2004-014876 Jan 2004 JP
2004-015187 Jan 2004 JP
2004-022708 Jan 2004 JP
2004-038247 Feb 2004 JP
2004-039952 Feb 2004 JP
2004-040039 Feb 2004 JP
2004-045063 Feb 2004 JP
2004-063847 Feb 2004 JP
2004-071851 Mar 2004 JP
2004-085612 Mar 2004 JP
2004-087987 Mar 2004 JP
2004-093624 Mar 2004 JP
2004-095653 Mar 2004 JP
3102327 Mar 2004 JP
2004-098012 Apr 2004 JP
2004-101362 Apr 2004 JP
2004-103674 Apr 2004 JP
2004-111569 Apr 2004 JP
2004-111579 Apr 2004 JP
2004-119497 Apr 2004 JP
2004-119717 Apr 2004 JP
2004-128307 Apr 2004 JP
2004-134682 Apr 2004 JP
2004-140145 May 2004 JP
2004-145269 May 2004 JP
2004-146702 May 2004 JP
2004-152705 May 2004 JP
2004-153064 May 2004 JP
2004-153096 May 2004 JP
2004-163555 Jun 2004 JP
2004-165249 Jun 2004 JP
2004-165416 Jun 2004 JP
2004-172471 Jun 2004 JP
2004-177468 Jun 2004 JP
2004-179172 Jun 2004 JP
2004-187401 Jul 2004 JP
2004-193252 Jul 2004 JP
2004-193425 Jul 2004 JP
2004-198748 Jul 2004 JP
2004-205698 Jul 2004 JP
2004-207696 Jul 2004 JP
2004-207711 Jul 2004 JP
2004-221253 Aug 2004 JP
2004-224421 Aug 2004 JP
2004-228497 Aug 2004 JP
2004-233897 Aug 2004 JP
2004-241666 Aug 2004 JP
2004-247527 Sep 2004 JP
2004-259828 Sep 2004 JP
2004-259966 Sep 2004 JP
2004-259985 Sep 2004 JP
2004-260043 Sep 2004 JP
2004-260081 Sep 2004 JP
2004-260115 Sep 2004 JP
2004-294202 Oct 2004 JP
2004-301825 Oct 2004 JP
2004-302043 Oct 2004 JP
2004-303808 Oct 2004 JP
2004-304135 Oct 2004 JP
2004-307264 Nov 2004 JP
2004-307265 Nov 2004 JP
2004-307266 Nov 2004 JP
2004-307267 Nov 2004 JP
2004-319724 Nov 2004 JP
2004-320017 Nov 2004 JP
2004-327660 Nov 2004 JP
2004-335808 Nov 2004 JP
2004-335864 Nov 2004 JP
2004-336922 Nov 2004 JP
2004-342987 Dec 2004 JP
2004-349645 Dec 2004 JP
2004-356410 Dec 2004 JP
2005-005295 Jan 2005 JP
2005-005395 Jan 2005 JP
2005-005521 Jan 2005 JP
2005-011990 Jan 2005 JP
2005-012228 Jan 2005 JP
2005-018013 Jan 2005 JP
2005-019628 Jan 2005 JP
2005-019864 Jan 2005 JP
2005-026634 Jan 2005 JP
2005-503018 Jan 2005 JP
2005-032909 Feb 2005 JP
2005-051147 Feb 2005 JP
2005-055811 Mar 2005 JP
2005-064210 Mar 2005 JP
2005-064391 Mar 2005 JP
2005-079222 Mar 2005 JP
2005-079584 Mar 2005 JP
2005-079587 Mar 2005 JP
2005-086148 Mar 2005 JP
2005-091023 Apr 2005 JP
2005-093324 Apr 2005 JP
2005-093948 Apr 2005 JP
2005-097057 Apr 2005 JP
2005-108934 Apr 2005 JP
2005-114882 Apr 2005 JP
2005-116570 Apr 2005 JP
2005-116571 Apr 2005 JP
2005-116831 Apr 2005 JP
2005-123586 May 2005 JP
2005-127460 May 2005 JP
2005-136404 May 2005 JP
2005-136422 May 2005 JP
2005-140999 Jun 2005 JP
2005-150759 Jun 2005 JP
2005-156592 Jun 2005 JP
2005-166871 Jun 2005 JP
2005-175176 Jun 2005 JP
2005-175177 Jun 2005 JP
2005-191344 Jul 2005 JP
2005-203483 Jul 2005 JP
2005-209705 Aug 2005 JP
2005-209706 Aug 2005 JP
2005-223328 Aug 2005 JP
2005-233979 Sep 2005 JP
2005-234359 Sep 2005 JP
2005-236088 Sep 2005 JP
2005-243770 Sep 2005 JP
2005-243870 Sep 2005 JP
2005-243904 Sep 2005 JP
2005-251549 Sep 2005 JP
2005-257740 Sep 2005 JP
2005-259789 Sep 2005 JP
2005-259830 Sep 2005 JP
2005-268700 Sep 2005 JP
2005-268741 Sep 2005 JP
2005-268742 Sep 2005 JP
2005-276932 Oct 2005 JP
2005-302825 Oct 2005 JP
2005-303167 Oct 2005 JP
2005-311020 Nov 2005 JP
2005-315918 Nov 2005 JP
2005-340605 Dec 2005 JP
2005-366813 Dec 2005 JP
2005-537658 Dec 2005 JP
2006-001821 Jan 2006 JP
2006-005197 Jan 2006 JP
2006-013518 Jan 2006 JP
2006-017895 Jan 2006 JP
2006-019702 Jan 2006 JP
2006-024706 Jan 2006 JP
2006-024819 Jan 2006 JP
2006-032750 Feb 2006 JP
2006-032963 Feb 2006 JP
2006-041302 Feb 2006 JP
2006-054328 Feb 2006 JP
2006-054364 Feb 2006 JP
2006-073584 Mar 2006 JP
2006-073951 Mar 2006 JP
2006-080281 Mar 2006 JP
2006-086141 Mar 2006 JP
2006-086442 Mar 2006 JP
2006-508369 Mar 2006 JP
2006-100363 Apr 2006 JP
2006-100686 Apr 2006 JP
2006-113437 Apr 2006 JP
2006-513442 Apr 2006 JP
2006-120985 May 2006 JP
2006-128192 May 2006 JP
2006-135165 May 2006 JP
2006-135312 May 2006 JP
2006-140366 Jun 2006 JP
2006-170811 Jun 2006 JP
2006-170899 Jun 2006 JP
2006171426 Jun 2006 JP
2006-177865 Jul 2006 JP
2006-184414 Jul 2006 JP
2006-194665 Jul 2006 JP
2006-516724 Jul 2006 JP
2006-228718 Aug 2006 JP
2006-519494 Aug 2006 JP
2006216917 Aug 2006 JP
2006-250587 Sep 2006 JP
2006-253572 Sep 2006 JP
2006-269762 Oct 2006 JP
2006-278820 Oct 2006 JP
2006-284740 Oct 2006 JP
2006-289684 Oct 2006 JP
2006-309243 Nov 2006 JP
2006-344747 Dec 2006 JP
2006-349946 Dec 2006 JP
2006-351586 Dec 2006 JP
2007-005830 Jan 2007 JP
2007-019079 Jan 2007 JP
2007-027188 Feb 2007 JP
2007-043980 Feb 2007 JP
2007-048819 Feb 2007 JP
2007-051300 Mar 2007 JP
2007-505488 Mar 2007 JP
2007-087306 Apr 2007 JP
2007-093546 Apr 2007 JP
2007-103153 Apr 2007 JP
2007-113939 May 2007 JP
2007-119851 May 2007 JP
2007-120333 May 2007 JP
2007-120334 May 2007 JP
2007-142313 Jun 2007 JP
2007-144864 Jun 2007 JP
2007-150295 Jun 2007 JP
2007-170938 Jul 2007 JP
2007-187649 Jul 2007 JP
2007-207821 Aug 2007 JP
2007-227637 Sep 2007 JP
2007-227918 Sep 2007 JP
2007-235041 Sep 2007 JP
2007-258691 Oct 2007 JP
2007-274881 Oct 2007 JP
2007-280623 Oct 2007 JP
2007-295702 Nov 2007 JP
2008-003740 Jan 2008 JP
2008-047744 Feb 2008 JP
2008-058580 Mar 2008 JP
2008-064924 Mar 2008 JP
2008-102134 May 2008 JP
2008-103737 May 2008 JP
2008-180492 Aug 2008 JP
2008-258605 Oct 2008 JP
2009-017540 Jan 2009 JP
2009-060339 Mar 2009 JP
2009-105396 May 2009 JP
2009-111369 May 2009 JP
2009-117801 May 2009 JP
2009-117812 May 2009 JP
2010-034486 Feb 2010 JP
10-2001-0112107 Dec 2001 KR
2002-0092207 Dec 2002 KR
9711411 Mar 1997 WO
9824115 Jun 1998 WO
98028650 Jul 1998 WO
9859364 Dec 1998 WO
9923692 May 1999 WO
9927568 Jun 1999 WO
9931716 Jun 1999 WO
9934255 Jul 1999 WO
9949366 Sep 1999 WO
99049504 Sep 1999 WO
9950712 Oct 1999 WO
9966370 Dec 1999 WO
0011706 Mar 2000 WO
2000067303 Apr 2000 WO
00067303 Nov 2000 WO
01003170 Jan 2001 WO
0110137 Feb 2001 WO
0122480 Mar 2001 WO
0127978 Apr 2001 WO
0159502 Aug 2001 WO
2001059502 Aug 2001 WO
0165296 Sep 2001 WO
0216993 Feb 2002 WO
02063664 Aug 2002 WO
02069049 Sep 2002 WO
02080185 Oct 2002 WO
02084720 Oct 2002 WO
02084850 Oct 2002 WO
02101804 Dec 2002 WO
02103766 Dec 2002 WO
03023832 Mar 2003 WO
03023833 Mar 2003 WO
03063212 Jul 2003 WO
03077036 Sep 2003 WO
03085708 Oct 2003 WO
2004051220 Jun 2004 WO
2004051717 Jun 2004 WO
2004053596 Jun 2004 WO
2004053950 Jun 2004 WO
2004053951 Jun 2004 WO
2004053952 Jun 2004 WO
2004053953 Jun 2004 WO
2004053954 Jun 2004 WO
2004053955 Jun 2004 WO
2004053956 Jun 2004 WO
2004053957 Jun 2004 WO
2004053958 Jun 2004 WO
2004053959 Jun 2004 WO
2004061488 Jul 2004 WO
2004071070 Aug 2004 WO
2004077164 Sep 2004 WO
2004086468 Oct 2004 WO
2004086470 Oct 2004 WO
2004090956 Oct 2004 WO
2004091079 Oct 2004 WO
2004094940 Nov 2004 WO
2004104654 Dec 2004 WO
2004105106 Dec 2004 WO
2004105107 Dec 2004 WO
2004107048 Dec 2004 WO
2004107417 Dec 2004 WO
2004109780 Dec 2004 WO
2004114380 Dec 2004 WO
2005006415 Jan 2005 WO
2005006418 Jan 2005 WO
2005008754 Jan 2005 WO
2005022615 Mar 2005 WO
2005026843 Mar 2005 WO
2005029559 Mar 2005 WO
2005036619 Apr 2005 WO
2005036620 Apr 2005 WO
2005-036622 Apr 2005 WO
2005-036623 Apr 2005 WO
2005041276 May 2005 WO
2005048325 May 2005 WO
2005048326 May 2005 WO
2005057636 Jun 2005 WO
2005067013 Jul 2005 WO
2005071717 Aug 2005 WO
2005076321 Aug 2005 WO
2005076323 Aug 2005 WO
2005081291 Sep 2005 WO
2005081292 Sep 2005 WO
2005104195 Nov 2005 WO
2006-006730 Jan 2006 WO
2006-016551 Feb 2006 WO
2006019124 Feb 2006 WO
2006-028188 Mar 2006 WO
2006-030727 Mar 2006 WO
2006030910 Mar 2006 WO
20061025341 Mar 2006 WO
2006035775 Apr 2006 WO
2006-049134 May 2006 WO
2006051909 May 2006 WO
2006-064851 Jun 2006 WO
2006-068233 Jun 2006 WO
2006-077958 Jul 2006 WO
2006085524 Aug 2006 WO
20061085626 Aug 2006 WO
2006097135 Sep 2006 WO
2006100889 Sep 2006 WO
2006-118108 Nov 2006 WO
2007003563 Jan 2007 WO
2007004567 Jan 2007 WO
2007-018127 Feb 2007 WO
2007055237 May 2007 WO
2007055373 May 2007 WO
2007058188 May 2007 WO
2007066692 Jun 2007 WO
2007066758 Jun 2007 WO
2007097198 Aug 2007 WO
2007100081 Sep 2007 WO
2007132862 Nov 2007 WO
2007141997 Dec 2007 WO
2008015973 Feb 2008 WO
2008041575 Apr 2008 WO
2008059748 May 2008 WO
2008061681 May 2008 WO
2006-343023 Jun 2008 WO
2008065977 Jun 2008 WO
2008075613 Jun 2008 WO
2008078688 Jul 2008 WO
2008090975 Jul 2008 WO
2008131928 Nov 2008 WO
2008139848 Nov 2008 WO
2009153925 Dec 2009 WO
2009157154 Dec 2009 WO
2010001537 Jan 2010 WO
Non-Patent Literature Citations (105)
Entry
May 5, 2015 Office Action issued in Chinese Application No. 201310052720.8.
May 6, 2015 Office Action issued in Chinese Application No. 201310052891.0.
May 22, 2015 Office Action issued in Korean Application No. 10-2015-7005375.
Aug. 14, 2012 Notice of Allowance issued in U.S. Appl. No. 12/252,274.
Aug. 24, 2012 Office Action issued in U.S. Appl. No. 12/245,021.
Aug. 27, 2012 Office Action issued in U.S. Appl. No. 12/256,055.
Jul. 26, 2012 Office Action issued in Chinese Application No. 200880020867.6.
Sep. 14, 2012 Office Action issued in U.S. Appl. No. 13/484,051.
Oct. 2, 2012 Search Report issued in European Application No. 12173803.3.
Sep. 28, 2012 Notice of Allowance issued in U.S. Appl. No. 12/252,283.
Oct. 17, 2012 Office Action issued in European Application No. 08841021.2.
Oct. 18, 2012 Search Report issued in European Application No. 09015718.1.
Oct. 30, 2012 Search Report issued in European Application No. 12173802.5.
Oct. 17, 2012 Office Action issued in European Application No. 09015716.5.
Oct. 10, 2012 Office Action issued in Chinese Application No. 200880015567.9.
Feb. 22, 2012 Office Action issued in Chinese Application No. 200880020867.6.
Sep. 21, 2012 Search Report issued in European Application No. 12173801.7.
Oct. 23, 2012 Notice of Allowance issued in Japanese Application No. P2008-263405.
Nov. 20, 2012 Office Action issued in Japanese Application No. P2008-261214.
Nov. 20, 2012 Office Action issued in Japanese Application No. P2008-261215.
Nov. 27, 2012 Office Action issued in U.S. Appl. No. 12/252,274.
Dec. 26, 2012 Office Action in Chinese Application No. 200980101546.3.
Jan. 15, 2013 Notice of Allowance issued in U.S. Appl. No. 12/191,821.
Jan. 16, 2013 Notice of Allowance issued in U.S. Appl. No. 13/417,602.
Jan. 23, 2013 Notice of Allowance issued in U.S. Appl. No. 12/952,197.
Jan. 23, 2013 Notice of Allowance issued in U.S. Appl. No. 12/252,283.
Jan. 15, 2013 Office Action issued in Japanese Application No. P2008-259522.
Jan. 31, 2013 Office Action issued in Chinese Application No. 200880021453.5.
Feb. 19, 2013 Office Action issued in Japanese Application No. 2010-514429.
Mar. 11, 2013 Office Action issued in European Application No. 08847031.5.
Mar. 19, 2013 Office Action issued in European Application No. 08830323.5.
Mar. 12, 2013 Office Action issued in Chinese Application No. 200880024806.7.
Apr. 5, 2013 Notice of Allowance issued in U.S. Appl. No. 13/484,051.
Apr. 29, 2013 Notice of Allowance issued in U.S. Appl. No. 12/252,274.
May 10, 2013 Office Action issued in European Application No. 12171299.6.
Apr. 3, 2013 Office Action issued in Chinese Application No. 200880100940.0.
May 14, 2013 Office Action issued in Japanese Application No. P2010-506474.
Jun. 17, 2013 Office Action issued in European Application No. 12173802.5.
Apr. 30, 2014 Office Action issued in Japanese Application No. P2013-055204.
Aug. 27, 2014 Office Action issued in Korean Application No. 10-2010-7005948.
Jul. 2, 2014 Office Action issued in Chinese Application No. 201310052891.0.
Jul. 2, 2014 Office Action issued in Chinese Application No. 201310052720.8.
Oct. 5, 2015 Office Action issued in European Patent Application No. 12171299.6.
Oct. 8, 2015 Office Action issued in European Patent Application No. 12 173 802.5.
Jan. 18, 2016 Office Action issued in European Patent Application No. 12 173 801.7.
Jul. 28, 2015 Office Action issued in Korean Patent Application No. 10-2010-7005948.
Sep. 15, 2015 Office Action issued in Japanese Patent Application No. 2014-255739.
Dec. 12, 2016 Office Action issued in European Patent Application No. 12171299.6.
Mar. 25, 2016 Office Action issued in Korean Patent Application No. 10-2015-7005375.
Jun. 24, 2016 Office Action issued in Korean Patent Application 10-2010-7005948.
Jan. 26, 2017 Office Action issued in Korean Patent Application No. 10-2015-7005375.
Jul. 4, 2017 Office Action issued in Korean Patent Application No. 10-2015-7005375.
Aug. 15, 2017 Office Action issued in Japanese Patent Application No. 2016-220064.
Oct. 10, 2017 Office Action issued in Korean Patent Application No. 10-2017-7015056.
Jul. 2, 2014 Office Action issued in Chinese Patent Application No. 201310052891.0.
Jul. 2, 2014 Office Action issued in Chinese Patent Application No. 201310052720.8.
Jul. 5, 2011 Office Action issued in Chinese Patent Application No. 200880100940.0.
Jun. 30, 2011 Office Action issued in Chinese Patent Application No. 200880021453.5.
Jul. 28, 2011 Office Action issued in U.S. Appl. No. 12/252,283.
Jul. 19, 2011 Office Action issued in U.S. Appl. No. 12/191,821.
Jul. 26, 2011 Office Action issued in Chinese Application No. 200880020867.6.
Jul. 12, 2011 Office Action issued in Chinese Patent Application No. 200880018312.8.
Nov. 28, 2011 Notice of Allowance issued in U.S. Appl. No. 12/952,197.
Dec. 15, 2011 Notice of Allowance issued in U.S. Appl. No. 12/245,021.
Nov. 15, 2011 Office Action issued in U.S. Appl. No. 12/252,274.
Dec. 8, 2011 Office Action issued in U.S. Appl. No. 12/256,055.
Nov. 3, 2011 Office Action issued in Chinese Application No. 200880015567.9.
Dec. 12, 2011 Office Action issued in European Application No. 08 837 064.8.
Nov. 17, 2011 Office Action issued in Chinese Application No. 200880024375.4.
Dec. 20, 2011 Office Action issued in Chinese Application No. 200980101546.3.
Feb. 7, 2012 Notice of Allowance issued in U.S. Appl. No. 12/191,821.
Jan. 15, 2009 International Search Report issued in International Application No. PCT/JP2008/068319.
Mar. 25, 2009 International Search Report issued in International Application No. PCT/JP2008/066803.
Jan. 16, 2009 Invitation to Pay Additional Fees Relating to the results of the Partial International Search Report issued in International Application No. PCT/JP2008/066803.
May 25, 2009 International Search Report issued in International Application No. PCT/JP2008/069704.
Mar. 6, 2009 Invitation to Pay Additional Fees Relating to the results of the Partial International Search Report issued in International Application No. PCT/JP2008/069704.
Jan. 26, 2009 International Search Report issued in International Application No. PCT/JP2008/068909.
Apr. 6, 2009 International Search Report issued in International Application No. PCT/JP2008/070253.
Mar. 2, 2009 International Search Report issued in International Application No. PCT/JP2008/069701.
Dec. 9, 2010 European Search Report issued in European Application No. 09015719.9.
Dec. 9, 2010 European Search Report issued in European Application No. 09015716.5.
Dec. 9, 2010 Partial European Search Report issued in European Application No. 09015718.1.
Oct. 15, 2010 Office Action issued in European Application No. 08 835 135.8.
Feb. 22, 2011 Office Action issued in European Application No. 08 830 323.5.
Dec. 8, 2010 Office Action issued in European Application No. 08 841 021.2.
Jun. 25, 2010 Office Action issued in European Application No. 08 837 064.8.
Mar. 24, 2011 Office Action issued in Chinese Application No. 200880024806.7.
Feb. 20, 2012 Second Office Action issued in Chinese Application No. 200880018312.8.
May 18, 2011 Office Action issued in U.S. Appl. No. 12/208,155.
Jul. 27, 2011 Office Action issued in U.S. Appl. No. 12/208,155.
Mar. 24, 2011 Office Action issued in U.S. Appl. No. 12/191,821.
Jan. 3, 2011 Office Action issued in U.S. Appl. No. 12/262,930.
May 13, 2011 Office Action issued in U.S. Appl. No. 12/952,197.
Mar. 31, 2011 Notice of Allowance issued in U.S. Appl. No. 12/252,274.
Sep. 1, 2010 Office Action issued in U.S. Appl. No. 12/252,274.
Feb. 24, 2012 Notice of Allowance issued in U.S. Appl. No. 12/252,283.
Gao et al., “Research on High-Quality Projecting Reduction Lithography System Based on Digital Mask Technique,” Elsevier GmbH, Optik (Jan. 2005), vol. 116, pp. 303-310.
Aug. 26, 2011 Office Action issued in U.S. Appl. No. 12/245,021.
May 29, 2012 Office Action issued in U.S. Appl. No. 13/417,602.
May 9, 2012 Office Action issued in European Application No. 08 830 323.5.
May 23, 2012 Office Action issued in U.S. Appl. No. 12/191,821.
Jun. 20, 2012 Office Action issued in Chinese Application No. 200880100940.0.
Jul. 27, 2012 Search Report issued in European Application No. 12171299.6.
Jun. 18, 2012 Office Action issued in Chinese Application No. 200880021453.5.
Aug. 7, 2018 Official Notification issued in Korean Patent Application No. 10-2010-7005948.
Related Publications (1)
Number Date Country
20150261096 A1 Sep 2015 US
Provisional Applications (1)
Number Date Country
60996035 Oct 2007 US
Continuations (1)
Number Date Country
Parent 12250519 Oct 2008 US
Child 14716168 US