The present technology relates to an illumination optical system utilizing laser beam, a light irradiation apparatus for spectrometry and a spectrometer using them.
In the related art, there are a projector, an exposure apparatus, an annealing apparatus, a spectrometer and the like utilizing a laser beam. A high coherent laser beam has a problem that interference fringes are produced on its irradiated surface, which causes illumination non-uniformity.
In general, as to incoherent light emitted from a halogen lamp, an LED (Light Emitting Diode) lamp and the like, illuminance non-uniformity is inhibited by utilizing a lens array element such as a fly eye lens array. Specifically, when the incoherent light is incident on the fly eye lens, light components are split by each lens, and the split light components are superposed by a condenser lens, which inhibits the illuminance non-uniformity.
However, when the laser beam is used, the interference fringes are inevitably produced even if the fly eye lens is used, because the laser beam has high coherency.
Japanese Patent Application Laid-open No. 2011-175213 discloses a laser irradiation apparatus that can inhibit a production of interference fringes and improve illuminance uniformity. The laser irradiation apparatus includes a fly eye lens (7) and a depolarization plate (6) disposed at a light incident side of the fly eye lens (7). The depolarization plate (6) is configured to have a plurality of phase difference plates (6a to 6d) disposed in a matrix array. Respective phase difference plates (6a to 6d) correspond to lens cells at a ratio of 1:1. The laser beam components having different polarization states pass through the respective lens cells and superposed on an irradiation plane (11). On the irradiation plane (11), the laser beam shows pseudo random polarization. (For example, see the paragraphs [0015] and [0020] in Japanese Patent Application Laid-open No. 2011-175213).
As a related technology of the present technology, Japanese Patent Application Laid-open No. 2008-510964 discloses an Offner spectrometer.
The laser irradiation apparatus disclosed in Japanese Patent Application Laid-open No. 2011-175213 can avoid the interference of polarization components perpendicular to each other, i.e., the interference of the laser beam components exited from the neighboring lens cells. However, the laser irradiation apparatus may be impossible to avoid the interference of the non-neighboring lens cells. In other words, the laser irradiation apparatus may be impossible to avoid the higher interference.
It is desirable to provide an illumination optical system, a light irradiation apparatus for spectrometry and a spectrometer using them where a production of interference fringes can be inhibited even in the optical apparatus utilizing the laser beam.
The illumination optical system according to an embodiment of the present technology includes a laser light source, an integrator element, an oscillating element, and a light collecting element.
The oscillating element can guide the laser beam emitted from the laser light source to the integrator element, and oscillates to change an incident angle of the laser beam to the integrator element.
The light collecting element collects the laser beam emitted from the oscillating element.
As the oscillating element oscillates to change the incident angle of the laser beam to the integrator element, a uniform light can be emitted from the light collecting element on time average. In other words, a production of interference fringes can be inhibited.
The integrator element may have a first integrator element and a second integrator element on which the laser beam emitted from the first integrator element is incident. The second integrator element can act as a field lens, so that an edge of an illuminated light can be sharpened.
The first integrator element may have a first lens array including a plurality of lenses arranged in a predetermined pitch.
The second integrator element may have a second lens array including a plurality of lenses arranged in the pitch of the first lens array, corresponding to a light axis direction of the plurality of lenses in the first lens array.
The oscillating element may oscillate, so that the laser beam emitted from a first lens among the plurality of lenses in the first lens array is incident on a second lens, disposed corresponding to a light axis direction of the first lens, among the plurality of lenses in the second lens array.
The integrator element may have a lens array on which a plurality of lenses are arranged. In this case, the oscillating element oscillates, so that an oscillation width of the laser beam incident on the integrator element is not more than a width of a single lens of the plurality of lenses. Thus, a production of interference fringes can be inhibited with certainty.
The oscillating element may be a resonant mirror or an acoustooptic element.
A light irradiation apparatus for spectrometry according to an embodiment of the present technology is a light irradiation apparatus for spectrometry including the above-described illumination optical system.
A spectrometer according to an embodiment of the present technology includes the above-mentioned illumination optical system, a reflection member, a diffraction grating, an input element and an optical system.
The reflection member has a concave surface formed along a first circle having a center.
The diffraction grating has an edge part and a convex surface formed along a second circle disposed concentrically with the first circle, on which the light reflected at the concave surface of the reflection member is incident.
The input element is disposed at a predetermined position to the reflection member and the diffraction grating so as to pass a diffracted light between an input light input to the spectrometric optical system and the edge part of the diffraction grating. The diffracted light has a wavelength region of not less than 600 nm to not more than 1100 nm and is emitted from the diffraction grating and is reflected at the concave surface.
The optical system maintains an optical conjugation between a collecting surface of the laser beam emitted from the collecting element and an input surface of the laser beam incident on the input element.
According to the embodiment of the present technology, a production of interference fringes can be inhibited even in the optical apparatus utilizing the laser beam.
These and other objects, features and advantages of the present technology will become more apparent in light of the following detailed description of best mode embodiments thereof, as illustrated in the accompanying drawings.
Hereinafter, an embodiment of the present technology will be described with reference to the drawings.
The illumination optical system 50 according to the reference embodiment includes a laser diode 11, a collimator lens 13, an integrator lens 15 and a collecting lens 17.
In many laser diodes 11, if coherency is ignored, a luminous point (an emitter) has an almost rectangular shape. In the reference embodiment shown in
Hereinafter, the optical system shown in
The laser beam emitted from the laser diode 11 is changed to a parallel light by a collimator lens 13. An intensity profile of the laser beam emitted from the collimator lens 13 has a Gaussian distribution (TEM00) in the short axis direction. On the other hand, an intensity profile of the laser beam in the long axis direction has non-uniform distribution (TEM05).
A difference between the first and second optical systems is a shape of an integrator lens 15. As the integrator lens 15, a lenticular lens, where a plurality of cylindrical lenses 15a (a lens array) is arranged and configured in the long axis of the laser beam, is used. That is to say, the integrator lens 15 has power in the long axis direction to the laser beam and has no power in the short axis direction.
As shown in
The integrator lens 15 has no power in the short axis direction of the laser diode 11. The sample surface is directly irradiated with the beam having the intensity profile with the Gaussian distribution. The first optical system becomes a critical illumination optical system.
An illumination width (irradiation range of a beam) W on the screen 19 can be determined by the following numerical expression 1:
where p represents a pitch of each cylindrical lens 15a of the integrator, fcond represents a focal length of the collecting lens 17 and finteg represents a focal length of the integrator lens 15.
Numerical expression 1 shows that the lenses are arranged so that a position at a collecting light point of the integrator lens 15 is matched with a position at the focal length fcond of the collecting lens 17.
As described above, even if the Kehler illumination optical system is used as the second optical system, the interference fringes attributed to the integrator lens 15 may be produced, and speckles may be produced by a small fluctuation on a wave surface.
The illumination optical system 100 includes a laser diode 11 as a laser light source, a collimator lens 13, an oscillating element 10, an integrator lens 15 as an integrator element and a collecting lens 17 as a collecting element.
The integrator lens 15 is a lenticular lens that has power in the long axis direction of the laser diode 11 to the laser beam and has no power in the short axis direction similar to that shown in
Both of the incident and emitted surfaces of the integrator lens 15 have convex shapes.
Similar to the above-described reference embodiment, the optical system of the integrator lens 15 having no power in the short axis direction becomes a critical illumination optical system. An illumination width in the short axis direction on the screen 19 is obtained by multiplying a ratio of respective focal lengths of the collimator lens 13 and the collecting lens 17 by a length of the emitter in the short axis direction.
The oscillating element 10 can reflect the laser beam at the collimator lens 13, guide the laser beam to the integrator lens 15, and oscillate to change an incident angle of the laser beam to the integrator lens 15.
As the oscillating element 10, a resonant mirror is typically used. The resonant mirror is configured to rotate around an axis of rotation 10a in the short axis direction at a predetermined angle, and then rotate in the reverse direction at a predetermined angle. In other words, the resonant mirror thus oscillates. The resonant mirror typically has a mirror, a permanent magnet and a coil wiring, and oscillates by electromagnetic actuation. For example, an alternating current flows through a coil disposed around a mirror surface in a magnetic field produced by the permanent magnet, thereby oscillating the mirror.
An oscillation frequency of the oscillating element 10 can be set as appropriate by the apparatus to which the illumination optical system 100 is applied. For example, when a person sees (or observes) with unaided eyes an object illuminated by the illumination optical system 100, the oscillation frequency is such that the oscillation may not be perceived by the person. Alternatively, when an object illuminated by the illumination optical system 100 is detected by the image sensor, the oscillation frequency is sufficiently shorter than an exposure time by the image sensor.
When the resonant mirror is used, the oscillation provides a sine curve. Accordingly, the oscillation mirror is operated at an oscillation center at highest speed. The speed becomes zero at the highest deflection angle. When the integrator lens 15 is not disposed and the oscillation mirror is used, a power density becomes high at both ends of the laser beam, the center gets dark, and the intensity non-uniformity tends to be produced. However, by using the integrator lens 15, the production of the intensity non-uniformity by the oscillation can be inhibited. Thus, the intensity uniformity can be provided.
Then, the incident angle θ of the laser beam incident on the integrator lens 15 will be described.
The incident angle θ of the laser beam incident on the integrator lens is typically defined by the following numerical expression 2.
where n represents a refractive index, r represents radius of curvature, and λ represents a wavelength of the laser beam.
Thus, the positions of the interference fringes produced on the screen 19 are changed by adjusting a beam angle. Accordingly, the illumination irradiated on the screen 19 can be considered as uniform illumination on time average.
The upper limit of the incident angle θ will be expressed by the following numerical expression 3 of which is a part of the numerical expression 2.
The range of the incident angle θ expressed by the numerical expression 3 shows the conditions that the beam (here it may be easily understand that the beam is considered as the edge of the beam) is incident and emitted on/from the single cylindrical lens 15a of the integrator lens 15. In other words, the oscillating element 10 oscillates so that the oscillation width of the laser beam incident on the integrator lens 15 is not greater than the width of the single cylindrical lens 15a.
According to the conditions of the numerical expression 3, an edge rise of the illuminated light in the long axis direction becomes the best to sharpen the illumination range on the screen 19. In contrast, when the incident angle θ of the beam becomes too large, the edge of the illuminated light in the long axis direction blurs. The smaller the ratio (fcond/finteg) of the focal length fcond of the collecting lens 17 and the focal length finteg of the integrator lens 15 is, the more the accuracy of the edge rise becomes severe.
The lower limit of the incident angle will be expressed by the following numerical expression 4 of which is a part of the numerical expression 2.
It is desirable to satisfy the numerical expression 4 in order to oscillate the laser beam at or exceeding the pitch of the interference fringes caused by the integrator lens 15 and produced on the screen 19. The integrator lens 15 and the collecting lens 17 are disposed at the positions corresponding to the respective focal lengths finteg and fcond. As a result, a travel distance of the beam over the screen 19 is determined by the focal length finteg of the integrator lens 15. The travel distance “a” equals to finteg tan θ. The pitch of the interference fringes equals to λ×fcond/p. In other words, finteg tan θ>λ×fcond/p is desirable to provide the numerical expression 4.
As described above, in the illumination optical system 100 according to the present embodiment, as the oscillating element 10 oscillates to change the incident angle of the laser beam to the integrator lens 15, uniform light can be emitted from the light collecting lens 17 on time average. A production of the interference fringes or speckles caused by the integrator lens 15 can be inhibited and desirable homogenization effects can be provided.
By defining the deflection angle (incident angle θ) of the oscillating element 10 as described above, a production of the interference fringes and the speckles can be inhibited with certainty.
In the apparatus described in Japanese Patent Application Laid-open No. 8-111368, a fly eye lens that is an element being a relatively large in mass is mechanically vibrated. Therefore, there are problems that the reliability is poor and the apparatus may be impossible to stand the long-term use. In contrast, the technology according to the present technology can solve the problems.
The illumination optical system 200 includes an integrator element 150 including a plurality of integrator lenses 15. The laser beam reflected at the oscillating element 10 is incident on a first integrator lens 151 (a first integrator element). The laser beam split by the first integrator lens 151 is incident on a second integrator lens 152 (a second integrator element).
Similar to the first embodiment, the integrator lens 151 has a plurality of cylindrical lenses each having power in the long axis direction to the laser beam. The second integrator lens 152 has the configuration similar to that of the first integrator lens 151, and has the same number of the cylindrical lenses disposed corresponding to the respective cylindrical lenses of the first integrator lens 151 in the light axis direction. In other words, both the lens pitches in the cylindrical lenses of the integrator lenses 151 and 152 are substantially the same. This allows the laser beam split by the respective cylindrical lenses of the first integrator lens 151 to be incident on the cylindrical lenses of the second integrator lens 152 in the light axis direction corresponding to the cylindrical lenses.
The emitted surface of the first integrator lens 151 and the incident surface of the second integrator lens 152 are formed in a plane.
The curvature, i.e., power of each of the cylindrical lens of the two integrator lenses 151 and 152 is desirably substantially the same. It is also desirable that the first and the second integrator lenses be disposed so that a focal position of the first integrator lens 151 is positioned on a main plane 152a of the second integrator lens 152. The main plane 152a formed by apexes of the respective convex surfaces of the second integrator lens 152.
The second integrator lens 152 thus configured acts as a field lens.
For example, when one integrator lens 15 is used as in the first embodiment, the edge of the irradiated light on the screen 19 may have poor sharpness depending on the conditions (when the focal length of the integrator lens 15 approaches the length of the collecting lens 17). In contrast, according to the embodiment of the present technology, the light fallen outward by the first integrator lens 151 is returned back inward by the second integrator lens 152. This allows the superposition of the collecting lens 17 to be improved and the edge of the irradiated light to be sharpened.
When it assumes that the focal length of the integrator lens 15 is relatively closer to the focal length of the collecting lens 17, the collecting lens 17 has the focal length 10 to 20 times longer than that of the integrator lens 15.
The illumination optical system 300 according to the third embodiment includes a first oscillating element 31 and a second oscillating element 32 as two oscillating elements. Similar to the first and second embodiments, as these oscillating elements 31 and 32, a resonant mirror is used. The first oscillating element 31 oscillates about the axis of rotation as a short axis (Z axis) of the laser beam. The second oscillating element 10 oscillates about the axis of rotation as a long axis (Y axis) of the laser beam.
The laser beam emitted from the collimator lens 13 along the Y axis direction is reflected by the first oscillating element 31 while oscillating in the long axis direction, and travels to the X axis direction. The laser beam reflected by the first oscillating element 31 is reflected by the second oscillating element 32 while oscillating in the sort axis direction, and travels to the Z axis direction.
As shown in
Also, in the third embodiment, the numerical expression 1 holds in both the short and long axes, and the numerical expression 2 holds in both the short and long axes as well.
According to the third embodiment, a production of the interference fringes and the speckles on both the long and short axes can be inhibited, and the light can be uniformly irradiated on the screen 19 in the both directions.
In the illumination optical system 400, the illumination optical system 100 according to the first embodiment is applied to an illumination optical system of a Raman imaging apparatus (Raman spectrometry apparatus). The Raman scattered light is produced when a sample is irradiated with the laser beam to shift a wavelength of the molecules constituting the sample for vibrating molecules. The Raman imaging apparatus two-dimensionally detects a spectrum of the scattered light.
The Raman imaging apparatus uniformly and linearly illuminates the sample using the illumination optical system 400. In the case of a Stokes Raman scattering detection, a specific wavelength area of the Raman scattered light excited by the illumination is limited by a highpass filter to guide the light to the spectrometer (spectrometric optical system) as described later.
The illumination optical system 400 includes a laser diode 11, a collimator lens group 130, an isolator 12, an ND filter 14, a convex surface cylindrical lens 161, a concave cylindrical lens 162, an oscillating element 10, an integrator lens 15, a collecting lens 17 and a laser Raman filter 21.
A line width of the laser for exciting Raman scattering affects on a line width of scattered light. Accordingly, a monochrome laser having a half-value width of about 0.1 nm is necessary. Such a laser also has a high coherency. Typically, a laser diode having a wavelength of 785 nm is used as the laser light source.
An emitter of the laser has a short axis of 1 μm and a long axis of 100 μm. A multi-mode laser diode is used. In order to improve monochrome and temperature properties, a diffraction grating may be disposed as an external resonator for selecting a wavelength after collimating by the collimator lens group 130. An FFP (Far Field Pattern) of the laser light source has a non-uniform beam profile (TEM05).
The light source of the laser diode 11 is configured to have 14000 μm×80 μm with a uniform and high aspect ratio. In this case, the aspect ratio roughly equals to a slit width of the area detected by the Raman spectrometer.
The collimator lens group 130 has a collimator lens for a short axis 131 and a collimator lens for a long axis 132, for example.
The isolator 12 has a polarization beam splitter 121 and a λ/4 plate 122. The isolator 12 transmits the laser beam from the collimator lens group 130. The polarization beam splitter 121 reflects the laser beam reflected by each element at a later stage after the λ/4 plate 122 so as not to return the laser beam to the laser light source.
The ND filter 14 adjusts a density (an amount of light) of the laser beam.
The convex surface cylindrical lens 161 and the concave cylindrical lens 162 magnify its beam diameter 4.8 times of the parallel light.
Similar to the first and second embodiments, as the oscillating element 10, a resonant mirror is used. The axis of rotation of the resonant mirror is disposed along a short axis direction.
As shown in the first and second embodiments, the integrator lens 15 has a lens array of a plurality of cylindrical lenses arranged in the long axis direction. The illumination optical system 400 is a critical illumination at the short axis side. Homogenization is unnecessary. The integrator lens 15 acts as a simple reflecting surface in the short axis direction.
The ratio (fcond/finteg) of the focal length fcond of the collecting lens 17 and the focal length finteg of the integrator lens 15 is 56. The travel distance of the irradiated light on the screen 19 (or a sample surface) can be short to the deflection angle of the laser beam by the resonant mirror. The interference fringes in the laser beam produced by the integrator lens 15 have a pitch of about 300 μm. The deflection angle of the resonant mirror is about 1.5 degrees, so that an oscillating quantity of the illuminated light is twice, i.e., about 600 μm. The deflection angle satisfies the above-described numerical expression 2.
The oscillation frequency of the resonant mirror is sufficiently shorter than the exposure time by the image sensor in the spectrometer as described later, and may be about 1/10 of the exposure time by the image sensor, for example. Typically, the frequency is a resonance frequency of about 560 Hz.
The laser line filter 21 cuts the bottom of the laser as well as a fluorescent light and a Raman scattered light produced within the lens.
Then, an edge blur of the irradiated light on the screen 19 will be described.
On the other hand,
It should be appreciated that no edge blur is produced when the illumination optical system 400 is used as long as the focal length of the integrator lens 15 and the focal length of the collecting lens 17 have a relatively long distance.
The upper views in
As described above, the illumination optical system according to the respective embodiments is applied to the light irradiation apparatus for spectrometry, thereby providing a uniform illuminated light, and obtaining images with high illuminance uniformity. The spectrometer is typically a Raman imaging apparatus, but may be other spectrometers.
The above-mentioned illumination optical system according to the respective embodiments can be applied to a projector or the like as well as the spectrometer. Alternatively, the above-mentioned illumination optical system according to the respective embodiments can be applied to a processing apparatus including an exposure apparatus, an annealing apparatus and the like. When the illumination optical system is applied to the processing apparatus, a surface uniformity in device properties to be manufactured can be improved.
Hereinafter, a spectrometric optical system will be described.
An Offner type optical system and an Offner type spectrometry apparatus using the same will be described.
A light 46 is input on the Offner type optical system 40, is incident on the primary mirror 41, is reflected by the primary mirror 41, reflected by the secondary mirror 42, again reflected by the primary mirror 41, and is output from the Offner type optical system 40. The Offner type relay optical system has the properties such as very little optical aberration and distortion.
The Offner type spectrometer 45 uses a diffraction grating 47 instead of the secondary mirror 42 of the optical system shown in
As described above, the spectrometer 45 including the Offner type optical system is called as an imaging spectrometer, and can inhibit the distortion of slit images. Also, as described above, the technology relating to the Offner type spectrometer is disclosed in the above-mentioned Japanese Patent Application Laid-open No. 2008-510964, for example.
A spectrometric optical system 500 utilizes the above-mentioned Offner type optical system. The spectrometric optical system 500 includes a slit element 53, a reflection member 51 (corresponds to the primary mirror), and a diffraction grating 52.
The slit element 53 has a slit and functions as an input element either in whole or in part. The slit element 53 narrows a diameter of an input light (here a laser beam) input from outside to the spectrometric optical system 500 with a slit, and leads the input beam 56 to the concave surface of the reflection member 51. Although not shown, a slit shape viewing from the light axis direction is typically a circle. The slit shape may be otherwise a polygonal shape, an oval shape, a line shape and the like.
The slit element 53 has a slit for providing a beam with an NA (Numerical Aperture) of about 0.1 or less that shows a divergence angle of the input beam 56.
The reflection member 51 has a concave surface disposed along a virtual first circle C1. The input beam from the slit element 53 is reflected by the concave surface to the diffraction grating 52.
The diffraction grating 52 is disposed along a virtual second circle C2 as a concave shape. Namely, a total shape of a surface on which a light is incident in the diffraction grating 52 is a convex shape.
The first circle C1 and the second circle C2 are in a concentric relation to each other. Each radius of curvature on the convex surface of the reflection member 51 and the incident surface of the diffraction grating 52 is set such that the radius of curvature on the first circle C1 is R and the radius of curvature on the second circle C2 is substantially R/2. The value R/2 is set to realize the Offer type spectrometric optical system 500. As long as the value is attained, an error range ((R/2)±5%), i.e., R/2±(R/2×0.05), may be included.
The diffraction grating 52 is positioned such that an intersection point between an axis (first axis) D1 (along an Y axis) perpendicular to a center axis C0 that is a common axis of the first circle C1 and the second circle C2 (in
The light axis of the input beam 56 emitted through the slit element 53 will be parallel with the center perpendicular angle axis D1. A distance L between the perpendicular angle axis D1 and a (second) axis D2 that coincides with the light axis of the input beam 56 incident on the reflection member 51 is set as R/5<L<R/4.
The diffraction grating 52B shown in
The diffraction grating 52C shown in
The diffraction grating 52D shown in
The diffraction efficiency is lower than those of the diffraction gratings shown in
Each pitch of the diffraction gratings 52B to 52D shown in
A depth of each of these diffraction gratings 52B to 52D is defined by λ3/2 where λ3 is a central wavelength of the wavelength region to be detected.
The number of the grooves per 1 mm in each of these diffraction gratings 52B to 52D is 300 to 1000, 400 to 900 or 500 to 800.
The diffracted light 58 having the wavelength region of not less than λ1 and not more than λ2 (see
The fact is true on an X-Y plane in
The NA is desirably 0.03 or more.
The distance between the center perpendicular axis D1 and the light axis of the diffracted light having the wavelength λ2 is set to become shorter than R/5.
For example, λ1 is 600 nm, and λ2 is 1100 nm. Alternatively, λ1 is 700 nm, and λ2 is 1000 nm.
In this way, the diffracted light 58 passes between the input beam 56 and the edge part 52a of the diffraction grating 52, exits from the spectrometric optical system 500, and is detected by the image sensor 54 disposed at a predetermined position. The image sensor 54 may be a CCD (Charge Coupled Device), a CMOS (Complementary Metal-Oxide Semiconductor) or the like, for example.
Thus, the Offner type spectrometric optical system 500 according to the embodiment can detect the diffracted light 58 having the wavelength region of not less than 600 nm to not more than 1100 nm, the diffracted light passing between the input beam 56 and the edge part 52a of the diffraction grating 52.
Since the spectrometric optical system 500 is the Offner type, an optical aberration is small, and a distortion of an input beam image input through the slit element 53 can be inhibited.
The embodiment can provide an imaging spectrometer and a Raman imaging apparatus having a broad image area.
In the spectrometric optical system 500 according to the first embodiment, the NA is mainly 0.1 or less. The limitation of the NA is based on the premise that the spectrometric optical system 500 is connected to a microscope optical system as described layer. In many cases, the NA in an entrance of an objective lens in the microscope optical system is set to a significantly high value in order to enhance a resolution. For example, when the objective lens has magnifying power of 60 times, the NA is normally about 0.7.
Instead, the NA is as significantly low as about 0.012 (0.7/60=0.012) at an outlet side of the spectrometric optical system 500 to which the image sensor 54 is attached. Although the magnitude of the NA may be considered as an index of luminance of the spectrometric optical system 500, the high NA is unnecessary when the slit element 53 is directly installed on the image surface of a port for attaching a camera of the spectrometric optical system 500. It is sufficient that the NA may be about 1.1. The luminance of the spectrometric optical system 500 is mainly determined by the NA of the objective lens in the microscope optical system 500.
The spectrometric optical system 600 includes the slit element 53 and a prism mirror 55. The prism mirror 55 has a first mirror surface 551 and a second mirror surface 552 that is at right angle thereto. Namely, it is a right angle prism mirror. The first mirror surface 551 and the second mirror surface 552 are disposed at an angle of 45 degrees in an X axis direction.
The image sensor 54 is disposed, for example, near the center of the first and second circles (C1 and C2), and detects the diffracted light emitted from the second mirror surface 552.
The input beam is incident at an angle of 45 degrees on the first mirror surface 551, i.e., along the X axis direction and is reflected at a reflection angle of 45 degrees on the first mirror surface 551. Then, the input beam is guided to the concave surface of the reflection member 51 along the Y axis direction. The diffracted light, that is diffracted on the diffraction grating 52 and reflected on the concave surface, is incident on the second mirror surface 552 at an incident angle of 45 degrees along the Y axis direction. Then, the incident light is reflected at a reflection angle of 45 degrees on the second mirror surface 552, and is guided to the image sensor 54 along the Y axis direction.
A distance M between an apex 553 that is a crossing part of the first mirror surface 551 and the second mirror surface 552 and the center perpendicular axis D1 is typically set such that the light axis of λ2 which is the longest wavelength to be detected in the Y axis direction and the light angle of the input beam in the Y axis direction become symmetric about the line along the Y axis direction.
According to the embodiment, the prism mirror 55 allows the input beam to be incident along the direction at a right angle (the X axis direction) to the center perpendicular axis D1, and also allows the diffracted light to be emitted along the X axis direction. Thus, the slit element 53 and the image sensor 54 are linearly disposed across the prism mirror 55, thereby decreasing an installation space of the slit element 53, the prism mirror 55 and the image sensor 54. As a result, the image sensor 54 can be freely disposed. Also, the space-saving may reduce the size of the spectrometric optical system 600.
In the spectrometric optical system 500 according to the first embodiment, a distance between the input light and the output light, i.e., the diffracted light becomes near. Therefore, the slit element 53 and the image sensor 54 (camera) may not be disposed along the X axis direction depending on their physical sizes, and may not be laid out simply. However, according to the spectrometric optical system 600 of the second embodiment, the slit element 53 and the image sensor 54 are linearly disposed, making the mechanical layout simple.
The spectrometric optical system 600 may include a band pass filter for passing the input light having the wavelength region of 600 nm to 1100 nm before the slit element 53. The band pass filter can avoid the situation that the light having the wavelength outside the wavelength to be detected returns to the slit element 53 by the prism mirror 55. The generation of a stray light within the spectrometric optical system 600 can be avoided.
However, the band pass filter is unnecessary so long as the spectrometric optical system 600 is designed to exclude the light having the wavelength outside the wavelength region of 600 nm to 1100 nm.
Wavelength region to be detected: 785 to 940 nm
Image range: 14 mm (the image area is 0.07R where R is the radius of curvature of the concave surface in the reflection member 51)
NA: 0.08
Wavelength resolution: 0.6 nm (0.15 nm by sampling of the image sensor 54)
Radius of curvature R of the concave surface: 200 mm
Radius of curvature (R/2) of incident surface of diffraction grating 52 ±5%:103 mm
Number of ruling lines in the diffraction grating 52: 800/mm
Incident light beam shift L: R/5 to R/4 (L=46 mm)
Incident angle α to diffraction grating 52: 26.6 degrees
The above-described specification parameters are illustrative for the spectrometric optical system 600. By optimizing the distance between the concave surface and the incident surface of the diffraction grating 52 as well as the radius of curvature thereof, the resolution in the diffraction limit when NA=0.08 can be realized. Also, such a design can significantly decrease the distortion, i.e., an optical strain.
As the spectrometer including the illumination optical system and the spectrometric optical system 600 according to the embodiment as described above, an embodiment of a Raman imaging apparatus will be shown.
The Raman imaging apparatus mainly includes an illumination optical system 450, a microscopic optical system 700 and the spectrometric optical system 600 shown in
In the illumination optical system 450, the integrator lens 15 of the illumination optical system 400 shown in
An LD package 115 including the laser diode 11 (see
The ND filter 14 disposed at the illumination optical system 450 is a disk-shaped ND filter that can be rotated by a stepping motor 24, for example. A driver 110 is connected to the oscillating element 10.
The laser beam output from the illumination optical system 450 is input to a microscopic optical system 700 via a dichroic beam splitter 101. The dichroic beam splitter 101 reflects the laser beam having the specific wavelength region, and transmits the laser beam having the wavelength of 795 nm or more output and Raman-shifted from the microscopic optical system 700, for example.
The microscopic optical system 700 includes a microscopic collecting lens 71 and an objective lens 72. A sample S is positioned facing to the objective lens 72.
An image surface 190 that is explained above as the screen 19 and the slit element 53 (including the input surface thereof) of the spectrometric optical system 600 are disposed on an optical conjugation surface via the dichroic beam splitter 101. An image is formed on the conjugation surface that is reduced at the same magnification and overlapped with the microscopic collecting lens 71 and the objective lens 72. In other words, according to the embodiment, the dichroic beam splitter 101 and the microscopic optical system 700 form the optical system where the conjugation relation described above is kept.
The laser beam transmitted through the dichroic beam splitter 101 is input to the spectrometric optical system 600 via a Raman excitation light cut filter 102. The Raman excitation light cut filter 102 is a highpass filter that is disposed such that the light within the specific wavelength region of the Raman scattering light is not incident to the spectrometric optical system 600.
As described above, the production of an optical aberration, a distortion, interference fringes and speckles can be inhibited by the Raman imaging apparatus according to the embodiment. In addition, the camera including the image sensor can be freely disposed, thereby reducing the size of the Raman imaging apparatus.
The present technology is not limited to the above-described embodiments, and other various embodiments may be made.
Although the resonant mirror driven by the electromagnetic action is used as the oscillating element 10, an electrostatic action, piezoelectric action and the like may be utilized for driving. In these cases, a driving unit of the oscillating element 10 may be manufactured by MEMS (Micro Electro Mechanical Systems).
The oscillating element 10 may not be driven by a resonance or a vibration, i.e., with no amplitude, at a maximum seed, and may be driven, for example, at a substantially constant speed.
Alternatively, the oscillating element 10 may not be the vibrating mirror, but may be an acoustooptic element. The acoustooptic element includes an acoustooptic crystal, a driving electrode disposed on the acoustooptic crystal and the like. The acoustooptic element can control variably a lattice constant of the crystal and a refraction index of a light passing through the crystal by applying a voltage to the acoustooptic crystal via the driving electrode. Thus, the light emitted from the acoustooptic element can be oscillated.
The above-mentioned illumination optical system 100 includes the integrator lens 15 having power only in the long axis direction or both in the long and short axes directions. However, the illumination optical system 100 may include the integrator lens 15 having power, for example, only in the short axis direction. Any axis direction and focal length can be selected so that the illumination light has finally the desirable aspect ratio.
The illumination optical system 100 according to the fourth embodiment may include no isolator 12.
For example, the single collecting lens 17 is used as the collecting element, as shown in
The illumination optical system 600 shown in
Alternatively, either one of the first mirror and the second mirror may be disposed. In this case, the light output through the slit element 53 and the light input to the sensor are at angle of 90 degrees. The configurations can provide the optical properties similar to the illumination optical systems 500 and 600.
In the Raman imaging apparatus according to the above-mentioned embodiment, the microscopic optical system 700 and the dichroic beam splitter 101 are used as the optical system to keep the conjugation relation between the image surface 190 and the slit element 53. However, it is not limited to the microscopic optical system 700, and the relay optical system with the same magnification may provide the optical system where the conjugation relation is kept.
As a sensor used in the spectrometric optical system and the spectrometer including the same according to the above-mentioned respective embodiments, an image sensor is cited as an example. Also, the sensor may be a photodiode.
At least two of the features as described above in the respective embodiments may be combined.
The present technology may have the following configurations.
[1] An illumination optical system, including:
a laser light source,
an integrator element,
an oscillating element being capable of guiding the laser beam emitted from the laser light source to the integrator element, and oscillating to change an incident angle of the laser beam to the integrator element, and
a light collecting element for collecting the laser beam emitted from the oscillating element.
[2] The illumination optical system according to [1] above, in which
the integrator element have a first integrator element and a second integrator element on which the laser beam emitted from the first integrator element is incident.
[3] The illumination optical system according to [2] above, in which
the first integrator element has a first lens array including a plurality of lenses arranged in a predetermined pitch,
the second integrator element has a second lens array including a plurality of lenses arranged in the pitch of the first lens array corresponding to a light axis direction of the plurality of lenses in the first lens array, and
the oscillating element oscillates, so that the laser beam emitted from a first lens among the plurality of lenses in the first lens array is incident on a second lens, disposed corresponding to a light axis direction of the first lens, among the plurality of lenses in the second lens array.
[4] The illumination optical system according to [1] or [2] above, in which
the integrator element has a lens array on which a plurality of lenses are arranged, and
the oscillating element oscillates, so that an oscillation width of the laser beam incident on the integrator element is not more than a width of a single lens of the plurality of lenses.
[5] The illumination optical system according to any one of [1] to [4] above, in which
the oscillating element is a resonant mirror or an acoustooptic element.
[6] A light irradiation apparatus for spectrometry including:
an illumination optical system, having:
a laser light source,
an integrator element,
an oscillating element being capable of guiding the laser beam emitted from the laser light source to the integrator element, and oscillating to change an incident angle of the laser beam to the integrator element, and
a light collecting element for collecting the laser beam emitted from the oscillating element.
[7] A spectrometer, including:
a laser light source,
an integrator element,
an oscillating element being capable of guiding the laser beam emitted from the laser light source to the integrator element, and oscillating to change an incident angle of the laser beam to the integrator element,
a light collecting element for collecting the laser beam emitted from the oscillating element,
a reflection member having a concave surface formed along a first circle having a center,
a diffraction grating having an edge part and a convex surface formed along a second circle disposed concentrically with the first circle, on which the light reflected at the concave surface of the reflection member is incident,
an input element disposed at a predetermined position to the reflection member and the diffraction grating so as to pass a diffracted light between an input light input to the spectrometric optical system and the edge part of the diffraction grating such that a diffracted light having a wavelength region of not less than 600 nm to not more than 1100 nm emitted from the diffraction grating and reflected at the concave surface, and
an optical system that maintains an optical conjugation between a collecting surface of the laser beam emitted from the collecting element and an input surface of the laser beam incident on the input element optically conjugated.
The present technology contains subject matter related to that disclosed in Japanese Priority Patent Application JP 2012-047369 filed in the Japan Patent Office on Mar. 2, 2012, the entire content of which is hereby incorporated by reference.
It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims or the equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
2012-047369 | Mar 2012 | JP | national |