This invention relates to an illumination panel and, in particular, a panel for use in building and display applications including illuminated signage.
Illuminated signage, advertising and display boards are in popular use across the world. These signs usually incorporate discrete lighting which has the effect of illuminating the whole of the sign. There has been a number of past suggestions for using translucent plastics with edge lighting whereby the light is released by a matrix of dots to fully and evenly illuminate the entire surface area of the sign. Well known arrangements of this type of sign utilise an acrylic panel that has printed thereon a graded matrix of ink dots on one or both faces of the panel. The dots of ink affect the refractive and reflective nature of the acrylic and allow light introduced along an edge of the panel to be released across the whole surface area of the panel. When the dots are carried on both sides, the light reflects and refracts more effectively through both surfaces. In one option, a reflective film or sheet is placed on one side causing the light released on that side to be reflected back through the panel so the majority of light leaves the panel only through one (“front”) surface. The same process of controlled, even light release can be achieved by laser etching the surface of an acrylic panel.
A problem with lighting systems of the kind described above is that the acrylic panel which carries the matrix of printed dots or laser etching has to be handled very carefully. If the panel becomes scratched or subjected to moisture, light escapes as bright spots thereby upsetting the even light distribution across the surface of the panel.
The vulnerability of the surfaces of the acrylic panel reduces the effective use of such panels and it is consideration of the problems associated with these structures that has brought about the present invention.
According to one aspect of the present invention there is provided an illumination panel comprising a transparent core having opposing surfaces, a matrix of dots substantially covering one surface, and a protective panel in abutting contact with said surface whereby the dots act as an adhesive bonding the core to the protective panel.
In a preferred embodiment, both surfaces of the core are provided with a matrix of dots that act as adhesive to bond both surfaces to protective panels. The matrix of dots may be applied to the transparent core by etching, painting, screen printing, printing or spraying or any one of a number of application techniques such as transfer from a film or even as part of a film or panel that then becomes the protective layer. Alternatively, the array of dots may be provided by laser etching the surface of the panel to define the array of dots.
Preferably, the core is acrylic and the protective panel may be any suitable material that will bond to the core via the medium of the dots. In one embodiment, a reflective protective panel is attached to one side of the core with a transparent or translucent protective cover being bonded to the other side.
In accordance with a still further aspect of the present invention there is provided a method of producing an illumination panel comprising placing a protective panel in abutting parallel contact with a transparent core and laser etching an array of dots through the protective panel onto the surface of the core which at the same time adheres the panel to the core.
The dots described above can be of any size or shape and are, for example, square, round, linear, rectangular, triangular, doughnut, or any other shape, even an irregular shape. The dots may be clear, translucent or opaque and, more preferably, light coloured, for example, white.
Embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings in which:
An illumination panel essentially comprises a transparent sheet of clear acrylic plastics with at least one surface covered with a matrix of spaced light refracting and reflecting dots. When light is introduced to the appropriate edges of the panel it is refracted and reflected by the dots to illuminate the whole surface of the panel. Patent Application No. WO92/05535 is an example of this kind of illumination panel.
As shown in
Each illumination panel 10 comprises a core 11 of transparent acrylic which is usually 6 mm, 8 mm or 10 mm in thickness. The core may include an optical brightener. The core 11 can have any surface sectional area and, although shown planar in
If required, a layer 30, 31 can be added to the outer side of the protective panels 25, 26. It is understood that the layer 30, 31 may be any material such as glass, timber, metal, paint, ink, photographic film or veneer which could be attached to the protective panel 25, 26 for various purposes, for example painting or veneering a surface to match the surroundings, or printing signs and images. The surfaces of the protective panels 25, 26 may also be left untreated, simply allowing the light to release for general illumination.
In a simpler configuration shown in
The matrix of adhesive dots may be applied in many different ways including by etching, painting, printing, screen printing or spraying or transferred from a film or even as part of a film or layer that is then fixed to the core by the adhesive dots. Alternatively, a laser can be used to etch the surface of the core 11 through the protective panel 25 to define the array of dots whilst, at the same time, bonding the protective layer to the core.
The process might also be achieved by laying an appropriate film between the core and protective layer and under laser activation, have the film bond to both surfaces in an array of light transmitting dots.
One method of producing the panel shown in
The dot matrix substantially covers the surface of the core 11 and operates to control the release of light introduced along one or more sides of the panel 10. It is usual for the density or size of dots, or both to increase along the panel 10 in a direction away from the edge where the light is introduced for a single light source, and when light is introduced from opposite sides of the core panel, the density or size of dots or both increases to a point equal distance from both light sources. To achieve an even light distribution across the core panel, the density of dots can be increased or alternatively, the gaps between the dots can remain constant and the size of the dots increased, or both the density and size of the dots increased.
The dots may comprise a grid work of lines or even concentric circles of differing diameters. The adhesive dots may be any one of a number of adhesive materials including various formulations of UV curing inks and adhesives, and adhesive of clear or white silicon.
Both panels 10 described above are in themselves structural units and thus can be supported or used as wall panels, shelves or in a wide variety of structural environments. The panels do not have to be enclosed within a supporting frame and can, by themselves, operate as structural elements. In one embodiment, it is envisaged that at least one edge of the panel would have LEDs embedded therein which would operate on low voltage to define a highly illuminated structural element. The LEDs could also be simply attached to one or more edges of the panel by a metal or plastic extrusion, or clips. The advantage of embedding LED lighting into the panel means that, as a structural unit, it is complete. Since LEDs have a long lifespan the panels could be left illuminated for very lengthy periods operating on a low safe voltage without the need of maintenance. The light delivered could be white or any number of different colours available from LED lighting elements.
In another embodiment, the protective panel 25 could be either light transmitting or a reflective panel. The protective panel could be a suitable material such as plastics, glass, laminex, metal or timber. The surface of the panel 25 that is to be bonded to the core could be painted or treated to define a reflective surface when the panel operates as a reflector. For example, a white polystyrene or polyethylene panel may be bonded directly to the core 11 with the surface of the plastics reflecting the light released from the core by the glue dots. The opposite side of the core could be left untouched and the assembly may be placed behind, under or above a glass sheet without being attached. This arrangement could be used for a kitchen splashback or a glass shelf. Alternatively, the opposite side of the core could have an opal translucent panel bonded by a matrix of adhesive dots, and used as a single sided sign.
In a further example, a laminex veneer may be bonded directly to the core 11 with the inside (or bonding) surface of the veneer having been painted white to reflect light. The veneer then provides the finished external surface while the internal face of the veneer acts to reflect light back through the core and out the opposite surface. This front light releasing surface of the core can be protected by a clear or opal translucent material that is attached by another light releasing matrix of glue dots. This could be the case when the illumination panel is used as the walls and/or base of a cupboard, or a retail display, see
A rectangular kitchen cupboard 50 is shown in
As shown in
In
In
In
In the embodiment shown in
In another embodiment, the core could comprise a series of thin panels each with appropriate positioning of adhesive dots which are in alignment or offset from the adhesive dots on the adjacent panel. In this way a laminated structure is produced with an added dimension of dot matrix refinement; in the direction horizontally away from the light source the dots may get bigger on each layer and then vertically in the direction of the light being released the dots may get proportionally smaller. Seen from the light releasing face, the dots may appear to cover the surface, but in fact they may be positioned on each layer in different positions.
In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word “comprise” or variations such as “comprises” or “comprising” is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.
| Number | Date | Country | Kind |
|---|---|---|---|
| 2009901272 | Mar 2009 | AU | national |
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/AU2010/000339 | 3/24/2010 | WO | 00 | 9/21/2011 |