1. Field of the Invention
The present invention relates to a lighting or illumination assembly and system. More particularly, the present invention relates to a high coupling efficiency illumination system including a plurality of light sources.
2. Background Art
Illumination systems are used in a variety of applications. Home, medical, dental, and industrial applications often require light to be made available. Similarly, aircraft, marine, and automotive applications require high-intensity illumination beams.
Traditional lighting systems have used electrically powered filament or arc lamps, which sometimes include focusing lenses and/or reflective surfaces to direct the produced illumination into a beam. However, in certain applications, such as in swimming pool lighting, the final light output may be required to be placed in environments in which electrical contacts are undesirable. In other applications, such as automobile headlights, there exists a desire to move the light source from exposed, damage-prone positions to more secure locations. Additionally, in yet other applications, limitations in physical space, accessibility, or design considerations may require that the light source be placed in a location different from where the final illumination is required.
In response to some of these needs, illumination systems have been developed using optical waveguides to guide the light from a light source to a desired illumination point. One current approach is to use either a bright single light source or a cluster of light sources grouped closely together to form a single illumination source. The light emitted by such a source is directed with the aide of focusing optics into a single optical waveguide, such as a large core plastic optical fiber, that transmits the light to a location that is remote from the source/sources. In yet another approach, the single fiber may be replaced by a bundle of individual optical fibers.
The present methods are very inefficient with approximately 70% loss of the light generated in some cases. In multiple fiber systems, these losses may be due to the dark interstitial spaces between fibers in a bundle and the efficiencies of directing the light into the fiber bundle. In single fiber systems, a single fiber having a large enough diameter to capture the amount of light needed for bright lighting applications becomes too thick and loses the flexibility to be routed and bent in small radii.
Some light generating systems have used lasers as sources, to take advantage of their coherent light output and/or low divergence angle. However, laser sources typically produce a single wavelength output color whereas an illumination system typically requires a more broadband white light source. For example, U.S. Pat. No. 5,299,222 discusses the use of single wavelength high-power laser diodes to couple energy into a wavelength sensitive gain medium, as opposed to use as an illumination source. The use of the specified laser diodes, with their asymmetrical beam shape, requires the extensive use of optical beam shaping elements in order to achieve more efficient coupling into the optical fibers. Also, some laser diodes are expensive to utilize since they require stringent temperature control (e.g., the need for using thermoelectric coolers, and the like) due to the heat they generate in operation. In addition, a concentrated array of packaged LEDs can lead to problems in the area of thermal management.
The need remains for a lighting system that can deliver high-intensity illumination using a light source.
The present invention relates to a lighting or illumination assembly. More particularly, the present invention relates to a high coupling efficiency illumination system including a plurality of light sources that can be arranged remotely from the illumination output.
A lighting or illumination system, referred to herein as an illumination device, in accordance with the present invention comprises a plurality of LED dies, a corresponding plurality of optical waveguides, each having first and second ends, each first end being in optical communication with the corresponding LED die, and an array of corresponding optical elements interposed between the plurality of LED dies and the corresponding first ends of the plurality of optical waveguides.
In exemplary embodiments, the light sources are individual LED dies or chips, or laser diodes. The waveguides may include optical fibers, such as polymer clad silica fibers. The first ends of the plurality of optical waveguides receive the light emitted from the light sources. The second ends of the plurality of optical waveguides may be bundled or arrayed to form a single light illumination source when illuminated.
The optical elements may include passive optical elements, such as an array of input light-directing or concentrating elements, wherein each waveguide first end is in optical communication with at least one light directing/concentrating element and wherein the array of light directing/concentrating elements is in optical communication with and interposed between the LED dies and the first ends of the plurality of optical waveguides.
In an exemplary embodiment, the array of optical elements comprises an array of reflectors. These reflectors can be shaped to preserve or maintain the small étendue of the LED die light source and to substantially match this étendue to the étendue (which is proportional to the product of the core area and acceptance angle) of the light receiving fiber. The array of reflectors can be formed in a substrate, such as a multilayer optical film (MOF) or a metallized substrate or sheeting.
The illumination device may further comprise at least one output light-directing element, such as a collimating, collecting, or beam shaping element that directs light from the second ends to form a single illumination source. The output light-directing elements may comprise an array of light-directing elements, wherein each second end is in optical communication with at least one light-directing element.
Alternatively, the plurality of waveguides may comprise a plurality of optical fibers and the output light-directing elements comprise fiber lenses on each second end of the plurality of optical fibers. Similarly, the first end of the optical fibers may further comprise a fiber lens.
In another embodiment, the illumination device further includes a second plurality of LED dies and a second plurality of optical waveguides, each having first and second ends, each first end of the second plurality of optical waveguides being in optical communication with one of the second plurality of LED dies. In an exemplary embodiment, the second ends of the second plurality of optical waveguides are bundled with the second ends of the first plurality of optical waveguides to form a single light illumination source when illuminated. Alternatively, the second ends of the first plurality of optical waveguides are formed in a first bundle and the second ends of the second plurality of optical waveguides are formed in a second bundle to form separate illuminating outputs that can be directed in the same or in different directions.
These first and second light sources may have different emission spectra. In one particular embodiment, the emission spectrum of the first plurality of LED dies is essentially white light, while the second plurality of LED dies includes an infrared source. In another embodiment, the two (or more) pluralities of LED dies include different colors to allow for the blending non-white colors. The first and second pluralities of LED dies may be illuminated individually or collectively to vary the intensity of the illumination source.
Additionally, the system may comprise at least one output optical element that is optically coupled to direct output light from the second ends of the first plurality of optical waveguides along a first path and a second output optical element that is optically coupled to direct output light from the second ends of the second plurality of optical waveguides along a second path.
Such embodiments may be applied as a headlight illumination system for an automobile or other vehicle or platform. In one exemplary embodiment, the intensity of the headlight beam can be controlled by illuminating a particular number of LED chips of the array of light sources. For example, a first plurality of LED dies may be illuminated for a low beam and the first and/or a second plurality of LED dies may be illuminated for a high beam.
In another exemplary embodiment, the illumination system can further comprise an infrared sensor for, e.g., collision detection, illumination, and/or telemetry applications.
The above summary of the present invention is not intended to describe each illustrated embodiment or every implementation of the present invention. The figures and the detailed description that follow more particularly exemplify these embodiments.
a shows an example single light receiving fiber and
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
Generally, previous optical fiber lighting designs suffered from high coupling losses and were therefore very inefficient. An illumination system in accordance with the present invention provides for substantially higher light coupling efficiency. Furthermore, the illumination system of the present invention offers an incoherent light output that can appear to the human observer as arising from a single point of light. In addition, exemplary embodiments of the present invention show that an array of LED dies can be utilized to provide a high density, remote source of light that can be output at one or more locations. Moreover, exemplary embodiments of the present invention provide an array of LED dies that can be utilized to provide a high density, remote source of light that can produce one color, or multiple colors, either individually, or simultaneously, at one or more locations. In addition, the colors or color combinations of the source may be made changeable to suit particular requirements of applications as conditions of use vary during operation. Other exemplary embodiments are discussed below.
The array 102 is made out of an array of discrete LEDs 104, such as an array of single LED dies or chips, which are mounted individually and have independent electrical connections for operational control (rather than an LED array where all the LEDs are connected to each other by their common semiconductor substrate). LED dies can produce a symmetrical radiation pattern, making them desirable light sources for the present invention. LED dies are efficient at converting electrical energy to light and are not as temperature sensitive as most laser diodes. Therefore, LED dies may operate adequately with only a modest heat sink compared to many types of laser diodes. In an exemplary embodiment, each LED die is spaced apart from its nearest neighbor(s) by at least a distance greater than an LED die width.
In addition, LED dies can be operated at a temperature from −40° to 125° C. and can have operating lifetimes in the range of 100,000 hours, as compared to most laser diode lifetimes around 10,000 hours or halogen automobile headlamp lifetimes of 500-1000 hours. In an exemplary embodiment, the LED dies can each have an output intensity of about 50 Lumens or more. Discrete high-power LED dies are commercially available from companies such as Cree and Osram. In one exemplary embodiment, an array of LED dies (manufactured by Cree), each having an emitting area of about 300 μm×300 μm, can be used to provide a concentrated (small area, high power) light source. Other light emitting surface shapes such as rectangular or other polygonal shapes can also be utilized. In addition, in alternative embodiments, the emission layer of the LED dies utilized can be located on the top or bottom surface.
In an alternative embodiment, the LED array may be replaced with a white VCSEL array. The passive optical element array 110 may be used to redirect that light emitted from each VCSEL into a corresponding fiber 122.
An aspect of the illustrated embodiment of
In addition, as would be apparent to one of ordinary skill given the present description, other waveguide types, such as planar waveguides, polymer waveguides, or the like, may also be utilized in accordance with the present teachings.
Optical fibers 122 may further include fiber lenses on each of the output ends of the optical fibers. Similarly, the light receiving ends of the optical fibers may each further comprise a fiber lens. Fiber lens manufacture and implementation is described in commonly owned and co-pending U.S. Pat. No. 6,882,190 and U.S. patent application Ser. No. 10/670,630, incorporated by reference herein.
One particular embodiment of the present invention, illustrated in
As illustrated in
Alternatively, reflectors 120 may be formed in the appropriate shape in a metallic or plastic substrate or sheeting and coated with a reflective material, such as silver, aluminum, or reflective multilayer stacks of inorganic thin films. For example, an injection molded plastic film or sheeting may be formed. The reflector cavities formed therein may be coated with a suitable reflecting material. As described herein, the array of reflectors can be oriented beneath, around, or above the LED dies. In addition, the reflector cavity may be filled with an index matching material.
Referring back to
Referring back to
In an alternative embodiment, a collection of red, blue, and green LED dies can be selectively placed in an array. The resulting emission is collected by the array of fibers 122 so that the light emitted from the output ends of the fibers is seen by an observer as colored light or “white” light, when blended together in concert.
As shown in
As shown in
The phosphor layer 506 is disposed on or near an area of the LED die substantially corresponding to its emission surface. It is understood that LED dies typically emit radiation through more than one surface. Layer 506 can be formed to a substantially uniform thickness (for example, about 75 μm to about 150 μm) and cured (partially or fully). In this exemplary embodiment, the layer 506 can then be converted into a shape or shapes by ablation, die cutting or other suitable techniques with minimal surface deformation to match the shape of the LED die emission surface. Alternatively, undersizing or oversizing layer 506, or forming a shape different from the shape of the LED die emission surface, may be utilized. When utilizing an array of LED dies, the phosphor layer may be formed directly on the surface of each LED die or, alternatively, the phosphor layer can be part of a separate, coated film of selectively patterned phosphor that is applied at or near the surfaces of an array of LED dies. Additional phosphor orientation is discussed further below and in a commonly pending and co-owned U.S. Patent Application Publication 2005/0116635, incorporated by reference above.
In an exemplary embodiment, phosphor layer 506 is formed as a phosphor-loaded encapsulant. For example, a YAG:Ce phosphor and a UV cure epoxy (such as a Norland NOA81 UV cure epoxy) can be utilized. The phosphor-loaded encapsulant can be partially or fully cured. In a partially cured state, the phosphor encapsulant will flow around the wirebond, encapsulating the wirebond and adhering both the phosphor and the wirebond to the surface of the die. If a hydrophobic encapsulant material is used, the reliability of the electrical interconnect can be improved. The phosphor encapsulant can be a low modulus material to minimize adverse effects due to the rising/falling temperature of the LED die. Here, the coefficient of thermal expansion (CTE) mismatch between the LED die material and the phosphor material can be compensated by such a deformable encapsulant.
If the phosphor encapsulant is fully cured, an additional adhesive layer (having about the same thickness as the wirebond) can be disposed on the surface of the LED die. For example, the additional adhesive layer can be formed on the LED die surface by deposition or dip-coating techniques. Thus, the additional adhesive layer can be utilized to encapsulate the wirebond and the phosphor encapsulant can be placed in void-free contact (via the adhesive) with the surface of the LED die.
The above well-defined phosphor layer construction can be used to substantially preserve the étendue of the light emitting surface of the LED die. In this example, the area of the phosphor layer is formed to be about the same as the area of the light-emitting surface. In addition, the thickness of the phosphor layer can be controlled to a suitable amount because as the phosphor layer has an increased thickness, the amount of light emitted from the sides of the phosphor layer will increase. In addition, color temperature and color uniformity parameters can be used to determine proper phosphor layer thickness for particular applications.
In an alternative embodiment, shown in
Referring back to
An important aspect of this optical system is the shape of the reflective surface 121 of reflector 120. The reflector 120 can be formed by injection molding, transfer molding, microreplication, stamping, punching or thermoforming. The substrate in which the reflector 120 can be formed (singularly or as part of an array of reflectors) can include a variety of materials such as metal, thermoplastic material, or MOF. The substrate material used to form the reflector 120 can be coated with a reflective coating or simply polished in order to increase its reflectivity.
The shape of the reflector surface 121 is designed to convert the isotropic emission from the LED die, including a phosphor-coated LED die, into a beam that will meet the acceptance angle criteria of the light receiving fiber, e.g., a TECS™ fiber, thus preserving the power density of the light emitted from the LED dies. Once the light emitted by the LED die is collected and redirected by the reflector into the light receiving fiber, the fiber(s) can be used to transport the light to a distant location with low optical loss by total internal reflection. However, the light receiving fibers do not only serve to transport light. In addition, in accordance with embodiments of the present invention, by translating the fibers from the wider spacing of the LED die array to a tighter spacing or spacings, such as a tight packed fiber bundle, light from the widely dispersed LED array can be effectively concentrated into a very small area. Also, the optical design of the exemplary TECS™ fiber core and cladding provide for shaping the light beams emerging from the bundled ends, due to the Numerical Aperture (NA) of the fibers at the input end as well as the output end. As described herein, the light receiving fibers perform light concentrating and beam shaping, as well as light transportation.
The étendue, ε, may be calculated using the formula
ε=A*Ω≅π*A*sin2θ=π*A*NA2
where
For example, assuming an NA of 0.48 and a 600 micrometer (μm) diameter fiber core, the étendue that can be received and transmitted by the fiber is about 0.2 mm2 steradians (sr). It is also assumed that a maximum emission surface of an exemplary LED die is about 300 μm×300 μm (or 90000 μm2) and that, in example implementations with the phosphor, the LED die has a nearly isotropic or Lambertian intensity distribution. Assuming a half-angle of 80 degrees, the étendue of the LED die is about 0.28 mm2 sr. Thus, while not all the light from the LED die may be collected by the fiber, a very large percentage of light (50% or greater) can be collected and transmitted by the light receiving fiber utilizing the reflector surface design and orientation described herein.
As mentioned above, in an exemplary embodiment where a phosphor layer is used to convert the light output to “white” light, the phosphor layer size and/or thickness can be limited in order to preserve the étendue of the emitting surface of the LED die.
Improving or optimizing the reflector shape can increase or even maximize the light transfer into the fiber. The general geometry for optimizing the reflector shape for a distributed light source with nearly Lambertian emission is shown in
The general geometry in
θi−2*φj=entrance angle
relative to the vertical which will be the entrance angle into the fiber.
The lighting constraints as imposed by the fiber and the LED in this example are:
Some assumptions may be made to simplify the analysis at some expense of generality.
Limitations of the following analysis are:
The analysis assumptions are:
For the analysis, the lowest point on the reflector curve is assumed to be at an incident angle controlled by the maximum angle of emission θl=90−80=10°. This assumption then defines, for a value of x, the y or location of the reflector with orientation φj. For example, if the reflector is assumed to start 30 micrometers to the right of the LED 104 in
Once the y location of the reflector point is known, the minimum angle to the nearest point on the LED/phosphor can be calculated as tan−1
assuming the x coordinate system starts at the furthest edge of the (assumed round, in this example) LED, 300 micrometers away. For the reflection point at y=58 micrometers, the minimum emission angle is 27.3°.
With the minimum and maximum emission angles θi calculated, the maximum and minimum reflector angle φj can be calculated such that the reflected ray would enter the fiber using Equation 1 and the first constraint above. Continuing the example, the reflector angle can be between about 0.7° and about 25.7°.
The reflector shape then may be numerically estimated by repeating this calculation for various angles less than the maximum of 80 degrees. In Table 1, the angle is decreased by one degree increments to the acceptance angle of the fiber, about 29°.
With the array of (x, y) values for the reflector, the incremental reflector angle generated by this approach can then be estimated from the local derivative (difference) of the two (x, y) pairs nearest the selected (x, y) point. In the example for the maximum 80° angle, the initial reflector angle is 17.5°.
From the plot, the polynomial regression fit for the curve generated by this approach is y=5E−06x4−0.0068x3+3.6183x2−859.5x+76443 (R2=1.0) where, as shown in
Table 1 below shows example calculations for a maximum emission angle of 80 degrees and a separation of 30 micrometers from the edge of the LED to the edge of the reflector. From Table 1, the calculated φj values for the actual curve are calculated in the last column of the table below. These values are coded in bold if the actual reflector will reflect the LED light into the fiber and in italics if some of the LED light will be reflected outside the acceptance angle of the fiber. The calculations show that with the exception of the top of the mirror surface, the emitted light can be reflected into the fiber.
At least one method to make the upper portion of the mirror surface also reflect light into the fiber would be to make the curve piecewise discontinuous, for example, making the upper 400 micrometers portion simply vertical (φj=0).
17.5
17.2
16.9
16.6
16.3
16.0
15.7
15.4
15.1
14.8
14.5
14.2
13.9
13.6
13.3
13.0
12.7
12.3
12.0
11.7
11.4
11.1
10.8
10.5
10.2
The above reflector designs can be implemented in an array pattern in a number of different implementations. For example,
As mentioned above, phosphor elements 106 can be utilized to convert the output wavelength of the light from the LED die emission spectrum to the desired illumination spectrum. Also, a corresponding array of reflectors 120 can be utilized, forming an array 110 of passive optical elements, which can be formed in a microreplicated reflector sheeting 111, to efficiently couple light from the LED dies to a matching array of optical fibers 122, such as those shown in
In addition, phosphor layer 106, such as those described previously, can be selectively patterned by incorporating a pattern of phosphor material onto the top or bottom of the array layer 110. While
In
In an exemplary embodiment, an interconnect circuit layer, rigid or flexible, can be utilized to provide interconnection. As described herein, flexible circuit materials are available from the 3M Company. In the example shown in
Alternatively, the flexible circuit layer can be inverted, and the bare LED die can reside in a recessed portion of the polyimide surface, directly on the metal/circuit layer 147. In this alternative implementation, wells need not be formed in the substrate material. 140. An electrically insulating material with good thermal conductivity may be disposed between the conductive portion of the flexible circuit and substrate, depending on the die electrical attachment requirements. Example implementations of interconnect circuitry are described in a concurrently pending and co-owned U.S. Patent Application Publication 2005/0116235, incorporated by reference above.
A potentially lower performance, but perhaps lower cost alternative embodiment, can include a conventional FR4 epoxy based printed wiring board structure for electrical interconnect. In yet another embodiment, a low cost circuit can be prepared by patterning conductive epoxy or conductive ink onto a suitable substrate as required to connect the LED die array.
As mentioned above, a one-to-one fiber to LED die correspondence can provide for better illumination efficiency. As an illustration of this principle,
An advantage of the present invention is an efficient launch of light into individual fibers of a fiber bundle. If using a single source, for example, efficiency can drop significantly due to uncontrolled light launch angles and to light coupling into the fiber cladding and the interstitial spaces between the fibers in the bundle. Thus, traditional systems, which do not mate an individual LED to a corresponding fiber, may lose 25 to 40% of the emitted light due to the dark spaces between the fibers in the bundle. Such systems would then require tight bundling of more fibers and would still yield a less concentrated light.
In contrast, in the present invention, the light receiving fibers can then be brought down into a very tight output array based on the diameter of the fibers, which thus yields a very compact, concentrated emission of light.
Because the individual light receiving fibers of the present invention are relatively small in diameter they may be routed and bent as a bundle, and the bundle may have a cross section of various geometric shapes, such as circular, helical, rectangular, or other polygonal shapes. Exemplary embodiments of the present invention allow a remotely powered source to be concentrated and redirected to places where lighting power is not normally obtainable in an efficient manner.
For example, in the application of vehicle headlights, such as that illustrated in
As shown in
In another exemplary embodiment, the illumination system, such as system 300 shown in
To provide electrical connections, a patterned flexible circuit layer 441 can then be placed over the patterned adhesive layer 405. The flexible circuit layer 441 includes an electrical conductor pattern 442 to provide contact to the LED dies 404. Typically, LED dies require two electrical connections—in some designs, one connection is on top of the LED die and one is on the bottom of the LED die and in other designs, both connections are on top. In this exemplary embodiment, flexible circuit layer 441 includes cut-outs corresponding to the array of LED dies. Top connections to the LED dies are made via the circuit patterns 442 on the flexible circuit layer 441 and bottom connections can be made through the substrate 440. Fiducial marks 449 can be utilized to ensure proper alignment between the substrate and flexible circuit layer 441.
An array of passive optical elements 410, such as reflectors 420 formed in a microreplicated reflector sheet 411 can be used to provide coupling of the light emitted from the LED dies to the corresponding array of optical waveguides. In this exemplary embodiment, sheet 411 includes an array of reflectors 420. The reflectors 420, consistent with the embodiments described above, can be formed in a multilayer optical film or, alternatively, they can comprise molded, machined, or embossed shapes formed from a reflective (e.g., plastic, metallic) sheet that is patterned at the same pitch as the LED dies. In addition, the reflectors can also include a lens shape within the reflector cavity. Further, patterned phosphors can be included in the reflector cavities, or bonded to the top or bottom of the sheet 411.
An additional patterned adhesive layer 445 can be used to attach array 410 to the flexible circuit layer 441. Again, fiducials 449 can be utilized for alignment. The adhesive material can be selected to provide high bond strength and/or insulation between the substrate and the array of reflectors. Further, the adhesive material can mitigate stresses due to any mismatch between the coefficient of thermal expansion (CTE) of the substrate and the reflector sheeting.
In an alternative embodiment, the position of the flexible circuit layer and the reflector array can be interchanged. For example, the flexible circuit layer leads can be routed through the reflector cavity to attach to the LED die bonding pads.
The illumination assemblies and systems described above have several advantages over prior systems. First, smaller LED dies, such as those described above, with lower heat outputs can be utilized without suffering loss in illumination intensity. In the examples discussed above, the LED dies in the array are physically separated to avoid thermal hot spots in the mounting structure. This structure allows the LED dies to be electrically driven harder, with more output illumination (and hence, a brighter output beam emitted from the output ends of the fibers). Tightly packing large numbers of LED die is a long term reliability concern since local heating, even with a globally efficient thermal conduction mechanism, can cause reduced LED lifetime and in extreme cases catastrophic failures. Spacing the LED dies farther apart than the width of the LED die allows reasonably thermally conductive substrates to extract the heat from the LED array without local hot spots. The LED dies may also be safely operated at higher currents and light outputs than stated in the normal operating specifications, if sufficient heat extraction is provided. Moreover, as compared to filament light sources, the LED die array of the present invention does not generate intense heating in the forward directed beam, which can be a result of filament heating. This intense heat can cause damage to polymer lenses and reflector assemblies that are sometimes employed in lighting elements, such as automobile headlights.
A second advantage is the one fiber per LED coupling. Prior systems coupled dense arrays of LEDs into a large diameter fiber or fiber bundle. Dense LED arrays have the previously mentioned reliability problems, but their implementation has been justified as providing the best efficiency for coupling light into the fiber (at the expense of reliability). Providing one fiber per LED source allows the LED dies to be physically separated, minimizing localized thermal effects from dense concentrations of LEDs as discussed above.
Another advantage is the electrical interconnect wiring. A thin (for example, 25 to 50 micrometer) layer of electrical wiring as exemplified by flexible circuitry, such as the flexible circuitry described previously, provides electrical interconnect, some thermal conduction of heat from the die, and a flat electrical interconnect structure which may be laminated. The resulting construction overall is a very thin layer, so that the optical performance of this layer is not critical. The thin, flat layer allows the entire array to be laminated into a highly reliable solid or nearly solid block of material with the LED array (on a substrate) bonded to the electrical interconnect layer, which can in turn be bonded to the reflector sheeting. The advantages of particular implementations of interconnect circuitry are described in the pending and co-owned U.S. Patent Application Publication 2005/0116235, incorporated by reference above.
An additional advantage of the illumination devices described herein is the lamination or encapsulation of the entire assembly. Since the LED array and the reflector cavities may be filled with a solid material, for example an epoxy or molded polycarbonate, the entire assembly may be laminated into a block with no voids. Voids in electrical equipment can be reliability issues in some applications because water tends to collect in polymer voids, leading to long-term reliability issues.
Also, a beam-forming reflector can be disposed in front of the LED die. Further, the reflector structure may be made from MOF, which can be drawn into the reflector shape while retaining reflectivity over the visible light wavelengths and over a wide range of incident angles.
Another advantage is the described phosphor placement that provides for a selected output color. Prior attempts utilize phosphor in the cavity holding the LED. This bulk phosphor deposition requires significant amounts of relatively expensive phosphor and, since the phosphor emits light isotropically, this inherently degrades the étendue of the LED source by making the LED appear larger than its actual size. This, in turn, can significantly reduce the coupling efficiency of the light into a fiber or other waveguide, as described in the embodiments above.
The phosphor 106, such as shown in
Another advantage of the present invention is the ability to tailor the color spectrum emitted from the LED die array. While “white” light may be made from a combination of LED die colors, several exemplary embodiments utilize a phosphor layer to convert blue or UV radiation into a broad spectrum, i.e., “white” light. Using different phosphors across the LED die array can produce “white” light with a desired color temperature. Similarly, a variety of colors may be produced by tailoring the phosphor used across the LED dies.
While placing the phosphor-coated sheet on top of the reflector array may not result in the most efficient coupling of light energy into a fiber array (because of the limited acceptance angle of the optical fiber), such a construction might be advantageous for a large surface, high divergence array, again without localized hot spots from dense concentrations of LEDs.
While the present invention has been described with a reference to exemplary preferred embodiments, the invention may be embodied in other specific forms without departing from the scope of the invention. For example, while the present exemplary embodiments have been shown in the area of automotive headlights, the present illumination system may be used in aircraft, marine, medical, industrial, home, and even other automotive applications. Accordingly, it should be understood that the embodiments described and illustrated herein are only exemplary and should not be considered as limiting the scope of the present invention. Other variations and modifications may be made in accordance with the scope of the present invention.
The present application is a divisional of U.S. patent application Ser. No. 10/726,222, filed on Dec. 2, 2003, now U.S. Pat. No. 7,163,327, which claims the benefit of U.S. Provisional Patent Application No. 60/430,230, filed on Dec. 2, 2002, the entirety of which is incorporated by reference herein. The present application is also related to co-owned U.S. Patent Application Publication No. 2005/0140270, filed on Dec. 2, 2003; U.S. Patent Application Publication No. 2005/0117366, filed on Dec. 2, 2003; U.S. Patent Application Publication No. 2005/0116635, filed on Dec. 2, 2003; and U.S. Patent Application Publication No. 2005/0116235, filed on Dec. 2, 2003, each of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3825335 | Reynolds | Jul 1974 | A |
3902059 | McNamara | Aug 1975 | A |
4254453 | Mouyard et al. | Mar 1981 | A |
4544259 | Kanaoka et al. | Oct 1985 | A |
4755918 | Pristash et al. | Jul 1988 | A |
4897771 | Parker | Jan 1990 | A |
4964025 | Smith | Oct 1990 | A |
5146248 | Duwaer et al. | Sep 1992 | A |
5212710 | Kaneda et al. | May 1993 | A |
5227008 | Klun et al. | Jul 1993 | A |
5293437 | Nixon | Mar 1994 | A |
5299222 | Shannon et al. | Mar 1994 | A |
5301090 | Hed | Apr 1994 | A |
5302999 | Oshida et al. | Apr 1994 | A |
5317484 | Davenport et al. | May 1994 | A |
5420768 | Kennedy | May 1995 | A |
5534718 | Chang | Jul 1996 | A |
5567032 | Heizmann | Oct 1996 | A |
5574817 | Henson et al. | Nov 1996 | A |
5580471 | Fukumoto et al. | Dec 1996 | A |
5611017 | Lee et al. | Mar 1997 | A |
5629996 | Rizkin et al. | May 1997 | A |
5634711 | Kennedy et al. | Jun 1997 | A |
5661839 | Whitehead | Aug 1997 | A |
5693043 | Kittrell et al. | Dec 1997 | A |
5709463 | Igram | Jan 1998 | A |
5713654 | Scifres | Feb 1998 | A |
5727108 | Hed | Mar 1998 | A |
5748816 | Jaksic et al. | May 1998 | A |
5808794 | Weber et al. | Sep 1998 | A |
5810469 | Weinreich | Sep 1998 | A |
5816694 | Ideker et al. | Oct 1998 | A |
5882774 | Jonza et al. | Mar 1999 | A |
5886313 | Krause et al. | Mar 1999 | A |
5909037 | Rajkomar et al. | Jun 1999 | A |
5959316 | Lowery | Sep 1999 | A |
5967653 | Miller et al. | Oct 1999 | A |
6002466 | Brauch et al. | Dec 1999 | A |
6045240 | Hochstein | Apr 2000 | A |
6075595 | Malinen | Jun 2000 | A |
6104446 | Blankenbecler et al. | Aug 2000 | A |
6155699 | Miller et al. | Dec 2000 | A |
6200134 | Kovac et al. | Mar 2001 | B1 |
6224216 | Parker et al. | May 2001 | B1 |
6236382 | Kawakami et al. | May 2001 | B1 |
6290382 | Bourn et al. | Sep 2001 | B1 |
6318886 | Stopa et al. | Nov 2001 | B1 |
6340824 | Komoto et al. | Jan 2002 | B1 |
6343872 | Cerone et al. | Feb 2002 | B1 |
6350041 | Tarsa et al. | Feb 2002 | B1 |
6395564 | Huang | May 2002 | B1 |
6402347 | Maas et al. | Jun 2002 | B1 |
6406172 | Harbers et al. | Jun 2002 | B1 |
6414801 | Roller | Jul 2002 | B1 |
6417917 | Jung et al. | Jul 2002 | B1 |
6434327 | Gronet et al. | Aug 2002 | B1 |
6521915 | Odaki et al. | Feb 2003 | B2 |
6527411 | Sayers et al. | Mar 2003 | B1 |
6541800 | Barnett et al. | Apr 2003 | B2 |
6556734 | Bischel et al. | Apr 2003 | B1 |
6560038 | Parkyn, Jr. et al. | May 2003 | B1 |
6587573 | Stam et al. | Jul 2003 | B1 |
6603258 | Mueller-Mach et al. | Aug 2003 | B1 |
6608332 | Shimizu et al. | Aug 2003 | B2 |
6614172 | Chiu et al. | Sep 2003 | B2 |
6692250 | Decaudin et al. | Feb 2004 | B1 |
6727518 | Uemura et al. | Apr 2004 | B2 |
6733711 | Durocher et al. | May 2004 | B2 |
6777870 | Sundahl | Aug 2004 | B2 |
6809342 | Harada | Oct 2004 | B2 |
6821143 | Gasquet et al. | Nov 2004 | B2 |
6822190 | Henson et al. | Nov 2004 | B2 |
6832861 | Kragl | Dec 2004 | B2 |
6874910 | Sugimoto et al. | Apr 2005 | B2 |
6901090 | Ohtsuki | May 2005 | B1 |
6921920 | Kazakevich | Jul 2005 | B2 |
6943380 | Ota et al. | Sep 2005 | B2 |
6949772 | Shimizu et al. | Sep 2005 | B2 |
6954565 | Lindt | Oct 2005 | B2 |
6960035 | Okazaki et al. | Nov 2005 | B2 |
7029277 | Gofman et al. | Apr 2006 | B2 |
7055987 | Staufert | Jun 2006 | B2 |
7091653 | Ouderkirk et al. | Aug 2006 | B2 |
7118438 | Ouderkirk et al. | Oct 2006 | B2 |
7163327 | Henson et al. | Jan 2007 | B2 |
7245072 | Ouderkirk et al. | Jul 2007 | B2 |
7250611 | Aguirre et al. | Jul 2007 | B2 |
20010001207 | Shimizu et al. | May 2001 | A1 |
20010009510 | Lodhie | Jul 2001 | A1 |
20010010449 | Chiu et al. | Aug 2001 | A1 |
20010033712 | Cox et al. | Oct 2001 | A1 |
20020018199 | Blumenfled et al. | Feb 2002 | A1 |
20020024055 | Uemura et al. | Feb 2002 | A1 |
20020113244 | Barnett et al. | Aug 2002 | A1 |
20020126479 | Zhai et al. | Sep 2002 | A1 |
20020171047 | Chan et al. | Nov 2002 | A1 |
20020176251 | Plank et al. | Nov 2002 | A1 |
20030001488 | Sundahl | Jan 2003 | A1 |
20030042493 | Kazakevich | Mar 2003 | A1 |
20030052594 | Matsui et al. | Mar 2003 | A1 |
20030057421 | Chen | Mar 2003 | A1 |
20030068113 | Janz et al. | Apr 2003 | A1 |
20030091277 | Mei | May 2003 | A1 |
20030117691 | Bi et al. | Jun 2003 | A1 |
20030142500 | Bachl et al. | Jul 2003 | A1 |
20030173575 | Eisert et al. | Sep 2003 | A1 |
20030175000 | Caracci et al. | Sep 2003 | A1 |
20030178627 | Marchi et al. | Sep 2003 | A1 |
20030185508 | Fukuyama et al. | Oct 2003 | A1 |
20030189829 | Shimizu et al. | Oct 2003 | A1 |
20030214571 | Ishikawa et al. | Nov 2003 | A1 |
20030231843 | Colombo et al. | Dec 2003 | A1 |
20030233138 | Spooner | Dec 2003 | A1 |
20030235800 | Quadar | Dec 2003 | A1 |
20040008952 | Kragl | Jan 2004 | A1 |
20040106968 | Yamada | Jun 2004 | A1 |
20040159900 | Ouderkirk et al. | Aug 2004 | A1 |
20040164325 | Siegel | Aug 2004 | A1 |
20040166249 | Siegel | Aug 2004 | A1 |
20040190573 | Kruschwitz et al. | Sep 2004 | A1 |
20040262053 | Ludewig et al. | Dec 2004 | A1 |
20050069256 | Jennings et al. | Mar 2005 | A1 |
20050116235 | Schultz et al. | Jun 2005 | A1 |
20050116635 | Watson et al. | Jun 2005 | A1 |
20050117366 | Simbal | Jun 2005 | A1 |
20050134527 | Ouderkirk et al. | Jun 2005 | A1 |
20050140270 | Henson et al. | Jun 2005 | A1 |
20050162737 | Whitehead et al. | Jul 2005 | A1 |
20050177208 | Irwin | Aug 2005 | A1 |
20060011928 | Sorg et al. | Jan 2006 | A1 |
20060044531 | Potekev | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
199 23 187 | Nov 2000 | DE |
100 25 563 | Dec 2001 | DE |
201 11 814 | Dec 2001 | DE |
201 20 770 | May 2002 | DE |
101 10 835 | Sep 2002 | DE |
101 34 381 | Jan 2003 | DE |
101 62 404 | Jul 2003 | DE |
0 181 193 | May 1986 | EP |
0 249 934 | Dec 1987 | EP |
0 303 741 | Feb 1989 | EP |
0 338 641 | Oct 1989 | EP |
0 490 292 | Jun 1992 | EP |
0 588 040 | Mar 1994 | EP |
0 889 495 | Jan 1999 | EP |
1 067 332 | Jan 2001 | EP |
1 081 771 | Mar 2001 | EP |
1 108 949 | Jun 2001 | EP |
1 241 869 | Sep 2002 | EP |
1 260 196 | Nov 2002 | EP |
2 662 896 | Dec 1991 | FR |
2-142695 | May 1990 | JP |
2-189803 | Jul 1990 | JP |
07240536 | Sep 1995 | JP |
08-008463 | Jan 1996 | JP |
10-256694 | Sep 1998 | JP |
11-284233 | Oct 1999 | JP |
2002-065603 | Mar 2002 | JP |
WO 9520811 | Aug 1995 | WO |
WO 9941785 | Aug 1999 | WO |
WO 0159360 | Aug 2001 | WO |
WO 02086972 | Oct 2002 | WO |
WO 03077013 | Sep 2003 | WO |
WO 03096387 | Nov 2003 | WO |
WO 04081475 | Sep 2004 | WO |
WO 05062382 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070103925 A1 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
60430230 | Dec 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10726222 | Dec 2003 | US |
Child | 11618403 | US |