This application claims the benefit of Korean Patent Application No. 10-2005-0107683, filed on Nov. 10, 2005, which is hereby incorporated by reference for all purposes as if fully set forth herein.
1. Field of the Invention
The present invention relates to a semiconductor device, and more particularly, to an image sensor and fabricating method thereof. Although the present invention is suitable for a wide scope of applications, it is particularly suitable for enabling total photoelectric conversion without light loss by enhancing surface uniformity of a microlens in each area of the microlens.
2. Discussion of the Related Art
An image sensor is a semiconductor device that converts an optical image to an electric signal. Image sensors may be classified into charge coupled devices (CCD) and CMOS (complementary metal oxide silicon) image sensors.
The image sensor includes a photodiode unit that senses an applied light and a logic circuit unit that processes the sensed light into data via electric signals. The photosensitivity of the image sensor increases as the photodiode unit receives more light.
To enhance photosensitivity, the fill factor, which is a ratio of a photodiode area over a total area of an image sensor, may be increased. Also, to enhance photosensitivity, a path of light incident on an area excluding a photodiode is diverted to be condensed onto the photodiode.
A microlens may be used to condense light onto the photodiode. An increased quantity of light can be applied to a photodiode area by refracting a path of incident light using a convex microlens over the photodiode. The microlens is made of a substance having a good transmittance.
Light parallel to an optical axis of the microlens is refracted by the microlens to have a focus at a prescribed position on the optical axis.
CMOS image sensors may be classified into a 3T type, a 4T type, a 5T type, etc. image sensor. The 3T type CMOS image sensor consists of one photodiode and three transistors. The 4T type CMOS image sensor consists of one photodiode and four transistors.
An equivalent circuit and layout of a unit pixel of the 3T type CMOS image sensor are explained as follows.
Referring to
An active area 10, as shown in
The gate electrode 30 configures a reset transistor Rx. The gate electrode 40 configures a drive transistor Dx. The gate electrode 50 configures a select transistor Sx. The active area 10 of each of the transistors, except the portion overlapped with the corresponding transistor, is doped with impurity ions to become source/drain regions of each of the transistors.
A power voltage Vdd may be applied to the source/drain regions between the reset and drive transistors Rx and Dx, and the source/drain region of the select transistor Sx is connected to a read circuit.
Moreover, the gate electrodes 30, 40 and 50 are connected to signal lines (not shown), respectively. A pad is provided to each of the signal lines to connect to an external drive circuit.
An image sensor and method of forming a microlens thereof according to a related art are explained with reference to the attached drawings as follows.
Referring to
An optical shield layer (not shown) may be provided within the insulating interlayer 12 to prevent light from entering a portion except the photodiode area.
Alternatively, a photogate can be adopted as a photosensing device instead of a photodiode.
The color filter layer 13 consists of color filters of R (red), G (green) and B (blue). Each of the color filters is formed by coating a corresponding photoresist and by performing exposure and development on the coated photoresist using separate masks for each of the color filters.
A curvature and height of the microlens 15 are determined by considering various factors such as a focus of a condensed light. The microlens 15 is formed by coating, patterning and reflowing a photoresist.
In fabricating the related art image sensor, since resolution depends on the number of photodiodes existing in the sublayer 11 to receive an image, a unit pixel size is further reduced according to the progress towards high pixel implementation and pixel size reduction.
According to the size reduction and the microscopic unit pixel, an input of an external image is condensed to the sublayer 11 using an object lens. The object lens includes the microlens 15.
The color filter layer 13 may be classified into a primary color type color filter layer or a complementary color type color filter layer. In case of the primary color type color filter layer, an R/G/B color filter layer is formed. In case of the complementary color type color filter layer, a cyan/yellow/magenta color filter layer is formed. The color filer layer 13 is formed by on-chip technology to enable color separation for color reproduction. The color filter layer 13 is formed of an organic substance. After formation of the color filter layer 13, the planarizing layer 14 is formed on the color filter layer 13 to enable uniformity of the microlens 15 that will be formed over the color filter layer 13.
The planarizing layer 14 may be hardened by a curing process. The curing process is carried out in a hot plate. As a process temperature of the curing process is at least 200° C. or above, a physical property of a surface of the planarizing layer 14 varies because of a solvent that exists during the curing process, which takes place in a sealed convection type oven. Hence, a flowability of the microlens 15 that will be formed on the planarizing layer 14 is varied. Thus, if the flowing property of the microlens 15 is varied, a uniformity of the microlens 15 becomes irregular. The irregularity causes a loss of light.
Referring to
However, the related art image sensor and fabricating method thereof have the following problem. After completion of the color filter layer for color separation, the planarizing layer is formed so that the surface of the microlens that will be formed over the color filter layer may be uniform. The planarizing layer is hardened by the curing process. Since the curing process is carried out in the hot plate at the temperature of 200° C. or above, and because of a solvent that exists during the curing process, which takes place in a sealed convection type oven, the flowability of the microlens that will be formed on the planarizing layer varies. Thus, if the flowing property of the microlens varies, the microlens is not formed to be uniform and is irregular. This causes a loss of light.
Accordingly, the present invention is directed to an image sensor and fabricating method thereof that substantially obviate one or more problems due to limitations and disadvantages of the related art.
An advantage of the present invention is to provide an image sensor and fabricating method thereof, by which total photoelectric conversion is enabled without light loss by enhancing surface uniformity of a microlens in each area of the microlens.
Additional features and advantages of the invention will be set forth in the description which follows, and will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure and method particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described, an image sensor includes a substrate having a pad area and a cell area, a sublayer on the substrate, the sublayer including a photodiode, a thin film transistor and metal lines, a first planarizing layer on the sublayer, color separating layers on the first planarizing layer aligned with the cell area, a second planarizing layer on at least one of the color separating layers, microlenses on the second planarizing layer, wherein each of the microlenses overlaps one or more of the color separating layers, and a capping layer on the second planarizing layer to fill a gap between adjacent microlenses.
In another aspect of the present invention, a method of fabricating an image sensor includes the steps of forming a sublayer including a photodiode, a thin film transistor and metal lines on a substrate including a pad area and a cell area, forming a first planarizing layer on the sublayer, forming a plurality of color separating layers on the first planarizing layer to align with the cell area, forming a second planarizing layer on the first planarizing layer including at least one of the plurality of color separating layers in the cell area, forming a plurality of microlenses on the second planarizing layer, wherein each of the plurality of microlenses overlaps one or more of the plurality of color separating layers; and forming a capping layer on the second planarizing layer to fill gaps between adjacent microlenses of the plurality of microlenses.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate exemplary embodiment(s) of the invention and together with the description serve to explain the principles of the invention. In the drawings:
Reference will now be made in detail to exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or similar parts.
Referring to
An image sensor according to the present invention is explained with reference to a pad and a cell of the image sensor as follows.
Referring to
Each of the first planarizing layer 120 and the capping layer 180 may be formed to have a thickness of about 20 nm to 50 nm. Also, each of the first planarizing layer 120 and the capping layer 180 may be made of a thermo-hardening resin or a photoresist. The first planarizing layer 120 is formed to maintain planarity of the sublayer 110 and the capping layer 180 is formed to fill the gaps between the microlenses 170. Since the first planarizing layer 120 is formed over the pad area, unlike the second planarizing layer 160, the thermo-hardening resin may be used to prevent corrosion of the pad area in performing a process. If the first planarizing layer 120 is formed of the thermo-hardening resin, a thermo-hardening process is performed to enhance adhesion to the sublayer 110.
Referring to
Referring to
Referring to
The first planarizing layer 120 is formed of an organic substance having good transparency in a visible wavelength range to enhance profile and uniformity of a subsequently formed color filter layer.
Referring to
Referring to
Referring to
The first to third color separating layers 130, 140 and 150 configure a primary color type red/green/blue color filter or a complementary color type cyan/yellow/magenta color filter.
Referring to
Referring to
The microlens 170 is provided to condense an external light. The microlenses 170 are formed to correspond to the number of pixels of the image sensor. To raise photosensitivity, a size of the microlens 170 is increased. Hence, incident light can be more condensed to the photodiode.
For uniform formations of the microlenses 170, a gap between the microlenses 170 is set to about 0.5 μm to enhance uniformity within an image area.
Referring to
Subsequently, a dry ashing process is performed on the capping layer 180 using O2 plasma to expose upper surfaces of the microlenses 170. The dry ashing process is performed using a separate photosensitive mask. After the dry ashing process, the photosensitive mask is removed using a thinner or an alkali developing solution.
Accordingly, the present invention provides the following effects.
The gap between the microlenses can be filled with the capping layer to increase the lower area of the object lens. Hence, light transmittance is raised to enhance the photosensitivity of the CMOS image sensor. Since the gap between the microlenses is eliminated, the uniformity of the microlenses can be enhanced. Hence, color reproducibility is enhanced to implement the image sensor having a high-level color filter function.
Also, since an aluminum based bonding metal is covered with the thermo-hardening resin, which has good adhesion and protection in the pad area, a pad corrosion due to anodic oxidation and galvanic corrosion can be prevented in forming the color separating layers. Hence, a pad wiring process can be smoothly performed to enhance product reliability.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2005-0107683 | Nov 2005 | KR | national |