Claims
- 1. An imaging system employing an array of devices, each of said devices being an electronic device responsive to optical radiation incident thereupon to generate an electrical effect dependent upon the said incident radiation, and comprising a solid non-metallic substrate, a solid metal deposit thereon, a solid dielectric layer upon a portion of said metal deposit, and a second solid metal deposit on said substrate, said second metal deposit having a limited common area with said first metal deposit the respective common portions of said metal deposits being in intimate contact with opposite sides of and separated by said dielectric layer, said dielectric layer being of limited thickness said common region thereby defining a metal to metal junction, a portion of one of said metal deposits extending away from said junction having a width related to the wave length of said optica radiation and forming an antenna responsive to said incident radiation to generate an alternating electrical current at the frequency of said radiation and to conduct said current to said junction, said junction having a non-linear current-voltage characteristic with respect to said current whereby said current and said junction can interact to produce said electrical effect, said devices distributed to resolve an area upon which radiation is incident, each of said devices effective, upon incidence of radiation thereon, to produce a voltage across its junction, and means to read out said voltages in a repeated fashion.
- 2. The imaging system of claim 1 wherein said devices are all connected to a common terminal, and including an electron beam scanner for scanning successively said devices, and means responsive to signals on said common terminal to produce a display in synchronism with said scan.
- 3. The imaging system of claim 2 wherein said devices are deposited upon a dielectric substrate transparent to the radiation of interest, said radiation incident upon said device by passing through said substrate, the devices in said substrate being exposable directly to said electron beam.
- 4. The imaging system of claim 1 including means for reading the voltages across said junctions directly.
- 5. The imaging system of claim 1 including means for applying a radiation signal from a local oscillator to each junction, and superhetrodyne means for detecting the beat signals provided by the interaction of said local oscillator signal and said incident radiation.
- 6. The imaging system of claim 5 including coherent illuminating means for an object, said incident radiation comprising reflection from said object of said coherent illumination, means to apply to said junctions as said local oscillator radiation locked in phase to said illuminating means, means for detecting the phase of the resultant beat notes at said junctions and a holographic display means connected in circuit with said imaging system for representing the image of said object based upon the detected values of amplitude and phase of said beat notes.
- 7. A holographic imaging system comprising an array of photo-responsive elements arranged to receive thereupon an image reflected from an object illuminated by a coherent beam from a transmitter, means to apply also to said array a beam from a local oscillator at a frequency which is phase-locked to the frequency of said coherent beam thereby to produce at each photo-responsive element a beat frequency arising from mixing of said reflected beam and local oscillator beam, each photo-responsive element having a non-linear current-voltage characteristic and a speed of response to enable development of a signal across each element at said beat frequency, means to detect the amplitude and the phase of the beat signal at each of said photo-responsive elements, and a holographic display connected to be responsive to said amplitude and phase information to produce a holographic image.
CROSS REFERENCE TO RELATED APPLICATIONS
This is a division of application Ser. No. 389,783 filed Aug. 20, 1973 which in turn is a continuation-in-part of application Ser. No. 62,380 filed Aug. 10, 1970 and issued as U.S. Pat. No. 3,755,678.
US Referenced Citations (5)
Non-Patent Literature Citations (2)
Entry |
dees: The Microwave Journal; Vol. 9, Sept., 1966; pp. 48-55. |
Hocker et al.: Applied Physics Letters; Vol. 12, No. 12; June 15, 1968; pp. 401, 402. |
Divisions (1)
|
Number |
Date |
Country |
Parent |
389783 |
Aug 1973 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
62380 |
Aug 1970 |
|