The present invention relates to the field of immunology and, in particular, to methods and compositions for immunizing a host against infection with HIV.
Human immunodeficiency virus is a human retrovirus and is the etiological agent of acquired immunodeficiency syndrome (AIDS). It is estimated that more than 33 million people have been infected with HIV world-wide as of December 1999 (Ref 1—various references are referred to in parenthesis to more fully describe the state of the art to which this invention pertains. Full bibliographic information for each citation is found at the end of the specification, immediately preceding the claims. The disclosure of these references are hereby incorporated by reference into the present disclosure).
As the HIV epidemic continues to spread world wide, the need for an effective vaccine remains urgent. Efforts to develop such a vaccine have been hampered by several factors three of which are: (a) the extraordinary ability of the virus to mutate; (b) inability of most known specificities of anti-HIV antibodies to neutralise HIV primary isolates consistently; and (c) lack of understanding of the correlates of protective immunity to HIV infection. Over the last 10 years, several candidate HIV vaccines have been tested in primates for their immunoprotective abilities (Ref. 2). These studies suggest that both neutralising antibodies and cell-mediated immunity play a role in conferring sterilizing immunity and preventing progression towards disease (Ref 3, 4). While the correlates for immune protection against HIV-1 infection are currently unknown, an effective HIV vaccine should elicit both strong neutralising antibody and cytotoxic T lymphocyte (CTL) responses.
Envelope subunit vaccines have been shown to induce high titred humoral responses, but were inefficient in eliciting CTL responses (Ref 5). Live recombinant pox vectors have been shown to elicit very potent CTL responses, however these vectors were ineffective for generating a significant antibody response (Ref 6). In attempts to combine the two immunization types, several clinical trials involved a prime-boost strategy, consisting of initial viral vector immunization followed by boosts with recombinant HIV-1 envelope subunits (Ref 7, 8), have led to limited success with respect to CTL responses. Other vaccine approaches have used non-infectious, non-replicating, immunogenic virus-like particles (VLP) for immunising against HIV infection (Ref 9, 10). This type of immunogen has lead to the generation of neutralizing antibodies to a laboratory HIV-1 strain (Ref 10).
A prime-boost approach has been investigated using non-infectious VLPs to enhance HIV-specific CTL responses in mice primed with recombinant canarypox vector vCP205 encoding HIV-1gp120 (MN strain) (Ref 11). This study showed that VLPs could boost the CTL response to the canarypox vector.
Recently, a study showing the induction of neutralizing antibodies to a HIV-1 primary isolate in chimpanzees has been reported (Ref 12). In this study, recombinant adenovirus expressing gp160 was used as the priming agent and recombinant gp120 protein was used to boost the monkeys.
There is still a need for vaccines and immunization regimes to induce both a strong CTL response as well as neutralizing antibodies to HIV primary isolates.
In accordance with one aspect of the present invention, there is provided a method for generating, in a host, particularly a human host, a virus neutralizing level of antibodies to a primary HIV isolate, comprising at least one administration of a priming antigen to the host, wherein the priming antigen comprises a DNA molecule encoding an envelope glycoprotein of a primary isolate of HIV, resting the host for at least one specific resting period to provide for clonal expansion of an HIV antigen specific population of precursor B-cells therein to provide a primed host, and at least one administration of a boosting antigen to the primed host to provide said neutralizing levels of antibodies, wherein the boosting antigen is selected from the group consisting of a non-infectious, non-replicating, immunogenic HIV-like particle having at least part of the envelope glycoprotein of a primary isolate of HIV and an attenuated viral vector expressing at least part of an envelope glycoprotein of a primary isolate of HIV.
The primary HIV isolate may be an HIV-1 isolate including from the clade B HIV-1 clinical isolate HIV-1Bx08, although any other primary HIV-1 isolate may be employed in the immunization procedures of the invention.
The DNA molecule encoding the envelope glycoprotein of a primary isolate of HIV may be contained in a plasmid vector under the control of a heterologous promoter, preferably a cytomegalovirus promoter, for expression of the envelope glycoprotein in the host, which may be a human host.
The vector utilized for DNA molecule immunization is novel and constitutes a further aspect of the present invention. Preferably, the vector has the identifying characteristics of pCMV3Bx08 shown in
A priming administration of antigen may be effected in a single or in multiple administrations of the priming antigen. In the latter case, the at least one specific resting period to permit clonal expression of HIV antigen-specific population precursor B-cells may be effected after each priming administration. The at least one specific resting period may be between about 2 and 12 about months.
In the embodiment where the boosting antigen is a non-infectious, non-replicating, immunogenic HIV-like particle, such particle may comprise an assembly of:
The non-infectious, non-replicating, immunogenic HIV-like particle may be administered in conjunction with an adjuvant. Any suitable adjuvant may be used, such as QS21, DC-chol, RIBI or Alum.
Such non-infectious, non-replicating, immunogenic HIV particle may be formed by expression from a suitable vector in mammalian cells. In accordance with an additional aspect of this invention, there is provided a vector comprising a modified HIV-genome deficient in long terminal repeats and a heterologous promoter operatively connected to said genome for expression of said genome in mammalian cells to produce the non-infectious, non-replicating and immunogenic particle, wherein at least the env gene of the modified HIV-genome is that from a primary isolate of HIV. The gag and pol genes of the modified HIV genome may be those from the same primary isolate or those from another isolate, which may be a primary isolate.
The vector preferably is a plasmid vector while the primary isolate preferably is BX08. The promoter may be the metallothionein promoter. The vector preferably has the identifying characteristics of plasmid p133B1 shown in
In the embodiment where the boosting antigen is an attenuated viral vector, the attenuated viral vector may be an attenuated avipox virus vector, particularly the attenuated canary poxvirus ALVAC. The attenuated viral vectors used herein form another aspect of the invention. The attenuated viral vector may contain a modified HIV genome deficient in long terminal repeats (LTRs), wherein at least the env gene is that from primary isolate BX08. The gag and pol genes of the modified genome may be those from the same primary isolate or may be chosen from other HIV isolate.
The attenuated canarypox virus-based vector ALVAC is a plaque-cloned derivative of the licensed canarypox vaccine, Kanapox, and is described in reference 19. The attenuated canary pox vector preferably has the identifying characteristics of vCP1579 shown in
The at least one administration of a boosting antigen may be effected in a single administration or at least two administration of the boosting antigen.
The invention further includes compositions comprising the immunogens as provided herein and their use in the manufacture and formulation of immunogenic compositions including vaccines.
The present invention will be further understood from the following description with reference to the drawings, in which:
As noted earlier, the present invention involves administration of HIV antigens to elicit virus-neutralizing levels of antibodies against a primary HIV isolate.
A DNA construct was prepared incorporating the env gene from the primary isolate Bx08 under the control of the cytomegalovirus promoter and the construct, pCMV3Bx08, is shown in
Following the priming immunization step, which may be effected in one or more administrations of the DNA construct, the host is allowed to rest to provide for clonal expression of an HIV antigen specific population of precursor B-cells therein to provide a primed host.
The boosting administration is effected either with a non-infectious, non-replicating, immunogenic HIV-like particle (VLP) or an attenuated viral vector.
For this purpose, a VLP expression plasmid was constructed containing a modified HIV genome lacking long terminal repeats in which the env gene is derived from primary isolate BX08, wherein the modified HIV genome is under the control of a metallothionein promoter. The construct, p133B1, shown in
In the case of the attenuated virus vector, a recombinant attenuated canarypox virus vector was constructed to contain the env gene from primary isolate BX08. The viral vector vCP1579 (
These products were utilized in a boosting administration to the primed macaques. The boosting administration may be effected in one or more immunizations. In a preferred aspect of the invention, the non-infectious, non-replicating immunogenic HIV-like particles may co-administered with the DNA construct in the priming administration and the DNA construct may be coadministered with the HIV-like particles in the boosting administration.
Immunizations were effected in accordance with the procedure of the invention and the results obtained were compared with those obtained using other protocols according to the protocols set forth in Table 1. The immunization regimes used are shown as time lines in
The results obtained following the various protocols showed that, in particular, a primary DNA vaccination in combination with a boost from either the VLP or the attenuated canarypox virus enhanced the levels of neutralizing antibodies, as indicated by the reduction of detectable p24 levels in cells infected with primary HIV isolates.
Certain vectors that are described and referred to herein have been deposited with the American Type Culture Collection (ATCC) located at 10801 University Boulevard Manassas, Va. 20110-2209, USA, pursuant the Budapest Treaty and prior to the filing of this application. Samples of the deposited vectors will become available to the public and all restrictions imposed or access to the deposits will be received upon grant of a patent based on this United States patent application or the United States patent application in which they are described. In addition, the deposit will be replaced if viable samples cannot be dispensed by the Depository. The invention described and claimed herein is not limited in scope by the biological materials deposited, since the deposited embodiment is intended only as an illustration of the invention. Any equivalent of similar vectors that contain nucleic acids which encode equivalent or similar antigens as described in this application are within the scope of the invention.
The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific Examples. These Examples are described solely for purposes of illustration and are not intended to limit the scope of the invention. Changes in form and substitution of equivalents are contemplated as circumstances may suggest or render expedient. Although specific terms have been employed herein, such terms are intended in a descriptive sense and not for purposes of limitation.
This Example describes the construction of plasmid pCMV3BX08.
The plasmid, pCMV3BX08, contains sequence segments from various sources and the elements of construction are depicted in
The prokaryotic vector pBluescript SK (Stratagene) is the backbone of the plasmid pCMV3.BX08 and was modified by the replacement of the AmpR with KanR gene and the deletion of the fl and the LacZ region. To achieve the desired modifications, the sequence between Ahdl (nucleotide 2,041) and Sacl (nucleotide 759) of pBluescript SK, which contains the AmpR, fl origin and the LacZ, was deleted. A 1.2 kb Pst1 fragment from the plasmid pUC-4K (Pharmacia) containing the KanR gene, was blunt end ligated to the Ahdl site of pBluescript SK in a counter-clockwise orientation relative to it's transcription. A 1.6 kb Sspl/Pstl DNA fragment containing the human cytomegalovirus immediate-early gene promotor, enhancer and intron A sequences (CMV) was ligated to the other end of the KanR gene so that the transcription from the CMV promoter proceeds in the clockwise orientation. A synthetic oligonucleotide segment containing translation initiation sequence and sequences encoding the human tissue plasminogen activator signal peptide (TPA) was used to link the CMV promotor and the sequences encoding the envelope gene of the primary isolate HIV-1BX08.
The envelope gene from the HIV-1 primary isolate BX08 was isolated from the plasmid pCMVgDtat−vpr−Bx08 illustrated in
The pCMV3BX08 construct was introduced into HB101 competent cells according to manufacturer's recommendations (GibcoBRL). Correct molecular clones were identified by restriction and sequencing analysis and their expression of envelope glycoprotein was examined in transient transfections followed by Western blot analysis.
All DNAs used for immunizations were prepared using EndoFree Plasmid Kit (Qiagen). For intramuscular immunizations either 3 mg or 600 μg of pCMVBX08, in 100 μl PBS was injected.
Proviral DNA for clade B HIV-1 clinical isolate HIV-1BX08 originated at Transgene (Strasbourg, France) and was isolated from genomic DNA of cells infected with the virus.
This Example describes the construction of plasmid p133B1.
A Bx08 plasmid expression vector (p133B1,
Two further modifications were made to the proviral DNA in pMT-HIV to provide additional safety features to protect human cells against recombination events with reverse-transcribed DNA:
To delete the first RNA packaging signal, part of the DNA corresponding to the untranslated leader sequence of the mRNA was replaced with synthetic DNA lacking a 25-bp motif corresponding to nucleotides 753-777 (the psi sequence). To inactivate the second RNA packaging signal, two adenosine residues within a gag gene zinc finger sequence were changed to thymidine residues. Each of these residue changes had the effect of replacing cysteine residues in a Cys-His array with a serine in the gene product.
The pol gene deletion was effected by replacing a 1.9-kbp fragment with synthetic DNA containing stop codons in all three reading frames. This prevented read-through translation of the residual integrase coding sequence on the 3′ side of the deletion. The 1.9-kbp deletion in pol also eliminated the expression of reverse transcriptase and integrase enzymes. However, the deletion left intact the gene encoding the viral protease, which is both an immunogenic component of HIV-1 virus particles and allows the expression of particles with processed gag antigens closely resembling native virions (Ref 16). The protease also contains epitopes that are conserved across HIV-1 clades. The modifications described with respect to gag and pol genes are more fully described in the aforementioned U.S. Pat. No. 6,080,408 (WO 96/06177).
Finally, the HIV-1LA1 env gene within pMT-HIV was replaced with that of HIV-1Bx08. To effect this replacement, a 2440-bp fragment containing the env gene of Bx08 was amplified by polymerase chain reaction (PCR) from cells infected with this isolate. The PCR product was then used to replace the corresponding region present in pMT-HIV. However, the incoming fragment from HIV-1Bx08 was 125-bp shorter than the original HIV-1LAI region owing to a deletion in the untranslated region between the env gene stop codon and the termination/polyA addition sequence. The resulting construct replaced all but eleven amino acid residues of the LAI envelope proteins gp120 and gp41. Of these eleven, only the first three differ between the LAI and Bx08 isolates, and these are all charge-conservative changes meaning the final expression vector (p133B1) encoded a nearly authentic HIV-1Bx08 env protein.
This Example describes the production of HIV-like particles.
African green monkey kidney (Vero) cells were recovered and cultivated in Dulbecco's modified Eagle medium (DMEM) containing 10% v/v fetal bovine serum (FBS), referred to below as Complete Medium. At passage 141, the cells were transfected with p133B1 using the calcium phosphate method when at approximately 30% confluence. The cells were shocked with glycerol 8 hours after transfection. For this step, six 10-cm dishes containing approximately 3.0×106 cells each in 10.0 mL of Complete Medium were prepared. Each dish received 25.0 μg of expression vector and 2.0 μg of plasmid pSV2neo (Ref 17). The pSV2neo contains a selectable marker gene conferring resistance to the antibiotic geneticin (G418). Two days after transfection, the cells from each dish were recovered by trypsinization and replated into twenty-five fresh dishes in Complete Medium supplemented with 0.5 mg/mL of G418.
In total, 394 colonies were isolated from the dishes using cloning cylinders. Each colony was recovered by trypsinization and divided into two cluster dish wells, one of the wells per clone was induced after reaching 50% to 90% confluence. Prior to induction, the wells were treated by replacing all the medium with fresh Complete Medium containing 10.0 μM 5-azacytidine. After incubating for between 18 hours and 22 hours, the medium was removed and replaced with fresh DMEM containing 0.2% v/v FBS, 2.0 μM CdCl2 and 200.0 μM ZnCl2. The wells were incubated for a further 20 hours to 24 hours at which time samples of the medium were removed and tested by p24 ELISA.
The twenty highest-producing clones, based on the p24 titre, were chosen and cells from the corresponding uninduced wells were sub-cultured into one T-25 and one T-150 flask per clone. Both flasks were grown to confluence. The cells from the T-150 were recovered by trypsinization and cryopreserved at passage number 145. The cells from the T-25 were recovered by trypsinization every 3 days to 4 days and maintained up to passage 153. The cells were induced as above and samples retested by p24 ELISA at two different passages prior to passage 153.
The two highest p24 producers were chosen and were recovered by trypsinization every 3 days to 4 days up to passage 163. Samples from the clones were tested by p24 and gp120 ELISA from passage 158 and by p24 ELISA at passage 163, to assess clonal stability. The most suitable of these two cell lines, named 148 to 391, was chosen for further sub-cloning. The clone nomenclature defines the experiment number for this procedure, which was 148, and the number of the clone, which was number 391 of the original 394 isolated.
The vero cells were grown for approximately 100 h to 103 h and the medium was then replaced with growth medium containing 5-azacytidine. The bottles were then incubated for a further 20 h to 22 h, at which time the medium was replaced with serum-free medium containing CdCl2 and ZnCl2. The bottles were then incubated for 29 h to 31 h, at which time the medium was harvested, pooled and stored at 2° C. to 8° C. prior to purification.
The next day after harvesting, the solution was clarified, concentrated and diafiltered against phosphate buffer. The concentrate was passed through a ceramic hydroxyapatite (type I) column and the run-through was collected. The run-through from two successive sublots was pooled together and pumped onto a sucrose density gradient in a continuous zonal ultracentrifuge rotor. Pseudovirion-containing fractions were collected and pooled. The pooled pseudovirion fractions were diafiltered against PBS containing 2.5% sucrose to reduce the sucrose content, concentrated and diafiltered again. The material was sterile filtered using a 0.2 μm filter. At this stage the materials was designated as a purified sub-lot and were stored at 2 to 8° C.
The adjuvants were prepared separately and filter sterilized before filling in single dose vials. QS21 was stored at −20° C.
This Example describes the production of recombinant pox virus vCP1579.
Recombinant pox virus vCP1579 (
Recombinant vCP1579 (
The construction of recombinant pox vectors containing the E3L and K3L genes has been described in U.S. Pat. No. 6,004,777 issued Dec. 21, 1999 to Tartaglia et al. and the recombinant pox vectors describing the insertion of HIV genes has been described in U.S. Pat. No. 5,766,598 issued Jun. 16, 1998 to Paoletti et al.
The locus designated C3 was used for the insertion of the HIV-1 env and gag gene sequences into the ALVAC(2) vector, and the locus designated as C5 was the insertion site for the sequences encoding the HIV-1 Nef and Pol CTL epitopes. By virtue of the C3 and C5 loci existing within the extensive inverted terminal repetitions (ITRS) of the virus genome (approximately 41 kbp), insertion into these loci results in the occurrence of two copies of the inserted HIV-1 sequences.
Briefly, expression cassette pHIV76 (
The sequence encoding gp41 was then replaced with the sequence encoding the gp160 transmembrane (TM) region. This modification was accomplished by cloning a 200 bp MfeI-HindIII-digested PCR fragment, containing the 3′-end of the gp120 gene and the TM sequence, into the 4,400 bp MfeI-HindIII fragment of pRW997. This PCR fragment was generated from two overlapping PCR fragments (a 170 bp fragment and a 125 bp fragment) with the oligonucleotides, HIVP97 (5′-TAGTGGGAAAGAGATCTTCAGACC-3′-SEQ ID NO: 10) and HIVP101 (5′-TTTTAAGCTTTTATCCCTGCCTAACT CTATTCAC TAT-3′-SEQ ID NO: 11). The 170 bp PCR fragment was generated from pRW997 with the oligonucleotides, HIVP97 (5′-TAGTGGGAAAGAGATCTTCAGACC-3′-SEQ ID NO: 12) and HIVP100 (5′-CCTCCTACTATCATTATGAATATTCTTTTTTCTCTCTGCACCACTCT-3′-SEQ ID NO: 13). The 125 bp PCR fragment was generated from pRW997 with the oligonucleotides, HIVP99 (5′-AGAGTGGTGCAGAGAGAAAAA AGAATATTCATAATGATAGTAGGAGGC-3′-SEQ ID NO: 14) and HIVP101 (5′-TTTTAAGCTTTTA TCCCTGCCTAACTCTATTCACTAT-3′-SEQ ID NO: 15). The plasmid generated by this manipulation is called pHIV71.
The H6-promoted gp120+TM gene was then cloned between C3 flanking arms, into a plasmid containing the 13L-promoted HIV1 gag/(pro) gene. This modification was accomplished by cloning the 1,600 bp NruI-XhoI fragment of pHIV71, containing the H6-promoted gp120+TM gene, into the 8,200 bp NruI-XhoI fragment of pHIV63. The plasmid generated by this manipulation is called pHIV76 (
The sequence of the nef/pol regions is shown in
This Example describes the results of immunization regimes.
Groups of four animals (macaques) each were randomly assigned to seven vaccine groups as illustrated in Table 1. In this Table, “BX08 DNA” refers to pCMV3BX08, prepared as described in Example 1, “BX08 VLP” refers to the pseudovirions produced by expression vector p133B1 in Vero cells, as described in Example 3, and “ALVAC(2) BX08” refers vCP1579, prepared as described in Example 4. Reference (pre-bleed) sera were sampled at −6 and −2 weeks pre-vaccination. Primary immunizations with the various vaccines were given on weeks 0 and 4 with boosts on weeks 24 and 44 (
Sera were prepared from whole-blood using SST collection tubes and analyzed using commercially available HIV-1 western blots. Groups 1, 2 and 7 showed low levels of anti-Env antibodies after the first boost (
The ability of the antibodies raised in the immunized monkeys to neutralize HIV-1BX08 virus in human PBMC was assayed based on the reduction of p24 levels.
The neutralization assay was performed essentially as described in reference 18. Briefly, serum dilutions were mixed with HIV-1 BX08 and the mixtures incubated for 1 hour, then added to susceptible human PBMC cells. Titres were recorded as the dilution of serum at which p24 was reduced by 80%. Serum samples were assayed at 1:2, 1:8 and 1:32 dilution on the virus (1:6, 1:24 and 1:26 dilutions after the addition of cells). p24 levels were evaluated by p24-specific ELISA assay.
DNA vaccination on its own, group 5, and ALVAC on its own, group 6, had no monkeys showing reduction of p24 levels greater than 80%. The low DNA (600 ug) plus ALVAC, group 4, also showed no monkeys with greater than 80% reduction of p24 titres. VLP plus DNA, either high or low dose (group 1 and 2) showed enhanced reduction of p24 levels compared to VLPs alone, group 7. High dose DNA, group 3, in combination with ALVAC enhanced the ability to elicit p24 or virus neutralising antibodies over the low dose, group 4 or ALVAC alone, group 6. These results indicate that DNA vaccination in combination with VLPs or ALVAC enhanced the levels of virus neutralising antibodies as indicated by the reduction of p24 levels in the sera of the immunized monkeys.
The percentage reduction of p24 is calculated relative to the amount of p24 produced in the presence of the corresponding dilution of week 2 samples.
In summary of this disclosure, the present invention provides novel immunization procedures and immunogenic compositions for generating virus neutralizing levels of antibodies to a primary HIV isolate and vectors utilized therein and for the generation of components for use therein. Modifications are possible within the scope of this invention.
Number | Date | Country | |
---|---|---|---|
60200011 | Apr 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09842883 | Apr 2001 | US |
Child | 11140930 | Jun 2005 | US |