IMMUNOTHERAPY OF CANCER

Abstract
Immunogenic modulators and compositions comprising oligonucleotide agents capable of inhibiting suppression of immune response by reducing expression of one or more gene involved with an immune response suppression mechanism.
Description
TECHNICAL FIELD

The present invention relates to immunogenic compositions, method of making immunogenic compositions, and methods of using immunogenic compositions for the treatment of cell proliferative disorders or infectious disease, including, for example, cancer and autoimmune disorders.


More particularly, the invention provides cells that are treated with oligonucleotides specifically designed to modulate expression of target genes involved in tumor immune resistance mechanisms.


BACKGROUND

Immunotherapy is the “treatment of disease by inducing, enhancing, or suppressing an immune response”. Immunotherapies designed to elicit or amplify an immune response are activation immunotherapies, while immunotherapies that reduce or suppress immune response are classified as suppression immunotherapies.


Immunotherapy of cancer has become increasingly important in clinical practice over recent decades. The primary approach in today's standard of care is passive immunotherapy through the use of recombinant monoclonal antibodies (mAbs). MAbs act through a mechanisms relevant to the body's own humoral immune response, by binding to key antigens involved in the tumor development and causing moderate forms of cell-mediated immunity, such as antibody-dependent cell-mediated cytotoxicity (ADCC).


Another group of emerging immunotherapeutic approaches is based on the administration of cells capable of destroying tumor cells. The administered cells may be the patient's own tumor-infiltrating lymphocytes (TIL), isolated and expanded ex-vivo. In some cases, TIL are capable of recognizing a variety of tumor associated antigens (TAA), while in other cases TIL can be reactivated and expanded in vitro to recognize specific antigens. The TIL-based therapeutic approaches are commonly referred to as “adoptive cell transfer” (ACT).


Further developments of ACT involve genetic modifications of T-cells to express receptors that recognize specific tumor-associated antigens (TAA). Such modifications may induce the expression of a specific T-cell receptor (TCR) or of a chimeric antigen receptor (CAR) consisting of TAA-specific antibody fused to CD3/co-stimulatory molecule transmembrane and cytoplasmic domains.


The ACT methods may also be considered as passive immunotherapeutic approaches in that they act directly on the tumor cells without invoking an extended immune response. However, unlike mAbs, ACT agents are capable of fully destroying the tumor cells, as opposed to the blockade of selected receptors and moderate cellular responses such as ADCC.


There is ongoing development of numerous methods of active immunotherapy, which restore the ability of body's own immune system to generate antitumor response. Active immunotherapeutic agents are often called therapeutic cancer vaccines, or just cancer vaccines. Many cancer vaccines are currently in clinical trials, and sipuleucell-T has recently become the first such vaccine approved by the United States FDA.


There are several classes of cancer vaccines using different antigens and different mechanisms of generating cell-mediated immune response. One class of vaccines is based on peptide fragments of antigens selectively expressed by tumor cells. The peptides are administered alone or in combination with immune-stimulatory agents, which may include adjuvants and cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF).


Another class of cancer vaccines is based on modified (e.g. sub-lethally irradiated) tumor cells used as antigens, also in combinations with immunostimulatory agents. Vaccines of this type currently in clinical trials are based both on autologous (e.g. OncoVAX, LipoNova) and allogeneic (e.g. Canvaxin, Onyvax-P, GVAX) tumor cell lines.


Yet another class of cancer vaccines uses dendritic cells. By their nature, dendritic cells (DC) are “professional” antigen-presenting cells capable of generating of a strong antigen-dependent cell-mediated immune response and eliciting therapeutic T-cells in vivo. DC-based cancer vaccines usually comprise DCs isolated from patients or generated ex vivo by culturing patient's hematopoietic progenitor cells or monocytes. DCs are further loaded with tumor antigens and sometimes combined with immune-stimulating agents, such as GM-CSF. A large number of DC-vaccines are now in clinical trials, and the first FDA-approved vaccine sipuleucell-T is based on DC.


Mechanisms of Immunosuppression and Therapeutic Approaches to its Mitigation


One of the key physiologic functions of the immune system is to recognize and eliminate neoplastic cells, therefore an essential part of any tumor progression is the development of immune resistance mechanisms. Once developed, these mechanisms not only prevent the natural immune system from effecting the tumor growth, but also limit the efficacy of any immunotherapeutic approaches to cancer. An important immune resistance mechanism involves immune-inhibitory pathways, sometimes referred to as immune checkpoints. The immune-inhibitory pathways play particularly important role in the interaction between tumor cells and CD8+ cytotoxic T-lymphocytes, including ACT therapeutic agents. Among important immune checkpoints are inhibitory receptors expressed on the T-cell surface, such as CTLA-4, PD1 and LAG3, among others.


The importance of the attenuation of immune checkpoints has been recognized by the scientific and medical community. One way to mitigate immunosuppression is to block the immune checkpoints by specially designed agents. The CTLA-4-blocking-antibody, ipilimumab, has recently been approved by the FDA. Several molecules blocking PD1 are currently in clinical development.


Immunosuppression mechanisms also negatively affect the function of dendritic cells and, as a consequence, the efficacy of DC-based cancer vaccines. Immunosuppressive mechanisms can inhibit the ability of DC to present tumor antigens through the MHC class I pathway and to prime naïve CD8+ T-cells for antitumor immunity. Among the important molecules responsible for the immunosuppression mechanisms in DC are ubiquitin ligase A20 and the broadly immune-suppressive protein SOCS1.


The efficacy of immunotherapeutic approaches to cancer can be augmented by combining them with inhibitors of immune checkpoints. Numerous ongoing preclinical and clinical studies are exploring potential synergies between cancer vaccines and other immunotherapeutic agents and checkpoint blocking agents, for example, ipilimumab. Such combination approaches have the potential to result in significantly improved clinical outcomes.


However, there are a number of drawbacks of using cancer immunotherapeutic agents in combination with checkpoint inhibitors. For example, immune checkpoint blockade can lead to the breaking of immune self-tolerance, thereby inducing a novel syndrome of autoimmune/auto-inflammatory side effects, designated “immune related adverse events,” mainly including rash, colitis, hepatitis and endocrinopathies (Corsello, et al. J. Clin. Endocrinol. Metab., 2013, 98:1361).


Reported toxicity profiles of checkpoint inhibitors are different than the toxicity profiles reported for other classes of oncologic agents. Those involve inflammatory events in multiple organ systems, including skin, gastrointestinal, endocrine, pulmonary, hepatic, ocular, and nervous system. (Hodi, 2013, Annals of Oncology, 24: Suppl, i7).


In view of the above, there is a need for new cancer therapeutic agents that can be used in combination with checkpoint inhibitors as well as other classes of oncolytic agents without risk of adverse inflammatory events in multiple organ systems previously reported for checkpoint inhibitors. The immunotherapeutic cells of the invention, prepared by treating cells with a combination oligonucleotide agents targeting genes associated with tumor or infections disease resistance mechanisms, as well as methods of producing such therapeutic cells and methods of treating disease with the produced therapeutic cells, satisfy this long felt need.


SUMMARY OF EMBODIMENTS OF THE INVENTION

The efficacy of immunotherapeutic approaches to cell proliferation disorders and infectious diseases can be augmented by combining them with inhibitors of immune checkpoints. Numerous synergies between cancer vaccines and other immunotherapeutic agents and checkpoint blocking agents provide opportunities for combination approaches that may significantly improve clinical outcomes for example, in proliferative cell disorders and immune diseases.


Various embodiments of the inventions disclosed herein include compositions comprising therapeutic cells obtained by treating cells ex vivo with oligonucleotides to modulate expression of target genes involved in immune suppression mechanisms. The oligonucleotide agent may be an antisense oliogonucleotide (ASO), including locked nucleic acids (LNAs), methoxyethyl gapmers, and the like, or an siRNA, miRNA, miRNA-inhibitor, morpholino, PNA, and the like. The oligonucleotide is preferably a self-delivered (sd) RNAi agent. The oligonucleotides may be chemically modified, for example, including at least one 2-O-methyl modification, 2′-Fluro modification, and/or phosphorothioate modification. The oligonucleotides may include one or more hydrophobic modification, for example, one or more sterol, cholesterol, vitamin D, Naphtyl, isobutyl, benzyl, indol, tryptophane, or phenyl hydrophobic modification. The oligonucleotide may be a hydrophobically-modified siRNA-antisense hybrid. The oligonucleotides may be used in combination with transmembrane delivery systems, such as delivery systems comprising lipids.


In an embodiment, the cells are obtained and/or derived from a cancer or infectious disease patient, and may be, for example, tumor infiltrating lymphocytes (TIL) and/or T-cells, antigen presenting cells such as dendritic cells, natural killer cells, induced-pluripotent stem cells, stem central memory T-cells, and the like. The T-cells and NK-cells are preferably genetically engineered to express high-affinity T-Cell receptors (TCR) and/or chimeric antibody or antibody-fragment—T-Cell receptors (CAR). In an embodiment, the chimeric antibody/antibody fragment is preferably capable of binding to antigens expressed on tumor cells. Immune cells may be engineered by transfection with plasmid, viral delivery vehicles, or mRNAs.


In an embodiment, the chimeric antibody or fragment is capable of binding CD19 receptors of B-cells and/or binding to antigens expressed on tumors, such as melanoma tumors. Such melanoma-expressed antigens include, for example, GD2, GD3, HMW-MAA, VEGF-R2, and the like.


Target genes identified herein for modification include: cytotoxic T-cell antigen 4 (CTLA4), programmed cell death protein 1 (PD1), tumor growth factor receptor beta (TGFR-beta), LAG3, TIM3, and adenosine A2a receptor; anti-apoptotic genes including, but not limited to: BAX, BAC, Casp8, and P53; A20 ubiquitine ligase (TNFAIP3, SOCS1 (suppressor of cytokine signaling), IDO (indolamine-2,3-dioxygenase; tryptophan-degrading enzyme), PD-L1 (CD274)(surface receptor, binder to PD1 on Tcells), Notch ligand Deltal (DLL1), Jagged 1, Jagged 2, FasL (pro-apoptotic surface molecule), CCL17, CCL22 (secreted chemokines that attract Treg cells), IL10 receptor (IL10RA), p38 (MAPK14), STAT3, TNFSF4 (OX40L), MicroRNA miR-155, miR-146a, anti-apoptotic genes including but not limited to BAX, BAC, Casp8 and P53, and the like genes, and combinations thereof. Representative target sequences are listed in Table 1.


The engineered therapeutic cells are treated with RNAi agents designed to inhibit expression of one or more of the targeted genes. The RNAi agent may comprise a guide sequence that hybridizes to a target gene and inhibits expression of the target gene through an RNA interference mechanism, where the target region is selected from the group listed in Table 1. The RNA agent can be chemically modified, and preferably includes at least one 2′-O-methyl, 2′-O-Fluoro, and/or phosphorothioate modification, as well as at least one hydrophobic modification such as cholesterol, and the like.


The immunogenic compositions described herein are useful for the treatment of proliferative disorders, including cancers, and/or infectious disease and are produced by the ex-vivo treatment of cells with oligonucleotides to modulate the expression of target genes involved in tumor immune resistance mechanisms. The ex vivo treatment of cells includes administering to the cells an oligonucleotide capable of targeting and inhibiting expression of a gene involved in a tumor suppressor mechanism, such as the genes listed in Table 1. The oligonucleotide can be used in combination with a transmembrane delivery system that may comprise one or more of: lipid(s) and vector, such as a viral vector.


The invention includes a method of treating a cell proliferative disorder or infectious disease by administering to a subject in need thereof, an immunogenic composition comprising cells that have been treated with one or more oligonucleotide to modulate the expression of one or more target gene involved in tumor immune resistance mechanisms, for example, one or more of the target genes of Table 1.


The invention preferably includes immunogenic cells treated with a plurality of oligonucleotide agents targeting a combination of target genes described herein. The combination may target a plurality of suppressor receptor genes, cytokine receptor genes, regulatory genes, and/or apoptotic factors in order to inhibit tumor immune resistance mechanisms.


The present invention is directed to novel immunotherapeutic cells, methods of generating the immunotherapeutic cells, and therapeutic methods employing such cells.


A new method of immune checkpoint inhibition is described herein, applicable to a broad variety of cell-based immunotherapies, including, but not limited to adaptive cell transfer, for example, based on TIL, TCR, CAR, and other cell types, as well as dendritic cell-based cancer vaccines. Self-deliverable RNAi technology provides efficient transfection of short oligonucleotides in any cell type, including immune cells, providing increased efficacy of immunotherapeutic treatments. In addition, the activated immune cells can be protected by preventing apoptosis via inhibition of key activators of the apoptotic pathway, such as BAC, BAX, Casp8, and P53, among others.


The activated immune cells modified by oligonucleotide transfer for a single therapeutic agent for administration to a subject, providing a number of advantages as compared to separately administered combinations of vaccines and immunotherapeutics and separately administered checkpoint inhibitors. These advantages include lack of side effects associated with the checkpoint inhibitors in a single therapeutic agent (activated immune cells modified by oligonucleotides targeting immune resistance genes).


The claimed immunotherapeutic cells, method of producing immunotherapeutic cells by introduction of oligonucleotide molecules targeting immune resistance pathways, and methods of treating proliferative and infectious disease, improves upon any known immunotherapeutic cells and methods of producing immunotherapeutic cells because it provides:

    • 1) a single therapeutic composition providing a combination of checkpoint inhibitors and other immune resistance mechanism inhibitors;
    • 2) with reduced toxicity; and
    • 3) increased efficacy as compared with other compositions.





BRIEF DESCRIPTION OF THE FIGURES

The foregoing features of embodiments will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:



FIG. 1 is a schematic diagram showing the structure of an sdRNA molecule.



FIG. 2 is a graph showing sdRNA-induced silencing of GAPDH and MAP4K4 in HeLa cells.



FIG. 3 is a graph showing sdRNA-induced knock-down of multiple targets using sdRNA agents directed to three genes in NK-92 cells.



FIG. 4 is a graph showing the knock-down of gene expression in Human Primary T cells by sdRNA agents targeting TP53 and MAP4K4.



FIG. 5 is a graph showing sdRNA-induced knock-down of CTLA4 and PD1 in Human Primary T cells.



FIG. 6 is a graph showing the reduction of PDCD1 and CTLA-4 surface expression by sdRNA in Human Primary T cells.



FIG. 7 is a graph showing MAP4K4-cy3 sdRNA delivery into T and B cells in human PBMCs.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

The invention is defined by the claims, and includes oligonucleotides specifically designed and selected to reduce and/or inhibit expression of suppressors of immune resistance (inhibitory oligonucleotides), compositions comprising cells modified by treatment with such inhibitory oligonucleotides, methods of making such compositions, and methods of using the compositions to treat proliferation and/or infectious diseases. In particular, cells are treated with a combination of oligonucleotide agents, each agent particularly designed to interfere with and reduce the activity of a targeted immune suppressor.


Preferably, the combination of oligonucleotide agents targets multiple immune suppressor genes selected from checkpoint inhibitor genes such as CTLA4, PD-1/PD-1L, BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3, B7-H4 receptors, and TGF beta type 2 receptor; cytokine receptors that inactivate immune cells, such as TGF-beta receptor A and IL-10 receptor; regulatory genes/transcription factors modulating cytokine production by immune cells, such as STAT-3 and P38, miR-155, miR-146a; and apoptotic factors involved in cascades leading to cell death, such as p53 and Cacp8.


Most preferably the oligonucleotide agent is a self-deliverable RNAi agent, which is a hydrophobically modified siRNA-antisense hybrid molecule, comprising a double-stranded region of about 13-22 base pairs, with or without a 3′-overhang on each of the sense and antisense strands, and a 3′ single-stranded tail on the antisense strand of about 2-9 nucleotides. The oligonucleotide contains at least one 2′-O-Methyl modification, at least one 2′-O-Fluoro modification, and at least one phosphorothioate modification, as well as at least one hydrophobic modification selected from sterol, cholesterol, vitamin D, napthyl, isobutyl, benzyl, indol, tryptophane, phenyl, and the like hydrophobic modifiers (see FIG. 1). The oligonucleotide may contain a plurality of such modifications.


Definitions

As used in this description and the accompanying claims, the following terms shall have the meanings indicated, unless the context requires otherwise:


Proliferative disease, as used herein, includes diseases and disorders characterized by excessive proliferation of cells and turnover of cellular matrix, including cancer, atherlorosclerosis, rheumatoid arthritis, psoriasis, idiopathic pulmonary fibrosis, scleroderma, cirrhosis of the liver, and the like. Cancers include but are not limited to, one or more of: small cell lung cancer, colon cancer, breast cancer, lung cancer, prostate cancer, ovarian cancer, pancreatic cancer, melanoma, hematological malignancy such as chronic myeloid leukemia, and the like cancers where immunotherapeutic intervention to suppress tumor related immune resistance is needed.


Immune target genes can be grouped into at least four general categories: (1) checkpoint inhibitors; (2) cytokine receptors that inactivate immune cells, (3) anti-apoptotic genes; and (4) regulator genes, for example, transcription factors.


Immune Checkpoint inhibitors (ICI), as used herein, include immunotherapeutic agents that bind to certain checkpoint proteins, such as cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) and its ligand PD-L1 to block and disable inhibitory proteins that prevent the immune system from attacking diseased cells such as cancer cells, liberating tumor-specific T cells to exert their effector function against tumor cells.


Tumor related immune resistance genes, as used herein, include genes involved in checkpoint inhibition of immune response, such as CTLA-4 and PD-1/PD-L1; TGF-beta, LAG3, Tim3, adenosine A2a receptor;


Regulator genes, as used herein, include transcription factors and the like that modulate cytokine production by immune cells, and include p38, STAT3, microRNAs miR-155, miR-146a;


Anti-apoptotic genes, as used herein, include BAX, BAC, Casp8, P53 and the like; and combinations thereof.


Infectious diseases, as used herein, include, but are not limited to, diseases caused by pathogenic microorganisms, including, but not limited to, one or more of bacteria, viruses, parasites, or fungi, where immunotherapeutic intervention to suppress pathogen related immune resistance and/or overactive immune response.


Immunogenic composition, as used herein, includes cells treated with one or more oligonucleotide agent, wherein the cells comprise T-cells. The T-cells may be genetically engineered, for example, to express high affinity T-cell receptors (TCR), chimeric antibody—T-cell receptors (CAR), where the chimeric antibody fragments are capable of binding to CD19 receptors of B-cells and/or to antigens expressed on tumor cells. In one embodiment, the chimeric antibody fragments bind antigens expressed on melanoma tumors, selected from GD2, GD3, HMW-MAA, and VEGF-R2.


Immunogenic compositions described herein include cells comprising antigen-presenting cells, dendritic cells, engineered T-cells, natural killer cells, stem cells, including induced pluripotent stem cells, and stem central memory T-cells. The treated cell also comprises one or a plurality of oligonucleotide agents, preferably sdRNAi agents specifically targeting a gene involved in an immune suppression mechanism, where the oligonucleotide agent inhibits expression of said target gene.


In one embodiment, the target gene is selected from A20 ubiquitin ligase such as TNFAIP3, SOCS1 (suppressor of cytokine signaling), Tyro3/Axl/Mer (suppressors of TLR signaling), IDO (indolamine-2,3-dioxygenase, tryptophan-degrading enzyme), PD-L1/CD274 (surface receptor, binds PD1 on T-cells), Notch ligand Delta (DLL1), Jagged 1, Jagged 2, FasL (pro-apoptotic surface molecule), CCL17, CCL22 (secreted chemokines that attract Treg cells), IL-10 receptor (IL10Ra), p38 (MAPK14), STAT3, TNFSF4 (OX40L), microRNA miR-155, miR-146a, anti-apoptotic genes, including but not limited to BAX, BAC, Casp8, and P53; and combinations thereof.


Particularly preferred target genes are those shown in Table 1.


Ex-vivo treatment, as used herein, includes cells treated with oligonucleotide agents that modulate expression of target genes involved in immune suppression mechanisms. The oligonucleotide agent may be an antisense oligonucleotide, including, for example, locked nucleotide analogs, methyoxyethyl gapmers, cyclo-ethyl-B nucleic acids, siRNAs, miRNAs, miRNA inhibitors, morpholinos, PNAs, and the like. Preferably, the oligonucleotide agent is an sdRNAi agent targeting a gene involved in an immune suppression mechanism. The cells treated in vitro by the oligonucleotide agent may be immune cells expanded in vitro, and can be cells obtained from a subject having a proliferative or infectious disease. Alternatively, the cells or tissue may be treated in vivo, for example by in situ injection and/or intravenous injection.


Oligonucleotide or oligonucleotide agent, as used herein, refers to a molecule containing a plurality of “nucleotides” including deoxyribonucleotides, ribonucleotides, or modified nucleotides, and polymers thereof in single- or double-stranded form. The term encompasses nucleotides containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs).


Nucleotide, as used herein to include those with natural bases (standard), and modified bases well known in the art. The nucleotides can be unmodified or modified at the sugar, phosphate and/or base moiety, (also referred to interchangeably as nucleotide analogs, modified nucleotides, non-natural nucleotides, non-standard nucleotides and other; see, for example, PCT Publications No. WO 92/07065 and WO 93/15187. Non-limiting examples of base modifications that can be introduced into nucleic acid molecules include, hypoxanthine, purine, pyridin-4-one, pyridin-2-one, phenyl, pseudouracil, 2,4,6-trimethoxy benzene, 3-methyl uracil, dihydrouridine, naphthyl, aminophenyl, 5-alkylcytidines (e.g., 5-methylcytidine), 5-alkyluridines (e.g., ribothymidine), 5-halouridine (e.g., 5-bromouridine) or 6-azapyrimidines or 6-alkylpyrimidines (e.g. 6-methyluridine and pseudouridine), propyne, and others. The phrase “modified bases” includes nucleotide bases other than adenine, guanine, cytosine, and uracil, modified for example, at the 1′ position or their equivalents.


As used herein, the term “deoxyribonucleotide” encompasses natural and synthetic, unmodified and modified deoxyribonucleotides. Modifications include changes to the sugar moiety, to the base moiety and/or to the linkages between deoxyribonucleotide in the oligonucleotide.


As used herein, the term “RNA” defines a molecule comprising at least one ribonucleotide residue. The term “ribonucleotide” defines a nucleotide with a hydroxyl group at the 2′ position of a □-D-ribofuranose moiety. The term RNA includes double-stranded RNA, single-stranded RNA, isolated RNA such as partially purified RNA, essentially pure RNA, synthetic RNA, recombinantly produced RNA, as well as altered RNA that differs from naturally occurring RNA by the addition, deletion, substitution and/or alteration of one or more nucleotides. Nucleotides of the RNA molecules described herein may also comprise non-standard nucleotides, such as non-naturally occurring nucleotides or chemically synthesized nucleotides or deoxynucleotides. These altered RNAs can be referred to as analogs or analogs of naturally-occurring RNA.


As used herein, “modified nucleotide” refers to a nucleotide that has one or more modifications to the nucleoside, the nucleobase, pentose ring, or phosphate group. For example, modified nucleotides exclude ribonucleotides containing adenosine monophosphate, guanosine monophosphate, uridine monophosphate, and cytidine monophosphate and deoxyribonucleotides containing deoxyadenosine monophosphate, deoxyguanosine monophosphate, deoxythymidine monophosphate, and deoxycytidine monophosphate. Modifications include those naturally-occurring that result from modification by enzymes that modify nucleotides, such as methyltransferases.


Modified nucleotides also include synthetic or non-naturally occurring nucleotides. Synthetic or non-naturally occurring modifications in nucleotides include those with 2′ modifications, e.g., 2′-O-methyl, 2′-methoxyethoxy, 2′-fluoro, 2′-allyl, 2′-O-[2-(methylamino)-2-oxoethyl], 4′-thio, 4′-CH2-O-2′-bridge, 4′-(CH2) 2-O-2′-bridge, 2′-LNA, and 2′-O-(N-methylcarbamate) or those comprising base analogs. In connection with 2′-modified nucleotides as described for the present disclosure, by “amino” is meant 2′-NH2 or 2′-O—NH2, which can be modified or unmodified. Such modified groups are described, for example, in U.S. Pat. Nos. 5,672,695 and 6,248,878.


As used herein, “microRNA” or “miRNA” refers to a nucleic acid that forms a single-stranded RNA, which single-stranded RNA has the ability to alter the expression (reduce or inhibit expression; modulate expression; directly or indirectly enhance expression) of a gene or target gene when the miRNA is expressed in the same cell as the gene or target gene. In one embodiment, a miRNA refers to a nucleic acid that has substantial or complete identity to a target gene and forms a single-stranded miRNA. In some embodiments miRNA may be in the form of pre-miRNA, wherein the pre-miRNA is double-stranded RNA. The sequence of the miRNA can correspond to the full length target gene, or a subsequence thereof. Typically, the miRNA is at least about 15-50 nucleotides in length (e.g., each sequence of the single-stranded miRNA is 15-50 nucleotides in length, and the double stranded pre-miRNA is about 15-50 base pairs in length). In some embodiments the miRNA is 20-30 base nucleotides. In some embodiments the miRNA is 20-25 nucleotides in length. In some embodiments the miRNA is 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length.


Target gene, as used herein, includes genes known or identified as modulating the expression of a gene involved in an immune resistance mechanism, and can be one of several groups of genes, such as suppressor receptors, for example, CTLA4 and PD1; cytokine receptors that inactivate immune cells, for example, TGF-beta receptor, LAG3, Tim3, adenosine A2a receptor, and IL10 receptor; regulatory genes for example, STAT3, p38, mir155 and mir146a; and apoptosis factors involved in cascades leading to cell death, for example, P53, Casp8, BAX, BAC, and combinations thereof. See also preferred target genes listed in Table 1.


As used herein, small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, defines a group of double-stranded RNA molecules, comprising sense and antisense RNA strands, each generally of about 1022 nucletides in length, optionally including a 3′ overhang of 1-3 nucleotides. siRNA is active in the RNA interference (RNAi) pathway, and interferes with expression of specific target genes with complementary nucleotide sequences.


As used herein, sdRNA refers to “self-deliverable” RNAi agents, that are formed as an asymmetric double-stranded RNA-antisense oligonucleotide hybrid. The double stranded RNA includes a guide (sense) strand of about 19-25 nucleotides and a passenger (antisense) strand of about 10-19 nucleotides with a duplex formation that results in a single-stranded phosphorothiolated tail of about 5-9 nucleotides.


The RNA sequences may be modified with stabilizing and hydrophobic modifications such as sterols, for example, cholesterol, vitamin D, naphtyl, isobutyl, benzyl, indol, tryptophane, and phenyl, which confer stability and efficient cellular uptake in the absence of any transfection reagent or formulation. Immune response assays testing for IFN-induced proteins indicate sdRNAs produce a reduced immunostimulatory profile as compared other RNAi agents. See, for example, Byrne et al., December 2013, J. Ocular Pharmacology and Therapeutics, 29(10): 855-864.


Cell-Based Immunotherapeutics

In general, cells are obtained from subjects with proliferative disease such as cancer, or an infectious disease such as viral infection. The obtained cells are treated directly as obtained or may be expanded in cell culture prior to treatment with oligonucleotides. The cells may also be genetically modified to express receptors that recognize specific antigens expressed on the tumor cell surface (CAR) or intracellular tumor antigens presented on MHC class I (TCR).


Oligonucleotide Agents

Antisense Oligonucleotides


Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a double stranded RNA molecule, generally 19-25 base pairs in length. siRNA is used in RNA interference (RNAi), where it interferes with expression of specific genes with complementary nucleotide sequences.


Double stranded DNA (dsRNA) can be generally used to define any molecule comprising a pair of complementary strands of RNA, generally a sense (passenger) and antisense (guide) strands, and may include single-stranded overhang regions. The term dsRNA, contrasted with siRNA, generally refers to a precursor molecule that includes the sequence of an siRNA molecule which is released from the larger dsRNA molecule by the action of cleavage enzyme systems, including Dicer.


sdRNA (self-deliverable) are a new class of covalently modified RNAi compounds that do not require a delivery vehicle to enter cells and have improved pharmacology compared to traditional siRNAs. “Self-deliverable RNA” or sdRNA is a hydrophobically modified RNA interfering-antisense hybrid, demonstrated to be highly efficacious in vitro in primary cells and in vivo upon local administration. Robust uptake and/or silencing without toxicity has been demonstrated in several tissues including dermal, muscle, tumors, alveolar macrophages, spinal cord, and retina cells and tissues. In dermal layer and retina, intradermal and intra-vitreal injection of sdRNA at mg doses induced potent and long lasting silencing.


While sdRNA is a superior functional genomics tool, enabling RNAi in primary cells and in vivo, it has a relatively low hit rate as compared to conventional siRNAs. While the need to screen large number of sequences per gene is not a limiting factor for therapeutic applications, it severely limits the applicability of sdRNA technology to functional genomics, where cost effective compound selection against thousands of genes is required. To optimize sdRNA structure, chemistry, targeting position, sequence preferences, and the like, a proprietary algorithm has been developed and utilized for sdRNA potency prediction. Availability of sdRNA reagents that are active in all cell types ex vivo and in vivo enables functional genomics and target stratification/validation studies.


Proprietary Algorithm

SdRNA sequences were selected based on a proprietory selection algorithm, designed on the basis of a functional screen of over 500 sdRNA sequences in the luciferase reporter assay of HeLa cells. Regression analysis of was used to establish a correlation between the frequency of occurrence of specific nucleotide and modification at any specific position in sdRNA duplex and its functionality in gene suppression assay. This algorithm allows prediction of functional sdRNA sequences, defined as having over 70% knockdown at 1 μM concentration, with a probability over 40%.


Table 1 shows predictive gene targets identified using the proprietary algorithm and useful in the cellular immunotherapeutic compositions and methods described herein.


Delivery of RNAi Agents

BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; Applic BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; ation of RNAi technology to functional genomics studies in prim BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; ary cells and in vivo is limited by requirements to formulate siRNAs into lipids or use of other cell delivery techniques. To circumvent delivery problems, the self-deliverable RNAi technology provides a method of directly transfecting cells with the RNAi agent, without the need for additional formulations or techniques. The ability to transfect hard-to-transfect cell lines, high in vivo activity, and simplicity of use, are characteristics of the compositions and methods that present significant functional advantages over traditional siRNA-based techniques. The sdRNAi technology allows direct delivery of chemically synthesized compounds to a wide range of primary cells and tissues, both ex-vivo and in vivo.


To enable BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; self-delivery, traditional siRNA molecules require a substantial reduction in size and the introduction of extensive chemical modifications which are not well tolerated by RNAi machinery, resulting in extremely low probability of finding active molecules (low hit rate). In contrast, the sdRNA technology allows efficient RNAi delivery to primary cells and tissues in vitro and in vivo, with demonstrated silencing efficiency in humans.


The general structure of sdRNA molecules is shown in FIG. 1. sdRNA are formed as hydrophobically-modified siRNA-antisense oligonucleotide hybrid structures, and are disclosed, for example in Byrne et al., December 2013, J. Ocular Pharmacology and Therapeutics, 29(10): 855-864.


Oligonucleotide Modifications: 2′-O-Methyl, 2′-O-Fluro, Phosphorothioate


The oligonucleotide agents preferably comprise one or more modification to increase stability and/or effectiveness of the therapeutic agent, and to effect efficient delivery of the oligonucleotide to the cells or tissue to be treated. Such modifications include at least one


BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; 2′-O-methyl modification, at least one 2′-O-Fluro modification, and at least one diphosphorothioate modification. Additionally, the oligonucleotide is modified to include one or more hydrophobic modification selected from sterol, cholesterol, vitamin D, naphtyl, isobutyl, benzyl, indol, tryptophane, and phenyl. The hydrophobic modification is preferably a sterol.


Delivery of Oligonucleotide Agents to Cells


The oligonucleotides may be delivered to the cells in combination with a transmembrane delivery system, preferably comprising lipids, viral vectors, and the like. Most preferably, the oligonucleotide agent is a self-delivery RNAi agent, that does not require any delivery agents.


Combination Therapy


Most preferred for this invention, e.g. particular combinations of elements and/or alternatives for specific needs. This objective is accomplished by determining the appropriate genes to be targeted by the oligonucleotide in order to silence immune suppressor genes and using the proprietary algorithm to select the most appropriate target sequence.


It is preferred that the immunotherapeutic cell be modified to include multiple oligonucleotide agents targeting a variety of genes involved in immune suppression and appropriate for the selected target disease and genes. For example, a preferred immunotherapeutic cell is a T-Cell modified to knock-down both CTLA-4 and PD-1


Additional combinations of oligonucleotides to related genes involved in immune suppression include varied combinations of the selected target sequences of Table 1.


BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; Preferred BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; therapeutic combinations include cells engineered to knock down gene expression of the following target genes:

    • a) CTLA4 and PD1
    • b) STAT3 and p38
    • c) PD1 and BaxPD1, CTLA4, Lag-1, ILM-3, and TP53
    • d) PD1 and Casp8
    • e) PD1 and IL10R


The therapeutic compositions described herein are useful to treat a subject suffering from a proliferation disorder or infectious disease. In particular, the immunotherapeutic composition is useful to treat disease characterized by suppression of the subjects immune mechanisms. The sdRNA agents described herein are specifically designed to target genes involved in diseases-associated immune suppression pathways.


Methods of treating a subject comprise administering to a subject in need thereof, an immunogenic composition comprising an sdRNAi agent capable of inhibiting expression of genes involved in immune suppression mechanisms, for example, any of the genes listed in Table 1 or otherwise described herein.


EXAMPLES

The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in any appended claims.


Example 1
Self-Deliverable RNAi Immunotherapeutic Agents

Immunotherapeutic agents described herein were produced by treating cells with particular sdRNA agents designed to target and knock down specific genes involved in immune suppression mechanisms. In particular, the following cells and cell lines have been successfully treated with sdRNA and were shown to knock down at least 70% of targeted gene expression in the specified human cells.


These studies demonstrated utility of these immunogenic agents to suppress expression of target genes in cells normally very resistant to transfection, and suggests the agents are capable of reducing expression of target cells in any cell type.












TABLE 2





Cell Type
Target Gene
sdRNA target sequence
% Knock Down







Primary human T-cells
TP53 (P53)
GAGTAGGACATACCAGCTTA (SEQ ID NO: 1001)
>70% 2 uM





Primary human T-cells
MAP4K4
AGAGTTCTGTGGAAGTCTA (SEQ ID NO: 1002)
>70% 2 uM





Jurkat T-Iymphoma cells
MAP4K4
AGAGTTCTGTGGAAGTCTA (SEQ ID NO: 1003)
100% 1 uM 72h





NK-92 cells
MAP4K4
AGAGTTCTGTGGAAGTCTA (SEQ ID NO: 1004)
 80% 2 uM 72h





NK-92 cells
PPIB
ACAGCAAATTCCATCGTGT (SEQ ID NO: 1005)
>75% 2 uM 72h





NK-92 cells
GADPH
CTGGTAAAGTGGATATTGTT (SEQ ID NO: 1006)
>90% 2 uM 72h





HeLa Cells
MAP4K4
AGAGTTCTGTGGAAGTCTA (SEQ ID NO: 1007)
>80% 2 uM 72h









Example 2
Oligonucleotide Sequences for Inhibiting Expression of Target Genes

A number of human genes were selected as candidate target genes due to involvement in immune suppression mechanisms, including the following genes shown in Table 3:











TABLE 3







BAX (NM_004324)
BAK1 (NM_001188)
CASP8 (NM_001228)


ADORA2A (NM_000675)
CTLA4 (NM_005214)
LAG3 (NM002286)


PDCD1 (NM_NM005018)
TGFBR1 (NM-004612)
HAVCR2 (NM_032782)


CCL17 (NM_002987)
CCL22 (NM_002990)
DLL2 (NM_005618)


FASLG (NM_000639)
CD274 (NM_001267706)
IDO1 (NM_002164)


IL10RA (NM_001558)
JAG1 (NM_000214)
JAG2 (NM_002226)


MAPK14 (NM_001315)
SOCS1 (NM_003745)
STAT3 (NM_003150)


TNFA1P3 (NM_006290)
TNFSF4 (NM_003326)
TYRO2 (NM_006293)


TP53 (NM_000546)









Each of the genes listed above was analyzed using a proprietary algorithm to identify preferred sdRNA targeting sequences and target regions for each gene for prevention of immunosuppression of antigen-presenting cells and T-cells. Results are shown in Table 1.


Example 3
Knock-Down of Target Gene (GAPDH) by sdRNA in HeLa Cells

HeLa cells (ATCC CRM-CCL-2) were subcultured 24 hours before transfection and kept log phase. The efficacy of several GAPDH sdRNAs was tested by qRT-PCR, including G13 sdRNA listed in the Table 1.


Solutions of GAPDH, MAP4K4 (positive control) and NTC (non-targeting control) sdRNA with twice the required concentration were prepared in serum-free EMEM medium, by diluting 100 μM oligonucleotides to 0.2-4 μM.


The total volume of medium for each oligo concentration point was calculated as [50 μl/well]×[number of replicates for each serum point]. Oligonucleotides were dispensed into a 96 well plate at 50 μl/well.


Cells were collected for transfection by trypsinization in a 50 ml tube, washed twice with medium containing 10% FBS without antibiotics, spun down at 200×g for 5 minutes at room temperature and resuspended in EMEM medium containing twice the required amount of FBS for the experiment (6%) and without antibiotics. The concentration of the cells was adjusted to 120,000/ml to yield a final concentration of 6,000 cells/50 μl/well. The cells were dispensed at 50 μl/well into the 96-well plate with pre-diluted oligos and placed in the incubator for 48 hours.


Gene Expression Analysis in HeLa Cells Using qRT-PCR


RNA was isolated from transfected HeLa cells using the PureLink™ Pro96 total RNA purification Kit (Ambion, Cat. No. 12173-011A), with Quanta qScript XLT One-Step RT-qPCR ToughMix, ROX (VWR, 89236672). The isolated RNA was analyzed for gene expression using the Human MAP4K4-FAM (Taqman Hs0377405 ml) and Human GAPDH-VIC (Applied Biosystems, Cat. No. 4326317E) gene expression assays.


The incubated plate was spun down and washed once with 100 μl/well PBS and lysed with 60 μl/well buffer provided in the kit. RNA isolation was conducted according to the manufacturer's instructions, and the RNA was eluted with 100 μl RNase-free water, and used undiluted for one-step qRT-PCR.


Dilutions of non-transfected (NT) cells of 1:5 and 1:25 were prepared for the standard curve using RNase-free water. qRT-PCR was performed by dispensing 9 μl/well into a low profile PCR plate and adding 1 μl RNA/well from the earlier prepared RNA samples. After brief centrifugation, the samples were placed in the real-time cycler and amplified using the settings recommended by the manufacturer.


GAPDH gene expression was measured by qPCR, normalized to MAP4K4 and plotted as percent of expression in the presence of non-targeting sdRNA. The results were compared to the normalized according to the standard curve. As shown in FIG. 2, several sdRNA agents targeting GAPDH or MAP4K4 significantly reduced their mRNA levels leading to more than 80-90% knock-down with 1 μM sdRNA. (See FIG. 2).


Example 4
Silencing of Multiple Targets by sdRNA in NK-92 Cells

NK-92 cells were obtained from Conqwest and subjected to one-step RT-PCR analysis without RNA purification using the FastLane Cell Multiplex Kit (Qiagen, Cat. No. 216513). For transfection, NK-92 cells were collected by centrifugation and diluted with RPMI medium containing 4% FBS and IL2 1000 U/ml and adjusted to1,000,000 cells/ml.


Multiple sdRNA agents targeting MAP4K4, PPIB or GADPH were diluted separately in serum-free RPMI medium to 4 μM and individually aliquoted at 50 μl/well into a 96-well plate. The prepared cells were then added at 50 μl cells/well to the wells with either MAP4K4, PPIB or GAPDH sdRNAs. Cells were incubated for 24, 48, or 72 hours.


At the specified timepoints, the plated transfected cells were washed once with 100 μl/well PBS and once with FCW buffer. After removal of supernatant, cell processing mix of 23.5 μl FCPL and 1.5 μl gDNA wipeout solution was added to each well and incubated for five minutes at room temperature. Lysates were then transferred to PCR strips and heated at 75° C. for five minutes.


To setup qRT-PCR, the lysates were mixed with QuantiTect reagents from the FastLane Cell Multiplex Kit and with primer probe mix for MAP4K4-FAM/GAPDH-VIC or PPIB-FAM/GAPDH-VIC. The following Taqman gene expression assays were used: human MAP4K4-FAM (Taqman, Hs00377405_m1), human PPIB-FAM (Taqman, Hs00168719_m1) and human GAPDH-VIC (Applied Biosystems, cat. No 4326317E).


A volume of 9 μl/well of each reaction mix was dispensed into a low profile PCR plate. One μl lysate per well was added from the previously prepared lysates. The samples were amplified using the settings recommended by the manufacturer.


Results shown in FIG. 3 demonstrate significant silencing of each of the multiple targets, MAP4K4, PPIB, and GADPH by sdRNA agents transfected into NK-92 cells, including greater than 75% inhibition of expression of each target within 24 to 72 hours of incubation.


Example 5
Silencing of TP53 and MAP4K4 by sdRNA in Human Primary T-Cells

Primary human T-cells were obtained from AllCells (CA) and cultured in complete RPMI medium containing 1000 IU/ml IL2. Cells were activated with anti-CD3/CD28 Dynabeads (Gibco, 11131) according to the manufacturer's instructions for at least 4 days prior to the transfection. Cells were collected by brief vortexing to dislodge the beads from cells and separating them using the designated magnet.


sdRNA agents targeting TP53 or MAP4K4 were prepared by separately diluting the sdRNAs to 0.2-4 μM in serum-free RPMI per sample (well) and individually aliquoted at 100 μl/well of 96-well plate. Cells were prepared in RPMI medium containing 4% FBS and IL2 2000 U/ml at 1,000,000 cells/ml and seeded at 100 μl/well into the 96-well plate with pre-diluted sdRNAs.


At the end of the transfection incubation period, the plated transfected cells were washed once with 100 μl/well PBS and processed with FastLane Cell Multiplex Kit reagents essentially as described for the Example 4 and according to the manufacturer's instructions. Taqman gene expression assays were used in the following combinations: human MAP4K4-FAM/GAPDH-VIC or human TP53-FAM (Taqman, Hs01034249_m1)/GAPDH-VIC. A volume of 18 μl/well of each reaction mix was combined with 2 μl lysates per well from the previously prepared lysates. The samples were amplified as before (see Example 4).


Results shown in FIG. 4 demonstrate significant silencing of both MAP4K4 and TP53 by sdRNA agents transfected into T-cells, reaching 70-80% inhibition of gene expression with 1-2 μM sdRNA.


Example 6
Immunotherapeutic Combination of sdRNAs for Treating Melanoma

Melanomas utilize at least two particular pathways to suppress immune function of T-cells, and each involves both PD1 and CTLA4. Melanoma tumors expressing the PD1 ligand, PD1L, can be targeted with T-cells pretreated ex-vivo with sd-RNAi agents specifically designed to target PD1 and interfere with PD1 expression. PD1 is also known as PDCD1, and particular targeting sequences and gene regions identified and predicted to be particularly functional in sdRNA mediated suppression, are shown in Table 1 for PDCD1 (NM_005018) and for CTLA4 (NM005214).


Treatment of melanoma tumors can be effected by providing to melanoma cells T-cells, such as tumor-infiltrating lymphocytes, pretreated ex-vivo with a combination of sdRNAs targeting PD1/PDCD1 and CTLA4, for example, targeting one or more of the twenty target sequences listed for PD1/PDCD1 and/or CTLA4. A combination of sdRNAs targeting PD1/PDCD1 and FASLG (NM_000639) and/or CTLA4, can increase T-cell toxicity in tumors expressing both PD1L and FAS.


In addition to and in combination with anti-CTLA-4 and anti-PD1 sdRNAs, T-cells used for the immunotherapy of melanoma can also be treated with sdRNA targeting other genes implicated in immunosuppression by the tumor. These receptors include, but are not limited to TGF-beta type 1 and 2 receptors, BTLA (binder of herpes virus entry indicator (HVEM) expressed on melanoma cells), and receptors of integrins expressed by myeloid derived suppressor cells (MDSC), such as CD11b, CD18, and CD29.


For tumors whose profile of expressed suppressive proteins is unknown, any combination of sdRNAs targeting PD1/PDCD1 and any one of know suppressing receptors may be helpful to reduce immune suppression and increase therapeutic efficacy.


Example 7
Combination of sdRNAs for Mitigating Immune Cell Suppression

T-cell or dendritic cell suppression may be modulated by various cytokines, such as IL10 and/or TGF beta. Suppressing corresponding receptors in T-cells and dendritic cells may be beneficial for their activity. For example, providing a combination of anti-PD1 with anti-IL10R sdRNAs is exptected to mitigate cytokine induced suppression of T-cells and dendritic cells, as compared with anti-PD1 alone.


Example 8
Combination of sdRNAs for Mitigating Immune Cell Suppression

When the mechanism of tumor suppression of immune cells may be not known, use of sdRNA agents to suppress genes involved in apoptosis (programmed cell death), such as p53, Casp8 or other gene activating apoptosis may be beneficial to increase immune cell activity. Combination of an anti-receptor sdRNAs with sdRNAs against pro-apoptotic genes can additionally reduce death of immune cells and thus increase their activity. For example, combination of anti-PD1 with anti-p53 sdRNAs may additionally protect T-cells from suppression by blocking activation of apoptosis.


Example 9
Silencing of CTLA-4 and PDCD1 by sdRNA in Human Primary T-Cells

Primary human T-cells were cultured and activated essentially as described in Example 5. sdRNA agents targeting PDCD1 and CTLA-4 were prepared by separately diluting the sdRNAs to 0.4-4 μM in serum-free RPMI per sample (well) and aliquoted at 100 μl/well of 96-well plate. Cells were prepared in RPMI medium containing 4% FBS and IL2 2000 U/ml at 1,000,000 cells/ml and seeded at 100 μl/well into the 96-well plate with pre-diluted sdRNAs.


72 h later, the transfected cells were washed once with 100 μl/well PBS and processed with FastLane Cell Multiplex Kit reagents essentially as described for the Example 4 and according to the manufacturer's instructions. Taqman gene expression assays were used in the following combinations: human PDCD1-FAM (Taqman, Hs01550088_m1)/GAPDH-VIC or human CTLA4-FAM (Taqman, Hs03044418_m1)/GAPDH-VIC. A volume of 18 μl/well of each reaction mix was combined with 2 μl lysates per well from the previously prepared lysates. The samples were amplified as before (see Example 4).


Results shown in FIG. 5 demonstrate significant silencing of PDCD1 and CTLA-4 by using combined sdRNA agents delivered to T-cells, obtaining greater than 60-70% inhibition of gene expression with 2 μM sdRNA.


Example 10
Reduction of CTLA-4 and PDCD1 Surface Expression by sdRNA in Human Primary T-Cells

Primary human T-cells were cultured and activated essentially as described in Example 5.


sdRNA agents targeting CTLA-4 or PD1 were separately diluted to 5 μM in serum-free RPMI per sample (well) and aliquoted at 250 μl/well to 24-well plates. Cells mixed with magnetic beads were collected and adjusted to 500,000 cells in 250 μl RPMI medium containing 4% FBS and IL2 2000 IU/ml. Cells were seeded at 250 μl/well to the prepared plate containing pre-diluted sdRNAs. 24 hours later FBS was added to the cells to obtain 10% final concentration.


After 72 hours of incubation, the transfected cells were collected, separated from the activation beads using the magnet, as described in Example 5. Cells were washed with PBS, spun down and resuspended in blocking buffer (PBS with 3% BSA) at 200,000 cells/50 μl/sample.


Antibody dilutions were prepared in the blocking buffer. The antibodies were mixed in two combinations: anti-PD1/anti-CD3 (1:100 dilutions for both antibodies) and anti-CTLA4/anti-CD3 (10 μl/106 cells for anti-CTLA4; 1:100 for CD3). The following antibodies were used: rabbit monoclonal [SP7] to CD3 (Abcam, ab16669); mouse monoclonal [BNI3] to CTLA4 (Abcam, ab33320) and mouse monoclonal [NAT105] to PD1 (Abcam, ab52587). Cells were mixed with the diluted antibodies and incubated 30 minutes on ice. Cells were then washed twice with PBS containing 0.2% Tween-20 and 0.1% sodium azide.


Secondary antibodies were diluted in blocking buffer and mixed together resulting in a final dilution 1:500 for anti-mouse Cy5 (Abcam, ab97037) and 1:2000 for anti-rabbit Alexa-488 (Abcam, ab150077). Cells were mixed with the diluted antibodies at 1:1 ratio and incubated 30 minutes on ice. Cells were washed as before, and diluted in 500 μl PBS per tube. The data was acquired immediately on the Attune Acoustic Focusing Cytometer (Applied Biosystems).


As shown in FIG. 6, sdRNA efficiently reduced surface expression of CTLA-4 and PD1 in activated Human Primary T cells.


Example 11
MAP4K4 sdRNA Delivery into CD3- and CD19-Positive Subsets of Human Peripheral Blood Mononuclear Cells (PBMCs)

PBMCs were cultured in complete RPMI supplemented with 1.5% PHA solution and 500 U/ml IL2. For transfection, PBMCs were collected by centrifugation and diluted with RPMI medium containing 4% FBS and IL2 1000 U/ml and seeded to 24-well plate at 500,000 cells/well.


MAP4K4 sdRNA labeled with cy3 was added to the cells at 0.1 μM final concentration. After 72 hours of incubation, the transfected cells were collected, washed with PBS, spun down and diluted in blocking buffer (PBS with 3% BSA) at 200,000 cells/50 μl/sample.


Antibody dilutions were prepared in the blocking buffer as following: 1:100 final dilution anti-CD3 (Abcam, ab16669) and anti-CD19 at 10 μl/1,000,000 cells (Abcam, ab31947). Cells were mixed with the diluted antibodies and incubated 30 min on ice. Cells were then washed twice with PBS containing 0.2% Tween-20 and 0.1% sodium azide.


Secondary antibodies were diluted in the blocking buffer in a final dilution 1:500 for anti-mouse Cy5 (Abcam, ab97037) and 1:2000 for anti-rabbit Alexa-488 (Abcam, ab150077). Cells were mixed with the diluted antibodies at 1:1 ratio and incubated 30 min on ice. Cells were washed as before, and diluted in 500 μl PBS per tube. The data was acquired immediately on the Attune Acoustic Focusing Cytometer (Applied Biosystems).



FIG. 7 shows efficient transfection over 97% of CD3-positive (t cells) and over 98% CD19-positive (B-cells) subsets in Human Peripheral Blood Mononuclear Cells (PBMCs).









TABLE 1







Targeting sequences and gene regions of genes targeted with sdRNAs to prevent


immunosuppression of antigen-presenting cells and T-cells.















SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:










Accession: NM_004324


HUGO gene symbol: BAX












1
BAX_NM_004324_
GAATTGCTCAAGTTCATTGA
1
CCTCCACTGCCTCTGGAATTGCTCAAG
21



human_835


TTCATTGATGACCCTCTG






2
BAX_NM_004324_
TTCATCCAGGATCGAGCAGG
2
CTTTTGCTTCAGGGTTTCATCCAGGAT
22



human_ 57


CGAGCAGGGCGAATGGGG






3
BAX_NM_004324_
ATCATCAGATGTGGTCTATA
3
TCTCCCCATCTTCAGATCATCAGATGT
23



human_684


GGTCTATAATGCGTTTTC






4
BAX_NM_004324_
TACTTTGCCAGCAAACTGGT
4
GTTGTCGCCCTTTTCTACTTTGCCAGCA
24



human_412


AACTGGTGCTCAAGGCC






5
BAX_NM_004324_
GGTTGGGTGAGACTCCTCAA
5
ATCCAAGACCAGGGTGGTTGGGTGAG
25



human_538


ACTCCTCAAGCCTCCTCAC






6
BAX_NM_004324_
CTACTTTGCCAGCAAACTGG
6
GGTTGTCGCCCTTTTCTACTTTGCCAGC
26



human_411


AAACTGGTGCTCAAGGC






7
BAX_NM_004324_
GCGTTTTCCTTACGTGTCTG
7
GATGTGGTCTATAATGCGTTTTCCTTA
27



human_706


CGTGTCTGATCAATCCCC






8
BAX_NM_004324_
TACGTGTCTGATCAATCCCC
8
ATAATGCGTTTTCCTTACGTGTCTGATC
28



human_7 16


AATCCCCGATTCATCTA






9
BAX_NM_004324_
TCAGGGTTTCATCCAGGATC
9
AGGGGCCCTTTTGCTTCAGGGTTTCAT
29



human_ 50


CCAGGATCGAGCAGGGCG






10
BAX_NM_004324_
TGACGGCAACTTCAACTGGG
10
AGCTGACATGTTTTCTGACGGCAACTT
30



human_ 72


CAACTGGGGCCGGGTTGT






11
BAX_NM_004324_
CAGCTGACATGTTTTCTGAC
11
TCTTTTTCCGAGTGGCAGCTGACATGT
31



human_356


TTTCTGACGGCAACTTCA






12
BAX_NM_004324_
AGCTGACATGTTTTCTGACG
12
CTTTTTCCGAGTGGCAGCTGACATGTT
32



human_357


TTCTGACGGCAACTTCAA






13
BAX_NM_004324_
CACTGTGACCTTGACTTGAT
13
AGTGACCCCTGACCTCACTGTGACCTT
33



human_776


GACTTGATTAGTGCCTTC






14
BAX_NM_004324_
TCCTTACGTGTCTGATCAAT
14
GTCTATAATGCGTTTTCCTTACGTGTCT
34



human_712


GATCAATCCCCGATTCA






15
BAX_NM_004324_
GATCAGAACCATCATGGGCT
15
CAAGGTGCCGGAACTGATCAGAACCA
35



human_465


TCATGGGCTGGACATTGGA






16
BAX_NM_004324_
CTTCTGGAGCAGGTCACAGT
16
TCTGGGACCCTGGGCCTTCTGGAGCA
36



human_642


GGTCACAGTGGTGCCCTCT






17
BAX_NM_004324_
TGAGCAGATCATGAAGACAG
17
GGGGCCCACCAGCTCTGAGCAGATCA
37



human_117


TGAAGACAGGGGCCCTTTT






18
BAX_NM_004324_
TATAATGCGTTTTCCTTACG
18
TCATCAGATGTGGTCTATAATGCGTTT
38



human_700


TCCTTACGTGTCTGATCA






19
BAX_NM_004324_
CCCATCTTCAGATCATCAGA
19
CAGTGGTGCCCTCTCCCCATCTTCAGA
39



human_673


TCATCAGATGTGGTCTAT






20
BAX_NM_004324_
AGGTGCCGGAACTGATCAGA
20
AGGCCCTGTGCACCAAGGTGCCGGAA
40



human_452


CTGATCAGAACCATCATGG











Accession: NM_001188


HUGO gene symbol: BAK1












1
BAK1_NM_001188
TGGTTTGTTATATCAGGGAA
41
ACAGGGCTTAGGACTTGGTTTGTTA
61



_human_1813


TATCAGGGAAAAGGAGTAGG






2
BAK1_NM_001188
TGGTACGAAGATTCTTCAAA
42
TGTTGGGCCAGTTTGTGGTACGAAG
62



_human_911


ATTCTTCAAATCATGACTCC






3
BAK1_NM_001188
TTATATCAGGGAAAAGGAGT
43
TTAGGACTTGGTTTGTTATATCAGG
63



_human_1820


GAAAAGGAGTAGGGAGTTCA






4
BAK1_NM_001188
TCCCTTCCTCTCTCCTTATA
44
GTCCTCTCAGTTCTCTCCCTTCCTCTC
64



_human_1678


TCCTTATAGACACTTGCT






5
BAK1_NM_001188
TCAAATCATGACTCCCAAGG
45
TGGTACGAAGATTCTTCAAATCATG
65



_human_926


ACTCCCAAGGGTGCCCTTTG






6
BAK1_NM_001188
TGTTATATCAGGGAAAAGGA
46
GCTTAGGACTTGGTTTGTTATATCA
66



_human_1818


GGGAAAAGGAGTAGGGAGTT






7
BAK1_NM_001188
ACGAAGATTCTTCAAATCAT
47
GGGCCAGTTTGTGGTACGAAGATTC
67



_human_915


TTCAAATCATGACTCCCAAG






8
BAK1_NM_001188
GGTACGAAGATTCTTCAAAT
48
GTTGGGCCAGTTTGTGGTACGAAGA
68



_human_912


TTCTTCAAATCATGACTCCC






9
BAK1_NM_001188
GAAGTTCTTGATTCAGCCAA
49
GGGGGTCAGGGGGGAGAAGTTCTT
69



_human_2086


GATTCAGCCAAATGCAGGGAG






10
BAK1_NM_001188
CCTATGAGTACTTCACCAAG
50
CCACGGCAGAGAATGCCTATGAGTA
70



_human_620


CTTCACCAAGATTGCCACCA






11
BAK1_NM_001188
TATCAGGGAAAAGGAGTAGG
51
GGACTTGGTTTGTTATATCAGGGAA
71



_human_1823


AAGGAGTAGGGAGTTCATCT






12
BAK1_NM_001188
CTCTCCTTATAGACACTTGC
52
GTTCTCTCCCTTCCTCTCTCCTTATAG
72



_human_1687


ACACTTGCTCCCAACCCA






13
BAK1_NM_001188
ACTTGGTTTGTTATATCAGG
53
ACTACAGGGCTTAGGACTTGGTTTG
73



_human_1810


TTATATCAGGGAAAAGGAGT






14
BAK1_NM_001188
AAGATCAGCACCCTAAGAGA
54
ATTCAGCTATTCTGGAAGATCAGCA
74



_human_1399


CCCTAAGAGATGGGACTAGG






15
BAK1_NM_001188
GTTTGAGAGTGGCATCAATT
55
GATTGCCACCAGCCTGTTTGAGAGT
75



_human_654


GGCATCAATTGGGGCCGTGT






16
BAK1_NM_001188
GACTATCAACACCACTAGGA
56
TCTAAGTGGGAGAAGGACTATCAAC
76



_human_1875


ACCACTAGGAATCCCAGAGG






17
BAK1_NM_001188
AGCTTTAGCAAGTGTGCACT
57
CCTCAAGAGTACAGAAGCTTTAGCA
77



_human_1043


AGTGTGCACTCCAGCTTCGG






18
BAK1_NM_001188
TTCATCTGGAGGGTTCTAAG
58
AAAAGGAGTAGGGAGTTCATCTGG
78



_human_1846


AGGGTTCTAAGTGGGAGAAGG






19
BAK1_NM_001188
AAGTTCTTGATTCAGCCAAA
59
GGGGTCAGGGGGGAGAAGTTCTTG
79



_human_2087


ATTCAGCCAAATGCAGGGAGG






20
BAK1_NM_001188
GTTATATCAGGGAAAAGGAG
60
CTTAGGACTTGGTTTGTTATATCAG
80



_human_1819


GGAAAAGGAGTAGGGAGTTC











Accession: NM_001228


HUGO gene symbol: CASP8












1
CASP8_NM_001228
TTAAATCATTAGGAATTAAG
121
TCTGCTTGGATTATTTTAAATCATTAG
141



_human_2821


GAATTAAGTTATCTTTAA






2
CASP8_NM_001228
GAATTAAGTTATCTTTAAAA
122
ATTTTAAATCATTAGGAATTAAGTTAT
142



_human_2833


CTTTAAAATTTAAGTATC






3
CASP8_NM_001228
AACTTTAATTCTCTTTCAAA
123
TGTTAATATTCTATTAACTTTAATTCT
143



_human_2392


CTTTCAAAGCTAAATTCC






4
CASP8_NM_001228
GACTGAAGTGAACTATGAAG
124
TATTCTCACCATCCTGACTGAAGTGA
144



_human_1683


ACTATGAAGTAAGCAACAA






5
CASP8_NM_001228
ATATTCTCCTGCCTTTTAAA
125
GGGAATATTGAGATTATATTCTCCTG
145



_human_281


CCTTTTAAAAAGATGGACT






6
CASP8_NM_001228
AGTTATCTTTAAAATTTAAG
126
AATCATTAGGAATTAAGTTATCTTTA
146



_human_2839


AAATTTAAGTATCTTTTTT






7
CASP8_NM_001228
TAGATTTTCTACTTTATTAA
127
TATTTACTAATTTTCTAGATTTTCTACT
147



_human_2164


TTATTAATTGTTTTGCA






8
CASP8_NM_001228
CTGTGCCCAAATCAACAAGA
128
CATCCTGAAAAGAGTCTGTGCCCAAA
148



_human_888


TCAACAAGAGCCTGCTGAA






9
CASP8_NM_001228
AGCTGGTGGCAATAAATACC
129
TTTGGGAATGTTTTTAGCTGGTGGCA
149



_human_2283


ATAAATACCAGACACGTAC






10
CASP8_NM_001228
TCCTACCGAAACCCTGCAGA
130
GTGAATAACTGTGTTTCCTACCGAAA
150



_human_1585


CCCTGCAGAGGGAACCTGG






11
CASP8_NM_001228
TATAAGAGCTAAAGTTAAAT
131
TGTTTTGCACTTTTTTATAAGAGCTAA
151



_human_2200


AGTTAAATAGGATATTAA






12
CASP8_NM_001228
CACTATGTTTATTTACTAAT
132
ACTATTTAGATATAACACTATGTTTAT
152



_human_2140


TTACTAATTTTCTAGATT






13
CASP8_NM_001228
ATTGTTATCTATCAACTATA
133
GGGCTTATGATTCAGATTGTTATCTA
153



_human_2350


TCAACTATAAGCCCACTGT






14
CASP8_NM_001228
TAACTGTGTTTCCTACCGAA
134
GATGGCCACTGTGAATAACTGTGTTT
154



_human_1575


CCTACCGAAACCCTGCAGA






15
CASP8_NM_001228
TAATTCTCTTTCAAAGCTAA
135
ATATTCTATTAACTTTAATTCTCTTTCA
155



_human_2397


AAGCTAAATTCCACACT






16
CASP8_NM_001228
TATATGCTTGGCTAACTATA
136
TGCTTTTATGATATATATATGCTTGGC
156



_human_2726


TAACTATATTTGCTTTTT






17
CASP8_NM_001228
CTCTGCTTGGATTATTTTAA
137
CATTTGCTCTTTCATCTCTGCTTGGAT
157



_human_2805


TATTTTAAATCATTAGGA






18
CASP8_NM_001228
ATGCTTGGCTAACTATATTT
138
TTTTATGATATATATATGCTTGGCTAA
158



_human_2729


CTATATTTGCTTTTTGCT






19
CASP8_NM_001228
ATAAGAGCTAAAGTTAAATA
139
GTTTTGCACTTTTTTATAAGAGCTAAA
159



_human_2201


GTTAAATAGGATATTAAC






20
CASP8_NM_001228
ATCTTTAAAATTTAAGTATC
140
ATTAGGAATTAAGTTATCTTTAAAATT
160



_human_2843


TAAGTATCTTTTTTCAAA











Accession: NM_000675


HUGO gene symbol: ADORA2A












1
ADORA2A_NM_00067
TAACTGCCTTTCCTTCTAAA
161
GTGAGAGGCCTTGTCTAACTGCC
181



5_human_2482


TTTCCTTCTAAAGGGAATGTTT






2
ADORA2A_NM_00067
TTCCTTCTAAAGGGAATGTT
162
CTTGTCTAACTGCCTTTCCTTCTAA
182



5_human_2491


AGGGAATGTTTTTTTCTGAG






3
ADORA2A_NM_00067
GCCTTTCCTTCTAAAGGGAA
163
AGGCCTTGTCTAACTGCCTTTCCT
183



5_human_2487


TCTAAAGGGAATGTTTTTTTC






4
ADORA2A_NM_00067
TTTTCTGAGATAAAATAAAA
164
CTAAAGGGAATGTTTTTTTCTGAG
184



5_human_2512


ATAAAATAAAAACGAGCCACA






5
ADORA2A_NM_00067
CATCTCTTGGAGTGACAAAG
165
TCTCAGTCCCAGGGCCATCTCTTG
185



5_human_2330


GAGTGACAAAGCTGGGATCAA






6
ADORA2A_NM_00067
CATGGTGTACTTCAACTTCT
166
GGTCCCCATGAACTACATGGTGT
186



5_human_987


ACTTCAACTTCTTTGCCTGTGT






7
ADORA2A_NM_00067
CTAACTGCCTTTCCTTCTAA
167
AGTGAGAGGCCTTGTCTAACTGC
187



5_human_2481


CTTTCCTTCTAAAGGGAATGTT






8
ADORA2A_NM_00067
CTGATGATTCATGGAGTTTG
168
TGGAGCAGGAGTGTCCTGATGAT
188



5_human_1695


TCATGGAGTTTGCCCCTTCCTA






9
ADORA2A_NM_00067
CTCAGAGTCCTCTGTGAAAA
169
CCTGGTTTCAGGAGACTCAGAGT
189



5_human_264


CCTCTGTGAAAAAGCCCTTGGA






10
ADORA2A_NM_00067
AACGAGCCACATCGTGTTTT
170
CTGAGATAAAATAAAAACGAGCC
190



5_human_2531


ACATCGTGTTTTAAGCTTGTCC






11
ADORA2A_NM_00067
TCCTTCTAAAGGGAATGTTT
171
TTGTCTAACTGCCTTTCCTTCTAAA
191



5_human_2492


GGGAATGTTTTTTTCTGAGA






12
ADORA2A_NM_00067
CATGAACTACATGGTGTACT
172
TGAGGATGTGGTCCCCATGAACT
192



5_human_978


ACATGGTGTACTTCAACTTCTT






13
ADORA2A_NM_00067
AACTGCCTTTCCTTCTAAAG
173
TGAGAGGCCTTGTCTAACTGCCTT
193



5_human_2483


TCCTTCTAAAGGGAATGTTTT






14
ADORA2A_NM_00067
CAGATGTTTCATGCTGTGAG
174
TGGGTTCTGAGGAAGCAGATGTT
194



5_human_1894


TCATGCTGTGAGGCCTTGCACC






15
ADORA2A_NM_00067
CCCATGAACTACATGGTGTA
175
TTTGAGGATGTGGTCCCCATGAA
195



5_human_976


CTACATGGTGTACTTCAACTTC






16
ADORA2A_NM_00067
AGGCAGCAAGAACCTTTCAA
176
CGCAGCCACGTCCTGAGGCAGCA
196



5_human_1384


AGAACCTTTCAAGGCAGCTGGC






17
ADORA2A_NM_00067
GTCCTGATGATTCATGGAGT
177
GGATGGAGCAGGAGTGTCCTGAT
197



5_human_1692


GATTCATGGAGTTTGCCCCTTC






18
ADORA2A_NM_00067
GTACTTCAACTTCTTTGCCT
178
CATGAACTACATGGTGTACTTCAA
198



5_human_993


CTTCTTTGCCTGTGTGCTGGT






19
ADORA2A_NM_00067
TGTAAGTGTGAGGAAACCCT
179
TTTTTCCAGGAAAAATGTAAGTGT
199



5_human_2167


GAGGAAACCCTTTTTATTTTA






20
ADORA2A_NM_00067
CCTACTTTGGACTGAGAGAA
180
TGAGGGCAGCCGGTTCCTACTTT
200



5_human_1815


GGACTGAGAGAAGGGAGCCCCA











Accession: NM_005214


HUGO gene symbol: CTLA4












1
CTLA4_NM_005214_
TGATTCTGTGTGGGTTCAAA
201
TCTATATAAAGTCCTTGATTCTGT
221



human_61


GTGGGTTCAAACACATTTCAA






2
CTLA4_NM_005214_
TTATTTGTTTGTGCATTTGG
202
GCTATCCAGCTATTTTTATTTGTTT
222



human_909


GTGCATTTGGGGGGAATTCA






3
CTLA4_NM_005214_
TGATTACATCAAGGCTTCAA
203
TCTTAAACAAATGTATGATTACAT
223



human_1265


CAAGGCTTCAAAAATACTCAC






4
CTLA4_NM_005214_
GATGTGGGTCAAGGAATTAA
204
GGGATGCAGCATTATGATGTGGG
224



human_1094


TCAAGGAATTAAGTTAGGGAAT






5
CTLA4_NM_005214_
CCTTTTATTTCTTAAACAAA
205
AAGTTAAATTTTATGCCTTTTATTT
225



human_1241


CTTAAACAAATGTATGATTA






6
CTLA4_NM_005214_
GATTACATCAAGGCTTCAAA
206
CTTAAACAAATGTATGATTACATC
226



human_1266


AAGGCTTCAAAAATACTCACA






7
CTLA4_NM_005214_
TCTGTGTGGGTTCAAACACA
207
TATAAAGTCCTTGATTCTGTGTGG
227



human_65


GTTCAAACACATTTCAAAGCT






8
CTLA4_NM_005214_
TTGATAGTATTGTGCATAGA
208
TATATATATTTTAATTTGATAGTAT
228



human_1405


TGTGCATAGAGCCACGTATG






9
CTLA4_NM_005214_
TGCCTTTTATTTCTTAAACA
209
TCAAGTTAAATTTTATGCCTTTTAT
229



human_1239


TTCTTAAACAAATGTATGAT






10
CTLA4_NM_005214_
TCCATGAAAATGCAACAACA
210
TTTAACTCAATATTTTCCATGAAA
230



human_1912


ATGCAACAACATGTATAATAT






11
CTLA4_NM_005214_
TTATTTCTTAAACAAATGTA
211
TAAATTTTATGCCTTTTATTTCTTA
231



human_1245


AACAAATGTATGATTACATC






12
CTLA4_NM_005214_
TTAATGGTTTGAATATAAAC
212
GTTTTTGTGTATTTGTTAATGGTTT
232



human_1449


GAATATAAACACTATATGGC






13
CTLA4_NM_005214_
ATGTGGGTCAAGGAATTAAG
213
GGATGCAGCATTATGATGTGGGT
233



human_1095


CAAGGAATTAAGTTAGGGAATG






14
CTLA4_NM_005214_
AGCCGAAATGATCTTTTCAA
214
GTATGAGACGTTTATAGCCGAAA
234



human_1208


TGATCTTTTCAAGTTAAATTTT






15
CTLA4_NM_005214_
GTTTGAATATAAACACTATA
215
GTGTATTTGTTAATGGTTTGAATA
235



human_1455


TAAACACTATATGGCAGTGTC






16
CTLA4_NM_005214_
TATGCCTTTTATTTCTTAAA
216
TTTCAAGTTAAATTTTATGCCTTTT
236



human_1237


ATTTCTTAAACAAATGTATG






17
CTLA4_NM_005214_
TTCCATGAAAATGCAACAAC
217
TTTTAACTCAATATTTTCCATGAA
237



human_1911


AATGCAACAACATGTATAATA






18
CTLA4_NM_005214_
CATCTCTCTTTAATATAAAG
218
CATTTGGGGGGAATTCATCTCTCT
238



human_937


TTAATATAAAGTTGGATGCGG






19
CTLA4_NM_005214_
GGAATTCATCTCTCTTTAAT
219
TTTGTGCATTTGGGGGGAATTCAT
239



human_931


CTCTCTTTAATATAAAGTTGG






20
CTLA4_NM_005214_
ATCTATATAAAGTCCTTGAT
220
TCTGGGATCAAAGCTATCTATATA
240



human_45


AAGTCCTTGATTCTGTGTGGG











Accession: NM_002286


HUGO gene symbol: LAG3












1
LAG3_NM_002286
GACTTTACCCTTCGACTAGA
241
ACTGGAGACAATGGCGACTTTACC
261



_human_1292


CTTCGACTAGAGGATGTGAGC






2
LAG3_NM_002286
CAACGTCTCCATCATGTATA
242
CTACAGAGATGGCTTCAACGTCTC
262



_human_1096


CATCATGTATAACCTCACTGT






3
LAG3_NM_002286
GTCCTTTCTCTGCTCCTTTT
243
TTTCTCATCCTTGGTGTCCTTTCTCT
263



_human_1721


GCTCCTTTTGGTGACTGGA






4
LAG3_NM_002286
TCCAGTATCTGGACAAGAAC
244
GCTTTGTGAGGTGACTCCAGTATC
264



_human_1465


TGGACAAGAACGCTTTGTGTG






5
LAG3_NM_002286
ATTTTCTGCCTTAGAGCAAG
245
GTGGCGACCAAGACGATTTTCTGC
265



_human_1795


CTTAGAGCAAGGGATTCACCC






6
LAG3_NM_002286
TTTCACCTTTGGAGAAGACA
246
ACTGGAGCCTTTGGCTTTCACCTTT
266



_human_1760


GGAGAAGACAGTGGCGACCA






7
LAG3_NM_002286
CATTTTGAACTGCTCCTTCA
247
AGCCTCCGACTGGGTCATTTTGAA
267



_human_904


CTGCTCCTTCAGCCGCCCTGA






8
LAG3_NM_002286
TCATCACAGTGACTCCCAAA
248
CTGTCACATTGGCAATCATCACAGT
268



_human_1398


GACTCCCAAATCCTTTGGGT






9
LAG3_NM_002286
GCTTTCACCTTTGGAGAAGA
249
TGACTGGAGCCTTTGGCTTTCACCT
269



_human_1758


TTGGAGAAGACAGTGGCGAC






10
LAG3_NM_002286
CTTTGGCTTTCACCTTTGGA
250
TTTGGTGACTGGAGCCTTTGGCTTT
270



_human_1753


CACCTTTGGAGAAGACAGTG






11
LAG3_NM_002286
ATTTTGAACTGCTCCTTCAG
251
GCCTCCGACTGGGTCATTTTGAACT
271



_human_905


GCTCCTTCAGCCGCCCTGAC






12
LAG3_NM_002286
CACATTGGCAATCATCACAG
252
GCTCAATGCCACTGTCACATTGGC
272



_human_1387


AATCATCACAGTGACTCCCAA






13
LAG3_NM_002286
TTTCTGACCTCCTTTTGGAG
253
ACTGCCCCCTTTCCTTTTCTGACCTC
273



_human_301


CTTTTGGAGGGCTCAGCGC






14
LAG3_NM_002286
CGACTGGGTCATTTTGAACT
254
ATCTCTCAGAGCCTCCGACTGGGT
274



_human_895


CATTTTGAACTGCTCCTTCAG






15
LAG3_NM_002286
TACTTCACAGAGCTGTCTAG
255
CTTGGAGCAGCAGTGTACTTCACA
275



_human_1625


GAGCTGTCTAGCCCAGGTGCC






16
LAG3_NM_002286
ATTGGCAATCATCACAGTGA
256
CAATGCCACTGTCACATTGGCAATC
276



_human_1390


ATCACAGTGACTCCCAAATC






17
LAG3_NM_002286
CTGTTTCTCATCCTTGGTGT
257
GCAGGCCACCTCCTGCTGTTTCTCA
277



_human_1703


TCCTTGGTGTCCTTTCTCTG






18
LAG3_NM_002286
TTGTGAGGTGACTCCAGTAT
258
CCTGGGGAAGCTGCTTTGTGAGGT
278



_human_1453


GACTCCAGTATCTGGACAAGA






19
LAG3_NM_002286
TTTGGCTTTCACCTTTGGAG
259
TTGGTGACTGGAGCCTTTGGCTTTC
279



_human_1754


ACCTTTGGAGAAGACAGTGG






20
LAG3_NM_002286
TGGAGACAATGGCGACTTTA
260
TGACCTCCTGGTGACTGGAGACAA
280



_human_1279


TGGCGACTTTACCCTTCGACT











Accession: NM_005018


HUGO gene symbol: PDCD1












1
PDCD1_NM_005018
TATTATATTATAATTATAAT
281
CCTTCCCTGTGGTTCTATTATATTAT
301



_human_2070


AATTATAATTAAATATGAG






2
PDCD1_NM_005018
TCTATTATATTATAATTATA
282
CCCCTTCCCTGTGGTTCTATTATATT
302



_human_2068


ATAATTATAATTAAATATG






3
PDCD1_NM_005018
CATTCCTGAAATTATTTAAA
283
GCTCTCCTTGGAACCCATTCCTGAA
303



_human_1854


ATTATTTAAAGGGGTTGGCC






4
PDCD1_NM_005018
CTATTATATTATAATTATAA
284
CCCTTCCCTGTGGTTCTATTATATT
304



_human_2069


ATAATTATAATTAAATATGA






5
PDCD1_NM_005018
AGTTTCAGGGAAGGTCAGAA
285
CTGCAGGCCTAGAGAAGTTTCAGG
305



_human_1491


GAAGGTCAGAAGAGCTCCTGG






6
PDCD1_NM_005018
TGTGGTTCTATTATATTATA
286
GGGATCCCCCTTCCCTGTGGTTCTA
306



_human_2062


TTATATTATAATTATAATTA






7
PDCD1_NM_005018
TGTGTTCTCTGTGGACTATG
287
CCCCTCAGCCGTGCCTGTGTTCTCT
307



_human_719


GTGGACTATGGGGAGCTGGA






8
PDCD1_NM_005018
CCCATTCCTGAAATTATTTA
288
GAGCTCTCCTTGGAACCCATTCCTG
308



_human_1852


AAATTATTTAAAGGGGTTGG






9
PDCD1_NM_005018
TGCCACCATTGTCTTTCCTA
289
TGAGCAGACGGAGTATGCCACCAT
309



_human_812


TGTCTTTCCTAGCGGAATGGG






10
PDCD1_NM_005018
AAGTTTCAGGGAAGGTCAGA
290
CCTGCAGGCCTAGAGAAGTTTCAG
310



_human_1490


GGAAGGTCAGAAGAGCTCCTG






11
PDCD1_NM_005018
CTGTGGTTCTATTATATTAT
291
AGGGATCCCCCTTCCCTGTGGTTCT
311



_human_2061


ATTATATTATAATTATAATT






12
PDCD1_NM_005018
TTCTATTATATTATAATTAT
292
CCCCCTTCCCTGTGGTTCTATTATA
312



_human_2067


TTATAATTATAATTAAATAT






13
PDCD1_NM_005018
TTTCAGGGAAGGTCAGAAGA
293
GCAGGCCTAGAGAAGTTTCAGGG
313



_human_1493


AAGGTCAGAAGAGCTCCTGGCT






14
PDCD1_NM_005018
CTTGGAACCCATTCCTGAAA
294
ACCCTGGGAGCTCTCCTTGGAACC
314



_human_1845


CATTCCTGAAATTATTTAAAG






15
PDCD1_NM_005018
TCCCTGTGGTTCTATTATAT
295
ACAAGGGATCCCCCTTCCCTGTGG
315



_human_2058


TTCTATTATATTATAATTATA






16
PDCD1_NM_005018
CCTGTGGTTCTATTATATTA
296
AAGGGATCCCCCTTCCCTGTGGTTC
316



_human_2060


TATTATATTATAATTATAAT






17
PDCD1_NM_005018
TGGAACCCATTCCTGAAATT
297
CCTGGGAGCTCTCCTTGGAACCCA
317



_human_1847


TTCCTGAAATTATTTAAAGGG






18
PDCD1_NM_005018
CCTTCCCTGTGGTTCTATTA
298
GGGACAAGGGATCCCCCTTCCCTG
318



_human_2055


TGGTTCTATTATATTATAATT






19
PDCD1_NM_005018
TTCCCTGTGGTTCTATTATA
299
GACAAGGGATCCCCCTTCCCTGTG
319



_human_2057


GTTCTATTATATTATAATTAT






20
PDCD1_NM_005018
CACAGGACTCATGTCTCAAT
300
CAGGCACAGCCCCACCACAGGACT
320



_human_1105


CATGTCTCAATGCCCACAGTG











Accession: NM_004612


HUGO gene symbol: TGFBR1












1
TGFBR1_NM_004612
CCTGTTTATTACAACTTAAA
321
GTTAATAACATTCAACCTGTTTAT
341



_human_5263


TACAACTTAAAAGGAACTTCA






2
TGFBR1_NM_004612
CCATTGGTGGAATTCATGAA
322
TTGCTCGACGATGTTCCATTGGTG
342



_human_1323


GAATTCATGAAGATTACCAAC






3
TGFBR1_NM_004612
TTTTCCTTATAACAAAGACA
323
TTTAGGGATTTTTTTTTTTCCTTAT
343



_human_6389


AACAAAGACATCACCAGGAT






4
TGFBR1_NM_004612
TGTATTACTTGTTTAATAAT
324
TTTTTATAGTTGTGTTGTATTACTT
344



_human_3611


GTTTAATAATAATCTCTAAT






5
TGFBR1_NM_004612
TTATTGAATCAAAGATTGAG
325
TGCTGAAGATATTTTTTATTGAAT
345



_human_3882


CAAAGATTGAGTTACAATTAT






6
TGFBR1_NM_004612
TTCTTACCTAAGTGGATAAA
326
GTTACAATTATACTTTTCTTACCTA
346



_human_3916


AGTGGATAAAATGTACTTTT






7
TGFBR1_NM_004612
ATGTTGCTCAGTTACTCAAA
327
TAAAGTATGGGTATTATGTTGCTC
347



_human_5559


AGTTACTCAAATGGTACTGTA






8
TGFBR1_NM_004612
ATATTTGTACCCCAAATAAC
328
GGTACTGTATTGTTTATATTTGTA
348



_human_5595


CCCCAAATAACATCGTCTGTA






9
TGFBR1_NM_004612
TGTAAATGTAAACTTCTAAA
329
TTATGCAATCTTGTTTGTAAATGT
349



_human_5222


AAACTTCTAAAAATATGGTTA






10
TGFBR1_NM_004612
AGAATGAGTGACATATTACA
330
AACCAAAGTAATTTTAGAATGAG
350



_human_3435


TGACATATTACATAGGAATTTA






11
TGFBR1_NM_004612
CCATTTCTAAGCCTACCAGA
331
GTTGTTGTTTTTGGGCCATTTCTA
351



_human_3709


AGCCTACCAGATCTGCTTTAT






12
TGFBR1_NM_004612
ATATTCCAAAAGAATGTAAA
332
ATTGTATTTGTAGTAATATTCCAA
352



_human_5826


AAGAATGTAAATAGGAAATAG






13
TGFBR1_NM_004612
TTACTTCCAATGCTATGAAG
333
TATAATAACTGGTTTTTACTTCCA
353



_human_3146


ATGCTATGAAGTCTCTGCAGG






14
TGFBR1_NM_004612
TCTTTATCTGTTCAAAGACT
334
TGTAAGCCATTTTTTTCTTTATCTG
354



_human_2675


TTCAAAGACTTATTTTTTAA






15
TGFBR1_NM_004612
GTCTAAGTATACTTTTAAAA
335
CATTTTAATTGTGTTGTCTAAGTA
355



_human_2529


TACTTTTAAAAAATCAAGTGG






16
TGFBR1_NM_004612
ATCTTTGGACATGTACTGCA
336
GAGATACTAAGGATTATCTTTGG
356



_human_5079


ACATGTACTGCAGCTTCTTGTC






17
TGFBR1_NM_004612
GTGTTGTATTACTTGTTTAA
337
TTTGTTTTTATAGTTGTGTTGTATT
357



_human_3607


ACTTGTTTAATAATAATCTC






18
TGFBR1_NM_004612
TGCTGTAGATGGCAACTAGA
338
CATGCCATATGTAGTTGCTGTAGA
358



_human_5994


TGGCAACTAGAACCTTTGAGT






19
TGFBR1_NM_004612
TCTTTCACTTATTCAGAACA
339
GTATACTATTATTGTTCTTTCACTT
359



_human_2177


ATTCAGAACATTACATGCCT






20
TGFBR1_NM_004612
GTATTTGTAGTAATATTCCA
340
TTTAAATTGTATATTGTATTTGTA
360



_human_5814


GTAATATTCCAAAAGAATGTA











Accession: NM_032782


HUGO gene symbol: HAVCR2












1
HAVCR2_NM_032782
CTCATAGCAAAGAGAAGATA
361
TTTTCAAATGGTATTCTCATAGCA
381



_human_937


AAGAGAAGATACAGAATTTAA






2
HAVCR2_NM_032782
GTATTCTCATAGCAAAGAGA
362
TTTAATTTTCAAATGGTATTCTCAT
382



_human_932


AGCAAAGAGAAGATACAGAA






3
HAVCR2_NM_032782
TTGCTTGTTGTGTGCTTGAA
363
TGTATTGGCCAAGTTTTGCTTGTT
383



_human_2126


GTGTGCTTGAAAGAAAATATC






4
HAVCR2_NM_032782
TATTCGTGGACCAAACTGAA
364
TCTGACCAACTTCTGTATTCGTGG
384



_human_2171


ACCAAACTGAAGCTATATTTT






5
HAVCR2_NM_032782
ATTGTGGAGTAGACAGTTGG
365
GCTACTGCTCATGTGATTGTGGA
385



_human_158


GTAGACAGTTGGAAGAAGTACC






6
HAVCR2_NM_032782
GTTGTGTGCTTGAAAGAAAA
366
GGCCAAGTTTTGCTTGTTGTGTGC
386



_human_2132


TTGAAAGAAAATATCTCTGAC






7
HAVCR2_NM_032782
TGTTGTGTGCTTGAAAGAAA
367
TGGCCAAGTTTTGCTTGTTGTGTG
387



_human_2131


CTTGAAAGAAAATATCTCTGA






8
HAVCR2_NM_032782
CCCTAAACTTAAATTTCAAG
368
TTGACAGAGAGTGGTCCCTAAAC
388



_human_2313


TTAAATTTCAAGACGGTATAGG






9
HAVCR2_NM_032782
ACATCCAGATACTGGCTAAA
369
GATGTGAATTATTGGACATCCAG
389



_human_489


ATACTGGCTAAATGGGGATTTC






10
HAVCR2_NM_032782
CATTTTCAGAAGATAATGAC
370
GGAGCAGAGTTTTCCCATTTTCAG
390



_human_1272


AAGATAATGACTCACATGGGA






11
HAVCR2_NM_032782
CACATTGGCCAATGAGTTAC
371
TCTAACACAAATATCCACATTGGC
391



_human_785


CAATGAGTTACGGGACTCTAG






12
HAVCR2_NM_032782
TGCTTGTTGTGTGCTTGAAA
372
GTATTGGCCAAGTTTTGCTTGTTG
392



_human_2127


TGTGCTTGAAAGAAAATATCT






13
HAVCR2_NM_032782
GAGTAGACAGTTGGAAGAAG
373
GCTCATGTGATTGTGGAGTAGAC
393



_human_164


AGTTGGAAGAAGTACCCAGTCC






14
HAVCR2_NM_032782
TTGTTGTGTGCTTGAAAGAA
374
TTGGCCAAGTTTTGCTTGTTGTGT
394



_human_2130


GCTTGAAAGAAAATATCTCTG






15
HAVCR2_NM_032782
CGGCGCTTTAATTTTCAAAT
375
TCTGGCTCTTATCTTCGGCGCTTT
395



_human_911


AATTTTCAAATGGTATTCTCA






16
HAVCR2_NM_032782
TTTGGCACAGAAAGTCTAAA
376
TGAAAGCATAACTTTTTTGGCACA
396



_human_1543


GAAAGTCTAAAGGGGCCACTG






17
HAVCR2_NM_032782
GATCTGTCTTGCTTATTGTT
377
AGACGGTATAGGCTTGATCTGTC
397



_human_2346


TTGCTTATTGTTGCCCCCTGCG






18
HAVCR2_NM_032782
GGTGTGTATTGGCCAAGTTT
378
GAAGTGCATTTGATTGGTGTGTA
398



_human_2107


TTGGCCAAGTTTTGCTTGTTGT






19
HAVCR2_NM_032782
CCCATTTTCAGAAGATAATG
379
ATGGAGCAGAGTTTTCCCATTTTC
399



_human_1270


AGAAGATAATGACTCACATGG






20
HAVCR2_NM_032782
TGGCACAGAAAGTCTAAAGG
380
AAAGCATAACTTTTTTGGCACAGA
400



_human_1545


AAGTCTAAAGGGGCCACTGAT











Accession: NM_002987


HUGO gene symbol: CCL17












1
CCL17_NM_002987
AAATACCTGCAAAGCCTTGA
401
GTGAAGAATGCAGTTAAATACCTGC
421



_human_385


AAAGCCTTGAGAGGTCTTGA






2
CCL17_NM_002987
TTTTGTAACTGTGCAGGGCA
402
CAGGGATGCCATCGTTTTTGTAACT
422



_human_318


GTGCAGGGCAGGGCCATCTG






3
CCL17_NM_002987
AGAGTGAAGAATGCAGTTAA
403
GACCCCAACAACAAGAGAGTGAAG
423



_human_367


AATGCAGTTAAATACCTGCAA






4
CCL17_NM_002987
AAGCCTTGAGAGGTCTTGAA
404
AGTTAAATACCTGCAAAGCCTTGAG
424



_human_396


AGGTCTTGAAGCCTCCTCAC






5
CCL17_NM_002987
AATACCTGCAAAGCCTTGAG
405
TGAAGAATGCAGTTAAATACCTGCA
425



_human_386


AAGCCTTGAGAGGTCTTGAA






6
CCL17_NM_002987
TGCAGTTAAATACCTGCAAA
406
CAAGAGAGTGAAGAATGCAGTTAA
426



_human_378


ATACCTGCAAAGCCTTGAGAG






7
CCL17_NM_002987
CAACAACAAGAGAGTGAAGA
407
CATCTGTTCGGACCCCAACAACAAG
427



_human_357


AGAGTGAAGAATGCAGTTAA






8
CCL17_NM_002987
CTGAATTCAAAACCAGGGTG
408
CTGCTGATGGGAGAGCTGAATTCAA
428



_human_55


AACCAGGGTGTCTCCCTGAG






9
CCL17_NM_002987
ATACCTGCAAAGCCTTGAGA
409
GAAGAATGCAGTTAAATACCTGCAA
429



_human_387


AGCCTTGAGAGGTCTTGAAG






10
CCL17_NM_002987
TTCCCCTTAGAAAGCTGAAG
410
ACTTCAAGGGAGCCATTCCCCTTAG
430



_human_254


AAAGCTGAAGACGTGGTACC






11
CCL17_NM_002987
GGAGAGCTGAATTCAAAACC
411
CACCGCCTGCTGATGGGAGAGCTG
431



_human_49


AATTCAAAACCAGGGTGTCTC






12
CCL17_NM_002987
GCAGTTAAATACCTGCAAAG
412
AAGAGAGTGAAGAATGCAGTTAAA
432



_human_379


TACCTGCAAAGCCTTGAGAGG






13
CCL17_NM_002987
GAAGAATGCAGTTAAATACC
413
CAACAACAAGAGAGTGAAGAATGC
433



_human_372


AGTTAAATACCTGCAAAGCCT






14
CCL17_NM_002987
ATGCAGTTAAATACCTGCAA
414
ACAAGAGAGTGAAGAATGCAGTTA
434



_human_377


AATACCTGCAAAGCCTTGAGA






15
CCL17_NM_002987
CATTCCCCTTAGAAAGCTGA
415
GTACTTCAAGGGAGCCATTCCCCTT
435



_human_252


AGAAAGCTGAAGACGTGGTA






16
CCL17_NM_002987
AGAGCTGAATTCAAAACCAG
416
CCGCCTGCTGATGGGAGAGCTGAAT
436



_human_51


TCAAAACCAGGGTGTCTCCC






17
CCL17_NM_002987
GATGGGAGAGCTGAATTCAA
417
GTGTCACCGCCTGCTGATGGGAGA
437



_human_45


GCTGAATTCAAAACCAGGGTG






18
CCL17_NM_002987
TGATGGGAGAGCTGAATTCA
418
AGTGTCACCGCCTGCTGATGGGAGA
438



_human_44


GCTGAATTCAAAACCAGGGT






19
CCL17_NM_002987
ACTTTGAGCTCACAGTGTCA
419
GCTCAGAGAGAAGTGACTTTGAGCT
439



_human_16


CACAGTGTCACCGCCTGCTG






20
CCL17_NM_002987
GAGTGAAGAATGCAGTTAAA
420
ACCCCAACAACAAGAGAGTGAAGA
440



_human_368


ATGCAGTTAAATACCTGCAAA











Accession: NM_002990


HUGO gene symbol: CCL22












1
CCL22_NM_002990
GTATTTGAAAACAGAGTAAA
441
GCTGGAGTTATATATGTATTTGAA
461



_human_2083


AACAGAGTAAATACTTAAGAG






2
CCL22_NM_002990
CAATAAGCTGAGCCAATGAA
442
GGTGAAGATGATTCTCAATAAGC
462



_human_298


TGAGCCAATGAAGAGCCTACTC






3
CCL22_NM_002990
TACTTAAGAGGCCAAATAGA
443
TGAAAACAGAGTAAATACTTAAG
463



_human_2103


AGGCCAAATAGATGAATGGAAG






4
CCL22_NM_002990
ATGTATTTGAAAACAGAGTA
444
AAGCTGGAGTTATATATGTATTTG
464



_human_2081


AAAACAGAGTAAATACTTAAG






5
CCL22_NM_002990
TTCATACAGCAAGTATGGGA
445
TTGAGAAATATTCTTTTCATACAG
465



_human_2496


CAAGTATGGGACAGCAGTGTC






6
CCL22_NM_002990
CTGCAGACAAAATCAATAAA
446
GAGCCCAGAAAGTGGCTGCAGAC
466



_human_1052


AAAATCAATAAAACTAATGTCC






7
CCL22_NM_002990
TGCAGACAAAATCAATAAAA
447
AGCCCAGAAAGTGGCTGCAGACA
467



_human_1053


AAATCAATAAAACTAATGTCCC






8
CCL22_NM_002990
GGCCAAATAGATGAATGGAA
448
AGTAAATACTTAAGAGGCCAAAT
468



_human_2112


AGATGAATGGAAGAATTTTAGG






9
CCL22_NM_002990
AATAAGCTGAGCCAATGAAG
449
GTGAAGATGATTCTCAATAAGCT
469



_human_299


GAGCCAATGAAGAGCCTACTCT






10
CCL22_NM_002990
AAGAGGCCAAATAGATGAAT
450
ACAGAGTAAATACTTAAGAGGCC
470



_human_2108


AAATAGATGAATGGAAGAATTT






11
CCL22_NM_002990
AAATAGATGAATGGAAGAAT
451
AATACTTAAGAGGCCAAATAGAT
471



_human_2116


GAATGGAAGAATTTTAGGAACT






12
CCL22_NM_002990
AAACAGAGTAAATACTTAAG
452
TATATATGTATTTGAAAACAGAGT
472



_human_2091


AAATACTTAAGAGGCCAAATA






13
CCL22_NM_002990
AGCTGGAGTTATATATGTAT
453
TGACTTGGTATTATAAGCTGGAG
473



_human_2067


TTATATATGTATTTGAAAACAG






14
CCL22_NM_002990
ACCTTTGACTTGGTATTATA
454
ATGGTGTGAAAGACTACCTTTGA
474



_human_2047


CTTGGTATTATAAGCTGGAGTT






15
CCL22_NM_002990
AACCTTCAGGGATAAGGAGA
455
TGGCGTGGTGTTGCTAACCTTCA
475



_human_238


GGGATAAGGAGATCTGTGCCGA






16
CCL22_NM_002990
GTGAAAGACTACCTTTGACT
456
AATTCATGCTATGGTGTGAAAGA
476



_human_2037


CTACCTTTGACTTGGTATTATA






17
CCL22_NM_002990
CTATGGTGTGAAAGACTACC
457
ACAATCAAATTCATGCTATGGTGT
477



_human_2030


GAAAGACTACCTTTGACTTGG






18
CCL22_NM_002990
CACTACGGCTGGCTAATTTT
458
ATTACAGGTGTGTGCCACTACGG
478



_human_1682


CTGGCTAATTTTTGTATTTTTA






19
CCL22_NM_002990
GGAGTTATATATGTATTTGA
459
TTGGTATTATAAGCTGGAGTTATA
479



_human_2071


TATGTATTTGAAAACAGAGTA






20
CCL22_NM_002990
ATATCAATACAGAGACTCAA
460
CCAAAAGGCAGTTACATATCAAT
480



_human_1111


ACAGAGACTCAAGGTCACTAGA











Accession: NM_005618


HUGO gene symbol: DLL1












1
DLL1_NM_005618
CTGTTTTGTTAATGAAGAAA
481
TATTTGAGTTTTTTACTGTTTTGTTA
501



_human_3246


ATGAAGAAATTCCTTTTTA






2
DLL1_NM_005618
TTGTATATAAATGTATTTAT
482
TGTGACTATATTTTTTTGTATATAAA
502



_human_3193


TGTATTTATGGAATATTGT






3
DLL1_NM_005618
TGTTTTGTTAATGAAGAAAT
483
ATTTGAGTTTTTTACTGTTTTGTTAA
503



_human_3247


TGAAGAAATTCCTTTTTAA






4
DLL1_NM_005618
AATTTTGGTAAATATGTACA
484
GTTTTTTATAATTTAAATTTTGGTAA
504



_human_3141


ATATGTACAAAGGCACTTC






5
DLL1_NM_005618
AAATTTTATGAATGACAAAA
485
ATATTTTTCCAAAATAAATTTTATGA
505



_human_3293


ATGACAAAAAAAAAAAAAA






6
DLL1_NM_005618
TTTATGGAATATTGTGCAAA
486
TTGTATATAAATGTATTTATGGAATA
506



_human_3208


TTGTGCAAATGTTATTTGA






7
DLL1_NM_005618
TTACTGTTTTGTTAATGAAG
487
TGTTATTTGAGTTTTTTACTGTTTTGT
507



_human_3243


TAATGAAGAAATTCCTTT






8
DLL1_NM_005618
TTCTTGAATTAGAAACACAA
488
TTATGAGCCAGTCTTTTCTTGAATTA
508



_human_2977


GAAACACAAACACTGCCTT






9
DLL1_NM_005618
CAGTTGCTCTTAAGAGAATA
489
CCGTTGCACTATGGACAGTTGCTCTT
509



_human_2874


AAGAGAATATATATTTAAA






10
DLL1_NM_005618
CAACTTCAAAAGACACCAAG
490
CGGACTCGGGCTGTTCAACTTCAAA
510



_human_2560


AGACACCAAGTACCAGTCGG






11
DLL1_NM_005618
TCCAAAATAAATTTTATGAA
491
TTTTTAAAATATTTTTCCAAAATAAA
511



_human_3285


TTTTATGAATGACAAAAAA






12
DLL1_NM_005618
GAACTGAATTACGCATAAGA
492
TATATTTAAATGGGTGAACTGAATT
512



_human_2909


ACGCATAAGAAGCATGCACT






13
DLL1_NM_005618
GGATTTTGTGACAAACCAGG
493
TGTGATGAGCAGCATGGATTTTGTG
513



_human_1173


ACAAACCAGGGGAATGCAAG






14
DLL1_NM_005618
TACTGTTTTGTTAATGAAGA
494
GTTATTTGAGTTTTTTACTGTTTTGTT
514



_human_3244


AATGAAGAAATTCCTTTT






15
DLL1_NM_005618
TTTGGTAAATATGTACAAAG
495
TTTTATAATTTAAATTTTGGTAAATA
515



_human_3144


TGTACAAAGGCACTTCGGG






16
DLL1_NM_005618
CCAAAATAAATTTTATGAAT
496
TTTTAAAATATTTTTCCAAAATAAAT
516



_human_3286


TTTATGAATGACAAAAAAA






17
DLL1_NM_005618
ATAATTTAAATTTTGGTAAA
497
TGATGTTCGTTTTTTATAATTTAAAT
517



_human_3133


TTTGGTAAATATGTACAAA






18
DLL1_NM_005618
AAATGGGTGAACTGAATTAC
498
AGAGAATATATATTTAAATGGGTGA
518



_human_2901


ACTGAATTACGCATAAGAAG






19
DLL1_NM_005618
TTCGGGTCTATGTGACTATA
499
TATGTACAAAGGCACTTCGGGTCTA
519



_human_3168


TGTGACTATATTTTTTTGTA






20
DLL1_NM_005618
ACTGTTTTGTTAATGAAGAA
500
TTATTTGAGTTTTTTACTGTTTTGTTA
520



_human_3245


ATGAAGAAATTCCTTTTT











Accession: NM_000639


HUGO gene symbol: FASLG












1
FASLG_NM_000639
TAGCTCCTCAACTCACCTAA
521
GGTTCAAAATGTCTGTAGCTCCTC
541



_human_1154


AACTCACCTAATGTTTATGAG






2
FASLG_NM_000639
ATGTTTTCCTATAATATAAT
522
TGTCAGCTACTAATGATGTTTTCC
542



_human_1771


TATAATATAATAAATATTTAT






3
FASLG_NM_000639
TTTTCCTATAATATAATAAA
523
CAGCTACTAATGATGTTTTCCTAT
543



_human_1774


AATATAATAAATATTTATGTA






4
FASLG_NM_000639
TTCCTATAATATAATAAATA
524
GCTACTAATGATGTTTTCCTATAA
544



_human_1776


TATAATAAATATTTATGTAGA






5
FASLG_NM_000639
TGCATTTGAGGTCAAGTAAG
525
GAGGGTCTTCTTACATGCATTTGA
545



_human_1086


GGTCAAGTAAGAAGACATGAA






6
FASLG_NM_000639
ATTGATTGTCAGCTACTAAT
526
TAGTGCTTAAAAATCATTGATTGT
546



_human_1750


CAGCTACTAATGATGTTTTCC






7
FASLG_NM_000639
AAATGAAAACATGTAATAAA
527
ATGTGCATTTTTGTGAAATGAAAA
547



_human_1820


CATGTAATAAAAAGTATATGT






8
FASLG_NM_000639
ATTGTGAAGTACATATTAGG
528
AGAGAGAATGTAGATATTGTGAA
548



_human_1659


GTACATATTAGGAAAATATGGG






9
FASLG_NM_000639
GCTTTCTGGAGTGAAGTATA
529
CTATGGAATTGTCCTGCTTTCTGG
549



_human_667


AGTGAAGTATAAGAAGGGTGG






10
FASLG_NM_000639
CATTTGGTCAAGATTTTGAA
530
GGAAAATATGGGTTGCATTTGGT
550



_human_1692


CAAGATTTTGAATGCTTCCTGA






11
FASLG_NM_000639
GGCTTATATAAGCTCTAAGA
531
TCTCAGACGTTTTTCGGCTTATAT
551



_human_986


AAGCTCTAAGAGAAGCACTTT






12
FASLG_NM_000639
ACCAGTGCTGATCATTTATA
532
GCAGTGTTCAATCTTACCAGTGCT
552



_human_911


GATCATTTATATGTCAACGTA






13
FASLG_NM_000639
CCATTTAACAGGCAAGTCCA
533
GCTGAGGAAAGTGGCCCATTTAA
553



_human_598


CAGGCAAGTCCAACTCAAGGTC






14
FASLG_NM_000639
AAGTACATATTAGGAAAATA
534
AATGTAGATATTGTGAAGTACAT
554



_human_1665


ATTAGGAAAATATGGGTTGCAT






15
FASLG_NM_000639
TGTGTGTGTGTATGACTAAA
535
GTGTGTGTGTGTGTGTGTGTGTG
555



_human_1625


TGTATGACTAAAGAGAGAATGT






16
FASLG_NM_000639
AAGAGGGAGAAGCATGAAAA
536
CTGGGCTGCCATGTGAAGAGGGA
556



_human_1238


GAAGCATGAAAAAGCAGCTACC






17
FASLG_NM_000639
GTGTATGACTAAAGAGAGAA
537
TGTGTGTGTGTGTGTGTGTATGA
557



_human_1632


CTAAAGAGAGAATGTAGATATT






18
FASLG_NM_000639
GTATTTCCAGTGCAATTGTA
538
CCTAACACAGCATGTGTATTTCCA
558



_human_1581


GTGCAATTGTAGGGGTGTGTG






19
FASLG_NM_000639
CAACTCTAATAGTGCTTAAA
539
ATGCTTCCTGACAATCAACTCTAA
559



_human_1726


TAGTGCTTAAAAATCATTGAT






20
FASLG_NM_000639
GTGTGTGTGTATGACTAAAG
540
TGTGTGTGTGTGTGTGTGTGTGT
560



human_1626


GTATGACTAAAGAGAGAATGTA











Accession: NM_001267706


HUGO gene symbol: CD274












1
CD274_NM_001267706
ACCTGCATTAATTTAATAAA
561
ATTGTCACTTTTTGTACCTGCATTA
581



_human_3222


ATTTAATAAAATATTCTTAT






2
CD274_NM_001267706
AACTTGCCCAAACCAGTAAA
562
GCAAACAGATTAAGTAACTTGCC
582



_human_1538


CAAACCAGTAAATAGCAGACCT






3
CD274_NM_001267706
ATTTGCTCACATCTAGTAAA
563
ACTTGCTGCTTAATGATTTGCTCA
583



_human_1218


CATCTAGTAAAACATGGAGTA






4
CD274_NM_001267706
CCTTTGCCATATAATCTAAT
564
TTTATTCCTGATTTGCCTTTGCCAT
584



_human_1998


ATAATCTAATGCTTGTTTAT






5
CD274_NM_001267706
ATATAGCAGATGGAATGAAT
565
ATTTTAGTGTTTCTTATATAGCAG
585



_human_2346


ATGGAATGAATTTGAAGTTCC






6
CD274_NM_001267706
GCCTTTGCCATATAATCTAA
566
ATTTATTCCTGATTTGCCTTTGCCA
586



_human_1997


TATAATCTAATGCTTGTTTA






7
CD274_NM_001267706
GATTTGCCTTTGCCATATAA
567
ATTATATTTATTCCTGATTTGCCTT
587



_human_1992


TGCCATATAATCTAATGCTT






8
CD274_NM_001267706
AATTTTCATTTACAAAGAGA
568
CTTAATAATCAGAGTAATTTTCAT
588



_human_1905


TTACAAAGAGAGGTCGGTACT






9
CD274_NM_001267706
AGTGTTTCTTATATAGCAGA
569
ATTTTTATTTATTTTAGTGTTTCTT
589



_human_2336


ATATAGCAGATGGAATGAAT






10
CD274_NM_001267706
GCTTTCTGTCAAGTATAAAC
570
GAACTTTTGTTTTCTGCTTTCTGTC
590



_human_2656


AAGTATAAACTTCACTTTGA






11
CD274_NM_001267706
CATTTGGAAATGTATGTTAA
571
TCTAAAGATAGTCTACATTTGGAA
591



_human_2235


ATGTATGTTAAAAGCACGTAT






12
CD274_NM_001267706
TTATTTTAGTGTTTCTTATA
572
CTTTGCTATTTTTATTTATTTTAGT
592



_human_2329


GTTTCTTATATAGCAGATGG






13
CD274_NM_001267706
GTGGTAGCCTACACACATAA
573
CAGCTTTACAATTATGTGGTAGCC 593




_human_1433


TACACACATAATCTCATTTCA






14
CD274_NM_001267706
ATGAGGAGATTAACAAGAAA
574
GGAGCTCATAGTATAATGAGGAG
594



_human_1745


ATTAACAAGAAAATGTATTATT






15
CD274_NM_001267706
CAATTTTGTCGCCAAACTAA
575
TTGTAGTAGATGTTACAATTTTGT
595



_human_1183


CGCCAAACTAAACTTGCTGCT






16
CD274_NM_001267706
TATATAGCAGATGGAATGAA
576
TATTTTAGTGTTTCTTATATAGCA
596



_human_2345


GATGGAATGAATTTGAAGTTC






17
CD274_NM_001267706
AAATGCCACTAAATTTTAAA
577
CTGTCTTTTCTATTTAAATGCCACT
597



_human_2069


AAATTTTAAATTCATACCTT






18
CD274_NM_001267706
TCTTTCCCATAGCTTTTCAT
578
TTTGTTTCTAAGTTATCTTTCCCAT
598



_human_2414


AGCTTTTCATTATCTTTCAT






19
CD274_NM_001267706
TATATTCATGACCTACTGGC
579
GATATTTGCTGTCTTTATATTCAT
599



_human_129


GACCTACTGGCATTTGCTGAA






20
CD274_NM_001267706
GTCCAGTGTCATAGCATAAG
580
TATTATTACAATTTAGTCCAGTGT
600



_human_1783


CATAGCATAAGGATGATGCGA











Accession: NM_002164


HUGO gene symbol: IDO1












1
IDO1_NM_002164
ATTCTGTCATAATAAATAAA
601
AAAAAAAAAAGATATATTCTGTCA
621



_human_1896


TAATAAATAAAAATGCATAAG






2
IDO1_NM_002164
TATCTTATCATTGGAATAAA
602
AAGTTTTGTAATCTGTATCTTATCA
622



_human_1532


TTGGAATAAAATGACATTCA






3
IDO1_NM_002164
GTGATGGAGACTGCAGTAAA
603
TTTTGTTCTCATTTCGTGATGGAGA
623



_human_578


CTGCAGTAAAGGATTCTTCC






4
IDO1_NM_002164
TTCTGTCATAATAAATAAAA
604
AAAAAAAAAGATATATTCTGTCAT
624



_human_1897


AATAAATAAAAATGCATAAGA






5
IDO1_NM_002164
CTTGTAGGAAAACAACAAAA
605
AATACCTGTGCATTTCTTGTAGGAA
625



_human_1473


AACAACAAAAGGTAATTATG






6
IDO1_NM_002164
ATAAAATGACATTCAATAAA
606
TATCTTATCATTGGAATAAAATGAC
626



_human_1547


ATTCAATAAATAAAAATGCA






7
IDO1_NM_002164
CGTAAGGTCTTGCCAAGAAA
607
GGTCATGGAGATGTCCGTAAGGTC
627



_human_412


TTGCCAAGAAATATTGCTGTT






8
IDO1_NM_002164
TCTTGTAGGAAAACAACAAA
608
AAATACCTGTGCATTTCTTGTAGGA
628



_human_1472


AAACAACAAAAGGTAATTAT






9
IDO1_NM_002164
AACTGGAGGCACTGATTTAA
609
ACTGGAAGCCAAAGGAACTGGAG
629



_human_1248


GCACTGATTTAATGAATTTCCT






10
IDO1_NM_002164
CAATACAAAAGACCTCAAAA
610
GTTTTACCAATAATGCAATACAAAA
630



_human_1440


GACCTCAAAATACCTGTGCA






11
IDO1_NM_002164
TGCTTCTGCAATCAAAGTAA
611
GGTGGAAATAGCAGCTGCTTCTGC
631



_human_636


AATCAAAGTAATTCCTACTGT






12
IDO1_NM_002164
AATGACATTCAATAAATAAA
612
TTATCATTGGAATAAAATGACATTC
632



_human_1551


AATAAATAAAAATGCATAAG






13
IDO1_NM_002164
ATCATTGGAATAAAATGACA
613
TGTAATCTGTATCTTATCATTGGAA
633



_human_1538


TAAAATGACATTCAATAAAT






14
IDO1_NM_002164
ACCAATAATGCAATACAAAA
614
ACTATGCAATGTTTTACCAATAATG
634



_human_1430


CAATACAAAAGACCTCAAAA






15
IDO1_NM_002164
ATCTGTATCTTATCATTGGA
615
ACTAGAAGTTTTGTAATCTGTATCT
635



_human_1527


TATCATTGGAATAAAATGAC






16
IDO1_NM_002164
ATCTTATCATTGGAATAAAA
616
AGTTTTGTAATCTGTATCTTATCAT
636



_human_1533


TGGAATAAAATGACATTCAA






17
IDO1_NM_002164
CAGCTGCTTCTGCAATCAAA
617
TATTGGTGGAAATAGCAGCTGCTT
637



_human_632


CTGCAATCAAAGTAATTCCTA






18
IDO1_NM_002164
GCAATACAAAAGACCTCAAA
618
TGTTTTACCAATAATGCAATACAAA
638



_human_1439


AGACCTCAAAATACCTGTGC






19
IDO1_NM_002164
TCCTACTGTATTCAAGGCAA
619
TGCAATCAAAGTAATTCCTACTGTA
639



_human_657


TTCAAGGCAATGCAAATGCA






20
IDO1_NM_002164
CAGAGCCACAAACTAATACT
620
CATTACCCATTGTAACAGAGCCAC
640



_human_1398


AAACTAATACTATGCAATGTT











Accession: NM_001558


HUGO gene symbol: IL10RA












1
IL10RA_NM_001558_
TTGTTCATTTATTTATTGGA
641
CTTTATTTATTTATTTTGTTCATTT
661



human_3364


ATTTATTGGAGAGGCAGCAT






2
IL10RA_NM_001558_
TTATTCCAATAAATTGTCAA
642
AGTGATACATGTTTTTTATTCCAA
662



human_3626


TAAATTGTCAAGACCACAGGA






3
IL10RA_NM_001558_
TATTTTCTGGACACTCAAAC
643
AGATCTTAAGGTATATATTTTCTG
663



human_2395


GACACTCAAACACATCATAAT






4
IL10RA_NM_001558_
TTTATTGGAGAGGCAGCATT
644
TATTTTGTTCATTTATTTATTGGAG
664



human_3375


AGGCAGCATTGCACAGTGAA






5
IL10RA_NM_001558_
ACCTTGGAGAAGTCACTTAT
645
GTTTCCAGTGGTATGACCTTGGA
665



human_3469


GAAGTCACTTATCCTCTTGGAG






6
IL10RA_NM_001558_
TTATTTATTTATTTTGTTCA
646
GTTCCCTTGAAAGCTTTATTTATTT
666



human_3351


ATTTTGTTCATTTATTTATT






7
IL10RA_NM_001558_
CTCTTTCCTGTATCATAAAG
647
TCTCCCTCCTAGGAACTCTTTCCT
667



human_2108


GTATCATAAAGGATTATTTGC






8
IL10RA_NM_001558_
CTGAGGAAATGGGTATGAAT
648
GGATGTGAGGTTCTGCTGAGGAA
668



human_3563


ATGGGTATGAATGTGCCTTGAA






9
IL10RA_NM_001558_
GAATGTGCCTTGAACACAAA
649
TGAGGAAATGGGTATGAATGTGC
669



human_3579


CTTGAACACAAAGCTCTGTCAA






10
IL10RA_NM_001558_
GGACACTCAAACACATCATA
650
AGGTATATATTTTCTGGACACTCA
670



human_2403


AACACATCATAATGGATTCAC






11
IL10RA_NM_001558_
CTGTATCATAAAGGATTATT
651
CCTAGGAACTCTTTCCTGTATCAT
671



human_2115


AAAGGATTATTTGCTCAGGGG






12
IL10RA_NM_001558_
TCACTTCCGAGAGTATGAGA
652
TGAAAGCATCTTCAGTCACTTCCG
672



human_563


AGAGTATGAGATTGCCATTCG






13
IL10RA_NM_001558_
TCTCTGGAGCATTCTGAAAA
653
TCTCAGCCCTGCCTTTCTCTGGAG673




human_3197


CATTCTGAAAACAGATATTCT






14
IL10RA_NM_001558_
TTATGCCAGAGGCTAACAGA
654
AAGCTGGCTTGTTTCTTATGCCAG
674



human_2987


AGGCTAACAGATCCAATGGGA






15
IL10RA_NM_001558_
AGTGGCATTGACTTAGTTCA
655
AGGGGCCAGGATGACAGTGGCA
675



human_1278


TTGACTTAGTTCAAAACTCTGAG






16
IL10RA_NM_001558_
TTTCTGGACACTCAAACACA
656
TCTTAAGGTATATATTTTCTGGAC
676



human_2398


ACTCAAACACATCATAATGGA






17
IL10RA_NM_001558_
GCATTGCACAGTGAAAGAAT
657
TTTATTGGAGAGGCAGCATTGCA
677



human_3390


CAGTGAAAGAATTCTGGATATC






18
IL10RA_NM_001558_
GACCTTGGAGAAGTCACTTA
658
TGTTTCCAGTGGTATGACCTTGGA
678



human_3468


GAAGTCACTTATCCTCTTGGA






19
IL10RA_NM_001558_
TCACGTTCACACACAAGAAA
659
AGGTGCCGGGAAACTTCACGTTC
679



human_610


ACACACAAGAAAGTAAAACATG






20
IL10RA_NM_001558_
ACTTTGCTGTTTCCAGTGGT
660
GAAATTCTAGCTCTGACTTTGCTG
680



human_3446


TTTCCAGTGGTATGACCTTGG











Accession: NM_000214


HUGO gene symbol: JAG1












1
JAG1_NM_000214
TATTTGATTTATTAACTTAA
681
ATTAATCACTGTGTATATTTGATTT
701



_human_4799


ATTAACTTAATAATCAAGAG






2
JAG1_NM_000214
GAAAAGTAATATTTATTAAA
682
TTGGCAATAAATTTTGAAAAGTAA
702



_human_5658


TATTTATTAAATTTTTTTGTA






3
JAG1_NM_000214
ACTTTGTATAGTTATGTAAA
683
AATGTCAAAAGTAGAACTTTGTAT
703



_human_4752


AGTTATGTAAATAATTCTTTT






4
JAG1_NM_000214
GAATACTTGAACCATAAAAT
684
TCTAATAAGCTAGTTGAATACTTGA
704



_human_5418


ACCATAAAATGTCCAGTAAG






5
JAG1_NM_000214
TCTTGGCAATAAATTTTGAA
685
TCTTTGATGTGTTGTTCTTGGCAAT
705



_human_5641


AAATTTTGAAAAGTAATATT






6
JAG1_NM_000214
TTTCTGCTTTAGACTTGAAA
686
TGTTTGTTTTTTGTTTTTCTGCTTTA
706



_human_5150


GACTTGAAAAGAGACAGGC






7
JAG1_NM_000214
TATATTTATTGACTCTTGAG
687
GATCATAGTTTTATTTATATTTATT
707



_human_4526


GACTCTTGAGTTGTTTTTGT






8
JAG1_NM_000214
TATGATGACGTACAAGTAGT
688
TTTGTATATTGGTTTTATGATGACG
708



_human_4566


TACAAGTAGTTCTGTATTTG






9
JAG1_NM_000214
GTGTTGTTCTTGGCAATAAA
689
AAATGCATCTTTGATGTGTTGTTCT
709



_human_5634


TGGCAATAAATTTTGAAAAG






10
JAG1_NM_000214
CTGATCTAAAAGGGAATAAA
690
CCTTTTTCCATGCAGCTGATCTAAA
710



_human_173


AGGGAATAAAAGGCTGCGCA






11
JAG1_NM_000214
TACGACGTCAGATGTTTAAA
691
GATGGAATTTTTTTGTACGACGTCA
711



_human_5031


GATGTTTAAAACACCTTCTA






12
JAG1_NM_000214
AATAATCAAGAGCCTTAAAA
692
TTGATTTATTAACTTAATAATCAAG
712



_human_4817


AGCCTTAAAACATCATTCCT






13
JAG1_NM_000214
GTATGAAAACATGGAACAGT
693
TTATTAAATTTTTTTGTATGAAAAC
713



_human_5685


ATGGAACAGTGTGGCCTCTT






14
JAG1_NM_000214
TGGTTTTATGATGACGTACA
694
GTTGTTTTTGTATATTGGTTTTATG
714



_human_4560


ATGACGTACAAGTAGTTCTG






15
JAG1_NM_000214
TTCTGCTTTAGACTTGAAAA
695
GTTTGTTTTTTGTTTTTCTGCTTTAG
715



_human_5151


ACTTGAAAAGAGACAGGCA






16
JAG1_NM_000214
CTTGGCAATAAATTTTGAAA
696
CTTTGATGTGTTGTTCTTGGCAATA
716



_human_5642


AATTTTGAAAAGTAATATTT






17
JAG1_NM_000214
TTTAATCTACTGCATTTAGG
697
GATTTGATTTTTTTTTTTAATCTACT
717



_human_5377


GCATTTAGGGAGTATTCTA






18
JAG1_NM_000214
TGTATAGTTATGTAAATAAT
698
TCAAAAGTAGAACTTTGTATAGTTA
718



_human_4756


TGTAAATAATTCTTTTTTAT






19
JAG1_NM_000214
ATTTATATTTATTGACTCTT
699
TTAGATCATAGTTTTATTTATATTTA
719



_human_4523


TTGACTCTTGAGTTGTTTT






20
JAG1_NM_000214
CTTTTCACCATTCGTACATA
700
TGTAAATTCTGATTTCTTTTCACCAT
720



_human_5325


TCGTACATAATACTGAACC











Accession: NM_002226


HUGO gene symbol: JAG2












1
JAG2_NM_002226
CGTTTCTTTAACCTTGTATA
721
AATGTTTATTTTCTACGTTTCTTTAA
741



_human_4266


CCTTGTATAAATTATTCAG






2
JAG2_NM_002226
TAAATGAATGAACGAATAAA
722
GGCAGAACAAATGAATAAATGAAT
742



_human_5800


GAACGAATAAAAATTTTGACC






3
JAG2_NM_002226
TCATTCATTTATTCCTTTGT
723
GGTCAAAATTTTTATTCATTCATTT
743



_human_5450


ATTCCTTTGTTTTGCTTGGT






4
JAG2_NM_002226
GTAAATGTGTACATATTAAA
724
TGAAAGTGCATTTTTGTAAATGTGT
744



_human_5021


ACATATTAAAGGAAGCACTC






5
JAG2_NM_002226
ACCCACGAATACGTATCAAG
725
AGTATAAAATTGCTTACCCACGAAT
745



_human_5398


ACGTATCAAGGTCTTAAGGA






6
JAG2_NM_002226
GTTTTATAAAATAGTATAAA
726
AAACAGCTGAAAACAGTTTTATAA
746



_human_5371


AATAGTATAAAATTGCTTACC






7
JAG2_NM_002226
CAACTGAGTCAAGGAGCAAA
727
TGAGGGGTAGGAGGTCAACTGAG
747



_human_5691


TCAAGGAGCAAAGCCAAGAACC






8
JAG2_NM_002226
ATGTGTACATATTAAAGGAA
728
AGTGCATTTTTGTAAATGTGTACAT
748



_human_5025


ATTAAAGGAAGCACTCTGTA






9
JAG2_NM_002226
TTCTTTAACCTTGTATAAAT
729
GTTTATTTTCTACGTTTCTTTAACCT
749



_human_4269


TGTATAAATTATTCAGTAA






10
JAG2_NM_002226
ATTTTCTACGTTTCTTTAAC
730
AAAAACCAAATGTTTATTTTCTACG
750



_human_4258


TTTCTTTAACCTTGTATAAA






11
JAG2_NM_002226
CAGTTTTATAAAATAGTATA
731
TAAAACAGCTGAAAACAGTTTTAT
751



_human_5369


AAAATAGTATAAAATTGCTTA






12
JAG2_NM_002226
GCACAGGCAGAACAAATGAA
732
GAGTGAGGCTGCCTTGCACAGGCA
752



_human_5780


GAACAAATGAATAAATGAATG






13
JAG2_NM_002226
TCAGGCTGAAAACAATGGAG
733
ATTATTCAGTAACTGTCAGGCTGA
753



_human_4302


AAACAATGGAGTATTCTCGGA






14
JAG2_NM_002226
TAAAATTGCTTACCCACGAA
734
TTTTATAAAATAGTATAAAATTGCT
754



_human_5387


TACCCACGAATACGTATCAA






15
JAG2_NM_002226
GTCAGGCTGAAAACAATGGA
735
AATTATTCAGTAACTGTCAGGCTG
755



_human_4301


AAAACAATGGAGTATTCTCGG






16
JAG2_NM_002226
AAATGTGTACATATTAAAGG
736
AAAGTGCATTTTTGTAAATGTGTAC
756



_human_5023


ATATTAAAGGAAGCACTCTG






17
JAG2_NM_002226
CAGTAACTGTCAGGCTGAAA
737
CTTGTATAAATTATTCAGTAACTGT
757



_human_4293


CAGGCTGAAAACAATGGAGT






18
JAG2_NM_002226
GTATTCTCGGATAGTTGCTA
738
GCTGAAAACAATGGAGTATTCTCG
758



_human_4321


GATAGTTGCTATTTTTGTAAA






19
JAG2_NM_002226
TCTCACACAAATTCACCAAA
739
AGGCGGAGAAGTTCCTCTCACACA
759



_human_3994


AATTCACCAAAGATCCTGGCC






20
JAG2_NM_002226
TTGTTTTGCTTGGTCATTCA
740
CATTCATTTATTCCTTTGTTTTGCTT
760



_human_5466


GGTCATTCAGAGGCAAGGT











Accession: NM_001315


HUGO gene symbol: MAPK14












1
MAPK14_NM_001315
TCATGCGAAAAGAACCTACA
761
ATTTCAGTCCATCATTCATGCGAAAA
781



_human_670


GAACCTACAGAGAACTGCG






2
MAPK14_NM_001315
AAATGTCAGAAGCTTACAGA
762
CTGAACAACATTGTGAAATGTCAGA
782



_human_833


AGCTTACAGATGACCATGTT






3
MAPK14_NM_001315
AAACATATGAAACATGAAAA
763
GAACTGCGGTTACTTAAACATATGA
783



_human_707


AACATGAAAATGTGATTGGT






4
MAPK14_NM_001315
CAGTTCCTTATCTACCAAAT
764
ACAGATGACCATGTTCAGTTCCTTAT
784



_human_863


CTACCAAATTCTCCGAGGT






5
MAPK14_NM_001315
TCCTGGTACAGACCATATTA
765
TGGAAGAACATTGTTTCCTGGTACA
785



_human_1150


GACCATATTAACCAGCTTCA






6
MAPK14_NM_001315
TTCCTTATCTACCAAATTCT
766
GATGACCATGTTCAGTTCCTTATCTA
786



_human_866


CCAAATTCTCCGAGGTCTA






7
MAPK14_NM_001315
TTCCTGGTACAGACCATATT
767
CTGGAAGAACATTGTTTCCTGGTAC
787



_human_1149


AGACCATATTAACCAGCTTC






8
MAPK14_NM_001315
AAGTATATACATTCAGCTGA
768
ATTCTCCGAGGTCTAAAGTATATAC
788



_human_896


ATTCAGCTGACATAATTCAC






9
MAPK14_NM_001315
CATTACAACCAGACAGTTGA
769
ATGCTGAACTGGATGCATTACAACC
789



_human_1076


AGACAGTTGATATTTGGTCA






10
MAPK14_NM_001315
AGGGACCTAAAACCTAGTAA
770
GCTGACATAATTCACAGGGACCTAA
790



_human_926


AACCTAGTAATCTAGCTGTG






11
MAPK14_NM_001315
CTCTGGAGGAATTCAATGAT
771
TTACACCTGCAAGGTCTCTGGAGGA
791



_human_765


ATTCAATGATGTGTATCTGG






12
MAPK14_NM_001315
TAAACATATGAAACATGAAA
772
AGAACTGCGGTTACTTAAACATATG
792



_human_706


AAACATGAAAATGTGATTGG






13
MAPK14_NM_001315
GATCTGAACAACATTGTGAA
773
CATCTCATGGGGGCAGATCTGAACA
793



_human_815


ACATTGTGAAATGTCAGAAG






14
MAPK14_NM_001315
TCAGTTCCTTATCTACCAAA
774
TACAGATGACCATGTTCAGTTCCTTA
794



_human_862


TCTACCAAATTCTCCGAGG






15
MAPK14_NM_001315
ATAATTCACAGGGACCTAAA
775
ATACATTCAGCTGACATAATTCACA
795



_human_917


GGGACCTAAAACCTAGTAAT






16
MAPK14_NM_001315
CGAGGTCTAAAGTATATACA
776
ATCTACCAAATTCTCCGAGGTCTAA
796



_human_887


AGTATATACATTCAGCTGAC






17
MAPK14_NM_001315
GAAATGTCAGAAGCTTACAG
777
TCTGAACAACATTGTGAAATGTCAG
797



_human_832


AAGCTTACAGATGACCATGT






18
MAPK14_NM_001315
AGCTGTTGACTGGAAGAACA
778
GATGCATAATGGCCGAGCTGTTGAC
798



_human_1125


TGGAAGAACATTGTTTCCTG






19
MAPK14_NM_001315
AAATTCTCCGAGGTCTAAAG
779
AGTTCCTTATCTACCAAATTCTCCGA
799



_human_879


GGTCTAAAGTATATACATT






20
MAPK14_NM_001315
AATGTGATTGGTCTGTTGGA
780
CATATGAAACATGAAAATGTGATTG
800



_human_725


GTCTGTTGGACGTTTTTACA











Accession: NM_003745


HUGO gene symbol: SOCS1












1
SOCS1_NM_003745
CTGCTGTGCAGAATCCTATT
801
TCTGGCTTTATTTTTCTGCTGTGCAGAA
821



_human_1141


TCCTATTTTATATTTTT






2
SOCS1_NM_003745
GCTGTGCAGAATCCTATTTT
802
TGGCTTTATTTTTCTGCTGTGCAGAATC
822



_human_1143


CTATTTTATATTTTTTA






3
SOCS1_NM_003745
TTAAAGTCAGTTTAGGTAAT
803
CCTATTTTATATTTTTTAAAGTCAGTTT
823



_human_1170


AGGTAATAAACTTTATT






4
SOCS1_NM_003745
CTGTGCAGAATCCTATTTTA
804
GGCTTTATTTTTCTGCTGTGCAGAATCC
824



_human_1144


TATTTTATATTTTTTAA






5
SOCS1_NM_003745
GTTTACATATACCCAGTATC
805
CTCCTACCTCTTCATGTTTACATATACC
825



_human_1076


CAGTATCTTTGCACAAA






6
SOCS1_NM_003745
ATTTTGTTATTACTTGCCTG
806
CTGGGATGCCGTGTTATTTTGTTATTA
826



_human_837


CTTGCCTGGAACCATGTG






7
SOCS1_NM_003745
TAACTGGGATGCCGTGTTAT
807
CCGTGCACGCAGCATTAACTGGGATG
827



_human_819


CCGTGTTATTTTGTTATTA






8
SOCS1_NM_003745
TGTTATTACTTGCCTGGAAC
808
GATGCCGTGTTATTTTGTTATTACTTGC
828



_human_841


CTGGAACCATGTGGGTA






9
SOCS1_NM_003745
TTTCTGCTGTGCAGAATCCT
809
GTCTCTGGCTTTATTTTTCTGCTGTGCA
829



_human_1138


GAATCCTATTTTATATT






10
SOCS1_NM_003745
CGTGTTATTTTGTTATTACT
810
CATTAACTGGGATGCCGTGTTATTTTG
830



_human_831


TTATTACTTGCCTGGAAC






11
SOCS1_NM_003745
TTTTAAAGTCAGTTTAGGTA
811
ATCCTATTTTATATTTTTTAAAGTCAGT
831



_human_1168


TTAGGTAATAAACTTTA






12
SOCS1_NM_003745
TGCTGTGCAGAATCCTATTT
812
CTGGCTTTATTTTTCTGCTGTGCAGAAT
832



_human_1142


CCTATTTTATATTTTTT






13
SOCS1_NM_003745
GGATGCCGTGTTATTTTGTT
813
ACGCAGCATTAACTGGGATGCCGTGTT
833



_human_825


ATTTTGTTATTACTTGCC






14
SOCS1_NM_003745
TTTAAAGTCAGTTTAGGTAA
814
TCCTATTTTATATTTTTTAAAGTCAGTT
834



_human_1169


TAGGTAATAAACTTTAT






15
SOCS1_NM_003745
TAAAGTCAGTTTAGGTAATA
815
CTATTTTATATTTTTTAAAGTCAGTTTA
835



_human_1171


GGTAATAAACTTTATTA






16
SOCS1_NM_003745
TCTGCTGTGCAGAATCCTAT
816
CTCTGGCTTTATTTTTCTGCTGTGCAGA
836



_human_1140


ATCCTATTTTATATTTT






17
SOCS1_NM_003745
ATATACCCAGTATCTTTGCA
817
CCTCTTCATGTTTACATATACCCAGTAT
837



_human_1082


CTTTGCACAAACCAGGG






18
SOCS1_NM_003745
AGAATCCTATTTTATATTTT
818
ATTTTTCTGCTGTGCAGAATCCTATTTT
838



_human_1150


ATATTTTTTAAAGTCAG






19
SOCS1_NM_003745
GGTTGTTGTAGCAGCTTAAC
819
CCTCTGGGTCCCCCTGGTTGTTGTAGC
839



_human_1011


AGCTTAACTGTATCTGGA






20
SOCS1_NM_003745
CCCAGTATCTTTGCACAAAC
820
TCATGTTTACATATACCCAGTAT
840



_human_1087


CTTTGCACAAACCAGGGGTTGG











Accession: NM_003150


HUGO gene symbol: STAT3












1
STAT3_NM_003150
ATATTGCTGTATCTACTTTA
841
TTTTTTTTTTTTGGTATATTGCTGT
861



_human_4897


ATCTACTTTAACTTCCAGAA






2
STAT3_NM_003150
TGTTTGTTAAATCAAATTAG
842
GTTTCTGTGGAATTCTGTTTGTTA
862



_human_4325


AATCAAATTAGCTGGTCTCTG






3
STAT3_NM_003150
TTTATCTAAATGCAAATAAG
843
TGTGGGTGATCTGCTTTTATCTAA
863



_human_2730


ATGCAAATAAGGATGTGTTCT






4
STAT3_NM_003150
ATTTTCCTTTGTAATGTATT
844
TTTATAAATAGACTTATTTTCCTTT
864



_human_3615


GTAATGTATTGGCCTTTTAG






5
STAT3_NM_003150
TATCAGCACAATCTACGAAG
845
GAGTCGAATGTTCTCTATCAGCAC
865



_human_453


AATCTACGAAGAATCAAGCAG






6
STAT3_NM_003150
AGCTTAACTGATAAACAGAA
846
CTTCAGTACATAATAAGCTTAACT
866



_human_4477


GATAAACAGAATATTTAGAAA






7
STAT3_NM_003150
GTTGTTGTTGTTCTTAGACA
847
CAGCTTTTTGTTATTGTTGTTGTTG
867



_human_2870


TTCTTAGACAAGTGCCTCCT






8
STAT3_NM_003150
GTTGTTGTTCTTAGACAAGT
848
CTTTTTGTTATTGTTGTTGTTGTTC
868



_human_2873


TTAGACAAGTGCCTCCTGGT






9
STAT3_NM_003150
TCTGTATTTAAGAAACTTAA
849
TATCAGCATAGCCTTTCTGTATTT
869



_human_3096


AAGAAACTTAAGCAGCCGGGC






10
STAT3_NM_003150
TTATTTTCCTTTGTAATGTA
850
TTTTTATAAATAGACTTATTTTCCT
870



_human_3613


TTGTAATGTATTGGCCTTTT






11
STAT3_NM_003150
TAACTGATAAACAGAATATT
851
AGTACATAATAAGCTTAACTGATA
871



_human_4481


AACAGAATATTTAGAAAGGTG






12
STAT3_NM_003150
ACATTCTGGGCACAAACACA
852
GATCCCGGAAATTTAACATTCTGG
872



_human_1372


GCACAAACACAAAAGTGATGA






13
STAT3_NM_003150
GTGATCTGCTTTTATCTAAA
853
AATGAGTGAATGTGGGTGATCTG
873



_human_2720


CTTTTATCTAAATGCAAATAAG






14
STAT3_NM_003150
CAGACCCGTCAACAAATTAA
854
GCAGAATCTCAACTTCAGACCCGT
874



_human_1044


CAACAAATTAAGAAACTGGAG






15
STAT3_NM_003150
GGAGCTGTTTAGAAACTTAA
855
GGAGGAGAGAATCGTGGAGCTG
875



_human_1148


TTTAGAAACTTAATGAAAAGTGC






16
STAT3_NM_003150
ACCATTGGGTTTAAATCATA
856
GTGAGACTTGGGCTTACCATTGG
876



_human_4523


GTTTAAATCATAGGGACCTAGG






17
STAT3_NM_003150
GGAGAATCTAAGCATTTTAG
857
AATAGGAAGGTTTAAGGAGAATC
877



_human_3573


TAAGCATTTTAGACTTTTTTTT






18
STAT3_NM_003150
CCTTGCTGACATCCAAATAG
858
CATTGCACTTTTTAACCTTGCTGA
878



_human_2987


CATCCAAATAGAAGATAGGAC






19
STAT3_NM_003150
AAATTAAGAAATAATAACAA
859
CCTAGGTTTCTTTTTAAATTAAGA
879



_human_3041


AATAATAACAATTAAAGGGCA






20
STAT3_NM_003150
TTTTAAATTAAGAAATAATA
860
AAGCCCTAGGTTTCTTTTTAAATT
880



_human_3037


AAGAAATAATAACAATTAAAG











Accession: NM_006290


HUGO gene symbol: TNFAIP3












1
TNFAIP3_NM_006290
AGCTTGAACTGAGGAGTAAA
881
ACTTCTAAAGAAGTTAGCTTGAAC
901



_human_3451


TGAGGAGTAAAAGTGTGTACA






2
TNFAIP3_NM_006290
CCTTTGCAACATCCTCAGAA
882
AATACACATATTTGTCCTTTGCAA
902



_human_916


CATCCTCAGAAGGCCAATCAT






3
TNFAIP3_NM_006290
TTCTTTCCAAAGATACCAAA
883
ACGAATCTTTATAATTTCTTTCCAA
903



_human_4422


AGATACCAAATAAACTTCAG






4
TNFAIP3_NM_006290
TTATTTTATTACAAACTTCA
884
TGTAATTCACTTTATTTATTTTATT
904



_human_3688


ACAAACTTCAAGATTATTTA






5
TNFAIP3_NM_006290
TATTTATACTTATTATAAAA
885
GTGAAAAAAAGTAATTATTTATAC
905



_human_4536


TTATTATAAAAAGTATTTGAA






6
TNFAIP3_NM_006290
CATTTCAGACAAAATGCTAA
886
AAGGCCAATCATTGTCATTTCAGA
906



_human_949


CAAAATGCTAAGAAGTTTGGA






7
TNFAIP3_NM_006290
ATGAAGGAGAAGCTCTTAAA
887
GATCCTGAAAATGAGATGAAGGA
907



_human_1214


GAAGCTCTTAAAAGAGTACTTA






8
TNFAIP3_NM_006290
ATTTTGTGTTGATCATTATT
888
AGTTGATATCTTAATATTTTGTGT
908



_human_4489


TGATCATTATTTCCATTCTTA






9
TNFAIP3_NM_006290
TTCATCGAGTACAGAGAAAA
889
TTTTGCACACTGTGTTTCATCGAG
909



_human_2204


TACAGAGAAAACAAACATTTT






10
TNFAIP3_NM_006290
TTACTGGGAAGACGTGTAAC
890
AAAAATTAGAATATTTTACTGGGA
910



_human_3394


AGACGTGTAACTCTTTGGGTT






11
TNFAIP3_NM_006290
TCATTGAAGCTCAGAATCAG
891
ACTGCCAGAAGTGTTTCATTGAA
911



_human_2355


GCTCAGAATCAGAGATTTCATG






12
TNFAIP3_NM_006290
TTCCATTCTTAATGTGAAAA
892
TGTGTTGATCATTATTTCCATTCTT
912



_human_4508


AATGTGAAAAAAAGTAATTA






13
TNFAIP3_NM_006290
TGAAGGATACTGCCAGAAGT
893
TGGAAGCACCATGTTTGAAGGAT
913



_human_2332


ACTGCCAGAAGTGTTTCATTGA






14
TNFAIP3_NM_006290
CACAAGAGTCAACATTAAAA
894
ATAAATGTAACTTTTCACAAGAGT
914



_human_4650


CAACATTAAAAAATAAATTAT






15
TNFAIP3_NM_006290
AATTATTTATACTTATTATA
895
AATGTGAAAAAAAGTAATTATTTA
915



_human_4533


TACTTATTATAAAAAGTATTT






16
TNFAIP3_NM_006290
TTCGTGCTTCTCCTTATGAA
896
CATATTCATCGATGTTTCGTGCTT
916



_human_3907


CTCCTTATGAAACTCCAGCTA






17
TNFAIP3_NM_006290
TATTTTATTACAAACTTCAA
897
GTAATTCACTTTATTTATTTTATTA
917



_human_3689


CAAACTTCAAGATTATTTAA






18
TNFAIP3_NM_006290
TATTACAAACTTCAAGATTA
898
TCACTTTATTTATTTTATTACAAAC
918



_human_3694


TTCAAGATTATTTAAGTGAA






19
TNFAIP3_NM_006290
CTCTTAAAGTTGATATCTTA
899
TGTTTTCATCTAATTCTCTTAAAGT
919



_human_4467


TGATATCTTAATATTTTGTG






20
TNFAIP3_NM_006290
TTCCAAAGATACCAAATAAA
900
ATCTTTATAATTTCTTTCCAAAGAT
920



_human_4426


ACCAAATAAACTTCAGTGTT











Accession: NM_003326


HUGO gene symbol: TNFSF4












1
TNFSF4_NM_003326
AATTTGACTTAGCCACTAAC
921
GAGATCAGAATTTTAAATTTGACT
941



_human_2984


TAGCCACTAACTAGCCATGTA






2
TNFSF4_NM_003326
GATATTAATAATATAGTTAA
922
GAGAGTATTAATATTGATATTAAT
942



_human_3422


AATATAGTTAATAGTAATATT






3
TNFSF4_NM_003326
CTGTGAATGCACATATTAAA
923
TGCTTACAGTGTTATCTGTGAATG
943



_human_3119


CACATATTAAATGTCTATGTT






4
TNFSF4_NM_003326
GTTTTCTATTTCCTCTTAAG
924
GGATTTTTTTTTCCTGTTTTCTATT
944



_human_2208


TCCTCTTAAGTACACCTTCA






5
TNFSF4_NM_003326
AAATAGCACTAAGAAGTTAT
925
ATTCAATCTGATGTCAAATAGCAC
945



_human_1727


TAAGAAGTTATTGTGCCTTAT






6
TNFSF4_NM_003326
CCAATCCCGATCCAAATCAT
926
AATGCTTAAGGGATTCCAATCCC
946



_human_3311


GATCCAAATCATAATTTGTTCT






7
TNFSF4_NM_003326
CTATTTAGAGAATGCTTAAG
927
TTAGTTAGATATTTTCTATTTAGA
947



_human_3286


GAATGCTTAAGGGATTCCAAT






8
TNFSF4_NM_003326
CAGTTTGCATATTGCCTAAA
928
AGGTTAAATTGATTGCAGTTTGCA 948




_human_1222


TATTGCCTAAATTTAAACTTT






9
TNFSF4_NM_003326
CTCGAATTCAAAGTATCAAA
929
TATCACATCGGTATCCTCGAATTC
949



_human_326


AAAGTATCAAAGTACAATTTA






10
TNFSF4_NM_003326
ATCTGTGAATGCACATATTA
930
TATGCTTACAGTGTTATCTGTGAA
950



_human_3117


TGCACATATTAAATGTCTATG






11
TNFSF4_NM_003326
TTTGTGGGAAAAGAATTGAA
931
TATACATGGCAGAGTTTTGTGGG
951



_human_2938


AAAAGAATTGAATGAAAAGTCA






12
TNFSF4_NM_003326
ATTGACCATGTTCTGCAAAA
932
ATTTCACTTTTTGTTATTGACCATG
952



_human_2537


TTCTGCAAAATTGCAGTTAC






13
TNFSF4_NM_003326
GATTCTTCATTGCAAGTGAA
933
GGTGGACAGGGCATGGATTCTTC
953



_human_776


ATTGCAAGTGAAGGAGCCTCCC






14
TNFSF4_NM_003326
GATGTCAAATAGCACTAAGA
934
TATCAAATTCAATCTGATGTCAAA
954



_human_1721


TAGCACTAAGAAGTTATTGTG






15
TNFSF4_NM_003326
GTATACAGGGAGAGTGAGAT
935
AAGAGAGATTTTCTTGTATACAG
955



_human_1459


GGAGAGTGAGATAACTTATTGT






16
TNFSF4_NM_003326
GTTGCTATGAGTCAAGGAGT
936
AATGTCTATGTTCTTGTTGCTATG
956



_human_3152


AGTCAAGGAGTGTAACCTTCT






17
TNFSF4_NM_003326
TAGTTGAAATGTCCCCTTAA
937
GTATCCCCTTATGTTTAGTTGAAA
957



_human_1882


TGTCCCCTTAACTTGATATAA






18
TNFSF4_NM_003326
CTCTGTGCCAAACCTTTTAT
938
GATGATTTGTAACTTCTCTGTGCC
958



_human_1980


AAACCTTTTATAAACATAAAT






19
TNFSF4_NM_003326
CTCTGTCTAGAAATACCATA
939
ATGAAAAATAATGATCTCTGTCTA
959



_human_1770


GAAATACCATAGACCATATAT






20
TNFSF4_NM_003326
GGTTTCAAGAAATGAGGTGA
940
CACAGAAACATTGCTGGTTTCAA
960



_human_1680


GAAATGAGGTGATCCTATTATC











Accession: NM_006293


HUGO gene symbol: TYRO3












1
TYRO3_NM_006293
AGTTGCTGTTTAAAATAGAA
961
CATTTCCAAGCTGTTAGTTGCTGTT
981



_human_3927


TAAAATAGAAATAAAATTGA






2
TYRO3_NM_006293
CTGTTTAAAATAGAAATAAA
962
CCAAGCTGTTAGTTGCTGTTTAAAA
982



_human_3932


TAGAAATAAAATTGAAGACT






3
TYRO3_NM_006293
GGCATCAGCGATGAACTAAA
963
ACATTGGACAGCTTGGGCATCAGC
983



_human_1731


GATGAACTAAAGGAAAAACTG






4
TYRO3_NM_006293
AATATCCTAAGACTAACAAA
964
GCTACCAAATCTCAAAATATCCTAA
984



_human_3699


GACTAACAAAGGCAGCTGTG






5
TYRO3_NM_006293
GTTGCTGTTTAAAATAGAAA
965
ATTTCCAAGCTGTTAGTTGCTGTTT
985



_human_3928


AAAATAGAAATAAAATTGAA






6
TYRO3_NM_006293
AAAATAGAAATAAAATTGAA
966
TGTTAGTTGCTGTTTAAAATAGAAA
986



_human_3938


TAAAATTGAAGACTAAAGAC






7
TYRO3_NM_006293
CTGTGAAGCTCACAACCTAA
967
GAGCACCATGTTTTCCTGTGAAGC
987



_human_842


TCACAACCTAAAAGGCCTGGC






8
TYRO3_NM_006293
TTGAAGACTAAAGACCTAAA
968
AAAATAGAAATAAAATTGAAGACT
988



_human_3953


AAAGACCTAAAAAAAAAAAAA






9
TYRO3_NM_006293
TCCTAAGACTAACAAAGGCA
969
CCAAATCTCAAAATATCCTAAGACT
989



_human_3703


AACAAAGGCAGCTGTGTCTG






10
TYRO3_NM_006293
GGACATTTCCAAGCTGTTAG
970
GGTCCTAGCTGTTAGGGACATTTC
990



_human_3909


CAAGCTGTTAGTTGCTGTTTA






11
TYRO3_NM_006293
ATGTTTCCATGGTTACCATG
971
AGGAGTGGGGTGGTTATGTTTCCA
991



_human_3190


TGGTTACCATGGGTGTGGATG






12
TYRO3_NM_006293
TAGTTGCTGTTTAAAATAGA
972
ACATTTCCAAGCTGTTAGTTGCTGT
992



_human_3926


TTAAAATAGAAATAAAATTG






13
TYRO3_NM_006293
AAAATTGAAGACTAAAGACC
973
GTTTAAAATAGAAATAAAATTGAA
993



_human_3949


GACTAAAGACCTAAAAAAAAA






14
TYRO3_NM_006293
AGCTGTTAGGGACATTTCCA
974
CATGGGGCGGGTCCTAGCTGTTAG
994



_human_3900


GGACATTTCCAAGCTGTTAGT






15
TYRO3_NM_006293
GAGGACGTGTATGATCTCAT
975
CCTCCGGAGTGTATGGAGGACGTG
995



_human_2511


TATGATCTCATGTACCAGTGC






16
TYRO3_NM_006293
TTTTAGGTGAGGGTTGGTAA
976
CCTTGTAATATTCCCTTTTAGGTGA
996



_human_3400


GGGTTGGTAAGGGGTTGGTA






17
TYRO3_NM_006293
AGCTGACATCATTGCCTCAA
977
TGTGAAGATGCTGAAAGCTGACAT
997



_human_1895


CATTGCCTCAAGCGACATTGA






18
TYRO3_NM_006293
AAATCTCAAAATATCCTAAG
978
TCTGAGCACGCTACCAAATCTCAA
998



_human_3690


AATATCCTAAGACTAACAAAG






19
TYRO3_NM_006293
AAGCTGTTAGTTGCTGTTTA
979
GTTAGGGACATTTCCAAGCTGTTA
999



_human_3919


GTTGCTGTTTAAAATAGAAAT






20
TYRO3_NM_006293
TCCTTGTAATATTCCCTTTT
980
AGTCACAAAGAGATGTCCTTGTAA
1000



_human_3384


TATTCCCTTTTAGGTGAGGGT











Accession: NM_000546


HUGO gene symbol: TP53












1
TP53_NM_000546_
TGTTTGGGAGATGTAAGAAA
81
TTTTACTGTGAGGGATGTTTGGG
101



human_1630


AGATGTAAGAAATGTTCTTGCA






2
TP53_NM_000546_
GCATTGTGAGGGTTAATGAA
82
CCTACCTCACAGAGTGCATTGTGA
102



human_1808


GGGTTAATGAAATAATGTACA






3
TP53_NM_000546_
TCGATCTCTTATTTTACAAT
83
TATCCCATTTTTATATCGATCTCTT
103



human_2538


ATTTTACAATAAAACTTTGC






4
TP53_NM_000546_
TGTGAGGGTTAATGAAATAA
84
CCTCACAGAGTGCATTGTGAGGG
104



human_1812


TTAATGAAATAATGTACATCTG






5
TP53_NM_000546_
GAGTATTTGGATGACAGAAA
85
GGAAATTTGCGTGTGGAGTATTT
105



human_812


GGATGACAGAAACACTTTTCGA






6
TP53_NM_000546_
GGATGTTTGGGAGATGTAAG
86
GGTTTTTACTGTGAGGGATGTTTG
106



human_1627


GGAGATGTAAGAAATGTTCTT






7
TP53_NM_000546_
GAAATGTTCTTGCAGTTAAG
87
GTTTGGGAGATGTAAGAAATGTT
107



human_1646


CTTGCAGTTAAGGGTTAGTTTA






8
TP53_NM_000546_
ATGTACATCTGGCCTTGAAA
88
AGGGTTAATGAAATAATGTACAT
108



human_1831


CTGGCCTTGAAACCACCTTTTA






9
TP53_NM_000546_
AGAAATGTTCTTGCAGTTAA
89
TGTTTGGGAGATGTAAGAAATGT
109



human_1645


TCTTGCAGTTAAGGGTTAGTTT






10
TP53_NM_000546_
GGTGAACCTTAGTACCTAAA
90
GTCTGACAACCTCTTGGTGAACCT
110



human_2015


TAGTACCTAAAAGGAAATCTC






11
TP53_NM_000546_
TAACTTCAAGGCCCATATCT
91
CTGTTGAATTTTCTCTAACTTCAA
111



human_1753


GGCCCATATCTGTGAAATGCT






12
TP53_NM_000546_
CTTATCCGAGTGGAAGGAAA
92
GCCCCTCCTCAGCATCTTATCCGA
112



human_782


GTGGAAGGAAATTTGCGTGTG






13
TP53_NM_000546_
ATGATCTGGATCCACCAAGA
93
CATCTCTTGTATATGATGATCTGG
113



human_2086


ATCCACCAAGACTTGTTTTAT






14
TP53_NM_000546_
AATTTTCTCTAACTTCAAGG
94
TGTCCCTCACTGTTGAATTTTCTCT
114



human_1744


AACTTCAAGGCCCATATCTG






15
TP53_NM_000546_
TCTCTTATTTTACAATAAAA
95
CCATTTTTATATCGATCTCTTATTT
115



human_2542


TACAATAAAACTTTGCTGCC






16
TP53_NM_000546_
TTATTTTACAATAAAACTTT
96
TTTTATATCGATCTCTTATTTTACA
116



human_2546


ATAAAACTTTGCTGCCACCT






17
TP53_NM_000546_
GCCTTGAAACCACCTTTTAT
97
AATAATGTACATCTGGCCTTGAAA
117



human_1842


CCACCTTTTATTACATGGGGT






18
TP53_NM_000546_
TATATCGATCTCTTATTTTA
98
TTTATATCCCATTTTTATATCGATC
118



human_2534


TCTTATTTTACAATAAAACT






19
TP53_NM_000546_
CCTTAGTACCTAAAAGGAAA
99
CAACCTCTTGGTGAACCTTAGTAC
119



human_2021


CTAAAAGGAAATCTCACCCCA






20
TP53_NM_000546_
CATTGTGAGGGTTAATGAAA
100
CTACCTCACAGAGTGCATTGTGA
120



human_1809


GGGTTAATGAAATAATGTACAT








Claims
  • 1. An immune modulator comprising an sdRNA, wherein the sdRNA comprises a guide strand and a passenger strand, wherein the guide strand is about 19-25 nucleotides long, and the passenger strand is about 10-19 nucleotides long, wherein the sdRNA includes a double stranded region and a single stranded region, wherein the single stranded region includes 5-9 phosphorothioate modifications, wherein the sdRNA is chemically modified, including at least one 2′-O-methyl modification or 2′-fluoro modification, and wherein the sdRNA is capable of suppressing expression of HAVCR2.
  • 2. An immunogenic composition comprising an sdRNA, wherein the sdRNA comprises a guide strand and a passenger strand, wherein the guide strand is about 19-25 nucleotides long, and the passenger strand is about 10-19 nucleotides long, wherein the sdRNA includes a double stranded region and a single stranded region, wherein the single stranded region includes 5-9 phosphorothioate modifications, wherein the sdRNA is chemically modified, including at least one 2′-O-methyl modification or 2′-fluoro modification, wherein the sdRNA is capable of suppressing expression of HAVCR2, and wherein the immunogenic composition further comprises immune cells modified by the sdRNA to suppress expression of HAVCR2.
  • 3. The immunogenic composition of claim 2, wherein the immune cells within the composition are further modified to suppress expression of a plurality of immune checkpoint genes.
  • 4. The immunogenic composition of claim 2, wherein said cells are modified to suppress expression of at least one immune checkpoint gene, and at least one gene selected from the group consisting of: an anti-apoptosis gene, a cytokine receptor gene, and a regulator gene.
  • 5-8. (canceled)
  • 9. The immunogenic composition of claim 3, wherein said modified cells further comprise one or more sdRNA capable of suppressing expression of at least one target gene selected from the group consisting of: CTLA4, PD1/PDCD1, TGFBR1, TGFRBR2, IL10RA, TP53, BAX, BAK1, CASP8, ADORA2A, LAG3, CCL17, CCL22, DLL2, FASLG, CD274, IDO1, ILIORA, JAG1, JAG2, MAPK14, SOCS1, STAT3, TNFAIP3, TYRO3, BTLA, KIR, B7-H3 receptor, and B7-H4 receptor.
  • 10. The immunogenic composition of claim 9, wherein said cells are selected from the group consisting of T-cells, NK-cells, antigen-presenting cells, dendritic cells, stem cells, induced pluripotent stem cells, and/or stem central memory T-cells.
  • 11. The immunogenic composition of claim 9, wherein said cells are T-cells comprising one or more transgene expressing high affinity T-cell receptors (TCR) and/or chimeric antibody-T-cell receptors (CAR).
  • 12. (canceled)
  • 13. The immunogenic composition of claim 9, wherein said cells comprise one or more sdRNA targeting one or more anti-apoptotic genes selected from the group consisting of BAX, BAC, TP53, and Casp8.
  • 14. (canceled)
  • 15. The immunogenic composition of claim 9, wherein said sdRNA comprises at least one 2′-O-methyl modification and/or at least one 2′-O-Fluoro modification, and at least one phosphorothioate modification.
  • 16. The immunogenic composition of claim 9, wherein said sdRNA comprises at least one hydrophobic modification.
  • 17. The immunogenic composition of claim 9, wherein said sdRNA is modified to comprises at least one cholesterol molecule.
  • 18. The immunogenic composition of claim 9, wherein said sdRNA targets a sequence selected from SEQ ID NOs: 1-360 and 381-1000.
  • 19. A method of producing the immunogenic composition of claim 3, said method comprising transforming at least one cell with one or more sdRNA capable of targeting and suppressing expression of one or more immune target genes, wherein at least one sdRNA interferes with HAVCR2 expression.
  • 20. The method of claim 19, wherein the at least one cell comprises an sdRNA that inhibits expression of one or more genes selected from the group consisting of: CTLA4, PD1/PDCD1, TGFBR1, TGFRBR2, IL10RA, TP53, BAX, BAK1, CASP8, ADOARA2A, LAG3, CCL17, CCL22, DLL2, FASLG, CD274, IDO1, ILIORA, JAG1, JAG2, MAPK14, SOCS1, STAT3, TNFAIP3, TYRO3, BTLA, KIR, B7-H3 receptor, and B7-H4 receptor.
  • 21. The method of claim 19, wherein said cells are selected from the group consisting of T-cells, NK-cells, antigen-presenting cells, dendritic cells, stem cells, induced pluripotent stem cells, and/or stem central memory T-cells.
  • 22-24. (canceled)
  • 25. A method for treating a subject having proliferative disease or infectious disease, the method comprising administering to the subject the immune modulator of claim 1.
  • 26. The method of claim 25, wherein said proliferative disease is cancer.
  • 27. The method of claim 25, wherein said infectious disease is a pathogen infection.
  • 28. (canceled)
  • 29. The immune modulator of claim 1, wherein at least one sdRNA targets a sequence selected from SEQ ID NOs: 361-380.
  • 30. The immunogenic composition of claim 2, wherein at least one sdRNA targets a sequence selected from SEQ ID NOs: 361-380.
CROSS REFERENCE

This application claims priority to U.S. Provisional Application No. 61/910,728, filed Dec. 2, 2013, herein incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
61910728 Dec 2013 US
Continuations (1)
Number Date Country
Parent 15100536 May 2016 US
Child 17150668 US