Immunotherapy of cancer

Abstract
Immunogenic modulators and compositions comprising oligonucleotide agents capable of inhibiting suppression of immune response by reducing expression of one or more gene involved with an immune suppression mechanism.
Description
TECHNICAL FIELD

The present invention relates to immunogenic compositions, method of making immunogenic compositions, and methods of using immunogenic compositions for the treatment of cell proliferative disorders or infectious disease, including, for example, cancer and autoimmune disorders.


More particularly, the invention provides cells that are treated with oligonucleotides specifically designed to modulate expression of target genes involved in tumor immune resistance mechanisms.


BACKGROUND

Immunotherapy is the “treatment of disease by inducing, enhancing, or suppressing an immune response”. Immunotherapies designed to elicit or amplify an immune response are activation immunotherapies, while immunotherapies that reduce or suppress immune response are classified as suppression immunotherapies.


Immunotherapy of cancer has become increasingly important in clinical practice over recent decades. The primary approach in today's standard of care is passive immunotherapy through the use of recombinant monoclonal antibodies (mAbs). MAbs act through a mechanisms relevant to the body's own humoral immune response, by binding to key antigens involved in the tumor development and causing moderate forms of cell-mediated immunity, such as antibody-dependent cell-mediated cytotoxicity (ADCC).


Another group of emerging immunotherapeutic approaches is based on the administration of cells capable of destroying tumor cells. The administered cells may be the patient's own tumor-infiltrating lymphocytes (TIL), isolated and expanded ex-vivo. In some cases, TIL are capable of recognizing a variety of tumor associated antigens (TAA), while in other cases TIL can be reactivated and expanded in vitro to recognize specific antigens. The TIL-based therapeutic approaches are commonly referred to as “adoptive cell transfer” (ACT).


Further developments of ACT involve genetic modifications of T-cells to express receptors that recognize specific tumor-associated antigens (TAA). Such modifications may induce the expression of a specific T-cell receptor (TCR) or of a chimeric antigen receptor (CAR) consisting of TAA-specific antibody fused to CD3/co-stimulatory molecule transmembrane and cytoplasmic domains.


The ACT methods may also be considered as passive immunotherapeutic approaches in that they act directly on the tumor cells without invoking an extended immune response. However, unlike mAbs, ACT agents are capable of fully destroying the tumor cells, as opposed to the blockade of selected receptors and moderate cellular responses such as ADCC.


There is ongoing development of numerous methods of active immunotherapy, which restore the ability of body's own immune system to generate antitumor response. Active immunotherapeutic agents are often called therapeutic cancer vaccines, or just cancer vaccines. Many cancer vaccines are currently in clinical trials, and sipuleucell-T has recently become the first such vaccine approved by the United States FDA.


There are several classes of cancer vaccines using different antigens and different mechanisms of generating cell-mediated immune response. One class of vaccines is based on peptide fragments of antigens selectively expressed by tumor cells. The peptides are administered alone or in combination with immune-stimulatory agents, which may include adjuvants and cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF).


Another class of cancer vaccines is based on modified (e.g. sub-lethally irradiated) tumor cells used as antigens, also in combinations with immuno-stimulatory agents. Vaccines of this type currently in clinical trials are based both on autologous (e.g. OncoVAX, LipoNova) and allogeneic (e.g. Canvaxin, Onyvax-P, GVAX) tumor cell lines.


Yet another class of cancer vaccines uses dendritic cells. By their nature, dendritic cells (DC) are “professional” antigen-presenting cells capable of generating of a strong antigen-dependent cell-mediated immune response and eliciting therapeutic T-cells in vivo. DC-based cancer vaccines usually comprise DCs isolated from patients or generated ex vivo by culturing patient's hematopoietic progenitor cells or monocytes. DCs are further loaded with tumor antigens and sometimes combined with immune-stimulating agents, such as GM-CSF. A large number of DC-vaccines are now in clinical trials, and the first FDA-approved vaccine sipuleucell-T is based on DC.


Mechanisms of Immunosuppression and Therapeutic Approaches to its Mitigation


One of the key physiologic functions of the immune system is to recognize and eliminate neoplastic cells, therefore an essential part of any tumor progression is the development of immune resistance mechanisms. Once developed, these mechanisms not only prevent the natural immune system from effecting the tumor growth, but also limit the efficacy of any immunotherapeutic approaches to cancer. An important immune resistance mechanism involves immune-inhibitory pathways, sometimes referred to as immune checkpoints. The immune-inhibitory pathways play particularly important role in the interaction between tumor cells and CD8+ cytotoxic T-lymphocytes, including ACT therapeutic agents. Among important immune checkpoints are inhibitory receptors expressed on the T-cell surface, such as CTLA-4, PD1 and LAGS, among others.


The importance of the attenuation of immune checkpoints has been recognized by the scientific and medical community. One way to mitigate immunosuppression is to block the immune checkpoints by specially designed agents. The CTLA-4-blocking-antibody, ipilimumab, has recently been approved by the FDA. Several molecules blocking PD1 are currently in clinical development.


Immunosuppression mechanisms also negatively affect the function of dendritic cells and, as a consequence, the efficacy of DC-based cancer vaccines. Immunosuppressive mechanisms can inhibit the ability of DC to present tumor antigens through the MHC class I pathway and to prime naïve CD8+ T-cells for antitumor immunity. Among the important molecules responsible for the immunosuppression mechanisms in DC are ubiquitin ligase A20 and the broadly immune-suppressive protein SOCS1.


The efficacy of immunotherapeutic approaches to cancer can be augmented by combining them with inhibitors of immune checkpoints. Numerous ongoing preclinical and clinical studies are exploring potential synergies between cancer vaccines and other immunotherapeutic agents and checkpoint blocking agents, for example, ipilimumab. Such combination approaches have the potential to result in significantly improved clinical outcomes.


However, there are a number of drawbacks of using cancer immunotherapeutic agents in combination with checkpoint inhibitors. For example, immune checkpoint blockade can lead to the breaking of immune self-tolerance, thereby inducing a novel syndrome of autoimmune/auto-inflammatory side effects, designated “immune related adverse events,” mainly including rash, colitis, hepatitis and endocrinopathies (Corsello, et al. J. Clin. Endocrinol. Metab., 2013, 98:1361).


Reported toxicity profiles of checkpoint inhibitors are different than the toxicity profiles reported for other classes of oncologic agents. Those involve inflammatory events in multiple organ systems, including skin, gastrointestinal, endocrine, pulmonary, hepatic, ocular, and nervous system. (Hodi, 2013, Annals of Oncology, 24: Suppl, i7).


In view of the above, there is a need for new cancer therapeutic agents that can be used in combination with checkpoint inhibitors as well as other classes of oncolytic agents without risk of adverse inflammatory events in multiple organ systems previously reported for checkpoint inhibitors. The immunotherapeutic cells of the invention, prepared by treating cells with a combination oligonucleotide agents targeting genes associated with tumor or infections disease resistance mechanisms, as well as methods of producing such therapeutic cells and methods of treating disease with the produced therapeutic cells, satisfy this long felt need.


SUMMARY OF EMBODIMENTS OF THE INVENTION

The efficacy of immunotherapeutic approaches to cell proliferation disorders and infectious diseases can be augmented by combining them with inhibitors of immune checkpoints. Numerous synergies between cancer vaccines and other immunotherapeutic agents and checkpoint blocking agents provide opportunities for combination approaches that may significantly improve clinical outcomes for example, in proliferative cell disorders and immune diseases.


Various embodiments of the inventions disclosed herein include compositions comprising therapeutic cells obtained by treating cells ex vivo with oligonucleotides to modulate expression of target genes involved in immune suppression mechanisms. The oligonucleotide agent may be an antisense oliogonucleotide (ASO), including locked nucleic acids (LNAs), methoxyethyl gapmers, and the like, or an siRNA, miRNA, miRNA-inhibitor, morpholino, PNA, and the like. The oligonucleotide is preferably a self-delivered (sd) RNAi agent. The oligonucleotides may be chemically modified, for example, including at least one 2-O-methyl modification, 2′-Fluro modification, and/or phosphorothioate modification. The oligonucleotides may include one or more hydrophobic modification, for example, one or more sterol, cholesterol, vitamin D, Naphtyl, isobutyl, benzyl, indol, tryptophane, or phenyl hydrophobic modification. The oligonucleotide may be a hydrophobically-modified siRNA-antisense hybrid. The oligonucleotides may be used in combination with transmembrane delivery systems, such as delivery systems comprising lipids.


In an embodiment, the cells are obtained and/or derived from a cancer or infectious disease patient, and may be, for example, tumor infiltrating lymphocytes (TIL) and/or T-cells, antigen presenting cells such as dendritic cells, natural killer cells, induced-pluripotent stem cells, stem central memory T-cells, and the like. The T-cells and NK-cells are preferably genetically engineered to express high-affinity T-Cell receptors (TCR) and/or chimeric antibody or antibody-fragment—T-Cell receptors (CAR). In an embodiment, the chimeric antibody/antibody fragment is preferably capable of binding to antigens expressed on tumor cells. Immune cells may be engineered by transfection with plasmid, viral delivery vehicles, or mRNAs.


In an embodiment, the chimeric antibody or fragment is capable of binding CD19 receptors of B-cells and/or binding to antigens expressed on tumors, such as melanoma tumors. Such melanoma-expressed antigens include, for example, GD2, GD3, HMW-MAA, VEGF-R2, and the like.


Target genes identified herein for modification include: cytotoxic T-cell antigen 4 (CTLA4), programmed cell death protein 1 (PD1), tumor growth factor receptor beta (TGFR-beta), LAG3, TIM3, and adenosine A2a receptor; anti-apoptotic genes including, but not limited to: BAX, BAC, Casp8, and P53; A20 ubiquitine ligase (TNFAIP3, SOCS1 (suppressor of cytokine signaling), IDO (indolamine-2,3-dioxygenase; tryptophan-degrading enzyme), PD-L1 (CD274)(surface receptor, binder to PD1 on Tcells), Notch ligand Delta1 (DLL1), Jagged 1, Jagged 2, FasL (pro-apoptotic surface molecule), CCL17, CCL22 (secreted chemokines that attract Treg cells), IL10 receptor (IL10RA), p38 (MAPK14), STAT3, TNFSF4 (OX40L), MicroRNA miR-155, miR-146a, anti-apoptotic genes including but not limited to BAX, BAC, Casp8 and P53, and the like genes, and combinations thereof. Representative target sequences are listed in Table 1.


The engineered therapeutic cells are treated with RNAi agents designed to inhibit expression of one or more of the targeted genes. The RNAi agent may comprise a guide sequence that hybridizes to a target gene and inhibits expression of the target gene through an RNA interference mechanism, where the target region is selected from the group listed in Table 1. The RNA agent can be chemically modified, and preferably includes at least one 2′-O-methyl, 2′-O-Fluoro, and/or phosphorothioate modification, as well as at least one hydrophobic modification such as cholesterol, and the like.


The immunogenic compositions described herein are useful for the treatment of proliferative disorders, including cancers, and/or infectious disease and are produced by the ex-vivo treatment of cells with oligonucleotides to modulate the expression of target genes involved in tumor immune resistance mechanisms. The ex vivo treatment of cells includes administering to the cells an oligonucleotide capable of targeting and inhibiting expression of a gene involved in a tumor suppressor mechanism, such as the genes listed in Table 1. The oligonucleotide can be used in combination with a transmembrane delivery system that may comprise one or more of: lipid(s) and vector, such as a viral vector.


The invention includes a method of treating a cell proliferative disorder or infectious disease by administering to a subject in need thereof, an immunogenic composition comprising cells that have been treated with one or more oligonucleotide to modulate the expression of one or more target gene involved in tumor immune resistance mechanisms, for example, one or more of the target genes of Table 1.


The invention preferably includes immunogenic cells treated with a plurality of oligonucleotide agents targeting a combination of target genes described herein. The combination may target a plurality of suppressor receptor genes, cytokine receptor genes, regulatory genes, and/or apoptotic factors in order to inhibit tumor immune resistance mechanisms.


The present invention is directed to novel immunotherapeutic cells, methods of generating the immunotherapeutic cells, and therapeutic methods employing such cells.


A new method of immune checkpoint inhibition is described herein, applicable to a broad variety of cell-based immunotherapies, including, but not limited to adaptive cell transfer, for example, based on TIL, TCR, CAR, and other cell types, as well as dendritic cell-based cancer vaccines. Self-deliverable RNAi technology provides efficient transfection of short oligonucleotides in any cell type, including immune cells, providing increased efficacy of immunotherapeutic treatments. In addition, the activated immune cells can be protected by preventing apoptosis via inhibition of key activators of the apoptotic pathway, such as BAC, BAX, Casp8, and P53, among others.


The activated immune cells modified by oligonucleotide transfer for a single therapeutic agent for administration to a subject, providing a number of advantages as compared to separately administered combinations of vaccines and immunotherapeutics and separately administered checkpoint inhibitors. These advantages include lack of side effects associated with the checkpoint inhibitors in a single therapeutic agent (activated immune cells modified by oligonucleotides targeting immune resistance genes).


The claimed immunotherapeutic cells, method of producing immunotherapeutic cells by introduction of oligonucleotide molecules targeting immune resistance pathways, and methods of treating proliferative and infectious disease, improves upon any known immunotherapeutic cells and methods of producing immunotherapeutic cells because it provides:

    • 1) a single therapeutic composition providing a combination of checkpoint inhibitors and other immune resistance mechanism inhibitors;
    • 2) with reduced toxicity; and
    • 3) increased efficacy as compared with other compositions.





BRIEF DESCRIPTION OF THE FIGURES

The foregoing features of embodiments will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:



FIG. 1 is a schematic diagram showing the structure of an sdRNA molecule.



FIG. 2 is a graph showing sdRNA-induced silencing of GAPDH and MAP4K4 in HeLa cells.



FIG. 3 is a graph showing sdRNA-induced knock-down of multiple targets using sdRNA agents directed to three genes in NK-92 cells.



FIG. 4 is a graph showing the knock-down of gene expression in Human Primary T cells by sdRNA agents targeting TP53 and MAP4K4.



FIG. 5 is a graph showing sdRNA-induced knock-down of CTLA4 and PD1 in Human Primary T cells.



FIG. 6 is a graph showing the reduction of PDCD1 and CTLA-4 surface expression by sdRNA in Human Primary T cells.



FIG. 7 is a graph showing MAP4K4-cy3 sdRNA delivery into T and B cells in human PBMCs.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

The invention is defined by the claims, and includes oligonucleotides specifically designed and selected to reduce and/or inhibit expression of suppressors of immune resistance (inhibitory oligonucleotides), compositions comprising cells modified by treatment with such inhibitory oligonucleotides, methods of making such compositions, and methods of using the compositions to treat proliferation and/or infectious diseases. In particular, cells are treated with a combination of oligonucleotide agents, each agent particularly designed to interfere with and reduce the activity of a targeted immune suppressor.


Preferably, the combination of oligonucleotide agents targets multiple immune suppressor genes selected from checkpoint inhibitor genes such as CTLA4, PD-1/PD-1L, BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3, B7-H4 receptors, and TGF beta type 2 receptor; cytokine receptors that inactivate immune cells, such as TGF-beta receptor A and IL-10 receptor; regulatory genes/transcription factors modulating cytokine production by immune cells, such as STAT-3 and P38, miR-155, miR-146a; and apoptotic factors involved in cascades leading to cell death, such as p53 and Cacp8.


Most preferably the oligonucleotide agent is a self-deliverable RNAi agent, which is a hydrophobically modified siRNA-antisense hybrid molecule, comprising a double-stranded region of about 13-22 base pairs, with or without a 3′-overhang on each of the sense and antisense strands, and a 3′ single-stranded tail on the antisense strand of about 2-9 nucleotides. The oligonucleotide contains at least one 2′-O-Methyl modification, at least one 2′-O-Fluoro modification, and at least one phosphorothioate modification, as well as at least one hydrophobic modification selected from sterol, cholesterol, vitamin D, napthyl, isobutyl, benzyl, indol, tryptophane, phenyl, and the like hydrophobic modifiers (see FIG. 1). The oligonucleotide may contain a plurality of such modifications.


Definitions

As used in this description and the accompanying claims, the following terms shall have the meanings indicated, unless the context requires otherwise:


Proliferative disease, as used herein, includes diseases and disorders characterized by excessive proliferation of cells and turnover of cellular matrix, including cancer, atherlorosclerosis, rheumatoid arthritis, psoriasis, idiopathic pulmonary fibrosis, scleroderma, cirrhosis of the liver, and the like. Cancers include but are not limited to, one or more of: small cell lung cancer, colon cancer, breast cancer, lung cancer, prostate cancer, ovarian cancer, pancreatic cancer, melanoma, hematological malignancy such as chronic myeloid leukemia, and the like cancers where immunotherapeutic intervention to suppress tumor related immune resistance is needed.


Immune target genes can be grouped into at least four general categories: (1) checkpoint inhibitors; (2) cytokine receptors that inactivate immune cells, (3) anti-apoptotic genes; and (4) regulator genes, for example, transcription factors.


Immune Checkpoint inhibitors (ICI), as used herein, include immunotherapeutic agents that bind to certain checkpoint proteins, such as cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) and its ligand PD-L1 to block and disable inhibitory proteins that prevent the immune system from attacking diseased cells such as cancer cells, liberating tumor-specific T cells to exert their effector function against tumor cells.


Tumor related immune resistance genes, as used herein, include genes involved in checkpoint inhibition of immune response, such as CTLA-4 and PD-1/PD-L1; TGF-beta, LAG3, Tim3, adenosine A2a receptor;


Regulator genes, as used herein, include transcription factors and the like that modulate cytokine production by immune cells, and include p38, STAT3, microRNAs miR-155, miR-146a;


Anti-apoptotic genes, as used herein, include BAX, BAC, Casp8, P53 and the like; and combinations thereof.


Infectious diseases, as used herein, include, but are not limited to, diseases caused by pathogenic microorganisms, including, but not limited to, one or more of bacteria, viruses, parasites, or fungi, where immunotherapeutic intervention to suppress pathogen related immune resistance and/or overactive immune response.


Immunogenic composition, as used herein, includes cells treated with one or more oligonucleotide agent, wherein the cells comprise T-cells. The T-cells may be genetically engineered, for example, to express high affinity T-cell receptors (TCR), chimeric antibody—T-cell receptors (CAR), where the chimeric antibody fragments are capable of binding to CD19 receptors of B-cells and/or to antigens expressed on tumor cells. In one embodiment, the chimeric antibody fragments bind antigens expressed on melanoma tumors, selected from GD2, GD3, HMW-MAA, and VEGF-R2.


Immunogenic compositions described herein include cells comprising antigen-presenting cells, dendritic cells, engineered T-cells, natural killer cells, stem cells, including induced pluripotent stem cells, and stem central memory T-cells. The treated cell also comprises one or a plurality of oligonucleotide agents, preferably sdRNAi agents specifically targeting a gene involved in an immune suppression mechanism, where the oligonucleotide agent inhibits expression of said target gene.


In one embodiment, the target gene is selected from A20 ubiquitin ligase such as TNFAIP3, SOCS1 (suppressor of cytokine signaling), Tyro3/Ax1/Mer (suppressors of TLR signaling), IDO (indolamine-2,3-dioxygenase, tryptophan-degrading enzyme), PD-L1/CD274 (surface receptor, binds PD1 on T-cells), Notch ligand Delta (DLL1), Jagged 1, Jagged 2, FasL (pro-apoptotic surface molecule), CCL17, CCL22 (secreted chemokines that attract Treg cells), IL-10 receptor (IL10Ra), p38 (MAPK14), STAT3, TNFSF4 (OX40L), microRNA miR-155, miR-146a, anti-apoptotic genes, including but not limited to BAX, BAC, Casp8, and P53; and combinations thereof.


Particularly preferred target genes are those shown in Table 1.


Ex-vivo treatment, as used herein, includes cells treated with oligonucleotide agents that modulate expression of target genes involved in immune suppression mechanisms. The oligonucleotide agent may be an antisense oligonucleotide, including, for example, locked nucleotide analogs, methyoxyethyl gapmers, cyclo-ethyl-B nucleic acids, siRNAs, miRNAs, miRNA inhibitors, morpholinos, PNAs, and the like. Preferably, the oligonucleotide agent is an sdRNAi agent targeting a gene involved in an immune suppression mechanism. The cells treated in vitro by the oligonucleotide agent may be immune cells expanded in vitro, and can be cells obtained from a subject having a proliferative or infectious disease. Alternatively, the cells or tissue may be treated in vivo, for example by in situ injection and/or intravenous injection.


Oligonucleotide or oligonucleotide agent, as used herein, refers to a molecule containing a plurality of “nucleotides” including deoxyribonucleotides, ribonucleotides, or modified nucleotides, and polymers thereof in single- or double-stranded form. The term encompasses nucleotides containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs).


Nucleotide, as used herein to include those with natural bases (standard), and modified bases well known in the art. The nucleotides can be unmodified or modified at the sugar, phosphate and/or base moiety, (also referred to interchangeably as nucleotide analogs, modified nucleotides, non-natural nucleotides, non-standard nucleotides and other; see, for example, PCT Publications No. WO 92/07065 and WO 93/15187. Non-limiting examples of base modifications that can be introduced into nucleic acid molecules include, hypoxanthine, purine, pyridin-4-one, pyridin-2-one, phenyl, pseudouracil, 2,4,6-trimethoxy benzene, 3-methyl uracil, dihydrouridine, naphthyl, aminophenyl, 5-alkylcytidines (e.g., 5-methylcytidine), 5-alkyluridines (e.g., ribothymidine), 5-halouridine (e.g., 5-bromouridine) or 6-azapyrimidines or 6-alkylpyrimidines (e.g. 6-methyluridine and pseudouridine), propyne, and others. The phrase “modified bases” includes nucleotide bases other than adenine, guanine, cytosine, and uracil, modified for example, at the 1′ position or their equivalents.


As used herein, the term “deoxyribonucleotide” encompasses natural and synthetic, unmodified and modified deoxyribonucleotides. Modifications include changes to the sugar moiety, to the base moiety and/or to the linkages between deoxyribonucleotide in the oligonucleotide.


As used herein, the term “RNA” defines a molecule comprising at least one ribonucleotide residue. The term “ribonucleotide” defines a nucleotide with a hydroxyl group at the 2′ position of a □-D-ribofuranose moiety. The term RNA includes double-stranded RNA, single-stranded RNA, isolated RNA such as partially purified RNA, essentially pure RNA, synthetic RNA, recombinantly produced RNA, as well as altered RNA that differs from naturally occurring RNA by the addition, deletion, substitution and/or alteration of one or more nucleotides. Nucleotides of the RNA molecules described herein may also comprise non-standard nucleotides, such as non-naturally occurring nucleotides or chemically synthesized nucleotides or deoxynucleotides. These altered RNAs can be referred to as analogs or analogs of naturally-occurring RNA.


As used herein, “modified nucleotide” refers to a nucleotide that has one or more modifications to the nucleoside, the nucleobase, pentose ring, or phosphate group. For example, modified nucleotides exclude ribonucleotides containing adenosine monophosphate, guanosine monophosphate, uridine monophosphate, and cytidine monophosphate and deoxyribonucleotides containing deoxyadenosine monophosphate, deoxyguanosine monophosphate, deoxythymidine monophosphate, and deoxycytidine monophosphate. Modifications include those naturally-occurring that result from modification by enzymes that modify nucleotides, such as methyltransferases.


Modified nucleotides also include synthetic or non-naturally occurring nucleotides. Synthetic or non-naturally occurring modifications in nucleotides include those with 2′ modifications, e.g., 2′-O-methyl, 2′-methoxyethoxy, 2′-fluoro, 2′-allyl, 2′-O-[2-(methylamino)-2-oxoethyl], 4′-thio, 4′-CH2-O-2′-bridge, 4′-(CH2) 2-O-2′-bridge, 2′-LNA, and 2′-O—(N-methylcarbamate) or those comprising base analogs. In connection with 2′-modified nucleotides as described for the present disclosure, by “amino” is meant 2′-NH2 or 2′-O—NH2, which can be modified or unmodified. Such modified groups are described, for example, in U.S. Pat. Nos. 5,672,695 and 6,248,878.


As used herein, “microRNA” or “miRNA” refers to a nucleic acid that forms a single-stranded RNA, which single-stranded RNA has the ability to alter the expression (reduce or inhibit expression; modulate expression; directly or indirectly enhance expression) of a gene or target gene when the miRNA is expressed in the same cell as the gene or target gene. In one embodiment, a miRNA refers to a nucleic acid that has substantial or complete identity to a target gene and forms a single-stranded miRNA. In some embodiments miRNA may be in the form of pre-miRNA, wherein the pre-miRNA is double-stranded RNA. The sequence of the miRNA can correspond to the full length target gene, or a subsequence thereof. Typically, the miRNA is at least about 15-50 nucleotides in length (e.g., each sequence of the single-stranded miRNA is 15-50 nucleotides in length, and the double stranded pre-miRNA is about 15-50 base pairs in length). In some embodiments the miRNA is 20-30 base nucleotides. In some embodiments the miRNA is 20-25 nucleotides in length. In some embodiments the miRNA is 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length.


Target gene, as used herein, includes genes known or identified as modulating the expression of a gene involved in an immune resistance mechanism, and can be one of several groups of genes, such as suppressor receptors, for example, CTLA4 and PD1; cytokine receptors that inactivate immune cells, for example, TGF-beta receptor, LAG3, Tim3, adenosine A2a receptor, and IL10 receptor; regulatory genes for example, STAT3, p38, mir155 and mir146a; and apoptosis factors involved in cascades leading to cell death, for example, P53, Casp8, BAX, BAC, and combinations thereof. See also preferred target genes listed in Table 1.


As used herein, small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, defines a group of double-stranded RNA molecules, comprising sense and antisense RNA strands, each generally of about 1022 nucletides in length, optionally including a 3′ overhang of 1-3 nucleotides. siRNA is active in the RNA interference (RNAi) pathway, and interferes with expression of specific target genes with complementary nucleotide sequences.


As used herein, sdRNA refers to “self-deliverable” RNAi agents, that are formed as an asymmetric double-stranded RNA-antisense oligonucleotide hybrid. The double stranded RNA includes a guide (sense) strand of about 19-25 nucleotides and a passenger (antisense) strand of about 10-19 nucleotides with a duplex formation that results in a single-stranded phosphorothiolated tail of about 5-9 nucleotides.


The RNA sequences may be modified with stabilizing and hydrophobic modifications such as sterols, for example, cholesterol, vitamin D, naphtyl, isobutyl, benzyl, indol, tryptophane, and phenyl, which confer stability and efficient cellular uptake in the absence of any transfection reagent or formulation. Immune response assays testing for IFN-induced proteins indicate sdRNAs produce a reduced immunostimulatory profile as compared other RNAi agents. See, for example, Byrne et al., December 2013, J. Ocular Pharmacology and Therapeutics, 29(10): 855-864.


Cell-Based Immunotherapeutics

In general, cells are obtained from subjects with proliferative disease such as cancer, or an infectious disease such as viral infection. The obtained cells are treated directly as obtained or may be expanded in cell culture prior to treatment with oligonucleotides. The cells may also be genetically modified to express receptors that recognize specific antigens expressed on the tumor cell surface (CAR) or intracellular tumor antigens presented on MHC class I (TCR).


Oligonucleotide Agents

Antisense Oligonucleotides


Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a double stranded RNA molecule, generally 19-25 base pairs in length. siRNA is used in RNA interference (RNAi), where it interferes with expression of specific genes with complementary nucleotide sequences.


Double stranded DNA (dsRNA) can be generally used to define any molecule comprising a pair of complementary strands of RNA, generally a sense (passenger) and antisense (guide) strands, and may include single-stranded overhang regions. The term dsRNA, contrasted with siRNA, generally refers to a precursor molecule that includes the sequence of an siRNA molecule which is released from the larger dsRNA molecule by the action of cleavage enzyme systems, including Dicer.


sdRNA (self-deliverable) are a new class of covalently modified RNAi compounds that do not require a delivery vehicle to enter cells and have improved pharmacology compared to traditional siRNAs. “Self-deliverable RNA” or sdRNA is a hydrophobically modified RNA interfering-antisense hybrid, demonstrated to be highly efficacious in vitro in primary cells and in vivo upon local administration. Robust uptake and/or silencing without toxicity has been demonstrated in several tissues including dermal, muscle, tumors, alveolar macrophages, spinal cord, and retina cells and tissues. In dermal layer and retina, intradermal and intra-vitreal injection of sdRNA at mg doses induced potent and long lasting silencing.


While sdRNA is a superior functional genomics tool, enabling RNAi in primary cells and in vivo, it has a relatively low hit rate as compared to conventional siRNAs. While the need to screen large number of sequences per gene is not a limiting factor for therapeutic applications, it severely limits the applicability of sdRNA technology to functional genomics, where cost effective compound selection against thousands of genes is required. To optimize sdRNA structure, chemistry, targeting position, sequence preferences, and the like, a proprietary algorithm has been developed and utilized for sdRNA potency prediction. Availability of sdRNA reagents that are active in all cell types ex vivo and in vivo enables functional genomics and target stratification/validation studies.


Proprietary Algorithm

SdRNA sequences were selected based on a proprietory selection algorithm, designed on the basis of a functional screen of over 500 sdRNA sequences in the luciferase reporter assay of HeLa cells. Regression analysis of was used to establish a correlation between the frequency of occurrence of specific nucleotide and modification at any specific position in sdRNA duplex and its functionality in gene suppression assay. This algorithm allows prediction of functional sdRNA sequences, defined as having over 70% knockdown μM concentration, with a probability over 40%.


Table 1 shows predictive gene targets identified using the proprietary algorithm and useful in the cellular immunotherapeutic compositions and methods described herein.


Delivery of RNAi Agents

BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; Applic BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; ation of RNAi technology to functional genomics studies in prim BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; ary cells and in vivo is limited by requirements to formulate siRNAs into lipids or use of other cell delivery techniques. To circumvent delivery problems, the self-deliverable RNAi technology provides a method of directly transfecting cells with the RNAi agent, without the need for additional formulations or techniques. The ability to transfect hard-to-transfect cell lines, high in vivo activity, and simplicity of use, are characteristics of the compositions and methods that present significant functional advantages over traditional siRNA-based techniques. The sdRNAi technology allows direct delivery of chemically synthesized compounds to a wide range of primary cells and tissues, both ex-vivo and in vivo.


To enable BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; self-delivery, traditional siRNA molecules require a substantial reduction in size and the introduction of extensive chemical modifications which are not well tolerated by RNAi machinery, resulting in extremely low probability of finding active molecules (low hit rate). In contrast, the sdRNA technology allows efficient RNAi delivery to primary cells and tissues in vitro and in vivo, with demonstrated silencing efficiency in humans.


The general structure of sdRNA molecules is shown in FIG. 1. sdRNA are formed as hydrophobically-modified siRNA-antisense oligonucleotide hybrid structures, and are disclosed, for example in Byrne et al., Dec. 2013, J. Ocular Pharmacology and Therapeutics, 29(10): 855-864.


Oligonucleotide Modifications: 2′-O-Methyl, 2′-O-Fluro, Phosphorothioate


The oligonucleotide agents preferably comprise one or more modification to increase stability and/or effectiveness of the therapeutic agent, and to effect efficient delivery of the oligonucleotide to the cells or tissue to be treated. Such modifications include at least one


BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; 2′-O-methyl modification, at least one 2′-O-Fluro modification, and at least one diphosphorothioate modification. Additionally, the oligonucleotide is modified to include one or more hydrophobic modification selected from sterol, cholesterol, vitamin D, naphtyl, isobutyl, benzyl, indol, tryptophane, and phenyl. The hydrophobic modification is preferably a sterol.


Delivery of Oligonucleotide Agents to Cells


The oligonucleotides may be delivered to the cells in combination with a transmembrane delivery system, preferably comprising lipids, viral vectors, and the like. Most preferably, the oligonucleotide agent is a self-delivery RNAi agent, that does not require any delivery agents.


Combination Therapy


Most preferred for this invention, e.g. particular combinations of elements and/or alternatives for specific needs. This objective is accomplished by determining the appropriate genes to be targeted by the oligonucleotide in order to silence immune suppressor genes and using the proprietary algorithm to select the most appropriate target sequence.


It is preferred that the immunotherapeutic cell be modified to include multiple oligonucleotide agents targeting a variety of genes involved in immune suppression and appropriate for the selected target disease and genes. For example, a preferred immunotherapeutic cell is a T-Cell modified to knock-down both CTLA-4 and PD-1


Additional combinations of oligonucleotides to related genes involved in immune suppression include varied combinations of the selected target sequences of Table 1.


BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; Preferred BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; therapeutic combinations include cells engineered to knock down gene expression of the following target genes:


a) CTLA4 and PD1


b) STAT3 and p38


c) PD1 and BaxPD1, CTLA4, Lag-1, ILM-3, and TP53


d) PD1 and Casp8


e) PD1 and IL10R


The therapeutic compositions described herein are useful to treat a subject suffering from a proliferation disorder or infectious disease. In particular, the immunotherapeutic composition is useful to treat disease characterized by suppression of the subjects immune mechanisms. The sdRNA agents described herein are specifically designed to target genes involved in diseases-associated immune suppression pathways.


Methods of treating a subject comprise administering to a subject in need thereof, an immunogenic composition comprising an sdRNAi agent capable of inhibiting expression of genes involved in immune suppression mechanisms, for example, any of the genes listed in Table 1 or otherwise described herein.


EXAMPLES

The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in any appended claims.


Example 1
Self-Deliverable RNAi Immunotherapeutic Agents

Immunotherapeutic agents described herein were produced by treating cells with particular sdRNA agents designed to target and knock down specific genes involved in immune suppression mechanisms. In particular, the following cells and cell lines have been successfully treated with sdRNA and were shown to knock down at least 70% of targeted gene expression in the specified human cells.


These studies demonstrated utility of these immunogenic agents to suppress expression of target genes in cells normally very resistant to transfection, and suggests the agents are capable of reducing expression of target cells in any cell type.












TABLE 2






Target




Cell Type
Gene
sdRNA target sequence
% Knock Down







Primary human
TP53 (P53)
GAGTAGGACATACCAGCTTA
>70% 2 uM


T-cells

(SEQ ID NO: 1001)






Primary human
MAP4K4
AGAGTTCTGTGGAAGTCTA
>70% 2 uM


T-cells

(SEQ ID NO: 1002)






Jurkat T-lymphoma
MAP4K4
AGAGTTCTGTGGAAGTCTA
100% 1 uM 72h


cells

(SEQ ID NO: 1003)






NK-92 cells
MAP4K4
AGAGTTCTGTGGAAGTCTA
 80% 2 uM 72h




(SEQ ID NO: 1004)






NK-92 cells
PPIB
ACAGCAAATTCCATCGTGT
>75% 2 uM 72h




(SEQ ID NO: 1005)






NK-92 cells
GADPH
CTGGTAAAGTGGATATTGTT
>90% 2 uM 72h




(SEQ ID NO: 1006)






HeLa Cells
MAP4K4
AGAGTTCTGTGGAAGTCTA
>80% 2 uM 72h




(SEQ ID NO: 1007)









Example 2
Oligonucleotide Sequences for Inhibiting Expression of Target Genes

A number of human genes were selected as candidate target genes due to involvement in immune suppression mechanisms, including the following genes shown in Table 3:



















BAX
BAK1
CASP8



(NM_004324)
(NM_001188)
(NM_001228)



ADORA2A
CTLA4
LAG3



(NM_000675)
(NM_005214)
(NM002286)



PDCD1
TGFBR1
HAVCR2



(NM_NM005018)
(NM-004612)
(NM_032782)



CCL17
CCL22
DLL2



(NM_002987)
(NM_002990)
(NM_005618)



FASLG
CD274
IDO1



(NM_000639)
(NM_001267706)
(NM_002164)



IL10RA
JAG1
JAG2



(NM_001558)
(NM_000214)
(NM_002226)



MAPK14
SOCS1
STAT3



(NM_001315)
(NM_003745)
(NM_003150)



TNFA1P3
TNFSF4
TYRO2



(NM_006290)
(NM_003326)
(NM_006293)



TP53



(NM_000546)










Each of the genes listed above was analyzed using a proprietary algorithm to identify preferred sdRNA targeting sequences and target regions for each gene for prevention of immunosuppression of antigen-presenting cells and T-cells. Results are shown in Table 1.


Example 3
Knock-Down of Target Gene (GAPDH) by sdRNA in HeLa Cells

HeLa cells (ATCC CRM-CCL-2) were subcultured 24 hours before transfection and kept log phase. The efficacy of several GAPDH sdRNAs was tested by qRT-PCR, including G13 sdRNA listed in the Table 1.


Solutions of GAPDH, MAP4K4 (positive control) and NTC (non-targeting control) sdRNA with twice the required concentration were prepared in serum-free EMEM medium, by diluting 100 μM oligonucleotides to 0.2-4 μM.


The total volume of medium for each oligo concentration point was calculated as [50 μl/well]×[number of replicates for each serum point]. Oligonucleotides were dispensed into a 96 well plate at 50 μl/well.


Cells were collected for transfection by trypsinization in a 50 ml tube, washed twice with medium containing 10% FBS without antibiotics, spun down at 200×g for 5 minutes at room temperature and resuspended in EMEM medium containing twice the required amount of FBS for the experiment (6%) and without antibiotics. The concentration of the cells was adjusted to 120,000/ml to yield a final concentration of 6,000 cells/50 μl/well. The cells were dispensed at 50 μl/well into the 96-well plate with pre-diluted oligos and placed in the incubator for 48 hours.


Gene Expression Analysis in HeLa Cells Using qRT-PCR

RNA was isolated from transfected HeLa cells using the PureLink™ Pro96 total RNA purification Kit (Ambion, Cat. No. 12173-011A), with Quanta qScript XLT One-Step RT-qPCR ToughMix, ROX (VWR, 89236672). The isolated RNA was analyzed for gene expression using the Human MAP4K4-FAM (Taqman Hs0377405_ml) and Human GAPDH-VIC (Applied Biosystems, Cat. No. 4326317E) gene expression assays.


The incubated plate was spun down and washed once with 100 μl/well PBS and lysed with 60 μl/well buffer provided in the kit. RNA isolation was conducted according to the manufacturer's instructions, and the RNA was eluted with 100 μl RNase-free water, and used undiluted for one-step qRT-PCR.


Dilutions of non-transfected (NT) cells of 1:5 and 1:25 were prepared for the standard curve using RNase-free water. qRT-PCR was performed by dispensing 9 μl/well into a low profile PCR plate and adding 1 μl RNA/well from the earlier prepared RNA samples. After brief centrifugation, the samples were placed in the real-time cycler and amplified using the settings recommended by the manufacturer.


GAPDH gene expression was measured by qPCR, normalized to MAP4K4 and plotted as percent of expression in the presence of non-targeting sdRNA. The results were compared to the normalized according to the standard curve. As shown in FIG. 2, several sdRNA agents targeting GAPDH or MAP4K4 significantly reduced their mRNA levels leading to more than 80-90% knock-down with 1 μM sdRNA. (See FIG. 2).


Example 4
Silencing of Multiple Targets by sdRNA in NK-92 Cells

NK-92 cells were obtained from Conqwest and subjected to one-step RT-PCR analysis without RNA purification using the FastLane Cell Multiplex Kit (Qiagen, Cat. No. 216513). For transfection, NK-92 cells were collected by centrifugation and diluted with RPMI medium containing 4% FBS and IL2 1000 U/ml and adjusted to 1,000,000 cells/ml.


Multiple sdRNA agents targeting MAP4K4, PPIB or GADPH were diluted separately in serum-free RPMI medium to 4 μM and individually aliquoted at 50 μl/well into a 96-well plate. The prepared cells were then added at 50 μl cells/well to the wells with either MAP4K4, PPIB or GAPDH sdRNAs. Cells were incubated for 24, 48, or 72 hours.


At the specified timepoints, the plated transfected cells were washed once with 100 μl/well PBS and once with FCW buffer. After removal of supernatant, cell processing mix of 23.5 μl FCPL and 1.5 μl gDNA wipeout solution was added to each well and incubated for five minutes at room temperature. Lysates were then transferred to PCR strips and heated at 75° C. for five minutes.


To setup qRT-PCR, the lysates were mixed with QuantiTect reagents from the FastLane Cell Multiplex Kit and with primer probe mix for MAP4K4-FAM/GAPDH-VIC or PPIB-FAM/GAPDH-VIC. The following Taqman gene expression assays were used: human MAP4K4-FAM (Taqman, Hs00377405_ml), human PPIB-FAM (Taqman, Hs00168719_ml) and human GAPDH-VIC (Applied Biosystems, cat. No 4326317E).


A volume of 9 μl/well of each reaction mix was dispensed into a low profile PCR plate. One μl lysate per well was added from the previously prepared lysates. The samples were amplified using the settings recommended by the manufacturer.


Results shown in FIG. 3 demonstrate significant silencing of each of the multiple targets, MAP4K4, PPIB, and GADPH by sdRNA agents transfected into NK-92 cells, including greater than 75% inhibition of expression of each target within 24 to 72 hours of incubation.


Example 5
Silencing of TP53 and MAP4K4 by sdRNA in Human Primary T-Cells

Primary human T-cells were obtained from AllCells (CA) and cultured in complete RPMI medium containing 1000 IU/ml IL2. Cells were activated with anti-CD3/CD28 Dynabeads (Gibco, 11131) according to the manufacturer's instructions for at least 4 days prior to the transfection. Cells were collected by brief vortexing to dislodge the beads from cells and separating them using the designated magnet.


sdRNA agents targeting TP53 or MAP4K4 were prepared by separately diluting the sdRNAs to 0.2-4 μM in serum-free RPMI per sample (well) and individually aliquoted at 100 μl/well of 96-well plate. Cells were prepared in RPMI medium containing 4% FBS and IL2 2000 U/ml at 1,000,000 cells/ml and seeded at 100 μl/well into the 96-well plate with pre-diluted sdRNAs.


At the end of the transfection incubation period, the plated transfected cells were washed once with 100 μl/well PBS and processed with FastLane Cell Multiplex Kit reagents essentially as described for the Example 4 and according to the manufacturer's instructions. Taqman gene expression assays were used in the following combinations: human MAP4K4-FAM/GAPDH-VIC or human TP53-FAM (Taqman, Hs01034249 ml)/GAPDH-VIC. A volume of 18 μl/well of each reaction mix was combined with 2 μl lysates per well from the previously prepared lysates. The samples were amplified as before (see Example 4).


Results shown in FIG. 4 demonstrate significant silencing of both MAP4K4 and TP53 by sdRNA agents transfected into T-cells, reaching 70-80% inhibition of gene expression with 1-2 μM sdRNA.


Example 6
Immunotherapeutic Combination of sdRNAs for Treating Melanoma

Melanomas utilize at least two particular pathways to suppress immune function of T-cells, and each involves both PD1 and CTLA4. Melanoma tumors expressing the PD1 ligand, PD1L, can be targeted with T-cells pretreated ex-vivo with sd-RNAi agents specifically designed to target PD1 and interfere with PD1 expression. PD1 is also known as PDCD1, and particular targeting sequences and gene regions identified and predicted to be particularly functional in sdRNA mediated suppression, are shown in Table 1 for PDCD1 (NM_005018) and for CTLA4 (NM005214).


Treatment of melanoma tumors can be effected by providing to melanoma cells T-cells, such as tumor-infiltrating lymphocytes, pretreated ex-vivo with a combination of sdRNAs targeting PD1/PDCD1 and CTLA4, for example, targeting one or more of the twenty target sequences listed for PD1/PDCD1 and/or CTLA4. A combination of sdRNAs targeting PD1/PDCD1 and FASLG (NM_000639) and/or CTLA4, can increase T-cell toxicity in tumors expressing both PD1L and FAS.


In addition to and in combination with anti-CTLA-4 and anti-PD1 sdRNAs, T-cells used for the immunotherapy of melanoma can also be treated with sdRNA targeting other genes implicated in immunosuppression by the tumor. These receptors include, but are not limited to TGF-beta type 1 and 2 receptors, BTLA (binder of herpes virus entry indicator (HVEM) expressed on melanoma cells), and receptors of integrins expressed by myeloid derived suppressor cells (MDSC), such as CD11b, CD18, and CD29.


For tumors whose profile of expressed suppressive proteins is unknown, any combination of sdRNAs targeting PD1/PDCD1 and any one of know suppressing receptors may be helpful to reduce immune suppression and increase therapeutic efficacy.


Example 7
Combination of sdRNAs for Mitigating Immune Cell Suppression

T-cell or dendritic cell suppression may be modulated by various cytokines, such as IL10 and/or TGF beta. Suppressing corresponding receptors in T-cells and dendritic cells may be beneficial for their activity. For example, providing a combination of anti-PD1 with anti-IL10R sdRNAs is expected to mitigate cytokine induced suppression of T-cells and dendritic cells, as compared with anti-PD1 alone.


Example 8
Combination of sdRNAs for Mitigating Immune Cell Suppression

When the mechanism of tumor suppression of immune cells may be not known, use of sdRNA agents to suppress genes involved in apoptosis (programmed cell death), such as p53, Casp8 or other gene activating apoptosis may be beneficial to increase immune cell activity. Combination of an anti-receptor sdRNAs with sdRNAs against pro-apoptotic genes can additionally reduce death of immune cells and thus increase their activity. For example, combination of anti-PD1 with anti-p53 sdRNAs may additionally protect T-cells from suppression by blocking activation of apoptosis.


Example 9
Silencing of CTLA-4 and PDCD1 by sdRNA in Human Primary T-Cells

Primary human T-cells were cultured and activated essentially as described in Example 5. sdRNA agents targeting PDCD1 and CTLA-4 were prepared by separately diluting the sdRNAs to 0.4-4 μM in serum-free RPMI per sample (well) and aliquoted at 100 μl/well of 96-well plate. Cells were prepared in RPMI medium containing 4% FBS and IL2 2000 U/ml at 1,000,000 cells/ml and seeded at 100 μl/well into the 96-well plate with pre-diluted sdRNAs.


72 h later, the transfected cells were washed once with 100 μl/well PBS and processed with FastLane Cell Multiplex Kit reagents essentially as described for the Example 4 and according to the manufacturer's instructions. Taqman gene expression assays were used in the following combinations: human PDCD1-FAM (Taqman, Hs01550088_ml)/GAPDH-VIC or human CTLA4-FAM (Taqman, Hs03044418_ml)/GAPDH-VIC. A volume of 18 μl/well of each reaction mix was combined with 2 μl lysates per well from the previously prepared lysates. The samples were amplified as before (see Example 4).


Results shown in FIG. 5 demonstrate significant silencing of PDCD1 and CTLA-4 by using combined sdRNA agents delivered to T-cells, obtaining greater than 60-70% inhibition of gene expression with 2 μM sdRNA.


Example 10
Reduction of CTLA-4 and PDCD1 Surface Expression by sdRNA in Human Primary T-Cells

Primary human T-cells were cultured and activated essentially as described in Example 5.


sdRNA agents targeting CTLA-4 or PD1 were separately diluted to 5 μM in serum-free RPMI per sample (well) and aliquoted at 250 μl/well to 24-well plates. Cells mixed with magnetic beads were collected and adjusted to 500,000 cells in 250 μl RPMI medium containing 4% FBS and IL2 2000 IU/ml. Cells were seeded at 250 μl/well to the prepared plate containing pre-diluted sdRNAs. 24 hours later FBS was added to the cells to obtain 10% final concentration.


After 72 hours of incubation, the transfected cells were collected, separated from the activation beads using the magnet, as described in Example 5. Cells were washed with PBS, spun down and resuspended in blocking buffer (PBS with 3% BSA) at 200,000 cells/50 μl/sample.


Antibody dilutions were prepared in the blocking buffer. The antibodies were mixed in two combinations: anti-PD1/anti-CD3 (1:100 dilutions for both antibodies) and anti-CTLA4/anti-CD3 (10 μl/106 cells for anti-CTLA4; 1:100 for CD3). The following antibodies were used: rabbit monoclonal [SP7] to CD3 (Abcam, ab16669); mouse monoclonal [BNI3] to CTLA4 (Abcam, ab33320) and mouse monoclonal [NAT105] to PD1 (Abcam, ab52587). Cells were mixed with the diluted antibodies and incubated 30 minutes on ice. Cells were then washed twice with PBS containing 0.2% Tween-20 and 0.1% sodium azide.


Secondary antibodies were diluted in blocking buffer and mixed together resulting in a final dilution 1:500 for anti-mouse Cy5 (Abcam, ab97037) and 1:2000 for anti-rabbit Alexa-488 (Abcam, ab150077). Cells were mixed with the diluted antibodies at 1:1 ratio and incubated 30 minutes on ice. Cells were washed as before, and diluted in 500 μl PBS per tube. The data was acquired immediately on the Attune Acoustic Focusing Cytometer (Applied Biosystems).


As shown in FIG. 6, sdRNA efficiently reduced surface expression of CTLA-4 and PD1 in activated Human Primary T cells.


Example 11
MAP4K4 sdRNA Delivery into CD3- and CD19-Positive Subsets of Human Peripheral Blood Mononuclear Cells (PBMCs)

PBMCs were cultured in complete RPMI supplemented with 1.5% PHA solution and 500 U/ml IL2. For transfection, PBMCs were collected by centrifugation and diluted with RPMI medium containing 4% FBS and IL2 1000 U/ml and seeded to 24-well plate at 500,000 cells/well.


MAP4K4 sdRNA labeled with cy3 was added to the cells at 0.1 μM final concentration. After 72 hours of incubation, the transfected cells were collected, washed with PBS, spun down and diluted in blocking buffer (PBS with 3% BSA) at 200,000 cells/50 μl/sample.


Antibody dilutions were prepared in the blocking buffer as following: 1:100 final dilution anti-CD3 (Abcam, ab16669) and anti-CD19 at 10 μl/1,000,000 cells (Abcam, ab31947). Cells were mixed with the diluted antibodies and incubated 30 min on ice. Cells were then washed twice with PBS containing 0.2% Tween-20 and 0.1% sodium azide.


Secondary antibodies were diluted in the blocking buffer in a final dilution 1:500 for anti-mouse Cy5 (Abcam, ab97037) and 1:2000 for anti-rabbit Alexa-488 (Abcam, ab150077). Cells were mixed with the diluted antibodies at 1:1 ratio and incubated 30 min on ice. Cells were washed as before, and diluted in 500 μl PBS per tube. The data was acquired immediately on the Attune Acoustic Focusing Cytometer (Applied Biosystems).



FIG. 7 shows efficient transfection over 97% of CD3-positive (t cells) and over 98% CD19-positive (B-cells) subsets in Human Peripheral Blood Mononuclear Cells (PBMCs).









TABLE 1





Targeting sequences and gene regions of genes targeted with sdRNAs to prevent


immunosuppression of antigen-presenting cells and T-cells.
















Accession:
NM_004324


HUGO gene
BAX


symbol:


















SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
BAX_NM_004324_human_835
GAATTGCTCAAGTTCATTGA
 1
CCTCCACTGCCTCTGGAATTGCTCAAG
21






TTCATTGATGACCCTCTG






 2
BAX_NM_004324_human_157
TTCATCCAGGATCGAGCAGG
 2
CTTTTGCTTCAGGGTTTCATCCAGGAT
22






CGAGCAGGGCGAATGGGG






 3
BAX_NM_004324_human_684
ATCATCAGATGTGGTCTATA
 3
TCTCCCCATCTTCAGATCATCAGATGT
23






GGTCTATAATGCGTTTTC






 4
BAX_NM_004324_human_412
TACTTTGCCAGCAAACTGGT
 4
GTTGTCGCCCTTTTCTACTTTGCCAGCA
24






AACTGGTGCTCAAGGCC






 5
BAX_NM_004324_human_538
GGTTGGGTGAGACTCCTCAA
 5
ATCCAAGACCAGGGTGGTTGGGTGAG
25






ACTCCTCAAGCCTCCTCAC






 6
BAX_NM_004324_human_411
CTACTTTGCCAGCAAACTGG
 6
GGTTGTCGCCCTTTTCTACTTTGCCAGC
26






AAACTGGTGCTCAAGGC






 7
BAX_NM_004324_human_706
GCGTTTTCCTTACGTGTCTG
 7
GATGTGGTCTATAATGCGTTTTCCTTA
27






CGTGTCTGATCAATCCCC






 8
BAX_NM_004324_human_716
TACGTGTCTGATCAATCCCC
 8
ATAATGCGTTTTCCTTACGTGTCTGATC
28






AATCCCCGATTCATCTA






 9
BAX_NM_004324_human_150
TCAGGGTTTCATCCAGGATC
 9
AGGGGCCCTTTTGCTTCAGGGTTTCAT
29






CCAGGATCGAGCAGGGCG






10
BAX_NM_004324_human_372_
TGACGGCAACTTCAACTGGG
10
AGCTGACATGTTTTCTGACGGCAACTT
30






CAACTGGGGCCGGGTTGT






11
BAX_NM_004324_human_356
CAGCTGACATGTTTTCTGAC
11
TCTTTTTCCGAGTGGCAGCTGACATGT
31






TTTCTGACGGCAACTTCA






12
BAX_NM_004324_human_357
AGCTGACATGTTTTCTGACG
12
CTTTTTCCGAGTGGCAGCTGACATGTT
32






TTCTGACGGCAACTTCAA






13
BAX_NM_004324_human_776
CACTGTGACCTTGACTTGAT
13
AGTGACCCCTGACCTCACTGTGACCTT
33






GACTTGATTAGTGCCTTC






14
BAX_NM_004324_human_712
TCCTTACGTGTCTGATCAAT
14
GTCTATAATGCGTTTTCCTTACGTGTCT
34






GATCAATCCCCGATTCA






15
BAX_NM_004324_human_465
GATCAGAACCATCATGGGCT
15
CAAGGTGCCGGAACTGATCAGAACCA
35






TCATGGGCTGGACATTGGA






16
BAX_NM_004324_human_642
CTTCTGGAGCAGGTCACAGT
16
TCTGGGACCCTGGGCCTTCTGGAGCA
36






GGTCACAGTGGTGCCCTCT






17
BAX_NM_004324_human_117
TGAGCAGATCATGAAGACAG
17
GGGGCCCACCAGCTCTGAGCAGATCA
37






TGAAGACAGGGGCCCTTTT






18
BAX_NM_004324_human_700
TATAATGCGTTTTCCTTACG
18
TCATCAGATGTGGTCTATAATGCGTTT
38






TCCTTACGTGTCTGATCA






19
BAX_NM_004324_human_673
CCCATCTTCAGATCATCAGA
19
CAGTGGTGCCCTCTCCCCATCTTCAGA
39






TCATCAGATGTGGTCTAT






20
BAX_NM_004324_human_452
AGGTGCCGGAACTGATCAGA
20
AGGCCCTGTGCACCAAGGTGCCGGAA
40






CTGATCAGAACCATCATGG





Accession:
NM_001188






HUGO
BAK1






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
BAK1_NM_001188_human_1813
TGGTTTGTTATATCAGGGAA
41
ACAGGGCTTAGGACTTGGTTTGTTA
61






TATCAGGGAAAAGGAGTAGG






 2
BAK1_NM_001188_human_911
TGGTACGAAGATTCTTCAAA
42
TGTTGGGCCAGTTTGTGGTACGAAG
62






ATTCTTCAAATCATGACTCC






 3
BAK1_NM_001188_human_1820
TTATATCAGGGAAAAGGAGT
43
TTAGGACTTGGTTTGTTATATCAGG
63






GAAAAGGAGTAGGGAGTTCA






 4
BAK1_NM_001188_human_1678
TCCCTTCCTCTCTCCTTATA
44
GTCCTCTCAGTTCTCTCCCTTCCTCTC
64






TCCTTATAGACACTTGCT






 5
BAK1_NM_001188_human_926
TCAAATCATGACTCCCAAGG
45
TGGTACGAAGATTCTTCAAATCATG
65






ACTCCCAAGGGTGCCCTTTG






 6
BAK1_NM_001188_human_1818
TGTTATATCAGGGAAAAGGA
46
GCTTAGGACTTGGTTTGTTATATCA
66






GGGAAAAGGAGTAGGGAGTT






 7
BAK1_NM_001188_human_915
ACGAAGATTCTTCAAATCAT
47
GGGCCAGTTTGTGGTACGAAGATTC
67






TTCAAATCATGACTCCCAAG






 8
BAK1_NM_001188_human_912
GGTACGAAGATTCTTCAAAT
48
GTTGGGCCAGTTTGTGGTACGAAGA
68






TTCTTCAAATCATGACTCCC






 9
BAK1_NM_001188_human_2086
GAAGTTCTTGATTCAGCCAA
49
GGGGGTCAGGGGGGAGAAGTTCTT
69






GATTCAGCCAAATGCAGGGAG






10
BAK1_NM_001188_human_620
CCTATGAGTACTTCACCAAG
50
CCACGGCAGAGAATGCCTATGAGTA
70






CTTCACCAAGATTGCCACCA






11
BAK1_NM_001188_human_1823
TATCAGGGAAAAGGAGTAGG
51
GGACTTGGTTTGTTATATCAGGGAA
71






AAGGAGTAGGGAGTTCATCT






12
BAK1_NM_001188_human_1687
CTCTCCTTATAGACACTTGC
52
GTTCTCTCCCTTCCTCTCTCCTTATAG
72






ACACTTGCTCCCAACCCA






13
BAK1_NM_001188_human_1810
ACTTGGTTTGTTATATCAGG
53
ACTACAGGGCTTAGGACTTGGTTTG
73






TTATATCAGGGAAAAGGAGT






14
BAK1_NM_001188_human_1399
AAGATCAGCACCCTAAGAGA
54
ATTCAGCTATTCTGGAAGATCAGCA
74






CCCTAAGAGATGGGACTAGG






15
BAK1_NM_001188_human_654
GTTTGAGAGTGGCATCAATT
55
GATTGCCACCAGCCTGTTTGAGAGT
75






GGCATCAATTGGGGCCGTGT






16
BAK1_NM_001188_human_1875
GACTATCAACACCACTAGGA
56
TCTAAGTGGGAGAAGGACTATCAAC
76






ACCACTAGGAATCCCAGAGG






17
BAK1_NM_001188_human_1043
AGCTTTAGCAAGTGTGCACT
57
CCTCAAGAGTACAGAAGCTTTAGCA
77






AGTGTGCACTCCAGCTTCGG






18
BAK1_NM_001188_human_1846
TTCATCTGGAGGGTTCTAAG
58
AAAAGGAGTAGGGAGTTCATCTGG
78






AGGGTTCTAAGTGGGAGAAGG






19
BAK1_NM_001188_human_2087
AAGTTCTTGATTCAGCCAAA
59
GGGGTCAGGGGGGAGAAGTTCTTG
79






ATTCAGCCAAATGCAGGGAGG






20
BAK1_NM_001188_human_1819
GTTATATCAGGGAAAAGGAG
60
CTTAGGACTTGGTTTGTTATATCAG
80






GGAAAAGGAGTAGGGAGTTC





Accession:
NM_001228






HUGO
CASP8






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
CASP8_NM_001228_human_2821
TTAAATCATTAGGAATTAAG
121
TCTGCTTGGATTATTTTAAATCATTAG
141






GAATTAAGTTATCTTTAA






 2
CASP8_NM_001228_human_2833
GAATTAAGTTATCTTTAAAA
122
ATTTTAAATCATTAGGAATTAAGTTAT
142






CTTTAAAATTTAAGTATC






 3
CASP8_NM_001228_human_2392
AACTTTAATTCTCTTTCAAA
123
TGTTAATATTCTATTAACTTTAATTCT
143






CTTTCAAAGCTAAATTCC






 4
CASP8_NM_001228_human_1683
GACTGAAGTGAACTATGAAG
124
TATTCTCACCATCCTGACTGAAGTGA
144






ACTATGAAGTAAGCAACAA






 5
CASP8_NM_001228_human_281
ATATTCTCCTGCCTTTTAAA
125
GGGAATATTGAGATTATATTCTCCTG
145






CCTTTTAAAAAGATGGACT






 6
CASP8_NM_001228_human_2839
AGTTATCTTTAAAATTTAAG
126
AATCATTAGGAATTAAGTTATCTTTA
146






AAATTTAAGTATCTTTTTT






 7
CASP8_NM_001228_human_2164
TAGATTTTCTACTTTATTAA
127
TATTTACTAATTTTCTAGATTTTCTACT
147






TTATTAATTGTTTTGCA






 8
CASP8_NM_001228_human_888
CTGTGCCCAAATCAACAAGA
128
CATCCTGAAAAGAGTCTGTGCCCAAA
148






TCAACAAGAGCCTGCTGAA






 9
CASP8_NM_001228_human_2283
AGCTGGTGGCAATAAATACC
129
TTTGGGAATGTTTTTAGCTGGTGGCA
149






ATAAATACCAGACACGTAC






10
CASP8_NM_001228_human_1585
TCCTACCGAAACCCTGCAGA
130
GTGAATAACTGTGTTTCCTACCGAAA
150






CCCTGCAGAGGGAACCTGG






11
CASP8_NM_001228_human_2200
TATAAGAGCTAAAGTTAAAT
131
TGTTTTGCACTTTTTTATAAGAGCTAA
151






AGTTAAATAGGATATTAA






12
CASP8_NM_001228_human_2140
CACTATGTTTATTTACTAAT
132
ACTATTTAGATATAACACTATGTTTAT
152






TTACTAATTTTCTAGATT






13
CASP8_NM_001228_human_2350
ATTGTTATCTATCAACTATA
133
GGGCTTATGATTCAGATTGTTATCTA
153






TCAACTATAAGCCCACTGT






14
CASP8_NM_001228_human_1575
TAACTGTGTTTCCTACCGAA
134
GATGGCCACTGTGAATAACTGTGTTT
154






CCTACCGAAACCCTGCAGA






15
CASP8_NM_001228_human_2397
TAATTCTCTTTCAAAGCTAA
135
ATATTCTATTAACTTTAATTCTCTTTCA
155






AAGCTAAATTCCACACT






16
CASP8_NM_001228_human_2726
TATATGCTTGGCTAACTATA
136
TGCTTTTATGATATATATATGCTTGGC
156






TAACTATATTTGCTTTTT






17
CASP8_NM_001228_human_2805
CTCTGCTTGGATTATTTTAA
137
CATTTGCTCTTTCATCTCTGCTTGGAT
157






TATTTTAAATCATTAGGA






18
CASP8_NM_001228_human_2729
ATGCTTGGCTAACTATATTT
138
TTTTATGATATATATATGCTTGGCTAA
158






CTATATTTGCTTTTTGCT






19
CASP8_NM_001228_human_2201
ATAAGAGCTAAAGTTAAATA
139
GTTTTGCACTTTTTTATAAGAGCTAAA
159






GTTAAATAGGATATTAAC






20
CASP8_NM_001228_human_2843
ATCTTTAAAATTTAAGTATC
140
ATTAGGAATTAAGTTATCTTTAAAATT
160






TAAGTATCTTTTTTCAAA





Accession:
NM_000675






HUGO gene
ADORA2A






symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
ADORA2A_NM_000675_human_2482
TAACTGCCTTTCCTTCTAAA
161
GTGAGAGGCCTTGTCTAACTGCC
181






TTTCCTTCTAAAGGGAATGTTT






 2
ADORA2A_NM_000675_human_2491
TTCCTTCTAAAGGGAATGTT
162
CTTGTCTAACTGCCTTTCCTTCTAA
182






AGGGAATGTTTTTTTCTGAG






 3
ADORA2A_NM_000675_human_2487
GCCTTTCCTTCTAAAGGGAA
163
AGGCCTTGTCTAACTGCCTTTCCT
183






TCTAAAGGGAATGTTTTTTTC






 4
ADORA2A_NM_000675_human_2512
TTTTCTGAGATAAAATAAAA
164
CTAAAGGGAATGTTTTTTTCTGAG
184






ATAAAATAAAAACGAGCCACA






 5
ADORA2A_NM_000675_human_2330
CATCTCTTGGAGTGACAAAG
165
TCTCAGTCCCAGGGCCATCTCTTG
185






GAGTGACAAAGCTGGGATCAA






 6
ADORA2A_NM_000675_human_987
CATGGTGTACTTCAACTTCT
166
GGTCCCCATGAACTACATGGTGT
186






ACTTCAACTTCTTTGCCTGTGT






 7
ADORA2A_NM_000675_human_2481
CTAACTGCCTTTCCTTCTAA
167
AGTGAGAGGCCTTGTCTAACTGC
187






CTTTCCTTCTAAAGGGAATGTT






 8
ADORA2A_NM_000675_human_1695
CTGATGATTCATGGAGTTTG
168
TGGAGCAGGAGTGTCCTGATGAT
188






TCATGGAGTTTGCCCCTTCCTA






 9
ADORA2A_NM_000675_human_264
CTCAGAGTCCTCTGTGAAAA
169
CCTGGTTTCAGGAGACTCAGAGT
189






CCTCTGTGAAAAAGCCCTTGGA






10
ADORA2A_NM_000675_human_2531
AACGAGCCACATCGTGTTTT
170
CTGAGATAAAATAAAAACGAGCC
190






ACATCGTGTTTTAAGCTTGTCC






11
ADORA2A_NM_000675_human_2492
TCCTTCTAAAGGGAATGTTT
171
TTGTCTAACTGCCTTTCCTTCTAAA
191






GGGAATGTTTTTTTCTGAGA






12
ADORA2A_NM_000675_human_978
CATGAACTACATGGTGTACT
172
TGAGGATGTGGTCCCCATGAACT
192






ACATGGTGTACTTCAACTTCTT






13
ADORA2A_NM_000675_human_2483
AACTGCCTTTCCTTCTAAAG
173
TGAGAGGCCTTGTCTAACTGCCTT
193






TCCTTCTAAAGGGAATGTTTT






14
ADORA2A_NM_000675_human_1894
CAGATGTTTCATGCTGTGAG
174
TGGGTTCTGAGGAAGCAGATGTT
194






TCATGCTGTGAGGCCTTGCACC






15
ADORA2A_NM_000675_human_976
CCCATGAACTACATGGTGTA
175
TTTGAGGATGTGGTCCCCATGAA
195






CTACATGGTGTACTTCAACTTC






16
ADORA2A_NM_000675_human_1384
AGGCAGCAAGAACCTTTCAA
176
CGCAGCCACGTCCTGAGGCAGCA
196






AGAACCTTTCAAGGCAGCTGGC






17
ADORA2A_NM_000675_human_1692
GTCCTGATGATTCATGGAGT
177
GGATGGAGCAGGAGTGTCCTGAT
197






GATTCATGGAGTTTGCCCCTTC






18
ADORA2A_NM_000675_human_993
GTACTTCAACTTCTTTGCCT
178
CATGAACTACATGGTGTACTTCAA
198






CTTCTTTGCCTGTGTGCTGGT






19
ADORA2A_NM_000675_human_2167
TGTAAGTGTGAGGAAACCCT
179
TTTTTCCAGGAAAAATGTAAGTGT
199






GAGGAAACCCTTTTTATTTTA






20
ADORA2A_NM_000675_human_1815
CCTACTTTGGACTGAGAGAA
180
TGAGGGCAGCCGGTTCCTACTTT
200






GGACTGAGAGAAGGGAGCCCCA





Accession:
NM_005214






HUGO
CTLA4






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
CTLA4_NM_005214_human_61
TGATTCTGTGTGGGTTCAAA
201
TCTATATAAAGTCCTTGATTCTGT
221






GTGGGTTCAAACACATTTCAA






 2
CTLA4_NM_005214_human_909
TTATTTGTTTGTGCATTTGG
202
GCTATCCAGCTATTTTTATTTGTTT
222






GTGCATTTGGGGGGAATTCA






 3
CTLA4_NM_005214_human_1265
TGATTACATCAAGGCTTCAA
203
TCTTAAACAAATGTATGATTACAT
223






CAAGGCTTCAAAAATACTCAC






 4
CTLA4_NM_005214_human_1094
GATGTGGGTCAAGGAATTAA
204
GGGATGCAGCATTATGATGTGGG
224






TCAAGGAATTAAGTTAGGGAAT






 5
CTLA4_NM_005214_human_1241
CCTTTTATTTCTTAAACAAA
205
AAGTTAAATTTTATGCCTTTTATTT
225






CTTAAACAAATGTATGATTA






 6
CTLA4_NM_005214_human_1266
GATTACATCAAGGCTTCAAA
206
CTTAAACAAATGTATGATTACATC
226






AAGGCTTCAAAAATACTCACA






 7
CTLA4_NM_005214_human_65
TCTGTGTGGGTTCAAACACA
207
TATAAAGTCCTTGATTCTGTGTGG
227






GTTCAAACACATTTCAAAGCT






 8
CTLA4_NM_005214_human_1405
TTGATAGTATTGTGCATAGA
208
TATATATATTTTAATTTGATAGTAT
228






TGTGCATAGAGCCACGTATG






 9
CTLA4_NM_005214_human_1239
TGCCTTTTATTTCTTAAACA
209
TCAAGTTAAATTTTATGCCTTTTAT
229






TTCTTAAACAAATGTATGAT






10
CTLA4_NM_005214_human_1912
TCCATGAAAATGCAACAACA
210
TTTAACTCAATATTTTCCATGAAA
230






ATGCAACAACATGTATAATAT






11
CTLA4_NM_005214_human_1245
TTATTTCTTAAACAAATGTA
211
TAAATTTTATGCCTTTTATTTCTTA
231






AACAAATGTATGATTACATC






12
CTLA4_NM_005214_human_1449
TTAATGGTTTGAATATAAAC
212
GTTTTTGTGTATTTGTTAATGGTT
232






GAATATAAACACTATATGGC






13
CTLA4_NM_005214_human_1095
ATGTGGGTCAAGGAATTAAG
213
GGATGCAGCATTATGATGTGGGT
233






CAAGGAATTAAGTTAGGGAATG






14
CTLA4_NM_005214_human_1208
AGCCGAAATGATCTTTTCAA
214
GTATGAGACGTTTATAGCCGAAA
234






TGATCTTTTCAAGTTAAATTTT






15
CTLA4_NM_005214_human_1455
GTTTGAATATAAACACTATA
215
GTGTATTTGTTAATGGTTTGAATA
235






TAAACACTATATGGCAGTGTC






16
CTLA4_NM_005214_human_1237
TATGCCTTTTATTTCTTAAA
216
TTTCAAGTTAAATTTTATGCCTTTT
236






ATTTCTTAAACAAATGTATG






17
CTLA4_NM_005214_human_1911
TTCCATGAAAATGCAACAAC
217
TTTTAACTCAATATTTTCCATGAA
237






AATGCAACAACATGTATAATA






18
CTLA4_NM_005214_human_937
CATCTCTCTTTAATATAAAG
218
CATTTGGGGGGAATTCATCTCTCT
238






TTAATATAAAGTTGGATGCGG






19
CTLA4_NM_005214_human_931
GGAATTCATCTCTCTTTAAT
219
TTTGTGCATTTGGGGGGAATTCAT
239






CTCTCTTTAATATAAAGTTGG






20
CTLA4_NM_005214_human_45
ATCTATATAAAGTCCTTGAT
220
TCTGGGATCAAAGCTATCTATATA
240






AAGTCCTTGATTCTGTGTGGG





Accession:
NM_002286






HUGO
LAG3






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
LAG3_NM_002286_human_1292
GACTTTACCCTTCGACTAGA
241
ACTGGAGACAATGGCGACTTTACC
261






CTTCGACTAGAGGATGTGAGC






 2
LAG3_NM_002286_human_1096
CAACGTCTCCATCATGTATA
242
CTACAGAGATGGCTTCAACGTCTC
262






CATCATGTATAACCTCACTGT






 3
LAG3_NM_002286_human_1721
GTCCTTTCTCTGCTCCTTTT
243
TTTCTCATCCTTGGTGTCCTTTCTCT
263






GCTCCTTTTGGTGACTGGA






 4
LAG3_NM_002286_human_1465
TCCAGTATCTGGACAAGAAC
244
GCTTTGTGAGGTGACTCCAGTATC
264






TGGACAAGAACGCTTTGTGTG






 5
LAG3_NM_002286_human_1795
ATTTTCTGCCTTAGAGCAAG
245
GTGGCGACCAAGACGATTTTCTGC
265






CTTAGAGCAAGGGATTCACCC






 6
LAG3_NM_002286_human_1760
TTTCACCTTTGGAGAAGACA
246
ACTGGAGCCTTTGGCTTTCACCTTT
266






GGAGAAGACAGTGGCGACCA






 7
LAG3_NM_002286_human_904
CATTTTGAACTGCTCCTTCA
247
AGCCTCCGACTGGGTCATTTTGAA
267






CTGCTCCTTCAGCCGCCCTGA






  8
LAG3_NM_002286_human_1398
TCATCACAGTGACTCCCAAA
248
CTGTCACATTGGCAATCATCACAGT
268






GACTCCCAAATCCTTTGGGT






 9
LAG3_NM_002286_human_1758
GCTTTCACCTTTGGAGAAGA
249
TGACTGGAGCCTTTGGCTTTCACCT
269






TTGGAGAAGACAGTGGCGAC






10
LAG3_NM_002286_human_1753
CTTTGGCTTTCACCTTTGGA
250
TTTGGTGACTGGAGCCTTTGGCTTT
270






CACCTTTGGAGAAGACAGTG






11
LAG3_NM_002286_human_905
ATTTTGAACTGCTCCTTCAG
251
GCCTCCGACTGGGTCATTTTGAACT
271






GCTCCTTCAGCCGCCCTGAC






12
LAG3_NM_002286_human_1387
CACATTGGCAATCATCACAG
252
GCTCAATGCCACTGTCACATTGGC
272






AATCATCACAGTGACTCCCAA






13
LAG3_NM_002286_human_301
TTTCTGACCTCCTTTTGGAG
253
ACTGCCCCCTTTCCTTTTCTGACCTC
273






CTTTTGGAGGGCTCAGCGC






14
LAG3_NM_002286_human_895
CGACTGGGTCATTTTGAACT
254
ATCTCTCAGAGCCTCCGACTGGGT
274






CATTTTGAACTGCTCCTTCAG






15
LAG3_NM_002286_human_1625
TACTTCACAGAGCTGTCTAG
255
CTTGGAGCAGCAGTGTACTTCACA
275






GAGCTGTCTAGCCCAGGTGCC






16
LAG3_NM_002286_human_1390
ATTGGCAATCATCACAGTGA
256
CAATGCCACTGTCACATTGGCAATC
276






ATCACAGTGACTCCCAAATC






17
LAG3_NM_002286_human_1703
CTGTTTCTCATCCTTGGTGT
257
GCAGGCCACCTCCTGCTGTTTCTCA
277






TCCTTGGTGTCCTTTCTCTG






18
LAG3_NM_002286_human_1453
TTGTGAGGTGACTCCAGTAT
258
CCTGGGGAAGCTGCTTTGTGAGGT
278






GACTCCAGTATCTGGACAAGA






19
LAG3_NM_002286_human_1754
TTTGGCTTTCACCTTTGGAG
259
TTGGTGACTGGAGCCTTTGGCTTTC
279






ACCTTTGGAGAAGACAGTGG






20
LAG3_NM_002286_human_1279
TGGAGACAATGGCGACTTTA
260
TGACCTCCTGGTGACTGGAGACAA
280






TGGCGACTTTACCCTTCGACT





Accession:
NM_005018






HUGO
PDCD1






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
PDCDLN1_NM_005018_human_2070
TATTATATTATAATTATAAT
281
CCTTCCCTGTGGTTCTATTATATTAT
301






AATTATAATTAAATATGAG






 2
PDCDLN1_NM_005018_human_2068
TCTATTATATTATAATTATA
282
CCCCTTCCCTGTGGTTCTATTATATT
302






ATAATTATAATTAAATATG






 3
PDCDLN1_NM_005018_human_1854
CATTCCTGAAATTATTTAAA
283
GCTCTCCTTGGAACCCATTCCTGAA
303






ATTATTTAAAGGGGTTGGCC






 4
PDCDLN1_NM_005018_human_2069
CTATTATATTATAATTATAA
284
CCCTTCCCTGTGGTTCTATTATATT
304






ATAATTATAATTAAATATGA






 5
PDCDLN1_NM_005018_human_1491
AGTTTCAGGGAAGGTCAGAA
285
CTGCAGGCCTAGAGAAGTTTCAGG
305






GAAGGTCAGAAGAGCTCCTGG






 6
PDCDLN1_NM_005018_human_2062
TGTGGTTCTATTATATTATA
286
GGGATCCCCCTTCCCTGTGGTTCTA
306






TTATATTATAATTATAATTA






 7
PDCDLN1_NM_005018_human_719
TGTGTTCTCTGTGGACTATG
287
CCCCTCAGCCGTGCCTGTGTTCTCT
307






GTGGACTATGGGGAGCTGGA






 8
PDCDLN1_NM_005018_human_1852
CCCATTCCTGAAATTATTTA
288
GAGCTCTCCTTGGAACCCATTCCTG
308






AAATTATTTAAAGGGGTTGG






 9
PDCDLN1_NM_005018_human_1490
TGCCACCATTGTCTTTCCTA
289
TGAGCAGACGGAGTATGCCACCAT
309






TGTCTTTCCTAGCGGAATGGG






10
PDCDLN1_NM_005018_human_812
AAGTTTCAGGGAAGGTCAGA
290
CCTGCAGGCCTAGAGAAGTTTCAG
310






GGAAGGTCAGAAGAGCTCCTG






11
PDCDLN1_NM_005018_human_2061
CTGTGGTTCTATTATATTAT
291
AGGGATCCCCCTTCCCTGTGGTTCT
311






ATTATATTATAATTATAATT






12
PDCDLN1_NM_005018_human_2067
TTCTATTATATTATAATTAT
292
CCCCCTTCCCTGTGGTTCTATTATA
312






TTATAATTATAATTAAATAT






13
PDCDLN1_NM_005018_human_1493
TTTCAGGGAAGGTCAGAAGA
293
GCAGGCCTAGAGAAGTTTCAGGG
313






AAGGTCAGAAGAGCTCCTGGCT






14
PDCDLN1_NM_005018_human_1845
CTTGGAACCCATTCCTGAAA
294
ACCCTGGGAGCTCTCCTTGGAACC
314






CATTCCTGAAATTATTTAAAG






15
PDCDLN1_NM_005018_human_2058
TCCCTGTGGTTCTATTATAT
295
ACAAGGGATCCCCCTTCCCTGTGG
315






TTCTATTATATTATAATTATA






16
PDCDLN1_NM_005018_human_2060
CCTGTGGTTCTATTATATTA
296
AAGGGATCCCCCTTCCCTGTGGTTC
316






TATTATATTATAATTATAAT






17
PDCDLN1_NM_005018_human_1847
TGGAACCCATTCCTGAAATT
297
CCTGGGAGCTCTCCTTGGAACCCA
317






TTCCTGAAATTATTTAAAGGG






18
PDCDLN1_NM_005018_human_2055
CCTTCCCTGTGGTTCTATTA
298
GGGACAAGGGATCCCCCTTCCCTG
318






TGGTTCTATTATATTATAATT






19
PDCDLN1_NM_005018_human_2057
TTCCCTGTGGTTCTATTATA
299
GACAAGGGATCCCCCTTCCCTGTG
319






GTTCTATTATATTATAATTAT






20
PDCDLN1_NM_005018_human_1105
CACAGGACTCATGTCTCAAT
300
CAGGCACAGCCCCACCACAGGACT
320






CATGTCTCAATGCCCACAGTG





Accession:
NM_004612






HUGO
TGFBR1






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
TGFBRL1_NM_004612_human_5263
CCTGTTTATTACAACTTAAA
321
GTTAATAACATTCAACCTGTTTAT
341






TACAACTTAAAAGGAACTTCA






 2
TGFBRL1_NM_004612_human_1323
CCATTGGTGGAATTCATGAA
322
TTGCTCGACGATGTTCCATTGGTG
342






GAATTCATGAAGATTACCAAC






 3
TGFBRL1_NM_004612_human_6389
TTTTCCTTATAACAAAGACA
323
TTTAGGGATTTTTTTTTTTCCTTAT
343






AACAAAGACATCACCAGGAT






 4
TGFBRL1_NM_004612_human_3611
TGTATTACTTGTTTAATAAT
324
TTTTTATAGTTGTGTTGTATTACTT
344






GTTTAATAATAATCTCTAAT






 5
TGFBRL1_NM_004612_human_3882
TTATTGAATCAAAGATTGAG
325
TGCTGAAGATATTTTTTATTGAAT
345






CAAAGATTGAGTTACAATTAT






 6
TGFBRL1_NM_004612_human_3916
TTCTTACCTAAGTGGATAAA
326
GTTACAATTATACTTTTCTTACCTA
346






AGTGGATAAAATGTACTTTT






 7
TGFBRL1_NM_004612_human_5559
ATGTTGCTCAGTTACTCAAA
327
TAAAGTATGGGTATTATGTTGCTC
347






AGTTACTCAAATGGTACTGTA






 8
TGFBRL1_NM_004612_human_5595
ATATTTGTACCCCAAATAAC
328
GGTACTGTATTGTTTATATTTGTA
348






CCCCAAATAACATCGTCTGTA






 9
TGFBRL1_NM_004612_human_5222
TGTAAATGTAAACTTCTAAA
329
TTATGCAATCTTGTTTGTAAATGT
349






AAACTTCTAAAAATATGGTTA






10
TGFBRL1_NM_004612_human_3435
AGAATGAGTGACATATTACA
330
AACCAAAGTAATTTTAGAATGAG
350






TGACATATTACATAGGAATTTA






11
TGFBRL1_NM_004612_human_3709
CCATTTCTAAGCCTACCAGA
331
GTTGTTGTTTTTGGGCCATTTCTA
351






AGCCTACCAGATCTGCTTTAT






12
TGFBRL1_NM_004612_human_5826
ATATTCCAAAAGAATGTAAA
332
ATTGTATTTGTAGTAATATTCCAA
352






AAGAATGTAAATAGGAAATAG






13
TGFBRL1_NM_004612_human_3146
TTACTTCCAATGCTATGAAG
333
TATAATAACTGGTTTTTACTTCCA
353






ATGCTATGAAGTCTCTGCAGG






14
TGFBRL1_NM_004612_human_2675
TCTTTATCTGTTCAAAGACT
334
TGTAAGCCATTTTTTTCTTTATCTG
354






TTCAAAGACTTATTTTTTAA






15
TGFBRL1_NM_004612_human_2529
GTCTAAGTATACTTTTAAAA
335
CATTTTAATTGTGTTGTCTAAGTA
355






TACTTTTAAAAAATCAAGTGG






16
TGFBRL1_NM_004612_human_5079
ATCTTTGGACATGTACTGCA
336
GAGATACTAAGGATTATCTTTGG
356






ACATGTACTGCAGCTTCTTGTC






17
TGFBRL1_NM_004612_human_3607
GTGTTGTATTACTTGTTTAA
337
TTTGTTTTTATAGTTGTGTTGTATT
357






ACTTGTTTAATAATAATCTC






18
TGFBRL1_NM_004612_human_5994
TGCTGTAGATGGCAACTAGA
338
CATGCCATATGTAGTTGCTGTAGA
358






TGGCAACTAGAACCTTTGAGT






19
TGFBRL1_NM_004612_human_2177
TCTTTCACTTATTCAGAACA
339
GTATACTATTATTGTTCTTTCACTT
359






ATTCAGAACATTACATGCCT






20
TGFBRL1_NM_004612_human_5814
GTATTTGTAGTAATATTCCA
340
TTTAAATTGTATATTGTATTTGTA
360






GTAATATTCCAAAAGAATGTA





Accession:
NM_032782






HUGO
HAVCR2






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
HAVCR2_NM_032782_human_937
CTCATAGCAAAGAGAAGATA
361
TTTTCAAATGGTATTCTCATAGCA
381






AAGAGAAGATACAGAATTTAA






 2
HAVCR2_NM_032782_human_932
GTATTCTCATAGCAAAGAGA
362
TTTAATTTTCAAATGGTATTCTCAT
382






AGCAAAGAGAAGATACAGAA






 3
HAVCR2_NM_032782_human_2126
TTGCTTGTTGTGTGCTTGAA
363
TGTATTGGCCAAGTTTTGCTTGTT
383






GTGTGCTTGAAAGAAAATATC






 4
HAVCR2_NM_032782_human_2171
TATTCGTGGACCAAACTGAA
364
TCTGACCAACTTCTGTATTCGTGG
384






ACCAAACTGAAGCTATATTTT






 5
HAVCR2_NM_032782_human_158
ATTGTGGAGTAGACAGTTGG
365
GCTACTGCTCATGTGATTGTGGA
385






GTAGACAGTTGGAAGAAGTACC






 6
HAVCR2_NM_032782_human_2132
GTTGTGTGCTTGAAAGAAAA
366
GGCCAAGTTTTGCTTGTTGTGTGC
386






TTGAAAGAAAATATCTCTGAC






 7
HAVCR2_NM_032782_human_2131
TGTTGTGTGCTTGAAAGAAA
367
TGGCCAAGTTTTGCTTGTTGTGTG
387






CTTGAAAGAAAATATCTCTGA






 8
HAVCR2_NM_032782_human_2313
CCCTAAACTTAAATTTCAAG
368
TTGACAGAGAGTGGTCCCTAAAC
388






TTAAATTTCAAGACGGTATAGG






 9
HAVCR2_NM_032782_human_489
ACATCCAGATACTGGCTAAA
369
GATGTGAATTATTGGACATCCAG
389






ATACTGGCTAAATGGGGATTTC






10
HAVCR2_NM_032782_human_1272
CATTTTCAGAAGATAATGAC
370
GGAGCAGAGTTTTCCCATTTTCAG
390






AAGATAATGACTCACATGGGA






11
HAVCR2_NM_032782_human_785
CACATTGGCCAATGAGTTAC
371
TCTAACACAAATATCCACATTGGC 
391






CAATGAGTTACGGGACTCTAG






12
HAVCR2_NM_032782_human_2127
TGCTTGTTGTGTGCTTGAAA
372
GTATTGGCCAAGTTTTGCTTGTTG
392






TGTGCTTGAAAGAAAATATCT






13
HAVCR2_NM_032782_human_164
GAGTAGACAGTTGGAAGAAG
373
GCTCATGTGATTGTGGAGTAGAC
393






AGTTGGAAGAAGTACCCAGTCC






14
HAVCR2_NM_032782_human_2130
TTGTTGTGTGCTTGAAAGAA
374
TTGGCCAAGTTTTGCTTGTTGTGT
394






GCTTGAAAGAAAATATCTCTG






15
HAVCR2_NM_032782_human_911
CGGCGCTTTAATTTTCAAAT
375
TCTGGCTCTTATCTTCGGCGCTTT
395






AATTTTCAAATGGTATTCTCA






16
HAVCR2_NM_032782_human_1543
TTTGGCACAGAAAGTCTAAA
376
TGAAAGCATAACTTTTTTGGCACA
396






GAAAGTCTAAAGGGGCCACTG






17
HAVCR2_NM_032782_human_2346
GATCTGTCTTGCTTATTGTT
377
AGACGGTATAGGCTTGATCTGTC
397






TTGCTTATTGTTGCCCCCTGCG






18
HAVCR2_NM_032782_human_2107
GGTGTGTATTGGCCAAGTTT
378
GAAGTGCATTTGATTGGTGTGTA
398






TTGGCCAAGTTTTGCTTGTTGT






19
HAVCR2_NM_032782_human_1270
CCCATTTTCAGAAGATAATG
379
ATGGAGCAGAGTTTTCCCATTTTC
399






AGAAGATAATGACTCACATGG






20
HAVCR2_NM_032782_human_1545
TGGCACAGAAAGTCTAAAGG
380
AAAGCATAACTTTTTTGGCACAGA
400






AAGTCTAAAGGGGCCACTGAT





Accession:
NM_002987






HUGO
CCL17






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
CCL17_NM_002987_human_385
AAATACCTGCAAAGCCTTGA
401
GTGAAGAATGCAGTTAAATACCTGC
421






AAAGCCTTGAGAGGTCTTGA






 2
CCL17_NM_002987_human_318
TTTTGTAACTGTGCAGGGCA
402
CAGGGATGCCATCGTTTTTGTAACT
422






GTGCAGGGCAGGGCCATCTG






 3
CCL17_NM_002987_human_367
AGAGTGAAGAATGCAGTTAA
403
GACCCCAACAACAAGAGAGTGAAG
423






AATGCAGTTAAATACCTGCAA






 4
CCL17_NM_002987_human_396
AAGCCTTGAGAGGTCTTGAA
404
AGTTAAATACCTGCAAAGCCTTGAG
424






AGGTCTTGAAGCCTCCTCAC






 5
CCL17_NM_002987_human_386
AATACCTGCAAAGCCTTGAG
405
TGAAGAATGCAGTTAAATACCTGCA
425






AAGCCTTGAGAGGTCTTGAA






 6
CCL17_NM_002987_human_378
TGCAGTTAAATACCTGCAAA
406
CAAGAGAGTGAAGAATGCAGTTAA
426






ATACCTGCAAAGCCTTGAGAG






 7
CCL17_NM_002987_human_357
CAACAACAAGAGAGTGAAGA
407
CATCTGTTCGGACCCCAACAACAAG
427






AGAGTGAAGAATGCAGTTAA






 8
CCL17_NM_002987_human_55
CTGAATTCAAAACCAGGGTG
408
CTGCTGATGGGAGAGCTGAATTCAA
428






AACCAGGGTGTCTCCCTGAG






 9
CCL17_NM_002987_human_387
ATACCTGCAAAGCCTTGAGA
409
GAAGAATGCAGTTAAATACCTGCAA
429






AGCCTTGAGAGGTCTTGAAG






10
CCL17_NM_002987_human_254
TTCCCCTTAGAAAGCTGAAG
410
ACTTCAAGGGAGCCATTCCCCTTAG
430






AAAGCTGAAGACGTGGTACC






11
CCL17_NM_002987_human_49
GGAGAGCTGAATTCAAAACC
411
CACCGCCTGCTGATGGGAGAGCTG
431






AATTCAAAACCAGGGTGTCTC






12
CCL17_NM_002987_human_379
GCAGTTAAATACCTGCAAAG
412
AAGAGAGTGAAGAATGCAGTTAAA
432






TACCTGCAAAGCCTTGAGAGG






13
CCL17_NM_002987_human_372
GAAGAATGCAGTTAAATACC
413
CAACAACAAGAGAGTGAAGAATGC
433






AGTTAAATACCTGCAAAGCCT






14
CCL17_NM_002987_human_377
ATGCAGTTAAATACCTGCAA
414
ACAAGAGAGTGAAGAATGCAGTTA
434






AATACCTGCAAAGCCTTGAGA






15
CCL17_NM_002987_human_252
CATTCCCCTTAGAAAGCTGA
415
GTACTTCAAGGGAGCCATTCCCCTT
435






AGAAAGCTGAAGACGTGGTA






16
CCL17_NM_002987_human_51
AGAGCTGAATTCAAAACCAG
416
CCGCCTGCTGATGGGAGAGCTGAAT
436






TCAAAACCAGGGTGTCTCCC






17
CCL17_NM_002987_human_45
GATGGGAGAGCTGAATTCAA
417
GTGTCACCGCCTGCTGATGGGAGA
437






GCTGAATTCAAAACCAGGGTG






18
CCL17_NM_002987_human_44
TGATGGGAGAGCTGAATTCA
418
AGTGTCACCGCCTGCTGATGGGAGA
438






GCTGAATTCAAAACCAGGGT






19
CCL17_NM_002987_human_16
ACTTTGAGCTCACAGTGTCA
419
GCTCAGAGAGAAGTGACTTTGAGCT
439






CACAGTGTCACCGCCTGCTG






20
CCL17_NM_002987_human_368
GAGTGAAGAATGCAGTTAAA
420
ACCCCAACAACAAGAGAGTGAAGA
440






ATGCAGTTAAATACCTGCAAA





Accession:
NM_002990






HUGO
CCL22






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
CCL22_NM_002990_human_2083
GTATTTGAAAACAGAGTAAA
441
GCTGGAGTTATATATGTATTTGAA
461






AACAGAGTAAATACTTAAGAG






 2
CCL22_NM_002990_human_298
CAATAAGCTGAGCCAATGAA
442
GGTGAAGATGATTCTCAATAAGC
462






TGAGCCAATGAAGAGCCTACTC





















 3
CCL22_NM_002990_human_2103
TACTTAAGAGGCCAAATAGA
443
TGAAAACAGAGTAAATACTTAAG
463






AGGCCAAATAGATGAATGGAAG






 4
CCL22_NM_002990_human_2081
ATGTATTTGAAAACAGAGTA
444
AAGCTGGAGTTATATATGTATTTG
464






AAAACAGAGTAAATACTTAAG






 5
CCL22_NM_002990_human_2496
TTCATACAGCAAGTATGGGA
445
TTGAGAAATATTCTTTTCATACAG
465






CAAGTATGGGACAGCAGTGTC






 6
CCL22_NM_002990_human_1052
CTGCAGACAAAATCAATAAA
446
GAGCCCAGAAAGTGGCTGCAGAC
466






AAAATCAATAAAACTAATGTCC






 7
CCL22_NM_002990_human_1053
TGCAGACAAAATCAATAAAA
447
AGCCCAGAAAGTGGCTGCAGACA
467






AAATCAATAAAACTAATGTCCC






 8
CCL22_NM_002990_human_2112
GGCCAAATAGATGAATGGAA
448
AGTAAATACTTAAGAGGCCAAAT
468






AGATGAATGGAAGAATTTTAGG






 9
CCL22_NM_002990_human_299
AATAAGCTGAGCCAATGAAG
449
GTGAAGATGATTCTCAATAAGCT
469






GAGCCAATGAAGAGCCTACTCT






10
CCL22_NM_002990_human_2108
AAGAGGCCAAATAGATGAAT
450
ACAGAGTAAATACTTAAGAGGCC
470






AAATAGATGAATGGAAGAATTT






11
CCL22_NM_002990_human_2116
AAATAGATGAATGGAAGAAT
451
AATACTTAAGAGGCCAAATAGAT
471






GAATGGAAGAATTTTAGGAACT






12
CCL22_NM_002990_human_2091
AAACAGAGTAAATACTTAAG
452
TATATATGTATTTGAAAACAGAGT
472






AAATACTTAAGAGGCCAAATA






13
CCL22_NM_002990_human_2067
AGCTGGAGTTATATATGTAT
453
TGACTTGGTATTATAAGCTGGAG
473






TTATATATGTATTTGAAAACAG






14
CCL22_NM_002990_human_2047
ACCTTTGACTTGGTATTATA
454
ATGGTGTGAAAGACTACCTTTGA
474






CTTGGTATTATAAGCTGGAGTT






15
CCL22_NM_002990_human_238
AACCTTCAGGGATAAGGAGA
455
TGGCGTGGTGTTGCTAACCTTCA
475






GGGATAAGGAGATCTGTGCCGA






16
CCL22_NM_002990_human_2037
GTGAAAGACTACCTTTGACT
456
AATTCATGCTATGGTGTGAAAGA
476






CTACCTTTGACTTGGTATTATA






17
CCL22_NM_002990_human_2030
CTATGGTGTGAAAGACTACC
457
ACAATCAAATTCATGCTATGGTGT
477






GAAAGACTACCTTTGACTTGG






18
CCL22_NM_002990_human_1682
CACTACGGCTGGCTAATTTT
458
ATTACAGGTGTGTGCCACTACGG
478






CTGGCTAATTTTTGTATTTTTA






19
CCL22_NM_002990_human_2071
GGAGTTATATATGTATTTGA
459
TTGGTATTATAAGCTGGAGTTATA
479






TATGTATTTGAAAACAGAGTA






20
CCL22_NM_002990_human_1111
ATATCAATACAGAGACTCAA
460
CCAAAAGGCAGTTACATATCAAT
480






ACAGAGACTCAAGGTCACTAGA





Accession:
NM_005618






HUGO
DLL1






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
DLL1_NM_005618_human_3246
CTGTTTTGTTAATGAAGAAA
481
TATTTGAGTTTTTTACTGTTTTGTTA
501






ATGAAGAAATTCCTTTTTA






 2
DLL1_NM_005618_human_3193
TTGTATATAAATGTATTTAT
482
TGTGACTATATTTTTTTGTATATAAA
502






TGTATTTATGGAATATTGT






 3
DLL1_NM_005618_human_3247
TGTTTTGTTAATGAAGAAAT
483
ATTTGAGTTTTTTACTGTTTTGTTAA
503






TGAAGAAATTCCTTTTTAA






 4
DLL1_NM_005618_human_3141
AATTTTGGTAAATATGTACA
484
GTTTTTTATAATTTAAATTTTGGTAA
504






ATATGTACAAAGGCACTTC






 5
DLL1_NM_005618_human_3293
AAATTTTATGAATGACAAAA
485
ATATTTTTCCAAAATAAATTTTATGA
505






ATGACAAAAAAAAAAAAAA






 6
DLL1_NM_005618_human_3208
TTTATGGAATATTGTGCAAA
486
TTGTATATAAATGTATTTATGGAATA
506






TTGTGCAAATGTTATTTGA






 7
DLL1_NM_005618_human_3243
TTACTGTTTTGTTAATGAAG
487
TGTTATTTGAGTTTTTTACTGTTTTGT
507






TAATGAAGAAATTCCTTT






 8
DLL1_NM_005618_human_2977
TTCTTGAATTAGAAACACAA
488
TTATGAGCCAGTCTTTTCTTGAATTA
508






GAAACACAAACACTGCCTT






 9
DLL1_NM_005618_human_2874
CAGTTGCTCTTAAGAGAATA
489
CCGTTGCACTATGGACAGTTGCTCTT
509






AAGAGAATATATATTTAAA






10
DLL1_NM_005618_human_2560
CAACTTCAAAAGACACCAAG
490
CGGACTCGGGCTGTTCAACTTCAAA
510






AGACACCAAGTACCAGTCGG






11
DLL1_NM_005618_human_3285
TCCAAAATAAATTTTATGAA
491
TTTTTAAAATATTTTTCCAAAATAAA
511






TTTTATGAATGACAAAAAA






12
DLL1_NM_005618_human_2909
GAACTGAATTACGCATAAGA
492
TATATTTAAATGGGTGAACTGAATT
512






ACGCATAAGAAGCATGCACT






13
DLL1_NM_005618_human_1173
GGATTTTGTGACAAACCAGG
493
TGTGATGAGCAGCATGGATTTTGTG
513






ACAAACCAGGGGAATGCAAG






14
DLL1_NM_005618_human_3244
TACTGTTTTGTTAATGAAGA
494
GTTATTTGAGTTTTTTACTGTTTTGTT
514






AATGAAGAAATTCCTTTT






15
DLL1_NM_005618_human_3144
TTTGGTAAATATGTACAAAG
495
TTTTATAATTTAAATTTTGGTAAATA
515






TGTACAAAGGCACTTCGGG






16
DLL1_NM_005618_human_3286
CCAAAATAAATTTTATGAAT
496
TTTTAAAATATTTTTCCAAAATAAAT
516






TTTATGAATGACAAAAAAA






17
DLL1_NM_005618_human_3133
ATAATTTAAATTTTGGTAAA
497
TGATGTTCGTTTTTTATAATTTAAAT
517






TTTGGTAAATATGTACAAA






18
DLL1_NM_005618_human_2901
AAATGGGTGAACTGAATTAC
498
AGAGAATATATATTTAAATGGGTGA
518






ACTGAATTACGCATAAGAAG






19
DLL1_NM_005618_human_3168
TTCGGGTCTATGTGACTATA
499
TATGTACAAAGGCACTTCGGGTCTA
519






TGTGACTATATTTTTTTGTA






20
DLL1_NM_005618_human_3245
ACTGTTTTGTTAATGAAGAA
500
TTATTTGAGTTTTTTACTGTTTTGTTA
520






ATGAAGAAATTCCTTTTT





Accession:
NM_000639






HUGO
FASLG






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
FASLG_NM_000639_human_1154
TAGCTCCTCAACTCACCTAA
521
GGTTCAAAATGTCTGTAGCTCCTC
541






AACTCACCTAATGTTTATGAG






 2
FASLG_NM_000639_human_1771
ATGTTTTCCTATAATATAAT
522
TGTCAGCTACTAATGATGTTTTCC
542






TATAATATAATAAATATTTAT






 3
FASLG_NM_000639_human_1774
TTTTCCTATAATATAATAAA
523
CAGCTACTAATGATGTTTTCCTAT
543






AATATAATAAATATTTATGTA






 4
FASLG_NM_000639_human_1776
TTCCTATAATATAATAAATA
524
GCTACTAATGATGTTTTCCTATAA
544






TATAATAAATATTTATGTAGA






 5
FASLG_NM_000639_human_1086
TGCATTTGAGGTCAAGTAAG
525
GAGGGTCTTCTTACATGCATTTGA
545






GGTCAAGTAAGAAGACATGAA






 6
FASLG_NM_000639_human_1750
ATTGATTGTCAGCTACTAAT
526
TAGTGCTTAAAAATCATTGATTGT
546






CAGCTACTAATGATGTTTTCC






 7
FASLG_NM_000639_human_1820
AAATGAAAACATGTAATAAA
527
ATGTGCATTTTTGTGAAATGAAAA
547






CATGTAATAAAAAGTATATGT






 8
FASLG_NM_000639_human_1659
ATTGTGAAGTACATATTAGG
528
AGAGAGAATGTAGATATTGTGAA
548






GTACATATTAGGAAAATATGGG






 9
FASLG_NM_000639_human_667
GCTTTCTGGAGTGAAGTATA
529
CTATGGAATTGTCCTGCTTTCTGG
549






AGTGAAGTATAAGAAGGGTGG






10
FASLG_NM_000639_human_1692
CATTTGGTCAAGATTTTGAA
530
GGAAAATATGGGTTGCATTTGGT
550






CAAGATTTTGAATGCTTCCTGA






11
FASLG_NM_000639_human_986
GGCTTATATAAGCTCTAAGA
531
TCTCAGACGTTTTTCGGCTTATAT
551






AAGCTCTAAGAGAAGCACTTT






12
FASLG_NM_000639_human_911
ACCAGTGCTGATCATTTATA
532
GCAGTGTTCAATCTTACCAGTGCT 
552






GATCATTTATATGTCAACGTA






13
FASLG_NM_000639_human_598
CCATTTAACAGGCAAGTCCA
533
GCTGAGGAAAGTGGCCCATTTAA
553






CAGGCAAGTCCAACTCAAGGTC






14
FASLG_NM_000639_human_1665
AAGTACATATTAGGAAAATA
534
AATGTAGATATTGTGAAGTACAT
554






ATTAGGAAAATATGGGTTGCAT






15
FASLG_NM_000639_human_1625
TGTGTGTGTGTATGACTAAA
535
GTGTGTGTGTGTGTGTGTGTGTG
555






TGTATGACTAAAGAGAGAATGT






16
FASLG_NM_000639_human_1238
AAGAGGGAGAAGCATGAAAA
536
CTGGGCTGCCATGTGAAGAGGGA
556






GAAGCATGAAAAAGCAGCTACC






17
FASLG_NM_000639_human_1632
GTGTATGACTAAAGAGAGAA
537
TGTGTGTGTGTGTGTGTGTATGA
557






CTAAAGAGAGAATGTAGATATT






18
FASLG_NM_000639_human_1581
GTATTTCCAGTGCAATTGTA
538
CCTAACACAGCATGTGTATTTCCA
558






GTGCAATTGTAGGGGTGTGTG






19
FASLG_NM_000639_human_1726
CAACTCTAATAGTGCTTAAA
539
ATGCTTCCTGACAATCAACTCTAA
559






TAGTGCTTAAAAATCATTGAT






20
FASLG_NM_000639_human_1626
GTGTGTGTGTATGACTAAAG
540
TGTGTGTGTGTGTGTGTGTGTGT
560






GTATGACTAAAGAGAGAATGTA





Accession:
NM_001267706






HUGO
CD274






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
CD274_NM_001267706_human_3222
ACCTGCATTAATTTAATAAA
561
ATTGTCACTTTTTGTACCTGCATTA
581






ATTTAATAAAATATTCTTAT






 2
CD274_NM_001267706_human_1538
AACTTGCCCAAACCAGTAAA
562
GCAAACAGATTAAGTAACTTGCC
582






CAAACCAGTAAATAGCAGACCT






 3
CD274_NM_001267706_human_1218
ATTTGCTCACATCTAGTAAA
563
ACTTGCTGCTTAATGATTTGCTCA
583






CATCTAGTAAAACATGGAGTA






 4
CD274_NM_001267706_human_1998
CCTTTGCCATATAATCTAAT
564
TTTATTCCTGATTTGCCTTTGCCAT
584






ATAATCTAATGCTTGTTTAT






 5
CD274_NM_001267706_human_2346
ATATAGCAGATGGAATGAAT
565
ATTTTAGTGTTTCTTATATAGCAG
585






ATGGAATGAATTTGAAGTTCC






 6
CD274_NM_001267706_human_1997
GCCTTTGCCATATAATCTAA
566
ATTTATTCCTGATTTGCCTTTGCCA
586






TATAATCTAATGCTTGTTTA






 7
CD274_NM_001267706_human_1992
GATTTGCCTTTGCCATATAA
567
ATTATATTTATTCCTGATTTGCCTT
587






TGCCATATAATCTAATGCTT






 8
CD274_NM_001267706_human_1905
AATTTTCATTTACAAAGAGA
568
CTTAATAATCAGAGTAATTTTCAT
588






TTACAAAGAGAGGTCGGTACT






 9
CD274_NM_001267706_human_2336
AGTGTTTCTTATATAGCAGA
569
ATTTTTATTTATTTTAGTGTTTCTT
589






ATATAGCAGATGGAATGAAT






10
CD274_NM_001267706_human_2656
GCTTTCTGTCAAGTATAAAC
570
GAACTTTTGTTTTCTGCTTTCTGTC
590






AAGTATAAACTTCACTTTGA






11
CD274_NM_001267706_human_2235
CATTTGGAAATGTATGTTAA
571
TCTAAAGATAGTCTACATTTGGAA
591






ATGTATGTTAAAAGCACGTAT






12
CD274_NM_001267706_human_2329
TTATTTTAGTGTTTCTTATA
572
CTTTGCTATTTTTATTTATTTTAGT
592






GTTTCTTATATAGCAGATGG






13
CD274_NM_001267706_human_1433
GTGGTAGCCTACACACATAA
573
CAGCTTTACAATTATGTGGTAGCC
593






TACACACATAATCTCATTTCA






14
CD274_NM_001267706_human_1745
ATGAGGAGATTAACAAGAAA
574
GGAGCTCATAGTATAATGAGGAG
594






ATTAACAAGAAAATGTATTATT






15
CD274_NM_001267706_human_1183
CAATTTTGTCGCCAAACTAA
575
TTGTAGTAGATGTTACAATTTTGT
595






CGCCAAACTAAACTTGCTGCT






16
CD274_NM_001267706_human_2345
TATATAGCAGATGGAATGAA
576
TATTTTAGTGTTTCTTATATAGCA 
596






GATGGAATGAATTTGAAGTTC






17
CD274_NM_001267706_human_2069
AAATGCCACTAAATTTTAAA
577
CTGTCTTTTCTATTTAAATGCCACT
597






AAATTTTAAATTCATACCTT






18
CD274_NM_001267706_human_2414
TCTTTCCCATAGCTTTTCAT
578
TTTGTTTCTAAGTTATCTTTCCCAT
598






AGCTTTTCATTATCTTTCAT






19
CD274_NM_001267706_human_129
TATATTCATGACCTACTGGC
579
GATATTTGCTGTCTTTATATTCAT
599






GACCTACTGGCATTTGCTGAA






20
CD274_NM_001267706_human_1783
GTCCAGTGTCATAGCATAAG
580
TATTATTACAATTTAGTCCAGTGT
600






CATAGCATAAGGATGATGCGA





Accession:
NM_002164






HUGO gene
IDO1






symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
IDO1_NM_002164_human_1896
ATTCTGTCATAATAAATAAA
601
AAAAAAAAAAGATATATTCTGTCA
621






TAATAAATAAAAATGCATAAG






 2
IDO1_NM_002164_human_1532
TATCTTATCATTGGAATAAA
602
AAGTTTTGTAATCTGTATCTTATCA
622






TTGGAATAAAATGACATTCA






 3
IDO1_NM_002164_human_578
GTGATGGAGACTGCAGTAAA
603
TTTTGTTCTCATTTCGTGATGGAGA
623






CTGCAGTAAAGGATTCTTCC






 4
IDO1_NM_002164_human_1897
TTCTGTCATAATAAATAAAA
604
AAAAAAAAAGATATATTCTGTCAT
624






AATAAATAAAAATGCATAAGA






 5
IDO1_NM_002164_human_1473
CTTGTAGGAAAACAACAAAA
605
AATACCTGTGCATTTCTTGTAGGAA
625






AACAACAAAAGGTAATTATG






 6
IDO1_NM_002164_human_1547
ATAAAATGACATTCAATAAA
606
TATCTTATCATTGGAATAAAATGAC
626






ATTCAATAAATAAAAATGCA






 7
IDO1_NM_002164_human_412
CGTAAGGTCTTGCCAAGAAA
607
GGTCATGGAGATGTCCGTAAGGTC
627






TTGCCAAGAAATATTGCTGTT






 8
IDO1_NM_002164_human_1472
TCTTGTAGGAAAACAACAAA
608
AAATACCTGTGCATTTCTTGTAGGA
628






AAACAACAAAAGGTAATTAT






 9
IDO1_NM_002164_human_1248
AACTGGAGGCACTGATTTAA
609
ACTGGAAGCCAAAGGAACTGGAG
629






GCACTGATTTAATGAATTTCCT






10
IDO1_NM_002164_human_1440
CAATACAAAAGACCTCAAAA
610
GTTTTACCAATAATGCAATACAAAA
630






GACCTCAAAATACCTGTGCA






11
IDO1_NM_002164_human_636
TGCTTCTGCAATCAAAGTAA
611
GGTGGAAATAGCAGCTGCTTCTGC
631






AATCAAAGTAATTCCTACTGT






12
IDO1_NM_002164_human_1551
AATGACATTCAATAAATAAA
612
TTATCATTGGAATAAAATGACATTC
632






AATAAATAAAAATGCATAAG






13
IDO1_NM_002164_human_1538
ATCATTGGAATAAAATGACA
613
TGTAATCTGTATCTTATCATTGGAA
633






TAAAATGACATTCAATAAAT






14
IDO1_NM_002164_human_1430
ACCAATAATGCAATACAAAA
614
ACTATGCAATGTTTTACCAATAATG
634






CAATACAAAAGACCTCAAAA






15
IDO1_NM_002164_human_1527
ATCTGTATCTTATCATTGGA
615
ACTAGAAGTTTTGTAATCTGTATCT
635






TATCATTGGAATAAAATGAC






16
IDO1_NM_002164_human_1533
ATCTTATCATTGGAATAAAA
616
AGTTTTGTAATCTGTATCTTATCAT
636






TGGAATAAAATGACATTCAA






17
IDO1_NM_002164_human_632
CAGCTGCTTCTGCAATCAAA
617
TATTGGTGGAAATAGCAGCTGCTT
637






CTGCAATCAAAGTAATTCCTA






18
IDO1_NM_002164_human_1439
GCAATACAAAAGACCTCAAA
618
TGTTTTACCAATAATGCAATACAAA
638






AGACCTCAAAATACCTGTGC






19
IDO1_NM_002164_human_657
TCCTACTGTATTCAAGGCAA
619
TGCAATCAAAGTAATTCCTACTGTA
639






TTCAAGGCAATGCAAATGCA






20
IDO1_NM_002164_human_1398
CAGAGCCACAAACTAATACT
620
CATTACCCATTGTAACAGAGCCAC







AAACTAATACTATGCAATGTT





Accession:
NM_001558






HUGO gene
IL10RA






symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
IL10RA_NM_001558_human_3364
TTGTTCATTTATTTATTGGA
641
CTTTATTTATTTATTTTGTTCATTT
661






ATTTATTGGAGAGGCAGCAT






 2
IL10RA_NM_001558_human_3626
TTATTCCAATAAATTGTCAA
642
AGTGATACATGTTTTTTATTCCAA
662






TAAATTGTCAAGACCACAGGA






 3
IL10RA_NM_001558_human_2395
TATTTTCTGGACACTCAAAC
643
AGATCTTAAGGTATATATTTTCTG
663






GACACTCAAACACATCATAAT






 4
IL10RA_NM_001558_human_3375
TTTATTGGAGAGGCAGCATT
644
TATTTTGTTCATTTATTTATTGGAG
664






AGGCAGCATTGCACAGTGAA






 5
IL10RA_NM_001558_human_3469
ACCTTGGAGAAGTCACTTAT
645
GTTTCCAGTGGTATGACCTTGGA
665






GAAGTCACTTATCCTCTTGGAG






 6
IL10RA_NM_001558_human_3351
TTATTTATTTATTTTGTTCA
646
GTTCCCTTGAAAGCTTTATTTATTT
666






ATTTTGTTCATTTATTTATT






 7
IL10RA_NM_001558_human_2108
CTCTTTCCTGTATCATAAAG
647
TCTCCCTCCTAGGAACTCTTTCCT
667






GTATCATAAAGGATTATTTGC






 8
IL10RA_NM_001558_human_3563
CTGAGGAAATGGGTATGAAT
648
GGATGTGAGGTTCTGCTGAGGAA
668






ATGGGTATGAATGTGCCTTGAA






 9
IL10RA_NM_001558_human_3579
GAATGTGCCTTGAACACAAA
649
TGAGGAAATGGGTATGAATGTGC
669






CTTGAACACAAAGCTCTGTCAA






10
IL10RA_NM_001558_human_2403
GGACACTCAAACACATCATA
650
AGGTATATATTTTCTGGACACTCA
670






AACACATCATAATGGATTCAC






11
IL10RA_NM_001558_human_2115
CTGTATCATAAAGGATTATT
651
CCTAGGAACTCTTTCCTGTATCAT
671






AAAGGATTATTTGCTCAGGGG






12
IL10RA_NM_001558_human_563
TCACTTCCGAGAGTATGAGA
652
TGAAAGCATCTTCAGTCACTTCCG
672






AGAGTATGAGATTGCCATTCG






13
IL10RA_NM_001558_human_3197
TCTCTGGAGCATTCTGAAAA
653
TCTCAGCCCTGCCTTTCTCTGGAG
673






CATTCTGAAAACAGATATTCT






14
IL10RA_NM_001558_human_2987
TTATGCCAGAGGCTAACAGA
654
AAGCTGGCTTGTTTCTTATGCCAG
674






AGGCTAACAGATCCAATGGGA






15
IL10RA_NM_001558_human_1278
AGTGGCATTGACTTAGTTCA
655
AGGGGCCAGGATGACAGTGGCA
675






TTGACTTAGTTCAAAACTCTGAG






16
IL10RA_NM_001558_human_2398
TTTCTGGACACTCAAACACA
656
TCTTAAGGTATATATTTTCTGGAC
676






ACTCAAACACATCATAATGGA






17
IL10RA_NM_001558_human_3390
GCATTGCACAGTGAAAGAAT
657
TTTATTGGAGAGGCAGCATTGCA
677






CAGTGAAAGAATTCTGGATATC






18
IL10RA_NM_001558_human_3468
GACCTTGGAGAAGTCACTTA
658
TGTTTCCAGTGGTATGACCTTGGA
678






GAAGTCACTTATCCTCTTGGA






19
IL10RA_NM_001558_human_610
TCACGTTCACACACAAGAAA
659
AGGTGCCGGGAAACTTCACGTTC
679






ACACACAAGAAAGTAAAACATG






20
IL10RA_NM_001558_human_3446
ACTTTGCTGTTTCCAGTGGT
660
GAAATTCTAGCTCTGACTTTGCTG
680






TTTCCAGTGGTATGACCTTGG





Accession:
NM_000214






HUGO gene
JAG1






symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
JAG1_NM_000214_human_4799
TATTTGATTTATTAACTTAA
681
ATTAATCACTGTGTATATTTGATTT
701






ATTAACTTAATAATCAAGAG






 2
JAG1_NM_000214_human_5658
GAAAAGTAATATTTATTAAA
682
TTGGCAATAAATTTTGAAAAGTAA
702






TATTTATTAAATTTTTTTGTA






 3
JAG1_NM_000214_human_4752
ACTTTGTATAGTTATGTAAA
683
AATGTCAAAAGTAGAACTTTGTAT
703






AGTTATGTAAATAATTCTTTT






 4
JAG1_NM_000214_human_5418
GAATACTTGAACCATAAAAT
684
TCTAATAAGCTAGTTGAATACTTGA
704






ACCATAAAATGTCCAGTAAG






 5
JAG1_NM_000214_human_5641
TCTTGGCAATAAATTTTGAA
685
TCTTTGATGTGTTGTTCTTGGCAAT
705






AAATTTTGAAAAGTAATATT






 6
JAG1_NM_000214_human_5150
TTTCTGCTTTAGACTTGAAA
686
TGTTTGTTTTTTGTTTTTCTGCTTTA
706






GACTTGAAAAGAGACAGGC






 7
JAG1_NM_000214_human_4526
TATATTTATTGACTCTTGAG
687
GATCATAGTTTTATTTATATTTATT
707






GACTCTTGAGTTGTTTTTGT






 8
JAG1_NM_000214_human_4566
TATGATGACGTACAAGTAGT
688
TTTGTATATTGGTTTTATGATGACG
708






TACAAGTAGTTCTGTATTTG






 9
JAG1_NM_000214_human_5634
GTGTTGTTCTTGGCAATAAA
689
AAATGCATCTTTGATGTGTTGTTCT
709






TGGCAATAAATTTTGAAAAG






10
JAG1_NM_000214_human_173
CTGATCTAAAAGGGAATAAA
690
CCTTTTTCCATGCAGCTGATCTAAA
710






AGGGAATAAAAGGCTGCGCA






11
JAG1_NM_000214_human_5031
TACGACGTCAGATGTTTAAA
691
GATGGAATTTTTTTGTACGACGTCA
711






GATGTTTAAAACACCTTCTA






12
JAG1_NM_000214_human_4817
AATAATCAAGAGCCTTAAAA
692
TTGATTTATTAACTTAATAATCAAG
712






AGCCTTAAAACATCATTCCT






13
JAG1_NM_000214_human_5685
GTATGAAAACATGGAACAGT
693
TTATTAAATTTTTTTGTATGAAAAC
713






ATGGAACAGTGTGGCCTCTT






14
JAG1_NM_000214_human_4560
TGGTTTTATGATGACGTACA
694
GTTGTTTTTGTATATTGGTTTTATG
714






ATGACGTACAAGTAGTTCTG






15
JAG1_NM_000214_human_5151
TTCTGCTTTAGACTTGAAAA
695
GTTTGTTTTTTGTTTTTCTGCTTTAG
715






ACTTGAAAAGAGACAGGCA






16
JAG1_NM_000214_human_5642
CTTGGCAATAAATTTTGAAA
696
CTTTGATGTGTTGTTCTTGGCAATA
716






AATTTTGAAAAGTAATATTT






17
JAG1_NM_000214_human_5377
TTTAATCTACTGCATTTAGG
697
GATTTGATTTTTTTTTTTAATCTACT
717






GCATTTAGGGAGTATTCTA






18
JAG1_NM_000214_human_4756
TGTATAGTTATGTAAATAAT
698
TCAAAAGTAGAACTTTGTATAGTTA
718






TGTAAATAATTCTTTTTTAT






19
JAG1_NM_000214_human_4523
ATTTATATTTATTGACTCTT
699
TTAGATCATAGTTTTATTTATATTTA
719






TTGACTCTTGAGTTGTTTT






20
JAG1_NM_000214_human_5325
CTTTTCACCATTCGTACATA
700
TGTAAATTCTGATTTCTTTTCACCAT
720






TCGTACATAATACTGAACC





Accession:
NM_002226






HUGO
JAG2






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
JAG2_NM_002226_human_4266
CGTTTCTTTAACCTTGTATA
721
AATGTTTATTTTCTACGTTTCTTTAA
741






CCTTGTATAAATTATTCAG






 2
JAG2_NM_002226_human_5800
TAAATGAATGAACGAATAAA
722
GGCAGAACAAATGAATAAATGAAT
742






GAACGAATAAAAATTTTGACC






 3
JAG2_NM_002226_human_5450
TCATTCATTTATTCCTTTGT
723
GGTCAAAATTTTTATTCATTCATTT
743






ATTCCTTTGTTTTGCTTGGT 






 4
JAG2_NM_002226_human_5021
GTAAATGTGTACATATTAAA
724
TGAAAGTGCATTTTTGTAAATGTGT
744






ACATATTAAAGGAAGCACTC






 5
JAG2_NM_002226_human_5398
ACCCACGAATACGTATCAAG
725
AGTATAAAATTGCTTACCCACGAAT
745






ACGTATCAAGGTCTTAAGGA






 6
JAG2_NM_002226_human_5371
GTTTTATAAAATAGTATAAA
726
AAACAGCTGAAAACAGTTTTATAA
746






AATAGTATAAAATTGCTTACC






 7
JAG2_NM_002226_human_5691
CAACTGAGTCAAGGAGCAAA
727
TGAGGGGTAGGAGGTCAACTGAG
747






TCAAGGAGCAAAGCCAAGAACC






 8
JAG2_NM_002226_human_5025
ATGTGTACATATTAAAGGAA
728
AGTGCATTTTTGTAAATGTGTACAT
748






ATTAAAGGAAGCACTCTGTA






 9
JAG2_NM_002226_human_4269
TTCTTTAACCTTGTATAAAT
729
GTTTATTTTCTACGTTTCTTTAACCT
749






TGTATAAATTATTCAGTAA






10
JAG2_NM_002226_human_4258
ATTTTCTACGTTTCTTTAAC
730
AAAAACCAAATGTTTATTTTCTACG
750






TTTCTTTAACCTTGTATAAA






11
JAG2_NM_002226_human_5369
CAGTTTTATAAAATAGTATA
731
TAAAACAGCTGAAAACAGTTTTAT
751






AAAATAGTATAAAATTGCTTA






12
JAG2_NM_002226_human_5780
GCACAGGCAGAACAAATGAA
732
GAGTGAGGCTGCCTTGCACAGGCA
752






GAACAAATGAATAAATGAATG






13
JAG2_NM_002226_human_4302
TCAGGCTGAAAACAATGGAG
733
ATTATTCAGTAACTGTCAGGCTGA
753






AAACAATGGAGTATTCTCGGA






14
JAG2_NM_002226_human_5387
TAAAATTGCTTACCCACGAA
734
TTTTATAAAATAGTATAAAATTGCT
754






TACCCACGAATACGTATCAA






15
JAG2_NM_002226_human_4301
GTCAGGCTGAAAACAATGGA
735
AATTATTCAGTAACTGTCAGGCTG
755






AAAACAATGGAGTATTCTCGG






16
JAG2_NM_002226_human_5023
AAATGTGTACATATTAAAGG
736
AAAGTGCATTTTTGTAAATGTGTAC
756






ATATTAAAGGAAGCACTCTG






17
JAG2_NM_002226_human_4293
CAGTAACTGTCAGGCTGAAA
737
CTTGTATAAATTATTCAGTAACTGT
757






CAGGCTGAAAACAATGGAGT






18
JAG2_NM_002226_human_4321
GTATTCTCGGATAGTTGCTA
738
GCTGAAAACAATGGAGTATTCTCG
758






GATAGTTGCTATTTTTGTAAA






19
JAG2_NM_002226_human_3994
TCTCACACAAATTCACCAAA
739
AGGCGGAGAAGTTCCTCTCACACA
759






AATTCACCAAAGATCCTGGCC






20
JAG2_NM_002226_human_5466
TTGTTTTGCTTGGTCATTCA
740
CATTCATTTATTCCTTTGTTTTGCTT
760






GGTCATTCAGAGGCAAGGT





Accession:
NM_001315






HUGO gene
MAPK14






symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
MAPK14_NM_001315_human_670
TCATGCGAAAAGAACCTACA
761
ATTTCAGTCCATCATTCATGCGAAAA
781






GAACCTACAGAGAACTGCG






 2
MAPK14_NM_001315_human_833
AAATGTCAGAAGCTTACAGA
762
CTGAACAACATTGTGAAATGTCAGA
782






AGCTTACAGATGACCATGTT






 3
MAPK14_NM_001315_human_707
AAACATATGAAACATGAAAA
763
GAACTGCGGTTACTTAAACATATGA
783






AACATGAAAATGTGATTGGT






 4
MAPK14_NM_001315_human_863
CAGTTCCTTATCTACCAAAT
764
ACAGATGACCATGTTCAGTTCCTTAT
784






CTACCAAATTCTCCGAGGT






 5
MAPK14_NM_001315_human_1150
TCCTGGTACAGACCATATTA
765
TGGAAGAACATTGTTTCCTGGTACA
785






GACCATATTAACCAGCTTCA






 6
MAPK14_NM_001315_human_866
TTCCTTATCTACCAAATTCT
766
GATGACCATGTTCAGTTCCTTATCTA
786






CCAAATTCTCCGAGGTCTA






 7
MAPK14_NM_001315_human_1149
TTCCTGGTACAGACCATATT
767
CTGGAAGAACATTGTTTCCTGGTAC
787






AGACCATATTAACCAGCTTC






 8
MAPK14_NM_001315_human_896
AAGTATATACATTCAGCTGA
768
ATTCTCCGAGGTCTAAAGTATATAC
788






ATTCAGCTGACATAATTCAC






 9
MAPK14_NM_001315_human_1076
CATTACAACCAGACAGTTGA
769
ATGCTGAACTGGATGCATTACAACC
789






AGACAGTTGATATTTGGTCA






10
MAPK14_NM_001315_human_926
AGGGACCTAAAACCTAGTAA
770
GCTGACATAATTCACAGGGACCTAA
790






AACCTAGTAATCTAGCTGTG






11
MAPK14_NM_001315_human_765
CTCTGGAGGAATTCAATGAT
771
TTACACCTGCAAGGTCTCTGGAGGA
791






ATTCAATGATGTGTATCTGG






12
MAPK14_NM_001315_human_706
TAAACATATGAAACATGAAA
772
AGAACTGCGGTTACTTAAACATATG
792






AAACATGAAAATGTGATTGG






13
MAPK14_NM_001315_human_815
GATCTGAACAACATTGTGAA
773
CATCTCATGGGGGCAGATCTGAACA
793






ACATTGTGAAATGTCAGAAG






14
MAPK14_NM_001315_human_862
TCAGTTCCTTATCTACCAAA
774
TACAGATGACCATGTTCAGTTCCTTA
794






TCTACCAAATTCTCCGAGG






15
MAPK14_NM_001315_human_917
ATAATTCACAGGGACCTAAA
775
ATACATTCAGCTGACATAATTCACA
795






GGGACCTAAAACCTAGTAAT






16
MAPK14_NM_001315_human_887
CGAGGTCTAAAGTATATACA
776
ATCTACCAAATTCTCCGAGGTCTAA
796






AGTATATACATTCAGCTGAC






17
MAPK14_NM_001315_human_832
GAAATGTCAGAAGCTTACAG
777
TCTGAACAACATTGTGAAATGTCAG
797






AAGCTTACAGATGACCATGT






18
MAPK14_NM_001315_human_1125
AGCTGTTGACTGGAAGAACA
778
GATGCATAATGGCCGAGCTGTTGAC
798






TGGAAGAACATTGTTTCCTG






19
MAPK14_NM_001315_human_879
AAATTCTCCGAGGTCTAAAG
779
AGTTCCTTATCTACCAAATTCTCCGA
799






GGTCTAAAGTATATACATT






20
MAPK14_NM_001315_human_725
AATGTGATTGGTCTGTTGGA
780
CATATGAAACATGAAAATGTGATTG
800






GTCTGTTGGACGTTTTTACA





Accession:
NM_003745






HUGO
SOCS1






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
SOCS1_NM_003745_human_1141
CTGCTGTGCAGAATCCTATT
801
TCTGGCTTTATTTTTCTGCTGTGCA 
821






GAATCCTATTTTATATTTTT






 2
SOCS1_NM_003745_human_1143
GCTGTGCAGAATCCTATTTT
802
TGGCTTTATTTTTCTGCTGTGCAGA
822






ATCCTATTTTATATTTTTTA






 3
SOCS1_NM_003745_human_1170
TTAAAGTCAGTTTAGGTAAT
803
CCTATTTTATATTTTTTAAAGTCAG
823






TTTAGGTAATAAACTTTATT






 4
SOCS1_NM_003745_human_1144
CTGTGCAGAATCCTATTTTA
804
GGCTTTATTTTTCTGCTGTGCAGAA
824






TCCTATTTTATATTTTTTAA






 5
SOCS1_NM_003745_human_1076
GTTTACATATACCCAGTATC
805
CTCCTACCTCTTCATGTTTACATAT
825






ACCCAGTATCTTTGCACAAA






 6
SOCS1_NM_003745_human_837
ATTTTGTTATTACTTGCCTG
806
CTGGGATGCCGTGTTATTTTGTTA
826






TTACTTGCCTGGAACCATGTG






 7
SOCS1_NM_003745_human_819
TAACTGGGATGCCGTGTTAT
807
CCGTGCACGCAGCATTAACTGGGATG
827






CCGTGTTATTTTGTTATTA






 8
SOCS1_NM_003745_human_841
TGTTATTACTTGCCTGGAAC
808
GATGCCGTGTTATTTTGTTATTACT
828






TGCCTGGAACCATGTGGGTA






 9
SOCS1_NM_003745_human_1138
TTTCTGCTGTGCAGAATCCT
809
GTCTCTGGCTTTATTTTTCTGCTGT
829






GCAGAATCCTATTTTATATT






10
SOCS1_NM_003745_human_831
CGTGTTATTTTGTTATTACT
810
CATTAACTGGGATGCCGTGTTATTTTG
830






TTATTACTTGCCTGGAAC






11
SOCS1_NM_003745_human_1168
TTTTAAAGTCAGTTTAGGTA
811
ATCCTATTTTATATTTTTTAAAGTC
831






AGTTTAGGTAATAAACTTTA






12
SOCS1_NM_003745_human_1142
TGCTGTGCAGAATCCTATTT
812
CTGGCTTTATTTTTCTGCTGTGCAG
832






AATCCTATTTTATATTTTTT






13
SOCS1_NM_003745_human_825
GGATGCCGTGTTATTTTGTT
813
ACGCAGCATTAACTGGGATGCCGTGTT
833






ATTTTGTTATTACTTGCC






14
SOCS1_NM_003745_human_1169
TTTAAAGTCAGTTTAGGTAA
814
TCCTATTTTATATTTTTTAAAGTCA
834






GTTTAGGTAATAAACTTTAT






15
SOCS1_NM_003745_human_1171
TAAAGTCAGTTTAGGTAATA
815
CTATTTTATATTTTTTAAAGTCAGT
835






TTAGGTAATAAACTTTATTA






16
SOCS1_NM_003745_human_1140
TCTGCTGTGCAGAATCCTAT
816
CTCTGGCTTTATTTTTCTGCTGTGC
836






AGAATCCTATTTTATATTTT






17
SOCS1_NM_003745_human_1082
ATATACCCAGTATCTTTGCA
817
CCTCTTCATGTTTACATATACCCA
837






GTATCTTTGCACAAACCAGGG






18
SOCS1_NM_003745_human_1150
AGAATCCTATTTTATATTTT
818
ATTTTTCTGCTGTGCAGAATCCTAT
838






TTTATATTTTTTAAAGTCAG






19
SOCS1_NM_003745_human_1011
GGTTGTTGTAGCAGCTTAAC
819
CCTCTGGGTCCCCCTGGTTGTTGTAGC
839






AGCTTAACTGTATCTGGA






20
SOCS1_NM_003745_human_1087
CCCAGTATCTTTGCACAAAC
820
TCATGTTTACATATACCCAGTAT
840






CTTTGCACAAACCAGGGGTTGG





Accession:
NM_003150






HUGO
STAT3






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
STAT3_NM_003150_human_4897
ATATTGCTGTATCTACTTTA
841
TTTTTTTTTTTTGGTATATTGCTGT
861






ATCTACTTTAACTTCCAGAA






 2
STAT3_NM_003150_human_4325
TGTTTGTTAAATCAAATTAG
842
GTTTCTGTGGAATTCTGTTTGTTA
862






AATCAAATTAGCTGGTCTCTG






 3
STAT3_NM_003150_human_2730
TTTATCTAAATGCAAATAAG
843
TGTGGGTGATCTGCTTTTATCTAA
863






ATGCAAATAAGGATGTGTTCT






 4
STAT3_NM_003150_human_3615
ATTTTCCTTTGTAATGTATT
844
TTTATAAATAGACTTATTTTCCTTT
864






GTAATGTATTGGCCTTTTAG






 5
STAT3_NM_003150_human_453
TATCAGCACAATCTACGAAG
845
GAGTCGAATGTTCTCTATCAGCAC
865






AATCTACGAAGAATCAAGCAG






 6
STAT3_NM_003150_human_4477
AGCTTAACTGATAAACAGAA
846
CTTCAGTACATAATAAGCTTAACT
866






GATAAACAGAATATTTAGAAA






 7
STAT3_NM_003150_human_2870
GTTGTTGTTGTTCTTAGACA
847
CAGCTTTTTGTTATTGTTGTTGTTG
867






TTCTTAGACAAGTGCCTCCT






 8
STAT3_NM_003150_human_2873
GTTGTTGTTCTTAGACAAGT
848
CTTTTTGTTATTGTTGTTGTTGTTC
868






TTAGACAAGTGCCTCCTGGT






 9
STAT3_NM_003150_human_3096
TCTGTATTTAAGAAACTTAA
849
TATCAGCATAGCCTTTCTGTATTT
869






AAGAAACTTAAGCAGCCGGGC






10
STAT3_NM_003150_human_3613
TTATTTTCCTTTGTAATGTA
850
TTTTTATAAATAGACTTATTTTCCT
870






TTGTAATGTATTGGCCTTTT






11
STAT3_NM_003150_human_4481
TAACTGATAAACAGAATATT
851
AGTACATAATAAGCTTAACTGATA
871






AACAGAATATTTAGAAAGGTG






12
STAT3_NM_003150_human_1372
ACATTCTGGGCACAAACACA
852
GATCCCGGAAATTTAACATTCTGG
872






GCACAAACACAAAAGTGATGA






13
STAT3_NM_003150_human_2720
GTGATCTGCTTTTATCTAAA
853
AATGAGTGAATGTGGGTGATCTG
873






CTTTTATCTAAATGCAAATAAG






14
STAT3_NM_003150_human_1044
CAGACCCGTCAACAAATTAA
854
GCAGAATCTCAACTTCAGACCCGT
874






CAACAAATTAAGAAACTGGAG






15
STAT3_NM_003150_human_1148
GGAGCTGTTTAGAAACTTAA
855
GGAGGAGAGAATCGTGGAGCTG
875






TTTAGAAACTTAATGAAAAGTGC






16
STAT3_NM_003150_human_4523
ACCATTGGGTTTAAATCATA
856
GTGAGACTTGGGCTTACCATTGG
876






GTTTAAATCATAGGGACCTAGG






17
STAT3_NM_003150_human_3573
GGAGAATCTAAGCATTTTAG
857
AATAGGAAGGTTTAAGGAGAATC
877






TAAGCATTTTAGACTTTTTTTT






18
STAT3_NM_003150_human_2987
CCTTGCTGACATCCAAATAG
858
CATTGCACTTTTTAACCTTGCTGA
878






CATCCAAATAGAAGATAGGAC






19
STAT3_NM_003150_human_3041
AAATTAAGAAATAATAACAA
859
CCTAGGTTTCTTTTTAAATTAAGA
879






AATAATAACAATTAAAGGGCA






20
STAT3_NM_003150_human_3037
TTTTAAATTAAGAAATAATA
860
AAGCCCTAGGTTTCTTTTTAAATT
880






AAGAAATAATAACAATTAAAG





Accession:
NM_006290






HUGO
TNFAIP3






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
TNFAIP3_NM_006290_human_3451
AGCTTGAACTGAGGAGTAAA
881
ACTTCTAAAGAAGTTAGCTTGAAC
901






TGAGGAGTAAAAGTGTGTACA






 2
TNFAIP3_NM_006290_human_916
CCTTTGCAACATCCTCAGAA
882
AATACACATATTTGTCCTTTGCAA
902






CATCCTCAGAAGGCCAATCAT






 3
TNFAIP3_NM_006290_human_4422
TTCTTTCCAAAGATACCAAA
883
ACGAATCTTTATAATTTCTTTCCAA
903






AGATACCAAATAAACTTCAG






 4
TNFAIP3_NM_006290_human_3688
TTATTTTATTACAAACTTCA
884
TGTAATTCACTTTATTTATTTTATT
904






ACAAACTTCAAGATTATTTA






 5
TNFAIP3_NM_006290_human_4536
TATTTATACTTATTATAAAA
885
GTGAAAAAAAGTAATTATTTATAC
905






TTATTATAAAAAGTATTTGAA






 6
TNFAIP3_NM_006290_human_949
CATTTCAGACAAAATGCTAA
886
AAGGCCAATCATTGTCATTTCAGA
906






CAAAATGCTAAGAAGTTTGGA






 7
TNFAIP3_NM_006290_human_1214
ATGAAGGAGAAGCTCTTAAA
887
GATCCTGAAAATGAGATGAAGGA
907






GAAGCTCTTAAAAGAGTACTTA






 8
TNFAIP3_NM_006290_human_4489
ATTTTGTGTTGATCATTATT
888
AGTTGATATCTTAATATTTTGTGT
908






TGATCATTATTTCCATTCTTA






 9
TNFAIP3_NM_006290_human_2204
TTCATCGAGTACAGAGAAAA
889
TTTTGCACACTGTGTTTCATCGAG
909






TACAGAGAAAACAAACATTTT






10
TNFAIP3_NM_006290_human_3394
TTACTGGGAAGACGTGTAAC
890
AAAAATTAGAATATTTTACTGGGA
910






AGACGTGTAACTCTTTGGGTT






11
TNFAIP3_NM_006290_human_2355
TCATTGAAGCTCAGAATCAG
891
ACTGCCAGAAGTGTTTCATTGAA
911






GCTCAGAATCAGAGATTTCATG






12
TNFAIP3_NM_006290_human_4508
TTCCATTCTTAATGTGAAAA
892
TGTGTTGATCATTATTTCCATTCTT
912






AATGTGAAAAAAAGTAATTA






13
TNFAIP3_NM_006290_human_2332
TGAAGGATACTGCCAGAAGT
893
TGGAAGCACCATGTTTGAAGGAT
913






ACTGCCAGAAGTGTTTCATTGA






14
TNFAIP3_NM_006290_human_4650
CACAAGAGTCAACATTAAAA
894
ATAAATGTAACTTTTCACAAGAGT
914






CAACATTAAAAAATAAATTAT






15
TNFAIP3_NM_006290_human_4533
AATTATTTATACTTATTATA
895
AATGTGAAAAAAAGTAATTATTTA
915






TACTTATTATAAAAAGTATTT






16
TNFAIP3_NM_006290_human_3907
TTCGTGCTTCTCCTTATGAA
896
CATATTCATCGATGTTTCGTGCTT
916






CTCCTTATGAAACTCCAGCTA






17
TNFAIP3_NM_006290_human_3689
TATTTTATTACAAACTTCAA
897
GTAATTCACTTTATTTATTTTATTA
917






CAAACTTCAAGATTATTTAA






18
TNFAIP3_NM_006290_human_3694
TATTACAAACTTCAAGATTA
898
TCACTTTATTTATTTTATTACAAAC
918






TTCAAGATTATTTAAGTGAA






19
TNFAIP3_NM_006290_human_4467
CTCTTAAAGTTGATATCTTA
899
TGTTTTCATCTAATTCTCTTAAAGT
919






TGATATCTTAATATTTTGTG






20
TNFAIP3_NM_006290_human_4426
TTCCAAAGATACCAAATAAA
900
ATCTTTATAATTTCTTTCCAAAGAT
920






ACCAAATAAACTTCAGTGTT





Accession:
NM_003326






HUGO gene
TNFSF4






symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
TNFSF4_NM_003326_human_2984
AATTTGACTTAGCCACTAAC
921
GAGATCAGAATTTTAAATTTGACT
941






TAGCCACTAACTAGCCATGTA






 2
TNFSF4_NM_003326__human_3422
GATATTAATAATATAGTTAA
922
GAGAGTATTAATATTGATATTAAT
942






AATATAGTTAATAGTAATATT






 3
TNFSF4_NM_003326_human_3119
CTGTGAATGCACATATTAAA
923
TGCTTACAGTGTTATCTGTGAATG
943






CACATATTAAATGTCTATGTT






 4
TNFSF4_NM_003326_human_2208
GTTTTCTATTTCCTCTTAAG
924
GGATTTTTTTTTCCTGTTTTCTATT
944






TCCTCTTAAGTACACCTTCA






 5
TNFSF4_NM_003326_human_1727
AAATAGCACTAAGAAGTTAT
925
ATTCAATCTGATGTCAAATAGCAC 
945






TAAGAAGTTATTGTGCCTTAT






 6
TNFSF4_NM_003326_human_3311
CCAATCCCGATCCAAATCAT
926
AATGCTTAAGGGATTCCAATCCC
946






GATCCAAATCATAATTTGTTCT






 7
TNFSF4_NM_003326_human_3286
CTATTTAGAGAATGCTTAAG
927
TTAGTTAGATATTTTCTATTTAGA
947






GAATGCTTAAGGGATTCCAAT






 8
TNFSF4_NM_003326_human_1222
CAGTTTGCATATTGCCTAAA
928
AGGTTAAATTGATTGCAGTTTGCA
948






TATTGCCTAAATTTAAACTTT






 9
TNFSF4_NM_003326_human_326
CTCGAATTCAAAGTATCAAA
929
TATCACATCGGTATCCTCGAATTC
949






AAAGTATCAAAGTACAATTTA






10
TNFSF4_NM_003326_human_3117
ATCTGTGAATGCACATATTA
930
TATGCTTACAGTGTTATCTGTGAA
950






TGCACATATTAAATGTCTATG






11
TNFSF4_NM_003326_human_2938
TTTGTGGGAAAAGAATTGAA
931
TATACATGGCAGAGTTTTGTGGG
951






AAAAGAATTGAATGAAAAGTCA






12
TNFSF4_NM_003326_human_2537
ATTGACCATGTTCTGCAAAA
932
ATTTCACTTTTTGTTATTGACCATG
952






TTCTGCAAAATTGCAGTTAC






13
TNFSF4_NM_003326_human_776
GATTCTTCATTGCAAGTGAA
933
GGTGGACAGGGCATGGATTCTTC
953






ATTGCAAGTGAAGGAGCCTCCC






14
TNFSF4_NM_003326_human_1721
GATGTCAAATAGCACTAAGA
934
TATCAAATTCAATCTGATGTCAAA
954






TAGCACTAAGAAGTTATTGTG






15
TNFSF4_NM_003326_human_1459
GTATACAGGGAGAGTGAGAT
935
AAGAGAGATTTTCTTGTATACAG
955






GGAGAGTGAGATAACTTATTGT






16
TNFSF4_NM_003326_human_3152
GTTGCTATGAGTCAAGGAGT
936
AATGTCTATGTTCTTGTTGCTATG
956






AGTCAAGGAGTGTAACCTTCT






17
TNFSF4_NM_003326_human_1882
TAGTTGAAATGTCCCCTTAA
937
GTATCCCCTTATGTTTAGTTGAAA
957






TGTCCCCTTAACTTGATATAA






18
TNFSF4_NM_003326_human_1980
CTCTGTGCCAAACCTTTTAT
938
GATGATTTGTAACTTCTCTGTGCC 
958






AAACCTTTTATAAACATAAAT



19
TNFSF4_NM_003326_human_1770
CTCTGTCTAGAAATACCATA
939
ATGAAAAATAATGATCTCTGTCTA
959






GAAATACCATAGACCATATAT






20
TNFSF4_NM_003326_human_1680
GGTTTCAAGAAATGAGGTGA
940
CACAGAAACATTGCTGGTTTCAA
960






GAAATGAGGTGATCCTATTATC





Accession:
NM_006293






HUGO
TYRO3






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
TYRO3_NM_006293_human_3927
AGTTGCTGTTTAAAATAGAA
961
CATTTCCAAGCTGTTAGTTGCTGTT
 981






TAAAATAGAAATAAAATTGA






 2
TYRO3_NM_006293_human_3932
CTGTTTAAAATAGAAATAAA
962
CCAAGCTGTTAGTTGCTGTTTAAAA
 982






TAGAAATAAAATTGAAGACT






 3
TYRO3_NM_006293_human_1731
GGCATCAGCGATGAACTAAA
963
ACATTGGACAGCTTGGGCATCAGC
 983






GATGAACTAAAGGAAAAACTG






 4
TYRO3_NM_006293_human_3699
AATATCCTAAGACTAACAAA
964
GCTACCAAATCTCAAAATATCCTAA
 984






GACTAACAAAGGCAGCTGTG






 5
TYRO3_NM_006293_human_3928
GTTGCTGTTTAAAATAGAAA
965
ATTTCCAAGCTGTTAGTTGCTGTTT
 985






AAAATAGAAATAAAATTGAA






 6
TYRO3_NM_006293_human_3938
AAAATAGAAATAAAATTGAA
966
TGTTAGTTGCTGTTTAAAATAGAAA
 986






TAAAATTGAAGACTAAAGAC






 7
TYRO3_NM_006293_human_842
CTGTGAAGCTCACAACCTAA
967
GAGCACCATGTTTTCCTGTGAAGC
 987






TCACAACCTAAAAGGCCTGGC






 8
TYRO3_NM_006293_human_3953
TTGAAGACTAAAGACCTAAA
968
AAAATAGAAATAAAATTGAAGACT
 988






AAAGACCTAAAAAAAAAAAAA






 9
TYRO3_NM_006293_human_3703
TCCTAAGACTAACAAAGGCA
969
CCAAATCTCAAAATATCCTAAGACT
 989






AACAAAGGCAGCTGTGTCTG






10
TYRO3_NM_006293_human_3909
GGACATTTCCAAGCTGTTAG
970
GGTCCTAGCTGTTAGGGACATTTC
 990






CAAGCTGTTAGTTGCTGTTTA






11
TYRO3_NM_006293_human_3190
ATGTTTCCATGGTTACCATG
971
AGGAGTGGGGTGGTTATGTTTCCA
 991






TGGTTACCATGGGTGTGGATG






12
TYRO3_NM_006293_human_3926
TAGTTGCTGTTTAAAATAGA
972
ACATTTCCAAGCTGTTAGTTGCTGT
 992






TTAAAATAGAAATAAAATTG






13
TYRO3_NM_006293_human_3949
AAAATTGAAGACTAAAGACC
973
GTTTAAAATAGAAATAAAATTGAA
 993






GACTAAAGACCTAAAAAAAAA






14
TYRO3_NM_006293_human_3900
AGCTGTTAGGGACATTTCCA
974
CATGGGGCGGGTCCTAGCTGTTAG
 994






GGACATTTCCAAGCTGTTAGT






15
TYRO3_NM_006293_human_2511
GAGGACGTGTATGATCTCAT
975
CCTCCGGAGTGTATGGAGGACGTG
 995






TATGATCTCATGTACCAGTGC






16
TYRO3_NM_006293_human_3400
TTTTAGGTGAGGGTTGGTAA
976
CCTTGTAATATTCCCTTTTAGGTGA
 996






GGGTTGGTAAGGGGTTGGTA






17
TYRO3_NM_006293_human_1895
AGCTGACATCATTGCCTCAA
977
TGTGAAGATGCTGAAAGCTGACAT
 997






CATTGCCTCAAGCGACATTGA






18
TYRO3_NM_006293_human_3690
AAATCTCAAAATATCCTAAG
978
TCTGAGCACGCTACCAAATCTCAA
 998






AATATCCTAAGACTAACAAAG






19
TYRO3_NM_006293_human_3919
AAGCTGTTAGTTGCTGTTTA
979
GTTAGGGACATTTCCAAGCTGTTA
 999






GTTGCTGTTTAAAATAGAAAT






20
TYRO3_NM_006293_human_3384
TCCTTGTAATATTCCCTTTT
980
AGTCACAAAGAGATGTCCTTGTAA
1000






TATTCCCTTTTAGGTGAGGGT





Accession:
NM_000546






HUGO
TP53






gene







symbol:








SEQ ID

SEQ ID


Oligo_count
Oligo_ID
targeting sequence
NO:
Gene_region
NO:





 1
TP53_NM_000546_human_1630
TGTTTGGGAGATGTAAGAAA
 81
TTTTACTGTGAGGGATGTTTGGG
101






AGATGTAAGAAATGTTCTTGCA






 2
TP53_NM_000546_human_1808
GCATTGTGAGGGTTAATGAA
 82
CCTACCTCACAGAGTGCATTGTGA
102






GGGTTAATGAAATAATGTACA






 3
TP53_NM_000546_human_2538
TCGATCTCTTATTTTACAAT
 83
TATCCCATTTTTATATCGATCTCTT
103






ATTTTACAATAAAACTTTGC






 4
TP53_NM_000546_human_1812
TGTGAGGGTTAATGAAATAA
 84
CCTCACAGAGTGCATTGTGAGGG
104






TTAATGAAATAATGTACATCTG






 5
TP53_NM_000546_human_812
GAGTATTTGGATGACAGAAA
 85
GGAAATTTGCGTGTGGAGTATTT
105






GGATGACAGAAACACTTTTCGA






 6
TP53_NM_000546_human_1627
GGATGTTTGGGAGATGTAAG
 86
GGTTTTTACTGTGAGGGATGTTTG
106






GGAGATGTAAGAAATGTTCTT






 7
TP53_NM_000546_human_1646
GAAATGTTCTTGCAGTTAAG
 87
GTTTGGGAGATGTAAGAAATGTT
107






CTTGCAGTTAAGGGTTAGTTTA






 8
TP53_NM_000546_human_1831
ATGTACATCTGGCCTTGAAA
 88
AGGGTTAATGAAATAATGTACAT
108






CTGGCCTTGAAACCACCTTTTA






 9
TP53_NM_000546_human_1645
AGAAATGTTCTTGCAGTTAA
 89
TGTTTGGGAGATGTAAGAAATGT
109






TCTTGCAGTTAAGGGTTAGTTT






10
TP53_NM_000546_human_2015
GGTGAACCTTAGTACCTAAA
 90
GTCTGACAACCTCTTGGTGAACCT
110






TAGTACCTAAAAGGAAATCTC






11
TP53_NM_000546_human_1753
TAACTTCAAGGCCCATATCT
 91
CTGTTGAATTTTCTCTAACTTCAA
111






GGCCCATATCTGTGAAATGCT






12
TP53_NM_000546_human_782
CTTATCCGAGTGGAAGGAAA
92
GCCCCTCCTCAGCATCTTATCCGA
112






GTGGAAGGAAATTTGCGTGTG






13
TP53_NM_000546_human_2086
ATGATCTGGATCCACCAAGA
  93
CATCTCTTGTATATGATGATCTGG
113






ATCCACCAAGACTTGTTTTAT






14
TP53_NM_000546_human_1744
AATTTTCTCTAACTTCAAGG
 94
TGTCCCTCACTGTTGAATTTTCTCT
114






AACTTCAAGGCCCATATCTG






15
TP53_NM_000546_human_2542
TCTCTTATTTTACAATAAAA
 95
CCATTTTTATATCGATCTCTTATTT
115






TACAATAAAACTTTGCTGCC






16
TP53_NM_000546_human_2546
TTATTTTACAATAAAACTTT
 96
TTTTATATCGATCTCTTATTTTACA
116






ATAAAACTTTGCTGCCACCT






17
TP53_NM_000546_human_1842
GCCTTGAAACCACCTTTTAT
 97
AATAATGTACATCTGGCCTTGAAA
117






CCACCTTTTATTACATGGGGT






18
TP53_NM_000546_human_2534
TATATCGATCTCTTATTTTA
 98
TTTATATCCCATTTTTATATCGATC
118






TCTTATTTTACAATAAAACT






19
TP53_NM_000546_human_2021
CCTTAGTACCTAAAAGGAAA
 99
CAACCTCTTGGTGAACCTTAGTAC
119






CTAAAAGGAAATCTCACCCCA






20
TP53_NM_000546_human_1809
CATTGTGAGGGTTAATGAAA
100
CTACCTCACAGAGTGCATTGTGA
120






GGGTTAATGAAATAATGTACAT








Claims
  • 1. An immune modulator comprising an sdRNA, wherein the sdRNA comprises a guide strand and a passenger strand, wherein the guide strand is about 19-25 nucleotides long, and the passenger strand is about 10-19 nucleotides long, wherein the sdRNA includes a double stranded region and a single stranded region, wherein the single stranded region includes 5-9 phosphorothioate modifications, wherein the sdRNA is chemically modified, including at least one 2′-O-methyl modification or 2′-fluoro modification, wherein the sdRNA targets a sequence selected from SEQ ID NOs: 281-300, and wherein the sdRNA is capable of suppressing expression of PD1.
  • 2. An immunogenic composition comprising an sdRNA, wherein the sdRNA comprises a guide strand and a passenger strand, wherein the guide strand is about 19-25 nucleotides long, and the passenger strand is about 10-19 nucleotides long, wherein the sdRNA includes a double stranded region and a single stranded region, wherein the single stranded region includes 5-9 phosphorothioate modifications, wherein the sdRNA is chemically modified, including at least one 2′-O-methyl modification or 2′-fluoro modification, wherein the sdRNA targets a sequence selected from SEQ ID NOs: 281-300, wherein the sdRNA is capable of suppressing expression of PD1, and wherein the immunogenic composition further comprises immune cells modified by the sdRNA to suppress expression of PD1.
  • 3. The immunogenic composition of claim 2, wherein the immune cells within the composition are further modified to suppress expression of a different immune checkpoint gene.
  • 4. The immunogenic composition of claim 3, wherein said cells are modified to suppress expression of at least one immune checkpoint gene, and at least one anti-apoptosis gene.
  • 5. The immunogenic composition of claim 2, wherein the immune cells within the composition are further modified to suppress expression of at least one cytokine receptor gene.
  • 6. The immunogenic composition of claim 3, wherein said cells are modified to suppress expression of at least one immune checkpoint gene and at least one regulator gene.
  • 7. The immunogenic composition of claim 3, wherein the different immune checkpoint gene is HAVCR2, wherein the composition further comprises an sdRNA capable of suppressing expression of HAVCR2, wherein the sdRNA comprises a guide strand and a passenger strand, wherein the guide strand is about 19-25 nucleotides long, and the passenger strand is about 10-19 nucleotides long, wherein the sdRNA includes a double stranded region and a single stranded region, wherein the single stranded region includes 5-9 phosphorothioate modifications, and wherein the sdRNA is chemically modified, including at least one 2′-O-methyl modification or 2′-fluoro modification.
  • 8. The immunogenic composition of claim 2, wherein said cells are selected from the group consisting of T-cells, NK-cells, antigen-presenting cells, dendritic cells, stem cells, induced pluripotent stem cells, and/or stem central memory T-cells.
  • 9. The immunogenic composition of claim 8, wherein said cells are T-cells comprising one or more transgene expressing high affinity T-cell receptors (TCR) and/or chimeric antibody-T-cell receptors (CAR).
  • 10. The immunogenic composition of claim 7, wherein said cells further comprise one or more sdRNA agent targeting TP53.
  • 11. The immunogenic composition of claim 2, wherein the sdRNA induces at least 50% inhibition of expression of PD1.
  • 12. The immunogenic composition of claim 2, wherein the sdRNA comprises at least one hydrophobic modification.
  • 13. The immunogenic composition of claim 2, wherein the sdRNA is modified to comprises at least one cholesterol molecule.
  • 14. The immunogenic composition of claim 7, wherein the sdRNA capable of suppressing expression of HAVCR2 targets a sequence selected from SEQ ID NOs: 361-380.
  • 15. A method of producing the immunogenic composition of claim 2, said method comprising transforming an immune cell with an sdRNA, wherein the sdRNA targets a sequence selected from SEQ ID NOs: 281-300, and wherein the sdRNA is capable of suppressing expression of PD1.
  • 16. The method of claim 15, wherein the cell further comprises an sdRNA that inhibits expression of HAVCR2, wherein the sdRNA that inhibits expression of HAVCR2 comprises a guide strand and a passenger strand, wherein the guide strand is about 19-25 nucleotides long, and the passenger strand is about 10-19 nucleotides long, wherein the sdRNA includes a double stranded region and a single stranded region, wherein the single stranded region includes 5-9 phosphorothioate modifications, wherein the sdRNA is chemically modified, including at least one 2′-O-methyl modification or 2′-fluoro modification and wherein the sdRNA targets a sequence selected from SEQ ID NOs: 361-380.
  • 17. The method of claim 15, wherein said cells are selected from the group consisting of T-cells, NK-cells, antigen-presenting cells, dendritic cells, stem cells, induced pluripotent stem cells, and/or stem central memory T-cells.
  • 18. The method of claim 15, wherein said cells are T-cells comprising a transgene expressing high affinity T-cell receptors (TCR) and/or chimeric antibody-T-cell receptors (CAR).
CROSS REFERENCE

This application is a national stage filing under 35 U.S.C. § 371 of International Application No. PCT/US2014/068244, filed Dec. 2, 2014, which was published under PCT Article 21(2) in English and claims priority to U.S. Provisional Application No. 61/910,728, filed Dec. 2, 2013, each of which is herein incorporated by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2014/068244 12/2/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2015/084897 6/11/2015 WO A
US Referenced Citations (270)
Number Name Date Kind
3687808 Merigan et al. Aug 1972 A
4201860 Naito et al. May 1980 A
4415732 Caruthers et al. Nov 1983 A
4426330 Sears Jan 1984 A
4897355 Eppstein et al. Jan 1990 A
4904582 Tullis Feb 1990 A
4958013 Letsinger Sep 1990 A
5023243 Tullis Jun 1991 A
5112963 Pieles et al. May 1992 A
5151510 Stec et al. Sep 1992 A
5188897 Suhadolnik et al. Feb 1993 A
5264423 Cohen et al. Nov 1993 A
5264562 Matteucci Nov 1993 A
5405939 Suhadolnik Apr 1995 A
5416203 Letsinger May 1995 A
5417978 Tan et al. May 1995 A
5432272 Benner Jul 1995 A
5453496 Caruthers et al. Sep 1995 A
5459255 Cook et al. Oct 1995 A
5466786 Buhr et al. Nov 1995 A
5470967 Huie et al. Nov 1995 A
5486603 Buhr Jan 1996 A
5489677 Sanghvi et al. Feb 1996 A
5495009 Matteucci et al. Feb 1996 A
5514786 Cook et al. May 1996 A
5527528 Allen et al. Jun 1996 A
5532130 Alul Jul 1996 A
5534259 Zalipsky et al. Jul 1996 A
5556948 Tagawa et al. Sep 1996 A
5561225 Maddry et al. Oct 1996 A
5578718 Cook et al. Nov 1996 A
5580731 Chang et al. Dec 1996 A
5580972 Tu et al. Dec 1996 A
5587469 Cook et al. Dec 1996 A
5591721 Agrawal et al. Jan 1997 A
5591722 Montgomery et al. Jan 1997 A
5591843 Eaton Jan 1997 A
5594121 Froehler et al. Jan 1997 A
5596086 Matteucci et al. Jan 1997 A
5596091 Switzer Jan 1997 A
5599797 Cook et al. Feb 1997 A
5602240 De Mesmaeker et al. Feb 1997 A
5607923 Cook et al. Mar 1997 A
5614617 Cook et al. Mar 1997 A
5614621 Ravikumar et al. Mar 1997 A
5623070 Cook et al. Apr 1997 A
5625050 Beaton et al. Apr 1997 A
5633360 Bischofberger et al. May 1997 A
5643889 Suhadolnik et al. Jul 1997 A
5646126 Cheng et al. Jul 1997 A
5646265 McGee Jul 1997 A
5658731 Sproat et al. Aug 1997 A
5661134 Cook et al. Aug 1997 A
5663312 Chaturvedula Sep 1997 A
5670633 Cook et al. Sep 1997 A
5672695 Eckstein et al. Sep 1997 A
5681940 Wang et al. Oct 1997 A
5681941 Cook et al. Oct 1997 A
5684143 Gryaznov et al. Nov 1997 A
5700920 Altmann et al. Dec 1997 A
5750666 Caruthers et al. May 1998 A
5770713 Imbach et al. Jun 1998 A
5777153 Lin et al. Jul 1998 A
5789416 Lum et al. Aug 1998 A
5792847 Buhr et al. Aug 1998 A
5808023 Sanghvi et al. Sep 1998 A
5817781 Swaminathan et al. Oct 1998 A
5830430 Unger et al. Nov 1998 A
5830653 Froehler et al. Nov 1998 A
5856455 Cook Jan 1999 A
5914396 Cook et al. Jun 1999 A
5945521 Just et al. Aug 1999 A
5948767 Scheule et al. Sep 1999 A
5969116 Martin Oct 1999 A
5976567 Wheeler et al. Nov 1999 A
5981501 Wheeler et al. Nov 1999 A
5986083 Dwyer et al. Nov 1999 A
6001841 Cook et al. Dec 1999 A
6005096 Matteucci et al. Dec 1999 A
6013786 Chen Jan 2000 A
6015886 Dale et al. Jan 2000 A
6020475 Capaldi et al. Feb 2000 A
6020483 Beckvermit et al. Feb 2000 A
6028183 Lin et al. Feb 2000 A
6043352 Manoharan et al. Mar 2000 A
6051699 Ravikumar Apr 2000 A
6107094 Crooke Aug 2000 A
6111085 Cook et al. Aug 2000 A
6121437 Guzaev Sep 2000 A
6153737 Manoharan et al. Nov 2000 A
6207819 Manoharan et al. Mar 2001 B1
6248878 Matulic-Adamic et al. Jun 2001 B1
6271358 Manoharan et al. Aug 2001 B1
6326358 Manoharan Dec 2001 B1
6331617 Weeks et al. Dec 2001 B1
6333152 Vogelstein et al. Dec 2001 B1
6335434 Guzaev et al. Jan 2002 B1
6355787 Beckvermit et al. Mar 2002 B1
6358931 Cook et al. Mar 2002 B1
6395492 Manoharan et al. May 2002 B1
6399754 Cook Jun 2002 B1
6410702 Swaminathan et al. Jun 2002 B1
6420549 Cook et al. Jul 2002 B1
6432963 Hisamichi et al. Aug 2002 B1
6440943 Cook et al. Aug 2002 B1
6444806 Veerapanani et al. Sep 2002 B1
6455586 Kaplan et al. Sep 2002 B1
6465628 Ravikumar et al. Oct 2002 B1
6476205 Buhr et al. Nov 2002 B1
6506559 Fire et al. Jan 2003 B1
6528631 Cook et al. Mar 2003 B1
6531584 Cook et al. Mar 2003 B1
6673611 Thompson et al. Jan 2004 B2
6683167 Meteley et al. Jan 2004 B2
6815432 Wheeler et al. Nov 2004 B2
6849726 Usman et al. Feb 2005 B2
6858225 Semple et al. Feb 2005 B2
7041824 Bordon-Pallier et al. May 2006 B2
7056704 Tuschl et al. Jun 2006 B2
7078196 Tuschl et al. Jul 2006 B2
7148342 Tolentino et al. Dec 2006 B2
7205297 Beauchamp et al. Apr 2007 B2
7432250 Crooke Oct 2008 B2
7521431 Reich et al. Apr 2009 B2
7538095 Fire et al. May 2009 B2
7560438 Fire et al. Jul 2009 B2
7595387 Leake et al. Sep 2009 B2
7622633 Fire et al. Nov 2009 B2
7629321 Crooke Dec 2009 B2
7695902 Crooke Apr 2010 B2
7745608 Manoharan et al. Jun 2010 B2
7750144 Zamore et al. Jul 2010 B2
7786290 Woppmann et al. Aug 2010 B2
7789841 Huckle et al. Sep 2010 B2
7829693 Kreutzer et al. Nov 2010 B2
8110674 Manoharan et al. Feb 2012 B2
8227444 Dejneka Jul 2012 B2
8263569 Baukombe et al. Sep 2012 B2
8470792 Frost et al. Jun 2013 B2
8664189 Khvorova et al. Mar 2014 B2
8796443 Khvorova et al. Aug 2014 B2
8815818 Samarsky et al. Aug 2014 B2
9074211 Woolf et al. Jul 2015 B2
9080171 Khvorova et al. Jul 2015 B2
9095504 Libertine et al. Aug 2015 B2
9175289 Khvorova et al. Nov 2015 B2
9222092 Giese et al. Dec 2015 B2
9303259 Khvorova et al. Apr 2016 B2
9340786 Khvorova et al. May 2016 B2
9493774 Kamens Nov 2016 B2
9745574 Woolf et al. Aug 2017 B2
9938530 Khvorova et al. Apr 2018 B2
9963702 Khvorova et al. May 2018 B2
10041073 Khvorova et al. Aug 2018 B2
10131904 Pavco et al. Nov 2018 B2
10138485 Khvorova et al. Nov 2018 B2
10167471 Kamens et al. Jan 2019 B2
10184124 Libertine et al. Jan 2019 B2
10240149 Khvorova et al. Mar 2019 B2
10300027 Levis et al. May 2019 B2
10479992 Woolf et al. Nov 2019 B2
10633654 Pavco et al. Apr 2020 B2
10662430 Libertine et al. May 2020 B2
10774330 Khvorova et al. Sep 2020 B2
20020132788 Lewis et al. Sep 2002 A1
20020147332 Kaneko et al. Oct 2002 A1
20020160393 Symonds et al. Oct 2002 A1
20020162126 Beach et al. Oct 2002 A1
20030004325 Cook et al. Jan 2003 A1
20030077829 MacLachlan Apr 2003 A1
20030108923 Tuschl et al. Jun 2003 A1
20030139585 Uhlmann et al. Jul 2003 A1
20030157030 Davis et al. Aug 2003 A1
20030158403 Manoharan et al. Aug 2003 A1
20030166282 Brown et al. Sep 2003 A1
20030175276 Thorpe et al. Sep 2003 A1
20040009938 Manoharan et al. Jan 2004 A1
20040014957 Eldrup et al. Jan 2004 A1
20040018999 Beach et al. Jan 2004 A1
20040054155 Woolf et al. Mar 2004 A1
20040137471 Vickers et al. Jul 2004 A1
20040167090 Monahan et al. Aug 2004 A1
20040171033 Baker et al. Sep 2004 A1
20040180351 Giese et al. Sep 2004 A1
20040229266 Tuschl et al. Nov 2004 A1
20040241845 Desgroseillers et al. Dec 2004 A1
20040259247 Tuschl et al. Dec 2004 A1
20050020521 Rana et al. Jan 2005 A1
20050032733 McSwiggen et al. Feb 2005 A1
20050080246 Allerson et al. Apr 2005 A1
20050107325 Manoharan et al. May 2005 A1
20050142535 Damha et al. Jun 2005 A1
20050181382 Zamore et al. Aug 2005 A1
20050245474 Baker et al. Nov 2005 A1
20050246794 Khvorova et al. Nov 2005 A1
20050255487 Khvorova et al. Nov 2005 A1
20060009409 Woolf Jan 2006 A1
20060069050 Rana Mar 2006 A1
20060127891 McSwiggen et al. Jun 2006 A1
20060142228 Ford et al. Jun 2006 A1
20060160766 Cheung Jul 2006 A1
20060178324 Hadwiger et al. Aug 2006 A1
20060178327 Yeung Aug 2006 A1
20060211766 Kaplan et al. Sep 2006 A1
20070032441 McSwiggen et al. Feb 2007 A1
20070166734 Bhat et al. Jul 2007 A1
20070173476 Leake et al. Jul 2007 A1
20070231392 Wagner et al. Oct 2007 A1
20070248659 Shanahan et al. Oct 2007 A1
20070254850 Lieberman et al. Nov 2007 A1
20070269889 Leake et al. Nov 2007 A1
20080071068 Oba et al. Mar 2008 A1
20080085869 Yamada et al. Apr 2008 A1
20080108583 Feinstein et al. May 2008 A1
20080293593 Khvorova et al. Nov 2008 A1
20080311040 Berry et al. Dec 2008 A1
20090010948 Huang et al. Jan 2009 A1
20090023216 Woolf Jan 2009 A1
20090042828 Xu et al. Feb 2009 A1
20090131360 Woolf et al. May 2009 A1
20090208564 Li et al. Aug 2009 A1
20090220582 Min Sep 2009 A1
20090220583 Pereswetoff-Morath et al. Sep 2009 A1
20090239814 Manoharan et al. Sep 2009 A1
20100069620 Zon Mar 2010 A1
20100136695 Woolf Jun 2010 A1
20100286236 Schlingensiepen et al. Nov 2010 A1
20100331812 Friden et al. Dec 2010 A1
20110039914 Pavco et al. Feb 2011 A1
20110237522 Khvorova et al. Sep 2011 A1
20110251258 Samarsky et al. Oct 2011 A1
20110263680 Khvorova et al. Oct 2011 A1
20110268761 Levis et al. Nov 2011 A1
20110294869 Petersen Dec 2011 A1
20120046186 Pelham et al. Feb 2012 A1
20120065243 Woolf et al. Mar 2012 A1
20140030319 Tocque et al. Jan 2014 A1
20140072613 Lander et al. Mar 2014 A1
20150057362 Levis et al. Feb 2015 A1
20160115482 Libertine et al. Apr 2016 A1
20160115484 Woolf et al. Apr 2016 A1
20160130578 Khvorova et al. May 2016 A1
20160244765 Khvorova et al. Aug 2016 A1
20160304875 Cauwenbergh et al. Oct 2016 A1
20160319278 Khvorova et al. Nov 2016 A1
20160355808 Khvorova et al. Dec 2016 A1
20160355826 Khvorova et al. Dec 2016 A1
20170009239 Khvorova et al. Jan 2017 A1
20170051288 Byrne et al. Feb 2017 A1
20170051290 Byrne et al. Feb 2017 A1
20170067056 Khvorova et al. Mar 2017 A1
20170137823 Kamens et al. May 2017 A1
20180030451 Cauwenbergh Feb 2018 A1
20180155718 Woolf et al. Jun 2018 A1
20180195066 Byrne et al. Jul 2018 A1
20180195072 Cardia et al. Jul 2018 A1
20180263925 Cauwenbergh et al. Sep 2018 A1
20180327748 Khvorova et al. Nov 2018 A1
20180371464 Khvorova et al. Dec 2018 A1
20190029974 Cauwenbergh et al. Jan 2019 A1
20190048341 Cardia et al. Feb 2019 A1
20190161757 Khvorova et al. May 2019 A1
20190169608 Pavco et al. Jun 2019 A1
20190211337 Khvorova et al. Jul 2019 A1
20190218557 Kamens et al. Jul 2019 A1
20190233826 Libertine et al. Aug 2019 A1
20200002701 Khvorova et al. Jan 2020 A1
20200085764 Maxwell et al. Mar 2020 A1
20200101028 Levis et al. Apr 2020 A1
20200215113 Eliseev Jul 2020 A1
Foreign Referenced Citations (68)
Number Date Country
2004206255 Aug 2004 AU
1 568 373 Jan 2005 CN
101663323 Mar 2010 CN
103820454 May 2014 CN
197 27 932 Jan 1999 DE
19727932 Jan 1999 DE
0 552 766 Jul 1993 EP
1 214 945 Jun 2002 EP
1 144 623 Mar 2003 EP
1 352 061 Oct 2003 EP
0 928 290 Mar 2005 EP
1 407 044 Sep 2007 EP
1 605 978 Sep 2010 EP
2004-500846 Jan 2004 JP
4 095 895 Sep 2004 JP
2007-525169 Sep 2007 JP
2007-531520 Nov 2007 JP
2008-536874 Sep 2008 JP
2009-519033 May 2009 JP
2429246 Sep 2011 RU
WO 9203464 Mar 1992 WO
1992007065 Apr 1992 WO
1993015187 Aug 1993 WO
WO 9423028 Oct 1994 WO
WO 9511910 May 1995 WO
WO 9523162 Aug 1995 WO
WO 9640964 Dec 1996 WO
WO 9814172 Apr 1998 WO
WO 9960012 Nov 1999 WO
WO 0185941 Nov 2001 WO
WO 03012052 Feb 2003 WO
WO 2003064626 Aug 2003 WO
WO 2004065600 Aug 2004 WO
WO 2004065601 Aug 2004 WO
WO 2004090105 Oct 2004 WO
WO 2005019430 Mar 2005 WO
WO 2005019453 Mar 2005 WO
WO 2005079533 Sep 2005 WO
WO 2005097992 Oct 2005 WO
WO 2006019430 Feb 2006 WO
WO 2006039656 Apr 2006 WO
WO 2006065601 Jun 2006 WO
WO 2006113679 Oct 2006 WO
WO 2006128141 Nov 2006 WO
WO 2007030167 Mar 2007 WO
WO 2007069068 Jun 2007 WO
WO 2007089607 Aug 2007 WO
WO 2008011344 Jan 2008 WO
WO 2008028965 Mar 2008 WO
WO 2008028968 Mar 2008 WO
WO 2008036825 Mar 2008 WO
WO 2008109353 Sep 2008 WO
WO 2009020344 Feb 2009 WO
WO 2009029688 Mar 2009 WO
WO 2009029690 Mar 2009 WO
WO 2009044392 Apr 2009 WO
WO 2009078685 Jun 2009 WO
WO 2010006237 Jan 2010 WO
WO 2010011346 Jan 2010 WO
WO 2010027830 Mar 2010 WO
WO 2010042281 Apr 2010 WO
2011119852 Sep 2011 WO
WO 2011119852 Sep 2011 WO
WO 2011154542 Dec 2011 WO
2012112079 Aug 2012 WO
WO 2012112079 Aug 2012 WO
WO 2013101436 Jul 2013 WO
WO 2015024986 Feb 2015 WO
Non-Patent Literature Citations (133)
Entry
Pardoll (Nature Apr. 2012; 252-264).
Brenner et al. (Current Opinion in Immun. 2010: 251-257).
[No Author Listed] RedChip Small-Cap Investor Conference. RXI Pharmaceuticals (Nasdaq RXII). Jun. 16, 2009 Presentation. 22 pages.
[No Author Listed] RXi Pharmaceutical Corporation. Ex 99.1. OTC: RXII. Mar. 2013. 38 pages.
[No Author Listed], Rxi Pharmaceuticals Presents Self-Delivering RNAi Data at Scar Club Meeting in France. Drugs.com. Mar. 26, 2010. http://www.drugs.com/clinical_trials/rxi-pharmaceuticals-presents-self-delivering-rnai-data-scar-club-meeting-france-9093.html [last accessed Aug. 19, 2014].
Alahari et al., Inhibition of expression of the multidrug resistance-associated P-glycoprotein of by phosphorothioate and 5′ cholesterol-conjugated phosphorothioate antisense oligonucleotides. Mol Pharmacol. Oct. 1996;50(4):808-19.
Aleckovic et al., J RNAi Gene Silencing. May 27, 2008;4(1):266-8.
Baigude et al., Design and creation of new nanomaterials far therapeutic RNAi. ACS Chem Biol. Apr. 24, 2007;2(4):237-41.
Behlke, Progress towards in vivo use of siRNAs. Mal Ther. Apr. 2006;13(4):644-70. Epub Feb. 14, 2006.
Bjerke et at, Histone H3.3. mutations drive pediatric glioblastoma through upregulatian of MYCN. Cancer Discov. May 2013;3(5):512-9.
Borkner et al., RNA interference targeting programmed death receptor-1 improves immune functions of tumor-specific T cells. Cancer Immunol Immunother. Aug. 2010;59(8):1173-83. doi: 10.1007/s00262-010-0842-0. Epub Mar. 27, 2010.
Boutorin et al., Synthesis of alkylating oligonucleotide derivatives containing cholesterol or phenazinium residues at their 3′-terminus and their interaction with DNA within mammalian cells. FEBS Lett. Aug. 28, 1989;254(1-2):129-32.
Braasch et al., RNA interference in mammalian cells by chemically-modified RNA. Biochemistry. Jul. 8, 2003;42(26):7967-75.
Brown et al., RNAi off-targeting: Light at the end of the tunnel. J RNAi Gene Silencing. Jul. 28, 2006;2(2):175-7.
Cardia et al., Novel self-delivering RNAi compounds with enhanced cellular uptake and distribution properties. Keystone RNAi Silencing Conference. Jan. 14-19, 2010. Poster. 1 Page.
Chen et al., Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mal Ther. Sep. 2010;18(9):1650-6. doi: 10.1038/mt.2010.136. Epub Jul. 6, 2010.
Choung et al., Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun. Apr. 14, 2003;342(3):919-27.
Chu et al., Potent RNAi by short RNA triggers. RNA. 2008;14:1714-9.
Czauderna et al., ., Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. Jun. 1, 2003;31(11):2705-16.
De Smidt et al., Association of antisense oligonucleotides with lipoproteins prolongs the plasma half-life and modifies the tissue distribution. Nucleic Acids Res. Sep. 11, 1991;19(17):4695-700.
Debart et al., Chemical modifications to improve the cellular uptake of oligonucleotides. Curr Top Med Chem. 2007;7(7):727-37.
Dykxhoorn et al., The silent treatment: siRNAs as small molecule drugs. Gene Ther. Mar. 2006;13(6):541-52. Review.
Elbashir et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. May 24, 2001;411(6836):494-8.
Elbashir et al., Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J. Dec. 3, 2001;20(23):6877-88.
Fedorov et al., Off-target effects by siRNA can induce toxic phenotype. RNA. Jul. 2006;12(7):1188-96. Epub May 8, 2006.
Ferentz et al., Disulfide-crosslinked oligonucleotides. Journal of the American Chemical Society. 1991;113 (10): 4000-4002.
Fisher et al., Intracellular disposition and metabolism of fluorescently-labeled unmodified and modified oligonucleotides microinjected into mammalian cells. Nucleic Acids Res. Aug. 11, 1993;21(16):3857-65.
Ginobbi et al., Folic acid-polylysine carrier improves efficacy of c-myc antisense oligodeoxynucleotides on human melanoma (M14) cells. Anticancer Res. Jan.-Feb. 1997;17(1A):29-35.
Glaser, Oligonucleotide therapies move toward efficacy trials to treav HIV CMV, cancer. Genetic Engineering News 16, Feb. 1, 1996. 2 pages.
Heemskerk et al., T-cell receptor gene transfer for the treatment of leukemia and other tumors. Haematologica. Jan. 2010;95(1):15-9. doi: 10.3324/haematol.2009.016022.
Holmes et al., Syntheses and oligonucleotide incorporation of nucleoside analogues containing pendant imidazolyl or amino functionalities—the search for sequence-specific artificial ribonucleases. Eur J Org Chem. Apr. 13, 2005;5171-83. DOI; 10.1002/ejoc.20050413.
Hueng et al., Enhancing dendritic cell vaccine potency by combining a BAK/BAX siRNA-mesiated antiapoptotic strategy to prolong dendritic cell life with an intracellular strategy to target antigen to lysosomal compartments. Apr. 15, 2007. Medline Database Accession No. NLM17230516.
Iwakuma et al., MDM2, an introduction. Mol Cancer Res. Dec. 2003;1(14):993-1000.
Jackson et al., Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA. Jul. 2006;12(7):1197-1205. Epub May 8, 2006.
Kamens et al., Novel, chemically modified RNAi compounds with improved potency, stability and specificity. Keystone RNAi Silencing: Mechanism, Biology and Application Conference. Jan. 14-19, 2010. Poster. 1 Page.
Kim et al., Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol Ther. Jun. 2007;15(6):1145-52. Epub Apr. 17, 2007.
Kraynack et al., Small interfering RNAs containing full 2′-O-methylribonucleotide-modified sense strands display Argonaute2/eIF2C2-dependent activity. RNA. Jan. 2006;12(1):163-76. Epub Nov. 21, 2005.
Kubo et al., Modified 27-nt dsRNAs with dramatically enhanced stability in serum and long-term RNAi activity. Oligonucleotides. 2007 Winter;17(4):445-64.
Layzer et al., In vivo activity of nuclease-resistant siRNAs. Rna. May 2004;10(5):766-71.
Lee et al., Contributions of 3′-overhang to the dissociation of small interfering RNAs from the PAZ domain: molecular dynamics simulation study. J Mal Graph Model. Mar. 2007;25(6):784-93. Epub Jul. 11, 2006.
Letsinger et al., Cholesteryl-conjugated oligonucleotides: synthesis, properties, and activity as inhibitors of replication of human immunodeficiency virus in cell culture. Proc Natl Acad Sci U S A. Sep. 1989;86(17):6553-6.
Leuschner et al., Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Reports 2006;7(3):314-20.
Li et al., Surface-modified LPD nanoparticles for tumor targeting. Ann N Y Acad Sci. Oct. 2006;1082:1-8.
Manoharan et al., Chemical modifications to improve uptake and bioavailability of antisense oligonucleotides. Ann N Y Acad Sci. Oct. 28, 1992;660:306-9.
Manoharan, Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action. Antisense Nucleic Acid Drug Dev. Apr. 2002;12(2):103-28.
Martins et al., Sterol side chain length and structure affect the clearance of chylomicron-like lipid emulsions in rats and mice. J Lipid Res. Feb. 1998;39(2):302-12.
Mathews et al., Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A. May 11, 2004;101(19):7287-92. Epub May 3, 2004.
McEvoy et al., Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma. PLoS One. 2012;7(8):e42739. doi: 10.1371/journal.pone.0042739. Epub Aug. 20, 2012.
Mescalchin et al., Cellular uptake and intracellular release are major obstacles to the therapeutic application of siRNA: novel options by phosphorothioate-stimulated delivery. Expert Opin Biol Ther. Oct. 2007;7(10):1531-8. Review.
Miska et al., Autoimmunity-mediated antitumor immunity: tumor as an immunoprivileged self. Eur J Immunol. Oct. 2012;42(10):2584-96. doi:10.1002/eji.201242590. Epub Aug. 10, 2012.
Oberhauser et al., Effective incorporation of 2′-O-methyl-oligoribonucleotides into liposomes and enhanced cell association through modification with thiocholesterol. Nucleic Acids Res. Feb. 11, 1992;20(3):533-8.
Overhoff et al., Phosphorothioate-stimulated uptake of short interfering RNA by human cells. Embo Rep. Dec. 2005;6(12):1176-81.
Parrish et al., Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mal Cell. Nov. 2000;6(5):1077-87.
Pavco et al., Robust Intradermal efficacy with novel chemically modified self-delivering RNAi compounds. Keystone RNAi Silencing Conference: Mechanism, Biology and Application Conference. Jan. 14-19, 2010. Poster. 1 Page.
Peng et al., Vaccination with dendritic cells transfected with BAK and BAX siRNA enhances antigen-specific immune responses by prolonging dendritic cell life. Hum Gene Ther. May 200516(5):584-93.
Rajeev et al., 2′-modified-2-thiothymidine oligonucleotides. Org Lett. Aug. 21, 2003;5(17):3005-8.
Rozners et al., Expanding functionality of RNA: synthesis and properties of RNA containing imidazole modified tandem G-U wobble base pairs. Chem Commun (Camb). Dec. 14, 2005;(46):5778-80.
Rump et al., Preparation of conjugates of oligodeoxynucleotides and lipid structures and their interaction with low-density lipoprotein. Bioconjug Chem. May-Jun. 1998;9(3):341-9.
Salomon et al., Modified dsRNAs that are not processed by Dicer maintain potency and are incorporated into the RISC. Nucleic Acids Res. Jun. 2010;38(11):3771-9. doi: 10.1093/nar/gkq055. Epub Feb. 18, 2010.
Sato et al., Tumor targeting and imaging of intraperitoneal tumors by use of antisense oligo-DNA complexed with dendrimers and/or avidin in mice. Clin Cancer Res. Nov. 2001;7(11):3606-12.
Seela et al., Oligodeoxyribonucleotides containing 1,3-propanediol as nucleoside substitute. Nucleic Acids Res. Apr. 10, 1987;15(7):3113-29.
Shen, Advances in the development of siRNA-based therapeutics for cancer. IDrugs. Aug. 2008;11(8):572-8. Review.
Shi, Mammalian RNAi for the masses. Trends Genet. Jan. 2003;19(1):9-12.
Shi-Wen et al., Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. Apr. 2008;19(2):133-44. doi: 10.1016/j.cytagfr.2008.01.002.
Snead et al., RNA interference trigger variants: getting the most out of RNA for RNA interference-based therapeutics. Nucleic Acid Ther. Jun. 2012;22(3):139-46. doi: 10.1089/nat.2012.0361. Review.
Soutschek et al., Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. Nov. 11, 2004;432(7014):173-8.
Sun et al., Asymmetric RNA duplexes mediate RNA interference in mammalian cells. Nat Biotechnol. Dec. 2008;26(12):1379-82. doi: 10.1038/nbt.1512. Epub Nov. 23, 2008. 4 Pages.
Taylor et al., Curbing activation: proprotein convertases in homeostasis and pathology. FASEB J. Jul. 2003;17(10):1215-27.
Uhlmann et al., Antisense oligonucleotides: a new therapeutic principle. Chem Rev. 1990;90(4):543-84.
Ui-Tei, Letter to the Editor open access sdRNA: siRNA with a DNA seed for an efficienta nd target-gene specific ENA interference. Gene Technol. Jan. 1, 2012. Retrieved online via http://ui-tei.rnai.jp/assets/filed/pdf/GNT-1-102.pdf. DIO: 10.4172/gnt.100012.
Vaught et al., Expanding the chemistry of DNA for in vitro selection. J Am Chem Soc. Mar. 31, 2010;132(12):4141-51. doi: 10.1021/ja908035g.
Wolfrum et al., Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Bioteclmol. Oct. 2007;25(10):1149-57. Epub Sep. 16, 2007.
Yamada et al., Lysophosphatidic acid stimulates the proliferation and motility of malignant pleural mesothelioma cells through lysophosphatidic acid receptors, LPA1 and LPA2. Cancer Sci. Aug. 2008;99(8):1603-10.
Yamada et al., Synthesis and properties of oligonucleotides having a chemically stable 2-(trimethylsilyl)benzoyl group. Nucleic Acids Symp Ser (Oxf). 2008;(52):301-2. doi: 10.1093/nass/nrn152.
Correspondence associated with Gutkina inventorship claim. Dated Dec. 2, 2016 through Mar. 2, 2018. 187 pages.
[No Author Listed] RXi Pharmaceucticals Completes Apthera Acquisition. Press Release. BusinessWire. Apr. 14, 2011. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. NM_000675.5. Rissanen et al., Dec. 1, 2003. 7 pages.
Genbank Submission; NIH/NCBI, Accession No. NM_002286.5. Li et al., Sep. 22, 2013. 6 pages.
Genbank Submission; NIH/NCBI, Accession No. NM_005018.2. Breton et al., Nov. 23, 2013. 6 pages.
Genbank Submission; NIH/NCBI, Accession No. NM_005214.4. Queirolo et al., Nov. 3, 2013. 7 pages.
Genbank Submission; NIH/NCBI, Accession No. NM_032782.4. Gao et al., Oct. 19, 2013. 6 pages.
Augustyns et al., Incorporation of hexose nucleoside analogues into oligonucleotides: synthesis, base-pairing properties and enzymatic stability. Nucleic Acids Res. Sep. 25, 1992;20(18):4711-6.
Chen et al., Functionalization of single-walled carbon nanotubes enables efficient intracellular delivery of siRNA targeting MDM2 to inhibit breast cancer cells growth. Biomed Pharmacother. Jul. 2012;66(5):334-8. doi: 10.1016/j.biopha.2011.12.005. Epub Feb. 17, 2012.
Chen et al., Mdm2 deficiency suppresses MYCN-Driven neuroblastoma tumorigenesis in vivo. Neoplasia. Aug. 2009;11(8):753-62.
Chiang et al., Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem. Sep. 25, 1991;266(27):18162-71.
Fabbri et al., MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A. Oct. 2, 2007;104(40):15805-10. Epub Sep. 21, 2007.
Ortigão et al., Antisense effect of oligodeoxynucleotides with inverted terminal internucleotidic linkages: a minimal modification protecting against nucleolytic degradation. Antisense Res Dev. 1992 Summer;2(2):129-46.
Petukhova et al., Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. Jul. 1, 2010;466(7302):113-7. doi: 10.1038/nature09114.
Stein et al., A specificity comparison of four antisense types: morpholino, 2′-O-methyl RNA, DNA, and phosphorothioate DNA. Antisense Nucleic Acid Drug Dev. Jun. 1997;7(3):151-7.
Summerton et al., Morpholino and phosphorothioate antisense oligomers compared in cell-free and in-cell systems. Antisense Nucleic Acid Drug Dev. Apr. 1997;7(2):63-70.
Kim et al., Blocking the immunosuppressive axis with small interfering RNA targeting interleukin (IL)-10 receptor enhances dendritic cell-based vaccine potency. Clin Exp Immunol. Aug. 2011;165(2):180-9. doi: 10.1111/j.1365-2249.2011.04410.x. Epub May 18, 2011.
Maxwell et al., Yhe Use of Self-delivering RNAi to Enhance NK Cell Cytotoxicity. Discovery on Target. Sep. 26, 2018. Poster. 1 Page.
U.S. Appl. No. 16/206,064, filed Nov. 30, 2018, Libertine et al.
U.S. Appl. No. 16/377,617, filed Apr. 3, 2018, Levis et al.
Byrne et al., Novel hydrophobically modified asymmetric RNAi compounds (sd-rxRNA) demonstrate robust efficacy in the eye. J Ocul Pharmacol Ther. Dec. 2013;29(10):855-64. doi: 10.1089/jop.2013.0148. Epub Nov. 1, 2013.
Freeley et al., Advances in siRNA delivery to T-cells: potential clinical applications for inflammatory disease, cancer and infection. Biochem J. Oct. 15, 2013;455(2):133-47. doi: 10.1042/BJ20130950.
Rose et al., Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res. Jul. 26, 2005;33(13):4140-56. Print 2005.
Shoeman et al., Fluorescence microscopic comparison of the binding of phosphodiester and phosphorothioate (antisense) oligodeoxyribonucleotides to subcellular structures, including intermediate filaments, the endoplasmic reticulum, and the nuclear interior. Antisense Nucleic Acid Drug Dev. Aug. 1997;7(4):291-308.
International Search Report from International Application No. PCT/US2014/068244, filed Dec. 2, 2014, dated Jun. 29, 2015.
Corsello, et al, Endocrine Side Effects Induced by Immune Checkpoint Inhibitors, J. Clin. Endocrinol. Metab., Apr. 2013, pp. 1361-1375, v. 98, No. 4.
Heemskerk, M., T-Cell Receptor Gene Transfer for the Treatment of Leukemia and other Tumors, Haematologica, 2010, pp. 15-19, vol. 95, No. 1.
Snead, N. M. et al, RNA Interference Trigger Variants: Getting the Most Out of RNA for RNA Interference-Based Therapeutics, Nucleic Acid Therapeutics, 2012, pp. 139-146, vol., 22, No. 3.
Ui-Tei, K., sdRNA: siRNA with a DNA Seed for an Efficient and Target-gene Specific RNA Interference, Gene Technology, 2012, pp. 1-6, vol. 1, No. 1.
Byrne, M. et al., Novel Hydrophobically Modified Asymmetric RNAi Compounds (sd-rxRNA) Demonstrate Robust Efficacy in the Eye, Journal of Ocular Pharmacology and Therapeutics, 2013.
Hodi, F. S., New Toxicities of Immune Checkpoint Modulators, Annals of Oncology, 2013, vol. 24 (Suppl 1), i7-i17.
U.S. Appl. No. 16/270,524, filed Feb. 7, 2019, Khvorova et al.
U.S. Appl. No. 16/377,617, filed Apr. 8, 2019, Levis et al.
U.S. Appl. No. 16/606,669, filed Oct. 18, 2019, Maxwell et al.
U.S. Appl. No. 16/637,514, filed Feb. 7, 2020, Eliseev.
Cardia et al., Self-Delivering RNAi Compounds. Drug Delivery Technology. Sep. 2010;10(7):1-4.
Chiu et al., siRNA function in RNAi: a chemical modification analysis. RNA. Sep. 2003;9(9):1034-48.
Vickers et al., Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem. Feb. 28, 2003;278(9):7108-18. Epub Dec. 23, 2002.
U.S. Appl. No. 16/153,424, filed Oct. 5, 2018, Pavco et al.
U.S. Appl. No. 16/191,396, filed Nov. 14, 2018, Kamens et al.
U.S. Appl. No. 16/159,590, filed Oct. 12, 2018, Khvorova et al.
U.S. Appl. No. 15/918,605, filed Mar. 12, 2018, Khvorova et al.
U.S. Appl. No. 16/022,652, filed Jun. 28, 2018, Khvorova et al.
U.S. Appl. No. 15/758,576, filed Mar. 8, 2018, Cauwenbergh et al.
U.S. Appl. No. 15/769,555, filed Apr. 18, 2018, Cardia et al.
U.S. Appl. No. 15/638,586, filed Jun. 30, 2017, Woolf et al.
U.S. Appl. No. 15/532,804, filed Jun. 2, 2017, Cauwenbergh et al.
U.S. Appl. No. 15/742,093, filed Jan. 5, 2018, Cardia et al.
U.S. Appl. No. 15/742,117, filed Jan. 5, 2018, Byrne et al.
U.S. Appl. No. 15/905,118, filed Feb. 26, 2018, Khvorova et al.
Correspondence associated with Gutkina inventorship claim. Dated Jun. 22, 2018 through Nov. 21, 2018. 78 pages.
Facciabene et al., T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. May 1, 2012;72(9):2162-71. doi: 10.1158/0008-5472.CAN-11-3687.
Kandalaft et al., The emergence of immunomodulation: combinatorial immunochemotherapy opportunities for the next decade. Gynecol Oncol. Feb. 2010;116(2):222-33. doi: 10.1016/j.ygyno.2009.11.001. Epub Dec 2, 2009.
Kloss et al., Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. Jan. 2013;31(1):71-5. doi: 10.1038/nbt.2459. Epub Dec. 16, 2012.
U.S. Appl. No. 16/680,101, filed Nov. 11, 2019, Woolf et al.
U.S. Appl. No. 16/850,912, filed Apr. 16, 2020, Cauwenbergh et al.
U.S. Appl. No. 16/852,328, filed Apr. 17, 2020, Byrne et al.
U.S. Appl. No. 15/930,377, filed May 12, 2020, Libertine et al.
U.S. Appl. No. 16/934,864, filed Jul. 21, 2020, Khvorova et al.
Related Publications (1)
Number Date Country
20160304873 A1 Oct 2016 US
Provisional Applications (1)
Number Date Country
61910728 Dec 2013 US