Rybak et al. PNAS, 89:3165-3169, 1992.* |
De Prisco, et al., A Ribonuclease from human seminal plasma active on double-stranded RNA, Biochim. Biophys. Acta 788:356-363 (1984). |
Jones, et al., “Replacing the complementarity-determining regions in a human antibody with those from a mouse,” Nature 321:522-525 (May 29, 1986). |
Williams, et al., “Production of antibody-tagged enzymes by myeloma cells: application to DNA polymerase I Klenow fragment” Gene 43:319-324 (1986). |
St. Clair, et al., “Angiogenin abolishes cell-free protein synthesis by specific ribonucleolytic inactivation of ribosomes,” Proc. Natl. Acad. Sci. USA 84:8330-8334 (12/87). |
Riechmann, et al., “Reshaping human antibodies for therapy,” Nature 332:323-327 (Mar. 24, 1988). |
Huston, et al., “Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli,” Proc. Natl. Acad. Sci. USA 85:5878-5883 (8/88). |
Bird, et al., “Single-chain antigen-binding proteins,” Science 242:423-426 (Oct. 21, 1998). |
Darzynkiewicz, et al., “Cytostatic and Cytotoxic effects of Pannon (P-30 Protein), a novel anticancer agent,” Cell Tissue Kinet. 21:169-182 (1988). |
Khazaeli, et al., “Immunology,” Proceedings of AACR 29:418 (1988). |
Nishimura, et al., “Expression and function of a CD 5 cDNA in human and murine T cells,” Eur. J. Immunol. 18:747-753 (1988). |
Griffin, et al., “Immunotoxin therapy: Assessment by animal models,” Immunotoxins, Boston/Dordrecht/Lancaster, Kluwer Academic Publishers, p. 433-455 (1988). |
Chaudhary, et al., “A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin,” Nature 339:394-397 (Jun. 1, 1989). |
Ward, et al., “Binding activities of a repertoire of single immunoglobulin variable domaines secreted from Escherichia coli,” Nature 341:544-546 (Oct. 12, 1989). |
Batra, et al., “Antitumor activity in mice of an immunotoxin made with anti-transferrin receptor and a recombinant form of Pseudomonas exotoxin,” Proc. Natl. Acad. Sci. USA 86:8545-8549 (11/89). |
Mikulski, et al., “Striking increase of survival of mice bearing M109 madison charcinoma treated with a novel protein from amphibian embryos,” J. Nat'l. Cancer Inst. 82(2):151-153 (Jan. 17, 1990). |
Chaudhary, et al., “A rapid method of cloning functional variable-region antibody genes in Escherichia coli as single-chain immunotoxins,” Proc. Natl. Acad. Sci. USA 87:1066-1070 (2/90). |
Casadei, et al., “Expression and secretion of aequorin as a chimeric antibody by means of a mammalian expression vector,” Proc. Natl. Acad. Sci. USA 87:2047-2051 (3/90). |
Goodson, et al., “Site-directed pegylation of recombinant interleukin-2 at its glycosylation site,” Bio/Technology 8:343-346 (4/90). |
Batra, et al., “Anti-tac (Fv)-PE40, a single chain antibody Pseudomonas fusion protein directed at interleukin 2 receptor bearing cells,” J. Biol. CHem. 265:15198-15202 (Sep. 5, 1990). |
Mikulski, et al., “Tamoxifen and trifluoroperazine (Stelazine) potentiate cytostatic/cytotoxic effects of P-30 protein, a novel protein possessing anti-tumour activity,” Cell Tissue Kinet. 23:237-246 (1990). |
Winter, et al., “Man-made antibodies,” Nature 349:293-299 (Jan. 24, 1991). |
Rybak, et al., “Human Cancer Immunology II. Clinical use of immunotoxins. Monoclonal antibodies conjugated to protein toxins,” Immunology and Allergy Clinics of North America 11(2):359-380, W.B. Saunders Co. (5/91). |
Pearson, J.W., et al., “Reversal of Drug Resistance in a Human Colon Cancer Xenograft Expressing MDR1 Complementary DNA by in vivo administration of MRK-16 monoclonal Antibody,” J. Natl. Cancer Inst. 83(19):1386-1391 (Oct. 2, 1991). |
Ghetie, et al., “Antitumor activity of Fab' and IgG-anti-CD22 immunotoxins in disseminated Human B lymphoma grown in mice with severe combined immunodeficiency disease: effect on tumor cells in extranodal sites,” Cancer Res. 51:5876-5880 (Nov. 1, 1991). |
Hoogenboom, et al., “Construction and expression of antibody-tumor necrosis factor fusion proteins,” Molecular Immunology 28(9):1027-1037 (Nov. 4, 1991). |
Rybak, et al., “Cytotoxic potential of ribonuclease and ribonuclease hybrid proteins,” J. Biol. Chem. 266:21202-21207 (Nov. 5, 1991). |
Hoogenboom, et al., “Targeting of tumor necrosis factor to tumor cells: secretion by myeloma cells of a genetically engineered antibody-tumor necrosis factor hybrid molecule,” Biochim. Biophys. Acta 1096:345-354 (Nov. 20, 1991). |
Ardelt, et al., “Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos,” J. Biol. Chem. 266(1):245-251 (1991). |
Uckun, et al., “In vivo efficacy of B43 (anti-CD19)-pokeweed antiviral protein immunotoxin against human Pre-B cell acute lymphoblastic leukemia in mice with severe combined immunodeficiency,” Blood 79(9):2201-2214 (May 1, 1992). |
Newton, et al., “Cytotoxic ribonuclease chimeras,” J. Biol. CHem. 267(27):19572-19578 (Sep. 25, 1992). |
Grossbard, et al., “Anti-B4-blocked ricin: A phase I trial of 7-day continuous infusion in patients with B-cell neoplasms,” J. Clin. Oncol. 11(4):726-737 (4/93). |
Grossbard, et al., “Adjuvant immunotoxin therapy with anti-B4-blocked ricin after autologous bone marrow transplantation for patients with B-cell non-Hodgkin's lymphoma,” Blood 81(9):2263-2271 (May 1, 1993). |
Amlot, et al., “A Phase I study of an anti-CD22-deglycosylated ricin A chain immunotoxin in the treatment of B-cell lymphomas resistant to conventional therapy,” Blood 82(9):2624-2633 (Nov. 1, 1993). |
Rybak, et al. “Cytotoxic onconase and ribonuclease A chimeras: Comparison and in Vitro characterization,” Drug Delivery 1:3-10 (1993). |
Newton, et al., “Toxicity of an antitumor ribonuclease to Purkinje neurons,” J. Neurosci. 14(2): 538-544 (2/94). |
Rybak, et al., “RNase and RNase immunofusions for cancer therapy,” Tumor Targeting 1(3):141-147 (1995). |
Francisco, et al., “Activity of a single-chain immunotoxin that selectively kills lymphoma and other B-lineage cells expressing the CD40 antigen,” Cancer Res. 55:3099-3104 (Jul. 15, 1995). |
Sausville, et al., “Continuous infusion fo the anti-CD22 immunotoxin IgG-RFB4-SMPT-dgA in patients with B-cell lymphoma: A Phase I study,” Blood 85(12):3457-3465 (Jun. 15, 1995). |
Mansfield, et al., “Characterization of RFB4-Pseudomonas exotoxin A immunotoxins targeted to CD22 on B-cell malignancies,” Bioconj. Chem. 7:557-563 (1996). |
Newton, D.L., et al., “Anti-tumor ribonuclease, combined with or conjugated to monoclonal antibody MRK16, overcomes multidrug resistance to vincrinstine in vitro and in vivo,” Int'l. Oncology 8:1095-1104 (1996). |
Newton, D.L., et al., “Angiogenin single-chain immunofusions: influence of peptide linkers and spacers between fusion protein domains,” Biochemistry 35:545-553 (1996). |
Mansfield, et al., “Recombinant RFB4 immunotoxins exhibit potent cytotoxic activity for CD22-bearing cells and tumors,” Blood 90(5):2020-2026 (Sep. 1, 1997). |
Mansfield, et al., “Recombinant RFB4 single-chain immunotoxin that is cytotoxic towards CD22-positive cells,” Biochem. Soc. Trans. 25:709-714 (1997). |