This invention relates to increasing die strength by etching during or after dicing a semiconductor wafer.
Etching of semiconductors such as silicon with spontaneous etchants is known with a high etch selectivity to a majority of capping, or encapsulation, layers used in the semiconductor industry. By spontaneous etchants will be understood etchants which etch without a need for an external energy source such as electricity, kinetic energy or thermal activation. Such etching is exothermic so that more energy is released during the reaction than is used to break and reform inter-atomic bonds of the reactants. U.S. Pat. No. 6,498,074 discloses a method of dicing a semiconductor wafer part way through with a saw, laser or masked etch from an upper side of the wafer to form grooves at least as deep as an intended thickness of die to be singulated from the wafer. A backside of the wafer, opposed to the upper side, is dry etched, for example with an atmospheric pressure plasma etch of CF4, past a point at which the grooves are exposed to remove damage and resultant stress from sidewalls and bottom edges and corners of the die, resulting in rounded edges and corners. Preferably a protective layer, such as a polyimide, is used after grooving to hold the die together after singulation and during etching and to protect the circuitry on the top surface of the wafer from etchant passing through the grooves.
However, in order to etch from the backside of the wafer it is necessary to remount the wafer, in, for example, a vortex non-contact chuck, after grooving the upper surface, in order to etch the wafer from an opposite side from that from which the wafer is grooved.
It is an object of the present invention at least to ameliorate the aforesaid shortcoming in the prior art.
According to a first aspect of the present invention there is provided a method of dicing a semiconductor wafer having an active layer comprising the steps of: mounting the semiconductor wafer on a carrier with the active layer away from the carrier; at least partially dicing the semiconductor wafer on the carrier from a major surface of the semiconductor wafer to form an at least partially diced semiconductor wafer; and etching the at least partially diced semiconductor wafer on the carrier from the said major surface with a spontaneous etchant to remove sufficient semiconductor material from a die produced from the at least partially diced semiconductor wafer to improve flexural bend strength of the die.
Conveniently, the step of at least partially dicing the semiconductor wafer comprises dicing the semiconductor wafer completely through the semiconductor wafer; and the step of etching the semiconductor wafer comprises etching sidewalls of the die, remaining portions of the die being masked from the spontaneous etchant by portions of the active layer on the die.
Alternatively, the step of at least partially dicing the semiconductor wafer comprises partially dicing the semiconductor wafer along dicing lanes to leave portions of semiconductor material bridging the dicing lanes; and the step of etching the semiconductor wafer comprises etching sidewalls of the dicing lanes and etching away the portions of semiconductor material bridging the dicing lanes to singulate the die.
Advantageously, the semiconductor wafer is a silicon wafer.
Conveniently, the step of etching with a spontaneous etchant comprises etching with xenon difluoride.
Preferably, the step of etching with a spontaneous etchant comprises providing an etching chamber and etching the semiconductor wafer within the etching chamber.
Advantageously, the step of etching with a spontaneous etchant within the etching chamber comprises cyclically supplying the chamber with spontaneous etchant and purging the etching chamber of spontaneous etchant for a plurality of cycles.
According to a second aspect of the invention, there is provided a dicing apparatus for dicing a semiconductor wafer having an active layer comprising: carrier means on which the semiconductor wafer is mountable with the active layer away from the carrier; laser or mechanical sawing means arranged for at least partially dicing the semiconductor wafer on the carrier from a major surface of the semiconductor wafer to form an at least partially diced semiconductor wafer; and etching means arranged for etching the at least partially diced semiconductor wafer on the carrier from the said major surface with a spontaneous etchant to remove sufficient semiconductor material from a die produced from the at least partially diced semiconductor wafer to improve flexural bend strength of the die.
Conveniently, the dicing apparatus is arranged for dicing a silicon wafer.
Advantageously, the etching means is arranged to etch with xenon difluoride.
Preferably, the dicing apparatus further comprises an etching chamber arranged for etching the semiconductor wafer mounted on the carrier means within the etching chamber.
Preferably, the etching chamber is arranged for cyclically supplying the chamber with spontaneous etchant and purging the etching chamber of spontaneous etchant for a plurality of cycles.
The invention will now be described, by way of example, with reference to the accompanying drawings in which:
Referring to
The diced wafer 111 is placed on the carrier in a chamber 14, the chamber having an inlet port 141 and an outlet port 142. Cycles of xenon difluoride (XeF2), or any other spontaneous etchant of silicon, are input through the inlet port 141 and purged through the outlet port 142 for a predetermined number of cycles each of a predetermined duration. Alternatively, the etching may be carried out as a continuous process, but this has been found to be less efficient in terms of etch rate and etchant usage. The dies are then released from the tape 12 and mounted onto a die pad 15 or another die to form a mounted die 16.
Referring to
Referring to
The process of the invention provides the advantages over other etch processes, such as chemical or plasma etching, of being a fully integrated, dry, controllable, gas process, so that no specialist wet chemical handling is required, and clean, safe and user-friendly materials are used in a closed handling system that lends itself well to automation. Moreover, since spontaneous etching may be carried out in parallel with dicing, cycle time is of the order of dicing process time, so that throughput is not restricted. Furthermore, the invention uses a tape-compatible etch process which is also compatible with future wafer mounts, such as glass. In addition, no plasma is used, as in the prior art, which might otherwise induce electrical damage on sensitive electrical devices. Finally, the invention provides an inexpensive process which, used with laser dicing, provides a lower cost dicing process than conventional dicing processes.
Ten 125 mm diameter 180 μm thick silicon wafers were coated with standard photoresist. The wafers were split into two groups as shown in Table 1 with five wafers undergoing laser dicing and five wafers undergoing dicing by mechanical saw.
After dicing the wafers were placed in a chamber and etched with XeF2 for a predetermined period of time. After this period the chamber was evacuated and purged. This etch, evacuate and purge cycle was repeated for a set number of times to remove a predetermined thickness of silicon. The numbers of cycles used are given in Table 2.
After the wafers had been etched, the die strength of each wafer was measured using 3-point and 4-point flexural bend strength testing.
The results for 3-point die strength testing are listed in Table 3 for laser-cut wafers and Table 4 for saw-cut. wafers. Corresponding graphs comparing the survival probability for the control wafer with the four different etch depths used are shown in
The results for 4-point die strength testing are listed in Tables 5 and 6. Corresponding graphs comparing the survival probability for the control wafer and the four different etch tests are shown in
SEM images of the laser-cut and saw-cut wafers are shown in
For both the 3-point and 4-point tests, it can be seen that for both saw-cut and laser-cut die, on average the etched dies had higher flexural strength than the un-etched dies and the flexural strength increases with depth of etch in the etch range 2 μm to 25 μm.
Although the invention has been described in relation to silicon and xenon difluoride, it will be understood that any suitable liquid or gaseous spontaneous etchant such as a halide or hydrogen compound, for example F2, Cl2, HCl or HBr may be used with silicon or another semiconductor.
Number | Date | Country | Kind |
---|---|---|---|
0424195.6 | Nov 2004 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/11671 | 11/1/2005 | WO | 00 | 4/3/2009 |