The present invention relates to ferroelectric memory integrated circuits (ICs). More particularly, the invention relates to increasing the read signal in ferroelectric memory ICs.
Ferroelectric metal oxide ceramic materials such as lead zirconate titanate (PZT) have been investigated for use in ferroelectric semiconductor memory devices. Other ferroelectric materials, such as strontium bismuth tantalate (SBT), can also be used.
The ferroelectric memory stores information in the capacitor as remanent polarization. The logic value stored in the memory cell depends on the polarization of the ferroelectric capacitor. To change the polarization of the capacitor, a voltage which is greater than the switching voltage (coercive voltage) needs to be applied across its electrodes. An advantage of the ferroelectric capacitor is that it retains its polarization state after electric field is removed, resulting in a non-volatile memory cell.
During standby, the two electrodes of the capacitor are maintained at the same potential. To perform a read, the bitline of the memory cell is precharged to 0V. The wordline is activated, coupling the capacitor to the bitline. A pulse is provided on the plateline, resulting in a read signal on the bitline. If the pulse switches the polarization of the capacitor, a relatively big charge flows to the bitline which results in a voltage VHI. On the other hand, a relatively small charge flows to the bitlines to produce VLO if the polarization is not switched. The magnitude of the read signal depends on ratio of the capacitance of the cell capacitor and bitline capacitance. Typically, VLO is about 0.6V and VHI is about 1.2V, resulting in a small difference between the two levels. Since a sense amplifier needs to differentiate between the two signal levels, it is desirable to provide as large a difference between the levels as possible to increase the sensing window. Increased sensing window reduces read defects, thus increasing yield.
Conventionally, increasing the difference between the read signals VLO and VHI is achieved by increasing the magnitude of the pulse signal on the plateline. However, increasing the pulse signal can adversely impact the reliability and performance of the IC. For example, large pulse signals can decrease gate oxide reliability, increase power consumption, and decrease pulse signal speed.
From the foregoing discussion, it is desirable to increase sensing window in ferroelectric memory ICs without decreasing reliability or performance.
The invention relates to improving the sensing window by increasing the differential of the high/low read signals in ICs with an array of ferroelectric memory cells. In one embodiment, the ferroelectric memory cells are arranged in a folded bitline architecture. Alternatively, the memory cells are arranged in a chained architecture. A sense circuit is coupled to the bitlines of the memory array. A voltage source which provides a negative voltage is coupled to the sense circuit. When a memory access is initiated, the sense amplifier precharges the bitlines to the negative voltage. By precharging the bitlines to a negative voltage, the effective plateline pulse (VPLH) is increased to about VPLH+VBLN. This results in an increase in the difference between VHI and VL0 read signals, thereby increasing the sensing window.
The invention generally relates to increasing read signal in ferroelectric memory ICs. Increasing the read signal produces a larger differential between the logic 1 and logic 0 signal levels, which advantageously increases the sensing window of the sense amplifiers.
A wordline driving circuit 280 is coupled to the wordlines and a sensing circuit 285 is coupled to an end of the bitlines. In one embodiment, first and second sensing circuits 285a–b are provided for respective first and second bitline sections of the array. In accordance with one embodiment of the invention, a negative voltage source 295 (VBLN) is coupled to the sensing circuits. The sensing circuit includes, for example, sense amplifiers and precharging circuitry. The wordline driving circuit is controlled by row decoder and sensing circuits are controlled by column decoders. A plateline driving circuit is coupled to the platelines. A plateline decoder, for example, can be employed to control the plateline driving circuit. Alternatively, depending on which direction the platelines are arranged, either the row or column decoder can be used to control the plateline driving circuit.
Numerous bitline pairs are interconnected via wordlines to form a memory block. The memory block is separated into first (left) and second (right) sections 302 and 303, each comprising a chain of a bitline. During a memory access, only one section is accessed (either left or right). Depending on which bitline the memory chain of the selected cell is located, BS0 or BS1 is activated.
A wordline driving circuit is coupled to the wordlines and a sensing circuit is coupled to an end of the bitlines. A sense circuit is coupled to one end of the bitlines. The sensing circuit 385 includes, for example, sense amplifiers and precharging circuitry. In accordance with one embodiment of the invention, a negative voltage source 395 (VBLN) is coupled to the sensing circuits. The wordline driving circuit is controlled by row decoder and sensing circuit are controlled by column decoders.
In accordance with the invention, the read signal is increased by precharging the bitlines to a negative voltage VBLN. In one embodiment, VBLN has about the same magnitude as VLO. In one embodiment, VBLN is equal to about −0.5V to −1.0V. Preferably, VBLN causes VLO to equal to about 0V or slightly above 0V, ensuring that the read voltage is not a negative voltage. By providing a negative VBLN, the effective magnitude of the pulse on PL is increased from VPLH to about VPLH+VBLN without increasing VPLH. This results in an increase in the difference between VHI and VL0 without adversely affecting the reliability and performance of the IC. The bitlines are precharged using the bitline precharge circuitry which, for example, is part of sense amplifiers which are coupled to the bitlines.
While the invention has been particularly shown and described with reference to various embodiments, it will be recognized by those skilled in the art that modifications and changes may be made to the present invention without departing from the spirit and scope thereof. The scope of the invention should therefore be determined not with reference to the above description but with reference to the appended claims along with their full scope of equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5691935 | Douglass | Nov 1997 | A |
5822264 | Tomishima et al. | Oct 1998 | A |
5903492 | Takashima | May 1999 | A |
6115284 | Matsumiya et al. | Sep 2000 | A |
6198651 | Lee et al. | Mar 2001 | B1 |
6208550 | Kim | Mar 2001 | B1 |
6363002 | Nishimura et al. | Mar 2002 | B1 |
6366490 | Takeuchi et al. | Apr 2002 | B1 |
20020006053 | Murakuki | Jan 2002 | A1 |
20020031003 | Hoya et al. | Mar 2002 | A1 |
Number | Date | Country |
---|---|---|
09 185890 | Jul 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20040076031 A1 | Apr 2004 | US |