The present invention relates to an inductively coupled plasma generator for generating an inductively coupled plasma in an ICP analyzer such as an inductively coupled plasma (ICP) mass spectrometer or an ICP spectroscopic analyzer.
In the ICP mass spectrometer, an atomized sample (mainly an inorganic substance such as a metal) is introduced into a plasma flame generated by inductively coupled plasma to ionize the sample, and ions generated thereby are provided to a mass spectrometry, thereby performing a qualitative analysis or quantitative analysis of the sample. Further, in the ICP spectroscopic analyzer, an atomized sample is introduced into a plasma flame generated by inductively coupled plasma, spectroscopic analysis is performed on luminescent light emitted by heating and exciting a sample molecule or atom, thereby performing a qualitative analysis or quantitative analysis of the sample. Here, analyzers utilizing an inductively coupled plasma generator such as an ICP mass spectrometer and an ICP spectroscopic analyzer are collectively referred to as an ICP analyzer.
The reason why the torch adapter 4 is used instead of directly holding the circumferential surface of the plasma torch 3 by the holder 2 is that the torch 3 can be held by the common torch holder 2, using the torch adapter 4 having a different inner diameter at the center opening portion for each of the plural types of plasma torches 3 having different outer diameters.
In the inductively coupled plasma generator as described above, plasma cannot be generated merely by supplying high-frequency power of a normal level to the induction coil 5 at the time of start-up or the like, and in general, it is necessary to cause initial ionization of the plasma gas required for plasma ignition. Therefore, in the conventional inductively coupled plasma generator, for example, the plasma ignition is performed by applying a high-voltage pulse from an ignition circuit including a Tesla coil or the like, which is a type of resonance transformer, to an electrode which is in electrical contact with the plasma torch. In the inductively coupled plasma generator illustrated in
However, in the conventional inductively coupled plasma generator, at the time of replacing the plasma torch 3, an operator temporarily removes the R type crimp terminal 8 from the branch pipe 301 of the plasma torch 3, and after another plasma torch 3 is held by the torch holder 2, it is necessary to attach the R type crimp terminal 8 of the distal end of the cable line 6 to the branch pipe 301 of the torch 3. Therefore, there was a problem of taking time and labor in a replacement operation of the plasma torch 3.
In addition, an inductively coupled plasma generator having a configuration in which a high-voltage application electrode biased by a spring, which is electrically connected to the distal end of the cable line, is provided at the bottom of the groove of the torch holder formed with the groove in which the plasma torch is directly mounted has also been known. In this generator, when the plasma torch is placed in the groove of the torch holder, the spring for urging the high-voltage application electrode is urged by the weight of the plasma torch, and the electrode comes into contact with the circumferential surface of the plasma torch by the urging force.
However, with such a configuration, in a state in which the plasma torch is placed in the groove of the torch holder, the urging force of the spring may be applied to the plasma torch from the bottom and the torch may be inclined in some cases. For this reason, it is difficult to position the plasma torch relative to the torch holder. Also, originally, such an inductively coupled plasma generator copes with a plasma torch having only one type of outer diameter, and there is a problem that the inductively coupled plasma generator does not cope with plural types of plasma torches having different outer diameters.
The invention has been made to solve the above problems, and an object of the invention is to provide an inductively coupled plasma generator which is capable of coping with plural types of plasma torches having different outer diameters, and does not need to attach or detach terminal of the distal end of the cable line for plasma ignition to and from the torch at the time of replacing the plasma torch.
In order to solve the above problems, the invention provides an inductively coupled plasma generator which supplies high-frequency power to an induction coil disposed outside a leading end portion of a plasma torch having a substantially cylindrical outer shape to form an inductively coupled plasma flame at a leading end of the torch, the inductively coupled plasma generator including:
a) a torch adapter which is a substantially flat annular insulative body having an opening portion into which the plasma torch is inserted, and into which a conductive rod body is buried, one end of the conductive rod body being exposed to face the opening portion, and the other end of the conductive rod body protruding by a predetermined length toward an outer circumferential side;
b) a torch holder which holds the plasma torch substantially horizontally by grasping the torch adapter into which the plasma torch is inserted, and has a lower holder which supports a lower side of the torch adapter, an upper holder which suppresses an upper side of the torch adapter, and an engaging part which fixes the upper holder to the lower holder in a state in which the torch adapter is interposed; and
c) a conductive first member which is electrically connected to a cable line for applying a voltage for plasma ignition and provided in the upper holder, and has a first contact part which abuts on the rod body to press the rod body downward by an elastic force, when the upper holder is closed and engaged by the engaging part in a state in which the torch adapter is placed on the lower holder so that the protruding part of the rod body of the torch adapter faces upward.
Typically, the inductively coupled plasma generator according to the invention is used for an ICP mass spectrometer, an ICP spectroscopic analyzer, and the like.
In the inductively coupled plasma generator according to the invention, when holding the plasma torch in the torch holder, the torch adapter fitted with the plasma torch is placed at a predetermined position on the lower holder such that a protruding part of the conductive rod body faces upward (preferably right above). When the upper holder is closed so as to sandwich the torch adapter from above and below in this state, the leading end of the protruding part of the rod body of the torch adapter abuts on the conductive first member provided in the upper holder. Since at least the contact part of the conductive first member with which the protruding part of the rod body abuts has elastic force, the contact part receives an upward force from the rod body, and inversely, presses the rod body downward by the elastic force. Since the contact part of the conductive first member is pressed against the leading end of the rod body by the elastic force, sufficient electrical contact between them is secured. Accordingly, a cable line for applying a voltage for plasma ignition is electrically connected to the outer surface of the plasma torch via the conductive first member and the rod body, and a high voltage for plasma ignition can be applied to the plasma torch. Also, at this time, since the torch adapter is pressed against the lower holder from above by the conductive first member, the position of the plasma torch is not likely to be misaligned, and the torch adapter is stably held by the holder.
That is, in the inductively coupled plasma generator according to the invention, the conductive first member provided in the upper holder has a function as a wiring for applying a high voltage for plasma ignition to the outer surface of the plasma torch.
Further, in the inductively coupled plasma generator according to the invention, the torch adapter may have an inner diameter of an opening portion corresponding to the outer diameter of the plasma torch to be used, and its outer diameter, which is a substantially flat annular body, may be common regardless of the outer diameter.
According to this configuration, even when plural kinds of plasma torches having different outer diameters are used, merely by using the torch adapter adapted to each plasma torch, the other configurations can be totally common, without depending on the outer diameter of the plasma torch. This makes it possible to cope with plural types of plasma torches having different outer diameters, while suppressing an increase in cost.
Further, as an aspect of the inductively coupled plasma generator according to the invention, the upper holder may be pivotally mounted about an axis substantially horizontal to the lower holder, and the engaging part may be a draw latch which engages the upper holder and the lower holder in a state in which the upper holder is closed with respect to the lower holder.
According to this configuration, since the operator can mount the plasma torch on the torch holder, by merely placing the plasma torch on the lower holder at a predetermined position, and by rotating the upper holder so as to cover the lower holder and tightening the draw latch, the operation is simple.
Further, as an aspect of the inductively coupled plasma generator according to the invention, it is possible to provide a configuration in which a conductive second member extending vertically and electrically connected to a cable line for applying a voltage for plasma ignition is provided in the lower holder, and the conductive first member has a second contact part which abuts on the upper end of the conductive second member to press the second member downward by elastic force, when the upper holder is closed and engaged by the engaging part.
In this configuration, the cable line is electrically connected to the outer surface of the plasma torch via the conductive second member, the conductive first member, and the rod body. In this case, the distal end of the cable line can be fixed to the lower holder rather than the upper holder. For example, as described above, when the upper holder is free to pivot with respect to the lower holder and the lower holder is fixed to a base or the like, the upper holder is rotated each time the plasma torch is replaced. Therefore, when the distal end of the cable line is fixed to the upper holder, a load such as pulling is applied to the cable line each time the plasma torch is replaced. According to the above configuration, however, since the distal end of the cable line is fixed to the lower holder, it is possible to reduce the load applied to the cable lines and make it hard to cause disconnection and the like.
According to the inductively coupled plasma generator of the invention, in a case where an operator replaces the plasma torch, when performing an operation of holding a newly loaded plasma torch with the torch holder, a reliable electrical conduction between the outer surface of the plasma torch and the distal end of the cable line from the ignition circuit is secured, and there is a state in which the high-voltage pulse can be applied to the plasma torch from the ignition circuit. Thus, there is no need for an operation of attaching and detaching the distal end of the cable line from the ignition circuit at the time of replacing the plasma torch, thereby reducing the labor of the operator and improving the operating efficiency. Also, in such a state in which the reliable electrical conduction is ensured, since the plasma torch is stably held and the position of the plasma torch with respect to the induction coil or the like is also determined, for example, the interval between the induction coil and the plasma torch can be appropriately maintained to form a favorable plasma flame.
Hereinafter, an inductively coupled plasma generator according to an embodiment of the invention will be described with reference to the accompanying drawings.
A plasma torch 3 made of quartz glass, which is a coaxial triple cylindrical pipe structure similar to the conventional example, is fitted through a torch adapter 4 having a substantially flat annular outer shape. The torch adapter 4 is made of an insulator such as polytetrafluoroethylene (PTFE) resin, and as illustrated in
A torch holder 2 has a lower holder 21 fixed to a base 1 with a metal fitting fixing screw 31 via a metal fitting 30, and an upper holder 22 fixed to the lower holder 21 by a hinge 24 so as to be freely pivotable. The lower holder 21 and the upper holder 22 are made of an insulator such as polyethylene terephthalate (PET) resin. As can be seen from
A metal plate member (corresponding to the conductive second member in the invention) 25 having a substantially L-shaped cross section is attached to the upper surface of the lower holder 21 so as to be accommodated in a gap formed between the lower holder 21 and the upper holder 22 when the upper holder 22 is closed. The distal end of a cable line 6, one end of which is connected to the ignition circuit, is fixed to the lower holder 21 by a wiring fixing plate fixing screw 27, in a state of being sandwiched between the metal plate member 25 and a wiring fixing plate 26 placed to overlap the top thereof. Thus, the electrical connection between the ignition circuit and the metal plate member 25 is secured through the cable line 6.
The upper holder 22 integrally has a horizontal part 22a which is substantially horizontal in the state in which the upper holder 22 is closed, and an inclined part 22b which is inclined. Recessed parts 22c and 22d are formed on lower surfaces (surfaces on an inner side in a state in which the upper holder 22 is closed) of the horizontal part 22a and the inclined part 22b, respectively. The recessed part 22c on the side of the horizontal part 22a is formed at a position where the protruding part of the rod body 41 protruding just above the torch adapter 4 held by the lower holder 21 is received, when the upper holder 22 is closed. On the other hand, the recessed part 22d of the inclined part 22b side is formed at a position where the leading end of the vertically rising upright piece part of the metal plate member 25 fixed to the lower holder 21 is received, when the upper holder 22 is closed.
A conductive leaf spring member (electrically conductive first member in the invention) 28 bent in a V-shaped cross section is fixed on the lower surface of the inclined part 22b of the upper holder 22, by a leaf spring fixing screw 29. One flexible piece 28a of the leaf spring member 28 extends to a position which substantially covers the recessed part 22c on the horizontal part 22a side, and the other flexible piece 28b of the leaf spring member 28 extends to a position which substantially covers the recessed part 22d on the inclined part 22b side.
When the plasma torch 3 is mounted on the torch holder 2, the operator places the torch adapter 4 with the plasma torch 3 fitted in the central opening portion on a support receiving part 21a of the lower holder 21 so that the protruding part of the rod body 41 faces approximately directly above, in a state in which the draw latch 23 is unlocked and the upper holder 22 is opened so as not to cover the upper side of the lower holder 21. Further, as illustrated in
On the other hand, the upper end of the rising piece part of the metal plate member 25 pushes the flexible piece 28b of the leaf spring member 28 upward, and the flexible piece 28b is deflected to enter the recessed part 22d. That is, each of the recessed parts 22c and 22d is a space for escaping when the flexible pieces 28a and 28b of the leaf spring member 28 are deflected. Since the rising piece part of the metal plate member 25 is pushed downward by the elastic force of the deflected flexible piece 28b, the electrical conduction via the contact part in which the leaf spring member 28 and the metal plate member 25 abut against each other is surely ensured. Thus, in a state in which the plasma torch 3 is appropriately loaded and the draw latch 23 is tightened, electrical conduction between the metal plate member 25 and the rod body 41 via the leaf spring member 28 is ensured, and an electrical conduction path from the ignition circuit to the outer circumferential surface of the plasma torch 3 is secured. As a result, when a high-voltage pulse is generated in the ignition circuit, the high-voltage pulse can be reliably applied to the plasma torch 3 to ignite the plasma.
Unlike the conventional device, in the inductively coupled plasma generator of this embodiment, since the operation of replacing the cable line 6 for plasma ignition at the time of replacing the plasma torch 3 is not necessary at all, replacement operation can be efficiently performed. This also applies to the case where the plasma torch is replaced for one having a different outer diameter.
The above-mentioned embodiment is an example of the invention, and even when a change, a correction or an addition is appropriately made within the scope of the spirit of the invention, it is natural that they are included within the scope of the claims of the invention.
For example, in the above embodiment, the distal end of the cable line 6 is fixed to the lower holder 21, and the electrical conduction between the cable line 6 and the plasma torch 3 is secured via the metal plate member 25 attached to the lower holder 21, the leaf spring member 28 attached to the upper holder 22, and the rod body 41 buried in the torch adapter 4. However, the distal end of the cable line 6 may be fixed to the upper holder 22 so that the cable line 6 is electrically connected to the leaf spring member 28 without passing through the metal plate member 25. However, in that case, as the upper holder 22 is opened and closed, an unnecessary load is applied to the cable line 6. Therefore, it is preferable that the distal end of the cable line 6 be fixed to the lower holder 21 instead of the upper holder 22.
The means for fixing the upper holder 22 to the lower holder 21 when closing the upper holder 22 is not limited to the draw latch 23, another engaging means capable of performing a reliable engagement by a predetermined manipulation and operation of the operator may be used.
Number | Name | Date | Kind |
---|---|---|---|
4818916 | Morrisroe | Apr 1989 | A |
7737397 | Morrisroe | Jun 2010 | B2 |
9259798 | Morrisroe | Feb 2016 | B2 |
20150041454 | Foret | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
2001-183297 | Jul 2001 | JP |
2007-93578 | Apr 2017 | JP |
Number | Date | Country | |
---|---|---|---|
20200022244 A1 | Jan 2020 | US |