Industrial and process control systems include various types of control equipment used in industrial production, such as Supervisory Control and Data Acquisition (SCADA) systems, Distributed Control Systems (DCS), and other control equipment using, for example, Programmable Logic Controllers (PLC). These control systems are typically used in industries including electrical, water, oil, gas, and data. Using information collected from remote stations in the field, automated and/or operator-driven supervisory commands can be transmitted to field control devices. These field devices control local operations, such as opening and closing valves and breakers, collecting data from sensor systems, and monitoring a local environment for alarm conditions.
For example, SCADA systems typically use open-loop control with sites that may be widely separated geographically, using potentially unreliable or intermittent low-bandwidth/high-latency links. These systems use Remote Terminal Units (RTUs) to send supervisory data to a control center. The RTUs may have a limited capacity for local controls when the master station is not available. DCS systems are generally used for real time data collection and control with high-bandwidth, low-latency data networks. PLCs typically provide Boolean logic operations, timers, continuous control, and so on. However, as industrial control systems evolve, new technologies are combining aspects of these various types of control systems. For instance, Programmable Automation Controllers (PACs) can include aspects of SCADA, DCS, and PLCs.
SCADA systems can be used with industrial processes, including manufacturing, production, power generation, fabrication, and refining. They can also be used with infrastructure processes, including water treatment and distribution, wastewater collection and treatment, oil and gas pipelines, electrical power transmission and distribution, wind forms, large communication systems, and so forth. Further, SCADA systems can be used in facility processes for buildings, airports, ships, space stations, and the like (e.g., to monitor and control Heating, Ventilation, and Air Conditioning (HVAC) equipment and energy consumption). DCS systems are generally used in large campus industrial process plants, such as oil and gas, refining, chemical, pharmaceutical, food and beverage, water and wastewater, pulp and paper, utility power, mining, metals, and so forth. PLCs are typically used in industrial sectors and with critical infrastructures.
A cable includes a wiring assembly with a knuckle and wires bundled together by a sleeve. The cable also includes a connector assembly with a connector having connections for the wires, where the connections are arranged along a longitudinal axis. The connector assembly captures an end of the wiring assembly, and the knuckle of the wiring assembly is pivotally connected to the connector assembly so that the wiring assembly can articulate with respect to the connector assembly in a plane defined by the longitudinal axis of the connector and the end of the wiring assembly. In some embodiments, the connector assembly and the knuckle form a decent to arrest movement of the wiring assembly with respect to the connector assembly. In some embodiments, one or more of the connections is a keyed connection.
A cable includes a wiring assembly with wires bundled together by a sleeve. The cable also includes a connector assembly with a connector having connections for the wires, where the connector assembly captures an end of the wiring assembly. The cable further includes circuitry configured to authenticate the cable to a device connected to the cable by the connector and/or to authenticate the device connected to the cable by the connector. In some embodiments, the circuitry stores a unique identifier and/or a security credential associated with the cable. The circuitry can be configured to establish and/or prevent connection to the device connected to the cable based upon the authentication. The circuitry can also be configured to encrypt communication between the cable and the device. The cable can also include an indicator (e.g., an indicator light) to indicate the authentication.
A control system includes a first control element or subsystem coupled with a backplane, a first cable configured to connect to the first control element or subsystem, a second control element or subsystem coupled with the backplane adjacent to the first control element or subsystem, and a second cable configured to connect to the second control element or subsystem. Each one of the first cable and the second cable includes a wiring assembly with a knuckle and wires bundled together by a sleeve. Each cable also includes a connector assembly with a connector having connections for the wires, where the connections are arranged along a longitudinal axis. The connector assembly captures an end of the wiring assembly, and the knuckle of the wiring assembly is pivotally connected to the connector assembly so that the wiring assembly can articulate with respect to the connector assembly in a plane defined by the longitudinal axis of the connector and the end of the wiring assembly. In this manner, respective connector assemblies of the first cable and the second cable are configured to connect to the first control element or subsystem and the second control element or subsystem so that respective wiring assemblies of the first cable and the second cable can articulate to be parallel to the longitudinal axis of each respective connector. The backplane can be, for instance, a power backplane or a communications backplane.
A control system includes a first control element or subsystem coupled with a backplane, a first cable configured to connect to the first control element or subsystem, a second control element or subsystem coupled with the backplane adjacent to the first control element or subsystem, and a second cable configured to connect to the second control element or subsystem. Each one of the first cable and the second cable includes a wiring assembly with wires bundled together by a sleeve and a connector assembly with a connector having connections for the wires, where the connector assembly captures an end of the wiring assembly. Each cable includes circuitry configured to authenticate respective ones of the first cable and the second cable to the first control element or subsystem and the second control element or subsystem and/or to authenticate the first control element or subsystem and the second control element or subsystem to respective ones of the first cable and the second cable.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The Detailed Description is described with reference to the accompanying figures. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items.
Overview
In industrial and process control systems, many different cable configurations are generally used to interconnect automation equipment, such as controllers, input/output (I/O) modules, and so forth. For example, a cable with heavier gauge wire is used to connect a power supply to a power grid, while a cable with lighter gauge wire is used to connect an I/O module to a field device. Further, each type of device may use different numbers of wires, different pin layouts, and so forth. For this reason, there is typically a separate cable or cable type used for each piece of automation equipment, which can lead to tracking and inventorying a large number of different cable types. In the event of a cable failure, the proper cable must be identified, located, and properly installed. This can require storing and inventorying an extensive array of different cables, which can increase the expense and/or complexity associated with such equipment. Furthermore, not having an appropriate cable in inventory can lead to production delays, loss of revenue, and so forth.
The present disclosure is directed to apparatus, systems, and techniques for providing a cable that can be used with multiple industrial and process control system equipment devices. Furthermore, cables described herein can be positioned so that the cables can be placed in a variety of orientations within the confines of a cabinet, a rack, or another space with limited interior volume. For example, a cable includes a connector assembly having detents that allow the end of the cable proximate to a connector to “click” into various positions (e.g., a horizontal position, a vertical position, an intermediate position, and so forth). In some embodiments, a cable includes a wiring assembly with a symmetrical layout so that the cable can be connected to a device in various orientations. Further, a cable can include one or more keyed connections (e.g., tongue and groove keying, reversed keying, etc.) to ensure that the cable is connected in a desired orientation with respect to a device (e.g., with mating keyed connections).
In some embodiments, different devices that connect to a cable each have the same number of channels (e.g., ten (10) channels, twenty (20) channels, and so forth), and each cable is group isolated (e.g., using each conductor and one as a common ground). In this manner, each device (e.g., controllers, input/output (I/O) modules, and so on) can have a common (e.g., universal) input/output count. Further, the wires in a cable can be oversized for one particular application (e.g., a low voltage application) so that the cable can be used for another application (e.g., a high voltage application). For example, each cable can be rated for at least approximately two amperes (2 amps). However, this amperage is provided by way of example and is not meant to limit the present disclosure. In other embodiments, the cables can be rated for more than two amperes (2 amps), less than two amperes (2 amps), and so on.
In some embodiments, an electronically active cable (e.g., employing a microprocessor, an embedded state machine, and so on) is provided, which has circuitry (e.g., a printed circuit board (PCB), an integrated circuit (IC) chip, and/or other circuitry) that can perform an authentication of the cable and/or a device connected to the cable. This can prevent or minimize the potential for plugging a cable into a device not intended to be used with that particular cable or type of cable (e.g., preventing or minimizing the possibility that a low voltage cable is plugged into a high voltage device). For example, the cable performs a “handshake” operation with a coupled module to verify that the cable is mated with an appropriate and/or desired device. In some embodiments, an indicator, such as a light emitting diode (LED) indicator light, is used to provide notification of this authentication. For instance, a multi-colored LED and/or a single color LED provides diagnostic information to indicate the status of an authentication (e.g., using a solid glow, no glow, blinking, one color for one state and another color for another state, etc.).
In some embodiments, the cable can be used to authenticate a field device, such as an instrument connected to the cable using a terminal block connection. For instance, cable circuitry can be used to authenticate an instrument, a type of instrument, the manufacturer of an instrument, and so on. In this manner, the use of counterfeit equipment in an industrial automation setting can be prevented or minimized. Further, the cable can be used to authenticate itself to equipment, such as controllers, input/output (I/O) modules, end devices, field devices, and so forth. In some embodiments, the cable facilitates cryptographic communication between the cable and a device connected to the cable. For example, a cable can provide bi-directional cryptographic communications between the cable and end devices, field devices, and so on. Further, in some embodiments, an operator can use a cable connected to a network to obtain authentication information about a field device, such as an instrument.
Example Implementations
Referring now to
The connector assembly 110 and the knuckle 104 can include one or more detents to arrest movement of the wiring assembly 102 with respect to the connector assembly 110. For example, the knuckle 104 includes one or more notches 122 configured to interface with one or more corresponding teeth 124 of the connector assembly 110 (e.g., as shown in
In some embodiments, the cable 100 includes circuitry 126 configured to authenticate the cable 100 to a device 128 connected to the cable 100 by the connector 112 and/or by another connector, such as another connector on the other end of the cable 100. The circuitry 126 can also be used to authenticate the device 128 connected to the cable 100 by the connector 112 and/or by another connector, such as another connector on the other end of the cable 100. In some embodiments, the circuitry 126 stores a unique identifier 130 and/or a security credential 132 associated with the cable 100 (e.g., as shown in
In some embodiments, the cable 100 includes an alert module. In embodiments of the disclosure, the alert module is configured to provide an alert (e.g., to an operator) when a condition and/or set of conditions is met for the cable 100 and/or a device 128 connected to the cable 100. For example, an alert is generated by circuitry 126 when authentication of the cable 100 and/or a device 128 connected to the cable is obtained and/or fails. For example, a cable 100 performs a “handshake” operation with a coupled device 128 to verify that the cable 100 is mated with an appropriate and/or desired device. If not, the alert module can be used to alert an operator (e.g., via a network). In some embodiments, an alert is provided to an operator in the form of an email. In other embodiments, an alert is provided to an operator in the form of a text message. However, these alerts are provided by way of example and are not meant to limit the present disclosure. In other embodiments, different alerts are provided to an operator. Further, multiple alerts can be provided to an operator when a condition is met for an authentication procedure (e.g., an email and a text message, and so forth). It should also be noted that alerts can be provided by circuitry 126 for other conditions, including, but not necessarily limited to: cable failure, connected device failure, various error conditions for a cable and/or a connected device, and so forth.
The circuitry 126 can also be configured to encrypt communication between the cable 100 and the device 128. As shown in
The cables 100 can be used with a process control system 200. In embodiments of the disclosure, the process control system 200 uses a communications control architecture to implement a distributed control system that includes control elements or subsystems 202, where the subsystems are controlled by one or more controllers distributed throughout the system. For example, one or more I/O modules 204 are connected to one or more control modules 206. The process control system 200 is configured to transmit data to and from the I/O modules 204. The I/O modules 204 can comprise input modules, output modules, and/or input and output modules. For instance, input modules can be used to receive information from input instruments in the process or the field, while output modules can be used to transmit instructions to output instruments in the field. For example, an I/O module 204 can be connected to a process sensor, such as a sensor for measuring pressure in piping for a gas plant, a refinery, and so forth.
In implementations, the I/O modules 204 can be used to control systems and collect data in applications including, but not necessarily limited to: industrial processes, such as manufacturing, production, power generation, fabrication, and refining; infrastructure processes, such as water treatment and distribution, wastewater collection and treatment, oil and gas pipelines, electrical power transmission and distribution, wind farms, and large communication systems; facility processes for buildings, airports, ships, and space stations (e.g., to monitor and control Heating, Ventilation, and Air Conditioning (HVAC) equipment and energy consumption); large campus industrial process plants, such as oil and gas, refining, chemical, pharmaceutical, food and beverage, water and wastewater, pulp and paper, utility power, mining, metals; and/or critical infrastructures.
In implementations, an I/O module 204 can be configured to convert analog data received from the sensor to digital data (e.g., using Analog-to-Digital Converter (ADC) circuitry, and so forth). An I/O module 204 can also be connected to a motor and configured to control one or more operating characteristics of the motor, such as motor speed, motor torque, and so forth. Further, the I/O module 204 can be configured to convert digital data to analog data for transmission to the motor (e.g., using Digital-to-Analog (DAC) circuitry, and so forth). In implementations, one or more of the I/O modules 204 can comprise a communications module configured for communicating via a communications sub-bus, such as an Ethernet bus, an H1 field bus, a Process Field Bus (PROFIBUS), a Highway Addressable Remote Transducer (HART) bus, a Modbus, and so forth. Further, two or more I/O modules 204 can be used to provide fault tolerant and redundant connections for a communications sub-bus.
Each I/O module 204 can be provided with a unique identifier (ID) for distinguishing one I/O module 204 from another I/O module 204. In implementations, an I/O module 204 is identified by its ID when it is connected to the process control system 200. Multiple I/O modules 204 can be used with the process control system 200 to provide redundancy. For example, two or more I/O modules 204 can be connected to the sensor and/or the motor. Each I/O module 204 can include one or more ports that furnish a physical connection to hardware and circuitry included with the I/O module 204, such as a printed circuit board (PCB), and so forth. For example, each I/O module 204 includes a connection for a cable 100 that connects the cable 100 to a printed wiring board (PWB) in the I/O module 204.
One or more of the I/O modules 204 can include an interface for connecting to other networks including, but not necessarily limited to: a wide-area cellular telephone network, such as a 3G cellular network, a 4G cellular network, or a Global System for Mobile communications (GSM) network; a wireless computer communications network, such as a Wi-Fi network (e.g., a Wireless LAN (WLAN) operated using IEEE 802.11 network standards); a Personal Area Network (PAN) (e.g., a Wireless PAN (WPAN) operated using IEEE 802.15 network standards); a Wide Area Network (WAN); an intranet; an extranet; an internet; the Internet; and so on. Further, one or more of the I/O modules 204 can include a connection for connecting an I/O module 204 to a computer bus, and so forth.
The control modules 206 can be used to monitor and control the I/O modules 204, and to connect two or more I/O modules 204 together. In embodiments of the disclosure, a control module 206 can update a routing table when an I/O module 204 is connected to the process control system 200 based upon a unique ID for the I/O module 204. Further, when multiple redundant I/O modules 204 are used, each control module 206 can implement mirroring of informational databases regarding the I/O modules 204 and update them as data is received from and/or transmitted to the I/O modules 204. In some implementations, two or more control modules 206 are used to provide redundancy.
Data transmitted by the process control system 200 can be packetized, i.e., discrete portions of the data can be converted into data packets comprising the data portions along with network control information, and so forth. The process control system 200 can use one or more protocols for data transmission, including a bit-oriented synchronous data link layer protocol such as High-Level Data Link Control (HDLC). In some embodiments, the process control system 200 implements HDLC according to an International Organization for Standardization (ISO) 13239 standard, or the like. Further, two or more control modules 206 can be used to implement redundant HDLC. However, it should be noted that HDLC is provided by way of example only and is not meant to be restrictive of the present disclosure. Thus, the process control system 200 can use other various communications protocols in accordance with the present disclosure.
One or more of the control modules 206 can be configured for exchanging information with components used for monitoring and/or controlling the instrumentation connected to the process control system 200 via the I/O modules 204, such as one or more control loop feedback mechanisms/controllers. In implementations, a controller can be configured as a microcontroller/Programmable Logic Controller (PLC), a Proportional-Integral-Derivative (PID) controller, and so forth. In embodiments of the disclosure, the I/O modules 204 and the control modules 206 include network interfaces, e.g., for connecting one or more I/O modules 204 to one or more controllers via a network. In implementations, a network interface can be configured as a Gigabit Ethernet interface for connecting the I/O modules 204 to a Local Area Network (LAN). Further, two or more control modules 206 can be used to implement redundant Gigabit Ethernet.
However, it should be noted that Gigabit Ethernet is provided by way of example only and is not meant to be restrictive of the present disclosure. Thus, a network interface can be configured for connecting the control modules 206 to other various networks including, but not necessarily limited to: a wide-area cellular telephone network, such as a 3G cellular network, a 4G cellular network, or a GSM network; a wireless computer communications network, such as a Wi-Fi network (e.g., a WLAN operated using IEEE 802.11 network standards); a PAN (e.g., a WPAN operated using IEEE 802.15 network standards); a WAN; an intranet; an extranet; an internet; the Internet; and so on. Additionally, a network interface can be implemented using a computer bus. For example, a network interface can include a Peripheral Component Interconnect (PCI) card interface, such as a Mini PCI interface, and so forth. Further, the network can be configured to include a single network or multiple networks across different access points.
The process control system 200 can receive electrical power from multiple sources. For example, AC power is supplied from a power grid 208 (e.g., using high voltage power from AC mains). AC power can also be supplied using local power generation (e.g., an on-site turbine or diesel local power generator 210). A power supply 212 is used to distribute electrical power from the power grid 208 to automation equipment of the process control system 200, such as controllers, I/O modules, and so forth. A power supply 212 can also be used to distribute electrical power from the local power generator 210 to the automation equipment. The process control system 200 can also include additional (backup) power supplies configured to store and return DC power using multiple battery modules. For example, a power supply 212 functions as a UPS. In embodiments of the disclosure, multiple power supplies 212 can be distributed (e.g., physically decentralized) within the process control system 200.
In embodiments of the disclosure, the control elements or subsystems 202 (e.g., the I/O modules 204, the control modules 206, the power supplies 212, and so forth) are connected together by one or more backplanes 214. For example, as shown in
In some embodiments, the I/O modules 204, the control modules 206, and/or the power supplies 212 can be positioned adjacent to one another (e.g., immediately adjacent to one another as shown in
Referring now to
The cable 100 can include a controller 150 for controlling authentication operations, encryption, cryptographic communications, and so forth. The controller 150 can include a processor 152, a memory 154, and a communications interface 156. The processor 152 provides processing functionality for the controller 150 and can include any number of processors, micro-controllers, or other processing systems, and resident or external memory for storing data and other information accessed or generated by the controller 150. The processor 152 can execute one or more software programs that implement techniques described herein. The processor 152 is not limited by the materials from which it is formed or the processing mechanisms employed therein and, as such, can be implemented via semiconductor(s) and/or transistors (e.g., using electronic integrated circuit (IC) components), and so forth.
The memory 154 is an example of tangible, computer-readable storage medium that provides storage functionality to store various data associated with operation of the controller 150, such as software programs and/or code segments, or other data to instruct the processor 152, and possibly other components of the controller 150, to perform the functionality described herein. Thus, the memory 154 can store data, such as a program of instructions for operating the cable 100 (including its components), and so forth. In embodiments of the disclosure, the memory 154 can store a unique identifier 130 and/or a security credential 132 for the cable 100. It should be noted that while a single memory 154 is described, a wide variety of types and combinations of memory (e.g., tangible, non-transitory memory) can be employed. The memory 154 can be integral with the processor 152, can comprise stand-alone memory, or can be a combination of both.
The memory 154 can include, but is not necessarily limited to: removable and non-removable memory components, such as random-access memory (RAM), read-only memory (ROM), flash memory (e.g., a secure digital (SD) memory card, a mini-SD memory card, and/or a micro-SD memory card), magnetic memory, optical memory, universal serial bus (USB) memory devices, hard disk memory, external memory, and so forth. In implementations, the cable 100 and/or the memory 154 can include removable integrated circuit card (ICC) memory, such as memory provided by a subscriber identity module (SIM) card, a universal subscriber identity module (USIM) card, a universal integrated circuit card (UICC), and so on.
The communications interface 156 is operatively configured to communicate with components of the cable 100. For example, the communications interface 156 can be configured to transmit data for storage in the cable 100, retrieve data from storage in the cable 100, and so forth. The communications interface 156 is also communicatively coupled with the processor 152 to facilitate data transfer between components of the cable 100 and the processor 152 (e.g., for communicating inputs to the processor 152 received from a device communicatively coupled with the controller 150). It should be noted that while the communications interface 156 is described as a component of a controller 150, one or more components of the communications interface 156 can be implemented as external components communicatively coupled to the cable 100 via a wired and/or wireless connection. The cable 100 can also comprise and/or connect to one or more input/output (I/O) devices (e.g., via the communications interface 156), including, but not necessarily limited to: a display, a mouse, a touchpad, a keyboard, and so on.
The communications interface 156 and/or the processor 152 can be configured to communicate with a variety of different networks, including, but not necessarily limited to: a wide-area cellular telephone network, such as a 3G cellular network, a 4G cellular network, or a global system for mobile communications (GSM) network; a wireless computer communications network, such as a WiFi network (e.g., a wireless local area network (WLAN) operated using IEEE 802.11 network standards); an internet; the Internet; a wide area network (WAN); a local area network (LAN); a personal area network (PAN) (e.g., a wireless personal area network (WPAN) operated using IEEE 802.15 network standards); a public telephone network; an extranet; an intranet; and so on. However, this list is provided by way of example only and is not meant to limit the present disclosure. Further, the communications interface 156 can be configured to communicate with a single network or multiple networks across different access points.
With reference to
An authentication process for authenticating the cables 100, the devices 128, and/or the control elements or subsystems 202 connected to the cables 100 is performed based upon the unique security credentials. For example, in embodiments, a cable 100 and a device 128 are operable to bi-directionally communicate with one another based on the unique security credentials (e.g., based upon the authentication process). Further, in the secure process control system 200 disclosed herein, multiple (e.g., every) cable 100, device 128, control element or subsystem 202 (e.g., I/O modules, power supplies, physical interconnect devices, etc.) of the process control system 200 is provisioned with security credentials for providing security at multiple (e.g., all) levels of the process control system 200. Still further, the elements can be provisioned with the unique security credentials (e.g., keys, certificates, etc.) during manufacture (e.g., at birth), and can be managed from birth by a key management entity 224 of the process control system 200 for promoting security of the process control system 200.
In embodiments of the disclosure, communications between elements and/or physical interconnect devices (e.g., cables 100) of the process control system 200 includes an authentication process. The authentication process can be performed for authenticating an element and/or physical interconnect device implemented in the process control system 200. In implementations, the authentication process can utilize security credentials associated with the element and/or physical interconnect device for authenticating that element and/or physical interconnect device. For example, the security credentials can include encryption keys, certificates (e.g., public key certificates, digital certificates, identity certificates, security certificates, asymmetric certificates, standard certificates, non-standard certificates) and/or identification numbers. In embodiments, controllers 150 (e.g., secure microcontrollers) that are included in and/or connected to the cables 100 of the process control system 200 can be configured for performing the authentication process.
In implementations, multiple control elements or subsystems 202 (e.g., elements and/or physical interconnect devices) of the process control system 200 are provisioned with their own unique security credentials. For example, each element of the process control system 200 is provisioned with its own unique set(s) of certificates, encryption keys and/or identification numbers when the element is manufactured (e.g., the individual sets of keys and certificates are defined at the birth of the element). The sets of certificates, encryption keys and/or identification numbers are configured for providing/supporting strong encryption. The encryption keys can be implemented with standard (e.g., commercial off-the-shelf (COTS)) encryption algorithms, such as National Security Agency (NSA) algorithms, National institute of Standards and Technology (NIST) algorithms, or the like.
Based upon the results of the authentication process, the element being authenticated can be activated, partial functionality of the element can be enabled or disabled within the process control system 200, complete functionality of the element can be enabled within the process control system 200, and/or functionality of the element within the process control system 200 can be completely disabled (e.g., no communication facilitated between that element and other elements of the process control system 200).
In embodiments, the keys, certificates and/or identification numbers associated with an element of the process control system 200 can specify the original equipment manufacturer (OEM) of that element. As used herein, the term “original equipment manufacturer” or “OEM” can be defined as an entity that physically manufactures the device (e.g., element) and/or a supplier of the device such as an entity that purchases the device from a physical manufacturer and sells the device. Thus, in embodiments, a device can be manufactured and distributed (sold) by an OEM that is both the physical manufacturer and the supplier of the device. However, in other embodiments, a device can be distributed by an OEM that is a supplier, but is not the physical manufacturer. In such embodiments, the OEM can cause the device to be manufactured by a physical manufacturer (e.g., the OEM can purchase, contract, order, etc. the device from the physical manufacturer).
Additionally, where the OEM comprises a supplier that is not the physical manufacturer of the device, the device can bear the brand of the supplier instead of brand of the physical manufacturer. For example, in embodiments where an element (e.g., a cable 100) is associated with a particular OEM that is a supplier but not the physical manufacturer, the element's keys, certificates and/or identification numbers can specify that origin. During authentication of an element of the process control system 200, when a determination is made that an element being authenticated was manufactured or supplied by an entity that is different than the OEM of one or more other elements of the process control system 200, then the functionality of that element can he at least partially disabled within the process control system 200. For example, limitations can be placed upon communication (e.g., data transfer) between that element and other elements of the process control system 200, such that the element can not work/function within the process control system 200. When one of the elements of the process control system 200 requires replacement, this feature can prevent a user of the process control system 200 from unknowingly replacing the element with a non-homogenous element (e.g., an element having a different origin (a different OEM) than the remaining elements of the process control system 200) and implementing the element in the process control system 200. In this manner, the techniques described herein can prevent the substitution of elements (which can furnish similar functionality) of other OEM's into a secure process control system 200 manufactured and/or supplied by the originating OEM (the OEM that originally supplied the process control system 200 to the user) in place of elements manufactured and/or supplied by the originating OEM without the approval of the originating OEM.
In another instance, a user can attempt to implement an incorrectly designated (e.g., mismarked) element within the process control system 200. For example, the mismarked element can have a physical indicia marked upon it which falsely indicates that the element is associated with the same OEM as the OEM of the other elements of the process control system 200. In such instances, the authentication process implemented by the process control system 200 can cause the user to be alerted that the element is counterfeit. This process can also promote improved security for the process control system 200, since counterfeit elements are often a vehicle by which malicious software can be introduced into the process control system 200. In embodiments, the authentication process provides a secure air gap for the process control system 200, ensuring that the secure industrial control system is physically isolated from insecure networks.
In implementations, the secure process control system 200 includes a key management entity 224. The key management entity 224 can be configured for managing cryptographic keys (e.g., encryption keys) in a cryptosystem. This managing of cryptographic keys (e.g., key management) can include the generation, exchange, storage, use, and/or replacement of the keys. For example, the key management entity 224 is configured to serve as a security credentials source, generating unique security credentials (e.g., public security credentials, secret security credentials) for the elements of the process control system 200. Key management pertains to keys at the user and/or system level (e.g., either between users or systems).
In embodiments, the key management entity 224 comprises a secure entity such as an entity located in a secure facility. The key management entity 224 can be remotely located from the I/O modules 204, the control modules 206, and the network 220. For example, a firewall 226 can separate the key management entity 224 from the control elements or subsystems 202 and the network 220 (e.g., a corporate network). In implementations, the firewall 226 can be a software and/or hardware-based network security system that controls ingoing and outgoing network traffic by analyzing data packets and determining whether the data packets should be allowed through or not, based on a rule set. The firewall 226 thus establishes a barrier between a trusted, secure internal network (e.g., the network 220) and another network 228 that is not assumed to be secure and trusted (e.g., a cloud and/or the Internet). In embodiments, the firewall 226 allows for selective (e.g., secure) communication between the key management entity 224 and one or more of the control elements or subsystems 202 and/or the network 220. In examples, one or more firewalls can be implemented at various locations within the process control system 200. For example, firewalls can be integrated into switches and/or workstations of the network 220.
The secure process control system 200 can further include one or more manufacturing entities (e.g., factories 222). The manufacturing entities can be associated with original equipment manufacturers (OEMs) for the elements of the process control system 200. The key management entity 224 can be communicatively coupled with the manufacturing entity via a network (e.g., a cloud). In implementations, when the elements of the process control system 200 are being manufactured at one or more manufacturing entities, the key management entity 224 can be communicatively coupled with (e.g., can have an encrypted communications pipeline to) the elements. The key management entity 224 can utilize the communications pipeline for provisioning the elements with security credentials (e.g., inserting keys, certificates and/or identification numbers into the elements) at the point of manufacture.
Further, when the elements are placed into use (e.g., activated), the key management entity 224 can be communicatively coupled (e.g., via an encrypted communications pipeline) to each individual element worldwide and can confirm and sign the use of specific code, revoke (e.g., remove) the use of any particular code, and/or enable the use of any particular code. Thus, the key management entity 224 can communicate with each element at the factory where the element is originally manufactured (e.g., born), such that the element is born with managed keys. A master database and/or table including all encryption keys, certificates and/or identification numbers for each element of the process control system 200 can be maintained by the key management entity 224. The key management entity 224, through its communication with the elements, is configured for revoking keys, thereby promoting the ability of the authentication mechanism to counter theft and re-use of components.
In implementations, the key management entity 224 can be communicatively coupled with one or more of the control elements or subsystems 202 and/or the network 220 via another network (e.g., a cloud and/or the Internet) and firewall. For example, in embodiments, the key management entity 224 can be a centralized system or a distributed system. Moreover, in embodiments, the key management entity 224 can be managed locally or remotely. In some implementations, the key management entity 224 can be located within (e.g., integrated into) the network 220 and/or the control elements or subsystems 202. The key management entity 224 can provide management and/or can be managed in a variety of ways. For example, the key management entity 224 can be implemented/managed: by a customer at a central location, by the customer at individual factory locations, by an external third party management company and/or by the customer at different layers of the process control system 200, and at different locations, depending on the layer.
Varying levels of security (e.g., scalable, user-configured amounts of security) can be provided by the authentication process. For example, a base level of security can be provided which authenticates the elements and protects code within the elements. Other layers of security can be added as well. For example, security can be implemented to such a degree that a component, such as the cable 100, cannot power up without proper authentication occurring. In implementations, encryption in the code is implemented in the elements, security credentials (e.g., keys and certificates) are implemented on the elements. Security can be distributed (e.g., flows) through the process control system 200. For example, security can flow through the process control system 200 all the way to an end user, who knows what a module is designed to control in that instance. In embodiments, the authentication process provides encryption, identification of devices for secure communication and authentication of system hardware or software components (e.g., via digital signature).
In implementations, the authentication process can be implemented to provide for and/or enable interoperability within the secure process control system 200 of elements manufactured and/or supplied by different manufacturers/vendors/suppliers (e.g., OEMs). For example, selective (e.g., some) interoperability between elements manufactured and/or supplied by different manufacturers/vendors/suppliers can be enabled. In embodiments, unique security credentials (e.g., keys) implemented during authentication can form a hierarchy, thereby allowing for different functions to be performed by different elements of the process control system 200.
The communication links connecting the components of the process control system 200 can further employ data packets, such as runt packets packets (e.g., packets smaller than sixty-four (64) bytes), placed (e.g., injected and/or stuffed) therein, providing an added level of security. The use of runt packets increases the level of difficulty with which outside information (e.g., malicious content such as false messages, malware (viruses), data mining applications, etc.) can be injected onto the communications links. For example, runt packets can be injected onto a communication link within gaps between data packets transmitted between a control module 206 and a cable 100 to hinder an external entity's ability to inject malicious content onto the communication link.
Generally, any of the functions described herein can be implemented using hardware (e.g., fixed logic circuitry such as integrated circuits), software, firmware, manual processing, or a combination thereof. Thus, the blocks discussed in the above disclosure generally represent hardware (e.g., fixed logic circuitry such as integrated circuits), software, firmware, or a combination thereof. In the instance of a hardware configuration, the various blocks discussed in the above disclosure may be implemented as integrated circuits along with other functionality. Such integrated circuits may include all of the functions of a given block, system, or circuit, or a portion of the functions of the block, system, or circuit. Further, elements of the blocks, systems, or circuits may be implemented across multiple integrated circuits. Such integrated circuits may comprise various integrated circuits, including, but not necessarily limited to: a monolithic integrated circuit, a flip chip integrated circuit, a multichip module integrated circuit, and/or a mixed signal integrated circuit. In the instance of a software implementation, the various blocks discussed in the above disclosure represent executable instructions (e.g., program code) that perform specified tasks when executed on a processor. These executable instructions can be stored in one or more tangible computer readable media. In some such instances, the entire system, block, or circuit may be implemented using its software or firmware equivalent. In other instances, one part of a given system, block, or circuit may be implemented in software or firmware, while other parts are implemented in hardware.
Although the subject matter has been described in language specific to structural features and/or process operations, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
The present application is a continuation under 35 U.S.C. § 120 of U.S. patent application Ser. No. 14/446,412, filed Jul. 30, 2014, and titled “INDUSTRIAL CONTROL SYSTEM CABLE,” which itself claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application Ser. No. 62/021,438, filed Jul. 7, 2014, and titled “INDUSTRIAL CONTROL SYSTEM CABLE.” The present application is also a continuation-in-part of International Application No. PCT/US2013/053721, filed Aug. 6, 2013, and titled, “SECURE INDUSTRIAL CONTROL SYSTEM.” U.S. patent application Ser. No. 14/446,412 and U.S. Provisional Application Ser. No. 62/021,438 and International Application No. PCT/US2013/053721 are herein incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1778549 | Conner | Oct 1930 | A |
1961013 | Saraceno | May 1934 | A |
2540575 | Finizie | Feb 1951 | A |
3702983 | Chace | Nov 1972 | A |
4079440 | Ohnuma | Mar 1978 | A |
4082984 | Iwata | Apr 1978 | A |
4337499 | Cronin et al. | Jun 1982 | A |
4403286 | Fry et al. | Sep 1983 | A |
4508414 | Kusui | Apr 1985 | A |
4628308 | Robert | Dec 1986 | A |
4656622 | Lea | Apr 1987 | A |
4672529 | Kupersmit | Jun 1987 | A |
4691384 | Jobe | Sep 1987 | A |
4789792 | Ruedi | Dec 1988 | A |
4882702 | Struger et al. | Nov 1989 | A |
4929939 | Varma et al. | May 1990 | A |
4932892 | Hatch | Jun 1990 | A |
5013247 | Watson | May 1991 | A |
5128664 | Bishop | Jul 1992 | A |
5229652 | Hough | Jul 1993 | A |
5325046 | Young et al. | Jun 1994 | A |
5378166 | Gallagher, Sr. | Jan 1995 | A |
5385487 | Beitman | Jan 1995 | A |
5385490 | Demeter | Jan 1995 | A |
5388099 | Poole | Feb 1995 | A |
5422558 | Stewart | Jun 1995 | A |
5469334 | Balakrishnan | Nov 1995 | A |
5519583 | Kolling | May 1996 | A |
5546463 | Caputo et al. | Aug 1996 | A |
5572511 | Ouyang et al. | Nov 1996 | A |
5590284 | Crosetto | Dec 1996 | A |
5602754 | Beatty et al. | Feb 1997 | A |
5603044 | Annapareddy | Feb 1997 | A |
5719483 | Abbott et al. | Feb 1998 | A |
5724349 | Cloonan et al. | Mar 1998 | A |
5735707 | O'Groske | Apr 1998 | A |
5757795 | Schnell | May 1998 | A |
5773962 | Nor | Jun 1998 | A |
5860824 | Fan | Jan 1999 | A |
5896473 | Kaspari | Apr 1999 | A |
5909368 | Nixon et al. | Jun 1999 | A |
5951666 | Ilting et al. | Sep 1999 | A |
5958030 | Kwa | Sep 1999 | A |
5963448 | Flood et al. | Oct 1999 | A |
5980312 | Chapman | Nov 1999 | A |
6009410 | Lemole et al. | Dec 1999 | A |
6016310 | Muller et al. | Jan 2000 | A |
6046513 | Jouper et al. | Apr 2000 | A |
6104913 | McAllister | Aug 2000 | A |
6124778 | Rowley et al. | Sep 2000 | A |
6178474 | Hamano | Jan 2001 | B1 |
6218740 | Mildice | Apr 2001 | B1 |
6219789 | Little et al. | Apr 2001 | B1 |
6220889 | Ely | Apr 2001 | B1 |
6347963 | Falkenberg | Feb 2002 | B1 |
6393565 | Lockhart et al. | May 2002 | B1 |
6435409 | Hu | Aug 2002 | B1 |
6453416 | Epstein | Sep 2002 | B1 |
6480963 | Tachibana et al. | Nov 2002 | B1 |
6490176 | Holzer et al. | Dec 2002 | B2 |
6574681 | White et al. | Jun 2003 | B1 |
6597683 | Gehring et al. | Jul 2003 | B1 |
6643777 | Chu | Nov 2003 | B1 |
6680904 | Kaplan et al. | Jan 2004 | B1 |
6695620 | Huang | Feb 2004 | B1 |
6714541 | Iyer et al. | Mar 2004 | B1 |
6799234 | Moon et al. | Sep 2004 | B1 |
6812803 | Goergen | Nov 2004 | B2 |
6814580 | Li | Nov 2004 | B2 |
6828894 | Sorger et al. | Dec 2004 | B1 |
6840795 | Takeda | Jan 2005 | B1 |
6956355 | Vaillancourt et al. | Oct 2005 | B2 |
6988162 | Goergen | Jan 2006 | B2 |
7164255 | Hui | Jan 2007 | B2 |
7172428 | Huang | Feb 2007 | B2 |
7200692 | Singla et al. | Apr 2007 | B2 |
7234963 | Huang | Jun 2007 | B1 |
7254452 | Davlin et al. | Aug 2007 | B2 |
7402074 | LeBlanc | Jul 2008 | B2 |
7415368 | Gilbert et al. | Aug 2008 | B2 |
7426585 | Rourke | Sep 2008 | B1 |
7460482 | Pike | Dec 2008 | B2 |
7510420 | Mori | Mar 2009 | B2 |
7526676 | Chou et al. | Apr 2009 | B2 |
7529862 | Isani et al. | May 2009 | B2 |
7536548 | Batke et al. | May 2009 | B1 |
7554288 | Gangstoe et al. | Jun 2009 | B2 |
7587481 | Osburn, III | Sep 2009 | B1 |
7614909 | Lin | Nov 2009 | B2 |
7619386 | Sasaki et al. | Nov 2009 | B2 |
7622994 | Galal | Nov 2009 | B2 |
7660998 | Walmsley | Feb 2010 | B2 |
7670190 | Shi | Mar 2010 | B2 |
7685349 | Allen | Mar 2010 | B2 |
7730304 | Katsube et al. | Jun 2010 | B2 |
7746846 | Boora et al. | Jun 2010 | B2 |
7761640 | Hikabe | Jul 2010 | B2 |
7774074 | Davlin et al. | Aug 2010 | B2 |
7788431 | Deshpande et al. | Aug 2010 | B2 |
7790304 | Hendricks et al. | Sep 2010 | B2 |
7811136 | Hsieh | Oct 2010 | B1 |
7815471 | Wu | Oct 2010 | B2 |
7822994 | Hamaguchi | Oct 2010 | B2 |
7839025 | Besser et al. | Nov 2010 | B2 |
7872561 | Matumoto | Jan 2011 | B2 |
7948758 | Buhler | May 2011 | B2 |
7960870 | Besser et al. | Jun 2011 | B2 |
7971052 | Lucas et al. | Jun 2011 | B2 |
8013474 | Besser et al. | Sep 2011 | B2 |
8019194 | Morrison | Sep 2011 | B2 |
8032745 | Bandholz et al. | Oct 2011 | B2 |
8062070 | Jeon | Nov 2011 | B2 |
8125208 | Gyland | Feb 2012 | B2 |
8132231 | Amies et al. | Mar 2012 | B2 |
8143858 | Tsugawa et al. | Mar 2012 | B2 |
8149587 | Baran | Apr 2012 | B2 |
8157569 | Liu | Apr 2012 | B1 |
8181262 | Cooper et al. | May 2012 | B2 |
8189101 | Cummings | May 2012 | B2 |
8212399 | Besser et al. | Jul 2012 | B2 |
8266360 | Agrawal | Sep 2012 | B2 |
8281386 | Milligan et al. | Oct 2012 | B2 |
8287306 | Daugherty | Oct 2012 | B2 |
8295770 | Seil | Oct 2012 | B2 |
8310380 | Aria et al. | Nov 2012 | B2 |
8380905 | Djabbari et al. | Feb 2013 | B2 |
8390441 | Covaro et al. | Mar 2013 | B2 |
8465762 | Lee et al. | Jun 2013 | B2 |
8480438 | Mattson | Jul 2013 | B2 |
8532119 | Snively et al. | Sep 2013 | B2 |
8560147 | Taylor et al. | Oct 2013 | B2 |
8587318 | Chandler et al. | Nov 2013 | B2 |
8651874 | Ku et al. | Feb 2014 | B2 |
8677145 | Maletsky et al. | Mar 2014 | B2 |
8694770 | Osburn, III | Apr 2014 | B1 |
8777671 | Huang | Jul 2014 | B2 |
8862802 | Calvin et al. | Oct 2014 | B2 |
8868813 | Calvin et al. | Oct 2014 | B2 |
8971072 | Calvin et al. | Mar 2015 | B2 |
9071082 | Nishibayashi et al. | Jun 2015 | B2 |
9318917 | Kubota et al. | Apr 2016 | B2 |
9436641 | Calvin et al. | Sep 2016 | B2 |
9465762 | Calvin et al. | Oct 2016 | B2 |
9467297 | Clish et al. | Oct 2016 | B2 |
9812803 | Toyoda et al. | Nov 2017 | B2 |
10103875 | Roth et al. | Oct 2018 | B1 |
10613567 | Rooyakkers et al. | Apr 2020 | B2 |
11093427 | Calvin et al. | Aug 2021 | B2 |
20020070835 | Dadafshar | Jun 2002 | A1 |
20020080828 | Ofek et al. | Jun 2002 | A1 |
20020080829 | Ofek et al. | Jun 2002 | A1 |
20020084698 | Kelly et al. | Jul 2002 | A1 |
20020086678 | Salokannel et al. | Jul 2002 | A1 |
20020095573 | O'Brien | Jul 2002 | A1 |
20020097031 | Cook et al. | Jul 2002 | A1 |
20020116619 | Maruyama et al. | Aug 2002 | A1 |
20020124198 | Bormann et al. | Sep 2002 | A1 |
20020171525 | Kobayashi et al. | Nov 2002 | A1 |
20020182898 | Takahashi et al. | Dec 2002 | A1 |
20020189910 | Yano et al. | Dec 2002 | A1 |
20030005289 | Gougeon et al. | Jan 2003 | A1 |
20030013727 | Maw et al. | Jan 2003 | A1 |
20030040897 | Murphy et al. | Feb 2003 | A1 |
20030074489 | Steger et al. | Apr 2003 | A1 |
20030094855 | Lohr et al. | May 2003 | A1 |
20030105601 | Kobayashi et al. | Jun 2003 | A1 |
20030137277 | Mori et al. | Jul 2003 | A1 |
20030166397 | Aura | Sep 2003 | A1 |
20030202330 | Lopata et al. | Oct 2003 | A1 |
20030204756 | Ransom et al. | Oct 2003 | A1 |
20030236998 | Gilstrap et al. | Dec 2003 | A1 |
20040178770 | Gagnon et al. | Sep 2004 | A1 |
20050001589 | Edington et al. | Jan 2005 | A1 |
20050019143 | Bishman | Jan 2005 | A1 |
20050091432 | Adams et al. | Apr 2005 | A1 |
20050102535 | Patrick et al. | May 2005 | A1 |
20050144437 | Ransom et al. | Jun 2005 | A1 |
20050144440 | Catherman et al. | Jun 2005 | A1 |
20050151720 | Cruz-Hernandez et al. | Jul 2005 | A1 |
20050162019 | Masciarelli et al. | Jul 2005 | A1 |
20050182876 | Kim et al. | Aug 2005 | A1 |
20050189910 | Hui | Sep 2005 | A1 |
20050198522 | Shaw et al. | Sep 2005 | A1 |
20050229004 | Callaghan | Oct 2005 | A1 |
20060015590 | Patil et al. | Jan 2006 | A1 |
20060020782 | Kakii | Jan 2006 | A1 |
20060108972 | Araya | May 2006 | A1 |
20060119315 | Sasaki et al. | Jun 2006 | A1 |
20060155990 | Katsube et al. | Jul 2006 | A1 |
20060156415 | Rubinstein | Jul 2006 | A1 |
20070072442 | DiFonzo et al. | Mar 2007 | A1 |
20070076768 | Chiesa et al. | Apr 2007 | A1 |
20070123304 | Pattenden et al. | May 2007 | A1 |
20070123316 | Little | May 2007 | A1 |
20070143838 | Milligan et al. | Jun 2007 | A1 |
20070174524 | Kato et al. | Jul 2007 | A1 |
20070177298 | Jaatinen et al. | Aug 2007 | A1 |
20070192134 | Littenberg et al. | Aug 2007 | A1 |
20070194944 | Galera et al. | Aug 2007 | A1 |
20070214296 | Takamatsu et al. | Sep 2007 | A1 |
20070229302 | Penick et al. | Oct 2007 | A1 |
20070260897 | Cochran et al. | Nov 2007 | A1 |
20080067874 | Tseng | Mar 2008 | A1 |
20080077976 | Schulz | Mar 2008 | A1 |
20080080395 | Law et al. | Apr 2008 | A1 |
20080082449 | Wilkinson et al. | Apr 2008 | A1 |
20080123669 | Oliveti et al. | May 2008 | A1 |
20080140888 | Blair et al. | Jun 2008 | A1 |
20080181316 | Crawley et al. | Jul 2008 | A1 |
20080189441 | Jundt et al. | Aug 2008 | A1 |
20080194124 | Di | Aug 2008 | A1 |
20080285755 | Camus et al. | Nov 2008 | A1 |
20080303351 | Jansen et al. | Dec 2008 | A1 |
20090036164 | Rowley | Feb 2009 | A1 |
20090061678 | Minoo | Mar 2009 | A1 |
20090066291 | Tien et al. | Mar 2009 | A1 |
20090083843 | Wilkinson, Jr. et al. | Mar 2009 | A1 |
20090091513 | Kuhn | Apr 2009 | A1 |
20090092248 | Rawson | Apr 2009 | A1 |
20090121704 | Shibahara | May 2009 | A1 |
20090204458 | Wiese et al. | Aug 2009 | A1 |
20090217043 | Metke et al. | Aug 2009 | A1 |
20090222885 | Batke et al. | Sep 2009 | A1 |
20090234998 | Kuo | Sep 2009 | A1 |
20090239468 | He et al. | Sep 2009 | A1 |
20090245245 | Malwankar et al. | Oct 2009 | A1 |
20090254655 | Kidwell et al. | Oct 2009 | A1 |
20090256717 | Iwai | Oct 2009 | A1 |
20090278509 | Boyles et al. | Nov 2009 | A1 |
20090287321 | Lucas et al. | Nov 2009 | A1 |
20090288732 | Gielen | Nov 2009 | A1 |
20100052428 | Imamura et al. | Mar 2010 | A1 |
20100066340 | Delforge | Mar 2010 | A1 |
20100082869 | Lloyd et al. | Apr 2010 | A1 |
20100122081 | Sato et al. | May 2010 | A1 |
20100148721 | Little | Jun 2010 | A1 |
20100149997 | Law et al. | Jun 2010 | A1 |
20100151816 | Besehanic et al. | Jun 2010 | A1 |
20100153751 | Tseng et al. | Jun 2010 | A1 |
20100197366 | Pattenden et al. | Aug 2010 | A1 |
20100197367 | Pattenden et al. | Aug 2010 | A1 |
20100233889 | Kiani et al. | Sep 2010 | A1 |
20100262312 | Kubota et al. | Oct 2010 | A1 |
20110010016 | Giroti | Jan 2011 | A1 |
20110038114 | Pance et al. | Feb 2011 | A1 |
20110057291 | Slupsky et al. | Mar 2011 | A1 |
20110066309 | Matsuoka et al. | Mar 2011 | A1 |
20110074349 | Ghovanloo | Mar 2011 | A1 |
20110080056 | Low et al. | Apr 2011 | A1 |
20110082621 | Berkobin et al. | Apr 2011 | A1 |
20110089900 | Hogari | Apr 2011 | A1 |
20110140538 | Jung et al. | Jun 2011 | A1 |
20110150431 | Klappert | Jun 2011 | A1 |
20110185196 | Asano et al. | Jul 2011 | A1 |
20110196997 | Ruberg et al. | Aug 2011 | A1 |
20110197009 | Agrawal | Aug 2011 | A1 |
20110202992 | Xiao et al. | Aug 2011 | A1 |
20110285847 | Riedel et al. | Nov 2011 | A1 |
20110291491 | Lemmens et al. | Dec 2011 | A1 |
20110296066 | Xia | Dec 2011 | A1 |
20110313547 | Hernandez et al. | Dec 2011 | A1 |
20120028498 | Na et al. | Feb 2012 | A1 |
20120046015 | Little | Feb 2012 | A1 |
20120053742 | Tsuda | Mar 2012 | A1 |
20120102334 | O'Loughlin et al. | Apr 2012 | A1 |
20120124373 | Dangoor et al. | May 2012 | A1 |
20120143586 | Vetter et al. | Jun 2012 | A1 |
20120159210 | Hosaka | Jun 2012 | A1 |
20120236769 | Powell et al. | Sep 2012 | A1 |
20120242459 | Lambert | Sep 2012 | A1 |
20120265361 | Billingsley et al. | Oct 2012 | A1 |
20120271576 | Kamel et al. | Oct 2012 | A1 |
20120274273 | Jacobs et al. | Nov 2012 | A1 |
20120282805 | Ku | Nov 2012 | A1 |
20120284354 | Mukundan et al. | Nov 2012 | A1 |
20120284514 | Lambert | Nov 2012 | A1 |
20120295451 | Hyun-Jun et al. | Nov 2012 | A1 |
20120297101 | Neupaertl et al. | Nov 2012 | A1 |
20120311071 | Karaffa et al. | Dec 2012 | A1 |
20120322513 | Pattenden et al. | Dec 2012 | A1 |
20120328094 | Pattenden et al. | Dec 2012 | A1 |
20130011719 | Yasui et al. | Jan 2013 | A1 |
20130026973 | Luke et al. | Jan 2013 | A1 |
20130031382 | Jau et al. | Jan 2013 | A1 |
20130070788 | Deiretsbacher et al. | Mar 2013 | A1 |
20130170258 | Calvin et al. | Jul 2013 | A1 |
20130173832 | Calvin et al. | Jul 2013 | A1 |
20130211547 | Buchdunger et al. | Aug 2013 | A1 |
20130212390 | Du et al. | Aug 2013 | A1 |
20130224048 | Gillingwater et al. | Aug 2013 | A1 |
20130233924 | Burns | Sep 2013 | A1 |
20130244062 | Teramoto et al. | Sep 2013 | A1 |
20130290706 | Socky et al. | Oct 2013 | A1 |
20130291085 | Chong et al. | Oct 2013 | A1 |
20140015488 | Despesse | Jan 2014 | A1 |
20140068712 | Frenkel et al. | Mar 2014 | A1 |
20140075186 | Austen | Mar 2014 | A1 |
20140091623 | Shippy et al. | Apr 2014 | A1 |
20140095867 | Smith et al. | Apr 2014 | A1 |
20140097672 | Takemura et al. | Apr 2014 | A1 |
20140129162 | Hallman et al. | May 2014 | A1 |
20140131450 | Gordon et al. | May 2014 | A1 |
20140142725 | Boyd | May 2014 | A1 |
20140280520 | Baier et al. | Sep 2014 | A1 |
20140285318 | Audéon et al. | Sep 2014 | A1 |
20140312913 | Kikuchi et al. | Oct 2014 | A1 |
20140327318 | Calvin et al. | Nov 2014 | A1 |
20140335703 | Calvin et al. | Nov 2014 | A1 |
20140341220 | Lessmann | Nov 2014 | A1 |
20150019790 | Calvin et al. | Jan 2015 | A1 |
20150046701 | Rooyakkers et al. | Feb 2015 | A1 |
20150048684 | Rooyakkers et al. | Feb 2015 | A1 |
20150115711 | Kouroussis et al. | Apr 2015 | A1 |
20150303729 | Kasai et al. | Oct 2015 | A1 |
20150365240 | Callaghan | Dec 2015 | A1 |
20160065656 | Patin et al. | Mar 2016 | A1 |
20160069174 | Cannan et al. | Mar 2016 | A1 |
20160141894 | Beaston | May 2016 | A1 |
20160172635 | Stimm et al. | Jun 2016 | A1 |
20160224048 | Rooyakkers et al. | Aug 2016 | A1 |
20160301695 | Trivelpiece et al. | Oct 2016 | A1 |
20180190427 | Rooyakkers et al. | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
2162746 | Apr 1994 | CN |
1408129 | Apr 2003 | CN |
1440254 | Sep 2003 | CN |
2596617 | Dec 2003 | CN |
1571335 | Jan 2005 | CN |
1702582 | Nov 2005 | CN |
1839581 | Sep 2006 | CN |
1864305 | Nov 2006 | CN |
2899151 | May 2007 | CN |
101005359 | Jul 2007 | CN |
101069407 | Nov 2007 | CN |
101262401 | Sep 2008 | CN |
101322089 | Dec 2008 | CN |
101349916 | Jan 2009 | CN |
101447861 | Jun 2009 | CN |
101533380 | Sep 2009 | CN |
101576041 | Nov 2009 | CN |
201515041 | Jun 2010 | CN |
101809557 | Aug 2010 | CN |
201590580 | Sep 2010 | CN |
101919139 | Dec 2010 | CN |
101977104 | Feb 2011 | CN |
102035220 | Apr 2011 | CN |
102123031 | Jul 2011 | CN |
102236329 | Nov 2011 | CN |
102237680 | Nov 2011 | CN |
202205977 | Apr 2012 | CN |
102480352 | May 2012 | CN |
1934766 | Jun 2012 | CN |
102546707 | Jul 2012 | CN |
102809950 | Dec 2012 | CN |
102812578 | Dec 2012 | CN |
103064032 | Apr 2013 | CN |
203180248 | Sep 2013 | CN |
103376766 | Oct 2013 | CN |
103682883 | Mar 2014 | CN |
103701919 | Apr 2014 | CN |
203645015 | Jun 2014 | CN |
104025387 | Sep 2014 | CN |
203932181 | Nov 2014 | CN |
104185969 | Dec 2014 | CN |
104297691 | Jan 2015 | CN |
104505894 | Apr 2015 | CN |
204243110 | Apr 2015 | CN |
105278327 | Jan 2016 | CN |
105556762 | May 2016 | CN |
104025387 | Jul 2018 | CN |
102013213550 | Jan 2015 | DE |
0473336 | Mar 1992 | EP |
0507360 | Oct 1992 | EP |
1176616 | Jan 2002 | EP |
1241800 | Sep 2002 | EP |
1246563 | Oct 2002 | EP |
1571559 | Sep 2005 | EP |
1877915 | Jan 2008 | EP |
1885085 | Feb 2008 | EP |
2179364 | Apr 2010 | EP |
2317743 | May 2011 | EP |
2450921 | May 2012 | EP |
1396065 | Jul 2012 | EP |
2557657 | Feb 2013 | EP |
2557670 | Feb 2013 | EP |
1885085 | Mar 2013 | EP |
2613421 | Jul 2013 | EP |
2777796 | Sep 2014 | EP |
2806319 | Nov 2014 | EP |
2966806 | Jan 2016 | EP |
S5974413 | May 1984 | JP |
S59177226 | Nov 1984 | JP |
H0163190 | Apr 1989 | JP |
H0794354 | Jun 1990 | JP |
H02164012 | Jun 1990 | JP |
H04153705 | May 1992 | JP |
H04245411 | Sep 1992 | JP |
H05346809 | Dec 1993 | JP |
07075143 | Mar 1995 | JP |
H07105328 | Apr 1995 | JP |
H07320963 | Dec 1995 | JP |
H0837121 | Feb 1996 | JP |
H0898274 | Apr 1996 | JP |
H08241824 | Sep 1996 | JP |
H08322252 | Dec 1996 | JP |
H09182324 | Jul 1997 | JP |
H09213548 | Aug 1997 | JP |
H1189103 | Mar 1999 | JP |
H1198215 | Apr 1999 | JP |
H1198707 | Apr 1999 | JP |
H11230504 | Aug 1999 | JP |
H11235044 | Aug 1999 | JP |
H11312013 | Nov 1999 | JP |
2000041068 | Feb 2000 | JP |
2000124890 | Apr 2000 | JP |
2000252143 | Sep 2000 | JP |
2001100809 | Apr 2001 | JP |
2001242971 | Sep 2001 | JP |
2001292176 | Oct 2001 | JP |
2001307055 | Nov 2001 | JP |
2002134071 | May 2002 | JP |
2002280238 | Sep 2002 | JP |
2002343655 | Nov 2002 | JP |
2002359131 | Dec 2002 | JP |
3370931 | Jan 2003 | JP |
2003047912 | Feb 2003 | JP |
2003068543 | Mar 2003 | JP |
2003142327 | May 2003 | JP |
2003152703 | May 2003 | JP |
2003152708 | May 2003 | JP |
2003216237 | Jul 2003 | JP |
2004501540 | Jan 2004 | JP |
2004303701 | Oct 2004 | JP |
2004532596 | Oct 2004 | JP |
2005020759 | Jan 2005 | JP |
2005038411 | Feb 2005 | JP |
2005513956 | May 2005 | JP |
2005151720 | Jun 2005 | JP |
2005250833 | Sep 2005 | JP |
2005275777 | Oct 2005 | JP |
2005531235 | Oct 2005 | JP |
2005327231 | Nov 2005 | JP |
2005332406 | Dec 2005 | JP |
2006060779 | Mar 2006 | JP |
2006164706 | Jun 2006 | JP |
2006180460 | Jul 2006 | JP |
2006223950 | Aug 2006 | JP |
2006238274 | Sep 2006 | JP |
2006254650 | Sep 2006 | JP |
2007034711 | Feb 2007 | JP |
2007096817 | Apr 2007 | JP |
2007519150 | Jul 2007 | JP |
2007238696 | Sep 2007 | JP |
2007252081 | Sep 2007 | JP |
2007535235 | Nov 2007 | JP |
2008008861 | Jan 2008 | JP |
2008172873 | Jul 2008 | JP |
2008215028 | Sep 2008 | JP |
2008257707 | Oct 2008 | JP |
2008538668 | Oct 2008 | JP |
4245411 | Mar 2009 | JP |
2009054086 | Mar 2009 | JP |
2009065759 | Mar 2009 | JP |
2009157913 | Jul 2009 | JP |
2009163909 | Jul 2009 | JP |
2009538112 | Oct 2009 | JP |
2010011351 | Jan 2010 | JP |
2010503134 | Jan 2010 | JP |
4439340 | Mar 2010 | JP |
2010515407 | May 2010 | JP |
2010135903 | Jun 2010 | JP |
2010205163 | Sep 2010 | JP |
2010233167 | Oct 2010 | JP |
2010533387 | Oct 2010 | JP |
2011078249 | Apr 2011 | JP |
2011217037 | Oct 2011 | JP |
2011223544 | Nov 2011 | JP |
2012033491 | Feb 2012 | JP |
5013019 | Aug 2012 | JP |
2012190583 | Oct 2012 | JP |
2012195259 | Oct 2012 | JP |
2013021798 | Jan 2013 | JP |
2013031358 | Feb 2013 | JP |
2013153596 | Aug 2013 | JP |
2013170258 | Sep 2013 | JP |
2013192389 | Sep 2013 | JP |
5362930 | Dec 2013 | JP |
2014507721 | Mar 2014 | JP |
2014080952 | May 2014 | JP |
2015023375 | Feb 2015 | JP |
2016021763 | Feb 2016 | JP |
2016512039 | Apr 2016 | JP |
2016149128 | Aug 2016 | JP |
2016527844 | Sep 2016 | JP |
6189479 | Aug 2017 | JP |
2019146257 | Aug 2019 | JP |
2020115457 | Jul 2020 | JP |
20020088540 | Nov 2002 | KR |
20050014790 | Feb 2005 | KR |
20060034244 | Apr 2006 | KR |
100705380 | Apr 2007 | KR |
100807377 | Feb 2008 | KR |
20130039174 | Apr 2013 | KR |
201310344 | Mar 2013 | TW |
0180442 | Oct 2001 | WO |
02097946 | Dec 2002 | WO |
2005070733 | Aug 2005 | WO |
2005081659 | Sep 2005 | WO |
2006059195 | Jun 2006 | WO |
2007041866 | Apr 2007 | WO |
2007148462 | Dec 2007 | WO |
2008083387 | Jul 2008 | WO |
2009032797 | Mar 2009 | WO |
2009142053 | Nov 2009 | WO |
2011104935 | Sep 2011 | WO |
2013031124 | Mar 2013 | WO |
2013033247 | Mar 2013 | WO |
2013102069 | Jul 2013 | WO |
2014061307 | Apr 2014 | WO |
2014179556 | Nov 2014 | WO |
2014179566 | Nov 2014 | WO |
2015020633 | Feb 2015 | WO |
Entry |
---|
Office Action for Japanese Application No. 2015-136186, dated Oct. 10, 2019. |
Partial European Search Report in European Application No. 17208183.8, dated Mar. 28, 2018. |
Partial Supplementary European Search Report in Application No. 12862174.5, dated Nov. 3, 2015. |
Partial European Search Report for European Patent Application No. EP 15175744 dated Jan. 4, 2016, 7 pages. |
Partial Search Report for European Application No. 15175744.0, dated Dec. 14, 2015. |
Partial Supplementary European Search Report dated Nov. 10, 2015 in Application# EP12862174.5. |
Reason for Rejection in Japanese Patent Application No. 2016-533279, dated Aug. 13, 2018. |
Reason for Rejection for Japanese Application No. 2015-136186, dated May 7, 2020. |
Rodrigues A., “SCADA Security Device: Design and Implementation”, Master of Science Thesis, Wichita State University, Dec. 2011. |
Rodrigues, A., et al., “SCADA security device”, Proceedings of the Seventh Annual Workshop on Cyber Security and Information Intelligence Research, CSIIRW '11, Jan. 1, 2011, p. 1, XP055230335, New York, New York, USA. |
Roman Kleinerman, Daniel Feldman (May 2011), Power over Ethernet (PoE): An Energy-Efficient Alternative (PDF), Marvell, retrieved Sep. 25, 2018 @ http://www.marvell.com/switching/assets/Marveii-PoE-An-Energy-Efficient-Aiternative.pdf (Year: 2011). |
Search Report for European Application No. 14196406.4, dated Nov. 4, 2015. |
Search Report for European Application No. 16154943.1 dated Jun. 17, 2016. |
Search Report for European Application No. 14196409.8, dated May 19, 2016. |
Search Report for European Application No. 15175744.0, dated Apr. 26, 2016. |
Siemens AG: “ERTEC 400 | Enhanced Real-Time Ethernet Controller | Handbuch”,No. Version 1.2.2 pp. 1-98, XP002637652, Retrieved from the Internet: URL:http:llcache.automation.siemens.comldniiDUIDUxNDgzNwAA_21631481_HBIERTEC400_Handbuch_V122.pdf [retrieved on May 2, 2011]. |
Siemens, “Uninterruptible 24 V DC Power Supply High-Performance, communicative and integrated in TIA,” Mar. 31, 2015,XP055290324. |
Summons to attend oral proceedings for European Application No. 14196409.8, dated Nov. 13, 2019. |
Supplementary European Search Report for European Patent Application No. EP 14791210 dated Dec. 16, 2016, 11 pages. |
Supplementary Search Report for European Application No. 13890953.6 dated Jan. 26, 2017. |
Supplementary Search Report for European Application No. 13891327.2, dated Jan. 10, 2017. |
Supplementary Search Report for European Application No. 14791210.9, dated Dec. 6, 2016. |
Supplementary European Search Report for European Patent Application No. EP 13890953 dated Feb. 6, 2017, 9 pages. |
Zafirovic-Vukotic, M. et al., “Secure SCADA network supporting NERC CIP”, Power & Energy Society General Meeting, 2009, PES '09, IEEE, Piscataway, NJ, USA, Jul. 26, 2009, pp. 1-8, XP031538542. |
Office Action for Chinese Application No. 201711349441.2, dated May 27, 2021. |
Office Action for Japanese Application No. 2014-243830, dated Jun. 29, 2021. |
Office Action for Japanese Application No. 2016-021763, dated Jun. 11, 2021. |
Final Decision of Rejection and Decision of Dismissal of Amendment for Japanese Application No. 2016-080207, dated Sep. 10, 2021. |
Office Action for Chinese Application No. 2020101058999, dated Sep. 3, 2021. |
Office Action for Japanese Application No. 2020-135564, dated Jul. 20, 2021. |
Chen, et al., “Active Diagnosability of Discrete Event Systems and its Application to Battery Fault Diagnosis,” IEEE Transactions on Control Systems Technology, vol. 22, No. 5, Sep. 2014. |
Examination Report for European Application No. 14196406.4, dated Mar. 31, 2021. |
Extended European Search Report for European Application No. 20201408.0, dated Apr. 7, 2021. |
Extended European Search Reported for European Application No. 20201403.1, dated Apr. 29, 2021. |
Fang et al., “Application of expert diagnosis system in rechargeable battery,” Department of Computer Science, , Qinghua University, Beijing, China, vol. 26, No. 3, Jun. 2002. |
Generex System Gmbh, “BACS—Battery Analysis & Care System,” Aug. 17, 2014 , XP055290320, Retrieved from the Internet: URL :HTTP://web.archive.org/we/2040929060116/http://www.generex.de/generex/download/datasheets/datasheet__BACS_C20_de.pdf. |
Notice of Reasons for Rejection for Japanese Patent Application No. 2020-035778, dated Apr. 15, 2021. |
Office Action for Chinese Application No. 201610229230.4, dated Mar. 18, 2021. |
Reason for Rejection for Japanese Application No. 2020-061935, dated Mar. 31, 2021. |
Notice of Reason for Rejection for Japanese Patent Application No. 2014-243830, dated Jul. 10, 2019. |
Notice of Reason for Rejection for Japanese Patent Application No. 2014-243830, dated Sep. 21, 2018 . |
Notice of Reason for Rejection for JP Patent Application No. 2018-109151, dated Jun. 25, 2019. |
Notice of Reason for Rejection for Patent Application No. 2016-021763, dated Nov. 27, 2019. |
Notice of Reasons for Rejection dated Jul. 13, 2017 for Japanese Application No. JP2016-533279. |
Notice of Reasons for Rejection dated Mar. 1, 2018 for Japanese Application No. JP2016-533279. |
Notification of the Second Office Action for Chinese Application No. 201380079514.4, dated Nov. 5, 2018. |
Office Action for Canadian Application No. 2,875,515, dated Feb. 17, 2016. |
Office Action for Canadian Application No. 2,920,133, dated Jan. 30, 2017. |
Office Action for Canadian Application No. 2,920,133, dated Oct. 19, 2016. |
Office Action for Chinese Application No. 2015103905202.2, dated Jun. 20, 2018. |
Office Action for Chinese Application No. 2015103905202.2, dated Mar. 6, 2019. |
Office Action for Chinese Application No. 2015103905202.2, dated Aug. 6, 2019. |
Office Action dated Dec. 2, 2016 for JP Application No. 2014-550508. |
Office Action dated Feb. 5, 2018 for Chinese Application No. CN201380079514.4. |
Office Action for Canadian Application No. 2,875,515, dated Jun. 1, 2016. |
Office Action for Canadian Application No. 2,875,515, dated Oct. 6, 2016. |
Office Action for Canadian Application No. 2,875,518, dated Apr. 22, 2016. |
Office Action for Canadian Application No. 2,875,518, dated Jun. 3, 2015. |
Office Action for Chinese Application No. 201280065564.2 dated Oct. 19, 2017. |
Office Action for Chinese Application No. 201410383686.7, dated Feb. 23, 2018. |
Office Action for Chinese Application No. 201480034066.0, dated May 3, 2017. |
Office Action for Chinese Appln No. 201380079515.9, dated Feb. 25, 2019. |
Office Action for Chinese Patent Application 201410802889.5, dated May 7, 2019. |
Office Action for Japanese Application No. 2014-080952, dated Jan. 7, 2019. |
Office Action for Japanese Application No. 2014-080952, dated May 2, 2018. |
Office Action for Japanese Application No. 2014-159475, dated Feb. 15, 2019. |
Office Action for Japanese Application No. 2014-159475, dated Jun. 11, 2018. |
Office Action for Japanese Application No. 2016-512039, dated Feb. 5, 2019. |
Office Action for Japanese Application No. 2016-512039, dated Jun. 5, 2018. |
Office Action for Japanese Application No. 2016-533280, dated Apr. 11, 2018. |
Office Action for Japanese Application No. 2016-533280, dated Jan. 7, 2019. |
Office Action for Japanese Application No. 2016-533280, dated Jun. 29, 2020. |
Office Action for Canadian Application No. 2,920,133, dated Apr. 14, 2016. |
Office Action for Canadian Application No. 2,875,515 dated Feb. 10, 2017. |
Office Action for Canadian Application No. 2,875,515 dated Jul. 5, 2017. |
Office Action for Candian Application No. 2,875,517 dated May 4, 2015. |
Office Action for Chinese Application No. 201280065564.2, dated Aug. 3, 2016. |
Office Action for Chinese Application No. 20141079995.2, dated Jul. 3, 2019. |
Office Action for Chinese Application No. 201410802889.5 dated Jul. 26, 2018. |
Office Action for Chinese Patent Application No. 201610236358.3, dated Jun. 24, 2020. |
Office Action for Chinese Patent Application No. 201610236358.3, dated Sep. 4, 2019. |
Office Action for EP Application No. 14196409.8 dated Jan. 22, 2018. |
Office Action for Japanese Application No. 2016-533280, dated Jun. 28, 2017. |
Office Action forChinese Patent Application 201410802889.5, dated Dec. 4, 2019. |
Office Action from Chinese Patent Application No. 201610229230.4, dated Jul. 15, 2020. |
Office Action from Chinese Patent Application No. 201610229230.4, dated Oct. 24, 2019. |
Office Action from EP Application No. 14196406.4, dated Jul. 29, 2019. |
Office Action for Chinese Application No. 201280065564.2, dated Feb. 28, 2017. |
Chinese Office Action for Application No. 202010105899.9, dated Dec. 3, 2020. |
European Examination Report for Application No. 14196406.4, dated May 12, 2020. |
European Search Report for Application No. 20173319.3, dated Nov. 24, 2020. |
Extended European Search Report for European Application No. 20150993.2, dated Apr. 29, 2020. |
Final Decision for Rejection for Patent Application No. 2016-021763, dated Jul. 31, 2020. |
Hosseinabady, Mohammad, et al., “Using the inter- and intra-switch regularity in NoC switch testing,” Design, Automation & Test in Europe Conference & Exhibition: Nice, France, Apr. 16-20, 2007, IEEE Service Center, Apr. 16, 2007 (XP058290046). |
Notice of Reason for Rejection for Japanese Application No. 2016-080207, dated Feb. 4, 2021. |
Notice of Reason for Rejection for Japanese Application No. 2014-243827, dated Feb. 1, 2021. |
Office Action for Chinese Patent Application No. 201610236358.3, dated Jan. 25, 2021. |
Baran, M. et al., “Overcurrent Protection on Voltage-Source-Converter-Based Multiterminal DC Distribution Systems,” IEEE Transactions on Power Delivery, vol. 22, No. 1, Jan. 2007, pp. 406-412. |
Canadian Office Action for Application No. 2920133 dated Jan. 30, 2017. |
Canadian Office Action for Application No. 2920133 dated Oct. 19, 2016. |
CGI, White Paper on “Public Key Encryption and Digital Signature: How do they work?”, 2004 (refer to pp. 3-4). |
Chinese Office Action for Application No. 201380079515.9 dated Aug. 7, 2018. |
Chinese Office Action for Application No. 201380079515.9 dated Nov. 16, 2017. |
Chinese Office Action for Application No. CN201610239130.X dated Aug. 2, 2017. |
Chinese Office Action for Application No. CN201610239130.X dated Feb. 14, 2018. |
Chinese Office Action for Application No. 201410383686.7 dated May 31, 2017. |
Chinese Office Action for Application No. 201410799473.2, dated Oct. 12, 2018. |
Chinese Office Action for Application No. CN201410182071.8 dated Mar. 1, 2017 . |
Decision of Rejection for Japanese Application No. 2014-243830, dated Mar. 18, 2020. |
Decision of Rejection for Patent Application No. 2014-243827, dated Nov. 28, 2019. |
Decision of Rejection for Chinese Application No. 2015103905202.2, dated Nov. 5, 2019. |
European Search Report for European Application No. 14196406.4, dated Sep. 23, 2015. |
European Search Report for EP Application No. 14196408.0, dated Nov. 24, 2015. |
European Search Report in Application No. 12862174.5, dated Feb. 15, 2016. |
European Search Report dated Dec. 2, 2015 for EP Application No. 14196408.0. |
European search report for European Patent Application No. EP14196406 dated Oct. 2, 2015, 6 pages. |
European Search Report published Nov. 4, 2015 in Application No. EP14196406.4. |
Examination Report in European Application No. 17208183.8, dated Feb. 27, 2019. |
Examination Report for European Application No. 14180106.8, dated Jun. 28, 2017. |
Examination Report for European Application No. 17178867.2, dated Mar. 13, 2019. |
Examination Report for European Application No. 13891327.2, dated Sep. 26, 2018. |
Examination Report for European Application No. 16165112.0, dated Apr. 17, 2019. |
Examination Report for European Application No. 16165112.0, dated Feb. 16, 2018. |
Examination Report for European Patent Application No. 16154943.1, dated May 16, 2019. |
Examination Report for European Patent Application No. 1720883.8, dated Oct. 29, 2019. |
Extended European Search Report for European Patent Application No. EP 14166908 dated Jan. 7, 2015, 10 pages. |
Extended European Search Report for Application No. EP14180106.8, dated Aug. 12, 2015. |
Extended European Search Report for European Patent Application No. EP 14196409 dated May 31, 2016, 10pages. |
Extended European Search Report for European Patent Application No. EP 16154943 dated Jun. 29, 2016, 9pages. |
Extended European Search Report for European Patent Application No. EP 17178867 dated Nov. 2, 2017, 13pages. |
Extended European Search Report for European Patent Application No. EP 18176358 dated Sep. 11, 2018, 11 pages. |
Extended Search Report for European Application No. 14180106.8, dated Jul. 13, 2015. |
Extented European search report for European Patent Application No. EP16165112 dated Sep. 6, 2016, 12 pages. |
Fabien F., “Raspberry Pi + Mihini, Controlling an off-the-grid Electrical Installation, Part I,” Apr. 11, 2014, XP055290314. |
Generex Systems Gmbh, “SACS—Battery Analysis & Care System,” Aug. 17, 2014, XP055290320. |
International Search Report and Written Opinion for PCT/US2014/036368, dated Sep. 12, 2014. |
International Search Report and Written Opinion dated May 12, 2014 in International Application# PCT/US2013/053721. |
International Search Report and Written Opinion of the International Searching Authority dated Apr. 29, 2013, International Application No. PCT/US2012/072056. |
International Search Report for Application No. PCT/US2013/053721 dated May 12, 2014. |
“Introduction to Cryptography,” NetWOrk Associates, Inc., PGP 6.5.1, 1990-1999, Retrieved@ [ftp:/!ftp.pgpi.org/pub/pgp/6.5/docs/english/IntroToCrypto.pdf] on Mar. 17, 2016, (refer to pp. 16-20). |
Japanese Office Action for Application No. JP2014-550508 dated Sep. 15, 2017. |
Keith S., et al. “Guide to Industrial Control Systems (ICS) Security,” NIST, Special Publication 800-882, Jun. 2011, (refer to pp. 2-1 to 2-10). |
Molva, R. Ed et al., “Internet security architecture”, Computer Networks, Elsevier Science Publishers B. V., Amsterdam, NL, vol. 31, No. 8, Apr. 23, 1999, pp. 787-804, XP004304518. |
Extended European Search Report in European Application No. 17208183.8, dated Jun. 22, 2018. |
Notice of Reason for Rejection for Japanese Application No. 2016-080207, dated Jun. 4, 2020. |
Notice of Reason for Rejection for Japanese Application No. 2014-243827, dated Jan. 24, 2019. |
Office Action for Japanese Application No. 2020-135564, dated Mar. 8, 2022. |
Emerson Process Management, “DeltaV Digital Automation System—System Overview,” XP055402326, Jan. 1, 2009, pp. 1-40. |
Extended European Search Report for 21187809.5, dated Nov. 29, 2021. |
Office Action for Chinese Application No. 201910660260.4, dated Nov. 18, 2021. |
Office Action for Japanese Application No. 2017-237592, dated Dec. 27, 2021. |
Seimens AG, “ERTEC400—Enhanced Real-Time Ethernet Controller—Handbuch,” XP002637652, Version 1.2.2, Jul. 31, 2010, pp. 1-98. |
D. Dzung, M. Naedele, T. P. Von Hoff and M. Crevatin, “Security for Industrial Communication Systems,” in Proceedings of the IEEE, vol. 93, No. 6, pp. 1152-1177, Jun. 2005, doi: 10.11 09/JPROC.2005.849714. (Year: 2005). |
Decision of Rejection for Chinese Application No. 201711349441.2, dated Jun. 23, 2022. |
Notice of Preliminary Rejection for Korean Application No. 10-2016-0015889, dated Jul. 6, 2022. |
Office Action for Japanese Application No. 2020-135564, dated Sep. 14, 2022. |
Office Action for Japanese Application No. 2021-112729, dated Jun. 27, 2022. |
Office Action for Japanese Application No. 2021-117572, dated Oct. 14, 2022. |
Reasons for Rejection for Japanese Applicatino No. 2021-138773, dated Jun. 29, 2022. |
Office Action in Japan for Application No. 2021-160356, dated Dec. 16, 2022. |
Notice of Reason for Rejection for Patent Application No. 2022-002389, dated Nov. 25, 2022. |
Notice of Reasons for Rejection for Japanese Patent Application No. 2021-148592, dated Oct. 28, 2022. |
Decision of Rejection for Japanese Patent Application No. 2021-112729, dated Feb. 6, 2023. |
Office Action for Chinese Patent Application No. 201711349441.2, dated Mar. 20, 2023. |
Number | Date | Country | |
---|---|---|---|
20210195742 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62021438 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14446412 | Jul 2014 | US |
Child | 17094069 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2013/053721 | Aug 2013 | US |
Child | 14446412 | US |