One or more embodiments of the invention relate generally to imaging devices and more particularly, for example, to infrared imaging devices.
Existing infrared imaging devices, such as infrared cameras, are often implemented as large systems that may be mounted on fixed or mobile platforms. Other infrared cameras may be configured for handheld use, but are generally rather large, dedicated devices.
In this regard, conventional infrared cameras are generally not available in small form factors suitable for use in other devices. Such factors generally limit the ability to use infrared imaging devices in conjunction with other portable devices and in environments where large camera systems are impractical. Accordingly, there is a need for an improved infrared imaging device that exhibits a small form factor and may be used with other portable devices
In addition, existing infrared imaging devices are often implemented for use with various image processing devices. The image processing devices are often implemented with dedicated hardware.
Unfortunately, such dedicated hardware is often limited in its flexibility. For example, circuitry that may be optimized to perform certain image processing tasks may not be easily adapted for use to perform additional image processing tasks, especially when the image processing devices are to be located within the infrared camera itself and therefore subject to limited space and power specifications.
Accordingly, there is a need for an improved approach to image processing devices for infrared imaging devices, which for example may be more appropriate for small form factor applications.
Various techniques are disclosed for providing an infrared imaging module that exhibits a small form factor and may be used with one or more portable devices. For example, an infrared imaging module may be provided using wafer level packaging techniques along with other novel infrared camera packaging techniques. Such an infrared imaging module may be implemented with a housing that includes electrical connections that may be used to electrically connect various components of the infrared imaging module.
In one embodiment, an infrared imaging module may be configured to be inserted in a socket of a host device. Such an embodiment may permit the infrared imaging module to be implemented in a variety of different host devices to provide infrared image detection capabilities to such host devices. Moreover, by using such a socket-based implementation, the infrared imaging module may be added to the host device at a time separate from the manufacture of the infrared imaging module or after the manufacture of the host device.
In one embodiment, a device includes an infrared imaging module comprising a housing configured to engage with a socket; an infrared sensor assembly within the housing and adapted to capture infrared image data; a processing module within the housing and adapted to process the image data; and a lens coupled to and at least partially within the housing and configured to pass infrared energy through to the infrared sensor assembly.
In another embodiment, a method includes passing infrared energy through a lens coupled to and at least partially within a housing of an infrared imaging module of a device, wherein the housing is configured to engage with a socket; capturing infrared image data from the passed infrared energy at an infrared sensor assembly within the housing; and providing electrical signals from the infrared sensor assembly to a processing module within the housing.
In addition, various techniques are disclosed for providing system architectures for processing modules of infrared imaging modules. In various embodiments, a processing modules may perform digital infrared image processing of infrared images captured by an infrared sensor of an infrared imaging module. In one embodiment, an infrared sensor may be implemented with a small array size and appropriate read out circuitry that permits the infrared sensor to capture and provide infrared images at a high frame rate. The processing module may be implemented to process the captured infrared images and provide processed images to a host device at a lower frame rate such that each processed image is based on the processing of a plurality of the captured infrared images.
In one embodiment, a processing module of an infrared imaging module includes a first interface adapted to receive captured infrared images from an infrared image sensor of the infrared imaging module; a processor adapted to perform digital infrared image processing on the captured infrared images to provide processed infrared images; and a second interface adapted to pass the processed infrared images to a host device.
In another embodiment, a method of operating a processing module of an infrared imaging module includes receiving captured infrared images from an infrared image sensor of the infrared imaging module over a first interface of the processing module; performing digital infrared image processing on the captured infrared images to provide processed infrared images; and passing the processed infrared images to a host device over a second interface.
The scope of the invention is defined by the claims, which are incorporated into this section by reference. A more complete understanding of embodiments of the invention will be afforded to those skilled in the art, as well as a realization of additional advantages thereof, by a consideration of the following detailed description of one or more embodiments. Reference will be made to the appended sheets of drawings that will first be described briefly.
Embodiments of the invention and their advantages are best understood by referring to the detailed description that follows. It should be appreciated that like reference numerals are used to identify like elements illustrated in one or more of the figures.
In one embodiment, infrared imaging module 100 may be configured to be implemented in a small portable host device 102, such as a mobile telephone, a tablet computing device, a laptop computing device, a personal digital assistant, a visible light camera, a music player, or any other appropriate device. In this regard, infrared imaging module 100 may be used to provide infrared imaging features to host device 102. For example, infrared imaging module 100 may be configured to capture, process, and/or otherwise manage infrared images and provide such infrared images to host device 102 for use in any desired fashion (e.g., for further processing, to store in memory, to display, to use by various applications running on host device 102, to export to other devices, or other uses).
In various embodiments, infrared imaging module 100 may be configured to operate at low voltage levels and over a wide temperature range. For example, in one embodiment, infrared imaging module 100 may operate using a power supply of approximately 2.4 volts, 2.5 volts, 2.8 volts, or lower voltages, and operate over a temperature range of approximately −20 degrees C. to approximately +60 degrees C. (e.g., providing a suitable dynamic range and performance over approximately 80 degrees C.). In one embodiment, by operating infrared imaging module 100 at low voltage levels, infrared imaging module 100 may experience reduced amounts of self heating in comparison with other types of infrared imaging devices. As a result, infrared imaging module 100 may be operated without requiring significant additional measures to compensate for such self heating.
As shown in
Processor 195 may be implemented as any appropriate processing device (e.g., logic device, microcontroller, processor, application specific integrated circuit (ASIC), or other device) that may be used by host device 102 to execute appropriate instructions, such as software instructions provided in memory 196. Display 197 may be used to display captured and/or processed infrared images and/or other images, data, and information. Other components 198 may be used to implement any features of host device 102 as may be desired for various applications (e.g., a visible light camera or other components).
In various embodiments, infrared imaging module 100 and socket 104 may be implemented for mass production to facilitate high volume applications, such as for implementation in mobile telephones or other devices (e.g., requiring small form factors). In one embodiment, the combination of infrared imaging module 100 and socket 104 may exhibit overall dimensions of approximately 8.5 mm by 8.5 mm by 5.9 mm while infrared imaging module 100 is installed in socket 104.
Lens barrel 110 may at least partially enclose an optical element 180 which is partially visible in
Infrared sensor assembly 128 may be implemented, for example, with a cap 130 (e.g., a lid) mounted on a substrate 140. Infrared sensor assembly 128 may include a plurality of infrared sensors 132 (e.g., infrared detectors) implemented in an array or other fashion on substrate 140 and covered by cap 130 (e.g., shown in
Infrared sensors 132 may be configured to detect infrared radiation (e.g., infrared energy) from a target scene including, for example, mid wave infrared wave bands (MWIR), long wave infrared wave bands (LWIR), and/or other thermal imaging bands as may be desired in particular implementations. In one embodiment, infrared sensor assembly 128 may be provided in accordance with wafer level packaging techniques.
Infrared sensors 132 may be implemented, for example, as microbolometers or other types of thermal imaging infrared sensors arranged in any desired array pattern to provide a plurality of pixels. In one embodiment, infrared sensors 132 may be implemented as vanadium oxide (VOx) detectors with a 17 μm pixel pitch. In various embodiments, arrays of approximately 32 by 32 infrared sensors 132, approximately 64 by 64 infrared sensors 132, approximately 80 by 64 infrared sensors 132, or other array sizes may be used.
Substrate 140 may include various circuitry including, for example, a read out integrated circuit (ROIC) with dimensions less than approximately 5.5 mm by 5.5 mm in one embodiment. Substrate 140 may also include bond pads 142 that may be used to contact complementary connections positioned on inside surfaces of housing 120 when infrared imaging module 100 is assembled as shown in
Infrared sensor assembly 128 may capture images (e.g., image frames) and provide such images from its ROIC at various rates. Processing module 160 may be used to perform appropriate processing of captured infrared images and may be implemented in accordance with any appropriate architecture. In one embodiment, processing module 160 may be implemented as an ASIC. In this regard, such an ASIC may be configured to perform image processing with high performance and/or high efficiency. In another embodiment, processing module 160 may be implemented with a general purpose central processing unit (CPU) which may be configured to execute appropriate software instructions to perform image processing, coordinate and perform image processing with various image processing blocks, coordinate interfacing between processing module 160 and host device 102, and/or other operations. In yet another embodiment, processing module 160 may be implemented with a field programmable gate array (FPGA). Processing module 160 may be implemented with other types of processing and/or logic circuits in other embodiments as would be understood by one skilled in the art.
In these and other embodiments, processing module 160 may also be implemented with other components where appropriate, such as, volatile memory, non-volatile memory, and/or one or more interfaces (e.g., infrared detector interfaces, inter-integrated circuit (I2C) interfaces, mobile industry processor interfaces (MIPI), joint test action group (JTAG) interfaces (e.g., IEEE 1149.1 standard test access port and boundary-scan architecture), and/or other interfaces).
When infrared imaging module 100 is assembled, housing 120 may substantially enclose infrared sensor assembly 128, base 150, and processing module 160. Housing 120 may facilitate connection of various components of infrared imaging module 100. For example, in one embodiment, housing 120 may provide electrical connections 126 to connect various components as further described.
Electrical connections 126 (e.g., conductive electrical paths, traces, or other types of connections) may be electrically connected with bond pads 142 when infrared imaging module 100 is assembled. In various embodiments, electrical connections 126 may be embedded in housing 120, provided on inside surfaces of housing 120, and/or otherwise provided by housing 120. Electrical connections 126 may terminate in connections 124 protruding from the bottom surface of housing 120 as shown in
In various embodiments, electrical connections 126 in housing 120 may be made from any desired material (e.g., copper or any other appropriate conductive material). In one embodiment, electrical connections 126 may aid in dissipating heat from infrared imaging module 100.
Substrate 140 of infrared sensor assembly 128 may be mounted on base 150. In various embodiments, base 150 (e.g., a pedestal) may be made, for example, of copper formed by metal injection molding (MIM) and provided with a black oxide or nickel-coated finish. In various embodiments, base 150 may be made of any desired material, such as for example zinc, aluminum, or magnesium, as desired for a given application and may be formed by any desired applicable process, such as for example aluminum casting, MIM, or zinc rapid casting, as may be desired for particular applications. In various embodiments, base 150 may be implemented to provide structural support, various circuit paths, thermal heat sink properties, and other features where appropriate. In one embodiment, base 150 may be a multi-layer structure implemented at least in part using ceramic material.
In various embodiments, circuit board 170 may receive housing 120 and thus may physically support the various components of infrared imaging module 100. In various embodiments, circuit board 170 may be implemented as a printed circuit board (e.g., an FR4 circuit board or other types of circuit boards), a rigid or flexible interconnect (e.g., tape or other type of interconnects), a flexible circuit substrate, a flexible plastic substrate, or other appropriate structures. In various embodiments, base 150 may be implemented with the various features and attributes described for circuit board 170, and vice versa.
Socket 104 may include a cavity 106 configured to receive infrared imaging module 100 (e.g., as shown in the assembled view of
Infrared imaging module 100 may be electrically connected with socket 104 through appropriate electrical connections (e.g., contacts, pins, wires, or any other appropriate connections). For example, as shown in
Socket 104 may be electrically connected with host device 102 through similar types of electrical connections. For example, in one embodiment, host device 102 may include electrical connections (e.g., soldered connections, snap-in connections, or other connections) that connect with electrical connections 108 passing through apertures 190 as shown in
Various components of infrared imaging module 100 may be implemented with flip chip technology which may be used to mount components directly to circuit boards without the additional clearances typically needed for wire bond connections. Flip chip connections may be used, as an example, to reduce the overall size of infrared imaging module 100 for use in compact small form factor applications. For example, in one embodiment, processing module 160 may be mounted to circuit board 170 using flip chip connections. For example, in
In various embodiments, infrared imaging module 100 and/or associated components may be implemented in accordance with various techniques (e.g., wafer level packaging techniques) as set forth in U.S. patent application Ser. No. 12/844,124 filed Jul. 27, 2010, and U.S. Provisional Patent Application No. 61/469,651 filed Mar. 30, 2011, which are incorporated herein by reference in their entirety. Furthermore, in accordance with one or more embodiments, infrared imaging module 100 and/or associated components may be implemented, calibrated, tested, and/or used in accordance with various techniques, such as for example as set forth in U.S. Pat. No. 7,470,902 issued Dec. 30, 2008, U.S. Pat. No. 6,028,309 issued Feb. 22, 2000, U.S. Pat. No. 6,812,465 issued Nov. 2, 2004, U.S. Pat. No. 7,034,301 issued Apr. 25, 2006, U.S. Pat. No. 7,679,048 issued Mar. 16, 2010, U.S. Pat. No. 7,470,904 issued Dec. 30, 2008, U.S. patent application Ser. No. 12/202,880 filed Sep. 2, 2008, and U.S. patent application Ser. No. 12/202,896 filed Sep. 2, 2008, which are incorporated herein by reference in their entirety.
As also shown in
In one embodiment, optical element 180 may be a single etched wafer level optical element made of silicon with the following specifications: image plane of 0.54 mm by 0.54 mm (e.g., when implemented for an infrared sensor assembly 128 having a 32 by 32 array of infrared sensors 132 with 17 μm pixel pitch); horizontal field of view (FoV) of approximately 55.7 degrees; F/# approximately equal to 0.91; modulated transfer function (MTF) of approximately 0.46 at 29 cy/mm; an anti-reflective coating with less than approximately two percent loss per surface; and focused at infinity.
In some embodiments, optical element 180 may be integrated as part of a wafer level package that includes infrared sensor assembly 128. For example, optical element 180 may be implemented as part of cap 130, stacked on various components of infrared sensor assembly 128 (e.g., with appropriate spacers provided therebetween), or otherwise integrated with various components of infrared sensor assembly 128.
Referring again to
In various embodiments, shutter 105 may be made from various materials such as, for example, polymers, glass, or other materials. In various embodiments, shutter 105 may include one or more coatings to selectively filter electromagnetic radiation and/or adjust various optical properties of shutter 105 (e.g., a uniform blackbody coating or a reflective gold coating).
In another embodiment, shutter 105 may be fixed in place to protect infrared imaging module 100 at all times. In this case, shutter 105 or a portion of shutter 105 may be made from appropriate materials (e.g., polymers) that do not substantially filter desired infrared wavelengths. In another embodiment, a shutter may be implemented as part of infrared imaging module 100 (e.g., within or as part of a lens barrel or other components of infrared imaging module 100), as would be understood by one skilled in the art. Alternatively, in another embodiment, a shutter (e.g., shutter 105 or other type of external or internal shutter) need not be provided, but rather a NUC process or other type of calibration may be performed using shutterless techniques.
It will be appreciated that
It will also be appreciated that, in
In some embodiments, sockets 104 shown in
Additional implementations of infrared imaging modules 100 are also contemplated. For example,
For example,
Infrared sensor interface 902 may support communications between system architecture 900 and infrared sensor assembly 128. For example, infrared sensor interface 902 may send and receive communications to and from infrared sensor assembly 128 through electrical connections 126 in housing 120 or through wire bonds 143 and 145.
As shown in
In various embodiments, infrared sensor interface 902 may provide voltage rails, clocks, synchronization information, and calibration data (e.g., biasing information) to infrared sensor assembly 128. For example, in one embodiment, infrared sensor interface 902 may be implemented with hard coded state machines to control communications between infrared sensor assembly 128 and processing module 160.
In another embodiment, calibration data may be stored in non-volatile memory 912, accessed from non-volatile memory 912 by CPU 910, stored by CPU 910 in volatile memory 908 through memory interface 906, accessed from volatile memory 908 by infrared sensor interface 902 through memory interface 906, and provided to infrared sensor assembly 128 by infrared sensor interface 902.
Image processing blocks 904 may perform various image processing operations on captured infrared images (e.g., image data provided in the form of pixel values or other appropriate forms) captured by infrared sensor assembly 128.
Memory interface 906 may be used to support communications between image processing blocks 904, volatile memory 908, and CPU 910. Non-volatile memory 912 may be used by image processing blocks 904 and CPU for storage of data and/or software instructions.
CPU 910 may be used, for example, to coordinate (e.g., manage) the processing performed by image processing blocks 904 and the interfacing between processing module 160 and host device 102.
I2C interface 914 may be used to support communications between CPU 910 and host device 102. MIPI interface 916 may be used to support communications between image processing blocks 904 and other components of infrared imaging module 100 and/or host device 102.
LDO regulators 918 may be used to regulate voltages of various components of system architecture 900 and/or other components of infrared imaging module 100 (e.g., LDO regulators 918 may perform voltage regulation to reduce power supply noise introduced to infrared sensor assembly 128). Other components 920 may be used, for example, to provide various ports and interfaces, and perform clocking, synchronization, supervisor and reset operations, and other operations for system architecture 900.
In operation, infrared sensor interface 902 may receive infrared images from infrared sensor assembly 128. In one embodiment, infrared sensor assembly 128 may include appropriate analog-to-digital converter circuitry to convert analog voltages provided by its ROIC into digital data values provided to infrared sensor interface 902. In another embodiment, such infrared images may be received from the ROIC of infrared sensor assembly 128 as analog voltages and converted into digital data values by infrared sensor interface 902 for further processing by image processing blocks 904. In another embodiment, infrared sensor interface 902 may pass such analog voltages to image processing blocks 904 which may convert the analog voltages to digital data values for further processing. After conversion of the infrared images into digital form, they may be processed by image processing blocks 904 using various processing techniques as discussed.
Accordingly, it will be appreciated that the combination of infrared sensor assembly 128 and system architecture 900 may provide a combined analog/digital system in which infrared images are captured in analog form (e.g., by infrared sensor assembly 128) and processed digitally (e.g., by system architecture 900). Processed infrared images may be provided to host device 102 in digital form through I2C interface 914.
However, in system architecture 1000, image processing blocks 904 are not provided. Instead, the image processing features provided by image processing blocks 904 may be performed instead by a CPU 1010 in system architecture 1000. In this regard, system architecture 1000 may be viewed as a CPU-centric system architecture that may be scaled and configured to perform any desired infrared image processing tasks by configuring CPU 1010 with appropriate software. In addition, by using CPU 1010, advanced power management features may be provided and implementation costs may be reduced over other system architectures.
Also in system architecture 1000, an infrared sensor interface 1002 may be provided in place of infrared sensor interface 902. In this regard, infrared sensor interface 1002 may send and receive communications (e.g., infrared images in the form of digital data values) to and from memory interface 906. Infrared sensor interface 1002 may be further configured to operate in the manner described with regard to infrared sensor interface 902.
In operation, CPU 1010 may perform digital processing of infrared images in accordance with various techniques described herein. In this regard, analog voltages provided by the ROIC of infrared sensor assembly 128 may be converted into digital data values using appropriate analog-to-digital converter circuitry of image sensor assembly 128 or of infrared sensor interface 1002. Infrared sensor interface 1002 may pass digital data values corresponding to infrared images to memory interface 906 for storage in volatile memory 908 for further use by CPU 1010.
In various embodiments of system architectures 900 and 1000, processing blocks 904, CPU 910, and/or CPU 1010 may be implemented by, for example, one or more ASICs, general purpose CPUs, FPGAs, and/or other types of processing and/or logic circuits as may be desired in particular implementations.
In various embodiments, system architectures 900 and 1000 may be used to abstract the operations of infrared imaging module 100 from host device 102. In this regard, manufacturers and software developers for host device 102 may receive infrared images from infrared imaging module 100 without requiring knowledge of image detection and processing operations.
In various embodiments, infrared sensors 132, ROIC, and other components of infrared sensor assembly 128 may be implemented to support high image capture rates. For example, in one embodiment, infrared sensor assembly 128 may capture infrared images at a frame rate of 240 Hz (e.g., 240 images per second). In this embodiment, such a high frame rate may be implemented, for example, by operating infrared sensor assembly 128 at relatively low voltages (e.g., compatible with mobile telephone voltages) and by using a relatively small array of infrared sensors 132.
In one embodiment, such infrared images may be provided from infrared sensor assembly 128 to processing module 160 at a high frame rate (e.g., 240 Hz or other frame rates). In another embodiment, infrared sensor assembly 128 may integrate over multiple time periods to provide integrated (e.g., averaged) infrared images to processing module 160 at a lower frame rate (e.g., 30 Hz, 9 Hz, or other frame rates).
Processing module 160 (e.g., implemented by system architecture 900 or 1000, or any other appropriate system architecture) may perform various processing on infrared images received from infrared sensor assembly 128. Such processing may be performed in accordance with various digital infrared image processing techniques including, for example, image filtering, temporal filtering, digital integration, pixel or image averaging, image smoothing, determining sensor frame based coefficients, determining temperature corrections, determining factory and scene based non-uniformity corrections, determining bad pixels and replacing pixel data for such bad pixels, automatic gain control (AGC) and/or other techniques. The resulting processed images provided by processing module 160 to host device 102 may be at a lower frame rate (e.g., 60 Hz, 30 Hz, 9 Hz, or other frame rates) than the infrared images received from infrared sensor assembly 128.
Where applicable, various embodiments provided by the present disclosure can be implemented using hardware, software, or combinations of hardware and software. Also where applicable, the various hardware components and/or software components set forth herein can be combined into composite components comprising software, hardware, and/or both without departing from the spirit of the present disclosure. Where applicable, the various hardware components and/or software components set forth herein can be separated into sub-components comprising software, hardware, or both without departing from the spirit of the present disclosure. In addition, where applicable, it is contemplated that software components can be implemented as hardware components, and vice-versa.
Software in accordance with the present disclosure, such as non-transitory instructions, program code, and/or data, can be stored on one or more non-transitory machine readable mediums. It is also contemplated that software identified herein can be implemented using one or more general purpose or specific purpose computers and/or computer systems, networked and/or otherwise. Where applicable, the ordering of various steps described herein can be changed, combined into composite steps, and/or separated into sub-steps to provide features described herein.
Embodiments described above illustrate but do not limit the invention. It should also be understood that numerous modifications and variations are possible in accordance with the principles of the invention. Accordingly, the scope of the invention is defined only by the following claims.
This application is a continuation of International Patent Application No. PCT/US2012/041739 filed Jun. 8, 2012 which claims priority to U.S. Provisional Patent Application No. 61/495,873 filed Jun. 10, 2011 and entitled “INFRARED CAMERA PACKAGING SYSTEMS AND METHODS” which are both hereby incorporated by reference in their entirety. International Patent Application No. PCT/US2012/041739 claims the benefit of U.S. Provisional Patent Application No. 61/495,879 filed Jun. 10, 2011 and entitled “INFRARED CAMERA SYSTEM ARCHITECTURES” which is hereby incorporated by reference in its entirety. International Patent Application No. PCT/US2012/041739 claims the benefit of U.S. Provisional Patent Application No. 61/495,888 filed Jun. 10, 2011 and entitled “INFRARED CAMERA CALIBRATION TECHNIQUES” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2764055 | Clemens et al. | Sep 1956 | A |
5128796 | Barney et al. | Jul 1992 | A |
5721427 | White et al. | Feb 1998 | A |
5994699 | Akagawa | Nov 1999 | A |
6297794 | Tsubouchi et al. | Oct 2001 | B1 |
6348951 | Kim | Feb 2002 | B1 |
6396543 | Shin et al. | May 2002 | B1 |
6424843 | Reitmaa et al. | Jul 2002 | B1 |
6444983 | McManus et al. | Sep 2002 | B1 |
6633231 | Okamoto et al. | Oct 2003 | B1 |
6681120 | Kim | Jan 2004 | B1 |
6707044 | Lannestedt et al. | Mar 2004 | B2 |
6883054 | Yamaguchi et al. | Apr 2005 | B2 |
7050107 | Frank et al. | May 2006 | B1 |
D524785 | Huang | Jul 2006 | S |
7084857 | Lieberman et al. | Aug 2006 | B2 |
7208733 | Mian et al. | Apr 2007 | B2 |
7263379 | Parkulo et al. | Aug 2007 | B1 |
7284921 | Lapstun et al. | Oct 2007 | B2 |
7296747 | Rohs | Nov 2007 | B2 |
7305368 | Lieberman et al. | Dec 2007 | B2 |
7321783 | Kim | Jan 2008 | B2 |
7333832 | Tsai et al. | Feb 2008 | B2 |
7377835 | Parkulo et al. | May 2008 | B2 |
7453064 | Lee | Nov 2008 | B2 |
7470902 | Kraemer et al. | Dec 2008 | B1 |
7477309 | Cuccias | Jan 2009 | B2 |
7567818 | Pylkko | Jul 2009 | B2 |
7572077 | Lapstun et al. | Aug 2009 | B2 |
7575077 | Priepke et al. | Aug 2009 | B2 |
7595904 | Lapstun et al. | Sep 2009 | B2 |
7616877 | Zarnowski et al. | Nov 2009 | B2 |
7627364 | Sato | Dec 2009 | B2 |
7697962 | Cradick et al. | Apr 2010 | B2 |
7723686 | Hannebauer | May 2010 | B2 |
7725141 | Su | May 2010 | B2 |
7728281 | Chen | Jun 2010 | B2 |
7734171 | Leonelli, Jr. | Jun 2010 | B2 |
7735974 | Silverbrook et al. | Jun 2010 | B2 |
7747454 | Bartfeld et al. | Jun 2010 | B2 |
7760919 | Namgoong | Jul 2010 | B2 |
7761114 | Silverbrook et al. | Jul 2010 | B2 |
7773870 | Naruse | Aug 2010 | B2 |
7801733 | Lee et al. | Sep 2010 | B2 |
7805020 | Trudeau et al. | Sep 2010 | B2 |
7810733 | Silverbrook et al. | Oct 2010 | B2 |
7900842 | Silverbrook et al. | Mar 2011 | B2 |
7903152 | Kim | Mar 2011 | B2 |
7947222 | Bae et al. | May 2011 | B2 |
7960700 | Craig et al. | Jun 2011 | B2 |
8049163 | Granneman et al. | Nov 2011 | B1 |
8153980 | Brady et al. | Apr 2012 | B1 |
8189050 | Hughes et al. | May 2012 | B1 |
8275413 | Fraden et al. | Sep 2012 | B1 |
8305577 | Kivioja et al. | Nov 2012 | B2 |
8345226 | Zhang | Jan 2013 | B2 |
8537343 | Zhang | Sep 2013 | B2 |
20020006337 | Kimura et al. | Jan 2002 | A1 |
20020122036 | Sasaki | Sep 2002 | A1 |
20020135571 | Klocek et al. | Sep 2002 | A1 |
20020149600 | Van Splunter et al. | Oct 2002 | A1 |
20030007193 | Sato et al. | Jan 2003 | A1 |
20030060108 | Chu et al. | Mar 2003 | A1 |
20030093805 | Gin | May 2003 | A1 |
20030112871 | Demos | Jun 2003 | A1 |
20030122957 | Emme | Jul 2003 | A1 |
20030146975 | Joung et al. | Aug 2003 | A1 |
20030198400 | Alderson et al. | Oct 2003 | A1 |
20030223623 | Gutta et al. | Dec 2003 | A1 |
20040047518 | Tiana | Mar 2004 | A1 |
20040101298 | Mandelbaum et al. | May 2004 | A1 |
20040127156 | Park | Jul 2004 | A1 |
20040128070 | Schmidt et al. | Jul 2004 | A1 |
20040157612 | Kim | Aug 2004 | A1 |
20040165788 | Perez et al. | Aug 2004 | A1 |
20040169860 | Jung et al. | Sep 2004 | A1 |
20040200961 | Parrish et al. | Oct 2004 | A1 |
20040207036 | Ikeda | Oct 2004 | A1 |
20040211907 | Wellman et al. | Oct 2004 | A1 |
20040256561 | Beuhler et al. | Dec 2004 | A1 |
20050030314 | Dawson | Feb 2005 | A1 |
20050067852 | Jeong | Mar 2005 | A1 |
20050068333 | Nakahashi et al. | Mar 2005 | A1 |
20050089241 | Kawanishi et al. | Apr 2005 | A1 |
20050093890 | Baudisch | May 2005 | A1 |
20050110803 | Sugimura | May 2005 | A1 |
20050138569 | Baxter et al. | Jun 2005 | A1 |
20050169655 | Koyama et al. | Aug 2005 | A1 |
20050184993 | Ludwin et al. | Aug 2005 | A1 |
20050213813 | Lin et al. | Sep 2005 | A1 |
20050213853 | Maier et al. | Sep 2005 | A1 |
20050219249 | Xie et al. | Oct 2005 | A1 |
20050247867 | Volgt et al. | Nov 2005 | A1 |
20050248684 | Machida | Nov 2005 | A1 |
20050248912 | Kang et al. | Nov 2005 | A1 |
20050265688 | Kobayashi | Dec 2005 | A1 |
20050270784 | Hahn et al. | Dec 2005 | A1 |
20050277447 | Buil et al. | Dec 2005 | A1 |
20060039686 | Soh et al. | Feb 2006 | A1 |
20060060984 | Wakabayashi et al. | Mar 2006 | A1 |
20060077246 | Kawakami et al. | Apr 2006 | A1 |
20060078215 | Gallagher | Apr 2006 | A1 |
20060097172 | Park | May 2006 | A1 |
20060120712 | Kim | Jun 2006 | A1 |
20060132642 | Hosaka et al. | Jun 2006 | A1 |
20060140501 | Tadas | Jun 2006 | A1 |
20060147191 | Kim | Jul 2006 | A1 |
20060154559 | Yoshida | Jul 2006 | A1 |
20060210249 | Seto | Sep 2006 | A1 |
20060234744 | Sung et al. | Oct 2006 | A1 |
20060240867 | Wang et al. | Oct 2006 | A1 |
20060279758 | Myoki | Dec 2006 | A1 |
20060285907 | Kang et al. | Dec 2006 | A1 |
20060290796 | Nikkanen | Dec 2006 | A1 |
20070019077 | Park | Jan 2007 | A1 |
20070019099 | Lieberman et al. | Jan 2007 | A1 |
20070019103 | Lieberman et al. | Jan 2007 | A1 |
20070033309 | Kuwabara et al. | Feb 2007 | A1 |
20070034800 | Huang | Feb 2007 | A1 |
20070052616 | Yoon | Mar 2007 | A1 |
20070057764 | Sato et al. | Mar 2007 | A1 |
20070103479 | Kim et al. | May 2007 | A1 |
20070103742 | Ernandes et al. | May 2007 | A1 |
20070120879 | Kanade et al. | May 2007 | A1 |
20070132858 | Chiba et al. | Jun 2007 | A1 |
20070139739 | Kim et al. | Jun 2007 | A1 |
20070159524 | Kim et al. | Jul 2007 | A1 |
20070189583 | Shimada et al. | Aug 2007 | A1 |
20070211965 | Helbing et al. | Sep 2007 | A1 |
20070222798 | Kuno | Sep 2007 | A1 |
20070247611 | Tamaki et al. | Oct 2007 | A1 |
20070248284 | Bernsen et al. | Oct 2007 | A1 |
20070274541 | Uetake et al. | Nov 2007 | A1 |
20070285439 | King et al. | Dec 2007 | A1 |
20070286517 | Paik et al. | Dec 2007 | A1 |
20070299226 | Park et al. | Dec 2007 | A1 |
20080038579 | Schuisky et al. | Feb 2008 | A1 |
20080056612 | Park et al. | Mar 2008 | A1 |
20080079834 | Chung et al. | Apr 2008 | A1 |
20080112012 | Yokoyama et al. | May 2008 | A1 |
20080151056 | Ahamefula | Jun 2008 | A1 |
20080165190 | Min et al. | Jul 2008 | A1 |
20080165342 | Yoshida et al. | Jul 2008 | A1 |
20080170082 | Kim | Jul 2008 | A1 |
20080211916 | Ono | Sep 2008 | A1 |
20080218474 | Ahn et al. | Sep 2008 | A1 |
20080248833 | Silverbrook et al. | Oct 2008 | A1 |
20080252775 | Ryu | Oct 2008 | A1 |
20080266079 | Lontka | Oct 2008 | A1 |
20080278772 | Silverbrook et al. | Nov 2008 | A1 |
20080284880 | Numata | Nov 2008 | A1 |
20080292144 | Kim | Nov 2008 | A1 |
20080297614 | Lieberman et al. | Dec 2008 | A1 |
20090023421 | Parkulo et al. | Jan 2009 | A1 |
20090027525 | Lin et al. | Jan 2009 | A1 |
20090040042 | Lontka | Feb 2009 | A1 |
20090040195 | Njolstad et al. | Feb 2009 | A1 |
20090050806 | Schmidt et al. | Feb 2009 | A1 |
20090052883 | Lee et al. | Feb 2009 | A1 |
20090115877 | Verdant | May 2009 | A1 |
20090129700 | Rother et al. | May 2009 | A1 |
20090131104 | Yoon | May 2009 | A1 |
20090148019 | Hamada et al. | Jun 2009 | A1 |
20090213110 | Kato et al. | Aug 2009 | A1 |
20090215479 | Karmarkar | Aug 2009 | A1 |
20090227287 | Kotidis | Sep 2009 | A1 |
20090238238 | Hollander et al. | Sep 2009 | A1 |
20090278048 | Choe et al. | Nov 2009 | A1 |
20090297062 | Molne et al. | Dec 2009 | A1 |
20100020229 | Hershey et al. | Jan 2010 | A1 |
20100066809 | Cormack et al. | Mar 2010 | A1 |
20100066866 | Lim | Mar 2010 | A1 |
20100090983 | Challener et al. | Apr 2010 | A1 |
20100103141 | Challener et al. | Apr 2010 | A1 |
20100113068 | Rothschild | May 2010 | A1 |
20100131268 | Moeller | May 2010 | A1 |
20100144387 | Chou | Jun 2010 | A1 |
20100163730 | Schmidt et al. | Jul 2010 | A1 |
20100234067 | Silverbrook et al. | Sep 2010 | A1 |
20100245582 | Harel | Sep 2010 | A1 |
20100245585 | Fisher et al. | Sep 2010 | A1 |
20100245826 | Lee | Sep 2010 | A1 |
20100283890 | Mizumura | Nov 2010 | A1 |
20100314543 | Lee et al. | Dec 2010 | A1 |
20110043486 | Hagiwara et al. | Feb 2011 | A1 |
20110063446 | McMordie et al. | Mar 2011 | A1 |
20110102599 | Kwon et al. | May 2011 | A1 |
20110117532 | Relyea et al. | May 2011 | A1 |
20110121178 | Strandemar | May 2011 | A1 |
20110121978 | Schwörer et al. | May 2011 | A1 |
20110122075 | Seo et al. | May 2011 | A1 |
20110128384 | Tiscareno et al. | Jun 2011 | A1 |
20110134303 | Jung et al. | Jun 2011 | A1 |
20110234864 | Inokuma | Sep 2011 | A1 |
20110279673 | Teich et al. | Nov 2011 | A1 |
20120007987 | Gaber | Jan 2012 | A1 |
20120083314 | Ng et al. | Apr 2012 | A1 |
20120140881 | Yoshimatsu et al. | Jun 2012 | A1 |
20120169866 | Schmidt et al. | Jul 2012 | A1 |
20120184252 | Hirsch | Jul 2012 | A1 |
20120211648 | Linsacum et al. | Aug 2012 | A1 |
20120213411 | Nozaki | Aug 2012 | A1 |
20120229650 | Matthews | Sep 2012 | A1 |
20120262584 | Strandemar | Oct 2012 | A1 |
20120273688 | Tsai et al. | Nov 2012 | A1 |
20120274814 | Wajs | Nov 2012 | A1 |
20120276954 | Kowalsky | Nov 2012 | A1 |
20120292518 | Goldstein | Nov 2012 | A1 |
20120312976 | Boulanger et al. | Dec 2012 | A1 |
20130204570 | Mendelson et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
2874947 | Feb 2007 | CN |
2899321 | May 2007 | CN |
201203922 | Mar 2009 | CN |
101635754 | Jan 2010 | CN |
201481406 | May 2010 | CN |
201550169 | Aug 2010 | CN |
101859209 | Oct 2010 | CN |
201628839 | Nov 2010 | CN |
101945154 | Jan 2011 | CN |
102055836 | May 2011 | CN |
201897853 | Jul 2011 | CN |
102178510 | Sep 2011 | CN |
102880289 | Jan 2013 | CN |
202998279 | Jun 2013 | CN |
0398725 | Nov 1990 | EP |
0837600 | Apr 1998 | EP |
1 253 779 | Oct 2002 | EP |
1939809 | Jul 2008 | EP |
2477391 | Jul 2012 | EP |
2533226 | Dec 2012 | EP |
1997275518 | Apr 1999 | JP |
2004004465 | Jan 2004 | JP |
2004048571 | Feb 2004 | JP |
2006098098 | Apr 2006 | JP |
2006105655 | Apr 2006 | JP |
2007006475 | Jan 2007 | JP |
2007325842 | Dec 2007 | JP |
2010181324 | Aug 2010 | JP |
20000026757 | May 2000 | KR |
100227582 | Nov 2000 | KR |
100272582 | Nov 2000 | KR |
20000073381 | Dec 2000 | KR |
100285817 | Jan 2001 | KR |
20010001341 | Jan 2001 | KR |
20010002462 | Jan 2001 | KR |
20010010010 | Feb 2001 | KR |
20010014992 | Feb 2001 | KR |
20010044756 | Jun 2001 | KR |
20010050263 | Jun 2001 | KR |
20010060752 | Jul 2001 | KR |
20010068202 | Jul 2001 | KR |
20010070355 | Jul 2001 | KR |
20010074565 | Aug 2001 | KR |
20020006967 | Jan 2002 | KR |
20020044339 | Jun 2002 | KR |
20020049605 | Jun 2002 | KR |
20060071220 | Jun 2002 | KR |
20020061406 | Jul 2002 | KR |
20020061920 | Jul 2002 | KR |
20020069690 | Sep 2002 | KR |
20020078469 | Oct 2002 | KR |
20020083368 | Nov 2002 | KR |
20020083961 | Nov 2002 | KR |
20020085124 | Nov 2002 | KR |
20020085490 | Nov 2002 | KR |
20020095752 | Dec 2002 | KR |
20030000332 | Jan 2003 | KR |
20030007030 | Jan 2003 | KR |
20030012444 | Feb 2003 | KR |
20030016607 | Mar 2003 | KR |
20030024545 | Mar 2003 | KR |
20030037101 | May 2003 | KR |
20030051140 | Jun 2003 | KR |
20030055693 | Jul 2003 | KR |
20030056667 | Jul 2003 | KR |
20030067116 | Aug 2003 | KR |
20030085742 | Nov 2003 | KR |
20030088968 | Nov 2003 | KR |
20040001684 | Jan 2004 | KR |
20040001686 | Jan 2004 | KR |
20040023826 | Mar 2004 | KR |
20040027692 | Apr 2004 | KR |
20040033223 | Apr 2004 | KR |
20040033532 | Apr 2004 | KR |
20040033986 | Apr 2004 | KR |
20040033993 | Apr 2004 | KR |
20040039868 | May 2004 | KR |
20040040296 | May 2004 | KR |
20040042475 | May 2004 | KR |
20040044624 | May 2004 | KR |
100437890 | Jun 2004 | KR |
20040054416 | Jun 2004 | KR |
20040058969 | Jul 2004 | KR |
20040062802 | Jul 2004 | KR |
20040064855 | Jul 2004 | KR |
20040066724 | Jul 2004 | KR |
20040068864 | Aug 2004 | KR |
20040070840 | Aug 2004 | KR |
20040076308 | Sep 2004 | KR |
20040086994 | Oct 2004 | KR |
20040102386 | Dec 2004 | KR |
20050008245 | Jan 2005 | KR |
20050011313 | Jan 2005 | KR |
20050012505 | Feb 2005 | KR |
20050014448 | Feb 2005 | KR |
20050015293 | Feb 2005 | KR |
20050015526 | Feb 2005 | KR |
20050015745 | Feb 2005 | KR |
20050018370 | Feb 2005 | KR |
20050023950 | Mar 2005 | KR |
20050028537 | Mar 2005 | KR |
20050033308 | Apr 2005 | KR |
101006660 | Sep 2005 | KR |
1020050095463 | Sep 2005 | KR |
100547739 | Jan 2006 | KR |
20060023957 | Mar 2006 | KR |
1020060019715 | Mar 2006 | KR |
100645746 | May 2006 | KR |
20060054877 | May 2006 | KR |
100612890 | Aug 2006 | KR |
100633792 | Oct 2006 | KR |
100646966 | Nov 2006 | KR |
20060119077 | Nov 2006 | KR |
20060119236 | Nov 2006 | KR |
20060120318 | Nov 2006 | KR |
20060121595 | Nov 2006 | KR |
100660125 | Dec 2006 | KR |
100663528 | Jan 2007 | KR |
100672377 | Jan 2007 | KR |
20070002590 | Jan 2007 | KR |
20070005263 | Jan 2007 | KR |
20070005553 | Jan 2007 | KR |
20070009380 | Jan 2007 | KR |
100677913 | Feb 2007 | KR |
20070028201 | Mar 2007 | KR |
100729813 | Jun 2007 | KR |
20070067650 | Jun 2007 | KR |
100743171 | Jul 2007 | KR |
100743254 | Jul 2007 | KR |
20070068501 | Jul 2007 | KR |
20070078477 | Aug 2007 | KR |
20070082960 | Aug 2007 | KR |
20070087513 | Aug 2007 | KR |
20070091486 | Sep 2007 | KR |
100766953 | Oct 2007 | KR |
100771364 | Oct 2007 | KR |
20070104957 | Oct 2007 | KR |
100777428 | Nov 2007 | KR |
20070115754 | Dec 2007 | KR |
20070122344 | Dec 2007 | KR |
20070122345 | Dec 2007 | KR |
100802525 | Feb 2008 | KR |
20080013314 | Feb 2008 | KR |
20080015099 | Feb 2008 | KR |
20080015100 | Feb 2008 | KR |
20080015973 | Feb 2008 | KR |
20080018407 | Feb 2008 | KR |
100822053 | Apr 2008 | KR |
20080045551 | May 2008 | KR |
100841243 | Jun 2008 | KR |
20080053057 | Jun 2008 | KR |
20080054596 | Jun 2008 | KR |
100846192 | Jul 2008 | KR |
20080059882 | Jul 2008 | KR |
20080069007 | Jul 2008 | KR |
100854932 | Aug 2008 | KR |
20080071070 | Aug 2008 | KR |
20080078315 | Aug 2008 | KR |
100866177 | Oct 2008 | KR |
100866475 | Nov 2008 | KR |
100866476 | Nov 2008 | KR |
100866573 | Nov 2008 | KR |
100870724 | Nov 2008 | KR |
20080096918 | Nov 2008 | KR |
20080098409 | Nov 2008 | KR |
100871916 | Dec 2008 | KR |
20080112331 | Dec 2008 | KR |
20090003899 | Jan 2009 | KR |
20090018486 | Feb 2009 | KR |
20090020864 | Feb 2009 | KR |
100888554 | Mar 2009 | KR |
20090036734 | Apr 2009 | KR |
100897170 | May 2009 | KR |
20090052526 | May 2009 | KR |
100901784 | Jun 2009 | KR |
100903348 | Jun 2009 | KR |
20090089931 | Aug 2009 | KR |
100922497 | Oct 2009 | KR |
20090105424 | Oct 2009 | KR |
100932752 | Dec 2009 | KR |
100935495 | Jan 2010 | KR |
20100006652 | Jan 2010 | KR |
2010022327 | Mar 2010 | KR |
20100039170 | Apr 2010 | KR |
100958030 | May 2010 | KR |
20100059681 | Jun 2010 | KR |
20100070116 | Jun 2010 | KR |
20100070119 | Jun 2010 | KR |
20100072994 | Jul 2010 | KR |
100977516 | Aug 2010 | KR |
2010091758 | Aug 2010 | KR |
20100089125 | Aug 2010 | KR |
20100090521 | Aug 2010 | KR |
20100091758 | Aug 2010 | KR |
20100098958 | Sep 2010 | KR |
100985816 | Oct 2010 | KR |
100990904 | Nov 2010 | KR |
20100123021 | Nov 2010 | KR |
20100129533 | Dec 2010 | KR |
1006660 | Jan 2011 | KR |
20110006437 | Jan 2011 | KR |
20110011264 | Feb 2011 | KR |
2011019994 | Mar 2011 | KR |
2011024290 | Mar 2011 | KR |
1111167 | Feb 2012 | KR |
WO 9722860 | Jun 1997 | WO |
WO 02067575 | Aug 2002 | WO |
WO 03093963 | Nov 2003 | WO |
WO 2004027459 | Apr 2004 | WO |
WO 2005002228 | Jan 2005 | WO |
WO 2005015143 | Feb 2005 | WO |
WO 2005088846 | Sep 2005 | WO |
WO 2006096211 | Sep 2006 | WO |
WO 2006112866 | Oct 2006 | WO |
WO 2007006242 | Jan 2007 | WO |
WO 2007041484 | Apr 2007 | WO |
WO 2008087373 | Jul 2008 | WO |
WO 2008094102 | Aug 2008 | WO |
WO 2009122114 | Oct 2009 | WO |
WO 2010005152 | Jan 2010 | WO |
WO 2010033142 | Mar 2010 | WO |
WO 2011131758 | Oct 2011 | WO |
WO 2012027739 | Mar 2012 | WO |
WO 2012170949 | Dec 2012 | WO |
WO 2012170953 | Dec 2012 | WO |
WO 2012170954 | Dec 2012 | WO |
WO 2012170946 | Dec 2012 | WO |
Entry |
---|
Flir, “Flir P640 Infrared Camera”, Jan. 23, 2010, pp. 1-2 http://www.flir.com/uploadedFiles/Thermography—APAC/Products/Product—Literature/AU—P640—Datasheet—APAD.pdf. |
Branchitta et al., “Dynamic range compression and contrast enhancement in IR Imaging systems”, Proc. of SPIE vol. 6737, Dec. 31, 2007, pp. 1-11. |
Number | Date | Country | |
---|---|---|---|
20140098238 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
61495873 | Jun 2011 | US | |
61495879 | Jun 2011 | US | |
61495888 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2012/041739 | Jun 2012 | US |
Child | 14101258 | US |