This invention relates generally to socket caps for integrated circuits and, particularly, for integrated circuit microprocessors.
A microprocessor may be secured to a printed circuit board, such as a motherboard, through a socket. The socket may include pins that make electrical connections to the integrated circuit contacts and solder balls which electrically and mechanically secure the socket and the processor to the circuit board.
Conventionally, surface mount technique are utilized to secure the socket in place to the circuit board. To this end, the socket is positioned appropriately on the circuit board and heat is applied using a surface mount reflow oven. The surface mount reflow oven provides both infrared and convective heating.
Prior to the insertion of the processor into the socket and while the socket is being secured to the board, the top side of the socket may be protected by a plastic cap. Conventionally, that plastic cap is removably securable over the socket. Once the socket has been surface mounted to the printed circuit board and the processor is ready to be installed, the cap may be removed.
Generally, a microprocessor manufacturer may provide an integrated circuit chip to an original equipment manufacturer, such as a personal computer manufacturer or a motherboard manufacturer. The original equipment manufacturer or other installer surface mounts the package to an appropriate printed circuit board. To this end a surface mount reflow oven is utilized. It has been learned that in many cases, it is necessary to apply undesirably high heat in order to get reflow of the solder balls used in the surface mount connection. The socket, in some cases, acts as a heat sink and prevents the solder balls from reflowing fast enough in the desired reflow profile. As a result, the solder joints may not receive enough heat, causing solder joint reliability issues.
Thus, there is a need for better ways to surface mount sockets to printed circuit boards.
Referring to
The cover 14 may include curved prongs 22 which engage the housing 28 to allow pivotal motion of the cover 14 relative to the housing 28. The housing 28 may include a bar 16 which removably latches the cover 14 in the closed position shown in
The cap 24 may be formed of an infrared transmissive material. In one embodiment, the cap 24 transmits 80% of incident infrared radiation and, in a more advantageous embodiment, transmits 90% of incident infrared radiation. Among the materials that may be useful are plastic, glass, ceramics, and organic materials that are transparent or translucent to infrared radiation. Advantageously, the cap 24 may be made of a clear or translucent material which transmits infrared radiation. It may also be dark red translucent material since dark red is infrared transmissive, generally. The cap 24 may also include a plurality of peripherally situated slots 38 which allow air communication into the region underneath the cap 24.
The cap 24 may have two functions. It may perform the traditional cap function of preventing contamination or damage to socket 10 leads from the manufacturing processes up until the time the cap 24 is removed and the processor is inserted. However, the cap 24 may also assist in facilitating surface mounting of the socket 10 to a printed circuit board.
By permitting the transmission of infrared light, conventional surface mount ovens may more effectively heat solder balls to surface mount the socket 10 to a printed circuit board. Conventional surface mount ovens may supply both convective heat and infrared heat. Conventional caps tend to block the infrared heating. As a result, ineffective heating may occur, resulting in solder ball reliability problems.
The provision of the openings 38 may improve convective heat transfer through the cap 24 to the underlying solder balls in some cases. In one embodiment of the present invention, using a red translucent plastic cover, 95 percent of the infrared radiation penetrates the cap 24 without reflection or absorption. The infrared radiation may pass through the cap 24 to become absorbed by the socket leads which are thermally attached to solder balls at the bottom of the socket 10. This allows the solder balls to reach higher reflow temperatures faster, permitting the socket 10 to stay within the desired reflow specifications. Excessive heating may adversely affect the socket 10 in some cases.
Referring to
As better shown in
As shown in
The alignment between the cap 24 and the cover 14 is facilitated by the guide 44 The guide 44 may serve to protect the element 42 and to guide the engagement of the cap 24 on the cover 14 in some cases.
Thus, referring to
Referring to
In accordance with another embodiment of the present invention shown in
In accordance with still another embodiment of the present invention, openings 38 in a modified cap 24b may have downwardly protruding tabs 56 that reflect infrared radiation I. The infrared radiation may be reflected by the tabs 56 and directed into the open region below the cap 24b.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.