Infusion apparatuses and methods of use

Abstract
An exemplary infusion system for accessing an implanted device is disclosed comprising an insertion assembly, a hub comprising a sealable path configured to receive at least a portion of the insertion assembly, a flexible catheter attached to the hub and configured to receive at least a portion of the insertion assembly, and an extension tube attached to the hub. The hub may comprise a manifold element configured to provide fluid communication between the flexible catheter and the extension tube. The hub may also comprise a septum configured to seal the sealable path upon removal of the insertion assembly from the flexible catheter. The extension tube may also be configured to receive at least a portion of the insertion assembly. Exemplary methods of providing a fluid communication path to an implanted device are also disclosed.
Description
BACKGROUND

Access to a patient's vascular system may be established by a variety of temporary or permanently implanted devices. For example, temporary access to a patient's vascular system may be accomplished by the direct percutaneous introduction of a needle into the patient's blood vessel. While such a temporary and direct approach may be relatively simple and suitable for applications that are limited in frequency or duration, such as intravenous feeding and/or intravenous drug delivery, this temporary approach may not be suitable for procedures that are frequently repeated or that require vascular access for relatively long time periods of time, such as hemodialysis or other similar extracorporeal procedures.


Accordingly, a variety of implantable devices have been proposed to provide a convenient method for repeatedly introducing fluids, such as medicaments, into the vasculature of a patient. Typically, such implantable device comprise a housing that encloses an internal fluid chamber or cavity. An access aperture defined through the housing and sealed by a penetrable septum provides access to the internal fluid chamber, which is typically in fluid communication with an implanted catheter attached to a patient's vasculature.


Quantities of fluid, such as medication, blood, or the like, may be introduced into, or withdrawn from, a patient's vasculature using conventional implantable device by: 1) penetrating the septum of the implanted device using a percutaneously inserted needle; 2) positioning at least the tip of the needle within the internal fluid reservoir or cavity enclosed in the device housing; and 3) discharging fluids through the needle into the internal fluid cavity. The discharged fluids may then be directed through the distal end of the implanted catheter connected to the implanted device to an entry point into the venous system of the body of the patient. Blood may also be aspirated through the implanted device in a similar manner.


SUMMARY

In at least one embodiment, an infusion apparatus for providing access to an implanted device, such as an access port or a pump (e.g., a so-called pain pump), may comprise an insertion assembly, a hub comprising a sealable path configured to receive at least a portion of the insertion assembly, a flexible catheter attached to the hub and configured to receive at least a portion of the insertion assembly, and an extension tube attached to the hub. In certain embodiments, the hub may comprise a plurality of wing structures and may be configured to provide fluid communication between the flexible catheter and the extension tube. The hub may also comprise a manifold element structured to provide fluid communication between the flexible catheter and the extension tube. In addition, the sealable path may comprise a septum configured to seal the sealable path upon removal of the insertion assembly from the flexible catheter. The extension tube may either be permanently or removably attached to the hub.


According to at least one embodiment, the insertion assembly may comprise a slender pointed element and both the sealable path and the flexible catheter may be configured to receive at least a portion of the slender pointed element. Similarly, the extension tube may be configured to receive at least a portion of the slender pointed element. The flexible catheter may also comprise at least one aperture defined proximate a distal end of the flexible catheter and the slender pointed element may comprise at least one longitudinally extending indentation defined along the slender pointed element. In at least one embodiment, a cross-sectional area defined between an exterior surface of the slender pointed element and an interior surface of the flexible catheter may approximate the cross-sectional area of a hollow needle gauge. In addition, the flexible catheter may comprise at least one aperture defined proximate a distal end of the flexible catheter and the slender pointed element may be at least partially hollow and comprise at least one aperture defined within the slender pointed element for communicating fluid with the at least one aperture defined in the flexible catheter.


In certain embodiments, at least a portion of the slender pointed element may be retractable into a recess defined in the insertion assembly. In addition, the flexible catheter may have a length that exceeds an anticipated insertion length such that, when the flexible catheter is fully inserted into a device implanted within a patient, a bendable portion of the flexible catheter may extend from a skin surface of the patient. The infusion apparatus may also comprise a receiving enclosure positioned substantially parallel to a skin surface of a patient and configured to receive at least a portion of the hub. Further, the infusion apparatus may comprise a safety clip configured to: 1) retain a pointed end of the slender pointed element within the safety clip when the slender pointed element is removed from the hub; and 2) allow the pointed end of the slender pointed element to pass through the safety clip when the slender pointed element is inserted into the hub. The infusion apparatus may also comprise a reinforcing member, which may be coiled, at least partially imbedded within the flexible catheter.


In at least one embodiment, an infusion device for use with an implanted device may comprise a slender pointed element comprising a pointed end, a flexible catheter comprising a sealable path configured to receive at least a portion of the slender pointed element, and an extension tube in fluid communication with the flexible catheter. In certain embodiments, the sealable path may be structured to seal upon removal of the slender pointed element from the flexible catheter.


In addition, an infusion apparatus for accessing an implanted device may comprise an insertion assembly comprising a slender pointed element, a hub comprising a sealable path configured to receive at least a portion of the slender pointed element, a flexible catheter attached to the hub and configured to receive at least a portion of the slender pointed element, and an extension tube attached to the hub. In certain embodiments, the hub may comprise a manifold element structured to provide fluid communication between the flexible catheter and the extension tube, and a septum configured to seal the sealable path upon removal of the slender pointed element from the flexible catheter.


In at least one embodiment, a method of providing a fluid communication path to an implanted device may comprise positioning at least a portion of a slender pointed element within a flexible catheter, penetrating a septum of an implanted device with the slender pointed element positioned within the flexible catheter, positioning at least a portion of the flexible catheter within the implanted device, removing the slender pointed element from the flexible catheter, and retaining at least a portion of the flexible catheter within the implanted device. The method may also comprise providing a hub in fluid communication with the flexible catheter, and removably attaching an extension tube to the hub to provide fluid communication between the flexible catheter and the extension tube. In addition, the method may comprise sealing a sealable path defined in the hub upon removal of the slender pointed element from the flexible catheter.


In certain embodiments, this exemplary method may further comprise positioning at least a portion of the slender pointed element within the extension tube. In addition, this method may further comprise retracting at least a portion of the slender pointed element into the flexible catheter. The method may also further comprise providing a safety clip proximate a pointed end of the slender pointed element, and retaining the pointed end of the slender pointed element within the safety clip upon removal of the slender pointed element from the flexible catheter.


Features from any of the above-mentioned embodiments may be used in combination with one another in accordance with the general principles described herein. These and other embodiments, features and advantages will be more fully understood upon reading the following detailed description in conjunction with the accompanying drawings and claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate a number of exemplary embodiments and are a part of the specification. Together with the following description, these drawings demonstrate and explain various principles of the instant disclosure.



FIG. 1 is a schematic cross-sectional side view of an exemplary device implanted within a patient;



FIG. 2 is an exploded perspective view of an exemplary infusion system according to at least one embodiment;



FIG. 3A is a perspective view of an exemplary insertion assembly according to at least one embodiment;



FIG. 3B is a cross-sectional side view of the exemplary insertion assembly illustrated in FIG. 3A;



FIG. 4A is a perspective view of an exemplary hub according to at least one embodiment;



FIG. 4B is a cross-sectional side view of the exemplary hub illustrated in FIG. 4A;



FIG. 4C is a cross-sectional side view of an exemplary flexible catheter and extension tube attached to the exemplary hub illustrated in FIG. 4A;



FIG. 5 is a perspective view of an extension tube, clamp device, and tube connector according to at least one embodiment;



FIG. 6 is a perspective view of a safety clip according to at least one embodiment;



FIG. 7 is a partial perspective view and partial cross-sectional side view of a flexible catheter according to at least one embodiment;



FIG. 8A is an assembled perspective view of the exemplary infusion system illustrated in FIG. 1;



FIG. 8B is a partial cross-sectional side view of the exemplary infusion system illustrated in FIG. 8A;



FIG. 8C is a partial perspective view of a slender pointed element according to at least one embodiment;



FIG. 8D is an end view of the exemplary slender pointed element illustrated in FIG. 8C;



FIG. 8E is a cross-sectional side view of the exemplary slender pointed element illustrated in FIG. 8C positioned within an exemplary flexible catheter;



FIG. 9A illustrates various exemplary geometrical attributes of a longitudinally extending indentation defined along a slender pointed element according to at least one embodiment;



FIG. 9B is a schematic end view of a slender pointed element according to at least one embodiment;



FIG. 9C is a schematic end view of a slender pointed element according to an additional embodiment;



FIGS. 10A-10E are perspective views of various exemplary embodiments of a flexible catheter;



FIG. 11A is a perspective view of an exemplary embodiment of a slender pointed element;



FIG. 11B is a cross-sectional end view of the exemplary slender pointed element illustrated in FIG. 11A, taken along the line 11B-11B;



FIG. 11C is a perspective view of an additional embodiment of a slender pointed element;



FIG. 11D is a cross-sectional end view of the exemplary slender pointed element illustrated in FIG. 11C, taken along the line 11D-11D;



FIG. 11E is a perspective view of an additional embodiment of a slender pointed element;



FIG. 11F is a cross-sectional end view of the exemplary slender pointed element illustrated in FIG. 11E, taken along the line 11F-11F;



FIG. 11G is a perspective view of an additional embodiment of a slender pointed element;



FIG. 11H is a cross-sectional end view of the exemplary slender pointed element illustrated in FIG. 11G, taken along the line 11H-11H;



FIG. 12A is a cross-sectional side view of a portion of a slender pointed element and a flexible catheter according to at least one embodiment;



FIG. 12B is a schematic perspective view of the exemplary slender pointed element and flexible catheter illustrated in FIG. 12A;



FIG. 13 is a partial cross-sectional side view of an additional embodiment of a flexible catheter;



FIG. 14A is a simplified cross-sectional side view of an additional embodiment of a hub;



FIG. 14B is a simplified cross-sectional side view of an exemplary insertion assembly positioned within the exemplary hub illustrated in FIG. 14A;



FIG. 15 is a simplified cross-sectional side view of an additional embodiment of an infusion system;



FIG. 16 is a simplified cross-sectional side view of an additional embodiment of a hub;



FIG. 17A is a perspective view of an exemplary embodiment of a receiving enclosure for use with an infusion system;



FIG. 17B is a perspective view of an exemplary infusion system positioned within the exemplary receiving enclosure illustrated in FIG. 17A;



FIG. 18A is a perspective view of an additional embodiment of an infusion system;



FIG. 18B is a cross-sectional side view of the exemplary infusion system illustrated in FIG. 18A;



FIG. 19A is a perspective view of an additional embodiment of an infusion system;



FIG. 19B is a cross-sectional side view of the exemplary infusion system illustrated in FIG. 19A;



FIG. 19C is a cross-sectional side view of an additional embodiment of an infusion system;



FIG. 20A is a perspective view of an additional embodiment of an infusion system;



FIG. 20B is a cross-sectional side view of the exemplary infusion system illustrated in FIG. 20A;



FIG. 21A is a perspective view of an additional embodiment of an infusion system;



FIG. 21B is a perspective view of a portion of the exemplary infusion system illustrated in FIG. 21A;



FIG. 21C is a perspective view of a portion of the exemplary infusion system illustrated in FIG. 21A;



FIG. 21D is a perspective view of a portion of the exemplary infusion system illustrated in FIG. 21A;



FIG. 21E is a cross-sectional side view of the exemplary infusion system illustrated in FIG. 21A;



FIG. 22A is a cross-sectional side view of an exemplary safety clip housing in a first position;



FIG. 22B is a cross-sectional side view of an exemplary safety clip housing in a second position;



FIG. 23A is a perspective view of an additional embodiment of a safety clip in a first position;



FIG. 23B is a perspective view of an additional embodiment of a safety clip in a second position;



FIGS. 24A-24D are perspective and cross-sectional side views of an additional embodiment of a safety clip;



FIG. 25A is a cross-sectional side view of an exemplary safety clip housing removably attached to a hub;



FIG. 25B is a cross-sectional side view of an exemplary safety clip housing adhered to a hub;



FIGS. 26A-26C are perspective views of an infusion system according to an additional embodiment;



FIGS. 27A and 27B are perspective views of additional embodiments of an infusion system;



FIG. 28A is a perspective view of an infusion system according to an additional embodiment;



FIG. 28B is a cross-sectional side view of the exemplary infusion system illustrated in FIG. 28A;



FIG. 29 is a cross-sectional side view of an exemplary slender pointed element comprising a scored pointed end;



FIGS. 30A-30B are perspective views of an infusion system according to an additional embodiment;



FIGS. 31A-31B are perspective views of an infusion system according to an additional embodiment;



FIGS. 31C-31D are cross-sectional side views of the exemplary infusion system illustrated in FIGS. 31A-31B;



FIGS. 32A-32B are perspective views of an infusion system according to an additional embodiment;



FIGS. 32C-32D are cross-sectional side views of the exemplary infusion system illustrated in FIGS. 32A-32B;



FIGS. 33A-33C are perspective views of an insertion assembly according to an additional embodiment; and



FIGS. 34A-34C are perspective views of an exemplary hub for an infusion system according to an additional embodiment;





Throughout the drawings, identical reference characters and descriptions indicate similar, but not necessarily identical, elements. While the exemplary embodiments described herein are susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, one of skill in the art will understand that the exemplary embodiments described herein are not intended to be limited to the particular forms disclosed. Rather, the instant disclosure covers all modifications, equivalents, and alternatives falling within the scope defined by the appended claims.


DETAILED DESCRIPTION

Generally speaking, one or more of the exemplary apparatuses, devices, and/or methods described and illustrated herein may be employed for percutaneously accessing a device, such as an access port or pump (e.g., a so-called pain pump), implanted within a patient, such as exemplary access port 320 illustrated in FIG. 1. Access port 320 generally represents any device capable of being implanted within a patient, such as an access port, pump, or other device known to those of skill in the art. As illustrated in FIG. 1, exemplary access port 320 may comprise a housing 322 and a septum 326 defining a chamber 324. A catheter 332 in fluid communication with the vasculature 316 of a patient may be attached to housing 322 to provide a fluid communication path between exemplary access port 320 and vasculature 316. In at least one embodiment, access port 320 is implanted within the interior of a patient; namely, below skin surface 310 and within subcutaneous zone 312. In certain embodiments, access port 320 may be implanted beneath skin surface 310 by a distance in the range from about 3 mm to about 20 mm, and/or from about 5 mm to about 15 mm. Housing 322 of access port 320 may then be secured to deep fascia tissue 314 by a plurality of sutures 328. Catheter 332 may be surgically implanted, indwelling, or secured within the patient in any other manner known to those of skill in the art.



FIG. 2 is an exploded perspective view of an exemplary infusion system 10 for accessing an implanted device, such as exemplary access port 320 illustrated in FIG. 1. As seen in FIG. 2, exemplary infusion system 10 may comprise an insertion assembly 20, a safety clip 30, a hub 40, a flexible catheter 90, an extension tube 70, a clamp device 60, and a tube connector 80. Generally, the various components of infusion system 10 may comprise any number or combination of suitable materials known to those of skill in the art, such as metals, plastics, or polymers. For example, the various components of infusion system 10 may comprise polytetrafluoroethylene (PTFE), polypropylene, silicone, stainless steel (e.g., AISI 304 stainless steel), fluorinatedethylenepropylene (FEP), perfluoroalkoxy (PFA), ethylenetetrafluoroethylene (ETFE), polyetheretherketone (PEEK®), polyurethane (including thermoplastic polyurethanes, such as ISOPLAST®, TECOFLEX®, TECOTHANE®, CARBOTHANE®, TECOPLAST®, or TECOPHILIC®-type polyurethanes), or any number of combinations thereof.



FIGS. 3A and 3B are perspective and cross-sectional side views, respectively, of an exemplary insertion assembly 20. As seen in these figures, exemplary insertion assembly 20 may comprise a slender pointed element 22 attached to a base member 28. Slender pointed element 22 generally represents any structure capable of penetrating the septum of an implanted device, such as septum 326 of access port 320. For example, slender pointed element 22 may represent a trocar, a coring or non-coring needle, a cannula, or any other suitable hollow or solid structure. Slender pointed element 22 may be entirely solid, entirely hollow, or may include a solid pointed end 25 and an at least partially hollow body, as discussed in greater detail below. In addition, slender pointed element 22 may comprise any conventional needle, trocar, or cannula material, such as stainless steel (e.g., AISI 304 stainless steel), plastic, or the like.


As seen in FIGS. 3A and 3B, a recess 24 may be defined within base member 28. In at least one embodiment, recess 24 is configured to receive one or more structural elements, such as, for example, safety clip 30. Base member 28 may also comprise a coupling structure 26, which generally represents any structure (e.g., a protrusion) or recess capable of coupling base member 28 to an additional element, such as hub 40. In at least one embodiment, coupling structure 26 couples to a complimentary coupling recess 44 defined in hub 40 (illustrated in FIGS. 4A-4C). In certain embodiments, base member 28 may be injection molded or otherwise formed about slender pointed element 22 so as to capture a portion of slender pointed element 22 within the base member 28, as best seen in FIG. 3B.



FIGS. 4A and 4B are perspective and cross-sectional views, respectively, of an exemplary hub 40 according to at least one embodiment. As seen in these figures, exemplary hub 40 may comprise a plurality of wing structures 41A and 41B attached to a hub body 50. In at least one embodiment, wing structures 41A and 41B are configured to affix exemplary hub 40 to the skin of a patient. For example, wing structures 41A and 41B may be taped, adhesively affixed, or otherwise attached to the surface of a patient's skin, such as skin surface 310 in FIG. 1. Generally speaking, wing structures 41A and 41B may be formed in any number of shapes and sizes, including those illustrated in FIGS. 20A-20B, 22A-22B, 25A-25B, 26A-26C, 27A-27B, 30A-30B, 31A-31B, and 33A-33D. As detailed above, exemplary hub 40 and wing structures 41A and 41B may comprise any number or combination of suitable materials known to those of skill in the art, including, for example, TECOFLEX® 85A-B20.


As illustrated in FIG. 4B, in certain embodiments a coupling recess 44 may be defined within hub body 50 and structured to receive the complimentary coupling structure 26 provided on base member 28. Similarly, a recess 42 may be defined in hub body 50 and configured to receive both a slender pointed element (such as slender pointed element 22) and a safety clip (such as safety clip 30), as discussed in greater detail below. A retaining lip 43 may also be provided within recess 42 for retaining a safety clip, such as safety clip 30, within recess 42.


In at least one embodiment, a penetrable septum 48 may be provided in recess 42 and positioned above a manifold element 61 defined in exemplary hub body 50. A cap element 46 may also be positioned above septum 48 and configured to retain septum 48 within recess 42. As illustrated in FIG. 4B, manifold element 61 may define a plenum 49 in communication with a plurality of openings (e.g., openings 51, 53, and 59) sealed by at least one septum (e.g., septum 48). An aperture 47 may also be defined within cap element 46 generally opposite opening 51 of plenum 49. In certain embodiments, septum 48 may comprise any suitable material capable of suitably sealing opening 51 of plenum 49; including, for example, medical-grade polymers (such as silicone) and monomers (such as Ethylene Propylene Diene Monomer (“EPDM”), or other suitable materials.


In at least one embodiment, exemplary hub 40 may be structured to receive at least a portion of insertion assembly 20. For example, hub 40 may be configured to receive at least a portion of a slender pointed element, such as slender pointed element 22, within a sealable path defined within hub 40. In at least one embodiment, such a sealable path may be defined by, for example, recess 42, aperture 47, septum 48, opening 51, and opening 53. In this example, slender pointed element 22 may be inserted into aperture 47 in cap element 46 and passed through septum 48 and openings 51 and 53. In certain embodiments, penetrable septum 48 may be configured to seal opening 51 of plenum 49 upon removal of slender pointed element 22 from hub 40. Accordingly, slender pointed element 22 of insertion assembly 20 may be inserted through and removed from septum 48 without compromising the seal provided across opening 51. Further, the presence of cap element 46 may allow for so-called power or high-pressure injection to occur via manifold element 61, wherein pressures within manifold element 61 may reach about 400 psi or higher.


In certain embodiments, manifold element 61 may be configured to provide fluid communication between opening 53 and opening 59. More particularly, as illustrated in FIG. 4C, manifold element 61 may comprise a port extension 55 configured to receive at least a portion of an extension tube, such as extension tube 70, and a port extension 65 configured to receive at least a portion of a flexible catheter, such as flexible catheter 90. In at least one embodiment, an inner surface area 52 within port extension 55 of manifold element 61 may support the portion of extension tube 70 positioned within manifold element 61, such that relatively high pressures may be experienced without failure of extension tube 70. Similarly, an inner surface area 62 within port extension 65 of manifold element 61 may support the portion of flexible catheter 90 positioned within manifold element 61, such that relatively high pressures may be experienced without failure of flexible catheter 90.


As illustrated in FIG. 4B, hub 40 may also comprise a channel defined by a surface 57 and extending from opening 54 to opening 59 of manifold element 61. Such a channel may be sized and configured to receive at least a portion of an extension tube, such as extension tube 70, and may be formed prior to positioning of an extension tube within manifold element 61 or, in another embodiment, fabricated by forming (e.g., injection molding, curing, etc.) hub body 50 around extension tube 70. In an additional embodiment, hub body 50 of hub 40 may simply terminate substantially at opening 59 of manifold element 61.


In certain embodiments, flexible catheter 90 may be affixed to inner surface 62 of port extension 65. Similarly, extension tube 70 may be affixed to surface 52 of port extension 55. In one example, extension tube 70 and flexible catheter 90 may be chemically bonded to inner surfaces 52 and 62 of manifold element 61, respectively. In another example, an adhesive may be used to affix extension tube 70 and flexible catheter 90 to inner surfaces 52 and 62 of manifold element 61, respectively. Optionally, hub body 50 may be injection molded, cured, or otherwise formed around manifold element 61 (and, optionally septum 48, cap element 46, or both) and at least a portion of extension tube 70, as shown in FIG. 4C. Hub body 50 may also be formed around at least a portion of flexible catheter 90 in a similar manner. In addition, as discussed in greater detail below in connection with FIGS. 26A-26C and 27A-27B, extension tube 70 and/or flexible catheter 90 may be configured to be removably attached to manifold element 61 and/or hub 40.



FIG. 5 is a perspective view of an extension tube 70, a clamp device 60, and a tube connector 80 according to at least one embodiment. Extension tube 70 generally represents any form of medical tubing known to those of skill in the art. Similarly, clamp device 60 generally represents any form of tubing clamp known to those of skill in the art; including, for example, a slide clamp, a so-called pinch clamp, or the like. In addition, tube connector 80 generally represents any form of tubing connection or mechanism known to those of skill in the art; including, for example, a so-called Luer-type fitting or connector.



FIG. 6 is a perspective view of a safety clip 30 according to at least one embodiment. Safety clip 30 generally represents any self-actuating device for capturing a pointed end of a slender pointed element, such as pointed end 25 of slender pointed element 22. In the exemplary embodiment illustrated in FIG. 6, safety clip 30 may comprise a plurality of legs 32A and 32B having curved end regions 36A and 36B, respectively, and a hole 34 sized for receiving a slender pointed element, such as slender pointed element 22. Safety clip 30 may also be sized to fit within the retaining lips 43 provided in recess 42 of hub 40.


In at least one embodiment, safety clip 30 is attached to slender pointed element 22 by passing the pointed end 25 of slender pointed element 22 through hole 34 of safety clip 30, past legs 32A and 32B, and past curved end regions 36A and 36B. Once pointed end 25 of slender pointed element 22 has passed curved end regions 36A and 36B, legs 32A and 32B may clamp around slender pointed element 22 to removably affix the safety clip to slender pointed element 22. As slender pointed element 22, together with safety clip 30, is inserted into recess 42 defined in hub body 50, slender pointed element 22 may continue through safety clip 30 and into the sealable path defined in hub body 50. In addition, legs 32A and 32B of safety clip 30 may be biased such that, upon removal of slender pointed element 22 from the sealable path defined in hub body 50, curved end regions 36A and 36B may close around the pointed end 25 of slender pointed element 22 to retain this pointed end 25 within the body of safety clip 30. Such a safety clip 30 may prevent inadvertent insertion of slender pointed element 22 into another person, such as a medical practitioner utilizing infusion system 10.



FIG. 7 is a partial perspective view and partial cross-sectional side view of a flexible catheter 90 according to at least one embodiment. As seen in this figure, flexible catheter 90 may comprise an elongated lumen 94 extending between a first opening 91 and a second opening 93. Flexible catheter 90 may also comprise, proximate to second opening 93, a tapered transition region 95. As shown in FIG. 7, tapered transition region 95 may comprise a first tapered sub-region 96 and a second tapered sub-region 98. In certain embodiments, second tapered sub-region 98 is tapered more sharply than first tapered sub-region 96. Optionally, tapered transition region 95 may comprise a single taper and at least one arcuate surface. Exemplary flexible catheter 90 may also comprise at least one aperture 92 defined within flexible catheter 90 proximate second opening 93. In at least one embodiment, aperture 92 is defined through the tubular body of flexible catheter 90 to provide a fluid communication path between first opening 91 and aperture 92 through lumen 94. As detailed above, flexible catheter 90 may comprise any number or combination of suitable materials known to those of skill in the art, including, for example, TECOTHANE® (e.g., TECOTHANE® TT1055 D).



FIGS. 8A and 8B are assembled perspective and cross-sectional views, respectively, of the exemplary infusion system 10 illustrated in FIG. 1. As seen in these figures, when insertion assembly 20 is coupled to exemplary hub 40 via coupling structure 26 and coupling recess 44, at least a portion of slender pointed element 22 may extend through safety clip 30, through aperture 47 of cap element 46, and into flexible catheter 90. In at least one embodiment, the length of slender pointed element 22 is chosen such that, when insertion assembly 20 is coupled to the hub body 50 of exemplary hub 40, the pointed end 25 of slender pointed element 22 extends beyond the second opening 93 of flexible catheter 90. Accordingly, when so assembled, slender pointed element 22 and flexible catheter 90 provide, in combination, a rigid, pointed structure capable of penetrating the septum of an implanted device, such as septum 326 of the exemplary access port 320 illustrated in FIG. 1.



FIGS. 8C and 8D are perspective and end views, respectively, of a slender pointed element 22 according to at least one embodiment. As seen in these figures, slender pointed element 22 may be structured to enable fluid communication within flexible catheter 90. More particularly, slender pointed element 22 may be sized to allow for clearance between an exterior surface of slender pointed element 22 and an interior surface (i.e., lumen 94) of flexible catheter 90. For example, in certain embodiments slender pointed element 22 may comprise at least one longitudinally extending indentation 27 defined along at least a portion of the length of slender pointed element 22. In particular, as shown in FIGS. 8C and 8D, slender pointed element 22 may comprise a plurality of longitudinally extending indentations 27 defined along a longitudinal axis 11 of slender pointed element 22. In addition, as seen in the end view of FIG. 8D, longitudinally extending indentations 27 may be defined along the generally circular slender pointed element 22 so as to form a substantially triangular cross section.



FIG. 8E is a cross-sectional side view of a slender pointed element 22 positioned within an exemplary flexible catheter 90. As shown in this figure, slender pointed element 22 may be configured such that its pointed end 25 extends from second opening 93 of flexible catheter 90. In addition, as illustrated in FIG. 8E, slender pointed element 22 and flexible catheter 90 may be sized such that, when slender pointed element 22 is fully inserted within flexible catheter 90, the exterior surface of slender pointed element 22 snugly fits within and contacts the interior surface of flexible catheter within region 101. In certain embodiments, longitudinally extending indentations 27 may be sized and positioned to provide a fluid communication path between apertures 92 and first opening 91 of flexible catheter 90. In other words, longitudinally extending indentations 27 may provide a fluid communication path within an annulus 103 defined by the exterior surface of slender pointed element 22 and the interior surface (i.e., lumen 94) of flexible catheter 90.



FIG. 9A illustrates various exemplary geometrical attributes of a longitudinally extending indentation defined along a slender pointed element according to at least one embodiment. As seen in this figure, the cross-sectional area defined between an exterior surface of slender pointed element 22 and an interior surface of flexible catheter 90 (hereafter, “the total effective cross-sectional area of annulus 103”) may be sized so as to approximate the cross-sectional area of a selected hollow needle gauge. For example, the total effective cross-sectional area of annulus 103 may be defined by:










A
=



R
2




tan

-
1


[



(


R
2

r

)

-
1


]


-

r




R
2

-

r
2






,




(
1
)








where, with reference to FIG. 9A, R is the radius of the circle (i.e., an interior surface of cylindrical flexible catheter 90) and r is a perpendicular distance from the center of the circle to the outer circumference of the circle. In contrast, the area of a hollow, cylindrical needle may be defined by:










A
=


π


(

ID
2

)


2


,




(
2
)








where ID is the diameter of the lumen of the needle.


Accordingly, in light of equations (1) and (2), longitudinally extending indentations 27 may be sized such that the total effective cross-sectional area of annulus 103 (represented by reference numeral Ac in FIGS. 9B and 9C) may approximate the cross-sectional area of a selected hollow needle gauge. For example, as illustrated in FIG. 9B, the approximate cross-sectional area of a 22 gauge needle may be approximated by forming three chord-shaped longitudinally extending depressions 27 to a depth of 0.0047 inches within a cylindrical slender pointed element 22 having a diameter of 0.028 inches. Similarly, as illustrated in FIG. 9C, the approximate cross-sectional area of a 25 gauge needle may be approximated by forming three chord-shaped longitudinally extending depressions 27 to a depth of 0.0024 inches within a cylindrical slender pointed element 22 having a diameter of 0.028 inches.



FIGS. 10A-10E are perspective views of various exemplary embodiments of a flexible catheter 90. As illustrated in these figures and as detailed above, one or more apertures 92 may be defined within flexible catheter 90 proximate a second opening 93. More particularly, as illustrated in FIGS. 10A-10D, one or more of apertures 92 may be generally circular, oval, or elongated in shape and may be formed within or proximate to tapered transition region 95. In addition, as illustrated in FIG. 10E, flexible catheter 90 may comprise a permeable region 97 defined proximate second opening 93. In at least one embodiment, permeable region 97 is configured to allow fluids, such as blood, to pass therethrough.


As illustrated in FIGS. 11A-11H, slender pointed element 22 may be formed in a variety of shapes and configurations. For example, slender pointed element 22 may be formed to have a substantially triangular cross-section (as illustrated in FIG. 11B), a substantially cross-shaped cross-section (as illustrated in FIG. 11D), a substantially star-shaped cross-section (as illustrated in FIG. 11F), and/or a substantially circular cross-section (as illustrated in FIG. 11H). The total effective cross-sectional area of an annulus 103 defined by the interior surface of a flexible catheter 90 and the exterior surface of slender pointed element 22 positioned within the flexible catheter may be varied by varying the cross-sectional shape and size of slender pointed element 22. In other embodiments, flexible catheter 90 may be configured to allow fluid communication between an exterior surface of slender pointed element 22 and an interior surface of flexible catheter 90. In a particular embodiment, there is no need to remove material from slender pointed element 22 to provide fluid communication between the interior surface of flexible catheter 90 and the exterior surface of slender pointed element 22.



FIGS. 12A and 12B are cross-sectional and perspective views, respectively, of an additional embodiment of a slender pointed element 22 positioned within an exemplary flexible catheter 90. As illustrated in these figures, slender pointed element 22 may comprise a solid pointed end 25 and a lumen 105 defined within at least a portion of the body of slender pointed element 22. In addition, a plurality of apertures 108 defined within slender pointed element 22 may provide fluid communication between one or more apertures 92 defined through flexible catheter 90 and lumen 105 of slender pointed element 22. In at least one embodiment, fluid may flow through at least one aperture 92 defined through flexible catheter 90 and through a corresponding aperture 108 defined in slender pointed element 22. In such a configuration, annulus 103 may be omitted, if desired.


In certain embodiments, apertures 108 may be defined such that, when insertion assembly 20 is coupled to hub 40, apertures 108 are positioned proximate manifold element 61 of hub 40. In this exemplary configuration, fluid may flow through apertures 92 and 108, into lumen 105, through an aperture 33 defined in slender pointed element 22 and a corresponding aperture 37 defined in flexible catheter 90, through opening 53 of manifold element 61, out of opening 49 of manifold element 49, and into an extension tube, such as extension tube 70. Such a configuration may be desirable for providing a simple and robust fluid communication path between extension tubing 70 and an internal fluid chamber of an implanted device, such as chamber 324 of exemplary access port 320.



FIG. 13 is a partial cross-sectional side view of an additional embodiment of a flexible catheter 90. As seen in this figure, flexible catheter 90 may further comprise a reinforcing member 102. In at least one embodiment, reinforcing member 102 may be at least partially imbedded within flexible catheter 90. Reinforcing member 102 may also comprise a coiled, stainless steel wire (formed of, for example, AISI 304 stainless steel) and may have a generally circular, generally oval, rectangular, triangular, or otherwise shaped cross-section. In certain embodiments, reinforcing member 102 may be coiled within flexible catheter 90 to extend in a substantially spiral or helical fashion. Reinforcing member 102 may also be structured for, among other reinforcing functions, resisting external radial forces applied to flexible catheter 90, thereby helping to prevent the inward collapse of flexible catheter 90. In addition, reinforcing member 102 may ameliorate kinking of flexible catheter 90. Reinforcing member 102 may also be sized and positioned within flexible catheter 90 so as to avoid intersecting with apertures 92 defined in flexible catheter. In this exemplary embodiment, apertures 92 may be formed through flexible catheter 90 by drilling or punching out portions of flexible catheter 90, or as otherwise known in the art. Optionally, apertures 92 may be defined through coiled reinforcing member 102 if necessary or desirable.


As will be appreciated by those of ordinary skill in the art, a number of additional insertion assembly embodiments and hub embodiments fall within the spirit and scope of the instant disclosure. For example, as illustrated in the cross-sectional side view of FIG. 14A, hub 40 may be configured to have a substantially pear-shaped cross-section. In this exemplary embodiment, hub 40 may generally comprise a hub body 50, a recess 42 configured to receive a safety clip, and a sleeve 120 positioned about a septum 48. As shown in FIG. 14A, a retaining lip 43 may be provided within recess 42 for retaining a safety clip, such as safety clip 30, therein. An anchor element 126 may also be positioned within and securely affixed to hub body 50. In certain embodiments, flexible catheter 90 may be affixed to anchor element 126 to effectively secure flexible catheter 90 within hub body 50.


In the exemplary embodiment illustrated in FIG. 14A, extension tube 70 may be affixed to and positioned at least partially within hub body 50. A channel 122 may be defined within hub body 50 and structured to extend between the lumen of extension tube 70 and the lumen of flexible catheter 90 to provide a fluid communication path between extension tube 70 and flexible catheter 90. Exemplary sleeve 120 may also be positioned about septum 48 and securely affixed to hub body 50. In at least one embodiment, sleeve 120 compresses septum 48 to help seal the various perforations formed in septum 48 by slender pointed element 22.



FIG. 14B is a simplified cross-sectional side view of an exemplary insertion assembly 20 positioned within the exemplary hub 40 illustrated in FIG. 14A. As seen in this figure, insertion assembly 20 generally comprises a slender pointed element 22 and a base member 28 configured in accordance with one or more of the exemplary embodiments described and/or illustrated herein. In certain embodiments, insertion assembly 20 may be coupled to hub 40 via a coupling structure 26, a coupling recess 44, and a retaining lip 43.



FIG. 15 is a simplified cross-sectional side view of an additional embodiment of an infusion system 10 comprising an insertion assembly 20, a hub 40, a flexible catheter 90, and an extension tube 70. As with previous embodiments, hub 40 may comprise a recess 42, a sleeve 120, and a septum 48. In certain embodiments, at least a portion of both extension tube 70 and flexible catheter 90 may extend within hub body 50. In addition, as illustrated in FIG. 15, at least a portion of flexible catheter 90 may extend within extension tube 70. In other words, extension tube 70 may be configured to receive and surround at least a portion of flexible catheter 90. Accordingly, when insertion assembly 20 is fully inserted within and coupled to hub 40, slender pointed element 22 may penetrate and pass through flexible catheter 90, extension tube 70, or both, as illustrated in FIG. 15. As with previous embodiments, sleeve 120 may compress septum 48 to aid in sealing septum 48 upon removal of slender pointed element 22 from flexible catheter 90 and/or extension tube 70. In an optional embodiment, a single tubular element may extend through hub 40 and function as both flexible catheter 90 and extension tube 70.


As will be appreciated by those of ordinary skill in the art, hub 40 may be formed in any number of shapes and sizes. For example, hub 40 may be substantially cylindrical in shape (as illustrated in FIG. 16), substantially dome-shaped (as illustrated in FIGS. 19A-19C), substantially wing-shaped (as illustrated in FIGS. 20A-20B and 21A-21E), substantially rectangular or square-shaped (as illustrated in FIGS. 22A-22B and 25A-25B), substantially oblong or oval-shaped (as illustrated in FIGS. 26A-26C, 27A-27B, and 33A-33C), or formed in any other number of suitable shapes and sizes. As will be appreciated by those of skill in the art, the various possible shapes and configurations of hub 40 and insertion assembly 20 may provide various advantages, such as ease of handling by a user and/or compatibility with additional structures.



FIGS. 17A and 17B are perspective views of an additional embodiment of an infusion system. As illustrated in these figures, this exemplary infusion system may comprise an insertion assembly 20, a hub 40, a flexible catheter 90, an extension tube 70, a clamp 60, and a tube connector 80. In at least one embodiment, the exemplary infusion system illustrated in these figures further comprises a pad member 150 comprising a receiving enclosure 152 configured to receive and at least partially enclose hub 40. More particularly, receiving enclosure 152 may comprise a pair of opposing retaining walls 155 sized and configured to receive and at least partially enclose a hub, such as hub 40 in FIG. 17B. Receiving enclosure 152 may also comprise a rounded channel 156 structured and sized to receive at least a portion of flexible catheter 90. In certain embodiments, rounded channel 156 may aid in ameliorating kinking of extension tube 70 or flexible catheter 90 by preventing sharp bends of flexible catheter 90. Pad member 150 may also comprise an access notch 158 for positioning pad member 150 about flexible catheter 90.


In at least one embodiment, flexible catheter 90 may have a length that exceeds an anticipated insertion length such that, when flexible catheter 90 is fully inserted into a device (such as exemplary access port 320) implanted within a patient, a bendable portion 147 of flexible catheter 90 extends from a skin surface of the patient. More specifically, the length of flexible catheter 90 may be selected such that a portion 147 of the flexible catheter 90 extending outwardly from the skin surface of a patient (such as skin surface 310 illustrated in FIG. 1) may be bent or curved. This exemplary configuration may provide an infusion system that facilitates favorable placement of a hub. For example, after insertion into a device implanted within a patient and upon removal of insertion assembly 20, flexible catheter 90 may be bent so that hub 40 may lie against the surface of the skin or may be otherwise positioned as desired. In the exemplary embodiment illustrated in FIGS. 17A-17B, flexible catheter 90 may be bent to allow hub 40 to be positioned within receiving enclosure 152. Pad 150 may then placed on and/or affixed or taped to the skin surface of a patient. The exemplary infusion system illustrated in FIG. 17B thus represents a relatively low profile apparatus for accessing an implanted device.


As will be appreciated by those of skill in the art, pad member 150 may comprise a receiving enclosure that is configured to accept and retain a hub (of any geometry), an extension tube, a flexible catheter, or combinations thereof, without limitation. In addition, as illustrated in FIGS. 18A and 18B, a sleeve member 160 may surround at least a portion of flexible catheter 90. In particular, as illustrated in FIGS. 18A and 18B, sleeve member 160 may be configured to surround the portion of flexible catheter 90 that extends between hub 40 and pad member 150. In certain embodiments, sleeve member 160 may be folded or creased (e.g., with accordion-type folds) to permit the vertical movement of hub 40 relative to pad member 150. As will be appreciated by those of skill in the art, sleeve member 160 may protect flexible catheter 90, conceal blood traveling through flexible catheter 90 (if flexible catheter 90 is at least partially transparent), or ameliorate kinking of flexible catheter 90.



FIGS. 19A and 19B are perspective and cross-sectional side views, respectively, of an additional embodiment of an infusion system 10 comprising an insertion assembly 20, a hub 40, a flexible catheter 90, an extension tube 70, a clamp 60, and a tube connector 80. As illustrated in these figures, hub 40 may comprise a recess 42 defined within a hub body 50 and a sleeve 120 surrounding a septum 48 positioned within recess 42. In at least one embodiment, fluid communication between extension tube 70 and flexible catheter 90 is provided through a channel 166 formed within hub body 50. In certain embodiments, channel 166 may be formed after flexible catheter 90 and extension tube 70 have been affixed or molded within hub body 50. For example, a machine tool, such as a drill bit or milling bit, may pass within extension tube 70, through a portion of hub body 50, and into flexible catheter 90 to form channel 166 and an aperture in flexible catheter 90. In an additional embodiment, a displacement may be positioned within extension tube 70 and into a preformed aperture in flexible catheter 90, and then hub body 50 may be formed or molded around the assembly.



FIG. 19C is a cross-sectional side view of an additional embodiment of an infusion system. As illustrated in this figure, the vertical (i.e., along the axis of slender pointed element 22) height of hub 40 may be reduced by reducing the vertical height of recess 42 and safety clip 30. As will be appreciated by those of skill in the art, the size and configuration of each component of each exemplary embodiment described and/or illustrated herein may be varied, modified, or otherwise selected, without limitation.



FIGS. 20A-20B are perspective and cross-sectional side views, respectively, of an additional embodiment of an infusion system 10 comprising an insertion assembly 20, a hub 40, a flexible catheter 90, an extension tube 70, a clamp 60, and a tube connector 80. As with previous embodiments, hub 40 may generally comprise a hub body 50, a manifold element 61, and a septum 48 compressed by hub body 50 (thus eliminating the need for a sleeve, such as sleeve 120). Hub 40 may also comprise a plurality of wing structures 41A and 41B configured to affix hub 40 to the skin of a patient. In addition, hub 40 may comprise a coupling recess 44 configured to receive a complimentary coupling structure 26 provided on base member 28 of insertion assembly 20. Hub 40 may also comprise a recess 42 having a retaining lip 43 for retaining at least a portion of a safety clip, such as safety clip 30, within recess 42. A channel 166 extending from extension tube 70 to an upper end of flexible catheter 90 may also be defined within hub body 50 for providing fluid communication between extension tube 70 and flexible catheter 90.



FIGS. 21A-21E are perspective and cross-sectional views of various exemplary components of an additional embodiment of an infusion system 10. As seen in FIG. 21A, exemplary infusion system 10 may comprise an insertion assembly 20, a hub 40, a flexible catheter 90, an extension tube 70, a clamp 60, and a tube connector 80. In at least one embodiment, infusion system 10 may also comprise a winged component 170 positioned between insertion assembly 20 and hub 40. As shown in FIG. 21C, winged component 170 may comprise a coupling recess 172 defined within a body 174. A plurality of wing structures 41A and 41B may extend from body 174, as shown in FIG. 21C. In certain embodiments, coupling recess 172 may be configured to receive a complimentary coupling structure 26 provided on a base member 28 of insertion assembly 20. Similarly, as illustrated in FIG. 21D, hub 40 may comprise an opening 178 for accepting the body 174 of winged component 170. Hub 40 may also comprise a recess 42 and wing-shaped depressions 177 for accepting wing structures 41A and 41B of winged component 170. In general, winged component 170 may be affixed to hub 40 by any means known to those of skill in the art, including, for example, by adhering body 174 within opening 178 of hub 40 using an adhesive.



FIGS. 22A-22B are cross-sectional side views of an exemplary safety clip housing 240. Safety clip housing 240 generally represents any structure configured to at least partially enclose a safety clip of any shape or size; including, for example, the various safety clip embodiments described and/or illustrated herein. In the exemplary embodiment illustrated in FIGS. 22A-22B, safety clip housing 240 may be configured to house a substantially rectangular safety clip 30. As illustrated in these figures, safety clip housing 240 may comprise a hole 242 sized for receiving a slender pointed element, such as slender pointed element 22. Safety clip housing 240 may also comprise a base member 244 sized to fit within a recess 42 defined in hub 40, as illustrated in FIG. 22B.



FIGS. 23A and 23B are perspective views of an additional embodiment of a safety clip 30. Safety clip 30 generally represents any self-actuating device for capturing a pointed end of a slender pointed element, such as pointed end 25 of slender pointed element 22 illustrated in FIG. 3A. In the exemplary embodiment illustrated in FIG. 23A, safety clip 30 may comprise a plurality of legs 32A and 32B having curved end regions 35A and 35B, respectively, and a hole 34 sized for receiving a slender pointed element, such as slender pointed element 22. In at least one embodiment, safety clip 30 may be sized to fit within a recess defined in an insertion assembly, such as recess 24 defined in insertion assembly 20 illustrated in FIG. 3B. Safety clip 30 may also be sized to fit within a recess defined in a hub of an infusion system, such as recess 42 of hub 40, or sized to fit within a safety clip housing, such as safety clip housing 240.


In at least one embodiment, safety clip 30 is attached to slender pointed element 22 by passing the pointed end 25 of slender pointed element 22 through hole 34 of safety clip 30, past legs 32A and 32B, and past curved end regions 35A and 35B. Once pointed end 25 of slender pointed element 22 has passed curved end regions 35A and 35B, legs 32A and 32B may clamp around slender pointed element 22 to removably affix the safety clip to slender pointed element 22. As slender pointed element 22, together with safety clip 30, is inserted into recess 42 defined in hub body 50, slender pointed element 22 may continue through safety clip 30 and into a sealable path defined in a hub body, such as hub body 50. In addition, legs 32A and 32B of safety clip 30 may be biased such that, upon removal of slender pointed element 22 from the sealable path defined in hub body 50, curved end regions 35A and 35B may close around the pointed end 25 of slender pointed element 22 to retain the pointed end 25 within the body of safety clip 30. Such a safety clip 30 may prevent inadvertent insertion of slender pointed element 22 into another person, such as a medical practitioner utilizing infusion system 10.



FIGS. 24A-24D are perspective and cross-sectional side views of an additional embodiment of a safety clip 30. As seen in these figures, safety clip 30 may comprise a hole 34 sized for receiving a slender pointed element (such as slender pointed element 22), a first leg 32A comprising an upper arm portion 35A and a lower arm portion 39A, and a second leg 32B comprising an upper arm portion 35B and a lower arm portion 39B. In at least one embodiment, safety clip 30 may be sized to fit within a recess defined in an insertion assembly, such as recess 24 defined in insertion assembly 20 illustrated in FIG. 3B. Safety clip 30 may also be sized to fit within a recess defined in a hub of an infusion system, such as recess 42 of hub 40, or sized to fit within a safety clip housing, such as safety clip housing 240.


In at least one embodiment, upper arm portions 35A and 35B and lower arm portions 39A and 39B of safety clip 30 may be configured to retain the pointed end 25 of slender pointed element 22 within the body of safety clip 30. For example, legs 32A and 32B of safety clip 30 may be biased such that, upon removal of slender pointed element 22 from hub body 50, lower arm portions 39A and 39B may close around the pointed end 25 of slender pointed element 22 to retain the pointed end 25 within the body of safety clip 30. In addition, upper arm portions 35A and 35B may be configured to prevent a protrusion 45 provided on slender pointed element 22 from passing upwards through hole 34. Similarly, lower arm portions 39A and 39B may be configured to allow the protrusion 45 provided on slender element 22 to enter the body of safety clip 30, but to prevent the protrusion 45 from passing downwards past lower arm portions 39A and 39B. Such a safety clip 30 may prevent inadvertent insertion of slender pointed element 22 into another person, such as a medical practitioner utilizing infusion system 10.


As detailed above, one or more of the exemplary safety clip embodiments described and/or illustrated herein may be sized so as to fit within a safety clip housing, such as safety clip housing 240 illustrated in FIGS. 22A-22B. As will be appreciated by those of skill in the art, such a safety clip housing may be attached or affixed to a slender pointed element, to a hub, or both, in any number of ways. For example, as illustrated in the schematic cross-sectional side view of FIG. 25A, a safety clip housing 240 may be configured to be removably attachable to a portion of a hub 40. More specifically, safety clip housing 240 may comprise a base member 244 configured to snap-fit over a plurality of complimentary protrusions 250 provided on hub 40. Optionally, as illustrated in FIG. 25B, base member 244 of safety clip housing 240 may be positioned and permanently adhered within a recess 42 provided in hub 40.



FIGS. 26A-26C are perspective views of an additional embodiment of an infusion system comprising an insertion assembly 20, a hub 40, a flexible catheter 90, an extension tube 70, and a tube connector 80. In at least one embodiment, a removable member 180 in fluid communication with extension tube 70 may be configured to be removably attachable to a hub body 50 of hub 40. For example, hub body 50 may comprise one or more coupling recesses 192 configured to receive complimentary coupling structures 182 provided on removable member 180. Accordingly, removable member 180 may be coupled to hub body 50 by positioning coupling structures 182 within complimentary coupling recesses 192. In certain embodiments, removable member 180 may also comprise a pointed tubular element 184 in fluid communication with extension tube 70. Generally speaking, pointed tubular element 184 may be configured to penetrate a penetrable septum 194 provided within hub body 50. In at least one embodiment, penetrable septum 194 seals a tubing portion 196 in fluid connection with flexible catheter 90. Thus, a fluid communication path between flexible catheter 90 and extension tube 70 may be established by inserting tubular element 184 through septum 194 and into tubing portion 196 housed in hub body 50.


Persons of ordinary skill in the art will appreciate that extension tube 70 may be removably attached to hub 40 and/or flexible catheter 90 in any number of ways. For example, as illustrated in FIG. 27A, extension tube 70 may be removably attached to the hub body 50 of hub 40 by positioning a male tube connector 202 provided on hub body 50 within a complimentary female tube connector 204 attached to extension tube 70. Generally speaking, complimentary tube connectors 202 and 204 represent any form of tubing connection or mechanism known to those of skill in the art; including, for example, a so-called Luer-type fitting or connector. In an additional embodiment, male tube connector 202 may be positioned within a recess 206 defined within hub body 50 of hub 40, as illustrated in FIG. 27B.



FIGS. 28A and 28B are perspective and cross-sectional views, respectively, of an infusion system according to an additional embodiment. As seen in these figures, this exemplary infusion system may comprise an insertion assembly 20, a base member 40, a flexible catheter 90, and an extension tube 70. In at least one embodiment, a cap element 46 may be inserted within a recess 42 defined in hub body 50. Cap element 46 generally represents any structure or device capable of sealing any aperture or recess defined within any of the components of the exemplary embodiments described and/or illustrated herein. In certain embodiments, cap element 46 may be positioned above septum 48 and configured to seal recess 42 from the environment, thereby preventing bacteria from entering and forming within recess 42. In an additional embodiment, a cap element 46 is disposed within each exposed recess and/or aperture defined in each component of exemplary infusion apparatus 10. Cap element 46 may be formed of any suitable material capable of sealing an aperture or recess; including, for example, medical-grade polymers (such as silicone) and monomers (such as Ethylene Propylene Diene Monomer (“EPDM”), or other suitable materials.



FIG. 29 illustrates an exemplary slender pointed element 22 comprising a pointed end 25. As illustrated in this figure, the pointed end 25 of slender pointed element 22 may be scored or otherwise weakened along line 23. Accordingly, upon completion of an infusion operation, the pointed end 25 of slender pointed element 22 may break off along line 23 upon removal of slender pointed element 22 from hub body 50, leaving the broken pointed end 25 of slender pointed element 22 within septum 48.


In at least one embodiment of infusion system 10, at least a portion of slender pointed element 22 may be retractable into a recess defined in insertion assembly 20. For example, as illustrated in FIGS. 30A-30B, a lever 200 coupled to slender pointed element 22 may be provided in a recess 29 defined in base member 28 of insertion assembly 20. In certain embodiments, lever 200 may be manipulated from a first position illustrated in FIG. 30A to a second position illustrated in FIG. 30B to retract at least a portion of slender pointed element 22 within base member 28. After pointed end 25 of slender pointed element 22 has been retracted past a second opening 93 of flexible catheter 90, a blood draw may be attempted to ensure the proper placement of flexible catheter 90 within the implanted device.


Similarly, as illustrated in FIGS. 31A-31D, a slender pointed element (such as slender pointed element 22 in FIG. 3A) may be retracted into base member 28 by depressing opposing buttons 210 and 214 provided on base member 28. In this exemplary embodiment, buttons 210 and 214 may comprise cantilevered end portions 212 and 216, respectively, that are configured to manipulate a complimentary cantilevered end portion 220 of slender pointed element 22 generally upwards within a recess defined in base member 28. In an additional embodiment, as illustrated in FIGS. 32A-32D, slender pointed element 22 may be retracted into base member 28 by manipulating wing structures 41A and 41B from a first position, illustrated in FIGS. 32A and 32C, into a second position, illustrated in FIGS. 32B and 32D. More particularly, wing structures 41A and 41B may comprise cantilevered end portions 230A and 230B, respectively, that are configured to manipulate slender pointed element 22 generally upwards within a recess defined in base member 28.



FIGS. 33A-33C are perspective views of an additional embodiment of an infusion apparatus 10. As seen in these figures, infusion apparatus 10 may comprise an insertion assembly 20, a hub 40, a flexible catheter 90, an extension tube 70, a clamp 60, and a tube connector 80. Insertion assembly 20 may comprise a biasing member 232 positioned around a slender pointed element 22 and positioned proximate a safety clip 30. In at least one embodiment, biasing member 232 may bias safety clip 30 away from insertion assembly 20 such that, upon removal of insertion assembly 20 from hub 40, safety clip 30 may positioned around a pointed end 25 of slender pointed element 22 by biasing member 232.


As best seen in FIG. 33C, insertion assembly 20 may also comprise a plurality of coupling arms 234 that define a recess 236 that is configured to receive at least a portion of hub 40. For example, hub 40 may be sized and shaped so as to fit within the recess 236 defined within insertion assembly 20 by coupling arms 234. In at least one embodiment, the exemplary configuration of infusion system 10 in FIGS. 33A-33C may provide various advantages, such as ease of handling by a user and/or compatibility with additional structures.



FIGS. 34A-34C are perspective views of an exemplary hub 40 for an infusion system according to an additional embodiment. As seen in these figures, exemplary hub 40 may comprise a plurality of wing structures 41A and 41B. In at least one embodiment, wing structures 41A and 41B are configured to affix exemplary hub 40 to the skin of a patient. For example, wing structures 41A and 41B may be taped, adhesively affixed, or otherwise attached to the surface of a patient's skin, such as skin surface 310 in FIG. 1. In additional embodiment, a sheet of material, such as TEGADERM®, may be used to affix hub 40 to the surface of a patient's skin.


As seen in FIG. 34A, hub 40 may comprise a recess 260 and a receiving enclosure 264. In at least one embodiment, recess 260 is sized and configured to receive at least a portion of a flexible catheter, such as flexible catheter 90 in FIGS. 34B-34C. Similarly, receiving enclosure 264 may be sized and configured to retain at least a portion of a flexible catheter, such as flexible catheter 90 in FIGS. 34B-34C. In certain embodiments, wing structures 41A and 41B of hub 40 may be configured to fold inwardly along a folding line 266. As best seen in FIGS. 34B and 34C, after positioning at least a portion flexible catheter 90 within recess 260 and receiving enclosure 264, wing structures 41A and 41B may be folded inwardly upward. In one embodiment, wing structures 41A and 41B may be affixed to a patient's skin when in a downward, extended position, illustrated in FIG. 34B. In addition, flexible catheter 90 and/or a slender pointed element, such as slender pointed element 22 in FIG. 3A, may be removed from hub 40 when wing structures 41A and 41B are in an upward, folded position, illustrated in FIG. 34C.


As detailed above, one or more of the exemplary embodiments described and/or illustrated herein may be employed in accessing a device, such as exemplary access port 320, implanted within a patient. In at least one embodiment, a method of accessing an implanted device using a infusion system may comprise: 1) positioning at least a portion of slender pointed element 22 within flexible catheter 90; 2) penetrating a septum of an implanted device, such as septum 326 of access port 320, using the slender pointed element 22 positioned within the flexible catheter 90; and 3) positioning at least a portion of flexible catheter 90 within the implanted device. For example, a clinician may grasp base member 28 of insertion assembly 20 and may guide the pointed end 25 of slender pointed element 22 into recess 42 of hub 40, through septum 48, and into flexible catheter 90. The clinician may then guide the pointed end 25 of slender pointed element 22 (positioned within flexible catheter 90) through the skin surface 310 and subcutaneous zone 312 of a patient and into a port septum 326. The clinician may then confirm that flexible catheter 90 is positioned within chamber 324 of access port 320 by drawing blood through extension tube 70 using a syringe attached to tube connector 80. Thus, blood may be drawn through apertures 92 of flexible catheter 90 and through at least one cavity formed between an inner surface of flexible catheter 90 and an outer surface of slender pointed element 22. Blood may then travel through hub 40 (i.e., manifold element 61) and through extension tube 70 to confirm that slender pointed element 22 and flexible catheter 90 of infusion system 10 are properly placed within port chamber 324.


Subsequent to confirmation of proper placement of slender pointed element 22 and flexible catheter 90, base member 28 of insertion assembly 20 may be grasped and slender pointed element 22 may be removed from hub 40, while flexible catheter 90 may remain positioned within chamber 324 of access port 320. Septum 48 may seal any hole or aperture created by the removal of slender pointed element 22. Upon removal of slender pointed element 22, flexible catheter 90 may be positioned or oriented in any number of ways; including for example, by positioning flexible catheter 90 substantially perpendicularly to skin surface 310. Safety clip 30 may remain attached to hub 40 (i.e., within recess 42) until the pointed tip 25 of slender pointed element 22 becomes encased by safety clip 30 (via movement of legs 32A and 32B), after which time safety clip 30 may be removed from recess 42 of hub 40. Hub 40, extension tube 70, tube connector 80, or combinations thereof may then be taped to skin surface 310 of the patient. Optionally, wing structures 41A and 41B may be adhesively affixed to skin surface 310.


Accordingly, each of the exemplary infusion system embodiments described and/or illustrated herein may provide vascular access (via an implanted device) for any number of procedures; including, for example, infusion, blood aspiration, hemodialysis, hemofiltration, peritoneal dialysis, or other procedures as known in the art. Advantageously, the use of sharp implements may be reduced or eliminated, thereby reducing the danger of inadvertent sticks or punctures.


The preceding description has been provided to enable others skilled in the art to best utilize various aspects of the exemplary embodiments described herein. This exemplary description is not intended to be exhaustive or to be limited to any precise form disclosed. Many modifications and variations are possible without departing from the spirit and scope of the instant disclosure. For example, each component in each exemplary embodiment described and/or illustrated herein may be formed in any number of suitable shapes, sizes, and configurations. In addition, the various infusion system embodiments described herein may be adapted for use in connection with high pressure operations, commonly referred to as “power injection” processes. Accordingly, the various components of the exemplary embodiments provided herein may be adapted to handle pressure of about 400 psi or higher.


The embodiments described and/or illustrated herein are in all respects illustrative and not restrictive. Accordingly, reference should be made to the appended claims and their equivalents for determining the scope of the instant disclosure. For ease of use, the words “including” and “having,” as used in the specification and claims, are interchangeable with and have the same meaning as the word “comprising.”

Claims
  • 1. An infusion apparatus, comprising: an insertion assembly, including a non-coring needle attached to a base member;a safety device for capturing a tip of the needle, the safety device including a self-actuating member positioned in a safety housing, the safety device positioned in a recess defined in the base member in an infusion apparatus insertion configuration;a hub including a septum positioned therein, the needle passing through the septum in the infusion apparatus insertion configuration;a catheter extending from the hub along a first axis, a portion of the needle positioned in a lumen of the catheter and the tip of the needle spaced from a distal end of the catheter in the infusion apparatus insertion configuration; andan extension tube extending from the hub along a second axis perpendicular to the first axis.
  • 2. The infusion apparatus according to claim 1, wherein the catheter comprises a tapered transition region at the distal end.
  • 3. The infusion apparatus according to claim 2, wherein the tapered transition region includes a first tapered sub-region and a second tapered sub-region.
  • 4. The infusion apparatus according to claim 3, wherein the second tapered sub-region is distal of the first tapered sub-region, the first tapered sub-region defining a first angle relative to the first axis and the second tapered sub-region defining a second angle relative to the first axis greater than the first angle.
  • 5. The infusion apparatus according to claim 1, wherein the safety device is releasably coupled to the hub in the infusion apparatus insertion configuration.
  • 6. The infusion apparatus according to claim 1, wherein the septum is positioned in the hub in a compressed state.
  • 7. The infusion apparatus according to claim 6, further comprising a cap attached to the hub, the cap maintaining a position of the septum in the hub during use.
  • 8. The infusion apparatus according to claim 7, wherein the cap enables power injection through the hub.
  • 9. The infusion apparatus according to claim 1, wherein the self-actuating member comprises a safety clip including a portion that closes around the tip of the needle as the tip of the needle is withdrawn from the hub and past the portion.
  • 10. The infusion apparatus of claim 1, further comprising a pad member including a first surface positioned on a patient's skin, the hub coupled to a second surface opposite the first surface.
  • 11. The infusion apparatus of claim 1, wherein the catheter comprises a reinforcing member in a wall thereof.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a division of U.S. patent application Ser. No. 11/380,621, filed Apr. 27, 2006, now U.S. Pat. No. 8,147,455, which claims the benefit of U.S. Patent Application No. 60/675,309, filed Apr. 27, 2005, each of which is incorporated in its entirety by reference into this application.

US Referenced Citations (724)
Number Name Date Kind
445896 Kinsman Feb 1891 A
546440 Tufts Sep 1895 A
574387 Buckler Jan 1897 A
611357 Dembinski Sep 1898 A
966696 Merrill Aug 1910 A
D44302 Director Jul 1913 S
1713267 Crowley May 1929 A
2029553 Bartischi et al. Feb 1936 A
D130852 Rothschild Dec 1941 S
2433480 Rendich Dec 1947 A
2891689 Gould Jun 1959 A
D198453 Weichselbaum Jun 1964 S
3159175 Macmillan Dec 1964 A
3211431 Meysembourg et al. Oct 1965 A
3293663 Cronin Dec 1966 A
3341417 Sinaiko Sep 1967 A
3477438 Allen et al. Nov 1969 A
3518428 Ring Jun 1970 A
3525357 Koreski Aug 1970 A
3529633 Vailancourt Sep 1970 A
3541438 Wadley et al. Nov 1970 A
3643358 Morderosian Feb 1972 A
D223340 Brounn Apr 1972 S
3669323 Harker et al. Jun 1972 A
3674183 Venable et al. Jul 1972 A
3811466 Ohringer May 1974 A
3829904 Ling et al. Aug 1974 A
3831583 Edmunds, Jr. et al. Aug 1974 A
3840009 Michaels et al. Oct 1974 A
3853127 Spademan Dec 1974 A
3891997 Herbert Jul 1975 A
3915162 Miller Oct 1975 A
3919724 Sanders et al. Nov 1975 A
3922726 Trentani et al. Dec 1975 A
3951147 Tucker et al. Apr 1976 A
3955594 Snow May 1976 A
3971376 Wichterle Jul 1976 A
4027391 Samis Jun 1977 A
4035653 Karasko Jul 1977 A
4121108 Manor Oct 1978 A
4123806 Amstutz et al. Nov 1978 A
4143853 Abramson Mar 1979 A
4168586 Samis Sep 1979 A
4190040 Schulte Feb 1980 A
4190057 Hill et al. Feb 1980 A
4194122 Mitchell et al. Mar 1980 A
4196731 Laurin et al. Apr 1980 A
4202349 Jones May 1980 A
4222374 Sampson et al. Sep 1980 A
4233964 Jefferts et al. Nov 1980 A
4274006 Caine Jun 1981 A
D263335 Bujan Mar 1982 S
4349498 Ellis et al. Sep 1982 A
4361153 Slocum et al. Nov 1982 A
4405305 Stephen et al. Sep 1983 A
4406567 Samis Sep 1983 A
4425119 Berglund Jan 1984 A
4445896 Gianturco May 1984 A
4447237 Frisch et al. May 1984 A
4450592 Niederer et al. May 1984 A
4450985 Beard May 1984 A
4456011 Warnecke Jun 1984 A
4469483 Becker et al. Sep 1984 A
4479798 Parks Oct 1984 A
4494545 Slocum et al. Jan 1985 A
4506676 Duska Mar 1985 A
4529635 Sheldon Jul 1985 A
4543088 Bootman et al. Sep 1985 A
4549879 Groshong et al. Oct 1985 A
4559043 Whitehouse et al. Dec 1985 A
4559046 Groshong et al. Dec 1985 A
4560375 Schulte et al. Dec 1985 A
4569675 Prosl et al. Feb 1986 A
4571749 Fischell Feb 1986 A
4576595 Aas et al. Mar 1986 A
4610665 Matsumoto et al. Sep 1986 A
4612877 Hayes et al. Sep 1986 A
4626244 Reinicke Dec 1986 A
4627844 Schmitt Dec 1986 A
4634427 Hannula et al. Jan 1987 A
4636194 Schulte et al. Jan 1987 A
4636213 Pakiam Jan 1987 A
4645495 Vaillancourt Feb 1987 A
4653508 Cosman Mar 1987 A
4655765 Swift Apr 1987 A
4657024 Coneys Apr 1987 A
4662652 Hargis May 1987 A
4668221 Luther May 1987 A
4671796 Groshong et al. Jun 1987 A
4673394 Fenton, Jr. et al. Jun 1987 A
4681560 Schulte et al. Jul 1987 A
4684365 Reinicke Aug 1987 A
4685447 Iversen et al. Aug 1987 A
4685905 Jeanneret nee Aab Aug 1987 A
4692146 Hilger Sep 1987 A
4695273 Brown Sep 1987 A
4697595 Breyer et al. Oct 1987 A
4701166 Groshong et al. Oct 1987 A
4704103 Stober et al. Nov 1987 A
4710167 Lazorthes Dec 1987 A
4710174 Moden et al. Dec 1987 A
4718894 Lazorthes Jan 1988 A
4728894 Yoda et al. Mar 1988 A
4743231 Kay et al. May 1988 A
4753640 Nichols et al. Jun 1988 A
4755173 Konopka et al. Jul 1988 A
4760837 Petit Aug 1988 A
4762517 McIntyre et al. Aug 1988 A
4767410 Moden et al. Aug 1988 A
4772270 Wiita et al. Sep 1988 A
4772276 Wiita et al. Sep 1988 A
4773552 Boege et al. Sep 1988 A
4778452 Moden et al. Oct 1988 A
4781680 Redmond et al. Nov 1988 A
4781685 Lehmann et al. Nov 1988 A
4781695 Dalton Nov 1988 A
4802885 Weeks et al. Feb 1989 A
4804054 Howson et al. Feb 1989 A
4820273 Reinicke Apr 1989 A
4822341 Colone Apr 1989 A
4840615 Hancock et al. Jun 1989 A
4848346 Crawford Jul 1989 A
4857053 Dalton Aug 1989 A
4861341 Woodburn Aug 1989 A
4863470 Carter Sep 1989 A
4886501 Johnston et al. Dec 1989 A
4886502 Poirier et al. Dec 1989 A
4892518 Cupp et al. Jan 1990 A
4897081 Poirier et al. Jan 1990 A
4904241 Bark Feb 1990 A
4905709 Bieganski et al. Mar 1990 A
4908029 Bark et al. Mar 1990 A
4909250 Smith Mar 1990 A
4915690 Cone et al. Apr 1990 A
4928298 Tanaka May 1990 A
4929236 Sampson May 1990 A
4955861 Enegren et al. Sep 1990 A
4961267 Herzog Oct 1990 A
4963133 Whipple Oct 1990 A
4966583 Debbas Oct 1990 A
4973319 Melsky Nov 1990 A
4983162 Metais et al. Jan 1991 A
5002735 Alberhasky et al. Mar 1991 A
5006115 McDonald Apr 1991 A
5009391 Steigerwald Apr 1991 A
5009644 McDonald Apr 1991 A
5013298 Moden et al. May 1991 A
5041098 Loiterman et al. Aug 1991 A
5044955 Jagmin Sep 1991 A
5045060 Melsky et al. Sep 1991 A
5045064 Idriss Sep 1991 A
5053013 Ensminger et al. Oct 1991 A
5059186 Yamamoto et al. Oct 1991 A
5069206 Crosbie Dec 1991 A
5084015 Moriuchi Jan 1992 A
5085216 Henley, Jr. et al. Feb 1992 A
5090066 Schoepe et al. Feb 1992 A
5092849 Sampson Mar 1992 A
5108317 Beinhaur et al. Apr 1992 A
5108375 Harrison et al. Apr 1992 A
5108377 Cone et al. Apr 1992 A
5112301 Fenton, Jr. et al. May 1992 A
5112303 Pudenz et al. May 1992 A
5129891 Young Jul 1992 A
5137529 Watson et al. Aug 1992 A
5147483 Melsky et al. Sep 1992 A
5152753 Laguette et al. Oct 1992 A
5156600 Young Oct 1992 A
5158547 Doan et al. Oct 1992 A
5167629 Vertenstein et al. Dec 1992 A
5167633 Mann et al. Dec 1992 A
5167638 Felix et al. Dec 1992 A
5169393 Moorehead et al. Dec 1992 A
5171228 McDonald Dec 1992 A
5176653 Metals Jan 1993 A
5176662 Bartholomew et al. Jan 1993 A
5178612 Fenton, Jr. Jan 1993 A
5180365 Ensminger et al. Jan 1993 A
5185003 Brethauer Feb 1993 A
5189690 Samuel Feb 1993 A
5193106 DeSena Mar 1993 A
5195122 Fabian Mar 1993 A
5195123 Clement Mar 1993 A
5201715 Masters Apr 1993 A
5201722 Moorehead et al. Apr 1993 A
5203771 Melker et al. Apr 1993 A
5203777 Lee Apr 1993 A
5205834 Moorehead et al. Apr 1993 A
5207644 Strecker May 1993 A
5213574 Tucker May 1993 A
5215537 Lynn et al. Jun 1993 A
5222499 Allen et al. Jun 1993 A
D337637 Tucker Jul 1993 S
5224938 Fenton, Jr. Jul 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5249598 Schmidt Oct 1993 A
5263930 Ensminger Nov 1993 A
D342134 Mongeon Dec 1993 S
5281199 Ensminger et al. Jan 1994 A
5281205 McPherson Jan 1994 A
5290263 Wigness et al. Mar 1994 A
5295658 Atkinson et al. Mar 1994 A
5299253 Wessels Mar 1994 A
5300048 Drewes, Jr. et al. Apr 1994 A
5309863 Leeb, Jr. May 1994 A
5312337 Flaherty et al. May 1994 A
5318545 Tucker Jun 1994 A
5320100 Herweck et al. Jun 1994 A
5328480 Melker et al. Jul 1994 A
5332398 Miller et al. Jul 1994 A
5336194 Polaschegg et al. Aug 1994 A
5338398 Szwejkowski et al. Aug 1994 A
5350360 Ensminger et al. Sep 1994 A
5352204 Ensminger Oct 1994 A
5356381 Ensminger et al. Oct 1994 A
5360407 Leonard et al. Nov 1994 A
5383223 Inokuchi Jan 1995 A
5383233 Russell Jan 1995 A
5383585 Weiss Jan 1995 A
5383858 Reilly et al. Jan 1995 A
D355240 Gladfelter et al. Feb 1995 S
5387192 Glantz et al. Feb 1995 A
5394457 Leibinger et al. Feb 1995 A
5395324 Hinrichs et al. Mar 1995 A
5396925 Poli Mar 1995 A
5397329 Allen Mar 1995 A
5399168 Wadsworth, Jr. et al. Mar 1995 A
5405402 Dye et al. Apr 1995 A
5417565 Long May 1995 A
5417656 Ensminger et al. May 1995 A
5421814 Geary Jun 1995 A
5423334 Jordan Jun 1995 A
5425762 Muller Jun 1995 A
5453097 Paradis Sep 1995 A
5456698 Byland et al. Oct 1995 A
5476451 Ensminger et al. Dec 1995 A
5476460 Montalvo Dec 1995 A
5476880 Cooke et al. Dec 1995 A
5484402 Saravia et al. Jan 1996 A
5503630 Ensminger et al. Apr 1996 A
5507813 Dowd et al. Apr 1996 A
5509805 Jagmin Apr 1996 A
5513637 Twiss et al. May 1996 A
5514103 Srisathapat et al. May 1996 A
5520632 Leveen et al. May 1996 A
5520643 Ensminger et al. May 1996 A
5527277 Ensminger et al. Jun 1996 A
5527278 Ensminger et al. Jun 1996 A
5527307 Srisathapat et al. Jun 1996 A
5531684 Ensminger et al. Jul 1996 A
5542923 Ensminger et al. Aug 1996 A
5545143 Fischell Aug 1996 A
5554117 Ensminger et al. Sep 1996 A
5556381 Ensminger et al. Sep 1996 A
5558641 Glantz et al. Sep 1996 A
5562617 Finch, Jr. et al. Oct 1996 A
5562618 Cai et al. Oct 1996 A
5575770 Melsky et al. Nov 1996 A
5593028 Haber et al. Jan 1997 A
5593434 Williams Jan 1997 A
5607393 Ensminger et al. Mar 1997 A
5607407 Tolkoff et al. Mar 1997 A
5613945 Cai et al. Mar 1997 A
5620419 Lui et al. Apr 1997 A
5632729 Cai et al. May 1997 A
5637102 Tolkoff et al. Jun 1997 A
5638832 Singer et al. Jun 1997 A
5647855 Trooskin Jul 1997 A
RE35601 Eckenhoff Sep 1997 E
5662612 Niehoff Sep 1997 A
5662616 Bousquet Sep 1997 A
5676146 Scarborough Oct 1997 A
5695490 Flaherty et al. Dec 1997 A
5702128 Maxim et al. Dec 1997 A
5702363 Flaherty Dec 1997 A
5704915 Melsky et al. Jan 1998 A
5707357 Mikhail et al. Jan 1998 A
5709668 Wacks Jan 1998 A
5713844 Peyman Feb 1998 A
5713858 Heruth et al. Feb 1998 A
5713859 Finch, Jr. et al. Feb 1998 A
5718382 Jaeger Feb 1998 A
5718682 Tucker Feb 1998 A
5725507 Petrick Mar 1998 A
5733336 Neuenfeldt et al. Mar 1998 A
5733400 Gore et al. Mar 1998 A
5741228 Lambrecht et al. Apr 1998 A
5743873 Cai et al. Apr 1998 A
5743891 Tolkoff et al. Apr 1998 A
5746460 Marohl et al. May 1998 A
5755780 Finch, Jr. et al. May 1998 A
5758667 Slettenmark Jun 1998 A
5769823 Otto Jun 1998 A
5773552 Hutchings et al. Jun 1998 A
5776188 Shepherd et al. Jul 1998 A
5792104 Speckman et al. Aug 1998 A
5792116 Berg et al. Aug 1998 A
5792123 Ensminger Aug 1998 A
5797886 Roth et al. Aug 1998 A
5810789 Powers et al. Sep 1998 A
5814016 Valley et al. Sep 1998 A
5824071 Nelson et al. Oct 1998 A
5830172 Leveen et al. Nov 1998 A
5833654 Powers et al. Nov 1998 A
5835563 Navab et al. Nov 1998 A
5836935 Ashton et al. Nov 1998 A
5840063 Flaherty Nov 1998 A
5843069 Butler et al. Dec 1998 A
5848989 Villani Dec 1998 A
5853394 Tolkoff et al. Dec 1998 A
5868702 Stevens et al. Feb 1999 A
5879322 Lattin et al. Mar 1999 A
5882341 Bousquet Mar 1999 A
5882353 VanBeek et al. Mar 1999 A
5895424 Steele, Sr. et al. Apr 1999 A
5897528 Schultz Apr 1999 A
5904934 Maruyama et al. May 1999 A
5906592 Kriesel et al. May 1999 A
5906596 Tallarida May 1999 A
5908413 Lange et al. Jun 1999 A
5908414 Otto et al. Jun 1999 A
5911706 Estabrook et al. Jun 1999 A
5913998 Butler et al. Jun 1999 A
5916263 Goicoechea et al. Jun 1999 A
5919160 Sanfilippo, II Jul 1999 A
5925017 Kriesel et al. Jul 1999 A
5925030 Gross et al. Jul 1999 A
5928197 Niehoff Jul 1999 A
5931829 Burbank et al. Aug 1999 A
5941856 Kovacs et al. Aug 1999 A
5944023 Johnson et al. Aug 1999 A
5944688 Lois Aug 1999 A
5944698 Fischer et al. Aug 1999 A
5944712 Frassica et al. Aug 1999 A
D413672 Fogarty Sep 1999 S
5947953 Ash et al. Sep 1999 A
5951512 Dalton Sep 1999 A
5951522 Rosato et al. Sep 1999 A
5951929 Wilson Sep 1999 A
5954687 Baudino Sep 1999 A
5954691 Prosl Sep 1999 A
5957890 Mann et al. Sep 1999 A
5961497 Larkin Oct 1999 A
5968011 Larsen et al. Oct 1999 A
5970162 Kawashima Oct 1999 A
5989216 Johnson et al. Nov 1999 A
5989239 Finch et al. Nov 1999 A
5989641 Oulie Nov 1999 A
5997524 Burbank et al. Dec 1999 A
6007516 Burbank et al. Dec 1999 A
6013051 Nelson Jan 2000 A
6013058 Prosl et al. Jan 2000 A
6017331 Watts et al. Jan 2000 A
6022335 Ramadan Feb 2000 A
6033389 Cornish Mar 2000 A
6039712 Fogarty et al. Mar 2000 A
6056717 Finch et al. May 2000 A
6077756 Lin et al. Jun 2000 A
6086555 Eliasen et al. Jul 2000 A
6090066 Schnell Jul 2000 A
6099508 Bousquet Aug 2000 A
6102884 Squitieri Aug 2000 A
6113572 Gailey et al. Sep 2000 A
6120492 Finch et al. Sep 2000 A
6152909 Bagaoisan et al. Nov 2000 A
6161033 Kuhn Dec 2000 A
6171198 Lizama Troncoso et al. Jan 2001 B1
6171298 Matsuura et al. Jan 2001 B1
6186982 Gross et al. Feb 2001 B1
6190352 Haarala et al. Feb 2001 B1
6193684 Burbank et al. Feb 2001 B1
6198807 DeSena Mar 2001 B1
6200338 Solomon et al. Mar 2001 B1
6203570 Baeke Mar 2001 B1
6210366 Sanfilippo, II Apr 2001 B1
6213973 Eliasen et al. Apr 2001 B1
6228088 Miller et al. May 2001 B1
6251059 Apple et al. Jun 2001 B1
D445175 Bertheas Jul 2001 S
6261259 Bell Jul 2001 B1
6269148 Jessop et al. Jul 2001 B1
6272370 Gillies et al. Aug 2001 B1
6287293 Jones et al. Sep 2001 B1
6290677 Arai et al. Sep 2001 B1
6305413 Fischer et al. Oct 2001 B1
6306124 Jones et al. Oct 2001 B1
D450115 Bertheas Nov 2001 S
6332874 Eliasen et al. Dec 2001 B1
6355021 Nielsen et al. Mar 2002 B1
6356782 Sirimanne et al. Mar 2002 B1
6361557 Gittings et al. Mar 2002 B1
6398764 Finch, Jr. et al. Jun 2002 B1
6419680 Cosman et al. Jul 2002 B1
6450937 Mercereau et al. Sep 2002 B1
6473638 Ferek-Petric Oct 2002 B2
6475516 DiCosmo et al. Nov 2002 B2
6478783 Moorehead Nov 2002 B1
6482217 Pintor et al. Nov 2002 B1
6494867 Elver et al. Dec 2002 B1
6497062 Koopman et al. Dec 2002 B1
6500155 Sasso Dec 2002 B2
6503228 Li et al. Jan 2003 B1
6527754 Tallarida et al. Mar 2003 B1
6537255 Raines Mar 2003 B1
RE38074 Recinella et al. Apr 2003 E
6562023 Marrs et al. May 2003 B1
6572583 Olsen et al. Jun 2003 B1
6582418 Verbeek et al. Jun 2003 B1
6592571 Verbeek et al. Jul 2003 B1
6610031 Chin Aug 2003 B1
6613002 Clark et al. Sep 2003 B1
6613662 Wark et al. Sep 2003 B2
6626936 Stinson Sep 2003 B2
D480942 Ishida et al. Oct 2003 S
6629950 Levin Oct 2003 B1
6632217 Harper et al. Oct 2003 B2
6652486 Bialecki et al. Nov 2003 B2
6652503 Bradley Nov 2003 B1
6663646 Shah Dec 2003 B1
6676633 Smith et al. Jan 2004 B2
6697664 Kienzle, III et al. Feb 2004 B2
6705316 Blythe et al. Mar 2004 B2
6719721 Okazaki et al. Apr 2004 B1
6719739 Verbeek et al. Apr 2004 B2
6726063 Stull et al. Apr 2004 B2
6738531 Funahashi May 2004 B1
6755842 Kanner et al. Jun 2004 B2
6758841 Haarala et al. Jul 2004 B2
6767356 Kanner et al. Jul 2004 B2
6784783 Scoggin et al. Aug 2004 B2
6808738 DiTizio et al. Oct 2004 B2
D498894 Gould Nov 2004 S
6826257 Sayre et al. Nov 2004 B2
6827709 Fujii Dec 2004 B2
6852106 Watson et al. Feb 2005 B2
6878136 Fleury et al. Apr 2005 B2
6878137 Benchetrit Apr 2005 B2
6929631 Brugger et al. Aug 2005 B1
6949084 Marggi et al. Sep 2005 B2
6962577 Tallarida et al. Nov 2005 B2
6962580 Adams et al. Nov 2005 B2
6994315 Ryan et al. Feb 2006 B2
6997914 Smith et al. Feb 2006 B2
7008377 Beane et al. Mar 2006 B2
7008412 Maginot Mar 2006 B2
7016456 Basu et al. Mar 2006 B2
7018361 Gillespie, Jr. et al. Mar 2006 B2
D518573 French Apr 2006 S
7033335 Haarala et al. Apr 2006 B2
7033339 Lynn Apr 2006 B1
7044942 Jolly et al. May 2006 B2
7056316 Burbank et al. Jun 2006 B1
7070591 Adams et al. Jul 2006 B2
7072704 Bucholz Jul 2006 B2
7074232 Kanner et al. Jul 2006 B2
7076305 Imran et al. Jul 2006 B2
7083593 Stultz Aug 2006 B2
7108686 Burke et al. Sep 2006 B2
7123690 Brown et al. Oct 2006 B1
7127040 Sayre et al. Oct 2006 B2
7131962 Estabrook et al. Nov 2006 B1
7140769 Kay Nov 2006 B2
7186236 Gibson et al. Mar 2007 B2
7191011 Cantlon Mar 2007 B2
7198631 Kanner et al. Apr 2007 B2
7214207 Lynch et al. May 2007 B2
7214215 Heinzerling et al. May 2007 B2
7223257 Shubayev et al. May 2007 B2
7229417 Foerster et al. Jun 2007 B2
7235067 Morris et al. Jun 2007 B2
D546440 Burnside Jul 2007 S
7242982 Singhal et al. Jul 2007 B2
7252469 Zaluzec et al. Aug 2007 B2
7252649 Sherry Aug 2007 B2
7261705 Edoga et al. Aug 2007 B2
D550355 Racz et al. Sep 2007 S
D554253 Kornerup Oct 2007 S
7275682 Excoffier et al. Oct 2007 B2
7276075 Callas et al. Oct 2007 B1
D556153 Burnside Nov 2007 S
7306579 Fujii Dec 2007 B2
7311702 Tallarida et al. Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7318818 Yashiro et al. Jan 2008 B2
7322953 Redinger Jan 2008 B2
D562442 Blateri Feb 2008 S
D562443 Zinn et al. Feb 2008 S
7331130 Schweikert Feb 2008 B2
7331948 Skarda Feb 2008 B2
7333013 Berger Feb 2008 B2
D564449 Dewberry Mar 2008 S
7347838 Kulli Mar 2008 B2
7347843 Adams et al. Mar 2008 B2
7351233 Parks Apr 2008 B2
7377915 Rasmussen et al. May 2008 B2
D574950 Zawacki et al. Aug 2008 S
7413564 Morris et al. Aug 2008 B2
D578203 Bizup Oct 2008 S
7445614 Bunodiere et al. Nov 2008 B2
D582032 Bizup et al. Dec 2008 S
7465847 Fabian Dec 2008 B2
D590499 Chesnin Apr 2009 S
7553298 Hunt et al. Jun 2009 B2
D595892 Smith et al. Jul 2009 S
7563025 Kay Jul 2009 B2
7658196 Ferreri et al. Feb 2010 B2
D612479 Zawacki et al. Mar 2010 S
D613394 Linden Apr 2010 S
7713251 Tallarida et al. May 2010 B2
D619242 Zinn et al. Jul 2010 S
7785302 Powers Aug 2010 B2
D629503 Caffey et al. Dec 2010 S
7846139 Zinn et al. Dec 2010 B2
D634840 Lombardi, III et al. Mar 2011 S
7909804 Stats Mar 2011 B2
7947022 Amin et al. May 2011 B2
7959615 Stats et al. Jun 2011 B2
7972314 Bizup et al. Jul 2011 B2
8021324 Bizup et al. Sep 2011 B2
8025639 Powers et al. Sep 2011 B2
8029482 Maniar et al. Oct 2011 B2
D650475 Smith et al. Dec 2011 S
8075536 Gray et al. Dec 2011 B2
8092435 Beling et al. Jan 2012 B2
8147455 Butts et al. Apr 2012 B2
8172894 Schmid et al. May 2012 B2
8172896 McNamara et al. May 2012 B2
8177762 Beasley et al. May 2012 B2
8197454 Mann et al. Jun 2012 B2
8202259 Evans et al. Jun 2012 B2
8257325 Schweikert et al. Sep 2012 B2
D676955 Orome Feb 2013 S
8382723 Powers et al. Feb 2013 B2
8382724 Maniar et al. Feb 2013 B2
20010016717 Haarala et al. Aug 2001 A1
20010047165 Makower et al. Nov 2001 A1
20010051766 Gazdzinski Dec 2001 A1
20010053889 Marggi et al. Dec 2001 A1
20010056266 Tallarida et al. Dec 2001 A1
20020013557 Sherry Jan 2002 A1
20020055715 Young et al. May 2002 A1
20020095205 Edwin et al. Jul 2002 A1
20020121530 Socier Sep 2002 A1
20020138068 Watson et al. Sep 2002 A1
20020169418 Menzi et al. Nov 2002 A1
20020173769 Gray et al. Nov 2002 A1
20020173772 Olsen Nov 2002 A1
20020188282 Greenberg Dec 2002 A1
20030028173 Forsberg Feb 2003 A1
20030109856 Sherry Jun 2003 A1
20030130627 Smith et al. Jul 2003 A1
20030139812 Garcia et al. Jul 2003 A1
20030141477 Miller Jul 2003 A1
20030181878 Tallarida et al. Sep 2003 A1
20030191452 Meglin et al. Oct 2003 A1
20030208184 Burke et al. Nov 2003 A1
20030216694 Tollini Nov 2003 A1
20030217659 Yamamoto et al. Nov 2003 A1
20040002693 Bright et al. Jan 2004 A1
20040006316 Patton Jan 2004 A1
20040020462 Sauler et al. Feb 2004 A1
20040020492 Dubrul et al. Feb 2004 A1
20040044306 Lynch et al. Mar 2004 A1
20040054352 Adams et al. Mar 2004 A1
20040056266 Suh et al. Mar 2004 A1
20040064110 Forsell Apr 2004 A1
20040073196 Adams et al. Apr 2004 A1
20040078000 Borchard et al. Apr 2004 A1
20040086568 Ditizio et al. May 2004 A1
20040087877 Besz et al. May 2004 A1
20040106878 Skujins et al. Jun 2004 A1
20040106891 Langan et al. Jun 2004 A1
20040133173 Edoga et al. Jul 2004 A1
20040157952 Soffiati et al. Aug 2004 A1
20040158207 Hunn et al. Aug 2004 A1
20040167543 Mazzocchi et al. Aug 2004 A1
20040176743 Morris et al. Sep 2004 A1
20040186444 Daly et al. Sep 2004 A1
20040199129 DiMatteo Oct 2004 A1
20040199220 Cantlon Oct 2004 A1
20040204692 Eliasen Oct 2004 A1
20040225254 Tanaka et al. Nov 2004 A1
20040254536 Conlon et al. Dec 2004 A1
20040254537 Conlon et al. Dec 2004 A1
20050010176 Dikeman et al. Jan 2005 A1
20050027234 Waggoner et al. Feb 2005 A1
20050027261 Weaver et al. Feb 2005 A1
20050038390 Fago et al. Feb 2005 A1
20050049553 Triplett et al. Mar 2005 A1
20050070875 Kulessa Mar 2005 A1
20050075614 Bunodiere et al. Apr 2005 A1
20050080401 Peavey Apr 2005 A1
20050085778 Parks Apr 2005 A1
20050113806 De Carvalho et al. May 2005 A1
20050124980 Sanders Jun 2005 A1
20050131352 Conlon et al. Jun 2005 A1
20050148866 Gunderson Jul 2005 A1
20050148956 Conlon et al. Jul 2005 A1
20050148957 Girard et al. Jul 2005 A1
20050152841 Sayre et al. Jul 2005 A1
20050171502 Daly et al. Aug 2005 A1
20050182857 Kong Aug 2005 A1
20050209573 Brugger et al. Sep 2005 A1
20050215874 Wang et al. Sep 2005 A1
20050241203 Lizotte et al. Nov 2005 A1
20050256451 Adams et al. Nov 2005 A1
20050256500 Fujii Nov 2005 A1
20050277899 Conlon et al. Dec 2005 A1
20050283119 Uth et al. Dec 2005 A1
20060009788 Freeman et al. Jan 2006 A1
20060017341 Hahn et al. Jan 2006 A1
20060084929 Eliasen Apr 2006 A1
20060089619 Ginggen Apr 2006 A1
20060100592 Eliasen May 2006 A1
20060116648 Hamatake Jun 2006 A1
20060171980 Helmus et al. Aug 2006 A1
20060173410 Moberg et al. Aug 2006 A1
20060173424 Conlon Aug 2006 A1
20060178647 Stats Aug 2006 A1
20060178648 Barron et al. Aug 2006 A1
20060184141 Smith et al. Aug 2006 A1
20060184142 Schon et al. Aug 2006 A1
20060217359 Wentworth et al. Sep 2006 A1
20060217659 Patton Sep 2006 A1
20060217668 Schulze et al. Sep 2006 A1
20060224128 Lurvey et al. Oct 2006 A1
20060224129 Beasley et al. Oct 2006 A1
20060241465 Huennekens et al. Oct 2006 A1
20060247584 Sheetz et al. Nov 2006 A1
20060253076 Butts et al. Nov 2006 A1
20060264898 Beasley et al. Nov 2006 A1
20070003603 Karandikar et al. Jan 2007 A1
20070007839 Lin Jan 2007 A1
20070010881 Soye et al. Jan 2007 A1
20070016162 Burbank et al. Jan 2007 A1
20070049806 Adams et al. Mar 2007 A1
20070049876 Patton Mar 2007 A1
20070055290 Lober Mar 2007 A1
20070073250 Schneiter Mar 2007 A1
20070078391 Wortley et al. Apr 2007 A1
20070078416 Eliasen Apr 2007 A1
20070078432 Halseth et al. Apr 2007 A1
20070083111 Hossack et al. Apr 2007 A1
20070083156 Muto et al. Apr 2007 A1
20070100302 Dicarlo et al. May 2007 A1
20070112332 Harding et al. May 2007 A1
20070120683 Flippen et al. May 2007 A1
20070123831 Haindl et al. May 2007 A1
20070135775 Edoga et al. Jun 2007 A1
20070149920 Michels et al. Jun 2007 A1
20070149921 Michels et al. Jun 2007 A1
20070161958 Glenn Jul 2007 A1
20070179456 Glenn Aug 2007 A1
20070185462 Byrum Aug 2007 A1
20070191773 Wojcik Aug 2007 A1
20070207335 Karandikar et al. Sep 2007 A1
20070208313 Conlon et al. Sep 2007 A1
20070219510 Zinn et al. Sep 2007 A1
20070233017 Zinn et al. Oct 2007 A1
20070233018 Bizup et al. Oct 2007 A1
20070255226 Tennican et al. Nov 2007 A1
20070255234 Haase et al. Nov 2007 A1
20070270691 Bailey et al. Nov 2007 A1
20070270770 Bizup Nov 2007 A1
20070276344 Bizup et al. Nov 2007 A1
20070276355 Nielsen et al. Nov 2007 A1
20070282308 Bell Dec 2007 A1
20070293800 McMaken et al. Dec 2007 A1
20070299408 Alferness et al. Dec 2007 A1
20080004642 Birk et al. Jan 2008 A1
20080008654 Clarke et al. Jan 2008 A1
20080015701 Garcia et al. Jan 2008 A1
20080039820 Sommers et al. Feb 2008 A1
20080048855 Berger Feb 2008 A1
20080108949 Beasley et al. May 2008 A1
20080114308 di Palma et al. May 2008 A1
20080133265 Silkaitis et al. Jun 2008 A1
20080137923 Spahn Jun 2008 A1
20080138387 Machiraju Jun 2008 A1
20080140025 Sheetz et al. Jun 2008 A1
20080208236 Hobbs et al. Aug 2008 A1
20080281279 Hoendervoogt et al. Nov 2008 A1
20080319398 Bizup Dec 2008 A1
20080319399 Schweikert et al. Dec 2008 A1
20080319405 Bizup Dec 2008 A1
20090024024 Zinn Jan 2009 A1
20090024098 Bizup et al. Jan 2009 A1
20090035582 Nakatani et al. Feb 2009 A1
20090118683 Hanson et al. May 2009 A1
20090156928 Evans et al. Jun 2009 A1
20090204072 Amin et al. Aug 2009 A1
20090204074 Powers et al. Aug 2009 A1
20090216216 Powers et al. Aug 2009 A1
20090221976 Linden Sep 2009 A1
20090227862 Smith et al. Sep 2009 A1
20090227951 Powers et al. Sep 2009 A1
20090227964 DiCarlo et al. Sep 2009 A1
20100010339 Smith et al. Jan 2010 A1
20100042073 Oster et al. Feb 2010 A1
20100063451 Gray et al. Mar 2010 A1
20100069743 Sheetz et al. Mar 2010 A1
20100106094 Fisher et al. Apr 2010 A1
20100121283 Hamatake et al. May 2010 A1
20100211026 Mr. Sheetz et al. Aug 2010 A2
20100268165 Maniar et al. Oct 2010 A1
20110021922 Berard-Anderson et al. Jan 2011 A1
20110092921 Beling et al. Apr 2011 A1
20110098662 Zinn Apr 2011 A1
20110098663 Zinn Apr 2011 A1
20110118677 Wiley et al. May 2011 A1
20110257609 Bizup et al. Oct 2011 A1
20110264058 Linden et al. Oct 2011 A1
20110271856 Fisher et al. Nov 2011 A1
20110275930 Jho et al. Nov 2011 A1
20110276015 Powers et al. Nov 2011 A1
20110288502 Hibdon et al. Nov 2011 A1
20110288503 Magalich et al. Nov 2011 A1
20110311337 Amin et al. Dec 2011 A1
20120018073 Maniar et al. Jan 2012 A1
20120059250 Gray et al. Mar 2012 A1
20120078201 Mikami Mar 2012 A1
20120078202 Beling et al. Mar 2012 A1
20120226244 Beasley et al. Sep 2012 A1
20120259296 Sheetz et al. Oct 2012 A1
Foreign Referenced Citations (110)
Number Date Country
2008299945 Mar 2009 AU
2663853 Apr 2008 CA
2692142 Dec 2008 CA
2693972 Jan 2009 CA
102421469 Apr 2012 CN
102612343 Jul 2012 CN
3618390 Nov 1987 DE
3720414 Dec 1987 DE
42 25 524 Feb 1994 DE
29512576 Oct 1995 DE
10346470 May 2005 DE
0128525 Dec 1984 EP
0134745 Mar 1985 EP
0343910 Nov 1989 EP
0366814 May 1990 EP
0619101 Oct 1994 EP
1238682 Sep 2002 EP
1635899 Mar 2006 EP
1896117 Mar 2008 EP
1998842 Dec 2008 EP
2004272 Dec 2008 EP
2018209 Jan 2009 EP
2081634 Jul 2009 EP
2164559 Mar 2010 EP
2167182 Mar 2010 EP
2180915 May 2010 EP
2190517 Jun 2010 EP
2308547 Apr 2011 EP
2320974 May 2011 EP
2324878 May 2011 EP
2324879 May 2011 EP
2324880 May 2011 EP
2365838 Sep 2011 EP
2508008 Dec 1982 FR
2809315 Nov 2001 FR
966137 Aug 1964 GB
2102398 Feb 1983 GB
62155857 Jul 1987 JP
62281966 Dec 1987 JP
6296633 Oct 1994 JP
2002500076 Jan 2002 JP
2006025948 Feb 2006 JP
2012-523284 Oct 2012 JP
2013-510652 Mar 2013 JP
8600213 Jan 1986 WO
8911309 Nov 1989 WO
9001958 Mar 1990 WO
9206732 Apr 1992 WO
9305730 Apr 1993 WO
9405351 Mar 1994 WO
9516480 Jun 1995 WO
9701370 Jan 1997 WO
9706845 Feb 1997 WO
9711726 Apr 1997 WO
9723255 Jul 1997 WO
9726931 Jul 1997 WO
9817337 Apr 1998 WO
9818506 May 1998 WO
9934859 Jul 1999 WO
9938553 Aug 1999 WO
9942166 Aug 1999 WO
0012171 Mar 2000 WO
0016844 Mar 2000 WO
0033901 Jun 2000 WO
0123023 Apr 2001 WO
0160444 Aug 2001 WO
0247549 Jun 2002 WO
03084832 Oct 2003 WO
03090509 Nov 2003 WO
2004004800 Jan 2004 WO
2004028611 Apr 2004 WO
2004071555 Aug 2004 WO
2004091434 Oct 2004 WO
2005037055 Apr 2005 WO
2005068009 Jul 2005 WO
2006078915 Jul 2006 WO
2006096686 Sep 2006 WO
2006116438 Nov 2006 WO
2006130133 Dec 2006 WO
2006134100 Dec 2006 WO
2007041471 Apr 2007 WO
2007079024 Jul 2007 WO
2007092210 Aug 2007 WO
2007094898 Aug 2007 WO
2007098771 Sep 2007 WO
2007109164 Sep 2007 WO
2007126645 Nov 2007 WO
2007136538 Nov 2007 WO
2008008126 Jan 2008 WO
2008019236 Feb 2008 WO
2008048361 Apr 2008 WO
2008062173 May 2008 WO
2008063226 May 2008 WO
2008147760 Dec 2008 WO
2008157763 Dec 2008 WO
2009002839 Dec 2008 WO
2009012385 Jan 2009 WO
2009012395 Jan 2009 WO
2009035582 Mar 2009 WO
2009046439 Apr 2009 WO
2009046725 Apr 2009 WO
2009108669 Sep 2009 WO
2010030351 Mar 2010 WO
2010062633 Jun 2010 WO
2010118144 Oct 2010 WO
2011046604 Apr 2011 WO
2011053499 May 2011 WO
2011056619 May 2011 WO
2011133950 Oct 2011 WO
2011146649 Nov 2011 WO
Non-Patent Literature Citations (236)
Entry
B. Braun, Easypump Product Page, accessed May 11, 2011.
B. Braun, Port Catheter Systems Product Page, accessed May 11, 2011.
Baxter Healthpoint® Focus (Oct. 1999).
Baxter Healthport® Venous Systems (Oct. 2002).
Baxter Patient Information, Healthport® System (May 1999).
Carlson et al., “Safety Considerations in the Power Injection of Contrast Media Via Central Venous Catheters during Computed Tomographic Examinations,” Investigative Radiology, (May 1992) 27: 337-340.
Clinical Plastic Products, “Oncology Jet Port Plus Catheter Systems” Instructions for Use, 2011.
Cook Vital-Port® Product Catalog (2000).
Deltec Port Systems (Feb. and Apr. 1996).
Department of Health and Human Services, C-Port 510(k) FDA Clearance, Jun. 5, 2003.
EP 06751411 filed Apr. 25, 2006 Opposition by Fresenius Kabi Deutschland GmbH dated Oct. 11, 2011.
Fresenius Brochure on Intraport 1, Intraport II, and Bioport (Nov. 1998).
Gebauer, B. et al., “Contrast Media Power Injection Using Central Venous Port Catheters—Results of an In-Vitro Study,” Experimental Radiology 2005: 177: 1417-1423.
JP 2008-509056 filed Apr. 25, 2006 Office Action dated Apr. 4, 2012.
Kaste et al., “Safe use of power injectors with central and peripheral venous access devices for pediatric CT,” Pediatr Radiol (1996) 26: 499-501.
Leslie et al., “A New Simple Power Injector,” Am J Roentgenol 128: 381-384, Mar. 1977.
Navilyst Medical, Implantable Ports with PASV® Valve Technology, Product Overview,<<http://www.navilystmedical.com/Products/index.cfm/9>> last accessed Jun. 4, 2012.
PCT/US2006/008022 filed Mar. 6, 2006 Written Opinion dated Jul. 5, 2006.
PCT/US2006/016056 filed Apr. 27, 2006 International Preliminary Report on Patentability dated Oct. 30, 2007.
PCT/US2006/016056 filed Apr. 27, 2006 Written Opinion dated Sep. 20, 2006.
PCT/US2009/062854 filed Oct. 30, 2009 Written Opinion dated Dec. 23, 2009.
Port-A-Cath® & Port-A-Cath® II Dual-lumen Implantable Venous Access Systems Product Specifications, 2005.
Salis et al., “Maximal flow rates possible during power injection through currently available PICCs: An in-vitro study,” J Vasc Intery Radiol 2004; 15:275-281.
Smiths Medical, “Smiths Medical Launches Implantable Ports for Easy Viewing Under CT Scans” Press Release, Jan. 5, 2011.
Statement of Prof. Dr. med. Karl R. Aigner, Oct. 11, 2011.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Advisory Action dated Dec. 1, 2011.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Notice of Allowance dated Jan. 6, 2012.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Final Office Action dated Oct. 20, 2011.
U.S. Appl. No. 11/380,621, filed Apr. 27, 2006 Final Office Action dated Mar. 8, 2011.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Final Office Action dated Oct. 13, 2011.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Non-Final Office Action dated Jun. 18, 2012.
U.S. Appl. No. 12/267,160, filed Nov. 7, 2008 Final Office Action dated Jun. 1, 2012.
U.S. Appl. No. 12/267,160, filed Nov. 7, 2008 Non-Final Office Action dated Nov. 1, 2011.
U.S. Appl. No. 12/419,854, filed Apr. 7, 2009 Final Office Action dated Nov. 29, 2011.
U.S. Appl. No. 12/419,854, filed Apr. 7, 2009 Non-Final Office Action dated Jun. 26, 2012.
Biffi, R. et al. “Use of totally implantable central venous access ports for high-dose chemotherapy and peripheral blood stem cell transplantation: results of a monocentre series of 376 patients.” Annals of Oncology 15:296-300, 2004.
Biffi, R., et al. “Best Choice of Central Venous Insertion Site for the Prevention of Catheter-Related Complications in Adult Patients Who Need Cancer Therapy: A Randomized Trial.” Annals of Oncology, Jan. 29, 2009.
Biffi, Roberto, et al. “A Randomized, Prospective Trial of Central Venous Ports Connected to Standard Open-Ended or Groshong Catheters in Adult Oncology Patients.” American Cancer Society, vol. 92, No. 5, pp. 1204-1212, Sep. 1, 2001.
Cardiovascular and Interventional Radiology, Review Article, “Central Venous Access Catheters: Radiological Management of Complications,” by U.K. Teichgraber, B. Gebauer, T. Benter, H.J. Wagner, published online Jul. 31, 2003.
Costa, Nancy, “More Than Skin Deep: An Overview of Iodinated Contrast Media..” Journal for the Association for Vascular Access, vol. 8, No. 4, 2003.
Costa, Nancy, “Understanding Contrast Media.” Journal of Infusion Nursing, vol. 27, No. 5, Sep./Oct. 2004.
Coyle, Douglas et al, Power Injection of Contrast Media via Peripherally Inserted Central Catheters for CT, J Vasc Interv Radiol, pp. 809-814, vol. 15, 2004.
EP 06751411 filed Apr. 25, 2006 Office Action dated Aug. 10, 2009.
EP 06751411 filed Apr. 25, 2006 Office Action dated Sep. 2, 2008.
EP 06845998 filed Dec. 21, 2006 Office Action dated Mar. 10, 2011.
Fallscheer, et al., “Injury to the Upper Extremity Cuased by Extravasation of Contrast Medium: A True Emergency.” Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, vol. 41, pp. 26-32, 2007.
Hou, Shaw-Min et al. “Comparisons of Outcomes and Survivals for Two Central Venous Access Port Systems.” Journal of Surgical Oncology, 91:61-66, 2005.
Johnson, Kathleen A., “Power Injectable Portal Systems.” Journal of Radiology Nursing, vol. 28, Issue 1, Mar. 2009.
JP 2007-558331 filed Mar. 6, 2006 Office Action dated May 17, 2011.
JP 2008-509056 filed Apr. 25, 2006 Office Action dated Jun. 7, 2011.
L-CATH® for Ports, Luther Medical Products, Inc., Tustin, California, 2 pages, 1994.
PCT/US2006/015695 filed Apr. 25, 2006 Written Opinion dated Jan. 11, 2007.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Oct. 31, 2007.
U.S. Appl. No. 10/374,000 filed, Feb. 25, 2003 Response to Office Action dated Sep. 21, 2009.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Final Office Action dated Aug. 3, 2011.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Final Office Action dated Jun. 19, 2009.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Final Office Action dated Jun. 22, 2010.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Non-Final Office Action dated Feb. 13, 2008.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Non-Final Office Action dated Jan. 21, 2010.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Non-Final Office Action dated Mar. 16, 2011.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Non-Final Office Action dated Sep. 18, 2008.
U.S. Appl. No. 11/368,954, filed Mar. 6, 2006 Non-Final Office Action dated Jul. 21, 2009.
U.S. Appl. No. 11/368,954, filed Mar. 6, 2006 Notice of Allowance dated Jun. 24, 2010.
U.S. Appl. No. 11/368,954, filed Mar. 6, 2006 Final Office Action dated Jan. 27, 2010.
U.S. Appl. No. 11/368,954, filed Mar. 6, 2006 Supplemental Non-final Office Action mailed Oct. 2, 2009.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Final Office Action dated Aug. 13, 2010.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Final Office Action dated Sep. 21, 2009.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Non-Final Office Action dated Apr. 26, 2010.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Non-Final Office Action dated Apr. 7, 2011.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Non-Final Office Action dated Jan. 16, 2009.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Non-Final Office Action dated Oct. 28, 2010.
U.S. Appl. No. 11/380,621, filed Apr. 27, 2006 Final Office Action dated Jan. 14, 2010.
U.S. Appl. No. 11/380,621, filed Apr. 27, 2006 Final Office Action dated Jan. 23, 2009.
U.S. Appl. No. 11/380,621, filed Apr. 27, 2006 Non-Final Office Action dated Jul. 1, 2009.
U.S. Appl. No. 11/380,621, filed Apr. 27, 2006 Non-Final Office Action dated Jun. 6, 2008.
U.S. Appl. No. 11/725,287, filed Mar. 19, 2007 Non-final Office Action issued on Dec. 3, 2008.
U.S. Appl. No. 11/725,287, filed Mar. 19, 2007 Non-final Office Action issued on Jun. 12, 2009.
U.S. Appl. No. 11/725,287, filed Mar. 19, 2007 Non-final Office Action issued on Mar. 29, 2010.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Final Office Action dated Feb. 11, 2011.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Non-Final Office Action dated Apr. 15, 2011.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Non-Final Office Action dated Sep. 13, 2010.
U.S. Appl. No. 12/023,280, filed Jan. 31, 2008 Final Office Action dated Mar. 9, 2010.
U.S. Appl. No. 12/023,280, filed Jan. 31, 2008 Non-Final Office Action dated Dec. 13, 2010.
U.S. Appl. No. 12/023,280, filed Jan. 31, 2008 Non-Final Office Action dated Jul. 23, 2009.
U.S. Appl. No. 12/023,280, filed Jan. 31, 2008 Non-Final Office Action dated Oct. 5, 2009.
U.S. Appl. No. 12/023,280, filed Jan. 31, 2008 Notice of Allowance dated Mar. 28, 2011.
U.S. Appl. No. 12/143,377, filed Jun. 20, 2008 Final Office Action mailed Oct. 19, 2009.
U.S. Appl. No. 12/143,377, filed Jun. 20, 2008 Non-final Office Action mailed Apr. 27, 2009.
U.S. Appl. No. 12/175,182, filed Jul. 17, 2008 Non-final Office Action mailed Sep. 3, 2009.
U.S. Appl. No. 12/419,854, filed Apr. 7, 2009 Non-Final Office Action dated Aug. 5, 2011.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Advisory Action dated Feb. 18, 2011.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Final Office Action dated Dec. 7, 2010.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Non-Final Office Action dated Feb. 18, 2010.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Non-Final Office Action dated Jul. 29, 2010.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Non-Final Office Action dated Jun. 30, 2009.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Notice of Allowance dated Mar. 7, 2011.
U.S. Appl. No. 12/420,007, filed Apr. 7, 2009 Final Office Action dated Feb. 18, 2010.
U.S. Appl. No. 12/420,007, filed Apr. 7, 2009 Non-Final Office Action dated Jul. 14, 2009.
U.S. Appl. No. 12/420,028, filed Apr. 7, 2009 Non-Final Office Action dated Jan. 5, 2011.
U.S. Appl. No. 12/420,028, filed Apr. 7, 2009 Notice of Allowance dated Apr. 1, 2011.
U.S. Appl. No. 12/617,981, filed Nov. 13, 2009 Advisory Action dated Sep. 15, 2011.
U.S. Appl. No. 12/617,981, filed Nov. 13, 2009 Final Office Action dated Jun. 21, 2011.
U.S. Appl. No. 12/617,981, filed Nov. 13, 2009 Non-Final Office Action dated Dec. 21, 2011.
U.S. Appl. No. 13/113,834, filed May 23, 2011 Non-Final Office Action dated Jul. 17, 2012.
U.S. Appl. No. 13/159,230, filed Jun. 13, 2011 Notice of Allowance dated Aug. 1, 2012.
U.S. Appl. No. 13/250,909, filed Sep. 30, 2011 Notice of Allowance dated Aug. 6, 2012.
Wikipedia, “Port Catheter”, Dec. 15, 2011.
PORT-A-CATH® “Implantable Epidural, Aterial and Peritonial Access System” Internet Product Listing. <<http://web.archive.org/web/20001119035900/www.deltec.com/cPacspl.htm.>> last accessed Jun. 4, 2012.
Sanelli, et al., “Safety and Feasibility of Using a Central Venous Catheter for Rapid Contrast Injection Rates.” American Journal of Radiology, vol. 183, pp. 1829-1834, Dec. 2004.
Shah, Tilak M., “Radiopaque Polymer Formulations for Medical Devices.” Medical Device and Diagnostic Industry, Mar. 2000.
Smith, Lisa Hartkoph, “Implanted Ports, Computed Tomography, Power Injectors, and Catheter Rupture.” Clinical Journal of Oncology Nursing, vol. 12, No. 5, Oct. 2008.
Soloman, et al., “CIN Strategies: Anticipate, Manage, Prevent.” Supplement to Imaging Economics, May 2007.
Steinbach, Barbara G. , Hardt, N. Sisson, Abbitt, Patricia L., Lanier, Linda, Caffee, H. Hollis, “Breast Implants, Common Complications, and Concurrent Breast Disease.” RadioGraphics, vol. 13, No. 1, pp. 95-118, 1993.
U.S. Appl. No. 60/658,518, filed Mar. 4, 2005, publicly accessible Oct. 5, 2006.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Office Action dated Aug. 28, 2007.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Advisory Action dated Jan. 23, 2007.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Non-Final Office Action dated Feb. 13, 2006.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Non-Final Office Action dated May 20, 2009.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Non-final Office Action mailed Mar. 20, 2008.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Office Action dated Feb. 28, 2007.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Office Action dated Jul. 28, 2006.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Office Action mailed Sep. 30, 2008.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Non-Final Office Action dated May 12, 2006.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Dec. 28, 2006.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Jun. 20, 2008.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Mar. 30, 2009.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated May 28, 2007.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Nov. 28, 2006.
U.S. Appl. No. 12/617,981, filed Nov. 13, 2009 Non-Final Office Action dated Jan. 5, 2011.
U.S. Appl. No. 12/796,133, filed Jun. 8, 2010 Non-Final Office Action dated Feb. 17, 2011.
U.S. Appl. No. 12/796,133, filed Jun. 8, 2010 Notice of Allowance dated Jun. 9, 2011.
U.S. Appl. No. 29/239,163, filed Sep. 27, 2005 entitled Injectable Power Port, listing Eddie K. Burnside as inventor.
U.S. Appl. No. 29/247,954, filed Jul. 21, 2006 entitled Injectable Power Port, listing Eddie K. Burnside as inventor.
U.S. Appl. No. 29/247,954, filed Jul. 21, 2006 Non-Final Office Action dated Apr. 6, 2007.
U.S. Appl. No. 29/247,954, filed Jul. 21, 2006 Notice of Allowability dated Jul. 30, 2007.
U.S. Appl. No. 29/284,454, filed Sep. 7, 2007 titled Implantable Port Device, listing John A. Zawacki and Annmarie Boswell as inventors, in which a Continued Prosecution Application was filed on Jan. 30, 2008.
U.S. Appl. No. 29/284,456, filed Sep. 7, 2007, titled Implantable Port Device, listing John A. Zawacki and Annemarie Boswell as inventors.
Vergara, et al., “Adverse Reactions to Contrast Medica in CT: Effects of Temperature and Ionic Property.” Radiology, vol. 199, No. 2, May 1996.
Wells, S. “Venous Access in Oncology and Haematology Patients: Part One.” Nursing Standard, vol. 22, No. 52, pp. 39-46, Sep. 3, 2008.
Williamson, et al., “Assessing the Adequacy of Peripherally Inserted Central Catheters for Power Injection of Intravenous Contrast Agents for CT.” Journal of Computer Assisted Tomography, vol. 6, No. 6, pp. 932-937, 2001.
Bard Access Systems, BardPort and X-Port Implanted Ports Brochure, © 2007.
Bard Access Systems, BardPort, SlimPort and X-Port Instructions for Use, May 2003.
Bard Access Systems, BardPort™ Implanted Ports Patient Information, Feb. 1993.
Bard Access Systems, Ports Brochure, © 2003.
Bard Access Systems, Titanium Dome Implantable Port, http://www.bardacess.com, last accessed Jan. 10, 2012.
EP 06751411 filed Apr. 25, 2006 Decision Revoking the European Patent dated Aug. 1, 2012.
EP 10762377.9 filed Oct. 5, 2011 European Search Report dated Aug. 3, 2012.
Medtronic IsoMed® Constant-Flow Infusion System: Clinical Reference Guide for Hepatic Arterial Infusion Therapy, Revised Sep. 2000.
Nucleus Cochlear Implant Systems; User Manual for the ESPrit and ESPrit 22 speech processor and accessories, Issue 3, Apr. 2000.
PCT/US11/37038 filed May 18, 2011 Written Opinion and Search Report dated Aug. 30, 2011.
Request for Inter partes Reexamination of U.S. Patent No. 7,785,302, filed Aug. 20, 2012.
Request for Inter partes Reexamination of U.S. Patent No. 7,947,022, filed Aug. 20, 2012.
Request for Inter partes Reexamination of U.S. Patent No. 7,959,615, filed Aug. 20, 2012.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Final Office Action dated Nov. 8, 2012.
U.S. Appl. No. 12/420,007, filed Apr. 7, 2009 Non-Final Office Action dated Oct. 16, 2012.
U.S. Appl. No. 12/617,981, filed Nov. 13, 2009 Final Office Action dated Aug. 2, 2012.
U.S. Appl. No. 12/917,323, filed Nov. 1, 2010 Non-Final Office Action dated Aug. 15, 2012.
U.S. Appl. No. 29/382,235, filed Dec. 30, 2010 Non-Final Office Action dated Oct. 3, 2012.
U.S. Appl. No. 29/382,246, filed Dec. 30, 2010 Notice of Allowance dated Oct. 3, 2012.
Allergan, Inc. LAP-BAND® System Fact Sheet. © 2007.
AngioDynamics, Smart Port Guidelines for Health Care Providers, 1996.
Bard Access Systems Mar. 21, 1995 Product Release to Market form for “M.R.I. Port with 8 Fr. ChronoFlexÒ Catheter”, “M.R.I. Port with 8Fr. ChronoFlex Catheter with Intro-Eze™”, “M.R.I. Port with 8. Fr ChronoFlex Catheter and Peel Apart”, “M.R.I. Port with 8Fr. ChronoFlex Catheter Demo Kit”. Drawings included.
Bard Healthcare Leaflet (2001).
Baxter Guidelines on Port Maintainence (Jun. 2003).
Baxter Therapy Systems, Baxter Healthport® Jan. 1999.
BioEnterics Corporation, LAP-BAND® “Adjustable Gastric Banding System” Product Brochure Rev. G, Nov. 2000.
Braun Product Catalog (Aug. 2005).
EP 06751411 filed Apr. 25, 2006 Opposition by Aesculap AG dated Oct. 5, 2011.
EP 06751411 filed Apr. 25, 2006 Opposition by pfm medical ag dated Oct. 12, 2011.
EP 06845998 filed Dec. 21, 2006 Supplementary Search Report dated Jul. 22, 2010.
EP 99964086 filed Dec. 3, 1999 Office Action dated Dec. 15, 2005.
EP 99964086 filed Dec. 3, 1999 Office Action dated Mar. 1, 2005.
EP 99964086 filed Dec. 3, 1999 Office Action dated Mar. 30, 2005.
Extravasation of Radiologic Contrast, PA-PSRS Patient Safety Advisory, vol. 1 No. 3, Sep. 2004.
Extreme Access™ Bard Access Systems, Inc. Product Brochure, 2003.
Inamed Health, BioEnterics® LAP-BAND® “Adjustable Gastric Banding System” Product Brochure, Dec. 2003.
LaMaitre Vascular “Port Implantations: using the OptiLock Implantable Port,” product information, available at http://www.lemaitre. com/specs.pop.asp, last accessed Apr. 2003, 14 pages.
LAP-BAND AP™ “System with Adjustable Gastric Banding system with OMNIFORM™ Design,” Product Brochure, Jul. 2007, 16 pages.
LAP-BAND® System Access Port Fill Guide I, “9.75/10.0 cm LAP-BAND System vs. 11 cm LAP-BAND System: For Product Manufactured Prior to Jul. 2001” BioEnterics Corporation. Rev. B. Aug. 15, 2001.
MedComp “PortCT Technology”, display at SIR Conference (Mar. 2006), Toronto, Canada.
Nucleus Cochlear Implant Systems; User Manual for the ESPrit 3G speech processor and accessories, Issue 2, Dec. 2001 http://www.cochlearamericas.com/PDFs/UserManualSprint.pdf.
Oct. 22, 2009 Declaration of Kelly Christian, Director of Product Development at Bard Access Systems, Inc, in support of and depicting a product on the market by Quinton Company approximately ten years prior to Oct. 22, 2009, 1 page.
PCT/US1999/028695 filed Dec. 3, 1999 International Preliminary Examination Report dated Apr. 21, 2001.
PCT/US1999/028695 filed Dec. 3, 1999 Search Report dated Apr. 11, 2000.
PCT/US2006/008022 filed Mar. 6, 2006 International Preliminary Report on Patentability dated Sep. 12, 2007.
PCT/US2006/008022 filed Mar. 6, 2006 Search Report dated Jul. 5, 2006.
PCT/US2006/008022 filed Mar. 6, 2006 Written Opinion dated Apr. 9, 2007.
PCT/US2006/015695 filed Apr. 25, 2006 Partial Search Report dated Sep. 29, 2006.
PCT/US2006/015695 filed Apr. 25, 2006 Search Report dated Jan. 11, 2007.
PCT/US2006/016056 filed Apr. 27, 2006 Search Report dated Sep. 20, 2006.
PCT/US2006/016056 filed Apr. 27, 2006 Written Opinion dated Oct. 27, 2007.
PCT/US2006/049007 filed Dec. 21, 2006 International Preliminary Report on Patentability dated Jul. 1, 2008.
PCT/US2006/049007 filed Dec. 21, 2006 Search Report dated Oct. 1, 2007.
PCT/US2006/049007 filed Dec. 21, 2006 Written Opinion dated Oct. 1, 2007.
PCT/US2007/006776 filed Mar. 19, 2007 International Preliminary Report on Patentability dated Jan. 2, 2009.
PCT/US2007/006776 filed Mar. 19, 2007 Written opinion, dated Dec. 18, 2007.
PCT/US2007/011015 dated May 7, 2007 Written Opinion dated Jun. 10, 2008.
PCT/US2007/011015 filed May 7, 2007 International Preliminary Report on Patentability dated Oct. 29, 2008.
PCT/US2007/011015 filed May 7, 2007 Search Report dated Jun. 10, 2008.
PCT/US2007/011456 filed May 11, 2007 Search Report dated Aug. 28, 2008.
PCT/US2007/011456 filed May 11, 2007 Written Opinion dated Aug. 28, 2008.
PCT/US2008/010520 dated Sep. 8, 2008 Search Report dated Feb. 24, 2009.
PCT/US2008/010520 filed Sep. 8, 2008 Written Opinion dated Feb. 24, 2009.
PCT/US2008/067679 filed Jun. 20, 2008 Search Report dated Sep. 30, 2008.
PCT/US2008/067679 filed Jun. 20, 2008 Written Opinion mailed on Sep. 30, 2008.
PCT/US2008/070330 filed Jul. 17, 2008 Search Report dated Dec. 1, 2008.
PCT/US2008/070330 filed Jul. 17, 2008 Written Opinion dated Dec. 1, 2008.
PCT/US2008/070345 filed Jul. 17, 2008 Search Report mailed on Dec. 1, 2008.
PCT/US2008/070345 filed Jul. 17, 2008 Written Opinion dated Dec. 1, 2008.
PCT/US2008/078976 filed Apr. 2, 2009 Search Report and Written Opinion dated Apr. 3, 2009.
PCT/US2009/035088 filed Feb. 25, 2009 International Search Report dated May 19, 2009.
PCT/US2009/035088 filed Feb. 25, 2009 Written Opinion dated May 19, 2009.
PCT/US2009/062854 filed Oct. 30, 2009 International Preliminary Report on Patentability dated May 5, 2011.
PCT/US2009/062854 filed Oct. 30, 2009 International Search Report dated Dec. 10, 2009.
PCT/US2009/062854 filed Oct. 30, 2009 Search Report dated Dec. 23, 2009.
PCT/US2009/062854 filed Oct. 30, 2009 Written Opinion dated Dec. 10, 2009.
PCT/US2010/030256 filed Apr. 7, 2010 Search Report dated Jun. 4, 2010.
PCT/US2010/030256 filed Apr. 7, 2010 Written Opinion dated Jun. 4, 2010.
PCT/US2010/054994 filed Nov. 1, 2010 Search Report dated Jan. 10, 2011.
PCT/US2010/054994 filed Nov. 1, 2010 Written Opinion dated Jan. 10, 2011.
Port-A-Cath® P.A.S. Port® Systems by Deltec, Product Specifications, 1999.
Port-A-Cath® “Many Port-A-Cath® System Choices” Product Brochure. © 1996 SIMS Deltec, Inc.
Rappolt, Richard T., et al. “Radiopaque Codification and X-ray Identification of Ingested Drugs.” Ingestive Radiology, May-Jun. 1966.
Sandstede, Joern, “Pediatric CT,” available online at www.multislice-ct.com, MultiSLICE-CT.com, version 02, May 2, 2003.
Smith Medical, Port-A-Cath® “Single-lumen Implantable Vascular Access Systems” Product Specifications, 2004.
Sullivan et al. “Radiopaque Markers on Mammary Implants.” American Journal of Roentgenology 153(2):428, Aug. 1989.
U.S. Food and Drug Administration, “Guidance for Institutional Review Boards and Clinical Investigators 1998 Update: Medical Devices.” Version Sep. 10, 2008.
Urquiola, Javier, et al., “Using Lead Foil as a Radiopaque Marker for Computerized Tomography Imaging When Implant Treatment Planning.” The Journal of Prosthetic Dentistry, 1997.
Vogelzang, Robert L., “Power Injection Through Central Venous Catheters: Physiological and Hemodynamic Considerations.” The McGaw Medical Center of Northwestern University, Feinberg School of Medicine. Jun. 23, 2004.
CN 201080020088.3 filed Nov. 7, 2011 First Office Action dated Mar. 4, 2013.
U.S. Appl. No. 12/419,854, filed Apr. 7, 2009 Final Office Action dated Feb. 14, 2013.
U.S. Appl. No. 12/420,007, filed Apr. 7, 2009 Final Office Action dated Mar. 22, 2013.
U.S. Appl. No. 12/917,323, filed Nov. 1, 2010 Advisory Action dated Apr. 10, 2013.
U.S. Appl. No. 13/571,088, filed Aug. 9, 2012 Non-Final Office Action dated Feb. 27, 2013.
PCT/US2007/006776 filed Mar. 19, 2007 International Search Report dated Dec. 18, 2007.
PORT-A-CATH® II Implantable Access Systems Information Sheet, Sep. 2006.
Related Publications (1)
Number Date Country
20120191071 A1 Jul 2012 US
Provisional Applications (1)
Number Date Country
60675309 Apr 2005 US
Divisions (1)
Number Date Country
Parent 11380621 Apr 2006 US
Child 13438586 US