The present invention pertains to configurations of systems that generate and infuse radiopharmaceuticals, particularly in relation to the infusion circuits thereof.
Nuclear medicine employs radioactive material for therapy and diagnostic imaging. Positron emission tomography (PET) is one type of diagnostic imaging, which utilizes doses of radiopharmaceutical, for example, generated by elution within a radioisotope generator, that are injected, or infused into a patient. The infused dose of radiopharmaceutical is absorbed by cells of a target organ, of the patient, and emits radiation, which is detected by a PET scanner, in order to generate an image of the organ. An example of a radioactive isotope, which may be used for PET, is Rubidium-82 (produced by the decay of Strontium-82); and an example of a radioisotope generator, which yields a saline solution of Rubidium-82, via elution, is the CardioGen-82® available from Bracco Diagnostics Inc. (Princeton, N.J.). A PET scanner in combination with infused doses of radiopharmaceuticals may also be employed to quantify blood flow rate, for example, through the coronary arteries of a patient.
Whether the half-life of a particular radioactive isotope, employed by a radiopharmaceutical, is relatively short or long, a patient undergoing a nuclear imaging procedure is not typically exposed to a significant amount of radiation. However, those personnel, whose job it is to set up and maintain radiopharmaceutical infusion systems, and to administer doses therefrom, are subject to more frequent and prolonged exposures to radiation. Although radioisotope generators and infusion circuits in these systems are shielded, for example, via surrounding lead sidewalls, to protect personnel from excessive exposure to radiation sources, the daily operation and maintenance of these infusion systems can still pose health threats. Thus, there is a need for new infusion system configurations and assemblies that facilitate safer as well as more effective and efficient operation and maintenance of the infusion systems.
The following drawings are illustrative of particular embodiments of the present invention and therefore do not limit the scope of the invention. The drawings are not to scale (unless so stated) and are intended for use in conjunction with the explanations in the following detailed description. Embodiments of the present invention will hereinafter be described in conjunction with the appended drawings, wherein like numerals denote like elements.
The following detailed description is exemplary in nature and is not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the following description provides practical illustrations for implementing exemplary embodiments. Utilizing the teaching provided herein, those skilled in the art will recognize that many of the examples have suitable alternatives that can be utilized.
Turning now to
According to the illustrated embodiment, circuit 300 includes: an eluant reservoir 15, for example, a bag, bottle or other container, containing saline as the eluant, which is shown hanging from a post, or hanger 141 above upper surface 131 of shell 13 in
Although not shown in
System 10 may further include sensors to detect fluid levels in eluant reservoir 15 and waste bottle 23. Some examples of such sensors, which also employ the aforementioned pulse-type ultrasound, are the Drip Chamber Liquid Level Sensor and the CLD/Continuous Level Detector (both available from INTROTEK®); alternatively, for example, an HPQ-T pipe mounted, self-contained liquid sensor (available from Yamatake Sensing Control, Ltd.), or an SL-630 Non-Invasive Disposable/Reusable Level Switch (available from Cosense, Inc. of Hauppauge, N.Y.) may be employed to detect the fluid levels. Alternately or in addition, system 10 can include additional radiation and/or moisture detection sensors, which can detect leaks. With reference to
According to those embodiments that include any of the above sensors, the sensors are linked into the controller of system 10 and/or computer 17, either of which may provide a signal to a user of system 10, when a flow anomaly is detected, and/or information to the user, via monitor 172, concerning fluid levels, pressure and/or flow through circuit 300. Computer 17 may be pre-programmed to display, for example, on monitor 172, a graphic of infusion circuit 300 wherein each zone of the circuit, where an anomaly has been detected, is highlighted, and/or to provide guidance, to the system user, for correcting the anomaly. It should be noted that the alternative infusion circuits illustrated in
With further reference to
It should be noted that, according to alternate embodiments, system 10 includes an ‘on board’ dose calibrator for quality control tests, and circuit 300 is expanded to include elements for an automated collection of eluate samples for activity measurements, via the on board dose calibrator. According to a first set of these alternate embodiments, a sample collection reservoir is integrated into circuit 300, downstream of divergence valve 35WP and in communication with tubing line 305P, in order to receive quality control test samples of eluate, via tubing line 305P, and both the reservoir and the dose calibrator are located in a separate shielded well. According to a second set of these alternate embodiments, waste bottle 23 is configured to receive the quality control test samples of eluate, via tubing line 305W, and a dose calibrator is integrated into shielding assembly 200. Quality control procedures will be described in greater detail below, in conjunction with
When maintenance of system 10 requires the emptying waste bottle 23, relatively easy access to waste bottle 23 is provided through opening 139 in top surface 131 of shell 13. It should be noted that technical personnel are preferably trained to empty waste bottle 23 at times when the eluate, contained in waste bottle 23, has decayed sufficiently to ensure that the radioactivity thereof has fallen below a threshold to be safe. Opening 139 is preferably located at an elevation of between approximately 2 feet and approximately 3 feet; for example, opening 139 may be at an elevation of approximately 24 inches, with respect to a lower surface of platform 113, or at an elevation of approximately 32 inches, with respect to a ground surface upon which wheels 121, 122 rest. According to the illustrated embodiment, opening 139 is accessed by lifting panel 134; just within opening 139, a shielded lid or door 223 (
For those embodiments of system 10 in which automated quality control tests are performed and/or when system 10 is employed for relatively high volume operation, management of waste may become burdensome, even though access to waste bottle 23 is greatly facilitated, as described above. Thus, in order to facilitate waste management, some embodiments of system 10 may employ a separation system to separate salts, including radioactive elements, from water, for example, via evaporation or reverse osmosis. In an evaporation type system, the water component of the waste is evaporated, while in a reverse osmosis type system the water is separated from the salts, and, then, once confirmed to be non-radioactive, via a radiation detector, is piped to a drain. According to some other embodiments, circuit 300 may be configured so that the waste may be used to purge air from the tubing lines thereof and/or to perform the bypass flush that was described above, preferably after the radioactivity of the waste drops below a critical threshold.
Additional receptacles 180 are shown formed in bin 18, on either side of a handle 182, which facilitates removal of bin 18 away from shell 13. Technical personnel may, thus, conveniently transport bin 18 to a storage area for a collection of supplies, for example, sharps, gloves, tubing lines, etc. . . . , into one or more receptacles 180 thereof, and/or to a waste container where separate receptacles 180 of bin 18 may be emptied of waste, such as packaging for the aforementioned supplies, for example, deposited therein during infusion procedures. According to some embodiments, one or more additional receptacles are formed in one or more disposal containers, for example, to contain sharps and/or radioactive waste (other than that contained in waste bottle 23), which may be integrated into bin 18, or otherwise fitted into, or attached to shell 13, separate from bin 18.
According to the embodiment illustrated in
According to the illustrated embodiment, doors 221, 225 are hinged to open in an upward direction, per arrows D and C, and, with reference back to
With further reference to
According to the illustrated embodiment, an end 404A, of eluant line 304, and an end 403, of by-pass line 303 extend from third side 393 of frame 39 to couple with divergence valve 35BG and an upstream section of eluant tubing line 302.
As previously mentioned, when generator 21 is replaced, it is typically desirable to also replace those portions of circuit 300 which are shielded behind lid 223 and doors 227, 225, and, in those instances wherein system 10 is moved to a new site each day, these portions may be replaced daily. Thus, according to the illustrated embodiment, these portions are conveniently held together by frame 39, as subassembly 390, in order to facilitate relatively speedy removal and replacement, while assuring a proper assembly orientation, via registration with features formed in sidewall 205 (
With further reference to
Turning now to
According to some preferred embodiments, computer 17 is pre-programmed to guide the user, via monitor 172, through procedures necessary to maintain system 10, to perform quality control tests on system 10, and to operate system 10 for patient infusions, as well as to interact with the user, via the touch-screen capability of monitor 172, according to preferred embodiments, in order to track volumes of eluant and eluate contained within system 10, to track a time from completion of each elution performed by system 10, to calculate one or more system parameters for the quality control tests, and to perform various data operations. Computer 17 may also be pre-programmed to interact with the controller of system 10 in order to keep a running tally or count of elutions per unit time, for a given generator employed by the system, and may further categorize each of the counted elutions, for example, as being generated either as a sample, for quality control testing, or as a dose, for patient injection. The elution count and categorization, along with measurements made on each sample or dose, for example, activity level, volume, flow rate, etc. . . . , may be maintained in a stored record on computer 17. All or a portion of this stored information can be compiled in a report, to be printed locally, and/or to be electronically transferred to a remote location, for example, via an internet connection to technical support personnel, suppliers, service providers, etc. . . . , as previously described. Computer 17 may further interact with the user and/or a reader of encoded information, for example, a bar code reader or a radiofrequency identification (RFID) tag reader, to store and organize product information collected from a product labels/tags, thereby facilitating inventory control, and/or confirming that the proper components, for example, of the tubing circuit, and/or accessories, and/or solutions are being used in the system.
It should be understood that screen shots shown in
After the user enters the appropriate information into data entry fields of log in screen 570, computer 17 presents a request for the user to confirm the volume of eluant that is within reservoir 15 (e.g. saline in saline bag), via a screen 571, and then brings up main menu 470. If the user determines that the volume of eluant/saline is insufficient, the user selects a menu item 573, to replace the saline bag. If system 10 includes an encoded information reader, such as a bar code or RFID tag reader, confirmation that the selected reservoir is proper, i.e. contains the proper saline solution, may be carried out by computer 17, prior to connecting the reservoir into circuit 300, by processing information read from a label/tag attached to the reservoir. Alternatively, or in addition, tubing line 301 of circuit 300 may be provided with a connector which only mates with the proper type of reservoir 15. According to some embodiments, system 10 may further include an osmolarity or charge detector, which is located just downstream of reservoir 15 and is linked to computer 17, so that an error message may be presented on monitor 172 stating that the wrong osmolarity or charge is detected in the eluant supplied by reservoir, indicating an improper solution. One example of a charge detector that may be employed by system 10 is the SciCon™ Conductivity Sensor (available from SciLog, Inc. of Middleton, Wis.).
Once the reservoir/saline bag is successfully replaced, computer 17 prompts the user to enter a quantity of saline contained by the new saline bag, via a screen 574. Alternately, if system 10 includes the aforementioned reader, and the saline bag includes a tag by which volume information is provided, the reader may automatically transfer the quantity information to computer 17. Thus, computer 17 uses either the confirmed eluant/saline volume, via screen 571, or the newly entered eluant/saline volume as a baseline from which to track depletion of reservoir volume, via activations of pump 33, in the operation of system 10. With reference to
In addition to tracking the volume of eluant in reservoir 15, computer 17 also tracks a volume of the eluate which is discharged from generator 21 into waste bottle 23. With reference to
In addition to the above maintenance steps related to eluant and eluate volumes of system 10, the user of system 10 will typically perform quality control tests each day, prior to any patient infusions. With reference to
Once the appropriate amount of time has lapsed, after the elution process of generator column wash, a first quality control test may be performed. With reference to
Upon completion of the elution process for breakthrough testing, computer 17 presents a screen 777, shown in
After the data is entered by the user, computer 17 presents screen 779, from which the user moves back to main menu 470 to perform a system calibration, for example, as will be described in conjunction with
With reference to
With reference to
As previously mentioned, some alternate embodiments of the present invention include an on board dose calibrator so that the entire sequence of sample collection and calculation steps, which are described above, in conjunction with
With reference to
With reference to
With further reference to
Consistency of activity profiles among injected doses can greatly facilitate the use of PET scanning for the quantification of flow, for example, in coronary perfusion studies. Alternative infusion circuit configurations, operable according to alternative methods, to achieve consistency of activity profiles among injected doses, as well as a more uniform level of radioactivity across each individual dose, will be described below, in conjunction with
Printer 117 (
With reference back to
Turning now to
According to preferred embodiments, once the user has followed the instructions presented in screens 983 and 984 and selects to start the air purge, for example, via screen 985, computer 17 directs the controller of system 10 to carry out a complete air purge, in which pump 33 and divergence valves 35BG and 35WP are automatically controlled. The automated air purge preferably includes the following steps, which may be best understood with reference to tubing circuit 300 in
The purge operations, which are facilitated by selecting item 981 from main menu 470, may also be accessed via the selection of an item 991 for generator setup. When the user selects item 991, computer 17 may present an option for guidance in removing an old, depleted, generator and a set of tubing lines, prior to installing the new generator, or an option to just be guided in the installation of the new generator. According to some embodiments, computer 17 is pre-programmed to calculate an amount of activity left in a depleted generator, for example, by tracking activity of eluate over a life of the generator. At an end of the life of the generator, computer 17 may further compile this information, along with other pertinent generator information, into a report that may accompany a declaration of dangerous goods for shipping the depleted generator out for disposal or, in some cases, back to the manufacturer for investigation. An example of such a report is shown in
Similar to circuit 300 (
Collection of discrete volumes of eluate, in reservoir 1350, may help to achieve a more uniform activity level over each injection, for example, like that of profile 1200B in
With further reference to
In the foregoing detailed description, the invention has been described with reference to specific embodiments. However, it may be appreciated that various modifications and changes can be made without departing from the scope of the invention as set forth in the appended claims.
This application is a continuation of U.S. patent application Ser. No. 14/290,765, filed May 29, 2014, which claims priority to U.S. patent application Ser. No. 12/865,924, filed Aug. 3, 2010, now U.S. Pat. No. 9,123,449, issued Sep. 1, 2015, which claims priority to International Patent Application No. PCT/US2009/047030, filed Jun. 11, 2009, which in turn claims priority to the following four patent applications: U.S. patent application Ser. No. 12/137,356, filed Jun. 11, 2008, now U.S. Pat. No. 8,317,674, issued Nov. 27, 2012; U.S. patent application Ser. No. 12/137,363, filed Jun. 11, 2008, now U.S. Pat. No. 7,862,534, issued Jan. 4, 2011; U.S. patent application Ser. No. 12/137,364, filed Jun. 11, 2008; and U.S. patent application Ser. No. 12/137,377, filed Jun. 11, 2008, now U.S. Pat. No. 8,708,352, issued Apr. 29, 2014. The entire contents of all of these applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3483867 | Markovitz | Dec 1969 | A |
3535085 | Shumate | Oct 1970 | A |
3543752 | Hesse et al. | Dec 1970 | A |
3565376 | Viers | Feb 1971 | A |
3576998 | Deutsch et al. | May 1971 | A |
3710118 | Holgate et al. | Jan 1973 | A |
3714429 | McAfee et al. | Jan 1973 | A |
3774036 | Gerhart | Nov 1973 | A |
3847138 | Gollub | Nov 1974 | A |
3861380 | Chassagne et al. | Jan 1975 | A |
3953567 | Grant et al. | Apr 1976 | A |
3991960 | Tanaka | Nov 1976 | A |
3997784 | Picunko et al. | Dec 1976 | A |
4096859 | Agarwal et al. | Jun 1978 | A |
4160910 | Thornton et al. | Jul 1979 | A |
4212303 | Nolan | Jul 1980 | A |
4239970 | Eckhardt | Dec 1980 | A |
4241728 | Mirell | Dec 1980 | A |
4286169 | Rossem | Aug 1981 | A |
4336036 | Leeke et al. | Jun 1982 | A |
4406877 | Neirinckx et al. | Sep 1983 | A |
4466888 | Verkaart | Aug 1984 | A |
4562829 | Bergner | Jan 1986 | A |
4585009 | Barker et al. | Apr 1986 | A |
4585941 | Bergner | Apr 1986 | A |
4597951 | Gennaro et al. | Jul 1986 | A |
4623102 | Hough et al. | Nov 1986 | A |
4625118 | Kriwetz et al. | Nov 1986 | A |
4656697 | Naslund | Apr 1987 | A |
4674403 | Bryant et al. | Jun 1987 | A |
4679142 | Lee | Jul 1987 | A |
4755679 | Wong | Jul 1988 | A |
4759345 | Mistry | Jul 1988 | A |
4769008 | Hessel | Sep 1988 | A |
4853546 | Abe et al. | Aug 1989 | A |
4994056 | Ikeda | Feb 1991 | A |
5039863 | Matsuno et al. | Aug 1991 | A |
5092834 | Bradshaw et al. | Mar 1992 | A |
5166526 | Dietzel | Nov 1992 | A |
5223434 | Kanno | Jun 1993 | A |
5254328 | Herscheid | Oct 1993 | A |
5258906 | Kroll et al. | Nov 1993 | A |
5274239 | Lane et al. | Dec 1993 | A |
5284481 | Soika et al. | Feb 1994 | A |
5395320 | Padda et al. | Mar 1995 | A |
5468355 | Shefer et al. | Nov 1995 | A |
5475232 | Powers et al. | Dec 1995 | A |
5485831 | Holdsworth et al. | Jan 1996 | A |
5573747 | Lacy | Nov 1996 | A |
5580541 | Wells et al. | Dec 1996 | A |
5590648 | Mitchell et al. | Jan 1997 | A |
5674404 | Kenley et al. | Oct 1997 | A |
5681285 | Ford et al. | Oct 1997 | A |
5702115 | Pool et al. | Dec 1997 | A |
5739508 | Uber et al. | Apr 1998 | A |
5765842 | Phaneuf | Jun 1998 | A |
5827429 | Ruschke et al. | Oct 1998 | A |
5840026 | Uber, III et al. | Nov 1998 | A |
5885216 | Evans, III et al. | Mar 1999 | A |
5971923 | Finger | Oct 1999 | A |
6058718 | Forsberg et al. | May 2000 | A |
6157036 | Whiting et al. | Dec 2000 | A |
6220554 | Daoud | Apr 2001 | B1 |
6267717 | Stoll et al. | Jul 2001 | B1 |
6269810 | Brooker et al. | Aug 2001 | B1 |
6327895 | Jeppsson et al. | Dec 2001 | B1 |
6347711 | Goebel et al. | Feb 2002 | B1 |
6442418 | Evans, III et al. | Aug 2002 | B1 |
6450936 | Smith, III et al. | Sep 2002 | B1 |
6454460 | Ramanathan et al. | Sep 2002 | B1 |
6558125 | Futterknecht | May 2003 | B1 |
6626862 | Duchon et al. | Sep 2003 | B1 |
6639237 | Pedersen et al. | Oct 2003 | B2 |
6673594 | Owen et al. | Jan 2004 | B1 |
6758975 | Peabody et al. | Jul 2004 | B2 |
6767319 | Reilly et al. | Jul 2004 | B2 |
6773686 | Herscheid et al. | Aug 2004 | B1 |
6787030 | Hsi | Sep 2004 | B2 |
6870175 | Dell | Mar 2005 | B2 |
6901283 | Evans, III et al. | May 2005 | B2 |
6908598 | Sylvester | Jun 2005 | B2 |
6931327 | Goode et al. | Aug 2005 | B2 |
7091494 | Weisner et al. | Aug 2006 | B2 |
7125166 | Eck et al. | Oct 2006 | B2 |
7163031 | Graves et al. | Jan 2007 | B2 |
7169135 | Duchon et al. | Jan 2007 | B2 |
7204797 | Reilly et al. | Apr 2007 | B2 |
7256888 | Staehr et al. | Aug 2007 | B2 |
7286867 | Schlyer et al. | Oct 2007 | B2 |
7413123 | Ortenzi | Aug 2008 | B2 |
7476377 | Moller et al. | Jan 2009 | B2 |
7504646 | Balestracci et al. | Mar 2009 | B2 |
7522952 | Krieg et al. | Apr 2009 | B2 |
7586102 | Mourtada et al. | Sep 2009 | B2 |
7605384 | Sonnenhol et al. | Oct 2009 | B2 |
7608831 | Lamb et al. | Oct 2009 | B2 |
7612999 | Clark et al. | Nov 2009 | B2 |
7712491 | Tochon-Danguy et al. | May 2010 | B2 |
7734331 | Dhawale et al. | Jun 2010 | B2 |
7737415 | Casale et al. | Jun 2010 | B2 |
7780352 | Fox et al. | Aug 2010 | B2 |
7813841 | deKemp et al. | Oct 2010 | B2 |
7825372 | Allberg | Nov 2010 | B2 |
7862534 | Quirico et al. | Jan 2011 | B2 |
7996068 | Telischak et al. | Aug 2011 | B2 |
8058632 | Balestracci et al. | Nov 2011 | B2 |
8071959 | deKemp | Dec 2011 | B2 |
8198599 | Bouton et al. | Jun 2012 | B2 |
8216181 | Balestracci | Jul 2012 | B2 |
8216184 | Balestracci | Jul 2012 | B2 |
8295916 | Shimchuk et al. | Oct 2012 | B2 |
8317674 | Quirico et al. | Nov 2012 | B2 |
8431909 | Horton et al. | Apr 2013 | B2 |
8439815 | Lemer | May 2013 | B2 |
8442803 | Chen et al. | May 2013 | B2 |
8571881 | Rousso | Oct 2013 | B2 |
8615405 | Rousso | Dec 2013 | B2 |
8708352 | Quirico et al. | Apr 2014 | B2 |
9056164 | Tate | Jun 2015 | B2 |
9056200 | Uber | Jun 2015 | B2 |
9326742 | Hirschman | May 2016 | B2 |
20020128594 | Das et al. | Sep 2002 | A1 |
20020129471 | Wang | Sep 2002 | A1 |
20030004463 | Reilly et al. | Jan 2003 | A1 |
20030014035 | Trombley et al. | Jan 2003 | A1 |
20030139640 | Whittacre et al. | Jul 2003 | A1 |
20030194894 | Wariar et al. | Oct 2003 | A1 |
20030216609 | Dell | Nov 2003 | A1 |
20040054319 | Langley et al. | Mar 2004 | A1 |
20040104160 | Scagliarini et al. | Jun 2004 | A1 |
20040260143 | Reilly et al. | Dec 2004 | A1 |
20050085682 | Sasaki et al. | Apr 2005 | A1 |
20050107698 | Powers | May 2005 | A1 |
20050187515 | Varrichio et al. | Aug 2005 | A1 |
20050277833 | Williams | Dec 2005 | A1 |
20050278066 | Graves et al. | Dec 2005 | A1 |
20060015056 | Ellingboe et al. | Jan 2006 | A1 |
20060151048 | Tochon-Danguy et al. | Jul 2006 | A1 |
20060164093 | Ooe et al. | Jul 2006 | A1 |
20060173419 | Malcolm | Aug 2006 | A1 |
20060235353 | Gelfand et al. | Oct 2006 | A1 |
20070080223 | Japuntich | Apr 2007 | A1 |
20070140958 | deKemp | Jun 2007 | A1 |
20070213848 | deKemp | Sep 2007 | A1 |
20070226175 | Resnic et al. | Sep 2007 | A1 |
20070232980 | Felt et al. | Oct 2007 | A1 |
20070260213 | Williams et al. | Nov 2007 | A1 |
20070282263 | Kalafut et al. | Dec 2007 | A1 |
20080015794 | Eiler et al. | Jan 2008 | A1 |
20080035542 | Mourtada | Feb 2008 | A1 |
20080071219 | Rhinehart et al. | Mar 2008 | A1 |
20080093564 | Tartaglia et al. | Apr 2008 | A1 |
20080131362 | Rousso | Jun 2008 | A1 |
20080166292 | Levin et al. | Jul 2008 | A1 |
20080177126 | Tate | Jul 2008 | A1 |
20080191148 | Gibson | Aug 2008 | A1 |
20080195249 | Rousso | Aug 2008 | A1 |
20080200747 | Wagner et al. | Aug 2008 | A1 |
20080203318 | Wagner et al. | Aug 2008 | A1 |
20080224065 | Pollard | Sep 2008 | A1 |
20080237502 | Fago | Oct 2008 | A1 |
20080242915 | Jackson et al. | Oct 2008 | A1 |
20080260580 | Helle et al. | Oct 2008 | A1 |
20090032729 | Piancastelli | Feb 2009 | A1 |
20090112478 | Mueller, Jr. et al. | Apr 2009 | A1 |
20090155167 | Powell et al. | Jun 2009 | A1 |
20090224171 | Verbokkem | Sep 2009 | A1 |
20090312630 | Hidem et al. | Dec 2009 | A1 |
20090312635 | Shimchuk | Dec 2009 | A1 |
20100030009 | Lemer | Feb 2010 | A1 |
20100312039 | Quirico et al. | Dec 2010 | A1 |
20110071392 | Quirico et al. | Mar 2011 | A1 |
20110172524 | Hidem et al. | Jul 2011 | A1 |
20110178359 | Hirschman et al. | Jul 2011 | A1 |
20110209764 | Uber et al. | Sep 2011 | A1 |
20120098671 | Wieczorek et al. | Apr 2012 | A1 |
20120305730 | Balestracci | Dec 2012 | A1 |
20120310031 | Quirico et al. | Dec 2012 | A1 |
20120312980 | Whitehouse | Dec 2012 | A1 |
20130300109 | Balestracci et al. | Nov 2013 | A1 |
20140084187 | Quirico et al. | Mar 2014 | A1 |
20140175959 | Quirico et al. | Jun 2014 | A1 |
20140343418 | Quirico et al. | Nov 2014 | A1 |
20140374614 | Hidem et al. | Dec 2014 | A1 |
20140374615 | Hidem et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
2913373 | Apr 2008 | CA |
1968653 | May 2007 | CN |
19622184 | Dec 1997 | DE |
102121 | Mar 1984 | EP |
0117752 | Sep 1984 | EP |
310148 | Apr 1989 | EP |
317114 | May 1989 | EP |
160303 | Feb 1991 | EP |
319148 | Feb 1994 | EP |
1421960 | May 2004 | EP |
919249 | Jan 2005 | EP |
1772157 | Apr 2007 | EP |
1820730 | Aug 2007 | EP |
2011126 | Jan 2009 | EP |
2492920 | Aug 2012 | EP |
2867084 | Sep 2005 | FR |
2000350783 | Dec 2000 | JP |
2003520780 | Jul 2003 | JP |
2006017660 | Jan 2006 | JP |
2006043212 | Feb 2006 | JP |
2006325826 | Dec 2006 | JP |
2008023346 | Feb 2008 | JP |
960003726 | Mar 1996 | KR |
2131273 | Jun 1999 | RU |
2288755 | Dec 2006 | RU |
65383 | Aug 2007 | RU |
244513 | Dec 1969 | SU |
391868 | Jun 2000 | TW |
9615337 | May 1996 | WO |
9956117 | Nov 1999 | WO |
0156634 | Aug 2001 | WO |
02096335 | Dec 2002 | WO |
03034444 | Apr 2003 | WO |
2004004787 | Jan 2004 | WO |
2004059661 | Jul 2004 | WO |
2004080523 | Sep 2004 | WO |
2005002971 | Jan 2005 | WO |
2006007750 | Jan 2006 | WO |
2006026603 | Mar 2006 | WO |
2006074473 | Jul 2006 | WO |
2006129301 | Dec 2006 | WO |
2006135374 | Dec 2006 | WO |
2007016170 | Feb 2007 | WO |
2007016173 | Feb 2007 | WO |
2007030249 | Mar 2007 | WO |
2007041017 | Apr 2007 | WO |
2007071022 | Jun 2007 | WO |
2007082093 | Jul 2007 | WO |
2007104133 | Sep 2007 | WO |
2007149108 | Dec 2007 | WO |
2008028165 | Mar 2008 | WO |
2008037939 | Apr 2008 | WO |
2008066586 | Jun 2008 | WO |
2008082966 | Jul 2008 | WO |
2008140351 | Nov 2008 | WO |
2009152320 | Dec 2009 | WO |
2010020596 | Feb 2010 | WO |
2011126522 | Oct 2011 | WO |
Entry |
---|
Precise 82RB Infusion System for Cardiac Perfusion Measurement Using 3D Positron Emission Tomography, Feb. 2005, Ran Klein B.A.Sc., 94 pages. (Year: 2005). |
Lortie et al., “Quantification of myocardial blood flow with 82Rb dynamic PET imaging,” Eur. J. Nucl. Med. Mol. Imaging, vol. 34, 2007, pp. 1765-1774. |
“Alaris GH Syringe Pump Directions for Use,” Cardinal Health, Oct. 2005, 34 pages. |
“Auto Syringe AS40A: Model AS40A Infusion Pump Operation Manual,” Baxter, Aug. 1993, 84 pages. |
“BodyGuard 323 Infusion Pump System Operator Manual,” Caesarea Medical Electronics Ltd, Mar. 2009, 81 pages. |
“CardioGen-82 Rubidium Rb 82 Generator for Elution of Rubidium Chloride Rb 82 Injection,” Bracco Diagnostics, May 2000, 13 pages. |
Kost, “Preventing Medical Errors in Point-of-Care Testing,” Archives of Pathology & Laboratory Medicine, vol. 125, No. 10, Oct. 2001, pp. 1307-1315. |
Leveson, “Medical Devices: the Therac-25,” Appendix of: Safeware: System Safety and Computers, 1995, 49 pages. |
“Medfusion 3000 Series Technical Service Manual,” Smiths Medical, 2010, 184 pages. |
Alvarez-Diez et al. “Manufacture of strontium-82/rubidium-82 generators and quality control of rubidium-82 chloride for myocardial perfusion imaging in patients using positron emission tomography,” Applied Radiation and Isotopes, 1999, pp. 1015-1023. |
Brochure, “IV and Liquid Filters: Speedflow Adult 0.2 um Positive”, http://www.gvs.it/flex/FixedPages/UK/LiquidFilters.php/L/UK/ID/Speedflow%20Adjust% . . . Retrieved from URL on Nov. 11, 2008. |
Bracco Brochure, “Rubidium 82 Infusion System, Easy to Operate . . . Automated . . . Complete”, © Bracco Diagnostics, Inc., 0605-002NA, Jun. 2001, (2 pages). |
“CardioGen-82 Infusion System User's Guide,” Medical Product Service GmbH, Jul. 3, 2007, 53 pages. |
Imaging Technology News, web exclusive: “FDG-PET Injector Thrusts New Life into Molecular Imaging”, Apr. 2008, 2 pages. |
Neil J. Epstein, “A Rb82 infusion system for quantitative perfusion imaging with 3D PET” Applied Radiation and Isotopes, vol. 60, Feb. 9, 2004, pp. 921-927, XP002557544 DOI:10, 1016/j. apradiso.2004.02.002. |
R. Klein, “Precision controlled elution of a Sr82/Rb82 generator for cardiac perfusion imaging with positron emission tomography” Physics in Medicine and Biology, vol. 52, Jan. 11, 2007, pp. 659-673, XP002557545 DOI:10, 1088/0031-9155/52/3/009. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2009/047027, dated Feb. 25, 2010, 22 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2009/047030, dated Feb. 17, 2010, 17 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2009/047031, dated Mar. 1, 2010, 20 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2009/047034, dated Feb. 25, 2010, 15 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2009/063788, dated Apr. 1, 2010, 13 pages. |
Lemer Pax, POSIJET® Integrated FDG dispensing and infusion system, www.lemerpax.com (copyright date May 2008). |
R. Klein, “Precise 82RB infusion system for cardiac perfusion measurement using 3D positron emission tomography”, Ottawa-Carleton Institute for Electrical and Computer Engineering School of Information Technology and Engineering (Electrical & Computer Engineering), Feb. 2005, 147 pages. |
R. Klein, “Precision control of eluted Activity from a Sr/Rb generator for cardiac positron emission tomography”, Proceedings of the 26th Annual International Conference of the IEEE EMBS San Francisco, CA, USA, Sep. 1-5, 2004, 4 pages. |
Machine translation of abstract of RU2307378 published Sep. 27, 2007. |
U.S. Appl. No. 61/952,270, filed Mar. 13, 2014, entitled, “Real Time Nuclear Isotope Detection,” 30 pages. |
U.S. Appl. No. 14/657,598, filed Mar. 13, 2015, entitled, “Real Time Nuclear Isotope Detection,” 48 pages. |
337-1110_640015: Public Version of Complaint and Exhibits 1-28 (Complaint); 1-1283977: “640015 Public Complaint: GreenbergTraurig's letter dated Mar. 27, 2018 re Complainant's filing of documents to support Bracco's request that the Commission commence 337 investigation”, create date Apr. 13, 2018, www.edis.usitc.gov. |
337-1110_643191: Notice of Institution of Investigation (Notice); 1-1285952: “1285952: Notice of Institution of Investigation Inv. No. 337-TA-1110”, create date Apr. 25, 2018, www.edis.usitc.gov. |
337-1110_647318: Joint List of Disputed and Undisputed Claim Terms (Other); 1-1298795: “1298795: Joint List of Disputed and Undisputed Claim Terms”, create date Jun. 8, 2018, www.edis.usitc.gov. |
337-1110_648102: Proposed Construction of Disputed Claim Terms (Response/Submission to ALJ Order); 1-1301950: “Proposed Constructions”, create date Jun. 18, 2018, www.edis.usitc.gov. |
337-1110_650007: Respondent Jubilant DraxImage Inc., Jubilant Pharma Limited, and Jubilant Life Sciences Limited's Notice of Prior Art (Notice of Prior Art); 1-1306444: “Notice of Prior Art”, create date Jul. 10, 2018, www.edis.usitc.gov. |
337-1110_652080: Joint Unopposed Motion for Leave to File Joint Submission of Identification of Claim Terms and Proposed Constructions Thereof out of Time (Motion); 2-1311910: “Identification of Claim Terms”, create date Aug. 3, 2018, www.edis.usitc.gov.create date Aug. 3, 2018, www.edis.usitc.gov. |
337-1110_652479: Granting Joint Motion to File Identification of Claim Terms and Constructions out of Time (Order); 1-1313857: “652479: Order No. 14”, create date Aug. 8, 2018, www.edis.usitc.gov. |
337-1110_661785: Complainant Bracco Diagnostics Inc.'s Motion for Summary Determination of Infringement and Satisfaction of the Economic and Technical Prongs of the Domestic Industry Requirement (Motion); 1-1385894: “Letter to Barton”, create date Nov. 14, 2018, www.edis.usitc.gov. |
337-1110_661785: Complainant Bracco Diagnostics Inc.'s Motion for Summary Determination of Infringement and Satisfaction of the Economic and Technical Prongs of the Domestic Industry Requirement (Motion); 2-1385895: “Motion for Summary Determination”, create date Nov. 14, 2018, www.edis.usitc.gov. |
337-1110_661785: Complainant Bracco Diagnostics Inc.'s Motion for Summary Determination of Infringement and Satisfaction of the Economic and Technical Prongs of the Domestic Industry Requirement (Motion); 3-1385896: “Chart of Undisputed Material Facts”, create date Nov. 14, 2018, www.edis.usitc.gov. |
337-1110_661851: Errata to Staff's Response to Complainant's Motion for Summary Determination of Infringement and Satisfaction of the Economic and Technical Prongs of the Domestic Industry Requirement (Motion Response/Reply); 1-1385993:, create date Nov. 14, 2018, www.edis.usitc.gov. |
337-1110_660985: Respondents' Motion for Summary Determination of Noninfringement of U.S. Pat. No. 9,750,869, U.S. Pat. No. 9,750,870, and U.S. Pat. No. 9,814,826 by Respondents' Version 3.1 and Version 4 Designs (Motion); 1-1383714: ‘Respondents’ Motion for Summary Determination (PV), create date Nov. 5, 2018, www.edis.usitc.gov. |
337-1110_660985: Respondents' Motion for Summary Determination of Noninfringement of U.S. Pat. No. 9,750,869, U.S. Pat. No. 9,750,870, and U.S. Pat. No. 9,814,826 by Respondents' Version 3.1 and Version 4 Designs (Motion); 2-1383715: ‘Memorandum in Support of Respondents’ Motion for Summary Determination (PV), create date Nov. 5, 2018, www.edis.usitc.gov. |
337-1110_660985: Respondents' Motion for Summary Determination of Noninfringement of U.S. Pat. No. 9,750,869, U.S. Pat. No. 9,750,870, and U.S. Pat. No. 9,814,826 by Respondents' Version 3.1 and Version 4 Designs (Motion); 17-1383730: “Chart of Material Facts in Support of Respondents' MSD”, create date Nov. 5, 2018, www.edis.usitc.gov. |
337-1110_661010: Complainant Bracco Diagnostics Inc.'s Motion for Summary Determination of Infringement and Satisfaction of the Economic and Technical Prongs of the Domestic Industry Requirement (Motion); 1-1383879: “Bracco's Motion for Summary Determination”, create date Nov. 5, 2018, www.edis.usitc.gov. |
337-1110_661010: Complainant Bracco Diagnostics Inc.'s Motion for Summary Determination of Infringement and Satisfaction of the Economic and Technical Prongs of the Domestic Industry Requirement (Motion); 2-1383880: “Bracco's Chart of Undisputed Material Facts”, create date Nov. 5, 2018, www.edis.usitc.gov. |
337-1110_661038: Respondents' Unopposed Motion to Replace Respondents' Chart of Material Facts in Support of Motion for Summary Determination (Motion); 1-1383923: “Respondents' Unopposed Motion to Replace Respondents' Chart of Material Facts in Support of Motion for Summary Determination (Public Version)”, create date Nov. 5, 2018, www.edis.usitc.gov. |
337-1110_662007: Respondents' Memorandum in Opposition of Complainant's Motion for Summary Determination of Infringement and Satisfaction of the Economic and Technical Prongs of the Domestic Industry Requirement (Motion Response/Reply); 1-1386474: “Respondents' Memorandum in Opposition to Complainant's Motion for Summary Determination (PV)”, create date Nov. 16, 2018, www.edis.usitc.gov. |
Ruby Rubidium Elution System User Manual, Jubilant DraxImage, Version 7, Created Jun. 3, 2014, Modified Jan. 9, 2015, 58 pages. |
Intego PET Infusion System Operation Manual, Medrad, Rev. G, Jun. 2013, 142 pages. |
Commission Investigative Staff's Prehearing Brief, Inv. No. 337-TA-1110, Dec. 20, 2018, 129 pages. (Confidential Business Information Redacted). |
Saha et al., “Use of the 82Sr/82Rb Generator in Clinical PET Studies,” International Journal of Radiation Applications and Instrumentation, Part B. Nuclear Medicine and Biology, vol. 17, No. 8, 1990, pp. 763-768. |
Yano et al., “Evaluation and Application of Alumina-Based Rb-82 Generators Charged with High Levels of Sr-82/85,” The Journal of Nuclear Medicine, vol. 20, No. 9, 1979, pp. 961-966. |
Yano et al., “A Precision Flow-Controlled Rb-82 Generator for Bolus or Constant-Infusion Studies of the Heart and Brain,” The Journal of Nuclear Medicine, Preliminary Notes, vol. 22, No. 11, 1981, pp. 1006-1010. |
Yano, “Essentials of a Rubidium-82 Generator for Nuclear Medicine,” International Journal of Radiation Applications and Instrumentation, Part A. Applied Radiation and Isotopes, vol. 38, No. 3, 1987, pp. 205-211. |
337-1110_ 662084: Complainant Bracco Diagnostics Inc.'s Response to Jubilant's Motion for Summary Determination of Noninfringement of U.S. Pat. No. 9,750,869, U.S. Pat. No. 9,750,870, and U.S. Pat. No. 9,814,826 by Jubilant's Version 3.1 and Version 4 Designs and Memorandum in Support Thereof (Motion Response/Reply); 1-1386969: “Complainant's Response to Motion for Summary Determination”, create date Nov. 19, 2018, www.edis.usitc.gov. |
337-1110_ 662084: Complainant Bracco Diagnostics Inc.'s Response to Jubilant's Motion for Summary Determination of Noninfringement of U.S. Pat. No. 9,750,869, U.S. Pat. No. 9,750,870, and U.S. Pat. No. 9,814,826 by Jubilant's Version 3.1 and Version 4 Designs and Memorandum in Support Thereof (Motion Response/Reply); 2-1386970: “Disputes to Chart of Material Facts”, create date Nov. 19, 2018, www.edis.usitc.gov. |
337-1110_662795: Staff's Response to Respondents' Motion for Summary Determination of Noninfringement of U.S. Pat. No. 9,750,869; U.S. Pat. No. 9,750,870; and U.S. Pat. No. 9,814,826 by Respondents' Version 3.1 and 4 Designs (Motion Response/Reply); 1-1389338: “Staff's Response to Respondents' Motion for Summary Determination of Noninfringement of U.S. Pat. Nos. 9,750,869; 9,750,870; and 9,814,826 by Respondents' Version 3.1 and 4 Designs”, create date Nov. 28, 2018, www.edis.usitc.gov. |
337-1110_662796: Staff's Response to Complainant's Motion for Summary Determination of Infringement and Satisfaction of the Economic & Technical Prongs of the Domestic Industry Requirement (Motion Response/Reply); 1-1389340: “Staff's Response to Complainant's Motion for Summary Determination of Infringement & Satisfaction of the Economic & Technical Prongs of the Domestic Industry Requirement”, create date Nov. 28, 2018, www.edis.usitc.gov. |
Attachment D: Respondents' Obviousness Contentions, Exchanged in ITC Investigation No. 337-TA-1110, Aug. 8, 2018, 38 pages. (Confidential Business Information Redacted). |
Exhibit D.1: U.S. Pat. No. 9,814,826 Claim Chart—Obviousness Over Klein, Exchanged in ITC Investigation No. 337-TA-1110, Aug. 8, 2018, 207 pages. (Confidential Business Information Redacted). |
Exhibit D.2: U.S. Pat. No. 9,750,869 Claim Chart—Obviousness Over Klein, Exchanged in ITC Investigation No. 337-TA-1110, Aug. 8, 2018, 244 pages. (Confidential Business Information Redacted). |
Exhibit D.3: U.S. Pat. No. 9,750,870 Claim Chart—Obviousness Over Klein, Exchanged in ITC Investigation No. 337-TA-1110, Aug. 8, 2018, 172 pages. (Confidential Business Information Redacted). |
Exhibit D.4: U.S. Pat. No. 9,814,826 Claim Chart—Obviousness Over Cardiogen-82, Exchanged in ITC Investigation No. 337-TA-1110, Aug. 8, 2018, 224 pages. (Confidential Business Information Redacted). |
Exhibit D.5: U.S. Pat. No. 9,750,869 Claim Chart—Obviousness Over Cardiogen-82, Exchanged in ITC Investigation No. 337-TA-1110, Aug. 8, 2018, 255 pages. (Confidential Business Information Redacted). |
Exhibit D.6: U.S. Pat. No. 9,750,870 Claim Chart—Obviousness Over Cardiogen-82, Exchanged in ITC Investigation No. 337-TA-1110, Aug. 8, 2018, 199 pages. (Confidential Business Information Redacted). |
Bracco Diagnostics Inc.'s Rebuttal Contentions in Response to Respondents' Aug. 8, 2018 Contentions (Including Responses to OUII Staff ROG Nos. 13, 18, 19, 20-22, 32 and Respondents' ROG Nos. 5, 9-11, 18, 33), Investigation No. 337-TA-1110, Aug. 15, 2018, 35 pages. (Confidential Business Information Redacted). |
Supplemental Exhibit 1, Response to Supplemental Exhibit D.1: U.S. Pat. No. 9,814,826 Invalidity Contentions, Exchanged in ITC Investigation No. 337-TA-1110, Aug. 15, 2018, 22 pages. (Confidential Business Information Redacted). |
Supplemental Exhibit 2, Response to Supplemental Exhibit D.2: U.S. Pat. No. 9,750,869 Invalidity Contentions, Exchanged in ITC Investigation No. 337-TA-1110, Aug. 15, 2018, 23 pages. (Confidential Business Information Redacted). |
Supplemental Exhibit 3, Complainant's Supplemental Response to Respondents' Supplemental Exhibit D.3: U.S. Pat. No. 9,750,870 Invalidity Contentions, Exchanged in ITC Investigation No. 337-TA-1110, Aug. 15, 2018, 19 pages. (Confidential Business Information Redacted). |
Bracco Diagnostics Inc.'s Supplemental Rebuttal Contentions in Response to Respondents' Aug. 8, 2018 Contentions Pursuant to Order No. 16, Investigation No. 337-TA-1110, Aug. 23, 2018, 18 pages. (Confidential Business Information Redacted). |
Supplemental Exhibit 1, Response to Supplemental Exhibit D.1: U.S. Pat. No. 9,814,826 Invalidity Contentions, Exchanged in ITC Investigation No. 337-TA-1110, Aug. 23, 2018, 22 pages. (Confidential Business Information Redacted). |
Supplemental Exhibit 2, Response to Supplemental Exhibit D.2: U.S. Pat. No. 9,750,869 Invalidity Contentions, Exchanged in ITC Investigation No. 337-TA-1110, Aug. 23, 2018, 25 pages. (Confidential Business Information Redacted). |
Supplemental Exhibit 3, Complainant's Supplemental Response to Respondents' Supplemental Exhibit D.3: U.S. Pat. No. 9,750,870 Invalidity Contentions, Aug. 23, 2018, 26 pages. (Confidential Business Information Redacted). |
Exhibit 4, Response to Exhibit D.4: U.S. Pat. No. 9,814,826 Invalidity Contentions, Aug. 23, 2018, 37 pages. (Confidential Business Information Redacted). |
Exhibit 5, Response to Exhibit D.5: U.S. Pat. No. 9,814,826 Invalidity Contentions, Aug. 23, 2018, 39 pages. (Confidential Business Information Redacted). |
Supplemental Exhibit 6, Complainant's Supplemental Response to Respondents' Supplemental Exhibit D.6: U.S. Pat. No. 9,750,870 Invalidity Contentions, Aug. 23, 2018, 44 pages. (Confidential Business Information Redacted). |
337-1110_652068: Respondents' Jubilant DraxImage Inc., Jubilant Pharma Limited, and Jubilant Life Sciences Limited Notice of Prior Art (Notice of Prior Art); 1-1311880: “Respondents First Supplemental Notice of Prior Art”, create date Aug. 3, 2018, www.edis.usitc.gov, 29 pages. |
Respondents' Pre-Hearing Brief, Public Version, Investigation No. 337-TA-1110, Dec. 12, 2018, 550 pages. |
Declaration of Robert T. Stone, Ph.D., Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., IPR2018-01448 and IPR2018-01450, Exhibit 1015, Aug. 17, 2018, 267 pages. |
Curriculum Vitae of Robert T. Stone, Ph.D., Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., IPR2018-01448, Exhibit 1016, filed Aug. 22, 2018, 10 pages. |
Declaration of Venkatesh L. Murthy, M.D., Ph.D., Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., IPR2018-01448, Exhibit 1017, Aug. 14, 2018, 52 pages. |
US Pharmacopeia 23 National Formulary 18, 1995, 5 pages. (cited as Exhibit 1019 in IPR2018-01448, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc.). |
Declaration of Andy Adler, Ph.D., Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., IPR2018-01448, Exhibit 1020, Aug. 17, 2018, 156 pages. |
Bracco CardioGen-82 Infusion System User's Guide, Rev. 07, Jul. 20, 2004, 49 pages (cited as Exhibit 1021 in IPR2018-01448, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc.). |
Chatal et al., “Story of rubidium-82 and advantages for myocardial perfusion PET imaging,” Frontiers in Medicine, v. 2, art. 65, Sep. 11, 2015, pp. 1-7 (cited as Exhibit 1026 in IPR2018-01448, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc.). |
ISO 13485:2003—Medical Devices—Quality Management Systems—Requirements for Regulatory Purposes, Jul. 15, 2003, 64 pages. (cited as Exhibit 1028 in IPR2018-01448, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc.). |
21 CFR Part 820.1, US Food and Drug Administration, HHS, 2005, pp. 152-153 (cited as Exhibit 1029 in PR2018-01448, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc.). |
EN 62274:2005—Medical Electrical Equipment—Safety of Radiotherapy Record and Verify Systems, Dec. 28, 2005, 22 pages (cited as Exhibit 1030 in IPR2018-01448, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc.). |
21 CFR Part 11.1, US Food and Drug Administration, HHS, 2004, pp. 109-110 (cited as Exhibit 1031 in PR2018-01448, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc.). |
10 CFR Part 20.1001-1002, Nuclear Regulatory Commission, 2005, pp. 317-318 (cited as Exhibit 1032 in IPR2018-01448, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc.). |
10 CFR Part 20.1003, Nuclear Regulatory Commission, 2005, pp. 318-324 (cited as Exhibit 1033 in IPR2018-01448, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc.). |
Wang et al., Handbook of Radioactive Nuclides, The Chemical Rubber Co., 1969, 59 pages (cited as Exhibit 1034 in IPR2018-01448, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc.). |
Bates et al., “Effect of Computerized Physician Order Entry and a Team Intervention on Prevention of Serious Medication Errors,” JAMA, vol. 280, No. 15, Oct. 21, 1998, pp. 1311-1316 (cited as Exhibit 1035 in PR2018-01448, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc.). |
Bates et al., “The Impact of Computerized Physician Order Entry on Medication Error Prevention,” Journal of the American Medical Informatics Association, vol. 6, No. 4, Jul./Aug. 1999, pp. 313-321 (cited as Exhibit 1036 in IPR2018-01448, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc.). |
Medical Devices Security Technical Implementation Guide, Defense Information Systems Agency, Version 1, Release 1, Jul. 27, 2010, 56 pages (cited as Exhibit 1037 in IPR2018-01448, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc.). |
Implementation Guide for the Use of Bar Code Technology in Healthcare, HIMSS, 2003, 72 pages (cited as Exhibit 1038 in IPR2018-01448, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc.). |
337-TA-1110: Complainant Bracco Diagnostics Inc.'s Responses to Respondents Jubilant DraxImage, Inc.'s, Jubilant Pharma Limited's, and Jubilant Life Sciences' Fourth Set of Interrogatories (No. 68), Aug. 6, 2018, 11 pages (cited as Exhibit 1039 in IPR2018-01448, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc.). |
Declaration of Carol Wadke, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., IPR2018-01448, Exhibit 1042, Jul. 27, 2018, 174 pages. |
Petition for Inter Partes Review of U.S. Pat. No. 9,299,468, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., IPR2018-01448, Aug. 22, 2018, 97 pages. |
Patent Owner's Submission of Mandatory Notice Information Under 37 CFR 42.8(a)(2), Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., IPR2018-01448, Sep. 13, 2018, 4 pages. |
Patent Owner's Preliminary Response, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., IPR2018-01448, Nov. 29, 2018, 79 pages. |
Redline comparison between US Patent Publication No. 2004/0260143 A1 (Reilly et al.), published Dec. 23, 2004 and U.S. Pat. No. 6,767,319 B2 (Reilly et al.), issued Jul. 27, 2004, filed Nov. 29, 2018 as Exhibit 2002 in IPR2018-01448, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., 22 pages. |
Declaration of Robert T. Stone, Ph.D., Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., IPR2018-01449, Exhibit 1015, Aug. 16, 2018, 175 pages. |
Petition for Inter Partes Review of U.S. Pat. No. 9,299,467, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., IPR2018-01449, Aug. 22, 2018, 77 pages. |
Patent Owner's Submission of Mandatory Notice Information Under 37 CFR 42.8(a)(2), Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., IPR2018-01449, Sep. 13, 2018, 4 pages. |
Patent Owner's Preliminary Response, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., IPR2018-01449, Nov. 29, 2018, 75 pages. |
Petition for Inter Partes Review of U.S. Pat. No. 9,299,468, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., IPR2018-01450, Aug. 22, 2018, 56 pages. |
Patent Owner's Submission of Mandatory Notice Information Under 37 CFR 42.8(a)(2), Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., IPR2018-01450, Sep. 13, 2018, 4 pages. |
Patent Owner's Preliminary Response, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., IPR2018-01450, Nov. 30, 2018, 64 pages. |
Complainant Bracco Diagnostics Inc.'s Pre-Hearing Brief, Public Version, Inv. No. 337-TA-1110, Dec. 13, 2018, 568 pages. |
Report of Robert T. Stone, Ph.D on Invalidity of U.S. Pat. No. 9,750,869, U.S. Pat. No. 9,750,870 and U.S. Pat. No. 9,814,826, Sep. 17, 2018, 1051 pages. (Confidential Business Information Redacted). |
Corrected Expert Report of Norbert J. Pelc, Sc.D, Investigation No. 337-TA-1110, Oct. 1, 2018, 289 pages. (Confidential Business Information Redacted). |
Decision to Institute in IPR2018-01448, U.S. Pat. No. 9,299,468 B2, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., Feb. 8, 2019, 22 pages. |
Decision to Institute in IPR2018-01449, U.S. Pat. No. 9,299,467 B2, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., Feb. 8, 2019, 21 pages. |
Decision to Institute in IPR2018-01450, U.S. Pat. No. 9,299,468 B2, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., Feb. 8, 2019, 19 pages. |
Commission Opinion, Inv. No. 337-TA-1110, Public Version, Dec. 11, 2019, 43 pages. |
Bracco Diagnostics Inc.'s Petition for Review with Exhibits 1, 2 and 3, Inv. No. 337-TA-1110, Dec. 23, 2019, 240 pages. |
Initial Determination on Violation of Section 337 and Recommended Determination on Remedy and Bond, Inv. No. 337-TA-1110, Public Version, Aug. 1, 2019, 185 pages. |
Final Written Decision in IPR2018-01448, U.S. Pat. No. 9,299,468 B2, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., Feb. 6, 2020, 98 pages. |
Final Written Decision in IPR2018-01449, U.S. Pat. No. 9,299,467 B2, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., Feb. 6, 2020, 58 pages. |
Final Written Decision in IPR2018-01450, U.S. Pat. No. 9,299,468 B2, Jubilant DraxImage Inc. v. Bracco Diagnostics Inc., Feb. 6, 2020, 51 pages. |
Number | Date | Country | |
---|---|---|---|
20160287900 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14290765 | May 2014 | US |
Child | 15152525 | US | |
Parent | 12865924 | US | |
Child | 14290765 | US | |
Parent | 12137356 | Jun 2008 | US |
Child | 12865924 | US | |
Parent | 12137363 | Jun 2008 | US |
Child | 12137356 | US | |
Parent | 12137364 | Jun 2008 | US |
Child | 12137363 | US | |
Parent | 12137377 | Jun 2008 | US |
Child | 12137364 | US |