The disclosure is directed to assembly for aligning inkjet printheads. More specifically, the disclosure is directed to inkjet printheads alignment system providing alignment of up to three (3) degrees of freedom.
In various industrial Printhead Module (PMD) applications (e.g., the printing of printed circuit boards, PCBs), drop placement accuracy can be important. There are a variety of causes for inaccuracies in drop placement. These causes may include misalignment between printheads in an array, as well as misalignment of a substrate to be printed upon.
Most of the alignment errors follow from manufacturing tolerances, which can lead to small dimensional and form variations in the printer components. Likewise, vibrations and thermo-mechanical effects in the system can deteriorate the positioning accuracy of the printheads following extensive or intensive use.
For improving printhead alignment, tightening of manufacturing tolerances can be costly and time consuming. While the printers' performance requirements increase, it becomes necessary to provide the ability to align printhead modules with as great flexibility as possible.
There is therefore a need for an alignment assembly capable of providing alignment with as many degrees of freedom as possible.
Disclosed, in various embodiments, are assemblies and methods for aligning inkjet printheads with up to three (3) degrees of freedom.
In an embodiment provided herein is a three dimension printhead aligning assembly comprising: a mounting platform having a front stage, a back stage and a pair of side rails connecting the front and back stages, the mounting platform comprising two linear phase actuators and defining an internal tetragonal space; a carriage operably coupled to the mounting platform, the carriage further comprising a phase translation anchor and a registration actuator; a sled, the sled nested within—and operably coupled to, the carriage; and an inkjet printheads, the printhead operably coupled to the sled respectively, wherein the assembly is configured to provide three degrees of freedom alignment of the printheads relative to the printing direction and optionally, with respect to a second printhead.
In another embodiment, provided herein is a kit comprising: a mounting platform having a front stage, a back stage and a pair of side rails connecting the front and back stages; a carriage; a sled; and an inkjet printhead, the mounting platform, carriage, sled and inkjet printhead configured to be assembled to form a three degrees of freedom printhead aligning assembly
These and other features of the assemblies and methods for inkjet printheads alignment, will become apparent from the following detailed description when read in conjunction with the figures and examples, which are exemplary, not limiting.
For a better understanding of the assemblies kits and methods for inkjet printheads alignment, with regard to the embodiments thereof, reference is made to the accompanying examples and figures, in which:
Provided herein are embodiments of assemblies and methods for inkjet printheads' alignment.
In an embodiment, provided herein is a three dimension printheads aligning assembly comprising: a mounting platform having a front stage, a back stage and a pair of side rails connecting the front and back stages, the mounting platform comprising at least two linear phase actuators and defining at least two internal tetragonal spaces; twoa carriage operably coupled to the mounting platform, the carriage further comprising a phase translation anchor and a registration actuator; twoa sled, the sled nested within—and operably coupled to, the carriage; and twoan inkjet printhead, the printhead operably coupled to the sled, wherein the assembly is configured to provide three degrees of freedom alignment of the printhead relative to the printing direction, and optionally with respect to a second printhead. The alignment assembly can be adapted to accurately print “drop-over-drop” of ink from two different types of printheads, for example, a first conductive ink followed exactly on the same printing pattern with insulating ink, while leaving certain section non-insulated. Further printheads can be installed on the same platform using the same configuration.
An orifice plate, can be located on the printing side (lower surface) of the printinghead, providing access for the nozzles to print, while potentially also providing protection for the printing head. Jetted ink from each nozzle can exits the orifice for printing. Further, the more closely packed the nozzles of an array are, the better the print quality that can be achieved. Likewise, where the nozzle is displaceable, ink is ejected from the nozzle at a slight angle. Conversely, if nozzles in the array are directed to be displaced in opposite directions, i.e. as mirror images of one another, the ink droplets ejected from such nozzles are offset with respect to the perpendicular to a greater extent. This may result in a degradation of the print quality. Accordingly, it is beneficial to align or otherwise modulate the alignment of a single printhead to obtain the desired orientation of the nozzle array relative to the printing direction, or normal to the printing direction, and/or with respect to another (a second, third, fourth . . . n) printhead
While showing mechanical actuators, other drivers can be used to affect the actuation of the various parts. These include servo motors, pneumatic actuators and the like.
The terms “first,” “second,” and the like, when used herein do not denote any order, quantity, or importance, but rather are used to denote one element from another. The terms “a”, “an” and “the” herein do not denote a limitation of quantity, and are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The suffix “(s)” as used herein is intended to include both the singular and the plural of the term that it modifies, thereby including one or more of that term (e.g., the head(s) includes one or more head). Reference throughout the specification to “one embodiment”, “another embodiment”, “an embodiment”, and so forth, means that a particular element (e.g., feature, structure, and/or characteristic) described in connection with the embodiment is included in at least one embodiment described herein, and may or may not be present in other embodiments. In addition, it is to be understood that the described elements may be combined in any suitable manner in the various embodiments.
In addition, for the purposes of the present disclosure, directional or positional terms such as “top”, “bottom”, “upper,” “lower,” “side,” “front,” “frontal,” “forward,” “rear,” “rearward,” “back,” “trailing,” “above,” “below,” “left,” “right,” “radial,” “vertical,” “upward,” “downward,” “outer,” “inner,” “exterior,” “interior,” “intermediate,” etc., are merely used for convenience in describing the various embodiments of the present disclosure.
The term “coupled”, including its various forms such as “operably coupled”, “coupling” or “coupleable”, refers to and comprises any direct or indirect, structural coupling, connection or attachment, or adaptation or capability for such a direct or indirect structural or operational coupling, connection or attachment, including integrally formed components and components which are coupled via or through another component or by the forming process (e.g., an electromagnetic field). Indirect coupling may involve coupling through an intermediary member or adhesive, or abutting and otherwise resting against, whether frictionally (e.g., against a wall) or by separate means without any physical connection.
The term “engage” and various forms thereof, when used with reference to retention of a member (e.g., the detent), refer to the application of any forces that tend to hold two components together against inadvertent or undesired separating forces (e.g., such as may be introduced during use of either component). It is to be understood, however, that engagement does not in all cases require an interlocking connection that is maintained against every conceivable type or magnitude of separating force. Also, “engaging element” or “engaging member” refers to one or a plurality of coupled components, at least one of which is configured for releasably engaging a tab or detent. For example, the adjustment box can be considered an engaging element.
The term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The foregoing also applies to words having similar meanings such as the terms, “including”, “having” and their derivatives.
Further, the term “sled” as used herein should be broadly construed to mean a device which is moveable in the length direction of the corresponding rail. The sled and the rail may have one of many different forms in order to achieve this. In light of the disclosure a person skilled in the art may choose a suitable form for the sled. Likewise, the term “carriage” shall be broadly defined to include any component designed to carry something on or along something else. Likewise, the term “carriage member” refers to any member that translates the motion of a moving drive member into motion of an object that is mechanically coupled to the carriage member (e.g., the sled).
Moreover, the term “actuator” refers to a device or assembly for imparting movement. The term actuator also refers generally to any of a number of actuation devices which may be utilized in articulating various components (e.g., the carriage and/or the sled) in the disclosed alignment assembly. For example, electromechanical linear actuators, pneumatic cylinders, hydraulic cylinders, and air bladders are all contemplated as being applicable to one or more of the embodiments disclosed hereinbelow. Additionally, actuators may include other combinations of prime movers and links or members which may be utilized to actuate, move, transfer motion, articulate, lift, lower, rotate, extend, retract, or otherwise move links, linkages, platforms, stages, frames, carriages, sleds or any of the members of the alignment assembly discussed.
All ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other. Furthermore, the terms “first,” “second,” and the like, herein do not denote any order, quantity, or importance, but rather are used to denote one element from another.
Likewise, the term “about” means that amounts, sizes, formulations, parameters, and other quantities and characteristics are not and need not be exact, but may be approximate and/or larger or smaller, as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art. In general, an amount, size, formulation, parameter or other quantity or characteristic is “about” or “approximate” whether or not expressly stated to be such.
A skilled person would readily recognize, that while throughout the disclosure, shapes are provided, for example, quadrilateral, tetragonal, rectangle, trapezoid, other shapes and polygons are likewise encompassed. So for example, a “substantially rectangular frame” can likewise be square, or for that matter, oval. determination of the shape of each frame will be made based on overall assembly constraints.
A more complete understanding of the components, processes, assemblies, and devices disclosed herein can be obtained by reference to the accompanying drawings. These figures (also referred to herein as “FIG.”) are merely schematic representations (e.g., illustrations) based on convenience and the ease of demonstrating the present disclosure, and are, therefore, not intended to indicate relative size and dimensions of the devices or components thereof and/or to define or limit the scope of the exemplary embodiments. Although specific terms are used in the following description for the sake of clarity, these terms are intended to refer only to the particular structure of the embodiments selected for illustration in the drawings, and are not intended to define or limit the scope of the disclosure. In the drawings and the following description below, it is to be understood that like numeric designations refer to components of like function.
Turning now to
Further, and as illustrated in
Turning now to
As illustrated in
As further illustrated in
Turning now to
Carriage 200 used in the alignment assemblies described herein, can comprise front 220A and back 220B extension slabs, each having an upper surface and a lower surface. Front 220A and a back 220B extension slabs can each further defining slit 221A, 221B therein, configured to accommodate the phase translation anchor. As illustrated, slits 221A and 221B are elongated (e.g., having an aspect ratio>1), with a longitudinal axis of the opening (major axis) that is normal to the longitudinal axis of the carriage. The length of the openings' major axis can be used and modified to predetermine the carriage phase movement (e.g., in the x-axis).
Carriage 200 can further comprise front 210A and back 210B; phase and/or yaw adjustment tabs extending downward (see e.g.,
Also shown e.g., in
In an embodiment, the term “accommodate” refers to the ability of an accommodating element to allow passage or retention of another element at close tolerance, without substantial space for other elements or components.
As illustrated e.g., in
Turning now to
In an embodiment, the term “biasing element”, or “biaser” refers to any device that provides a biasing force. Representative biasing elements include but are not limited to springs (e.g., elastomeric or metal springs, torsion springs, coil springs, leaf springs, tension springs, compression springs, extension springs, spiral springs, volute springs, flat springs, and the like), detents (e.g., spring-loaded detent balls, cones, wedges, cylinders, and the like), pneumatic devices, hydraulic devices, and the like, and combinations thereof.
Turning now to
Turning now to
Turning now to
As illustrated in
Turning now to
As further illustrated in
Phase translation anchor 630 can similarly have head portion 631, flanged mid portion 632, and tip 633. The tip can be configured to operably couple to front stage bore 105m and back stage bore 106n of the mounting platform 100 used in the alignment assemblies described herein, bores 105m and 106n each respectively disposed between each front stage 101F recess 103p, back stage 101B recess 104q and the internal space defined by front stage 101F, back stage 101B and the side rails 102. Phase translation anchor 630 can be engaged to bores 105m, 106n, through slits 221A, 221B in right partially cylindrical channel, such that it can act as an axle hinge for the lateral movement of carriage 200. As indicated, causing the turning of phase calibration detent 601 to articulate cube-shaped nut 600 forward and phase biasing elements 605A, 605B to move adjustment tabs 210A, 210B toward tetragonal recesses' 103p, 104q wall. Since, as illustrated in
The registration actuator, in other words, the y-axis alignment actuator used in the alignment assemblies described herein is illustrated in several FIGS., for example,
While in the foregoing specification the assemblies kits and methods allowing alignment of inkjet printheads by selectably modulating phase, registration, and yaw have been described in relation to certain preferred embodiments, and many details are set forth for purpose of illustration, it will be apparent to those skilled in the art that the disclosure of the assemblies and methods allowing alignment of inkjet printheads by selectably modulating phase, registration, and yaw is susceptible to additional embodiments and that certain of the details described in this specification and as are more fully delineated in the following claims can be varied considerably without departing from the basic principles of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
6382752 | Riou | May 2002 | B1 |
20080186353 | Parks et al. | Aug 2008 | A1 |
20100289852 | Woolfe et al. | Nov 2010 | A1 |
20140168293 | Moreau et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
59-96968 | Apr 1984 | JP |