Embodiments of the present invention will now be described by way of example only, with reference to the accompanying drawings, in which:
a and 1b are schematic representations of ferroelectric cross point devices;
a is a schematic representation of a cross point structure fabricated using conventional CMOS type techniques.
b is a schematic representation of a cross point structure fabricated according to the present invention;
a-e show a method of fabricating a further cross point device structure according to the present invention;
a and b show a method of fabricating a further cross point device structure according to the present invention;
a-i show a further method of fabricating a cross point device structure according to the present invention; and
a-y show a yet further method of fabricating a cross point device structure according to the present invention.
In this specification, the term “electrically functional material” is intended to refer to the material in the cross point device that provides the desired electrical effect—that is, the ferroelectric material, the light emitting material, the capacitive material, the semiconductor material and so on. However, it may also refer to the electrodes or other material having desirable electrical properties.
In one aspect of the present invention, a cross point device such as a ferroelectric memory device can be fabricated entirely using inkjet deposition techniques, or at least using inkjet techniques for printing the electrically functional material (such as the ferroelectric material) and the top electrodes. In particular, unlike the prior art, in this aspect of the invention inkjet printing may be used to pattern the electronically functional materials. Moreover, no planarisation is required during fabrication, whether by spin coating or other techniques.
Thus, by comparison to conventional layer by layer lithography-based fabrication techniques (as in CMOS technology), the inkjet printing fabrication method of the present invention overcomes the need for techniques such as layer planarisation. This reduces the number of materials and preparations thereof, as well as the number of deposition steps.
The fundamental structure of a cross point array realised by inkjet printing in accordance with the present invention is shown in plan view in
The fabrication process in order to realise such a device via inkjet printing will now be described. Firstly, the bottom electrode 100 can be formed by a “free format” inkjet printing process that essentially uses the native contact angle of a liquid droplet on a surface of the substrate or material provided on the substrate 1000 to define the track width dimension. The track width is inversely proportional to the contact angle exhibited by the printed material on the surface. The free format technique is extremely useful as no pre-patterning is required to define the inkjet printed track, and is intrinsically applicable to multiple layer structures as a film can be simply coated on a device and inkjet printed directly. The need for layer to layer pre-patterning alignment (as is the case for photolithography) is circumvented by this process.
Depending on the wettability of the substrate with respect to the solution used to inkjet print the bottom electrode, it may not be possible to define the bottom electrode on a substrate surface as required by directly printing on the substrate surface itself. Often, it is necessary to cover the substrate surface with a surface “wetting” layer in order to control the wetting property of the inkjet printed tracks. It should be noted that the term “wetting layer” is intended in this specification to mean a layer that adjusts wettability and thus to include both layers that increase and layers that decrease wettability. Taking an aqueous based conducting material such as PEDOT:PSS as an example, and a substrate such as glass, or poly(ethylene naphthalate) (PEN) or poly(ethylene terephthalate) (PET), then a variable wetting of the printable conductor may occur on the surface. By using a thin film of a hydrophilic substance such as PVP, the wetting can be uniformly achieved from a spin-coated film. Alternatively, the wetting material can be inkjet printed on the substrate where required. The printed tracks can then be achieved with a high regularity. This can be achieved for any water based conducting material. Of course, where the wettability of the substrate with respect to the solution is acceptable, there may be no need to provide a wetting layer.
The contact pads 110 as shown in
After the deposition of the bottom electrodes 100, a drying or annealing step may be required to remove any residual solvents from the tracks, or to aid the increase in the track conductivity. The temperatures used in the process will vary according to the material. Typically, for inkjet printing on flexible substrates an upper temperature of 150° C. is acceptable.
After the annealing step of the electrodes, the ferroelectric layer 150 (in the form of a number of distinct regions) is deposited. Taking the example of a polymer ferroelectric P(VDF-TrFE), this can be inkjet printed from a number of solvents. Apart from a high solubility in a solvent, the boiling point (thus solvent vapour pressure) is an important parameter in the selection of a solvent for inkjet printing. Prime solvents for printing the P(VDF-TrFE) for such a process are 1,3-dimethyl-2-imidazolidinone (DMI) and 1-methyl-2-pyrrolidinone (NMP) due to their boiling points of 225° C. and 202° C. respectively. Other solvents such as cyclohexenone (boiling point 168° C.), 1-acetyl-1-cyclohexene (boiling point 201° C.) and benzyl acetone (boiling point 235° C.) may also be suitable candidates. Preferably, each ferroelectric region 150 is formed of one droplet of inkjet deposited material.
After deposition of the ferroelectric material, it may be necessary to remove the residual solvent. The solvents used for inkjet printing may have higher drying temperatures than normal and longer intervals during printing may be needed. Although some drying will occur at the inkjet printer, further removal of the host solvent by heating may be required to ensure a dry film is achieved. This can be achieved by heating the sample on a hotplate (for a film cast from 2-butanone, heating at 60° C. for 20 minutes is sufficient). In addition, the sample can be annealed in order to increase the ferroelectric response of the material by a crystallisation process of the material. Annealing at 140° C. for 1 hour is sufficient to attain this increase in the ordering of the material.
Next, the top electrodes 200 are deposited. However, as described earlier, the contact angle of an aqueous borne conductor will exhibit a high contact angle on a native P(VDF-TrFE) surface. A PVP wetting layer (again in the order of 10nm in thickness) can be inkjet printed or spin coated. The solvent for casting the PVP layer by spin coating can be ethanol or isopropanol. For inkjet printing a respective PVP region on each electrically functional region, a solvent with a lower vapour pressure is required. A solvent such as benzyl alcohol (boiling point 205° C.) can be used for producing a printable ink.
The top electrodes 200 can be deposited on the discrete ferroelectric/wetting layer stack as the PVP wetting layer is continuous over each region of the ferroelectric layer (and the substrate surface when deposited by spin coating), thus completing the ferroelectric capacitor structure.
As an alternative, a surface tension reducing agent such as a Triton-X surfactant may be added to the water based solution in order to reduce the contact angle with a hydrophobic surface.
A comparison of a simple cross point array of the present invention that could be fabricated by conventional CMOS type methods (a) and by inkjet printing as in the present invention (b) is shown in
The device structure shown in
The integration and interconnections can be made at any time because different functional materials can be printed in any desired sequence and position. This fabrication route is more flexible than that in conventional CMOS type fabrication routes, whereby only one material can be deposited at any one vertical level in the device.
In order to increase the density of a printed cross point array, a multiple array, laterally stacked structure can be fabricated. This may be desirable when the lateral dimension of the printed ferroelectric material regions 150 is larger than the lateral pitch of the bottom electrodes 100. Rather than making two cross points over one printed droplet of the ferroelectric, a second cross point array can be made over the first array in an interlaced configuration. Due to a drying phenomenon called the “coffee stain” effect, the profile of a printed droplet does not exhibit a constant thickness. Therefore, if two cross points are fabricated using one printed droplet of ferroelectric material, then the two may not have the same characteristics due to the difference in thickness in the ferroelectric layer. An interlaced structure incorporating one printed droplet per cross point can overcome such problems. The interlaced structure allows the maximum resolution to be achieved by inkjet printing.
The lateral structure achieved by the present invention allows further pairs of first and second electrodes, with ferroelectric material between them at the intersections, to be deposited without first performing any planarisation step, and even without providing a passivation layer across the whole device structure. In particular, the present invention provides a structure in which a first sub-array is formed by a plurality of first electrodes, a plurality of second electrodes at right angles to the first electrodes so that the first and second electrodes intersect, and a distinct region of ferroelectric material between each the first and second electrodes at each intersection. Such a sub-array is similar to the array shown in
In order to fabricate bottom electrodes 120 for the second sub-array, dielectric material 160 is deposited on top of the remaining exposed areas of electrodes 100, 200 first sub-array, as shown in
The selection for this dielectric may be from a number of materials. Some examples include poly(vinyl phenol), poly(methyl methacrylate), polystyrene, polyisobutylene, polyimide and benzocylobutene. All of the examples given are soluble in (or processible from) inkjet printable solvents. Solvents such as alcohols, ketones and polar and non-polar organic solvents (but not all for one material) may be used to produce inkjet printable solutions. Preferably, the dielectric 160 is deposited by inkjet printing. However, it is also possible to cast a dielectric film by spin coating. It should also be noted that although the figure shows all exposed portions of the top and bottom electrodes being covered by the dielectric, it is only necessary to cover those exposed portions of the first and second electrodes on which further electrodes are to be printed.
Once the dielectric 160 has been deposited and dried, the bottom electrode 120 for the next array can be printed as shown in
Second regions of ferroelectric material 151 can be deposited in the positions shown in
If the pitch of the electrodes 100, 120, 200, 220 and the size of the ferroelectric regions 150, 170 and the dielectric regions 160 allow, third and further sub-arrays may be stacked to form a high density lateral, interlaced arrangement.
An example of the formation of a lateral, interlaced triple-stacked cross point array comprising three sub-arrays is shown in
In
c) shows the bottom electrodes 220 of the second sub-array parallel to the bottom electrodes 200 of the first sub-array. It is worth noting, however, that as with other examples the bottom electrodes 220 of the second sub-array could be provided parallel to the top electrodes 100 of the first sub-array.
d) shows second droplets of ferroelectric 151 being deposited;
Once the single cross point array structure or the double (or more)-stacked, interlaced cross point array structure is complete, further cross points may be added by depositing a passivation film and repeating the process. Such an example is shown in
After the lateral, interlaced cross point array of
Subsequently, as shown in
This process of depositing a passivation film and fabricating a further array can be repeated as required in order to create the memory size required. Such a procedure is efficient in order to reduce the lateral size of a memory chip. The example of the device fabrication shown here for an interlaced array may be implemented for an overlapping cross point arrays geometry, and any other positions or angles subtended between the arrays.
As a further example,
Specifically,
b)-(i) show the deposition of the first array. Specifically,
j)-(q) show the deposition of the second array. Specifically,
Finally,
Disposing the top and bottom electrodes at angles to one another has the advantages both that a larger number of interlaced arrays can be deposited without the use of a passivation film and that the area of the intersection can be controlled and increased. For example, if the width of each of the top and bottom electrodes is W and the angle between the top and bottom electrodes is θ, then the area at the intersection is W2/sin θ. The advantage of putting top and bottom electrodes at an angle is therefore that it not only provides a solution to a multiple layered structure, but also increases the area at the cross points—hence increasing the switching charge of each ferroelectric capacitor.
Another method of device fabrication to reduce the overall device size and complexity is to use “shared” bottom and top electrodes in a cross point device. The cross-sectional and plan views of such a device are shown in
The fabrication of cross point arrays has been described for an inkjet printing based technique only, albeit with the possibility of depositing wetting and dielectric layers by spin coating or other suitable methods. This technique is seen as the most efficient method of reducing fabrication costs, due to the ability to fabricate devices completely from solution and without requiring complex manufacturing equipment or swapping of the substrate between different machines during the fabrication process.
It is conceivable, however, to combine conventional processes such as evaporation and lithography to fabricate electrodes with those using inkjet printing. In such a case, a set of bottom electrodes fabricated by such lithography based techniques, is acceptable in terms of device cost, since only one lithography step is required. The alignment of these patterns by a mask aligner is not required, because top electrodes can be fabricated by inkjet printing. Moreover, changes in machines during the fabrication process can be minimised.
By combining one set of electrodes defined by lithography with one by inkjet printing, a higher cross point resolution can be created than by free format inkjet printing alone.
As a further alternative or in addition, the contact pads can be preformed by any suitable technique, such as photolithographic techniques, stamping, micro-embossing, flood printing, and the electrodes can be inkjet printed to connect with the contact the pads.
In short, the present invention can be used on a variety of substrates, and can be tailored to meet the requirements of an array resolution as required due to the flexibility of the additive patterning process of inkjet printing.
The current invention provides a technique by which a number of cross point arrays may be fabricated in both a laterally and a vertically stacked manner.
The impact of this technique is the potential to fabricate low cost and reliable cross point arrays by depositing materials from the liquid phase in ambient conditions. Using the materials described, it is possible to fabricate devices on a number of different substrate materials by the use of wetting layers tailored for the appropriate subsequent materials.
The foregoing description has been given by way of example only and it will be appreciated by a person skilled in the art that modifications can be made within the scope of the present invention.
In particular, the present invention has been described with particular reference to ferroelectric memories. However, the electrically functional material need not be ferroelectric and can have other or additional properties to suit the intended use of the cross point device. For example, the electrically functional material can be a light emitting material and the cross point device an LED or OLED display or photovoltaic device; or the electrically functional material can be a material suitable for forming a capacitor at the cross point(s). It should be noted that two or more different electrically functional materials could be used in a single cross point device.
Number | Date | Country | Kind |
---|---|---|---|
0606592.4 | Mar 2006 | GB | national |