This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2015-119028, filed Jun. 12, 2015, the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to an inspection device of a display device, a method of inspecting a mother substrate for display device, and a display device.
Recently, display devices such as liquid crystal display devices and organic electroluminescent display devices have been put into practical use. In the manufacturing process of the display device, various operation inspections such as an illumination inspection are performed. The inspection device applied to the inspections needs to comprise probes to supply inspection signals together to pads formed in the display device. For example, technology of reducing the number of probes required for the inspections by integrally forming circuits for array inspection and circuits for cell inspection has been disclosed.
In contrast, if the number of channels of a signal source of the inspection device exceeds the total number of pads of the display device or the total number of probes of the inspection device or if the total number of pads or the pitch between the pads (or pad layout) is varied in accordance with product specifications, the probes need to be designed again and manufactured, which causes increase in the manufacturing costs and reduction in the inspection efficiency.
In general, according to one embodiment, an inspection device of a display device, includes: a first probe block which includes first probes; a probe block attachment which supports the first probe block to enable a position of the first probe block to be set variably; a signal source which supplies a signal to the first probes; and a transmission cable which connects the first probe block with the signal source.
According to another embodiment, a method of inspecting a mother substrate for a display device by an inspection device, the inspection device comprising: a first probe block which includes first probes; a second probe block which includes second probes; a probe block attachment which supports the first probe block and the second probe block to enable an interval between the first probe block and the second probe block to be set variably; a signal source; and a transmission cable which connects the first probe block and the second probe block with the signal source, the method comprising:
adjusting the interval between the first probe block and the second probe block in accordance with an interval between a first pad group including first pads disposed on the mother substrate and a second pad group spaced apart from the first pad group and including second pads; and urging the first probes and the second probes to contact the first pads and the second pads, respectively.
According to yet another embodiment, a display device including a display area and a peripheral area including pads for inspection, the pads for inspection including a first pad group composed of first pads and a second pad group composed of second pads, the first pad group and the second pad group being spaced apart from each other, the second pads being arranged at same pitches as the first pads.
Embodiments will be described hereinafter with reference to the accompanying drawings. Note that the disclosure is presented for the sake of exemplification, and any modification and variation conceived within the scope and spirit of the invention by a person having ordinary skill in the art are naturally encompassed in the scope of invention of the present application. Furthermore, a width, thickness, shape, and the like of each element are depicted schematically in the Figures as compared to actual embodiments for the sake of simpler explanation, and they are not to limit the interpretation of the invention of the present application. Furthermore, in the specification and drawings, constituent elements having the same or similar functions as those described in connection with preceding drawings are denoted by like reference numerals and their duplicated detailed explanations may be omitted.
The display device of the embodiments can be applied to a liquid crystal display device comprising a liquid crystal element, a self-luminous display device comprising an organic electroluminescent (EL) display element and the like, an electronic paper display device comprising a cataphoretic element and the like, a display device employing micro-electromechanical systems (MEMS), or a display device employing electrochromism. The display device can be used for, for example, various devices such as smartphones, tablet terminals, mobile telephone terminals, personal computers, TV receivers, vehicle-mounted devices, and game consoles.
The display device DSP comprises a plate-like display panel PNL. The display panel PNL includes a first substrate SUB1, and a second substrate SUB2 disposed to be opposed to the first substrate SUB1. The first substrate SUB1 and the second substrate SUB2 are attached to each other by a sealing member or the like.
The display panel PNL includes a display area DA on which an image is displayed, and a peripheral area PR located outside the display area DA. The display area DA is composed of pixels PX. The display area DA is shaped in a square in the example illustrated, but may be formed in any other polygons or other shapes such as a circle and an ellipsoid. The display panel PNL includes, in the display area DA, a gate line G, a source line S, a switching element SW electrically connected to the gate line G and the source line S in each pixel PX, a pixel electrode PE electrically connected to the switching element SW in each pixel PX, a common electrode CE opposed to the pixel electrode, and the like.
If the display device DSP is a liquid crystal display device, the display device DSP may be what is called a transmissive liquid crystal display device which displays an image by selectively transmitting the light made incident on the display panel PNL from a backlight unit, in each main pixel PX, a reflective liquid crystal display device which displays an image by selectively reflecting external light made incident on the liquid crystal display panel PNL from the outside, in each pixel PX, or a semi-transmissive liquid crystal display panel having the functions of both the transmissive liquid crystal display device and the reflective liquid crystal display device.
The details of the configuration of the display panel PNL are not explained here but, if the display panel PNL is a liquid crystal display panel holding a liquid crystal layer LC between the first substrate SUB1 and the second substrate SUB2, the display panel PNL may have a configuration corresponding to any one of a display mode using a longitudinal electric field along the normal line of the main surface of the substrate, a display mode using the oblique electric field angled with respect to the main surface of the substrate, and a display mode using an appropriate combination of the longitudinal electric field, the lateral electric field and the oblique electric field. In the display mode using the longitudinal electric field, for example, the first substrate SUB1 includes the pixel electrodes PE, and the second substrate SUB2 includes the common electrodes CE opposed to the pixel electrodes PE via the liquid crystal layer LC. In the display mode using the lateral electric field, for example, the first substrate SUB1 includes the pixel electrodes PE and the common electrodes CE.
On the display panel PNL illustrated, the peripheral area PR is formed in a frame shape surrounding the display area DA. The display panel PNL includes an inspection module IS and a signal supply module SS, in the peripheral area PR.
The inspection module IS comprises inspection pads which supply an inspection signal necessary for the operation inspection of the display device DSP. The operation inspection includes, for example, a quality inspection to inspect occurrence of a point defect (line short or line disconnection on the first substrate SUB1) before applying the second substrate SUB2 onto the first substrate SUB1, an illumination inspection to inspect normal illumination of each pixel after applying the second substrate SUB2 onto the first substrate SUB1, and the like. The inspection module IS comprises a first pad group PG1 composed of first pads PA and a second pad group PG2 composed of second pads PB, as the inspection pads. Details of the first pad group PG1 and the second pad group PG2 will be explained later.
The signal supply module SS is located between the first pad group PG1 and the second pad group PG2, in the peripheral area PR. The signal supply module SS comprises terminals to supply signals necessary for displaying image to the display device DSP. More specifically, the signal supply module SS comprises a first terminal group TG1 composed of first terminals TA and a second terminal group TG2 composed of second terminals TB. The first terminal group TG1 is formed along a side SA of the display device DSP of the first substrate SUB1. In the example illustrated, the side SA corresponds to a side of the first substrate SUB1. A side SB of the second substrate SUB2 is located more closely to the display area DA than the side SA. A signal supply source such as a flexible printed circuit is mounted on the first terminal group TG1. The second terminal group TG2 is formed between the side SA and the side SB. A signal supply source such as a driving IC chip is mounted on the second terminal group TG2.
In
Details of the configuration will be explained with reference to the first pad group PG1. In the example illustrated, the total number of the first pads PA is twenty-seven. The first pads PA are formed in a rectangular shape having a width W along the first direction X and a length L along the second direction Y as enlarged in the drawing. The first pads PA have a layout of being arranged in two rows in the second direction Y, which are a first row R1 located on a side close to the side SA and a second row R2 located on a side close to the side SB. The first row R1 includes thirteen first pads PA, and the first pads PA are arranged in the first direction X with equal pitches DX. The second row R2 includes fourteen first pads PA, and the first pads PA are arranged in the first direction X with equal pitches DX. The arrangement pitches DX of the first pads PA in the first row R1 and the second row R2 are equal to each other. The pitches DY along the second direction Y, of the first pads PA of the first row R1 and the first pads PA of the second row R2, are constant. The pitch DX corresponds to the interval along the first direction X, between the centers of the first pads PA, and the pitch DY corresponds to the interval along the second direction Y, between the centers of the first pads PA.
In the second pad group PG2, the second pads PB are arranged with the same pitches as the arrangement pitches DX and DY of the first pads PA. The second pads PB are formed in substantially the same shape as the first pads PA, having the same width W along the first direction X and the same length L along the second direction Y as the first pads PA, as enlarged in the drawing.
The first terminal group TG1 and the second terminal group TG2 are located between the first pad group PG1 and the second pad group PG2 in
The inspection device 1 comprises probe blocks 10, a probe block attachment 20, a signal source 30, a transmission cable 40 and the like. In the drawing, a direction intersecting the first direction X and the second direction Y is referred to as a third direction Z.
The probe blocks 10 have the same configuration and each probe block 10 includes probes. Details of the probe blocks 10 will be explained later. In the present embodiment, at least two probe blocks 10 are disposed for one effective area EF. In the example illustrated, two probe blocks are disposed for one effective area EF and, to distinguish them, they are referred to as a first probe block 11 and a second probe block 12. The first probe block 11 is spaced apart from the second probe block 12 at a particular interval. The first probe block 11 is opposed to the first pad group PG1 in the effective area EF, and the second probe block 12 is opposed to the second pad group PG2 in the effective area EF. The interval along the first direction X between the first probe block 11 and the second probe block 12 is equal to the interval along the first direction X between the first pad group PG1 and the second pad group PG2.
The probe block attachment 20 supports the probe blocks 10. The probe block attachment 20 extends along the first direction X and supports the first probe block 11 and the second probe block 12 to enable the interval between the probe blocks to be set variably. In other words, each of the first probe block 11 and the second probe block 12 is movable along a direction of an arrow A in the drawing parallel to the first direction X. In other words, the first probe block 11 and the second probe block 12 are moved along the probe block attachment 20, in accordance with the interval between the first pad group PG1 and the second pad group PG2 of the mother substrate M which is an inspection target. The interval between the first probe block 11 and the second probe block 12 can be adjusted in accordance with the interval between the first pad group PG1 and the second pad group PG2.
The probe block attachment 20 is connected to an elevating mechanism 21 and a sliding mechanism 22. The elevating mechanism 21 has a configuration of elevating the probe block attachment 20 along a direction of an arrow B in the drawing which is parallel to the third direction Z. The sliding mechanism 22 is configured to slide the probe block attachment 20 along a direction of an arrow C in the drawing which is parallel to the second direction Y.
A signal source 30 has a particular number of channels necessary for the inspection. In the signal source 30, the number of channels allocated to the first probe blocks is equal to the number of channels allocated to the second probe blocks.
The transmission cable 40 connects the signal source 30 with each of the first probe blocks 11 and the second probe blocks 12. The transmission cables 40 linking to the first probe blocks 11, of the transmission cables 40 connected to the signal line 30, are connected to the channels allocated to the first probe blocks in the signal source 30. Similarly, the transmission cables 40 linking to the second probe blocks 12, of the transmission cables 40 connected to the signal line 30, are connected to the channels allocated to the second probe blocks in the signal source 30.
As shown in
As shown in
The probe block 10 has the same configuration as the first probe block 11 and the second probe block 12 shown in
Next, an example of the inspection method applicable to the above-explained inspection device 1 will be explained with reference to the drawings.
First, as shown in
The interval D1 corresponds to the distance (or pitch) between the centers of the first pad group PG1 and the second pad group PG2, and the interval D2 corresponds to the distance (or pitch) between the centers of the first probe block 11 and the second probe block 12. As shown in the drawing, the total number of the first probes PPA in the first probe block 11 is equal to the total number of the first pads PA in the first pad group PG1, and the total number of the second probes PPB in the second probe block 12 is equal to the total number of the second pads PB in the second pad group PG2. As explained above, however, the total number of the probes in each probe block may be different from the total number of the pads in the corresponding pad group.
Next, as shown in
Next, as shown in
In the example illustrated, the sum of first probes PPA and the second probes PPB (or the sum of the first pads PA and the second pads PB) is fifty-four. In contrast, the number of channels of the signal source 30 is forty-eight, smaller than the total number of probes (or the total number of pads). For this reason, the probes supplied with the common inspection signal, in the first probe block 11 and the second probe block 12, are connected to the same channel in the signal source 30.
For example, six first pads PA located on the side close to the second pad group PG2, in the first pad group PG1, and six second pads PB located on the side close to the first pad group PG1, in the second pad group PG2, correspond to the common pads supplied with the same inspection signals at the same timing. In the signal source 30, six channels are allocated to six sets of common pads. In other words, all of forty-eight channels of the signal source 30 are allocated to twenty-one first pads PA in the first pad group PG1, twenty-one second pads PB in the second pad group PG2, and six sets of common pads. The signal source 30 supplies the inspection signals from the channels to the probes, respectively. The inspection signals are supplied from the probes to the pads, respectively.
The channels which can be made common or pads are supplied with, for example, fixed potential signals input to the common electrodes CE, pulse signals input to the common electrodes CE, fixed potential signals necessary to drive the gate lines, pulse signals for aging, clock signals, enable signals, selector signals and the like, as the inspection signals. The arrangement of the channels which can be made common or pads is not limited to the example illustrated.
After that, when the inspection is ended, the elevating mechanism 21 urges the probe block attachment 20 to move up and urges the first probes PPA and the second probes PPB to move away from the first pads PA and the second pads PB, respectively. The sliding mechanism 22 moves the probe block attachment 20 to a next inspection target.
According to the embodiments, the display device comprises the first pad group composed of the first pads, and the second pad group composed of the same number of the second pads as the first pads, and the second pads are arranged at the same pitches as the first pads. For this reason, the inspection device which supplies the inspection signals to the display device can supply the inspection signals to the first pad group and the second pad group by applying the probe blocks of the same configuration as the first probe block and the second probe block.
If the first pad group and the second pad group have difference configurations, the inspection device needs to comprise probe pads applied to each of the first pad group and the second pad group, and at least two types of probe blocks need to be designed and manufactured. According to the embodiments, the first probe block and the second probe block can be provided by designing and manufacturing one type of probe block, and the manufacturing costs can be reduced. In addition, since the same probe blocks are applicable irrespective of specifications of the display device, the inspection can be performed at a prototyping stage of a new product of the display device, and the inspection efficiency can be improved.
In addition, even in the inspection device comprising the signal source of the smaller number of channels than the total number of probes necessary for the inspection (or the total number of the first pads in the first pad group and the second pads in the second pad group), the signal source supplies the inspection signal output from at least one channel to both the first probe block and the second probe block at the same timing. In other words, the probes supplied with the common inspection signal are connected to the same channel, in the signal source. For this reason, the channels of the signal source can be made common and the display device can be inspected with the limited number of channels of the signal source.
In addition, in the display device, the first probe block and the second probe block are supported so as to enable the interval between the probe blocks to be set variably. For this reason, even if the interval between the first pad group and the second pad group is varied on each mother substrate which is the inspection target, any mother substrate can be inspected by adjusting the interval between the first probe block and the second probe block.
Furthermore, the number of the probe blocks can be increased or decreased in the inspection device. For this reason, even if the number of targets of inspection is varied for each mother substrate which is the inspection target, any mother substrate can be inspected by adjusting the number of the probe blocks.
Various types of mother substrate M will be explained as targets of inspection for the inspection device 1 of the embodiments.
The mother substrate M shown in
The mother substrate M shown in
The mother substrate M shown in
The mother substrate M shown in
In any one of the mother substrate M, the first pad group PG1 and the second pad group PG2 formed in the effective area EF have the same configuration. For this reason, according to the inspection device 1 of the embodiments, the inspection can be performed without changing the probe blocks, by adjusting the interval between the first probe block 11 and the second probe block 12 in accordance with the interval between the first pad group PG1 and the second pad group PG2, irrespective of dimensions of the mother substrate M and dimensions of the effective area EF.
One effective area includes two pad groups and the inspection is performed by using two probe blocks for the effective area in the above-explained examples, but if one effective area includes at least three pad groups, the inspection is performed by using at least three probe blocks for the effective area. In this case, too, the probes supplied with the same inspection signal, in each probe block, are connected to the same channel in the signal source and become capable of inspecting each effective area with the limited number of channels of the signal source. Of course, the inspective device can also be used in a case where one effective area includes one pad groups and the inspection is performed by using one probe block for the effective area.
According to the embodiments, as described above, the inspective device of the display device capable of reducing the costs and improving the inspection efficiency, the method of inspecting the mother substrate for the display device, and the display device can be provided.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. For example, the probes are arranged in the same configuration in at least two probe blocks used for one effective area, in the embodiments, but the configuration is not particularly limited but the arrangement of the probes and the number of the probes can be varied. In addition, the pitches of the probes and the pitches of the pads do not need to be the same, but pitches of some pads and probes can be varied in one of the pad groups or one of the probe blocks. Two pad groups are disposed for one effective area corresponding to one display panel and the inspection is preformed by using two probe blocks (i.e., a set of probe blocks) in the embodiments, but at least two effective areas may be connected by the lines on the board, and at least two effective areas may be inspected by using a set of probe blocks. The novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiment described herein may be made without departing from the spirit of the invention. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2015-119028 | Jun 2015 | JP | national |