The present disclosure relates to medical devices and systems, and more particularly, to navigated surgical instruments for use during surgical procedures.
There are a number of surgical interventions requiring osteotomy, e.g., cutting an anatomical structure, such as a bone, along a target plane. A total knee arthroplasty (TKA) may involve cutting both the femoral epiphysis and tibial epiphysis to remove the damaged bone and cartilage and allow for installation of a knee prosthesis.
Currently in TKA surgeries, the patient satisfaction rate may only be about 80%. This is low in comparison to some other types of orthopedic surgeries, such as for hip arthroplasty where patient satisfaction is typically about 95%. These satisfaction rates have remained principally unchanged over several decades despite innovations in new implant designs, custom cutting template solutions, customized implants, and the like. This suggests that there may be problems with TKA and other orthopedic surgeries that have not been addressed by previous medical procedures and related innovations.
Computer-assisted surgery (CAS) including navigation and/or robotic surgical systems may utilize position recognition systems, which determine the position of and track a particular object in 3-dimensions (3D). In navigation and/or robot-assisted surgeries, certain objects, such as surgical instruments, need to be tracked with a high degree of precision as the instrument is being positioned and moved by the surgeon and/or by the robot, for example. There is also a need to provide improved instrumentation for use with navigated and/or robot-assisted surgeries.
To meet this and other needs, and in view of its purposes, the present application provides devices, systems, instruments, and methods for performing orthopedic operations, such as a total knee arthroplasty (TKA). A surgical robotic system and/or navigation system may be provided which navigates one or more instruments and/or assists a user with one or more surgical procedures. Navigable instrumentation, which includes instruments capable of being navigated, and navigation software allow for navigation of the instruments or other surgical devices. The system allows for locating anatomical structures in open or minimally invasive (MIS) procedures and navigation of surgical instruments and other devices throughout the procedure.
According to one embodiment, a system for computer-assisted navigation during surgery includes a robotic navigation system, first and second dynamic reference bases, and a navigable stylus. The robotic navigation system may include a computer, a display, and a camera configured to detect one or more tracking markers. The first dynamic reference base may include a first reference array with a first plurality of tracking markers, and the first dynamic reference base may be configured to attach to and track a first bone. The second dynamic reference base may include a second reference array with a second plurality of tracking markers, and the second dynamic reference base may be configured to attach to and track a second bone. The navigable stylus may include a third reference array with a third plurality of tracking markers and a universal quick-connect attachment tip configured to quickly attach the stylus to one or more instruments and return a position to the robotic navigation system. When used during a total knee arthroplasty, the first bone may be a femur and the second bone may be a tibia or vice versa. The femur and tibia may be positioned in flexion or extension during the procedure.
The instrument may be a posterior tibial wall hook or a plane checker, for example. The posterior tibial wall hook may include a collar and a hook. The collar may include a longitudinal opening configured to receive the universal tip, and the hook may be configured to localize a tibial wall during the total knee arthroplasty. The plane checker may include a collar and a foot. The collar may include a longitudinal opening configured to receive the universal tip, and the foot may include a U-shaped plate with a flat bottom surface configured to be placed on a resection plane to return an angulation and/or cut depth to the robotic navigation system. The instrument may be free to rotate relative to a longitudinal axis of the stylus, thereby allowing quick reorientation of the third reference array, for example, to facilitate line of sight with the camera.
According to another embodiment, a system for computer-assisted navigation during surgery includes a robotic navigation system, first and second dynamic reference bases, and one or more surveillance markers. For example, a first surveillance marker may be configured to attach to a first bone (one of the femur or tibia), and a second surveillance marker may be configured to attach to a second bone (the other femur or tibia). The surveillance marker may include a body including a fastener (e.g., a bone pin) terminating at a distal tip and a single tracking marker on top of the surveillance marker. The surveillance marker may include a verification divot integrated into the body of the surveillance marker. The verification divot may be configured to verify navigational integrity of the system by placing a tip of a separate instrument (e.g., the stylus) into the verification divot of the surveillance marker.
According to another embodiment, a system for computer-assisted navigation during surgery includes a robotic navigation system, first and second dynamic reference bases, and one or more virtual landmarks. For example, a first virtual landmark may be configured to attach to the first bone and a second virtual landmark may be configured to attach to the second bone. The virtual landmark may include a cortical bone screw with a verification divot, for example. The virtual landmark may be configured to verify navigational integrity of the system by placing a tip of a separate instrument (e.g., the stylus) into the verification divot of the virtual landmark.
According to yet another embodiment, a system for computer-assisted navigation during surgery includes a robotic navigation system and one or more dynamic reference bases configured to attach to and track bone. The dynamic reference base may include a single surveillance marker. A distance between the reference array of the dynamic reference base and the surveillance marker is stored by the system. If the dynamic reference base and/or surveillance marker is inadvertently moved, a change in distance and/or movement is identified by the system, thereby altering the user to the disruption.
According to yet another embodiment, a system for computer-assisted navigation during surgery includes a robotic navigation system, first and second dynamic reference bases, and a navigable plane checker. The plane checker may include a body with a reference array including a plurality of tracking markers, a shaft extending from the body, and a foot at a distal end of the shaft. When used during a knee procedure, the plane checker may be placed against the resection to ensure that the angulation and/or location of the resection is correct.
According to yet another embodiment, a system for computer-assisted navigation during surgery includes a robotic navigation system, first and second dynamic reference bases, and a navigable stylus configured for landmark localization and/or point acquisition. When the stylus is on a landmark or point of interest, the stylus may be rotated by a threshold rotation (e.g., at least 30°). The threshold rotation may be captured by the robotic navigation system, thereby capturing the landmark or point of interest by the robotic navigation system. In another embodiment, one tracking marker associated with the reference array of the stylus may be physically movable relative to the other tracking markers. When the stylus is on a landmark or point of interest, the robotic navigation system detects the movement of the one tracking marker relative to the other tracking markers and captures the landmark or point of interest.
According to yet another embodiment, a system for computer-assisted navigation during surgery includes a robotic navigation system, first and second dynamic reference bases, and a tensor including a body with a pair of independent superior distraction paddles, an inferior distraction paddle, a shaft connected to a knob configured to move the superior distraction paddles relative to the inferior distraction paddle, and a spring positioned around the shaft between the body and the knob. The tensor may be configured to provide a distraction force between the tibia and the femur. For example, rotation of the distraction knob may translate the superior distraction paddles outwardly and away from the inferior distraction paddle, thereby providing a gap between the superior and inferior distraction paddles. The tensor may include a pivotable ligament balance indicator positioned on the body of the tensor. The first superior distraction paddle may be connected to a first end of the ligament balance indicator with a first rod, and the second superior distraction paddle may be connected to the opposite end of the ligament balance indicator with a second rod. When distracted, for example, during a knee procedure, the tensor is configured to apply a distraction force FDISTRACTION against the inferior distraction paddle, a force FLCL (lateral collateral ligament) against the first superior distraction paddle, and a force FMCL (medial collateral ligament) against the second superior distraction paddle. When the ligaments are in balance where FLCL=FMCL, the ligament balance indicator indicates the balance, for example, by showing the indicator in a horizontal position. When the ligaments are not in balance where FLCL<FMCL or FLCL>FMCL, then the ligament balance indicator indicates the imbalance, for example, by showing the indicator in a sloped, inclined, or slanted position. The indicator may also indicate the amount or degree of imbalance for each respective force.
According to yet another embodiment, a system for computer-assisted navigation during surgery includes a robotic navigation system and one or more modular dynamic reference bases. The modular dynamic reference base may include a reference array with a plurality of tracking markers, an integrated bridge and pin guide, and one or more fasteners. Each of the plurality of tracking markers may be positioned within a protective shield configured to prevent loss of navigation. The bridge may include a first opening aligned with a first pin guide and a second opening aligned with a second pin guide. First and second fasteners may be receivable through the bridge and pin guides for securing the dynamic reference base to bone. The reference array may include a rectangular frame with a cross brace, and a tracking marker placed at each corner of the rectangular frame within each respective shield. The reference array may be configured to rotate about two axes, for example. The array may be able to rotate about a longitudinal axis of the bridge and/or about an axis perpendicular to the bridge. After adjustment along one or both of the axes, the reference array may be locked into position with one or more locking screws. If desired, an extension arm may be used to increase positioning options for the reference array. The bridge may temporarily attach to a removable handle for installation. The modular components of the dynamic reference base may reduce the number of instruments used throughout the procedure.
According to yet another embodiment, a method of installing the modular dynamic reference base may include one or more of the following in any suitable order: (1) making incision(s) into the patient; (2) attaching a handle to an integrated bridge and pin guide; (3) inserting the bridge in the incision until the bridge contacts cortical bone; (4) driving one or more bone pins through the bridge and pin guide; (5) locking the bridge to the pins, for example, using a locking screw; (6) removing the handle from the bridge; (7) attaching the reference array to the bridge; (8) optionally, attaching an extension between the reference array and the bridge to facilitate more positioning options for the reference array; (9) adjusting the orientation of the reference array, for example, along one or two axes; and (10) locking the final position of the reference array relative to the bridge via one or more locking screws.
Also provided are kits including navigable instruments and components of varying types and sizes, implants, fasteners or anchors, k-wires, insertion tools, and other components for performing the procedure.
A more complete understanding of the present invention, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings, wherein:
During a knee replacement, knee arthroplasty, or total knee arthroplasty (TKA), one or more implants may be used to cap the ends of the femur and/or tibia that form the knee joint. The knee includes the femur or thighbone of the upper leg, the tibia or shin bone of the lower leg, and the patella or knee cap. A TKA may be desirable when osteoarthritis cause breakdown of joint cartilage and/or one or more bones in the knee, rheumatoid arthritis causes inflammation of the synovial membrane, or trauma causes damage to the bone and/or cartilage of the knee. Although a TKA is exemplified herein, it will be appreciated that other orthopedic or other surgical procedures may utilize the devices and systems described herein. In order to improve surgical outcomes, a surgical navigation and/or robotic system may be used to navigate one or more instruments and/or assist the surgeon with one or more surgical procedures.
Referring now to
In navigated and/or robot-assisted surgical procedures, one or more instruments may be tracked using a reference element, array, or dynamic reference array 28, 42, 94. The reference array 28, 42, 94 may include one or tracking markers 18, which are attached or attachable to the instrument and allow for the tracking system 10 to detect and localize the position of the instrument in 3D space. The computer platform in combination with the camera tracking system or other 3D localization system are configured to track in real-time the pose (e.g., positions and rotational orientations) of the reference arrays 28, 42, 94. The tracking of 3D coordinates of the reference array 28, 42, 94 may allow the surgical system 10 to determine the pose of the reference array 28, 42, 94 in any multidimensional space in relation to the target anatomical structure of the patient 2.
The surgical robot system 10 may include one or more patient tracking devices or dynamic reference bases 26, 130 including one or more tracking markers 18, which are adapted to be secured directly to the patient 2 (e.g., to the bone of the patient 2). In the embodiment shown in
The surgical robot system 10 may also utilize a camera 30, for example, positioned on a camera stand 32. The camera stand 32 can have any suitable configuration to move, orient, and support the camera 30 in a desired position. The camera 30 may include any suitable camera or cameras, such as one or more infrared cameras (e.g., bifocal or stereophotogrammetric cameras), able to identify, for example, active and/or passive tracking markers 18 in a given measurement volume viewable from the perspective of the camera 30. The camera 30 may scan the given measurement volume and detect the light that comes from the markers 18 in order to identify and determine the position of the markers 18 in three-dimensions. For example, active markers 18 may include infrared-emitting markers that are activated by an electrical signal (e.g., infrared light emitting diodes (LEDs)), and passive markers 18 may include retro-reflective markers that reflect infrared light (e.g., they reflect incoming IR radiation into the direction of the incoming light), for example, emitted by illuminators on the camera 30 or other suitable device.
The surgical robot 12 is able to control the translation and orientation of the end-effector 22. The robot 10 may be able to move end-effector 22 along x-, y-, and z-axes, for example. The end-effector 22 can be configured for selective rotation about one or more of the x, y-, and z-axis, and a Z Frame axis (such that one or more of the Euler Angles (e.g., roll, pitch, and/or yaw) associated with end-effector 22 can be selectively controlled). In some exemplary embodiments, selective control of the translation and orientation of end-effector 22 can permit performance of medical procedures with significantly improved accuracy.
The robotic positioning system 12 includes one or more computer controlled robotic arms 14 to assist surgeons in planning the position of one or more instruments relative to pre-operative and/or intraoperative patient images. The system 10 may include 2D & 3D imaging software that allows for preoperative planning, navigation, and guidance through dynamic reference arrays, navigated instruments and camera for the placement of instruments, orthopedic devices, or other devices. Further details of surgical robotic and/or navigation systems can be found, for example, in U.S. Pat. No. 8,257,360, U.S. patent publication No. 2019/0021795, and U.S. patent publication No. 2017/0239007, which are all incorporated herein by reference in their entireties for all purposes.
Turning now to
According to one embodiment, the stylus 40 is used as a universal reference element. The stylus 40 may be plugged into several different instruments to make each navigable, thereby eliminating the need for many different reference elements. As best seen in
The universal stylus 40 may be used alone or with attached instruments (e.g., posterior tibial wall hook 54 or plane checker 52). A mechanical connection of the universal stylus 40 to the instruments 52, 54 may allow for the functional length between the navigated tip 46 of the instrument (e.g., measurement surfaces of the hook 54 or plane checker 52) and pattern of the stylus reference array 42 to be controlled with a high level of repeatability. The universal tip 46 may act as a quick connect mechanism for fast attachment of the instrument by the user.
In one embodiment shown in
In another embodiment shown in
As shown in
Turning now to
Accordingly, one or more embodiments described herein provide for the user to perform physical landmark checks even after bony resection removes natural landmarks. One or more embodiments described herein provide for surveillance of the dynamic reference base 26 to ensure that any relative motion to the dynamic reference base 26 is identified and/or recorded. These techniques serve to increase the user's ability to establish and maintain confidence in the system navigational integrity.
With emphasis on
Once inserted into the patient, the location of the surveillance marker 62 may be registered relative to the dynamic reference base 26. The registration stores the virtual distance between the surveillance marker 62 and the dynamic reference base 26. If the dynamic reference base 26 moves (for example, if it was bumped by the user), the system 10 measures the distance and alerts the user when a movement threshold, for example, 2 mm is exceeded. If the user would like to verify or re-establish the navigational integrity, an additional landmark check may be conducted using the verification divot 66 in the surveillance marker 62 as shown in
In an alternative embodiment shown in
In an alternative embodiment shown in
In an alternative embodiment shown in
Turning now to
The foot pedal method of point capture may be problematic if the foot pedal location on the operating room (OR) floor is unknown. For example, the foot pedal may be unintentionally kicked or moved out of reach of the surgeon. If this happens, the surgeon may need to change their focus from the operative field to search for the foot pedal. In addition, cables linking the foot pedal may be problematic, for example, as a trip hazard or obstructing free passage of equipment in the OR. Also, software may need to handle disabling other functionality, such as robot control, that may also be linked to the foot pedal before enabling point capture functionality, which adds complexity to the software algorithms. Accordingly, it may be desirable to include additional embodiments that could be used in place of the traditional foot pedal.
In yet further embodiments, the process may include point capture via a voice input from the user; point capture via blocking or revealing a tracking marker, or blocking then revealing one or more markers with a specific timing (e.g., equivalent of “double clicking”); point capture via gesture with the other hand, the face, or the elbow, captured and interpreted by visible light tracking; point capture by syncing stylus positioning with a metronome, such that at each beat, a new point is captured, which may be valuable if an articulation of a bone is being systematically digitized; or any other suitable point capture methods or techniques.
Turning now to
In robotic and/or navigated TKA, the patient's anatomy is registered to the computational system 10. After registration, the relative location of the patient's tibia 6 and femur 4 may be tracked allowing for real time updates on the computational system 10 of the patient's gap measurements. With the assistance of the tensor 102, the surgeon may view quantified ligament balancing on the navigation display 20. The tensor 102 may facilitate gap balancing by: (1) applying a distraction force between the tibia 6 and femur 4; and/or (2) applying the distraction force such that differing tension in the medial collateral ligament (MCL) and lateral collateral ligament (LCL) is transparent to the user.
As shown in
With reference to
The tensor 102 is configured to provide a distraction force between the tibia 6 and femur 4. The tensor 102 may allow for any imbalance between MCL and LCL tensions to be displayed by a ligament balance indicator 114 positioned on the body 108 of the tensor 102. The first superior distraction paddle 110 may be connected to a first end of the ligament balance indicator 114 with a first rod 124, and the second superior distraction paddle 110 may be connected to the opposite end of the ligament balance indicator with a second rod 126. The indicator 114 may be pivotably connected to the body 108 with a pivot pin 128. The distraction force may be provided, for example, by rotation of the distraction knob 116. Rotation of the distraction knob 116 may translate the superior distraction paddles 110 outwardly and away from the inferior distraction paddle 112, thereby providing a gap 122 between the superior and inferior distraction paddles 110, 112. As the tensor 102 applies the distraction force, the bony anatomy will move. This movement may be registered by the navigation system 10 and may be displayed for interpretation by the surgeon. Specifically, the movement of the femur and tibia are continuously captured (e.g., as the tensor 102 is adjusted) by the camera 30 through the DRB 26 tracking markers on both tibia and femur bones and the gap information is automatically determined by the computer 16 based on the 3-dimensional positions of the tracking markers on the DRBs 26, rather than manually viewed on the tensor by the surgeon. The changing gap information may be continuously displayed/updated in the display 20 for interpretation by the surgeon and may also be used by the computer 16 to automatically determine whether the planned cuts of the tibia and/or femur need to be adjusted. In some cases, the computer 16 may modify the planned cuts based on the automatically determined gap information and display the modified cut planes on the display 20 (preferably in a 3-D graphical representation relative to the bones similar to
With reference to
According to one embodiment, a work flow for using the tensor 102 may include one or more of the following: (1) insert dynamic reference bases 26 in bone and register patient; (2) make a first resection (proximal tibia 6 or distal femur 4); (3) check ligament balance with tensor 102 in extension; (4) adjust implant plan accordingly; (5) make remaining resections; (6) check balance in flexion and extension; (7) adjust cuts if required; (8) insert femur trial and check balance in flexion and extension; (9) adjust tibia plan if required; and (10) complete procedure per standard practice. In this manner, the tensor 102 may facilitate gap balancing. By applying a distraction force between the tibia 6 and femur 4, the information may be displayed on the navigation screen 20 for interpretation by the user. In addition, the distraction force may be applied such that differing tension in the MCL and LCL is apparent to the user on the tensor 102.
Turning now to
Turning now to
The tracking markers 18 may be protected from contamination via one or more physical barriers, protectors, or shields 138 configured to prevent loss of navigation intraoperatively. For example, each of the four tracking markers 18 may be positioned within a respective shield 138. The shields 138 may provide for protection for each of the individual tracking markers 18. The shield 138 may include a round shallow plate with a sloped side. It will be appreciated that the shield 138 may have any suitable configuration for protecting the tracking markers 18. In particular, the tracking markers 18 may be protected from contamination via the shields 138.
The dynamic reference base 130 may include an integrated bridge 134 and pin guide 140. The bridge 134 may include one or more through openings 142 and one or more pin guides 140 configured to receive bone pins 136. The pin guides 140 may include elongate channels configured to guide the bone pins 136 into bone. In the embodiment shown, the bridge 134 may include a first opening 142 aligned and in fluid communication with a first pin guide 140 and a second opening 142 aligned with and in fluid communication with a second pin guide 140. For example, the openings 142 and pin guides 140 may be generally aligned in parallel. It will be appreciated that any suitable number, location, and orientation of openings 142 and pin guides 140 may be selected to effectively attach the bridge 134 to bone. The dynamic reference base 130 may be attached to the patient via the bone pins 136. The bone pins 136 may include self-drilling bone pins. The bridge 134 may be locked to the pins 136 with a first locking screw 144. The integrated bridge 134 and pin guides 140 may reduce the number of instruments required and simplifying the workflow of the procedure.
The dynamic reference base 130 may be attached to the patient with the bone pins 136 and bridge 134. Subsequently, the array 132 may be attached to the bridge 134, for example, with one or more legs 143. The dynamic reference base 130 may include a plurality of legs 143 offered in different lengths for intra and extra incision, which may increase workflow flexibility by facilitating extra and intra incision placement of the construct. The leg 143 may be affixed to the frame of the array 132 and attached to a distal end of the bridge 134. For example, as shown in
As shown in
In order to install the modular dynamic reference base 130, a handle 150 may be attached to the bridge 134. The handle 150 may temporarily connect, for example, to the proximal end of the bridge 134. The handle 150 may include a thumb lock 152, for example, to ensure rigid fixation between the handle 150 and the bridge 134 during use. After the bridge 134 and bone pins 136 are installed, the handle 150 may be removed from the assembly.
A work flow for installing the modular dynamic reference base 130 may include one or more of the following: (1) make skin incisions on patient; (2) attach the handle 150 to the bridge 134 (shown in
Turning now to
It will be further understood that various changes in the details, materials, and arrangements of the parts which have been described and illustrated in order to explain the nature of this invention may be made by those skilled in the art without departing from the scope of the invention as expressed in the claims. One skilled in the art will appreciate that the embodiments discussed above are non-limiting. It will also be appreciated that one or more features of one embodiment may be partially or fully incorporated into one or more other embodiments described herein.
Number | Name | Date | Kind |
---|---|---|---|
4150293 | Franke | Apr 1979 | A |
5246010 | Gazzara et al. | Sep 1993 | A |
5354314 | Hardy et al. | Oct 1994 | A |
5397323 | Taylor et al. | Mar 1995 | A |
5598453 | Baba et al. | Jan 1997 | A |
5772594 | Barrick | Jun 1998 | A |
5791908 | Gillio | Aug 1998 | A |
5820559 | Ng et al. | Oct 1998 | A |
5825982 | Wright et al. | Oct 1998 | A |
5887121 | Funda et al. | Mar 1999 | A |
5911449 | Daniele et al. | Jun 1999 | A |
5951475 | Gueziec et al. | Sep 1999 | A |
5987960 | Messner et al. | Nov 1999 | A |
6012216 | Esteves et al. | Jan 2000 | A |
6031888 | Ivan et al. | Feb 2000 | A |
6033415 | Mittelstadt et al. | Mar 2000 | A |
6080181 | Jensen et al. | Jun 2000 | A |
6106511 | Jensen | Aug 2000 | A |
6122541 | Cosman et al. | Sep 2000 | A |
6144875 | Schweikard et al. | Nov 2000 | A |
6157853 | Blume et al. | Dec 2000 | A |
6167145 | Foley et al. | Dec 2000 | A |
6167292 | Badano et al. | Dec 2000 | A |
6201984 | Funda et al. | Mar 2001 | B1 |
6203196 | Meyer et al. | Mar 2001 | B1 |
6205411 | DiGioia, III et al. | Mar 2001 | B1 |
6212419 | Blume et al. | Apr 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6236875 | Bucholz et al. | May 2001 | B1 |
6246900 | Cosman et al. | Jun 2001 | B1 |
6301495 | Gueziec et al. | Oct 2001 | B1 |
6306126 | Montezuma | Oct 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6314311 | Williams et al. | Nov 2001 | B1 |
6320929 | Von Der Haar | Nov 2001 | B1 |
6322567 | Mittelstadt et al. | Nov 2001 | B1 |
6325808 | Bernard et al. | Dec 2001 | B1 |
6340363 | Bolger et al. | Jan 2002 | B1 |
6377011 | Ben-Ur | Apr 2002 | B1 |
6379302 | Kessman et al. | Apr 2002 | B1 |
6402762 | Hunter et al. | Jun 2002 | B2 |
6424885 | Niemeyer et al. | Jul 2002 | B1 |
6447503 | Wynne et al. | Sep 2002 | B1 |
6451027 | Cooper et al. | Sep 2002 | B1 |
6477400 | Barrick | Nov 2002 | B1 |
6484049 | Seeley et al. | Nov 2002 | B1 |
6487267 | Wolter | Nov 2002 | B1 |
6490467 | Bucholz et al. | Dec 2002 | B1 |
6490475 | Seeley et al. | Dec 2002 | B1 |
6499488 | Hunter et al. | Dec 2002 | B1 |
6501981 | Schweikard et al. | Dec 2002 | B1 |
6507751 | Blume et al. | Jan 2003 | B2 |
6535756 | Simon et al. | Mar 2003 | B1 |
6560354 | Maurer, Jr. et al. | May 2003 | B1 |
6565554 | Niemeyer | May 2003 | B1 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6614453 | Suri et al. | Sep 2003 | B1 |
6614871 | Kobiki et al. | Sep 2003 | B1 |
6619840 | Rasche et al. | Sep 2003 | B2 |
6636757 | Jascob et al. | Oct 2003 | B1 |
6645196 | Nixon et al. | Nov 2003 | B1 |
6666579 | Jensen | Dec 2003 | B2 |
6669635 | Kessman et al. | Dec 2003 | B2 |
6701173 | Nowinski et al. | Mar 2004 | B2 |
6757068 | Foxlin | Jun 2004 | B2 |
6782287 | Grzeszczuk et al. | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6786896 | Madhani et al. | Sep 2004 | B1 |
6788018 | Blumenkranz | Sep 2004 | B1 |
6804581 | Wang et al. | Oct 2004 | B2 |
6823207 | Jensen et al. | Nov 2004 | B1 |
6827351 | Graziani et al. | Dec 2004 | B2 |
6837892 | Shoham | Jan 2005 | B2 |
6839612 | Sanchez et al. | Jan 2005 | B2 |
6856826 | Seeley et al. | Feb 2005 | B2 |
6856827 | Seeley et al. | Feb 2005 | B2 |
6879880 | Nowlin et al. | Apr 2005 | B2 |
6892090 | Verard et al. | May 2005 | B2 |
6920347 | Simon et al. | Jul 2005 | B2 |
6922632 | Foxlin | Jul 2005 | B2 |
6968224 | Kessman et al. | Nov 2005 | B2 |
6978166 | Foley et al. | Dec 2005 | B2 |
6988009 | Grimm et al. | Jan 2006 | B2 |
6991627 | Madhani et al. | Jan 2006 | B2 |
6996487 | Jutras et al. | Feb 2006 | B2 |
6999852 | Green | Feb 2006 | B2 |
7007699 | Martinelli et al. | Mar 2006 | B2 |
7016457 | Senzig et al. | Mar 2006 | B1 |
7043961 | Pandey et al. | May 2006 | B2 |
7062006 | Pelc et al. | Jun 2006 | B1 |
7063705 | Young et al. | Jun 2006 | B2 |
7072707 | Galloway, Jr. et al. | Jul 2006 | B2 |
7083615 | Peterson et al. | Aug 2006 | B2 |
7097640 | Wang et al. | Aug 2006 | B2 |
7099428 | Clinthorne et al. | Aug 2006 | B2 |
7108421 | Gregerson et al. | Sep 2006 | B2 |
7130676 | Barrick | Oct 2006 | B2 |
7139418 | Abovitz et al. | Nov 2006 | B2 |
7139601 | Bucholz et al. | Nov 2006 | B2 |
7155316 | Sutherland et al. | Dec 2006 | B2 |
7164968 | Treat et al. | Jan 2007 | B2 |
7167738 | Schweikard et al. | Jan 2007 | B2 |
7169141 | Brock et al. | Jan 2007 | B2 |
7172627 | Fiere et al. | Feb 2007 | B2 |
7194120 | Wicker et al. | Mar 2007 | B2 |
7197107 | Arai et al. | Mar 2007 | B2 |
7231014 | Levy | Jun 2007 | B2 |
7231063 | Naimark et al. | Jun 2007 | B2 |
7239940 | Wang et al. | Jul 2007 | B2 |
7248914 | Tastings et al. | Jul 2007 | B2 |
7301648 | Foxlin | Nov 2007 | B2 |
7302288 | Schellenberg | Nov 2007 | B1 |
7313430 | Urquhart et al. | Dec 2007 | B2 |
7318805 | Schweikard et al. | Jan 2008 | B2 |
7318827 | Leitner et al. | Jan 2008 | B2 |
7319897 | Leitner et al. | Jan 2008 | B2 |
7324623 | Heuscher et al. | Jan 2008 | B2 |
7327865 | Fu et al. | Feb 2008 | B2 |
7331967 | Lee et al. | Feb 2008 | B2 |
7333642 | Green | Feb 2008 | B2 |
7339341 | Oleynikov et al. | Mar 2008 | B2 |
7366562 | Dukesherer et al. | Apr 2008 | B2 |
7379790 | Toth et al. | May 2008 | B2 |
7386365 | Nixon | Jun 2008 | B2 |
7422592 | Morley et al. | Sep 2008 | B2 |
7435216 | Kwon et al. | Oct 2008 | B2 |
7440793 | Chauhan et al. | Oct 2008 | B2 |
7460637 | Clinthorne et al. | Dec 2008 | B2 |
7466303 | Yi et al. | Dec 2008 | B2 |
7493153 | Ahmed et al. | Feb 2009 | B2 |
7505617 | Fu et al. | Mar 2009 | B2 |
7533892 | Schena et al. | May 2009 | B2 |
7542791 | Mire et al. | Jun 2009 | B2 |
7555331 | Viswanathan | Jun 2009 | B2 |
7567834 | Clayton et al. | Jul 2009 | B2 |
7594912 | Cooper et al. | Sep 2009 | B2 |
7606613 | Simon et al. | Oct 2009 | B2 |
7607440 | Coste-Maniere et al. | Oct 2009 | B2 |
7623902 | Pacheco | Nov 2009 | B2 |
7630752 | Viswanathan | Dec 2009 | B2 |
7630753 | Simon et al. | Dec 2009 | B2 |
7643862 | Schoenefeld | Jan 2010 | B2 |
7660623 | Hunter et al. | Feb 2010 | B2 |
7661881 | Gregerson et al. | Feb 2010 | B2 |
7683331 | Chang | Mar 2010 | B2 |
7683332 | Chang | Mar 2010 | B2 |
7689320 | Prisco et al. | Mar 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7702379 | Avinash et al. | Apr 2010 | B2 |
7702477 | Tuemmler et al. | Apr 2010 | B2 |
7711083 | Heigl et al. | May 2010 | B2 |
7711406 | Kuhn et al. | May 2010 | B2 |
7720523 | Omernick et al. | May 2010 | B2 |
7725253 | Foxlin | May 2010 | B2 |
7726171 | Langlotz et al. | Jun 2010 | B2 |
7742801 | Neubauer et al. | Jun 2010 | B2 |
7751865 | Jascob et al. | Jul 2010 | B2 |
7760849 | Zhang | Jul 2010 | B2 |
7762825 | Burbank et al. | Jul 2010 | B2 |
7763015 | Cooper et al. | Jul 2010 | B2 |
7787699 | Mahesh et al. | Aug 2010 | B2 |
7796728 | Bergfjord | Sep 2010 | B2 |
7813838 | Sommer | Oct 2010 | B2 |
7818044 | Dukesherer et al. | Oct 2010 | B2 |
7819859 | Prisco et al. | Oct 2010 | B2 |
7824401 | Manzo et al. | Nov 2010 | B2 |
7831294 | Viswanathan | Nov 2010 | B2 |
7834484 | Sartor | Nov 2010 | B2 |
7835557 | Kendrick et al. | Nov 2010 | B2 |
7835778 | Foley et al. | Nov 2010 | B2 |
7835784 | Mire et al. | Nov 2010 | B2 |
7840253 | Tremblay et al. | Nov 2010 | B2 |
7840256 | Lakin et al. | Nov 2010 | B2 |
7843158 | Prisco | Nov 2010 | B2 |
7844320 | Shahidi | Nov 2010 | B2 |
7853305 | Simon et al. | Dec 2010 | B2 |
7853313 | Thompson | Dec 2010 | B2 |
7865269 | Prisco et al. | Jan 2011 | B2 |
D631966 | Perloff et al. | Feb 2011 | S |
7879045 | Gielen et al. | Feb 2011 | B2 |
7881767 | Strommer et al. | Feb 2011 | B2 |
7881770 | Melkent et al. | Feb 2011 | B2 |
7886743 | Cooper et al. | Feb 2011 | B2 |
RE42194 | Foley et al. | Mar 2011 | E |
RE42226 | Foley et al. | Mar 2011 | E |
7900524 | Calloway et al. | Mar 2011 | B2 |
7907166 | Lamprecht et al. | Mar 2011 | B2 |
7909122 | Schena et al. | Mar 2011 | B2 |
7925653 | Saptharishi | Apr 2011 | B2 |
7930065 | Larkin et al. | Apr 2011 | B2 |
7935130 | Willliams | May 2011 | B2 |
7940999 | Liao et al. | May 2011 | B2 |
7945012 | Ye et al. | May 2011 | B2 |
7945021 | Shapiro et al. | May 2011 | B2 |
7953470 | Vetter et al. | May 2011 | B2 |
7954397 | Choi et al. | Jun 2011 | B2 |
7971341 | Dukesherer et al. | Jul 2011 | B2 |
7974674 | Hauck et al. | Jul 2011 | B2 |
7974677 | Mire et al. | Jul 2011 | B2 |
7974681 | Wallace et al. | Jul 2011 | B2 |
7979157 | Anvari | Jul 2011 | B2 |
7983733 | Viswanathan | Jul 2011 | B2 |
7988215 | Seibold | Aug 2011 | B2 |
7996110 | Lipow et al. | Aug 2011 | B2 |
8004121 | Sartor | Aug 2011 | B2 |
8004229 | Nowlin et al. | Aug 2011 | B2 |
8010177 | Csavoy et al. | Aug 2011 | B2 |
8019045 | Kato | Sep 2011 | B2 |
8021310 | Sanborn et al. | Sep 2011 | B2 |
3035685 | Jensen | Oct 2011 | A1 |
8046054 | Kim et al. | Oct 2011 | B2 |
8046057 | Clarke | Oct 2011 | B2 |
8052688 | Wolf, II | Nov 2011 | B2 |
8054184 | Cline et al. | Nov 2011 | B2 |
8054752 | Druke et al. | Nov 2011 | B2 |
8057397 | Li et al. | Nov 2011 | B2 |
8057407 | Martinelli et al. | Nov 2011 | B2 |
8062288 | Cooper et al. | Nov 2011 | B2 |
8062375 | Glerum et al. | Nov 2011 | B2 |
8066524 | Burbank et al. | Nov 2011 | B2 |
8073335 | Labonville et al. | Dec 2011 | B2 |
8079950 | Stern et al. | Dec 2011 | B2 |
8086299 | Adler et al. | Dec 2011 | B2 |
8092370 | Roberts et al. | Jan 2012 | B2 |
8098914 | Liao et al. | Jan 2012 | B2 |
8100950 | St. Clair et al. | Jan 2012 | B2 |
8105320 | Manzo | Jan 2012 | B2 |
8108025 | Csavoy et al. | Jan 2012 | B2 |
8109877 | Moctezuma de la Barrera et al. | Feb 2012 | B2 |
8112292 | Simon | Feb 2012 | B2 |
8116430 | Shapiro et al. | Feb 2012 | B1 |
8120301 | Goldberg et al. | Feb 2012 | B2 |
8121249 | Wang et al. | Feb 2012 | B2 |
8123675 | Funda et al. | Feb 2012 | B2 |
8133229 | Bonutti | Mar 2012 | B1 |
8142420 | Schena | Mar 2012 | B2 |
8147494 | Leitner et al. | Apr 2012 | B2 |
8150494 | Simon et al. | Apr 2012 | B2 |
8150497 | Gielen et al. | Apr 2012 | B2 |
8150498 | Gielen et al. | Apr 2012 | B2 |
8165658 | Waynik et al. | Apr 2012 | B2 |
8170313 | Kendrick et al. | May 2012 | B2 |
8179073 | Farritor et al. | May 2012 | B2 |
8182476 | Julian et al. | May 2012 | B2 |
8184880 | Zhao et al. | May 2012 | B2 |
8202278 | Orban, III et al. | Jun 2012 | B2 |
8208708 | Homan et al. | Jun 2012 | B2 |
8208988 | Jensen | Jun 2012 | B2 |
8219177 | Smith et al. | Jul 2012 | B2 |
8219178 | Smith et al. | Jul 2012 | B2 |
8220468 | Cooper et al. | Jul 2012 | B2 |
8224024 | Foxlin et al. | Jul 2012 | B2 |
8224484 | Swarup et al. | Jul 2012 | B2 |
8225798 | Baldwin et al. | Jul 2012 | B2 |
8228368 | Zhao et al. | Jul 2012 | B2 |
8231610 | Jo et al. | Jul 2012 | B2 |
8263933 | Hartmann et al. | Jul 2012 | B2 |
8239001 | Verard et al. | Aug 2012 | B2 |
8241271 | Millman et al. | Aug 2012 | B2 |
8248413 | Gattani et al. | Aug 2012 | B2 |
8256319 | Cooper et al. | Sep 2012 | B2 |
8271069 | Jascob et al. | Sep 2012 | B2 |
8271130 | Hourtash | Sep 2012 | B2 |
8281670 | Larkin et al. | Oct 2012 | B2 |
8282653 | Nelson et al. | Oct 2012 | B2 |
8301226 | Csavoy et al. | Oct 2012 | B2 |
8311611 | Csavoy et al. | Nov 2012 | B2 |
8320991 | Jascob et al. | Nov 2012 | B2 |
8332012 | Kienzle, III | Dec 2012 | B2 |
8333755 | Cooper et al. | Dec 2012 | B2 |
8335552 | Stiles | Dec 2012 | B2 |
8335557 | Maschke | Dec 2012 | B2 |
8348931 | Cooper et al. | Jan 2013 | B2 |
8353963 | Glerum | Jan 2013 | B2 |
8358818 | Miga et al. | Jan 2013 | B2 |
8359730 | Burg et al. | Jan 2013 | B2 |
8374673 | Adcox et al. | Feb 2013 | B2 |
8374723 | Zhao et al. | Feb 2013 | B2 |
8379791 | Forthmann et al. | Feb 2013 | B2 |
8386019 | Camus et al. | Feb 2013 | B2 |
8392022 | Ortmaier et al. | Mar 2013 | B2 |
8394099 | Patwardhan | Mar 2013 | B2 |
8395342 | Prisco | Mar 2013 | B2 |
8398634 | Manzo et al. | Mar 2013 | B2 |
8400094 | Schena | Mar 2013 | B2 |
8414957 | Enzerink et al. | Apr 2013 | B2 |
8418073 | Mohr et al. | Apr 2013 | B2 |
8450694 | Baviera et al. | May 2013 | B2 |
8452447 | Nixon | May 2013 | B2 |
RE44305 | Foley et al. | Jun 2013 | E |
8462911 | Vesel et al. | Jun 2013 | B2 |
8465476 | Rogers et al. | Jun 2013 | B2 |
8465771 | Wan et al. | Jun 2013 | B2 |
8467851 | Mire et al. | Jun 2013 | B2 |
8467852 | Csavoy et al. | Jun 2013 | B2 |
8469947 | Devengenzo et al. | Jun 2013 | B2 |
RE44392 | Hynes | Jul 2013 | E |
8483434 | Buehner et al. | Jul 2013 | B2 |
8483800 | Jensen et al. | Jul 2013 | B2 |
8486532 | Enzerink et al. | Jul 2013 | B2 |
8489235 | Moll et al. | Jul 2013 | B2 |
8500722 | Cooper | Aug 2013 | B2 |
8500728 | Newton et al. | Aug 2013 | B2 |
8504201 | Moll et al. | Aug 2013 | B2 |
8506555 | Ruiz Morales | Aug 2013 | B2 |
8506556 | Schena | Aug 2013 | B2 |
8508173 | Goldberg et al. | Aug 2013 | B2 |
8512318 | Tovey et al. | Aug 2013 | B2 |
8515576 | Lipow et al. | Aug 2013 | B2 |
8518120 | Glerum et al. | Aug 2013 | B2 |
8521331 | Itkowitz | Aug 2013 | B2 |
8526688 | Groszmann et al. | Sep 2013 | B2 |
8526700 | Isaacs | Sep 2013 | B2 |
8527094 | Kumar et al. | Sep 2013 | B2 |
8528440 | Morley et al. | Sep 2013 | B2 |
8532741 | Heruth et al. | Sep 2013 | B2 |
8541970 | Nowlin et al. | Sep 2013 | B2 |
8548563 | Simon et al. | Oct 2013 | B2 |
8549732 | Burg et al. | Oct 2013 | B2 |
8551114 | Ramos de la Pena | Oct 2013 | B2 |
8551116 | Julian et al. | Oct 2013 | B2 |
8556807 | Scott et al. | Oct 2013 | B2 |
8556979 | Glerum et al. | Oct 2013 | B2 |
8560118 | Green et al. | Oct 2013 | B2 |
8561473 | Blumenkranz | Oct 2013 | B2 |
8562594 | Cooper et al. | Oct 2013 | B2 |
8571638 | Shoham | Oct 2013 | B2 |
8571710 | Coste-Maniere et al. | Oct 2013 | B2 |
8573465 | Shelton, IV | Nov 2013 | B2 |
8574303 | Sharkey et al. | Nov 2013 | B2 |
8585420 | Burbank et al. | Nov 2013 | B2 |
8594841 | Zhao et al. | Nov 2013 | B2 |
8597198 | Sanborn et al. | Dec 2013 | B2 |
8600478 | Verard et al. | Dec 2013 | B2 |
8603077 | Cooper et al. | Dec 2013 | B2 |
8611985 | Lavallee et al. | Dec 2013 | B2 |
8613230 | Blumenkranz et al. | Dec 2013 | B2 |
8621939 | Blumenkranz et al. | Jan 2014 | B2 |
8624537 | Nowlin et al. | Jan 2014 | B2 |
8630389 | Kato | Jan 2014 | B2 |
8634897 | Simon et al. | Jan 2014 | B2 |
8634957 | Toth et al. | Jan 2014 | B2 |
8638056 | Goldberg et al. | Jan 2014 | B2 |
8638057 | Goldberg et al. | Jan 2014 | B2 |
8639000 | Zhao et al. | Jan 2014 | B2 |
8641726 | Bonutti | Feb 2014 | B2 |
8644907 | Hartmann et al. | Feb 2014 | B2 |
8657809 | Schoepp | Feb 2014 | B2 |
8660635 | Simon et al. | Feb 2014 | B2 |
8666544 | Moll et al. | Mar 2014 | B2 |
8675939 | Moctezuma de la Barrera | Mar 2014 | B2 |
8678647 | Gregerson et al. | Mar 2014 | B2 |
8679125 | Smith et al. | Mar 2014 | B2 |
8679183 | Glerum et al. | Mar 2014 | B2 |
8682413 | Lloyd | Mar 2014 | B2 |
8684253 | Giordano et al. | Apr 2014 | B2 |
8685098 | Glerum et al. | Apr 2014 | B2 |
8693730 | Umasuthan et al. | Apr 2014 | B2 |
8694075 | Groszmann et al. | Apr 2014 | B2 |
8696458 | Foxlin et al. | Apr 2014 | B2 |
8700123 | Okamura et al. | Apr 2014 | B2 |
8706086 | Glerum | Apr 2014 | B2 |
8706185 | Foley et al. | Apr 2014 | B2 |
8706301 | Zhao et al. | Apr 2014 | B2 |
8717430 | Simon et al. | May 2014 | B2 |
8727618 | Maschke et al. | May 2014 | B2 |
8734432 | Tuma et al. | May 2014 | B2 |
8738115 | Amberg et al. | May 2014 | B2 |
8738181 | Greer et al. | May 2014 | B2 |
8740882 | Jun et al. | Jun 2014 | B2 |
8746252 | McGrogan et al. | Jun 2014 | B2 |
8749189 | Nowlin et al. | Jun 2014 | B2 |
8749190 | Nowlin et al. | Jun 2014 | B2 |
8761930 | Nixon | Jun 2014 | B2 |
8764448 | Yang et al. | Jul 2014 | B2 |
8771170 | Mesallum et al. | Jul 2014 | B2 |
8781186 | Clements et al. | Jul 2014 | B2 |
8781630 | Banks et al. | Jul 2014 | B2 |
8784385 | Boyden et al. | Jul 2014 | B2 |
8786241 | Nowlin et al. | Jul 2014 | B2 |
8787520 | Baba | Jul 2014 | B2 |
8792704 | Isaacs | Jul 2014 | B2 |
8798231 | Notohara et al. | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8808164 | Hoffman et al. | Aug 2014 | B2 |
8812077 | Dempsey | Aug 2014 | B2 |
8814793 | Brabrand | Aug 2014 | B2 |
8816628 | Nowlin et al. | Aug 2014 | B2 |
8818105 | Myronenko et al. | Aug 2014 | B2 |
8820605 | Shelton, IV | Sep 2014 | B2 |
8821511 | von Jako et al. | Sep 2014 | B2 |
8823308 | Nowlin et al. | Sep 2014 | B2 |
8827996 | Scott et al. | Sep 2014 | B2 |
8828024 | Farritor et al. | Sep 2014 | B2 |
8830224 | Zhao et al. | Sep 2014 | B2 |
8834489 | Cooper et al. | Sep 2014 | B2 |
8834490 | Bonutti | Sep 2014 | B2 |
8838270 | Druke et al. | Sep 2014 | B2 |
8844789 | Shelton, IV et al. | Sep 2014 | B2 |
8855822 | Bartol et al. | Oct 2014 | B2 |
8858598 | Seifert et al. | Oct 2014 | B2 |
8860753 | Bhandarkar et al. | Oct 2014 | B2 |
8864751 | Prisco et al. | Oct 2014 | B2 |
8864798 | Weiman et al. | Oct 2014 | B2 |
8864833 | Glerum et al. | Oct 2014 | B2 |
8867703 | Shapiro et al. | Oct 2014 | B2 |
8870880 | Himmelberger et al. | Oct 2014 | B2 |
8876866 | Zappacosta et al. | Nov 2014 | B2 |
8880223 | Raj et al. | Nov 2014 | B2 |
8882803 | Iott et al. | Nov 2014 | B2 |
8883210 | Truncale et al. | Nov 2014 | B1 |
8888821 | Rezach et al. | Nov 2014 | B2 |
8888853 | Glerum et al. | Nov 2014 | B2 |
8888854 | Glerum et al. | Nov 2014 | B2 |
8894652 | Seifert et al. | Nov 2014 | B2 |
8894688 | Suh | Nov 2014 | B2 |
8894691 | Iott et al. | Nov 2014 | B2 |
8906069 | Hansell et al. | Dec 2014 | B2 |
8964934 | Ein-Gal | Feb 2015 | B2 |
8992580 | Bar et al. | Mar 2015 | B2 |
8996169 | Lightcap et al. | Mar 2015 | B2 |
9001963 | Sowards-Emmerd et al. | Apr 2015 | B2 |
9002076 | Khadem et al. | Apr 2015 | B2 |
9044190 | Rubner et al. | Jun 2015 | B2 |
9107683 | Hourtash et al. | Aug 2015 | B2 |
9125556 | Zehavi et al. | Sep 2015 | B2 |
9131986 | Greer et al. | Sep 2015 | B2 |
9215968 | Schostek et al. | Dec 2015 | B2 |
9308050 | Kostrzewski et al. | Apr 2016 | B2 |
9380984 | Li et al. | Jul 2016 | B2 |
9393039 | Lechner et al. | Jul 2016 | B2 |
9398886 | Gregerson et al. | Jul 2016 | B2 |
9398890 | Dong et al. | Jul 2016 | B2 |
9414859 | Ballard et al. | Aug 2016 | B2 |
9420975 | Gutfleisch et al. | Aug 2016 | B2 |
9492235 | Hourtash et al. | Nov 2016 | B2 |
9592096 | Maillet et al. | Mar 2017 | B2 |
9750465 | Engel et al. | Sep 2017 | B2 |
9757203 | Hourtash et al. | Sep 2017 | B2 |
9795354 | Menegaz et al. | Oct 2017 | B2 |
9814535 | Bar et al. | Nov 2017 | B2 |
9820783 | Donner et al. | Nov 2017 | B2 |
9833265 | Donner et al. | Nov 2017 | B2 |
9848922 | Tohmeh et al. | Dec 2017 | B2 |
9925011 | Gombert et al. | Mar 2018 | B2 |
9931025 | Graetzel et al. | Apr 2018 | B1 |
10034717 | Miller et al. | Jul 2018 | B2 |
20010036302 | Miller | Nov 2001 | A1 |
20020035321 | Bucholz et al. | Mar 2002 | A1 |
20040068172 | Nowinski et al. | Apr 2004 | A1 |
20040076259 | Jensen et al. | Apr 2004 | A1 |
20050096502 | Khalili | May 2005 | A1 |
20050143651 | Verard et al. | Jun 2005 | A1 |
20050171558 | Abovitz et al. | Aug 2005 | A1 |
20060100610 | Wallace et al. | May 2006 | A1 |
20060173329 | Marquart et al. | Aug 2006 | A1 |
20060184396 | Dennis et al. | Aug 2006 | A1 |
20060241416 | Marquart et al. | Oct 2006 | A1 |
20060291612 | Nishide et al. | Dec 2006 | A1 |
20070015987 | Benlloch Baviera et al. | Jan 2007 | A1 |
20070016009 | Lakin et al. | Jan 2007 | A1 |
20070021738 | Hasser et al. | Jan 2007 | A1 |
20070038059 | Sheffer et al. | Feb 2007 | A1 |
20070073133 | Schoenefeld | Mar 2007 | A1 |
20070156121 | Millman et al. | Jul 2007 | A1 |
20070156157 | Nahum et al. | Jul 2007 | A1 |
20070167712 | Keglovich et al. | Jul 2007 | A1 |
20070233238 | Huynh et al. | Oct 2007 | A1 |
20070244488 | Metzger et al. | Oct 2007 | A1 |
20080004523 | Jensen | Jan 2008 | A1 |
20080013809 | Zhu et al. | Jan 2008 | A1 |
20080033283 | Dellaca et al. | Feb 2008 | A1 |
20080046122 | Manzo et al. | Feb 2008 | A1 |
20080082109 | Moll et al. | Apr 2008 | A1 |
20080108912 | Node-Langlois | May 2008 | A1 |
20080108991 | von Jako | May 2008 | A1 |
20080109012 | Falco et al. | May 2008 | A1 |
20080144906 | Allred et al. | Jun 2008 | A1 |
20080161680 | von Jako et al. | Jul 2008 | A1 |
20080161682 | Kendrick et al. | Jul 2008 | A1 |
20080177203 | von Jako | Jul 2008 | A1 |
20080200794 | Teichman et al. | Aug 2008 | A1 |
20080214922 | Hartmann et al. | Sep 2008 | A1 |
20080228068 | Viswanathan et al. | Sep 2008 | A1 |
20080228196 | Wang et al. | Sep 2008 | A1 |
20080235052 | Node-Langlois et al. | Sep 2008 | A1 |
20080269596 | Revie et al. | Oct 2008 | A1 |
20080287771 | Anderson | Nov 2008 | A1 |
20080287781 | Revie et al. | Nov 2008 | A1 |
20080300477 | Lloyd et al. | Dec 2008 | A1 |
20080300478 | Zuhars et al. | Dec 2008 | A1 |
20080302950 | Park et al. | Dec 2008 | A1 |
20080306490 | Lakin et al. | Dec 2008 | A1 |
20080319311 | Hamadeh | Dec 2008 | A1 |
20090012509 | Csavoy et al. | Jan 2009 | A1 |
20090030428 | Omori et al. | Jan 2009 | A1 |
20090080737 | Battle et al. | Mar 2009 | A1 |
20090185655 | Koken et al. | Jul 2009 | A1 |
20090198121 | Hoheisel | Aug 2009 | A1 |
20090216113 | Meier et al. | Aug 2009 | A1 |
20090228019 | Gross et al. | Sep 2009 | A1 |
20090259123 | Navab et al. | Oct 2009 | A1 |
20090259230 | Khadem et al. | Oct 2009 | A1 |
20090264899 | Appenrodt et al. | Oct 2009 | A1 |
20090281417 | Hartmann et al. | Nov 2009 | A1 |
20100022874 | Wang et al. | Jan 2010 | A1 |
20100039506 | Sarvestani et al. | Feb 2010 | A1 |
20100125286 | Wang et al. | May 2010 | A1 |
20100130986 | Mailloux et al. | May 2010 | A1 |
20100228117 | Hartmann | Sep 2010 | A1 |
20100228265 | Prisco | Sep 2010 | A1 |
20100249571 | Jensen et al. | Sep 2010 | A1 |
20100274120 | Heuscher | Oct 2010 | A1 |
20100280363 | Skarda et al. | Nov 2010 | A1 |
20100331858 | Simaan et al. | Dec 2010 | A1 |
20110022229 | Jang et al. | Jan 2011 | A1 |
20110077504 | Fischer et al. | Mar 2011 | A1 |
20110098553 | Robbins et al. | Apr 2011 | A1 |
20110137152 | Li | Jun 2011 | A1 |
20110213384 | Jeong | Sep 2011 | A1 |
20110224684 | Larkin et al. | Sep 2011 | A1 |
20110224685 | Larkin et al. | Sep 2011 | A1 |
20110224686 | Larkin et al. | Sep 2011 | A1 |
20110224687 | Larkin et al. | Sep 2011 | A1 |
20110224688 | Larkin et al. | Sep 2011 | A1 |
20110224689 | Larkin et al. | Sep 2011 | A1 |
20110224825 | Larkin et al. | Sep 2011 | A1 |
20110230967 | O'Halloran et al. | Sep 2011 | A1 |
20110238080 | Ranjit et al. | Sep 2011 | A1 |
20110276058 | Choi et al. | Nov 2011 | A1 |
20110282189 | Graumann | Nov 2011 | A1 |
20110286573 | Schretter et al. | Nov 2011 | A1 |
20110295062 | Gratacos Solsona et al. | Dec 2011 | A1 |
20110295370 | Suh et al. | Dec 2011 | A1 |
20110306986 | Lee et al. | Dec 2011 | A1 |
20120035507 | George et al. | Feb 2012 | A1 |
20120046668 | Gantes | Feb 2012 | A1 |
20120051498 | Koishi | Mar 2012 | A1 |
20120053597 | Anvari et al. | Mar 2012 | A1 |
20120059248 | Holsing et al. | Mar 2012 | A1 |
20120071753 | Hunter et al. | Mar 2012 | A1 |
20120108954 | Schulhauser et al. | May 2012 | A1 |
20120136372 | Amat Girbau et al. | May 2012 | A1 |
20120143084 | Shoham | Jun 2012 | A1 |
20120184839 | Woerlein | Jul 2012 | A1 |
20120197182 | Millman et al. | Aug 2012 | A1 |
20120226145 | Chang et al. | Sep 2012 | A1 |
20120235909 | Birkenbach et al. | Sep 2012 | A1 |
20120245596 | Meenink | Sep 2012 | A1 |
20120253332 | Moll | Oct 2012 | A1 |
20120253360 | White et al. | Oct 2012 | A1 |
20120256092 | Zingerman | Oct 2012 | A1 |
20120294498 | Popovic | Nov 2012 | A1 |
20120296203 | Hartmann et al. | Nov 2012 | A1 |
20130006267 | Odermatt et al. | Jan 2013 | A1 |
20130016889 | Myronenko et al. | Jan 2013 | A1 |
20130030571 | Ruiz Morales et al. | Jan 2013 | A1 |
20130035583 | Park et al. | Feb 2013 | A1 |
20130060146 | Yang et al. | Mar 2013 | A1 |
20130060337 | Petersheim et al. | Mar 2013 | A1 |
20130094742 | Feilkas | Apr 2013 | A1 |
20130096574 | Kang et al. | Apr 2013 | A1 |
20130113791 | Isaacs et al. | May 2013 | A1 |
20130116706 | Lee et al. | May 2013 | A1 |
20130131695 | Scarfogliero et al. | May 2013 | A1 |
20130144307 | Jeong et al. | Jun 2013 | A1 |
20130158542 | Manzo et al. | Jun 2013 | A1 |
20130165937 | Patwardhan | Jun 2013 | A1 |
20130178867 | Farritor et al. | Jul 2013 | A1 |
20130178868 | Roh | Jul 2013 | A1 |
20130178870 | Schena | Jul 2013 | A1 |
20130204271 | Brisson et al. | Aug 2013 | A1 |
20130211419 | Jensen | Aug 2013 | A1 |
20130211420 | Jensen | Aug 2013 | A1 |
20130218142 | Tuma et al. | Aug 2013 | A1 |
20130223702 | Holsing et al. | Aug 2013 | A1 |
20130225942 | Holsing et al. | Aug 2013 | A1 |
20130225943 | Holsing et al. | Aug 2013 | A1 |
20130231556 | Holsing et al. | Sep 2013 | A1 |
20130237995 | Lee et al. | Sep 2013 | A1 |
20130245375 | DiMaio et al. | Sep 2013 | A1 |
20130261640 | Kim et al. | Oct 2013 | A1 |
20130272488 | Bailey et al. | Oct 2013 | A1 |
20130272489 | Dickman et al. | Oct 2013 | A1 |
20130274761 | Devengenzo et al. | Oct 2013 | A1 |
20130281821 | Liu et al. | Oct 2013 | A1 |
20130296884 | Taylor et al. | Nov 2013 | A1 |
20130303887 | Holsing et al. | Nov 2013 | A1 |
20130307955 | Deitz et al. | Nov 2013 | A1 |
20130317521 | Choi et al. | Nov 2013 | A1 |
20130325033 | Schena et al. | Dec 2013 | A1 |
20130325035 | Hauck et al. | Dec 2013 | A1 |
20130331686 | Freysinger et al. | Dec 2013 | A1 |
20130331858 | Devengenzo et al. | Dec 2013 | A1 |
20130331861 | Yoon | Dec 2013 | A1 |
20130342578 | Isaacs | Dec 2013 | A1 |
20130345717 | Markvicka et al. | Dec 2013 | A1 |
20130345757 | Stad | Dec 2013 | A1 |
20140001235 | Shelton, IV | Jan 2014 | A1 |
20140012131 | Heruth et al. | Jan 2014 | A1 |
20140031664 | Kang et al. | Jan 2014 | A1 |
20140046128 | Lee et al. | Feb 2014 | A1 |
20140046132 | Hoeg et al. | Feb 2014 | A1 |
20140046340 | Wilson et al. | Feb 2014 | A1 |
20140049629 | Siewerdsen et al. | Feb 2014 | A1 |
20140058406 | Tsekos | Feb 2014 | A1 |
20140073914 | Lavallee et al. | Mar 2014 | A1 |
20140080086 | Chen | Mar 2014 | A1 |
20140081128 | Verard et al. | Mar 2014 | A1 |
20140088612 | Bartol et al. | Mar 2014 | A1 |
20140094694 | Moctezuma de la Barrera | Apr 2014 | A1 |
20140094851 | Gordon | Apr 2014 | A1 |
20140096369 | Matsumoto et al. | Apr 2014 | A1 |
20140100587 | Farritor et al. | Apr 2014 | A1 |
20140121676 | Kostrzewski et al. | May 2014 | A1 |
20140128882 | Kwak et al. | May 2014 | A1 |
20140135796 | Simon et al. | May 2014 | A1 |
20140142591 | Alvarez et al. | May 2014 | A1 |
20140142592 | Moon et al. | May 2014 | A1 |
20140148692 | Hartmann et al. | May 2014 | A1 |
20140163581 | Devengenzo et al. | Jun 2014 | A1 |
20140171781 | Stiles | Jun 2014 | A1 |
20140171900 | Stiles | Jun 2014 | A1 |
20140171965 | Loh et al. | Jun 2014 | A1 |
20140180308 | von Grunberg | Jun 2014 | A1 |
20140180309 | Seeber et al. | Jun 2014 | A1 |
20140187915 | Yaroshenko et al. | Jul 2014 | A1 |
20140188132 | Kang | Jul 2014 | A1 |
20140194699 | Roh et al. | Jul 2014 | A1 |
20140130810 | Azizian et al. | Aug 2014 | A1 |
20140221819 | Sarment | Aug 2014 | A1 |
20140222023 | Kim et al. | Aug 2014 | A1 |
20140228631 | Kwak et al. | Aug 2014 | A1 |
20140234804 | Huang et al. | Aug 2014 | A1 |
20140257328 | Kim et al. | Sep 2014 | A1 |
20140257329 | Jang et al. | Sep 2014 | A1 |
20140257330 | Choi et al. | Sep 2014 | A1 |
20140257332 | Zastrozna | Sep 2014 | A1 |
20140275760 | Lee et al. | Sep 2014 | A1 |
20140275985 | Walker et al. | Sep 2014 | A1 |
20140276931 | Parihar et al. | Sep 2014 | A1 |
20140276940 | Seo | Sep 2014 | A1 |
20140276944 | Farritor et al. | Sep 2014 | A1 |
20140288413 | Hwang et al. | Sep 2014 | A1 |
20140299648 | Shelton, IV et al. | Oct 2014 | A1 |
20140303434 | Farritor et al. | Oct 2014 | A1 |
20140303643 | Ha et al. | Oct 2014 | A1 |
20140305995 | Shelton, IV et al. | Oct 2014 | A1 |
20140309659 | Roh et al. | Oct 2014 | A1 |
20140316436 | Bar et al. | Oct 2014 | A1 |
20140323803 | Hoffman et al. | Oct 2014 | A1 |
20140324070 | Min et al. | Oct 2014 | A1 |
20140330288 | Date et al. | Nov 2014 | A1 |
20140364720 | Darrow et al. | Dec 2014 | A1 |
20140371577 | Maillet et al. | Dec 2014 | A1 |
20150039034 | Frankel et al. | Feb 2015 | A1 |
20150085970 | Bouhnik et al. | Mar 2015 | A1 |
20150146847 | Liu | May 2015 | A1 |
20150150524 | Yorkston et al. | Jun 2015 | A1 |
20150196261 | Funk | Jul 2015 | A1 |
20150213633 | Chang et al. | Jul 2015 | A1 |
20150335480 | Alvarez et al. | Nov 2015 | A1 |
20150342647 | Frankel et al. | Dec 2015 | A1 |
20160005194 | Schretter et al. | Jan 2016 | A1 |
20160166329 | Langan et al. | Jun 2016 | A1 |
20160235480 | Scholl et al. | Aug 2016 | A1 |
20160249990 | Glozman et al. | Sep 2016 | A1 |
20160302871 | Gregerson et al. | Oct 2016 | A1 |
20160320322 | Suzuki | Nov 2016 | A1 |
20160331335 | Gregerson et al. | Nov 2016 | A1 |
20170135770 | Scholl et al. | May 2017 | A1 |
20170143284 | Sehnert et al. | May 2017 | A1 |
20170143426 | Isaacs et al. | May 2017 | A1 |
20170156816 | Ibrahim | Jun 2017 | A1 |
20170202629 | Maillet et al. | Jul 2017 | A1 |
20170212723 | Atarot et al. | Jul 2017 | A1 |
20170215825 | Johnson et al. | Aug 2017 | A1 |
20170215826 | Johnson et al. | Aug 2017 | A1 |
20170215827 | Johnson et al. | Aug 2017 | A1 |
20170231710 | Scholl et al. | Aug 2017 | A1 |
20170258426 | Risher-Kelly et al. | Sep 2017 | A1 |
20170273748 | Hourtash et al. | Sep 2017 | A1 |
20170296277 | Hourtash et al. | Oct 2017 | A1 |
20170360493 | Zucher et al. | Dec 2017 | A1 |
20170360512 | Couture et al. | Dec 2017 | A1 |
20190038366 | Johnson | Feb 2019 | A1 |
20190228859 | Moctezuma de la Barrera | Jul 2019 | A1 |
20190357986 | Morgan | Nov 2019 | A1 |
20200323654 | Marrapode | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
2006500182 | Jan 2006 | JP |
Entry |
---|
US 8,231,638 B2, 07/2012, Swarup et al. (withdrawn) |
Number | Date | Country | |
---|---|---|---|
20220008136 A1 | Jan 2022 | US |