Integrated circuit heat pipe heat spreader with through mounting holes

Information

  • Patent Grant
  • 6302192
  • Patent Number
    6,302,192
  • Date Filed
    Wednesday, May 12, 1999
    25 years ago
  • Date Issued
    Tuesday, October 16, 2001
    23 years ago
Abstract
The apparatus is a heat pipe with superior heat transfer between the heat pipe and the heat source and heat sink. The heat pipe is held tightly against the heat source by mounting holes which penetrate the structure of the heat pipe but are sealed off from the vapor chamber because they each are located within a sealed structure such as a pillar or the solid layers of the casing surrounding the vapor chamber. Another feature of the heat pipe is the use of more highly heat conductive material for only that part of the wick in the region which contacts the heat source, so that there is superior heat conductivity in that region.
Description




BACKGROUND OF THE INVENTION




This invention relates generally to active solid state devices, and more specifically to a heat pipe for cooling an integrated circuit chip, with the heat pipe designed to be held in direct contact with the integrated circuit.




As integrated circuit chips decrease in size and increase in power, the required heat sinks and heat spreaders have grown to be larger than the chips. Heat sinks are most effective when there is a uniform heat flux applied over the entire heat input surface. When a heat sink with a large heat input surface is attached to a heat source of much smaller contact area, there is significant resistance to the flow of heat along the heat input surface of the heat sink to the other portions of the heat sink surface which are not in direct contact with the contact area of the integrated circuit chip. Higher power and smaller heat sources, or heat sources which are off center from the heat sink, increase the resistance to heat flow to the balance of the heat sink. This phenomenon can cause great differences in the effectiveness of heat transfer from various parts of a heat sink. The effect of this unbalanced heat transfer is reduced performance of the integrated circuit chip and decreased reliability due to high operating temperatures.




The brute force approach to overcoming the resistance to heat flow within heat sinks which are larger than the device being cooled is to increase the size of the heat sink, increase the thickness of the heat sink surface which contacts the device to be cooled, increase the air flow which cools the heat sink, or reduce the temperature of the cooling air. However, these approaches increase weight, noise, system complexity, and expense.




It would be a great advantage to have a simple, light weight heat sink for an integrated circuit chip which includes an essentially isothermal surface even though only a part of the surface is in contact with the chip, and also includes a simple means for assuring intimate contact with the integrated circuit chip to provide good heat transfer between the chip and the heat sink.




SUMMARY OF THE INVENTION




The present invention is an inexpensive heat pipe heat spreader for integrated circuit chips which is of simple, light weight construction. It is easily manufactured, requires little additional space, and provides additional surface area for cooling the integrated circuit and for attachment to heat transfer devices for moving the heat away from the integrated circuit chip to a location from which the heat can be more easily disposed of. Furthermore, the heat pipe heat spreader is constructed to assure precise flatness and to maximize heat transfer from the heat source and to the heat sink, and has holes through its body to facilitate mounting.




The heat spreader of the present invention is a heat pipe which requires no significant modification of the circuit board or socket because it is held in intimate contact with the integrated circuit chip by conventional screws attached to the integrated circuit mounting board. This means that the invention uses a very minimum number of simple parts. Furthermore, the same screws which hold the heat spreader against the chip can also be used to clamp a finned heat sink to the opposite surface of the heat spreader.




The internal structure of the heat pipe is an evacuated vapor chamber with a limited amount of liquid and includes a pattern of spacers extending between and contacting the two plates or any other boundary structure forming the vapor chamber. The spacers prevent the plates from bowing inward, and therefore maintain the vital flat surface for contact with the integrated circuit chip. These spacers can be solid columns, embossed depressions formed in one of the plates, or a mixture of the two. Porous capillary wick material also covers the inside surfaces of the heat pipe and has a substantial thickness surrounding the surfaces of the spacers within the heat pipe, thus forming pillars of porous wick surrounding the supporting spacers. The wick material therefore spans the space between the plates in multiple locations.




The spacers thus serve important purposes. They support the flat plates and prevent them from deflecting inward and distorting the plates to deform the flat surfaces which are required for good heat transfer. The spacers also serve as critical support for the portions of the capillary wick which span the internal space between the plates. The capillary wick pillars which span the space between the plates provide a gravity independent characteristic to the heat spreader, and the spacers around which the wick pillars are located assure that the capillary wick is not subjected to destructive compression forces.




The spacers also make it possible to provide holes into and through the vapor chamber, an apparent inconsistency since a heat pipe vacuum chamber is supposed to be vacuum tight. This is accomplished by bonding the spacers, if they are solid, to both plates of the heat pipe, or, if they are embossed in one plate, bonding the portions of the depressions which contact the opposite plate to that opposite plate. With the spacer bonded to one or both plates, a through hole can be formed within the spacer and it has no effect on the vacuum integrity of the heat pipe vapor chamber, from which the hole is completely isolated.




An alternate embodiment of the invention provides the same provision for mounting the heat pipe heat spreader with simple screws even when the heat pipe is constructed without internal spacers. This embodiment forms the through holes in the solid boundary structure around the outside edges of the two plates. This region of the heat pipe is by its basic function already sealed off from the vapor chamber by the bond between the two plates, and the only additional requirement for forming a through hole within it is that the width of the bonded region be larger than the diameter of the hole. Clearly, with the holes located in the peripheral lips, the heat pipe boundary structure can be any shape.




Another alternate embodiment of the invention provides for improved heat transfer between the integrated circuit chip and the heat pipe heat spreader. This is accomplished by using a different capillary wick material within the heat pipe at the location which is directly in contact with the chip. Instead of using the same sintered copper powder wick which is used throughout the rest of the heat pipe, the part of the wick which is on the region of the heat pipe surface which is in contact with the chip is constructed of higher thermal conductivity sintered powder. Such powder can be silver, diamond, or many other materials well known in the art. This provides for significantly better heat transfer in the most critical heat transfer area, right at the integrated circuit chip.




The present invention thereby provides a heat pipe with superior heat transfer characteristics, and the simplest of all mounting devices, just several standard screws.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a cross section view of the preferred embodiment of the heat pipe of the invention with through holes through its vapor chamber and in contact with a finned heat sink.





FIG. 2

is a cross section view of an alternate embodiment of the heat pipe of the invention with through holes in the peripheral lips and in a depression in one plate.





FIG. 3

is a plan view of an internal surface of the contact plate of the preferred embodiment of the invention showing the region of the capillary wick constructed of sintered higher heat conductivity powder.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 1

is a cross section view of the preferred embodiment of a flat plate heat pipe


10


of the invention with through holes


12


through its vapor chamber


14


and in contact with finned heat sink


16


.




Heat pipe


10


is constructed by forming a boundary structure by sealing together two formed plates, contact plate


18


and cover plate


20


. Contact plate


18


and cover plate


20


are sealed together at their peripheral lips


22


and


24


by conventional means, such as soldering or brazing, to form heat pipe


10


. Heat pipe


10


is then evacuated to remove all non-condensible gases and a suitable quantity of heat transfer fluid is placed within it. This is the conventional method of constructing a heat pipe, and is well understood in the art of heat pipes.




The interior of heat pipe


10


is, however, constructed unconventionally. While contact plate


18


is essentially flat with the exception of peripheral lip


24


, cover plate


20


includes multiple depressions


26


. Depressions


26


are formed and dimensioned so that, when contact plate


18


and cover plate


20


are joined, the flat portions of depressions


26


are in contact with inner surface


28


of contact plate


18


. Depressions


26


thereby assure that the spacing between contact plate


18


and cover plate


20


will be maintained even though pressure differentials between the inside volume of heat pipe


10


and the surrounding environment might otherwise cause the plates to deflect toward each other.




Heat pipe


10


also includes internal sintered metal capillary wick


30


which covers the entire inside surface of contact plate


18


. As is well understood in the art of heat pipes, a capillary wick provides the mechanism by which liquid condensed at the cooler condenser of a heat pipe is transported back to the hotter evaporator where it is evaporated. The vapor produced at the evaporator then moves to the condenser where it again condenses. The two changes of state, evaporation at the hotter locale and condensation at the cooler site, are what transport heat from the evaporator to the condenser.




In the present invention, heat pipe


10


also has capillary wick pillars


32


which bridge the space between contact plate


18


and cover plate


20


. Pillars


32


thereby interconnect cover plate


20


and contact plate


14


with continuous capillary wick. This geometry assures that, even if heat pipe


10


is oriented so that cover plate


16


is lower than contact plate


18


, liquid condensed upon inner surface


34


of cover plate


20


will still be in contact with capillary pillars


32


. The liquid will therefore be moved back to inner surface


28


which functions as the evaporator because it is in contact with a heat generating integrated circuit (not shown). Capillary pillars


32


are wrapped around and supported by depressions


26


, which prevents the structurally weaker capillary pillars


32


from suffering any damage.





FIG. 1

also shows frame


36


which is typically used to surround and protect heat pipe


10


. Frame


34


completely surrounds heat pipe


10


and contacts lip


24


of contact plate


18


. When heat pipe


10


is used to cool an integrated circuit chip (not shown) which is held against contact plate


18


, cover plate


20


is held in intimate contact with fin plate


38


, to which fins


16


are connected. The entire assembly of heat pipe


10


, frame


34


, and fin plate


38


is held together and contact plate


18


is held against an integrated circuit chip by conventional screws


40


, shown in dashed lines, which are placed in holes


42


in fin plate


38


and through holes


12


in heat pipe


10


, and are threaded into the mounting plate (not shown) for the integrated circuit chip.




Holes


12


penetrate heat pipe


10


without destroying its vacuum integrity because of their unique location. Holes


12


are located within sealed structures such as solid columns


44


, and since columns


44


are bonded to cover plate


20


at locations


46


, holes


12


passing through the interior of columns


44


have no affect on the interior of heat pipe


10


.




The preferred embodiment of the invention has been constructed as heat pipe


10


as shown in FIG.


1


. This heat pipe is approximately 3.0 inches by 3.5 inches with a total thickness of 0.200 inch. Cover plate


20


and contact plate


18


are constructed of OFHC copper 0.035 inch thick, and depressions


26


span the 0.100 inch height of the internal volume of heat pipe


10


. The flat portions of depressions


26


are 0.060 inch in diameter. Capillary wick


30


is constructed of sintered copper powder and averages 0.040 inch thick. Columns


44


have a 0.250 inch outer diameter, and holes


12


are 0.210 in diameter.





FIG. 2

is a cross section view of an alternate embodiment of the flat plate heat pipe


11


of the invention with through holes


48


located within peripheral lips


22


and


24


of the heat pipe and hole


50


shown in another sealed structure, one of the depressions


26


. The only requirement for forming hole


50


within a depression


26


is that the bottom of depression


26


must be bonded to inner surface


28


of contact plate


18


to prevent loss of vacuum within the heat pipe. Of course, the region of the peripheral edges is also a sealed structure since bonding between lips


22


and


24


is inherent because heat pipe


11


must be sealed at its edges to isolate the interior from the outside atmosphere.




The only differences between heat pipe


11


of FIG.


2


and heat pipe


10


of

FIG. 1

are that finned heat sink


16


is not shown in

FIG. 2

, lips


22


and


24


are slightly longer in

FIG. 2

to accommodate holes


48


, and hole


50


is shown. In fact, through holes


12


shown in

FIG. 1

are also included in FIG.


2


. Although it is unlikely that holes


12


, holes


48


, and hole


50


would be used in the same assembly, manufacturing economies may make it desirable to produce all the holes in every heat pipe so that the same heat pipe heat spreader can be used with different configurations of finned heat sinks. The unused sets of holes have no effect on the operation or benefits of the invention.





FIG. 3

is a plan view of the internal surface of the contact plate


18


of heat pipe


10


of the invention showing region


31


of capillary wick


30


. Region


31


is constructed of sintered silver powder. While the balance of capillary wick


30


is conventional sintered metal such as copper, region


31


of capillary wick


30


, which is on the opposite surface of contact plate


18


from the integrated circuit chip (not shown), is formed of powdered silver. The higher thermal conductivity of silver yields significantly better heat conduction through region


31


of the wick


30


, and thereby reduces the temperature difference between the integrated circuit chip and the vapor within heat pipe


10


. This reduction of temperature difference directly affects the operation of heat pipe


10


, and essentially results in a similar reduction in the operating temperature of the chip.




The invention thereby furnishes an efficient means for cooling an integrated circuit and does so without the need for larger heat spreaders which not only add weight but also do not transfer heat away from the integrated circuit as efficiently as does the heat pipe of the invention.




It is to be understood that the form of this invention as shown is merely a preferred embodiment. Various changes may be made in the function and arrangement of parts; equivalent means may be substituted for those illustrated and described; and certain features may be used independently from others without departing from the spirit and scope of the invention as defined in the following claims. For example, through holes could also penetrate heat pipe boundary structures with curved surfaces or heat pipe boundary structures with offset planes which create several different levels for contact with heat sources or heat sinks.



Claims
  • 1. A system for dissipating heat comprising in combination:a heat pipe for spreading heat comprising: a first plate having an edge lip that bounds an outer surface and an inner surface and at least one depression which projects outwardly relative to said inner surface; a second plate arranged in spaced apart confronting relation to said first plate having an edge lip that bounds an inner surface and at least one opening through said second plate, said edge lips of said first and second plates being bonded together so as to define a vapor chamber between said plates; wherein said at least one depression formed in said first plate projects into said vapor chamber and is bonded to said second plate in aligned coaxial relation to said at least one opening through said second plate wherein said at least one opening is isolated from said vapor chamber; and a heat sink having at least one mounting hole, said heat sink being mounted on said outer surface of said first plate so that said mounting hole is coaxially aligned with said at least one depression, and a fastener projecting through said at least one mounting hole, said at least one depression, and said at least one opening in said second plate.
  • 2. A heat pipe for spreading heat according to claim 1 comprising at least one spacer positioned within said vapor chamber and extending between and contacting said first and second plates.
  • 3. A heat pipe for spreading heat according to claim 1 wherein said spaced-apart first and second plates include confronting inner surfaces; anda wick positioned upon said confronting inner surfaces including that portion of the inner surface of said first plate that forms a surface of said depression within said vapor chamber.
  • 4. A heat pipe for spreading heat according to claim 3 wherein said wick is constructed with at least two separate sections of different materials, with one section being located on said first plate inner surface and being formed of a material with higher heat conductivity than sections located on said second plate inner surface.
  • 5. A heat pipe for spreading heat according to claim 1 wherein said at least one depression in said first plate comprises an annular outer surface that is (i) spaced from said inner surface and (ii) sealingly bonded to a corresponding annular edge surface that bounds said at least one opening in said second plate.
  • 6. A heat pipe for spreading heat according to claim 1 wherein said at least one depression formed in said second plate comprises a flat portion that is in contact with an inner surface of said first plate.
  • 7. A system for dissipating heat comprising in combination:a heat pipe for spreading heat comprising: a boundary structure including spaced-apart first and second plates that define an enclosed vapor chamber; at least one depression formed in said first plate which projects into said vapor chamber and is bonded to said second plate; an opening defined through said first plate depression and said second plate wherein said opening is isolated from said vapor chamber; and at least one depression formed in said second plate which projects into said vapor chamber and is bonded to said first plate; and a heat sink having at least one mounting hole, said heat sink being mounted on said outer surface of said first plate so that said mounting hole is coaxially aligned with said opening defined through said first plate depression, and a fastener projecting through said at least one mounting hole, said first plate depression, and said opening defined through said second plate.
  • 8. A system for dissipating heat comprising in combination:a heat pipe for spreading heat comprising: a boundary structure including spaced-apart first and second plates that define an enclosed vapor chamber; at least one hollow column positioned within said vapor chamber and sealingly bonded to said first and second plates, and including an open first end that opens through said first plate and an open second end that opens through said second plate so as to form at least one through-hole that is isolated from said vapor chamber; and a heat sink having at least one mounting hole, said heat sink being mounted on said first plate so that said mounting hole is coaxially aligned with said at least one through-hole, and a fastener projecting through said at least one mounting hole, said at least one hollow column, and said open second end that opens through said second plate.
  • 9. A system for dissipating heat comprising in combination:a heat pipe for spreading heat comprising: a boundary structure including spaced-apart first and second plates having confronting interior surfaces wherein said first and second plates define an enclosed vapor chamber; at least one hollow column positioned within said vapor chamber and sealingly bonded to said first and second plates, and including (i) an open first end that opens through said first plate and an open second end that opens through said second plate so as to form at least one through-hole that is isolated from said vapor chamber, said second open end being bounded by a transverse flat surface, and (ii) an exterior surface positioned within said vapor chamber; a wick positioned upon said confronting interior surfaces of said first and second plates and said exterior surface of said at least one hollow column; and a heat sink having at least one mounting hole, said heat sink being mounted on said first plate so that said mounting hole is coaxially aligned with said at least one through-hole, and a fastener projecting through said at least one mounting hole, said at least one hollow column, and said open second end that opens through said second plate.
US Referenced Citations (17)
Number Name Date Kind
3209062 Scholz Sep 1965
3490718 Vary Jan 1970
3519063 Schmidt Jul 1970
3680189 Noren Aug 1972
3834457 Madsen Sep 1974
3934643 Laing Jan 1976
4046190 Marcus et al. Sep 1977
4047198 Sekhon et al. Sep 1977
4118756 Nelson et al. Oct 1978
4461343 Token et al. Jul 1984
5323292 Brzezinski Jun 1994
5427174 Lomolino Jun 1995
5465782 Sun Nov 1995
5642776 Meyer, IV et al. Jul 1997
5694295 Mochizuki et al. Dec 1997
6082443 Yamamoto et al. Jul 2000
6085831 DiGiacomo et al. Jul 2000
Foreign Referenced Citations (8)
Number Date Country
1284506 Dec 1968 DE
2579371 Sep 1986 FR
1402509 Aug 1975 GB
0154277 Dec 1979 JP
407-160 Apr 1974 SU
0589531 Jan 1978 SU
0987357 Jan 1983 SU
1476297 Apr 1989 SU
Non-Patent Literature Citations (2)
Entry
Dombrowskas et al., Conduction Coded Heat Plate for Modular Circuit Package, IBM TDB, p. 442, Jul. 1970.*
Nuccio, Low-Cost Cooling Package, IBM TDB, pp. 3761-3762, Apr. 1976.