Synthesis Characterization, and Nonlinear Optical Properties of Copper Nanoparticles—H.H. Huang et al.; Department of Chemistry, National University of Singapore, Singapore 119260, and Department of Physical, National University of Singapore, Singapore 119260; Jun. 5, 1996 Langmuir 1997, 13, 175-175. |
Synthesis, Characterization, and Properties of Metallic Copper Nanoparticles—N. Arul Dhas, et al.; Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900 Israel; Dec. 31, 1997; Chem. Mater. 1998, 10, 1446-1452. |
Elongated Copper Nanoparticles Coated with a Zwitterionic Surfactant—R.A. Salkar, et al.; Department of Chemistry, Bar -Ilan University, Ramat Gan 52900, Israel; J. Phys. Chem. B2000, 104, 893-897. |
Synthesis of Cu Nanoparticles and Microsized Fibers by Using Carbon Nanotubes as a Template; P. Chen et al.; Physics Department, National University of Singapore, Singapore, 119260 Oct. 6, 1998; The Journal of Physical Chemistry B, vol. 103, No. 22, Jun. 3, 1999. |
Alkyl Xanthates: New Capping Agents for Metal Colloids, Capping of Platinum Nanoparticles—P. Sawant et al.; Department of Chemistry, The Institutes for Applied Research, and the Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev Beer Sheva, Israel 84105; Oct. 24, 2000 Langmuir 2001, 17, 2913-2917. |
Novel One-Phase Synthesis of Thiol-Functionalized Gold, Palladium, and Iridium Nanoparticles Using Superhydride Chanel K. Yee et al.; Department of Chemical Engineering, Chemistry and Materials Science, Polytechnic University, Brooklyn, NY 11201; Department of Materials Sciences and Engineering, State University of New York, Stony Brook, NY 11794-2275, Jan. 7, 1999; Langmuir 1999, 3486-3491. |
Single Electron transistor using a molecularly linked gold colloidal particle chain—Toshihiko Sato; Hitachi Cambridge Laboratory, Cavendish Laboratory, Cambridge, UK; Haroon Ahmed, Microelectronics Research Centre, University of Cambridge, Cavendish Laboratory, Cambridge UK; David Brown and Brian F.G. Johnson, University of Cambridge, Cambridge, UK Mar. 10, 1997; J. Appl. Phys. 82(2), Jul. 15, 1997. |
Scanning tunneling microscopy of ordered coated cluster layers on graphite—P.J. Durston et al.; Nanoscale Physics Research Laboratory, School of Physics and Astronomy, The University of Birmingham, Birmingham, UK; J.P. Wilcoxson, Nanostructures and Advanced Materials Department; Sandia National Laboratories, Albuquerque, NM 87185; Jul. 21, 1997; Appl. Phys. Lett. 71(20), Nov. 17, 1997. |
Combinatorial approaches toward patterning nanocrystals—T. Vossmeyer et al.; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA; X. Peng et al., Department of Chemistry, University of California, Berkeley, CA; J.R. Heath, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA Apr. 7, 1998; J. Appl. Phys. 84(7), Oct. 1, 1998. |
Structure of Copper Microclusters Isolated in Solid Argon—P.A. Montano et al., Materials Science and Technology Division, Argonne National Laboratory, Argonne, IL and W. Schulze et al., Fritz Haber Institute der Max Planck Gesellschaft, D-1000 Berlin, W. Germany Nov. 18, 1985; Physical Review Letters, vol. 56, No. 19 May 12, 1986. |
Copper and copper compounds as coatings on polystyrene particles and as hollow spheres—N. Kawashashi et al.,JSR Corporation, Fine Electronic Research Laboratories, Yokkaichi-city, Japan; Jan. 28, 2000 J. Mater. Chem., 2000, 10, 2294-2297. |
ω-Terminated Alkanethiolate Monolayers on Surfaces of Copper, Silver, and Gold Have Similar Wettabilities—Paul E. Laibinis et al.; Department of Chemistry, Harvard University, Cambridge, MA; J. Am. Chem. Soc. 1992, 114, 1990-1995. |
Spectroscopic, Voltammetric, and Electrochemical Scanning Tunneling Microscopic Study of Underpotentially Deposited Cu Corrosion and Passivation with Self-Assembled Organomercaptan Monolayers—Francis P. Zamborini et al., Department of Chemistry, Texas A&M University, College Station, TX Aug. 11, 1997; Langmuir 1998, 14, 640-647. |
Electroless Deposition of nanoscale Copper Patterns via Microphase-Separated Diblock Copolymer Templated Self-Assembly—Robert W. Zehner et al., Searle Chemistry Laboratory, Department of Chemistry, The University of Chicago, Chicago, IL; Jun. 16, 1999; Langmuir 1999, 15, 6139-6141. |
Spin-on Cu films for ultralarge scale integrated metallization—Hirohiko Marakami et al., Tukuba Institute for Super Materials, ULVAC, Japan, Ltd., Tsukuba, Ibaraki, Japan; Nobuya Imazeki et al., Nanoparticle Division, Vacuum Metgallurgical Cp/o., Ltd., Sanbu-cho, Chiba, Japan; Mar. 15, 1999;J. Vac. Sci. Technol. B 17(5), Sep./Oct. 1999. |
Formation and Absorption of Spectrum of Copper Nanoparticles from the Radiolytic Reduction of Cu (CN)2. Arnim Henglein, Radiation Laboratory, University of Notre Dame, Notre Dame, IN; Aug. 20, 1999; J. Phys. Chem. B 2000, 104, 1206-1211. |
Silver Nanoparticle Formation: Predictions and Verification of the Aggregative Growth Model—Dirk L. Van Hyning et al., Department of Chemical Engineering and Department of Chemistry, University of Illinois, Urbana, IL; Jun. 19, 2000; Langmuir 2001, 17, 3128-3135. |
Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System—Mathias Brust et al., Department of Chemistry, The University of Liverpool; Liverpool, UK Dec. 8, 1994; J. Chem. Soc., Chem. Commun., 1994. |
Seed-mediated growth method to prepare cubic copper nanoparticles—Nikhil R. Jana et al., Department of Chemistry, Indian Institute of Technology, Kharagpur, India Jun. 12, 2000; Current Science, vol. 79, No. 9, Nov. 10, 2000. |