This invention relates to semiconductor processing methods of forming a series of conductive lines and to integrated circuitry having a series of conductive lines.
The high speed operation of future higher density integrated circuits will be dictated by interconnect response. Realization of such high speed circuitry is impacted by cross-talk between different adjacent interconnect lines. Cross-talk imposes the biggest constraint on high speed operation when frequencies exceed 500 MHz. Lowering the conductive line resistivity or the dielectric constant of insulators interposed between conductive metal lines is not expected to inherently solve the cross-talk problem. In addition, the gain in system response is only enhanced by a factor of 3, at best, when these changes are ideally integrated into manufacturing processes.
Future circuits will also incorporate higher drive devices. In such situations, as the circuits change state (e.g., from high voltage to low voltage in a CMOS circuit), the interconnect line that carries the signal to the next active device will often be closely spaced to another interconnect line whose driver is not changing state. However given the speed of the voltage change on the first line and the spacing from the second, capacitive coupling will undesirably cause the second line to follow the first momentarily. This situation is made worse when the device driving the second line is small compared to the driver switching the first line. Here, the driver driving the second line does not have enough drive to maintain the output line's desired voltage during the first line's transition from high voltage to low voltage. Therefore, the second line follows the first. This can cause upset in circuits tied to the second line and cause the chip to fail or temporarily operate incorrectly.
One prior art technique to decouple adjacent interconnect lines is to fully enclose lines in a conductive shield, such as a coaxial sheath around a central core interconnect line. Such processing to produce such construction is however complex, and alternate methods and resultant circuitry constructions are desired.
Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
In accordance with one aspect of the invention, a semiconductor processing method of forming a plurality of conductive lines comprises the following steps:
providing a substrate;
providing a first conductive material layer over the substrate;
etching through the first conductive layer to the substrate to both form a plurality of first conductive lines from the first conductive layer and provide a plurality of grooves between the first lines, the first lines having respective sidewalls;
electrically insulating the first line sidewalls; and
after insulating the sidewalls, providing the grooves with a second conductive material to form a plurality of second lines within the grooves which alternate with the first lines.
In accordance with another aspect of the invention, integrated circuitry comprises:
a substrate; and
a series of alternating first and second conductive lines provided relative to the substrate, the first and second lines being spaced and positioned laterally adjacent one another relative to the substrate, the first lines and the second lines being electrically isolated from one another laterally by intervening anisotropically etched insulating spacers formed laterally about only one of the first or second series of lines.
In accordance with still a further aspect of the invention, integrated circuitry comprises:
a substrate; and
a series of alternating first and second conductive lines provided relative to the substrate, the first and second lines being spaced and positioned laterally adjacent one another relative to the substrate, the first lines and the second lines being electrically isolated from one another laterally by intervening strips of insulating material, the first lines having a substantially common lateral cross sectional shape and the second lines having a substantially common lateral cross sectional shape, the first lines' lateral cross sectional shape being different from the second lines' lateral cross sectional shape.
Referring first to
In accordance with the preferred embodiment, layer 16 will ultimately be utilized as a cross-talk shield between otherwise adjacent conductive lines. Accordingly, its degree of conductivity should be effective to function in this regard. It can in essence be a semiconductive material, such as undoped polysilicon which will have effective conductivity to function as a cross-talk shield.
A first insulating layer 18 is provided over first conductive layer 16. An example and preferred material for layer 18 is SiO2 deposited by decomposition of tetraethylorthosilicate (TEOS). Referring to
Referring to
Referring to
Referring to
Referring to
Accordingly, a method and construction are described whereby a series of conductive lines 19, 20 and 21 are positioned laterally adjacent another set of conductive lines 34, 36. Such are isolated from one another laterally by intervening strips of insulating material, which in the preferred embodiment constitute intervening anisotropically etched insulating spacers formed laterally about only first series of lines 19, 20 and 21. Further in accordance with an aspect of the invention, first lines 19, 20 and 21 have a substantially common lateral cross-sectional shape, and second lines 34 and 36 also have a substantially common lateral cross-sectional shape. Yet, the first lines' 19, 20 and 21 lateral cross-sectional shape is different from that of the second lines' lateral cross-sectional shape. This is most readily apparent from
An alternate described embodiment whereby contact openings are provided is described with reference to
An interlevel dielectric layer construction 77 is provided between the two line sets. Additional separate horizontal intervening shielding layers 65 and 70 can and are provided relative to the interlevel dielectric layers 77 and 14b, respectively, to afford desired cross-talk shielding between the different levels of first and second conductive lines. Further in the depicted embodiment, line 34b is shown to extend downwardly for electrical contact with a different level. Likewise, line 56 from elevation 47 effectively extends downwardly to make electrical contact with line 36. If desired, all such shields in either embodiment may be interconnected and connected to a suitable potential.
In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
This patent resulted from a divisional application of U.S. patent application Ser. No. 10/648,886, filed on Aug. 26, 2003 which resulted from a continuation application of Ser. No. 09/526,797 now U.S. Pat. No. 6,611,059, filed on Apr. 22, 1997, which resulted from a file wrapper continuation application of application Ser. No. 08/597,196, filed Feb. 6, 1996, now abandoned and entitled “Integrated Circuitry and a Semiconductor Processing Method of Forming a Series of Conductive Lines”, naming Monte Manning as the inventor. This patent is also related to application Ser. No. 08/742,782, now U.S. Pat. No. 6,096,636, issued Aug. 1, 2000, which is a divisional application of application Ser. No. 08/597,196, now abandoned.
This invention was made with Government support under Contract No. MDA972-92-C-0054 awarded by Advanced Research Projects Agency (ARPA). The Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
4418239 | Larson | Nov 1983 | A |
4686759 | Pals | Aug 1987 | A |
4693530 | Stillie | Sep 1987 | A |
4780394 | Blanchard | Oct 1988 | A |
4781620 | Tengler | Nov 1988 | A |
4922323 | Potter | May 1990 | A |
4933743 | Thomas | Jun 1990 | A |
4984055 | Okumura et al. | Jan 1991 | A |
5000818 | Thomas | Mar 1991 | A |
5028981 | Eguchi | Jul 1991 | A |
5117276 | Thomas | May 1992 | A |
5123325 | Turner | Jun 1992 | A |
5176538 | Hansell, III | Jan 1993 | A |
5323048 | Onuma | Jun 1994 | A |
5329155 | Lao | Jul 1994 | A |
5378646 | Huang et al. | Jan 1995 | A |
5407860 | Stoltz et al. | Apr 1995 | A |
5413961 | Kim | May 1995 | A |
5413962 | Lur et al. | May 1995 | A |
5418187 | Miyanaga et al. | May 1995 | A |
5451551 | Krishnan et al. | Sep 1995 | A |
5471093 | Cheung | Nov 1995 | A |
5519239 | Chu | May 1996 | A |
5552628 | Watanabe | Sep 1996 | A |
5583357 | Choe | Dec 1996 | A |
5585664 | Ito | Dec 1996 | A |
5654917 | Ogura | Aug 1997 | A |
5656543 | Chung | Aug 1997 | A |
5719075 | Hawkins et al. | Feb 1998 | A |
5858865 | Juengling et al. | Jan 1999 | A |
5956615 | Nguyen et al. | Sep 1999 | A |
Number | Date | Country |
---|---|---|
054925 | Feb 1990 | JP |
06-097300 | Apr 1994 | JP |
0097300 | Apr 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20050009326 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10648886 | Aug 2003 | US |
Child | 10914932 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09526797 | Apr 1997 | US |
Child | 10648886 | US | |
Parent | 08597196 | Feb 1996 | US |
Child | 09526797 | US |